Contextual Relationships of Factors Affecting Sustainability 4.0 in the Textile Industry
影响纺织行业可持续发展 4.0 的要素的情境关系
巴西累西腓 50750-500,佩尔南布科州,佩尔南布科大学管理学院
巴西累西腓 50670-901,佩尔南布科州,联邦佩尔南布科大学生产与行政管理学术单位
巴西卡皮塔尼亚格兰德 58429-140,帕拉伊巴州,联邦卡皮塔尼亚格兰德大学管理与会计学术单位(UAAC)
对此信件负责的作者。
可持续发展 2024,16(14),5999;https://doi.org/10.3390/su16145999
收稿日期:2024 年 6 月 19 日 / 修订日期:2024 年 7 月 8 日 / 录用日期:2024 年 7 月 8 日 / 发表日期:2024 年 7 月 13 日
Abstract 摘要
本研究旨在通过 I4.0 原则在纺织工业中的应用,利用解释结构模型(ISM),一种能够理解不同因素之间关系的定性技术,并基于它们的相互依赖性进行分层分类,来确定影响可持续发展 4.0 的各个影响因素之间的情境关系。在不同层面上提出的 16 个(十六个)因素层次有助于确定关键领域,以集中精力和投资,提供数据以指导战略商业规划。从层次划分图的结果来看,ISM 图观察到了四个层次。企业社会责任因素(FIS7)被视为所有其他因素的依赖变量。将 FIS4、FIS10 和 FIS14 识别为高度依赖的因素,表明了战略干预的关键领域。因此,本研究为纺织公司采用可持续和先进的技术战略提供了坚实的理论基础和实践建议,促进了向可持续发展 4.0 的有效过渡。
关键词:纺织业;解释结构模型;工业 4.0;可持续发展 4.0
1. Introduction 1. 引言
根据联合国工业发展组织提供的数据[1],巴西在全球纺织生产排名中位居第十,2020 年该行业创造了约 90 亿美元。然而,这一数字与中国的产量相比微不足道,中国在这一产业链中处于领先地位,在同一时期,其产值超过 4500 亿美元[2]。在此背景下,巴西东北部地区在纺织市场扩张中的作用日益上升,以及该部门贸易平衡的相应增加必须予以考虑[3]。
值得强调的是,巴伊亚州对纺织生产发展的意义。这种相关性在很大程度上可以归因于阿加斯特·佩尔南布库服装枢纽——由卡鲁阿鲁、圣克鲁斯·多·卡皮巴拉贝和托里塔马等城市组成,它集中了服装产品的多种生产和商业化活动[4]。在此空间开展的活动,旨在发挥该州的生产潜力,其责任已得到认可。然而,有必要承认与这一工业增长背景相关的环境影响[5]。作者评论了纺织行业与环境污染之间的密切关系,并主张更深入地反思这一问题,关注可持续性的推广。
纺织工业的环境影响已经是一些年来的学术研究课题,但根据舒尔特和洛佩斯[6]的观点,随着关于可持续发展辩论的加剧,对该主题的研究不仅数量和密度增加,而且变得更为必要。这是因为纺织工业是污染最严重的生产部门之一[7, 8, 9],与这一领域的明显扩张相关联的信息,突显了绘制挑战和思考减轻问题的替代方案的紧迫性。
直接影响服装产品生产和消费动态的现象是快时尚生产部门,这与一个短而快速的生产链相关,反映了消费趋势[10]。然而,这也与更便宜的生产链以及产品使用寿命的相应减少有关,这是一个需要克服的障碍,以便为纺织产品的生产和消费建立一个新的前景[11]。
考虑到纺织行业经济和工业扩张与生产利润增长所导致的对环境造成的损害之间的冲突,许多作者都主张思考与时尚消费的新关系[12, 13]。这一提议与工业生产新阶段——工业 4.0[14, 15]的概念相联系,而这又反过来需要针对这一行业新方面的可持续性进行更新反思。
在这种背景下,可持续发展 4.0 的概念应运而生,它包括将促进可持续性的基本原则与工业 4.0 背后的行动和前提相结合。Javaid 等人[16]和 Filgueiras 等人[17]解释说,这一现象非常新,这就是为什么不同公司的管理者仍然认识到阻碍其组织与可持续发展 4.0 原则相一致的措施实施的弱点。
考虑到纺织和服装行业对巴西及世界经济的重要性,本文旨在回答以下问题:基于纺织行业应用工业 4.0 的原则和支柱,影响可持续性 4.0 的因素之间的情境关系是什么?因此,本研究旨在通过解释结构模型(ISM)识别影响可持续性 4.0 的因素之间的情境关系,解释结构模型是一种将数据分类和分析为更明确的结构化思维模型的适当方法[18]。
本研究的特点在于通过应用解释结构模型方法,在纺织行业内寻找识别影响可持续性 4.0 的因素之间的情境关系,基于工业 4.0 的原则和支柱。此外,值得注意的是,在文献中关于这一方向的特定研究仍然很少。
本研究为科学知识的进步做出了贡献,具有理论和实践价值,可以作为纺织行业组织和参与生产链的代理商在实施方面的指南,也因为在构建可持续性 4.0(S4.0)的概念。因此,本研究除了提供可持续性与工业 4.0 的整合外,还为在纺织和服装行业实施 4.0 技术的组织领导者和经理提供了有价值的概念结构和重要的实践指导。
2. Theoretical Background
2. 理论背景
2.1. Industry 4.0 and Sustainability
2.1. 工业 4.0 与可持续性
根据佩雷拉等人[19]的研究,术语“工业 4.0”原本是用来指代生产动态的新一轮变革时期,标志着第四次工业革命,其中数字化和全球化文化被视为生产过程和商品分配的结构性要素。在这种情况下,作者们认为,这是人类与数字技术之间的整合,以优化采购、销售和制造网络——换句话说,就是整个生产链。这是一种影响不同知识领域和专业活动的生产重构现象,如工程、管理、经济学、计算科学等。
因此,根据 Tessarini Junior 和 Saltorato[20]的研究,工业 4.0 的发展不仅限于工业和商业问题,更广泛地涵盖了人类生活的各个方面。在他们研究中,研究人员强调了智能生产形式的质量,这些形式整合了网络物理系统以及与互联网相关的两种动态,即物联网(IoT)和互联网服务(IoS)。这两种现象将有关产品和服务的信息的数字互联分组,以扩大公民-消费者的可能性范围,预测和引导消费趋势,将不同维度之间的数据共享等。
这是一种对智能和优化生产形式的理解,旨在以个性化的方式满足消费者需求,同时有利于环境和社交问题。这是因为有关发展更可持续生产形式的论调,与最小化生产过程造成的环境损害相关[21, 22]。作者以阐述可持续性和工业 4.0 主题的学术作品的增加生产力作为结论。
作者然而,强调了实施可持续性与工业 4.0 相结合的挑战。其中一些包括增加对数字技术资源的获取和维护的投资,这使得建立这一新维度变得困难。另一个障碍也凸显出来:在优化工厂时,无论是通过机械还是数字自动化,虽然可以加快公司间的运营速度,但往往阻碍劳动力的扩张。
它还值得强调,人们对“可持续性”这一术语赋予了多种含义[23]。它涉及构建一个三方结构,将社会、经济和环境利益结合起来。研究人员强调了建立综合的宏观可持续性政策的相关性,阐述构成所提及三个领域的不同实体的利益,因此国家及全球倡议的重要性,例如 PNRS[24]和《我们的共同未来》,这份文件也被称为布伦特兰报告——以挪威首相格罗·哈莱姆·布伦特兰的姓氏命名,她主持了联合国关于可持续性的讨论[25]。
- FIS1: Production on demand—a production model that develops goods and merchandise that already have their own demand, a trend in the business market that, as we know, is constantly changing and looking for ways to adapt to generate a more effective result in less time, reducing costs and minimizing waste; after all, only what was already demanded for final consumption/sale will be produced [23,30].
- FIS2: Technological innovation—in a scenario of continuous digital transformation, this innovation consists of implementing resources, based on technology and its tools (AI, IoT, BigData, Blockchain, Machine Learning, etc.), in order to produce positive results for the purpose and processes of the organization, resulting in increased quality and productivity in order to effectively contribute to organizational development [5,38].
- FIS3: Optimization of resources (e.g., energy efficiency)—use of resources, whether inputs, human, or financial, in a more effective and efficient way, reducing waste and costs throughout the execution of processes and enhancing production capacity [39].
- FIS5: Adherence to the Circular Economy—unlike the traditional linear model, where resources are extracted, used, and discarded, the circular economy promotes the reuse and recycling of materials, closing the cycle and reducing dependence on finite resources, seeking to redesign, produce, and market products intelligently, ensuring the efficient use and recovery of resources [42].
- FIS6: Process improvement—continuous improvement in quality and productivity with increased effectiveness and efficiency in the execution of production processes using technologies such as, for example, artificial intelligence, Internet of Things, and robotics [43].
- FIS7: Corporate Socio-Environmental Responsibility—organizations reaffirm their ethical commitment to social, environmental, and economic development, with all their processes guided by the objective of promoting this sustainable production management [44].
- FIS8: Adherence to the Sharing Economy—structured according to new consumer trends, the sharing economy is a business model that is based on the sharing of products and services, as well as the reuse of goods, stimulating the generation of new sources of income and extending the useful life of disused materials, including technology, acting as a catalyst for this economic model, supporting the countless networks that help and drive this model [45].
- FIS9: More conscious consumption—we are facing a generation that is increasingly moving towards conscious and questioning consumption. This consumer, who seeks to understand from the origin of the raw material of that piece of clothing to the end it will have, believes that understanding the entire process and life cycle of a product is fundamental in times when it is necessary to rethink daily habits and how we can adapt them to a planet in need of change [46,47].
- FIS10: Focus on customer experience—taking advantage of technologies such as artificial intelligence, for example, offering solutions to improve customer satisfaction through qualified and relevant experiences of excellence, which have a positive impact; after all, the better the experience, the tendency is for the satisfaction to be greater [48].
- FIS11: Strengthening sustainable fashion—sustainable fashion is related to the generation of an experience associated with social and environmental commitment, uniting the pillars of production and consumption with awareness and commitment to societal issues, considering the entire life cycle of the product, from design to production/manufacturing [49].
- FIS12: Personalization (3D Clothes, Virtual Fitting Rooms, etc.)—technology that facilitates the adaptation of services to the needs of each client, using technologies such as augmented reality and artificial intelligence through, for example, 3D clothes and virtual fitting rooms [4].
- FIS13: Waste reduction—waste management as well as the reduction in its generation together have the responsibility to reduce the environmental impacts arising from industrial production processes, including, for example, practices such as the reuse of inputs and reusing waste, preventing raw materials from being completely discarded [50,51].
- FIS14: Extension of the product’s useful life cycle—the implementation of the extension of the useful life of products is urgent to advance towards more sustainable production and consumption patterns. Extending the useful life of already manufactured products contributes to reducing the use of natural resources and the generation of waste, fundamental factors for accelerating the transition of businesses to a more circular economy [52].
- FIS15: Reduction in the environmental footprint (e.g., reduction in carbon emissions)—the reduction in impacts caused to the biosphere, with the environmental footprint being an indicator of sustainability that monitors the relationship between the biocapacity (or regenerative capacity) of the planet and the demand for natural resources necessary to produce consumer goods and services [53,54].
2.2. Interpretative Structural Modeling (ISM)
- Identification and exhaustive listing of all factors that will be the subject of study; the identification of factors is the first step in the ISM methodology. For this study, 16 (sixteen) factors that impact Sustainability 4.0 in the textile industry were listed, with 8 (eight) factors being identified for the economic dimension, 4 (four) for the social dimension, and 4 (four) for the environmental dimension [36].
- Establishment of contextual relationships between factors—for this step, a structured script is used with the aim of establishing the influence relationships between the factors that impact Sustainability 4.0 in the textile industry.
- Preparation of the structural self-interaction matrix referring to the factors under analysis—to identify the contextual relationships that are the subject of research, it is necessary to develop a structural self-interaction matrix based on classification symbols (V, A, X, O) so that the direction between bases i and j can be demonstrated. The “V” classification indicates that there is a relationship only between factor “i” and factor “j”. The “A” classification indicates that there is a relationship only between factor “j” and factor “i”. The “X” classification indicates that there is a relationship in both directions, whether from “i” to “j” or from “j” to “i”. And, finally, the “O” classification points to a lack of relationship in both directions, whether between “i” and “j” or “j” with “i” [60,61].
- Formulation of the Binary Initial Accessibility Matrix for the factors considered—once the structural self-interaction matrix has been developed for the factors that impact Sustainability 4.0 in the textile industry, the Binary Initial Accessibility Matrix must be developed using the classification V, A, X, O, which will be inter-crossed through the relationships between lines and columns according to the following rule [61]:
- ○
- If in the Matrix the entry (i, j) is classified as V, it will be represented by 1 in the entry (i, j) and 0 in the entry (j, i).
- ○
- If the entry (i, j) in the Matrix is classified as A, it will be represented by 0 entry (i, j) and 1 entry (j, i).
- ○
- If the entry (i, j) in the Matrix is classified as X, it will be represented by 1 in the entries (i, j) and (j, i).
- ○
- If the entry (i, j) in the Matrix is classified as O, it will be represented by 0 in the entries (i, j) and (j, i).
- ○
- In the structural self-interaction matrix, diagonal entries will be represented by 1.
- Assessment of transitivity in the structural self-interaction matrix—In this step, we seek to evaluate transitivity to check whether there is conformity in the relationships between different opposing factors [62]. It is important to check the possibility of indirect relationships between the crossed elements in the matrix, the relationships between the two attributes A and B and B and C, respectively, and indicate a relationship between attributes A and C [60,61,62].
- Definition of partition levels in the Final Accessibility Matrix creation of the diagram ISM—After verifying the transitivity of the matrix, it is necessary to calculate the Power of Direction and Dependence Matrix, in which the summed values in the rows and columns will be represented. It is fundamental for creating a diagram that encompasses the entire ISM model, as well as its fragmentation into different levels [63]. By creating the matrix, it is possible to draw the hierarchical ISM model using a diagram.
- Carrying out MICMAC analysis in relation to the factors examined—finally, the MICMAC analysis is used to segment the impact factors on Sustainability 4.0 into clusters according to the following classification:
- ○
- Cluster I (Autonomous Variables): the elements of this set are characterized by having low powers of dependence and direction [64].
- ○
- Cluster II (Dependent Variables): the elements of this set are characterized by having high power of dependence and low power of direction. In this group, the elements depend on each other, despite having low power of influence over other factors, therefore representing little relevance [65].
- ○
- Cluster III (Linkage Variables): the elements that make up this set are characterized by having high power of dependence and high power of direction. The factors located in this group influence the other factors, in addition to being influenced themselves [66].
- ○
- Cluster IV (Independent Variables): the elements that compose it are characterized by factors with low power of dependence and high power of direction, that is, it has a high capacity to influence other factors in a stable way [67].
- Review of potential inconsistencies in the ISM Model.
3. Materials and Methods
4. Results
Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNIDO—United Nations Industrial Development Organization. INDSTAT 2 2022, ISIC Revision 3. 2020. Available online: https://stat.unido.org (accessed on 11 March 2023).
- Mendes Junior, B.O. Indústria Têxtil. Cad. Setorial Etene 2022, 7, 1–12. Available online: https://www.bnb.gov.br/s482-dspace/handle/123456789/1462 (accessed on 11 March 2023).
- Silva, F.O.; Santos, A.V. Economia Criativa no Mercado da Moda e Sua Influência no Desenvolvimento da Indústria Têxtil no Nordeste. Rev. Econ. Reg. Urbana Trab. 2020, 9, 124–137. [Google Scholar] [CrossRef]
- Silva, T.R.; Silva, F.P.D.; Ruthschilling, E.A. Textile Labs: Um estudo sobre a implementação de tecnologias de fabricação na indústria da moda. Educ. Gráf. 2019, 23, 287–300. [Google Scholar]
- Sousa, J.P.; Oliveira, V.; Maracajá, K.F.B. A sustentabilidade no espaço empresarial: Reflexões sobre a responsabilidade socioempresarial no setor da indústria têxtil da Cidade de Toritama/PE. Ciênc. Gerenc. 2021, 25, 131–137. [Google Scholar] [CrossRef]
- Schulte, N.K.; Lopes, L.D. Sustentabilidade ambiental: Um desafio para a moda. Actas Diseño 2010, 9, 30–42. [Google Scholar] [CrossRef]
- Akter, M.M.K.; Haq, U.N.; Islam, M.M.; Uddin, M.A. Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean. Environ. Syst. 2022, 4, 100070. [Google Scholar] [CrossRef]
- Beier, G.; Matthess, M.; Guan, T.; Grudzien di do, P.; Xue, B.; de Lima, E.P.; Chen, L. Impact of Industry 4.0 on corporate environmental sustainability: Comparing practitioners’ perceptions from China, Brazil and Germany. Sustain. Prod. Consum. 2022, 31, 287–300. [Google Scholar] [CrossRef]
- Caires, C.R.B.; Souza, L.A.F.; de Oliveira, A.R.; de Melo Bonini, L.M.; an de Santis SH, D.S. Management of industrial production in fashion: Challenges for sustainability. Rev. Ibero-Am. Humanid. Ciênc. Educ. 2023, 9, 1301–1314. [Google Scholar]
- Toniol, A.P.N.; Albieri, S. O fast-fashion como fenômeno econômico-cultural: Moda e globalização. Braz. J. Bus. 2020, 2, 2316–2327. [Google Scholar] [CrossRef]
- McNeill, L.; Moore, R. Sustainable fashion consumption and the fast fashion conundrum: Fashionable consumers and attitudes to sustainability in clothing choice. Int. J. Consum. Stud. 2015, 39, 212–222. [Google Scholar] [CrossRef]
- Bortoluzzi, M.; Gutierrez, J.; Alves, M.F.; Fenerich, A.T. Apoio à tomada de decisão em uma indústria do setor fashion: Novas perspectivas a partir da sustentabilidade e da indústria 4.0. Rev. Eng. Produção 2020, 2, 53–76. [Google Scholar]
- Bullón Pérez, J.J.; Queiruga-Dios, A.; Gayoso Martínez, V.; Martín del Rey, Á. Traceability of ready-to-wear clothing through blockchain technology. Sustainability 2020, 12, 7491. [Google Scholar] [CrossRef]
- Bertola, P.; Teunissen, J. Fashion 4.0. Innovating fashion industry through digital transformation. Res. J. Text. Appar. 2018, 22, 352–369. [Google Scholar] [CrossRef]
- Albertin, M.R.; Pontes, H.L.J. A Engenharia de Produção na Era da Indústria 4.0: Estudos de Casos e Benchmarking da Indústria 4.0; Editora Appris: Curitiba, Brazil, 2021. [Google Scholar]
- Javaid, M.; Haleem, A.; Singh, R.P.; Khan, S.; Suman, R. Sustainability 4.0 and its applications in the field of manufacturing. Internet Things Cyber-Phys. Syst. 2022, 2, 82–90. [Google Scholar] [CrossRef]
- Filgueiras, I.F.L.V.; Melo, F.J.C.D.; Guimaraes, D.S., Jr.; Barbosa, A.A.L.; Sobral, E.F.M.; Vital Junior, S.A. Evaluation of the Benefits Generated by Sustainability 4.0: A Study of the Perception of Banking Sector Customers. Sustainability 2024, 16, 2580. [Google Scholar] [CrossRef]
- Alfineto, J.J.M. Avaliação da Relação Entre Práticas do Lean Manufacturing e Tecnologias da Indústria 4.0: Aplicação de Modelagem Estrutural Interpretativa (ISM). Master’s Thesis, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, Brazil, 2022. [Google Scholar]
- Pereira, A.; de Oliveira Simonetto, E.; Putnik, G.; de Castro, H.C.G.A. How connectivity and search for producers impact production in Industry 4.0 networks. Braz. J. Oper. Prod. Manag. 2018, 15, 528–534. [Google Scholar] [CrossRef]
- Tessarini, G.; Saltorato, P. Impactos da indústria 4.0 na organização do trabalho: Uma revisão sistemática da literatura. Rev. Prod. Online 2018, 18, 743–769. [Google Scholar] [CrossRef]
- Germano, A.X.D.S.; Mello, J.A.V.B.; Motta, W.H. Contribuição das tecnologias da indústria 4.0 para a sustentabilidade: Uma revisão sistemática. Palabra Clave 2021, 11, 142. [Google Scholar] [CrossRef]
- Bae, Y.; Choi, J.; Gantumur, M.; Kim, N. Technology-based strategies for online secondhand platforms promoting sustainable retailing. Sustainability 2022, 14, 3259. [Google Scholar] [CrossRef]
- Ferreira Costa, M.F.B.; Zaneti, B.B.; Bruno, I.C. Environmental Impacts of Fast Fashion: The International Textile Dump of Atacama-Chile. 2022. Available online: https://periodicos.utfpr.edu.br/rts/article/view/15794/9040 (accessed on 21 July 2023).
- Brasil. Lei nº 12.305, de 2 de Agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; Altera a Lei no 9.605, de 12 de Fevereiro de 1998; e dá Outras Providências. 2010. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 8 April 2023).
- United Nations. Our Common Future. 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 5 October 2022).
- Sugahara, C.R.; Rodrigues, E.L. Desenvolvimento Sustentável: Um discurso em disputa. Desenvolv. Quest. 2019, 17, 30–43. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency. Nondurable Goods: Product-Specific Data. 2021. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/nondurable-goods-product-specific-data#ClothingandFootwear (accessed on 23 April 2022).
- Barros, S.T. Design na Indústria do Vestuário: Princípios da Sustentabilidade Ambiental como Estratégia para Auxiliar na Redução de Resíduos Têxteis no Segmento de Moda Festa. Master’s Thesis, Faculdade de Arquitetura e Urbanismo e Design da Universidade Federal de Uberlândia, Uberlândia, Brazil, 2020. [Google Scholar]
- Mesacasa, A.; Zanette, Y. Análise de uma empresa de moda segundo os princípios da economia circular. Rev. Livre Sustentabilidade Empreendedorismo 2021, 6, 172–200. [Google Scholar]
- Rathore, B. Textile Industry 4.0: A Review of Sustainability in Manufacturing. Int. J. New Media Stud. 2023, 10, 38–43. [Google Scholar] [CrossRef]
- Fletcher, K.; Grose, L. Moda & Sustentabilidade: Design para Mudança; Editora Senac: São Paulo, Brazil, 2011. [Google Scholar]
- da Silva, M.F.M.P.; de Moraes, V.B.; de Souza, L.L.; Babinski, V., Jr.; Schulte, N.K. Os Biomateriais Têxteis no Contexto da Indústria 4.0: O Exemplo das Fibras das Teias de Aranhas. In ENSUS 2022—X Encontro de Sustentabilidade em Projeto; Anais eletrônicos...; Uniffespa: Marabá, Brazil, 2022; Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/245081/Vol.%206%20853%20-%20865.pdf?sequence=1&isAllowed=y (accessed on 17 January 2023).
- Amaral, J.H.G.; Spers, E.E. Sustainability in the fashion industry: A case study in sericulture. Braz. J. Bus. 2020, 2, 3142–3150. [Google Scholar] [CrossRef]
- Ahmad, S.; Miskon, S.; Alabdan, R.; Tlili, I. Towards sustainable textile and apparel industry: Exploring the role of business intelligence systems in the era of Industry 4.0. Sustainability 2020, 12, 2632. [Google Scholar] [CrossRef]
- Soares, M.J.C. Práticas de sustentabilidade no ensino profissionalizante de moda. In Trilhas da Educação Profissional: Inovação e Criatividade; Cabral, S.N., Mota, L.I.A., Soares, L.S., Tahim, A.P.V.d.O., Eds.; Senac Ceará: Fortaleza, Brazil, 2020; Volume 2, pp. 15–26. [Google Scholar]
- Silva, M.F.V.O.B.; Melo, F.J.C. Sustainability 4.0 In The Fashion Industry: A Systematic Literature Review. Int. J. Adv. Oper. Manag. 2023, 15, 1–31, (ahead-of-print). [Google Scholar]
- Filgueiras, I.F.L.V.; Melo, F.J.C.D. Sustainability 4.0 in services: A systematic review of the literature. Benchmarking 2024, 31, 1771–1796. [Google Scholar] [CrossRef]
- Araque González, G.; Suárez Hernández, A.; Gómez Vásquez, M.; Vélez Uribe, J.; Bernal Avellaneda, A. Sustainable manufacturing in the fourth industrial revolution: A big data application proposal in the textile industry. J. Ind. Eng. Manag. 2022, 15, 614–636. [Google Scholar] [CrossRef]
- Guizzi, G.; Falcone, D.; De Felice, F. An integrated and parametric simulation model to improve production and maintenance processes: Towards a digital factory performance. Comput. Ind. Eng. 2019, 137, 106052. [Google Scholar] [CrossRef]
- Lin, C.W.R.; Chen, M.T.; Tseng, M.L.; Jantarakolica, T.; Xu, H. Multi-objective production programming to systematic sorting and remanufacturing in second-hand clothing recycling industry. Symmetry 2020, 12, 1161. [Google Scholar] [CrossRef]
- Reis, F.B.; Fernandes, P.R.B. A reutilização de resíduos sólidos na economia circular: Estudo de caso no mercado de calçadista. Braz. J. Dev. 2021, 7, 48456–48470. [Google Scholar] [CrossRef]
- Jia, F.; Yin, S.; Chen, L.; Chen, X. The circular economy in the textile and apparel industry: A systematic literature review. J. Clean. Prod. 2020, 259, 120728. [Google Scholar] [CrossRef]
- ElShishtawy, N.; Sinha, P.; Bennell, J.A. A comparative review of zero-waste fashion design thinking and operational research on cutting and packing optimisation. Int. J. Fash. Des. Technol. Educ. 2022, 15, 187–199. [Google Scholar] [CrossRef]
- Thorisdottir, T.S.; Johannsdottir, L. Corporate social responsibility influencing sustainability within the fashion industry. A systematic review. Sustainability 2020, 12, 9167. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, K. A systematic review and future directions of the sharing economy: Business models, operational insights and environment-based utilities. J. Clean. Prod. 2021, 290, 125209. [Google Scholar] [CrossRef]
- Rezende, M.V.B.; Dubeux, V.J.C. Ser Sustentável está na Moda? O perfil do consumidor jovem carioca no mercado da moda sustentável. Int. J. Bus. Mark. 2020, 5, 72–84. [Google Scholar]
- Kumar, N.; Mohan, D. Sustainable apparel purchase intention: Collectivist cultural orientation and price sensitivity in extended TPB model. J. Revenue Pricing Manag. 2021, 20, 149–161. [Google Scholar] [CrossRef]
- Ta, A.H.; Aarikka-Stenroos, L.; Litovuo, L. Customer experience in circular economy: Experiential dimensions among consumers of reused and recycled clothes. Sustainability 2022, 14, 509. [Google Scholar] [CrossRef]
- Sena, T.V. Moda na era digital: Explorando as tendências do metaverso, NFTs e sustentabilidade. Rev. Ensino Artes Moda Des. 2023, 7, 1–26. [Google Scholar]
- Luo, Y.; Deng, K. Sustainable Fashion Innovation Design for Marine Litter. J. Phys. Conf. Ser. 2021, 1790, 012098. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/1790/1/012098/meta (accessed on 28 July 2023). [CrossRef]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A review on textile recycling practices and challenges. Textiles 2022, 2, 174–188. [Google Scholar] [CrossRef]
- Sodhi, S.; Singh, V.; Arya, V. Upcycling: Innovative way of textile waste management. Pharma Innov. J. 2022, 11, 1247–1248. [Google Scholar]
- Aivazidou, E.; Tsolakis, N. Water footprint management in the fashion supply chain: A review of emerging trends and research challenges. Water Text. Fash. 2019, 77–94. [Google Scholar] [CrossRef]
- Gonçalves, A.; Silva, C. Looking for sustainability scoring in apparel: A review on environmental footprint, social impacts and transparency. Energies 2021, 14, 3032. [Google Scholar] [CrossRef]
- Chen, X.; Memon, H.A.; Wang, Y.; Marriam, I.; Tebyetekerwa, M. Circular Economy and sustainability of the clothing and textile Industry. Mater. Circ. Econ. 2021, 3, 12–21. [Google Scholar] [CrossRef]
- Wei, T.W.; Sun, Y.; Shim, E. Progress of Recycled Polyester in Rheological Performance in Molding, and Economic Analysis of Recycled Fibers in Fashion and Textile Industry; IntechOpen: London, UK, 2023; Available online: https://www.intechopen.com/chapters/81855 (accessed on 27 July 2023).
- Warfield, J.N. Developing interconnection matrices in structural modeling. IEEE Trans. Syst. Man Cybern. 1974, SMC–4, 81–87. [Google Scholar]
- Sage, A.P. Interpretive Structural Modeling: Methodology for Large-Scale Systems; McGraw-Hill: Nova York, NY, USA, 1977. [Google Scholar]
- Feofiloff, P.; Kohayakawa, Y.; Wakabayashi, Y. Uma Introdução Sucinta à Teoria dos Grafos; Editora da Universidade de São Paulo: São Paulo, Brazil, 2011. [Google Scholar]
- Melo, F.J.C.; Medeiros, D.D. Applying interpretive structural modeling to analyze the fundamental concepts of the management excellence model guided by the risk-based thinking of ISO 9001: 2015. Hum. Ecol. Risk Assess. 2021, 27, 742–772. [Google Scholar] [CrossRef]
- Santos, L.B.D.; Melo, F.J.C.D.; Guimaraes, D.S., Jr.; Sobral, E.F.M.; Medeiros, D.D.D. Application of ISM to Identify the Contextual Relationships between the Sustainable Solutions Based on the Principles and Pillars of Industry 4.0: A Sustainability 4.0 Model for Law Offices. Sustainability 2023, 15, 14494. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Badhotiya, G.K.; Soni, G.; Kumari, P. Investigating interdependencies of sustainable supplier selection criteria: An appraisal using ISM. J. Glob. Oper. Strat. Sourc. 2020, 13, 195–210. [Google Scholar] [CrossRef]
- Bashini, R.; Suresh, M. Modelling the ergonomics factors affecting the work system in a hospital: An ISM approach. Int. J. Pure Appl. 2018, 119, 183–198. [Google Scholar]
- Eshtehardi, M.S.A. Structural-interpretative modeling of strategies for achieving the mission of education in an entrepreneurial and community-oriented university. Q. J. Res. Plan. High. Educ. 2022, 28, 33–64. [Google Scholar]
- Ribeiro, A.M.; Arantes, A.; Cruz, C.O. Barriers to the Adoption of Modular Construction in Portugal: An Interpretive Structural Modeling Approach. Buildings 2022, 12, 1509. [Google Scholar] [CrossRef]
- Shoar, S.; Chileshe, N. Exploring the Causes of Design Changes in Building Construction Projects: An Interpretive Structural Modeling Approach. Sustainability 2021, 13, 9578. [Google Scholar] [CrossRef]
- Josaiman, S.K.; Faisal, M.N.; Talib, F. Social Sustainability Adoption Barriers in Supply Chains: A Middle East Perspective using Interpretive Structural Modeling. Int. J. Oper. Quant. Manag. 2021, 27, 61–80. [Google Scholar] [CrossRef]
- Rafiq, M.; Naz, S.; Martins, J.M.; Mata, M.N.; Mata, P.N.; Maqbool, S. A study on emerging management practices of renewable energy companies after the outbreak of covid-19: Using an interpretive structural modeling (ISM) approach. Sustainability 2021, 13, 3420. [Google Scholar] [CrossRef]
- Elhidaoui, S.; Benhida, K.; El Fezazi, S.; Kota, S.; Lamalem, A. Critical success factors of blockchain adoption in green supply chain management: Contribution through an interpretive structural model. Prod. Manuf. Res. 2022, 10, 1–23. [Google Scholar] [CrossRef]
- Sathvik, S.; Krishnaraj, L.; Awuzie, B.O. Establishing the root causes of unsafe behaviors among construction workers: An integrative interpretive structural modeling analysis. Sci. Rep. 2023, 13, 7006. [Google Scholar] [CrossRef] [PubMed]
- Jaisue, N.; Ketjoy, N.; Kaewpanha, M.; Thanarak, P. The barriers analysis for waste-to-energy project development in Thailand: Using an interpretive structural modeling approach. Energies 2023, 16, 1941. [Google Scholar] [CrossRef]
- Sangari, M.S.; Dashtpeyma, M. An integrated framework of supply chain resilience enablers: A hybrid ISM-FANP approach. Int. J. Bus. Excell. 2019, 18, 242–268. [Google Scholar] [CrossRef]
- Silva Lima, F.S.; Rodrigues, W.; Vergara, F.E.V. O cenário da Política Nacional de Biocombustível no Brasil: Um estudo baseado no Tocantins a partir do método MICMAC. DELOS Desarro. Local Sosten. 2020, 13, 1–5. [Google Scholar]
- Sheehy, B.; Farneti, F. Corporate social responsibility, sustainability, sustainable development and corporate sustainability: What is the difference, and does it matter? Sustainability 2021, 13, 5965. [Google Scholar] [CrossRef]
- Calza, F.; Sorrentino, A.; Tutore, I. Combining corporate environmental sustainability and customer experience management to build an integrated model for decision-making. Manag. Decis. 2023, 61, 54–84. [Google Scholar] [CrossRef]
- Jung, Y.L.; Yoo, H.S. Environmental, social, and governance activities and firm performance: Global evidence and the moderating effect of market competition. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 2830–2839. [Google Scholar] [CrossRef]
- Denizel, M.; Schumm, C.Z. Closed loop supply chains in apparel: Current state and future directions. J. Oper. Manag. 2024, 70, 190–223. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, J.; Wan, M.; Cao, J. Financing strategies for a textile and apparel remanufacturing supply chain with the delay in disbursement subsidies. J. Clean. Prod. 2024, 437, 140745. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Periyasami, S. Rise of digital fashion and metaverse: Influence on sustainability. Digit. Econ. Sustain. Dev. 2023, 1, 16. [Google Scholar] [CrossRef]
- Eriksson, S.; Käck, J. Sustainable Reverse Logistics in Fast Fashion E-Commerce: A Literature Review-Impact of Sustainable Practices on Customer Satisfaction. 2023. Available online: https://odr.chalmers.se/items/14ead96f-7a83-4334-9347-cb50c5c86945 (accessed on 21 December 2023).
- Liu, C.; Xia, S.; Lang, C. Online luxury resale platforms and customer experiences: A text mining analysis of online reviews. Sustainability 2023, 15, 8137. [Google Scholar] [CrossRef]
j | FSI1 | FSI2 | FSI3 | FSI4 | FSI5 | FSI6 | FSI7 | FSI8 | FSI9 | FSI10 | FSI11 | FSI12 | FSI13 | FSI14 | FSI15 | FSI16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i | |||||||||||||||||
FIS1 | - | X | V | A | V | V | V | A | V | A | A | A | V | A | V | V | |
FIS2 | - | A | A | V | X | V | V | O | A | A | O | V | A | A | X | ||
FIS3 | - | A | A | A | V | X | V | A | X | O | V | A | A | O | |||
FIS4 | - | V | V | O | O | O | V | V | O | V | O | V | V | ||||
FIS5 | - | A | V | V | V | A | V | V | O | A | V | O | |||||
FIS6 | - | V | V | O | A | V | V | O | A | V | O | ||||||
FIS7 | - | A | O | A | O | O | A | A | O | A | |||||||
FIS8 | - | A | A | V | A | O | A | A | O | ||||||||
FIS9 | - | A | V | V | O | A | A | O | |||||||||
FIS10 | - | V | V | O | X | V | V | ||||||||||
FIS11 | - | X | O | A | V | O | |||||||||||
FIS12 | - | O | O | V | V | ||||||||||||
FIS13 | - | A | A | X | |||||||||||||
FIS14 | - | V | V | ||||||||||||||
FIS15 | - | V | |||||||||||||||
FIS16 | - |
j | FSI1 | FSI2 | FSI3 | FSI4 | FSI5 | FSI6 | FSI7 | FSI8 | FSI9 | FSI10 | FSI11 | FSI12 | FSI13 | FSI14 | FSI15 | FSI16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i | |||||||||||||||||
FIS1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | |
FIS2 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
FIS3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
FIS4 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | |
FIS5 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | |
FIS6 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | |
FIS7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
FIS8 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
FIS9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | |
FIS10 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | |
FIS11 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | |
FIS12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | |
FIS13 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
FIS14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | |
FIS15 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | |
FIS16 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
j | FSI1 | FSI2 | FSI3 | FSI4 | FSI5 | FSI6 | FSI7 | FSI8 | FSI9 | FSI10 | FSI11 | FSI12 | FSI13 | FSI14 | FSI15 | FSI16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i | |||||||||||||||||
FIS1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 * | 1 | 0 | 1 * | 1 * | 1 | 0 | 1 | 1 | |
FIS2 | 1 | 1 | 1 * | 0 | 1 | 1 | 1 | 1 | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 | |
FIS3 | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 0 | 1 * | 1 * | |
FIS4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 * | 1 * | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | |
FIS5 | 1 * | 1 * | 1 | 0 | 1 | 1 * | 1 | 1 | 1 | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | |
FIS6 | 1 * | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 * | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | |
FIS7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
FIS8 | 1 | 1 * | 1 | 0 | 1 * | 1 * | 1 | 1 | 1 * | 0 | 1 | 1 * | 1 * | 0 | 1 * | 1 * | |
FIS9 | 1 * | 1 * | 1 * | 0 | 1 * | 1 * | 1 * | 1 | 1 | 0 | 1 | 1 | 1 * | 0 | 1 * | 1 * | |
FIS10 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | |
FIS11 | 1 | 1 | 1 | 0 | 1 * | 1 * | 1 * | 1 * | 1 * | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | |
FIS12 | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 * | 1 | 1 * | 0 | 1 | 1 | 1 * | 1 * | 1 | 1 | |
FIS13 | 1 * | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 | |
FIS14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | |
FIS15 | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 | 0 | 1 | 1 | |
FIS16 | 1 * | 1 | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 |
j | FSI1 | FSI2 | FSI3 | FSI4 | FSI5 | FSI6 | FSI7 | FSI8 | FSI9 | FSI10 | FSI11 | FSI12 | FSI13 | FSI14 | FSI15 | FSI16 | Driving Power | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i | ||||||||||||||||||
FIS1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 * | 1 | 0 | 1 * | 1 * | 1 | 0 | 1 | 1 | 13 | |
FIS2 | 1 | 1 | 1 * | 0 | 1 | 1 | 1 | 1 | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 | 13 | |
FIS3 | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 | 1 | 1 | 1 * | 1 | 1 * | 1 | 0 | 1 * | 1 * | 13 | |
FIS4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 * | 1 * | 1 | 1 | 1 * | 1 | 1 * | 1 | 1 | 16 | |
FIS5 | 1 * | 1 * | 1 | 0 | 1 | 1 * | 1 | 1 | 1 | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | 13 | |
FIS6 | 1 * | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 * | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | 13 | |
FIS7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
FIS8 | 1 | 1 * | 1 | 0 | 1 * | 1 * | 1 | 1 | 1 * | 0 | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 13 | |
FIS9 | 1 * | 1 * | 1 * | 0 | 1 * | 1 * | 1 * | 1 | 1 | 0 | 1 | 1 | 1 * | 0 | 1 * | 1 * | 13 | |
FIS10 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 15 | |
FIS11 | 1 | 1 | 1 | 0 | 1 * | 1 * | 1 * | 1 * | 1 * | 0 | 1 | 1 | 1 * | 0 | 1 | 1 * | 13 | |
FIS12 | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 * | 1 | 1 * | 0 | 1 | 1 | 1 * | 1 * | 1 | 1 | 13 | |
FIS13 | 1 * | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 | 13 | |
FIS14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 * | 1 | 1 | 1 | 1 | 15 | |
FIS15 | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 * | 1 | 1 | 0 | 1 * | 1 * | 1 | 0 | 1 | 1 | 13 | |
FIS16 | 1 * | 1 | 1 * | 0 | 1 * | 1 * | 1 | 1 * | 1 * | 0 | 1 * | 1 * | 1 | 0 | 1 * | 1 | 13 | |
Dependence power | 15 | 15 | 15 | 1 | 15 | 15 | 16 | 15 | 15 | 3 | 15 | 15 | 15 | 3 | 15 | 15 |
FIS | Reachability Set | Antecedent Set | Intersection Set | Level |
---|---|---|---|---|
FIS1 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS2 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS3 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS4 | 4 | 4 | 4 | I |
FIS5 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS6 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS7 | 7 | 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16 | 7 | |
FIS8 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS9 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS10 | 10, 14 | 4, 10, 14 | 10, 14 | |
FIS11 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS12 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS13 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS14 | 10, 14 | 4, 10, 14 | 10, 14 | |
FIS15 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 4, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 |
FIS | Reachability Set | Antecedent Set | Intersection Set | Level |
---|---|---|---|---|
FIS1 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS2 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS3 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS5 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS6 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS7 | 7 | 1, 2, 3, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16 | 7 | |
FIS8 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS9 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS10 | 10, 14 | 10, 14 | 10, 14 | II |
FIS11 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS12 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS13 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS14 | 10, 14 | 10, 14 | 10, 14 | II |
FIS15 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | |
FIS16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 10,11, 12, 13, 14, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 |
FIS | Reachability Set | Antecedent Set | Intersection Set | Level |
---|---|---|---|---|
FIS1 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS2 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS3 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS5 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS6 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS7 | 7 | 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16 | 7 | |
FIS8 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS9 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS11 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS12 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS13 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS15 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16 | 1, 2, 3, 5, 6, 8, 9, 11,12, 13, 15, 16 | III |
FIS | Reachability Set | Antecedent Set | Intersection Set | Level |
---|---|---|---|---|
FIS7 | 7 | 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16 | 7 | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.F.V.O.B.; Melo, F.J.C.d.; Sobral, E.F.M.; Guimarães, D.S.; Albuquerque, A.P.G.d.; Vital, S.A.; Pinto, P.A.L.d.A.; Cruz, T.V.d.Q.F.d.; Andrade, R.C.D.d.; Confessor, K.L.A. Contextual Relationships of Factors Affecting Sustainability 4.0 in the Textile Industry. Sustainability 2024, 16, 5999. https://doi.org/10.3390/su16145999
Silva MFVOB, Melo FJCd, Sobral EFM, Guimarães DS, Albuquerque APGd, Vital SA, Pinto PALdA, Cruz TVdQFd, Andrade RCDd, Confessor KLA. Contextual Relationships of Factors Affecting Sustainability 4.0 in the Textile Industry. Sustainability. 2024; 16(14):5999. https://doi.org/10.3390/su16145999
Chicago/Turabian StyleSilva, Marcella Fernanda Vieira Ottoni Bezerra, Fagner José Coutinho de Melo, Eryka Fernanda Miranda Sobral, Djalma Silva Guimarães, André Philippi Gonzaga de Albuquerque, Silvio André Vital, Pablo Aurélio Lacerda de Almeida Pinto, Tatyane Veras de Queiroz Ferreira da Cruz, Rômulo César Dias de Andrade, and Kliver Lamarthine Alves Confessor. 2024. "Contextual Relationships of Factors Affecting Sustainability 4.0 in the Textile Industry" Sustainability 16, no. 14: 5999. https://doi.org/10.3390/su16145999
APA StyleSilva, M. F. V. O. B., Melo, F. J. C. d., Sobral, E. F. M., Guimarães, D. S., Albuquerque, A. P. G. d., Vital, S. A., Pinto, P. A. L. d. A., Cruz, T. V. d. Q. F. d., Andrade, R. C. D. d., & Confessor, K. L. A. (2024). Contextual Relationships of Factors Affecting Sustainability 4.0 in the Textile Industry. Sustainability, 16(14), 5999. https://doi.org/10.3390/su16145999