Catalyst for preparing biological aviation kerosene with castor oil, preparation method and application thereof
一种用蓖麻油制备生物航空煤油的催化剂、制备方法和应用
A hydrodeoxygenation catalyst takes self-made porous large-specific surface nano-alumina as a carrier, takes NixMoW, NixCoW or NixCoMo as an active component, and takes Mn as an assistant. Hydrothermal stability of the catalyst and dispersion of active components may be increased by enlarging a pore channel and a specific surface area of the carrier, thereby prolonging the life of the hydrodeoxygenation catalyst. A hydroisomerization catalyst takes multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 or NiSAPO-11 as a carrier and takes NixMoLa, NixCoLa or NixWLa as an active component. Due to the adding of the carbon nanotubes, the pore channel of the carrier is enriched, and connection between the active components and the carrier is effectively enhanced, thereby prolonging the life of the catalyst on a basis of increasing selectivity of aviation kerosene component. Moreover, the biological aviation kerosene satisfying usage conditions is prepared by virtue of mild reaction conditions.
加氢脱氧催化剂以自制多孔大比表面纳米氧化铝为载体,以 NixMoW、NixCoW 或 NixCoMo 为活性组分,以 Mn 为助剂。通过扩大载体的孔通道和比表面积,可以提高催化剂的水热稳定性和活性组分的分散性,从而延长加氢脱氧催化剂的寿命。加氢异构化催化剂以多壁碳纳米管复合分层孔通道 NiAPO-11 或 NiSAPO-11 为载体,以 NixMoLa、NixCoLa 或 NixWLa 为活性组分。由于碳纳米管的加入,载体的孔道富集,活性组分与载子之间的连接得到有效增强,从而在航空煤油组分选择性增加的基础上延长催化剂的寿命。此外,满足使用条件的生物航空煤油是通过温和的反应条件制备的。
相关应用程序的交叉引用
This application is a continuation of International Patent Application No. PCT/CN2015/089534 with a filing date of Sep. 14, 2015, designating the United States, now pending, and further claims priority to Chinese Patent Application No. 201510465319.6 with a filing date of Aug. 3, 2015. The content of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
本申请是国际专利申请号 (International Patent Application No.) 的延续。PCT/CN2015/089534,申请日为 2015 年 9 月 14 日,指定美国,目前正在审理中,并进一步要求优先权,中国专利申请编号为 20151510465319.6,申请日为 2015 年 8 月 3 日。上述申请的内容,包括其任何中间的修正案,均通过引用并入本文。
The present invention relates to a catalyst for preparing biological aviation kerosene with castor oil as raw material, a preparation method and an application of the catalyst, and particularly relates to a preparation method of a high-life hydrodeoxygenation and hydroisomerization catalyst for preparing the biological aviation kerosene with the castor oil and an application of the catalyst. A hydrodeoxygenation catalyst takes porous large-specific surface nano-alumina as a carrier, takes NixMoW, NixCoW or NixCoMo as an active component, and takes Mn serves as an assistant. Hydrothermal stability of the catalyst and dispersion of the active component may be increased by enlarging a pore channel and a specific surface area of the carrier, thereby increasing the life of the hydrodeoxygenation catalyst. A hydroisomerization catalyst can also use multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 or NiSAPO-11 as a carrier and use NixMoLa, NixCoLa or NixWLa as an active component. Due to the added multi-walled carbon nanotubes, the pore channel of the carrier is enriched, and connection between the active component and the carrier is effectively enhanced, thereby increasing the life of the catalyst on a basis of increasing selectivity of the aviation kerosene component. Moreover, the biological aviation kerosene satisfying usage conditions is prepared by virtue of mild reaction conditions.
本发明涉及一种以蓖麻油为原料制备生物航空煤油的催化剂、该催化剂的制备方法和应用,特别涉及一种用于用蓖麻油制备生物航空煤油的高寿命加氢脱氧加氢异构化催化剂的制备方法及催化剂的应用。加氢脱氧催化剂以多孔大比表面纳米氧化铝为载体,以 NixMoW、NixCoW 或 NixCoMo 为活性组分,以 Mn 为助剂。通过扩大孔通道和载体的比表面积,可以提高催化剂的水热稳定性和活性组分的分散性,从而延长加氢脱氧催化剂的寿命。加氢异构化催化剂还可以使用多壁碳纳米管复合分层孔通道 NiAPO-11 或 NiSAPO-11 作为载体,并使用 NixMoLa、NixCoLa 或 NixWLa 作为活性组分。由于多壁碳纳米管的加入,载体的孔道富集,有效增强了活性组分与载流子之间的连接,从而在航空煤油组分选择性增加的基础上增加了催化剂的寿命。此外,满足使用条件的生物航空煤油是通过温和的反应条件制备的。
本发明的背景
In the Copenhagen Climate Conference in 2009, on year-on-year basis in 2005, the Chinese government promises that carbon emission will be reduced by 40-50% in 2020, which is a daunting task for us. Biological aviation kerosene is an oil product, prepared by using animal and vegetable oil as raw materials through a hydrogenated technology, having similar components as those of petroleum-based aviation kerosene. Main components are C8-C16 straight-chain and branch alkanes. Development of the biological aviation kerosene may reduce carbon emission. The biological aviation kerosene is renewable resource and may serve as an alternative fuel of petroleum. Therefore, the biological aviation kerosene has great significance. Castor serves as a plant with wide planting area and easiness in growth and is a crop suitable for oil production, and the prepared castor oil is not edible, i.e., the castor oil cannot be eaten by people. Therefore, the castor oil is an excellent renewable resource. The castor oil serves as a raw material, and high-yield aviation kerosene may be obtained by virtue of a hydrodeoxygenation process and a researched and developed catalyst, thereby alleviating energy crisis.
在 2009 年的哥本哈根气候会议上,2005 年中国政府承诺到 2020 年将碳排放量减少 40-50%,这对我们来说是一项艰巨的任务。生物航空煤油是一种油品,以动植物油为原料,经氢化技术制备而成,具有与石油基航空煤油相似的成分。主要成分是 C8-C 16 直链和支链烷烃。开发生物航空煤油可以减少碳排放。生物航空煤油是可再生资源,可作为石油的替代燃料。因此,生物航空煤油具有重要意义。蓖麻是一种种植面积广、易于生长的植物,是一种适宜产油的作物,制备的蓖麻油不能食用,即蓖麻油不能供人食用。因此,蓖麻油是一种极好的可再生资源。以蓖麻油为原料,借助加氢脱氧工艺和研发的催化剂获得高产航空煤油,从而缓解能源危机。
Stability of the catalyst is the most important in a hydrodeoxygenation reaction. Due to specific hydroxyl groups in the castor oil, a dehydration amount in the reaction is 2-3 times that of general grease, and thus the catalyst is required to have excellent hydrothermal stability. The large-specific surface nano-alumina designed in the present invention has excellent hydrothermal stability, and dispersion of active components may be increased due to a nano-structure of the alumina, thereby decreasing carbon deposit in the reaction and increasing the life of the catalyst. In a hydroisomerization reaction, the raw material is a product produced by utilizing the hydrodeoxygenation in the first step after dehydration, 90% of the components are C17-C15 alkanes, and 10% of the components are C5-C6 alkanes. Selectivity of carbon chains in the product is of vital importance, and the components of the aviation kerosene are required as C8-C16, so regulation of isomerizing and cracking degrees is very critical. Firstly, for a NiSAPO-11 carrier of a hierarchical pore channel, due to addition of Ni and a structure of the hierarchical pore channel, acid strength of a molecular sieve may be regulated in a controllable mode, thereby regulating the cracking degree of the isomerization reaction. Finally, the components of the aviation kerosene with the highest selectivity may be obtained. In addition, due to the adding of the carbon nano tubes, the strength of a catalyst carrier is well enhanced, and the catalyst carrier has active sites in the carbon nano tubes, so that a composite carrier has rich pore channels for isomerizing long-chain n-alkanes and decreasing the carbon deposit in the reaction, thereby increasing the life of the catalyst.
催化剂的稳定性在加氢脱氧反应中是最重要的。由于蓖麻油中含有特定的羟基,反应中的脱水量是一般润滑脂的 2-3 倍,因此要求催化剂具有优良的水热稳定性。本发明设计的大比表面积纳米氧化铝具有优异的水热稳定性,并且由于氧化铝的纳米结构可以增加活性组分的分散性,从而减少反应中的积碳并增加催化剂的寿命。在加氢异构化反应中,原料是脱水后第一步利用加氢脱氧生成的产品,90% 的组分是 C17-C 15 烷烃,10% 的组分是 C5-C 6 烷烃。产品中碳链的选择性至关重要,航空煤油的成分需要 C8-C 16,因此异构化和开裂度的调节非常关键。首先,对于多级孔通道的 NiSAPO-11 载体,由于 Ni 的加入和多级孔通道的结构,分子筛的酸强度可以以可控模式调节,从而调节异构化反应的开裂程度。最后,可以获得具有最高选择性的航空煤油组分。 此外,由于碳纳米管的加入,催化剂载体的强度得到了很好的增强,催化剂载体在碳纳米管中具有活性位点,使复合载体具有丰富的孔通道,用于异构化长链正烷烃并减少反应中的积碳,从而延长催化剂的寿命。
A preparation method for preparing hydrodeoxygenation and hydroisomerization catalysts of biological aviation kerosene with castor oil is disclosed in a patent CN201510038506.6. Titanium-modified and citric acid-modified MCM-41 are mainly used as a carrier of the hydrodeoxygenation catalyst. An active component selected by the hydroisomerization catalyst is Pt, Pd or Ni. A catalyst for preparing biodiesel through castor oil hydrogenation and a preparation method of the catalyst are disclosed in a patent CN201410020108.7. The carrier needs to be specially pretreated in the hydrodeoxygenation catalyst and the hydroisomerization catalyst. The carrier is pretreated by adopting an aqueous solution of acetic acid, and Zn serves as an assistant. A method for preparing biological aviation fuel by utilizing Litsea cubeba kernel oil is disclosed in a patent CN102719317A. and comprises the steps: carrying out a hydrodeoxygenation reaction and a hydroisomerization reaction on refined Litsea cubeba oil, distilling the obtained product to take a fraction between 150° C. and 280° C., and refining the fraction by using a fiber liquid membrane-composite adsorption combined apparatus and a dielectric field refining apparatus, thereby obtaining the biological aviation kerosene satisfying the usage conditions.
一种用蓖麻油制备生物航空煤油加氢脱氧加氢异构化催化剂的制备方法在专利CN201510038506.6中公开。钛改性和柠檬酸改性 MCM-41 主要用作加氢脱氧催化剂的载体。加氢异构化催化剂选择的活性组分是 Pt、Pd 或 Ni。一种通过蓖麻油加氢制备生物柴油的催化剂及其制备方法在专利CN201410020108.7中公开。载体需要在加氢脱氧催化剂和加氢异构化催化剂中进行特殊预处理。载体采用乙酸水溶液进行预处理,Zn 作为助剂。在一项专利CN102719317A中公开了一种利用山苍子仁油制备生物航空燃料的方法。包括以下步骤:对山苍子精制油进行加氢脱氧反应和加氢异构化反应,将所得产物蒸馏取 150°C 至 280°C 之间的馏分,并使用纤维液膜-复合吸附组合装置和介电场精炼装置精制馏分,从而得到满足使用条件的生物航空煤油。
The above disclosed patents focus on hydrodeoxygenation activity and yield of the oil product, while the present invention prolongs the life of the catalyst by a designed catalyst with a specific structure while increasing activity and yield, so that the modified catalyst is more favorable for industrial production.
上述公开的专利侧重于油品的加氢脱氧活性和产率,而本发明通过设计具有特定结构的催化剂延长催化剂的寿命,同时提高活性和产率,使改性催化剂更有利于工业生产。
本发明内容
An objective of the present invention is to propose a catalyst for preparing biological aviation kerosene with castor oil as well as a preparation method and an application thereof, and particularly relates to a preparation method of preparing a high-life hydrodeoxygenation and hydroisomerization catalyst of the biological aviation kerosene with castor oil and an application thereof. The present invention provides preparation methods of a hydrodeoxygenation catalyst taking large-specific surface nano-alumina as a carrier and a hierarchical pore channel molecular sieve composite carbon nanotube supported hydroisomerization catalyst and usage conditions. The catalyst in the present invention can reach extremely long life and obtain high-yield biological aviation kerosene to serve as a technical reserve for replacing petroleum-based fuel.
本发明的目的在于提出一种用蓖麻油制备生物航空煤油的催化剂及其制备方法和应用,特别是涉及一种用蓖麻油制备生物航空煤油的高寿命加氢脱氧加氢异构化催化剂的制备方法及其应用。本发明提供了一种以大比表纳米氧化铝为载体的加氢脱氧催化剂和多级孔通道分子筛复合碳纳米管负载加氢异构化催化剂的制备方法和使用条件。本发明中的催化剂可以达到极长的寿命,并获得高产率的生物航空煤油,作为替代石油基燃料的技术储备。
The hydrodeoxygenation catalyst for preparing the biological aviation kerosene with castor oil provided in the present invention takes porous large-specific surface nano-alumina as a carrier, takes NixMoW, NixCoW or NixCoMo as an active component, and takes Mn as an assistant. Mass of the active component accounts for 10-30% of total mass of the catalyst, wherein x is an atomic ratio and ranges from 2 to 20, and mass of the component Mn accounts for 1-5% of the total mass of the catalyst.
本发明提供的用于制备蓖麻油生物航空煤油的加氢脱氧催化剂,以多孔大比表面纳米氧化铝为载体,以Ni×MoW、Ni×CoW或Ni×CoMo为活性组分,以Mn为助剂。活性组分的质量占催化剂总质量的 10-30%,其中 x 是原子比,范围为 2 到 20,组分 Mn 的质量占催化剂总质量的 1-5%。
A specific surface area of the porous large-specific surface nano-alumina carrier is 500-800 m2/g. Seen from an adsorption-desorption curve, the carrier simultaneously has microporous and mesoporous curve types, so the carrier has a hierarchical pore channel structure, as shown in
多孔大比表面纳米氧化铝载体的比表面积为 500-800 m2/g。从吸附-脱附曲线看,载流子同时具有微孔和介孔曲线类型,因此载流子具有分层孔通道结构,如图 4 所示。
A specific preparation method comprises the following steps:
一种具体的制备方法包括以下步骤:
1) stirring and refluxing aluminum isopropoxide and cetyl trimethyl ammonium bromide in a nitric acid solution; adding sodium silicate for refluxing, stirring and reacting, and aging; adding ethyl orthosilicate for refluxing, adding sodium hydroxide into the obtained mixed solution, refluxing, separating solid products, and drying; and calcining in a nitrogen atmosphere, thereby obtaining a large-specific surface nano-alumina carrier;
1) 在硝酸溶液中搅拌回流异丙醇铝和十六烷基三甲基溴化铵;加入硅酸钠回流、搅拌反应、老化;加入正硅酸乙酯回流,将氢氧化钠加入所得混合溶液中,回流,分离出固体产物,干燥;在氮气气氛中煅烧,从而得到大比表面积纳米氧化铝载体;
2) fully mixing the obtained alumina, reacting with an aqueous solution of manganese chloride, performing suction filtration, drying a product, and calcining in the nitrogen atmosphere;
2) 将得到的氧化铝充分混合,与氯化锰水溶液反应,进行抽滤,干燥产品,并在氮气气氛中煅烧;
3) adding the calcined product into an aqueous solution of an active component soluble salt and fully mixing and reacting, standing, separating solid products, and drying; and
3)将煅烧产物加入活性组分可溶性盐的水溶液中,充分混合反应,静置,分离固体产物,干燥;和
4) calcining in the nitrogen atmosphere, and reducing solid powder at hydrogen flow velocity, thereby obtaining the hydrodeoxygenation catalyst for preparing the biological aviation kerosene with castor oil.
4)在氮气气氛中煅烧,以氢气流速还原固体粉末,从而得到制备蓖麻油生物航空煤油的加氢脱氧催化剂。
A specific preparation method for preparing the hydrodeoxygenation catalyst of the biological aviation kerosene with castor oil provided in the present invention comprises the following steps:
本发明提供的用蓖麻油制备生物航空煤油加氢脱氧催化剂的具体制备方法包括以下步骤:
1) adding aluminum isopropoxide into 0.05 mol/L of nitric acid, refluxing and stirring at 80° C. for 3-5 hours, adding cetyl trimethyl ammonium bromide, and continuously stirring for 2-3 hours to obtain a mixed solution;
1)将异丙醇铝加入0.05mol/L硝酸中,在80°C回流搅拌3-5h,加入十六烷基三甲基溴化铵,不断搅拌2-3h,得混合溶液;
2) adding sodium silicate into the mixed solution, refluxing and stirring at 80° C. for 3-5 hours, and aging at a room temperature for 2 hours to obtain a mixed solution;
2)在混合溶液中加入硅酸钠,在80°C下回流搅拌3-5小时,在室温下老化2小时,得混合溶液;
3) adding ethyl orthosilicate into the mixed solution, refluxing and stirring at 80° C. for 3-5 hours, and aging at the room temperature for 2 hours;
3)将正硅酸乙酯加入混合溶液中,在80°C下回流搅拌3-5小时,在室温下老化2小时;
4) adding 1-5% of sodium hydroxide into the mixed solution obtained in the step 3), refluxing and stirring at 80° C. for 3-5 hours, performing centrifugal separation, drying the obtained solid precipitate at 100° C., and calcining in a nitrogen atmosphere at 500-600° C. for 4-6 hours, thereby obtaining the large-specific surface nano-alumina carrier,
4) 在步骤 3) 得到的混合溶液中加入 1-5% 的氢氧化钠,在 80°C 下回流搅拌 3-5 小时,进行离心分离,将得到的固体沉淀物在 100°C 下干燥,在 500-600°C 的氮气气氛中煅烧 4-6 小时,从而得到大比表面积纳米氧化铝载体,
wherein a molar ratio of various raw materials in the steps 1) to 3) is: the aluminum isopropoxide to the 0.05 mol/L of nitric acid to the cetyl trimethyl ammonium bromide to the sodium silicate to the ethyl orthosilicate is (50-120):1:(0.5-5):(0.5-5):(0.5-5);
其中,步骤1)至3)中各种原料的摩尔比为:异丙醇铝与0.05mol/L的硝酸→十六烷基三甲基溴化铵→硅酸钠→正硅酸乙酯为(50-120):1:(0.5-5):(0.5-5):(0.5-5)为(0.5-5));
5) adding an assistant manganese chloride into an aqueous solution in an amount of three times that of mass of the carrier according to a ratio for stirring for 3 hours under room-temperature stirring conditions, adding the large-specific surface nano-alumina carrier for stirring 3-5 hours to obtain a mixed solution, performing suction filtration on the mixed solution, drying a solid product at 100° C. for 8 hours, and calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain solid powder; and
5) 在室温搅拌条件下,按搅拌 3 小时的比例,将助氯化锰按载体质量的三倍的量加入水溶液中,搅拌 3 小时,加入大比表面积纳米氧化铝载体搅拌 3-5 小时,得到混合溶液,对混合溶液进行抽滤, 将固体产品在 100°C 下干燥 8 小时,并在 500-600°C 的氮气气氛中煅烧 4 至 6 小时,得固体粉末;和
6) sequentially adding active component soluble salts into the aqueous solution of an amount of three times of mass of the carrier according to a ratio for stirring for 3 hours under the room-temperature stirring conditions, adding the solid powder in the step 5) for stirring 3-5 hours to obtain a mixed solution, standing for 10 hours, drying the standing mixed solution at 100° C. for 8 hours, calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst for preparing the biological aviation kerosene with castor oil.
6)在室温搅拌条件下,按比例依次将活性成分可溶性盐加入载体质量的三倍的水溶液中搅拌3小时,加入步骤5)中的固体粉末搅拌3-5小时,得到混合溶液,静置10小时, 将静置混合溶液在 100°C 下干燥 8 小时,在 500-600°C 的氮气气氛中煅烧 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原所得固体粉末至少 3 小时,从而获得用于制备蓖麻油生物航空煤油的加氢脱氧催化剂。
The active component soluble salt refers to nickel nitrate, cobalt nitrate, ammonium metatungstate or ammonium molybdate.
活性成分可溶性盐是指硝酸镍、硝酸钴、偏钨酸铵或钼酸铵。
The hydrodeoxygenation catalyst for preparing the biological aviation kerosene with castor oil provided in the present invention takes hierarchical-pore-channel multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 or NiSAPO-11 as a carrier and takes NixMoLa, NixCoLa or NixWLa as an active component, wherein x is an atomic ratio and ranges from 2 to 20, and mass of the active component accounts for 5-30% of total mass of the catalyst.
本发明提供的用于制备蓖麻油生物航空煤油的加氢脱氧催化剂,以分层孔通道多壁碳纳米管复合分层孔通道NiAPO-11或NiSAPO-11为载体,以NixMoLa、NixCoLa或NixWLa为活性组分,其中x为原子比,范围为2至20, 活性组分的质量占催化剂总质量的 5-30%。
The preparation method comprises the following steps: fully stirring and mixing an N,N-dimethylformamide solution of active component soluble salt, i.e., nickel acetylacetonate, cobalt nitrate, ammonium metatungstate, ammonium molybdate, or lanthanum nitrate with a carrier of hierarchical-pore-channel NiAPO-11, multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11, hierarchical-pore-channel NiSAPO-11 or multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 according to a ratio, standing, separating, drying a solid product, calcining in an air atmosphere, and reducing in hydrogen.
其制备方法包括以下步骤:将活性成分可溶性盐的N,N-二甲基甲酰胺溶液,即乙酰丙酮酸镍、硝酸钴、偏钨酸铵、钼酸铵或硝酸镧与分层孔通道NiAPO-11、多壁碳纳米管复合分层孔通道NiAPO-11、分层孔通道NiSAPO-11或多壁碳纳米管复合分层孔通道NiSAPO-11或多壁碳纳米管复合分层孔通道NiSAPO-11 按比例,静置、分离、干燥固体产品,在空气气氛中煅烧,并在氢气中还原。
A specific preparation method for preparing the hydroisomerization catalyst of the biological aviation kerosene with castor oil provided in the present invention comprises the following steps:
本发明提供的用蓖麻油制备生物航空煤油加氢异构化催化剂的具体制备方法包括以下步骤:
fully stirring an N,N-dimethylformamide solution of active component soluble salt, i.e., nickel acetylacetonate, cobalt nitrate, ammonium metatungstate, ammonium molybdate, or lanthanum nitrate with a carrier of hierarchical-pore-channel NiAPO-11, multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11, hierarchical-pore-channel NiSAPO-11 or multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 for at least 12 hours according to a ratio, standing for 10 hours, separating, drying the solid product at 100° C., calcining the obtained solid powder at 550-600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst for preparing the biological aviation kerosene with castor oil.
充分搅拌活性成分可溶性盐的 N,N-二甲基甲酰胺溶液,即乙酰丙酮酸镍、硝酸钴、偏钨酸铵、钼酸铵或硝酸镧,其载体为分层孔通道 NiAPO-11、多壁碳纳米管复合分层孔通道 NiAPO-11、分层孔通道 NiSAPO-11 或多壁碳纳米管复合分层孔通道 NiSAPO-11 至少12 小时,按比例放置 10小时,分离,在 100°C 下干燥固体产品,将得到的固体粉末在 550-600°C 下在空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时,从而获得用于制备蓖麻油生物航空煤油的加氢异构化催化剂。
A preparation method of a hierarchical-pore-channel NiAPO-11 carrier comprises the following steps: respectively mixing deionized water, nickel acetylacetonate, phosphoric acid and pseudo-boehmite together according to a molar ratio of (50-100):(0.01-1):1:1, and stirring for 3 hours, wherein the nickel acetylacetonate, silica sol, the phosphoric acid and the pseudo-boehmite are respectively counted based on nickel oxide, silica, phosphorus pentoxide and aluminum oxide; adding starch to carry out a hydrolysis reaction, and stirring for at least 5 hours, wherein a molar ratio of the starch to the phosphoric acid is 0.03-0.3; adding a template agent and stirring for 3 hours, wherein the template agent is a mixture of di-n-propylamine and diisopropylamine with a molar ratio is (0.5-1.5):1, and a molar ratio of the template agent to the phosphoric acid is (0.5-1.2):1; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 150-200° C. for 20-48 hours, taking out the mixture, washing a solid product, drying, and calcining in a muffle furnace at 600° C. for 12 hours, thereby obtaining the hierarchical-pore-channel NiAPO-11 carrier.
一种分层孔通道NiAPO-11载体的制备方法包括以下步骤:将去离子水、乙酰丙酮酸镍、磷酸和准勃姆石分别按摩尔比(50-100):(0.01-1):1:1混合在一起,搅拌3小时,其中乙酰乙酰乙酸镍、硅溶胶、磷酸和准勃姆石分别按氧化镍计数, 二氧化硅、五氧化二磷和氧化铝;加入淀粉进行水解反应,并搅拌至少5小时,其中淀粉与磷酸的摩尔比为0.03-0.3;加入模板剂,搅拌3小时,其中,模板剂为二-正丙胺和二异丙胺的混合物,摩尔比为(0.5-1.5):1,模板剂与磷酸的摩尔比为(0.5-1.2):1;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在150-200°C下结晶20-48小时,取出混合物,洗涤固体产品,干燥,在马弗炉中于600°C下煅烧12小时,从而得到分层孔通道NiAPO-11载体。
A preparation method of a multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier comprises the following steps: dissolving a 1-5% of silane coupling agent in an N,N-dimethylformamide solvent with a water absorption rate which is 3 times that of the NiAPO-11; adding 1-5% of multi-walled carbon nanotubes for continuously refluxing and stirring for 1-3 hours, adding a NiAPO-11 carrier to reflux and stir at 100-120 t for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier.
一种多壁碳纳米管复合分层-孔-通道NiAPO-11复合载体的制备方法包括以下步骤:将1-5%的硅烷偶联剂溶解在N,N-二甲基甲酰胺溶剂中,吸水率是NiAPO-11的3倍;加入 1-5% 的多壁碳纳米管连续回流搅拌 1-3 小时,加入 NiAPO-11 载体回流搅拌 100-120 t,1-3 小时,对得到的混合溶液进行抽滤,120°C 干燥 5 小时,所得固体粉末在 500°C 马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiAPO-11复合载体。
A preparation method of a hierarchical-pore-channel NiSAPO-11 carrier comprises the following steps: respectively mixing deionized water, nickel acetylacetonate, silica sol, phosphoric acid and pseudo-boehmite together according to a molar ratio of (50-100):(0.01-1):(0.1-1):1:1, and stirring for 3 hours, wherein the nickel acetylacetonate, the silica sol, the phosphoric acid and the pseudo-boehmite are respectively counted based on nickel oxide, silica, phosphorus pentoxide and aluminum oxide; adding starch to carry out a hydrolysis reaction, and stirring for 5 hours, wherein a molar ratio of the starch to the phosphoric acid is 0.03-0.3; adding a template agent and stirring for 3 hours, wherein the template agent is a mixture of di-n-propylamine and diisopropylamine with a molar ratio is (0.5-1.5):1, and a molar ratio of the template agent to the phosphoric acid is (0.5-1.2):1; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 150-200° C. for 20-48 hours, taking out the mixture, washing a solid product, drying, and calcining in a muffle furnace at 600° C. for 12 hours, thereby obtaining the hierarchical-pore-channel NiSAPO-11 carrier.
一种分层孔通道NiSAPO-11载体的制备方法包括以下步骤:将去离子水、乙酰丙酮酸镍、硅溶胶、磷酸和准勃姆石分别按(50-100):(0.01-1):(0.1-1):1:1的摩尔比混合在一起,搅拌3 h,其中乙酰丙酸镍、硅溶胶、磷酸和准勃姆石分别按氧化镍计数, 二氧化硅、五氧化二磷和氧化铝;加入淀粉进行水解反应,搅拌5小时,其中淀粉与磷酸的摩尔比为0.03-0.3;加入模板剂,搅拌3小时,其中,模板剂为二-正丙胺和二异丙胺的混合物,摩尔比为(0.5-1.5):1,模板剂与磷酸的摩尔比为(0.5-1.2):1;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在150-200°C下结晶20-48小时,取出混合物,洗涤固体产品,干燥,在马弗炉中于600°C下煅烧12小时,从而得到分层孔通道NiSAPO-11载体。
A preparation method of a multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier comprises the following steps: dissolving a 1-5% (mass) of silane coupling agent in an N,N-dimethylformamide solvent with a water absorption rate which is 3 times of NiSAPO-11; adding 1-5% (mass) of multi-walled carbon nanotubes for continuously refluxing and stirring for 1-3 hours, adding a NiSAPO-11 carrier to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier.
一种多壁碳纳米管复合分层孔通道NiSAPO-11复合载体的制备方法,包括以下步骤:将1-5%(质量)的硅烷偶联剂溶解在N,N-二甲基甲酰胺溶剂中,吸水率是NiSAPO-11的3倍;加入 1-5%(质量)的多壁碳纳米管连续回流搅拌 1-3 小时,加入 NiSAPO-11 载体回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽吸过滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而获得多壁碳纳米管复合分层孔通道NiSAPO-11复合载体。
The multi-walled carbon nanotube has a diameter of 20 nm, a length of 10-30 μm and a specific surface area greater than 500.
多壁碳纳米管的直径为 20 nm,长度为 10-30 μm,比表面积大于 500。
A specific using method of the catalyst for preparing the biological aviation kerosene with castor oil provided in the present invention comprises the following steps:
本发明提供的用于制备蓖麻油生物航空煤油的催化剂的具体使用方法包括以下步骤:
1) pretreatment of the catalyst: forming a catalyst of a required amount, filling the catalyst in a fixed bed reactor, heating to 300-450° C. under nitrogen purging with volume space velocity of 500-2000h−1, changing into hydrogen with the same volume space velocity, maintaining a temperature of 300-450° C. for at least 3 hours, and regulating a temperature of the reactor to a temperature of a hydroisomerization and cracking reaction;
1) 催化剂的预处理:形成所需量的催化剂,将催化剂填充到固定床反应器中,在体积空速为 500-2000 小时-1 的氮气吹扫下加热至 300-450°C,换成相同体积空速的氢气,保持 300-450°C 的温度至少 3 小时,并将反应器的温度调节到加氢异构化和裂化反应的温度;
2) hydrodeoxygenation reaction: taking the castor oil as raw oil of the hydrodeoxygenation reaction, and regulating a pressure of a reaction system to 2-6 MPa, wherein a reaction temperature is 250-400° C., a hydrogen-oil ratio is 500-2000, and volume space velocity of the fed raw oil is 1-6 h−1; and collecting a liquid product obtained in the reaction every 2 hours, and analyzing; and
2)加氢脱氧反应:以蓖麻油为加氢脱氧反应的原料油,将反应系统的压力调节至2-6 MPa,反应温度为250-400°C,氢油比为500-2000°C,进料原料油的体积空速为1-6 h-1;每 2 小时收集一次反应中获得的液体产物,并进行分析;和
3) hydroisomerization reaction: taking an anhydrous liquid product obtained by the hydrodeoxygenation of the castor oil as a raw material (including: C17-C18 with a mass fraction of 90%, and C5-C16 with a mass fraction of 10%), regulating a pressure of a reaction system to 2-6 MPa, wherein a reaction temperature is 250-400° C., a hydrogen-oil ratio is 500-2000, and volume space velocity of the fed raw oil is 1-6 h−1; and collecting a liquid product obtained in the reaction every 2 hours.
3)加氢异构化反应:以蓖麻油加氢脱氧得到的无水液体产品为原料(包括:质量分数为90%的C17-C 18和质量分数为10%的C5-C 16),将反应系统的压力调节为2-6MPa,其中反应温度为250-400°C。 氢油比为 500-2000,进料原料油的体积空速度为 1-6 h-1;以及每 2 小时收集一次反应中获得的液体产物。
A basic composition of the castor oil is as follows: castor oil acid triglyceride with a mass fraction of 90%, palmitin with a mass fraction of 5% and stearin with a mass fraction of 5%.
蓖麻油的基本组成如下:质量分数为 90% 的蓖麻油酸甘油三酯,质量分数为 5% 的棕榈酸酯和质量分数为 5% 的硬脂酸酯。
A basic composition of the anhydrous liquid product obtained by the hydrodeoxygenation of the castor oil is as follows: C17-C18 with a mass fraction of 90% and C5-C16 with a mass fraction of 10%.
通过蓖麻油加氢脱氧获得的无水液体产品的基本组成如下:C17-C 18 质量分数为 90% 和 C5-C 16 质量分数为 10%。
Compared with an existing catalyst and a preparation method thereof, the catalyst for preparing the biological aviation kerosene with castor oil provided in the present invention has the following obvious substantive features:
与现有的催化剂及其制备方法相比,本发明提供的用蓖麻油制备生物航空煤油的催化剂具有以下明显的实质性特征:
(1) for the hydrodeoxygenation reaction of the castor oil, life of a large-specific surface nano-alumina supported trimetallic catalyst greatly increases life and stability of the catalyst. Particularly, porous large-specific surface nano-alumina serves as a carrier, NixMoW, NixCoW or NixCoMo serves as an active component, and Mn serves as an assistant. Hydrothermal stability of the catalyst and dispersion of the active components may be increased by enlarging a pore channel and a specific surface area of the carrier, thereby prolonging the life of the hydrodeoxygenation catalyst; and
(1)对于蓖麻油的加氢脱氧反应,大比表面纳米氧化铝负载的三金属催化剂的寿命大大增加了催化剂的寿命和稳定性。特别是,多孔大比表面纳米氧化铝作为载体,NixMoW、NixCoW 或 NixCoMo 作为活性成分,Mn 作为助剂。通过扩大载体的孔隙通道和比表面积,可以提高催化剂的水热稳定性和活性组分的分散性,从而延长加氢脱氧催化剂的寿命;和
(2) the hydroisomerization catalyst takes multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 or NiSAPO-11 as a carrier and takes NixMoLa, NixCoLa or NixWLa as an active component. Due to the added multi-walled carbon nanotubes, the pore channel of the carrier is enriched, and connection between the active component and the carrier is effectively enhanced, thereby increasing the life and stability of the catalyst on a basis of increasing the selectivity of the aviation kerosene component. Moreover, the biological aviation kerosene satisfying usage conditions is prepared by virtue of mild reaction conditions.
(2)加氢异构化催化剂以多壁碳纳米管复合分层孔通道NiAPO-11或NiSAPO-11为载体,以NixMoLa、NixCoLa或NixWLa为活性组分。由于多壁碳纳米管的加入,丰富了载体的孔通道,有效增强了活性组分与载子之间的连接,从而在提高航空煤油组分选择性的基础上增加了催化剂的寿命和稳定性。此外,满足使用条件的生物航空煤油是通过温和的反应条件制备的。
图纸描述
图 1 是合成的碳纳米管支撑的分层孔通道 NiMoLa/NiSAPO-11 的透射电子显微镜图;
图 2 是合成的碳纳米管支撑的分层孔通道 NiWLa/NiSAPO-11 的透射电子显微镜图;
图 3 是合成的碳纳米管支撑的分层孔通道 NiCoLa/NiAPO-11 的透射电子显微镜图;
图 4 是催化剂 NiMoW/Al2O3 的氮气吸附-脱附曲线;
图 5 是分层孔通道 NiAPO-11 和 NiSAPO-11 的 XRD 图;
图 6 是 NiMoW/Al2O3 的扫描电子显微镜图;和
图 7 是大比表面纳米氧化铝的扫描电子显微镜图。
优选实施例的详细说明
The present invention is described below in detail with reference to specific embodiments, while the illustrated embodiments do not make any limitation to a scope of technical solutions required to be protected by claims. Meanwhile, it is particularly indicated that experimental methods without marked specific conditions in embodiments are generally implemented according to routine conditions and conditions in a manual or according to conditions suggested by a manufacturer. The used general equipment, materials, reagents and the like may be obtained commercially.
下面结合具体实施例对本发明进行详细说明,而图示的实施例对要求保护的技术方案的范围不作任何限制。同时,特别指出的是,实施例中没有标记具体条件的实验方法一般根据手册中的常规条件和条件或根据制造商建议的条件实施。使用过的通用设备、材料、试剂等可商业获得。
Preparation of a hydrodeoxygenation catalyst comprises the following steps:
加氢脱氧催化剂的制备包括以下步骤:
adding 16.2 g of aluminum isopropoxide into 32 mL of 0.05 mol/L of nitric acid, refluxing and stirring at 80° C. for 3-5 hours, adding 1.2 g of cetyl trimethyl ammonium bromide, and continuously stirring for 2-3 hours to obtain a mixed solution A; adding 0.27 g of sodium silicate into the mixed solution A, refluxing and stirring at 80° C. for 3-5 hours, and aging at a room temperature for 2 hours to obtain a mixed solution B; adding 0.66 g of ethyl orthosilicate into the mixed solution B, refluxing and stirring at 80° C. for 3-5 hours, and aging at the room temperature for 2 hours to obtain a mixed solution C; adding 1-5% of sodium hydroxide into the mixed solution C, refluxing and stirring at 80° C. for 3-5 hours, performing centrifugal separation, drying the obtained solid precipitate at 100° C. for 8 hours, and calcining in a nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain a large-specific surface nano-alumina carrier; adding 2.3 g of manganese chloride into 24 g of distilled water under room-temperature stirring conditions, stirring for 3 hours and fully dissolving, adding 7.5 g of the large-specific surface nano-alumina carrier, stirring for 3 hours to obtain a mixed solution, performing suction filtration on the mixed solution, drying the mixed solution at 100° C. for 8 hours, and calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain solid powder, and recording the solid powder as D; adding 24 g of distilled water into 10 g of nickel nitrate, 0.45 g of ammonium molybdate and 0.32 g of ammonium metatungstate to stir for 3 hours under room-temperature stirring conditions, fully dissolving, adding the solid powder D, stirring for 3-5 hours to obtain a mixed solution, and standing the mixed solution for 10 hours; drying the mixed solution at 100° C. for 8 hours, calcining the obtained solid powder in the nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst, i.e., cat1, for preparing biological aviation kerosene with castor oil.
将 16.2 g 异丙醇铝加入 32 mL 0.05 mol/L 硝酸中,在 80°C 下回流搅拌 3-5 小时,加入 1.2 g 十六烷基三甲基溴化铵,不断搅拌 2 - 3 小时,得混合溶液 A;在混合溶液 A 中加入 0.27 g 硅酸钠,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 B;在混合溶液 B 中加入 0.66 g 正硅酸乙酯,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 C;在混合溶液C中加入1-5%的氢氧化钠,在80°C下回流搅拌3-5小时,进行离心分离,将得到的固体沉淀物在100°C下干燥8小时,在500-600°C的氮气气氛中煅烧4-6小时,得到大比表面积的纳米氧化铝载体;在室温搅拌条件下,将 2.3 g 氯化锰加入 24 g 蒸馏水中,搅拌 3 小时并充分溶解,加入 7.5 g 大比表面积纳米氧化铝载体,搅拌 3 小时得到混合溶液,对混合溶液进行抽滤,将混合溶液在 100°C 下干燥 8 小时, 在500-600°C的氮气气氛中煅烧4-6小时,得到固体粉末,并将固体粉末记录为D;将 24 g 蒸馏水加入 10 g 硝酸镍、0.45 g 钼酸铵和 0.将偏钨酸铵 32 g 在室温搅拌条件下搅拌 3 小时,充分溶解,加入固体粉末 D,搅拌 3-5 小时得混合溶液,混合溶液静置 10 小时;将混合溶液在 100°C 下干燥 8 小时,将得到的固体粉末在 500-600°C 的氮气气氛中煅烧 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原得到的固体粉末至少 3 小时,从而得到加氢脱氧催化剂,即 CAT1,用于用蓖麻油制备生物航空煤油。
Preparation of a hydrodeoxygenation catalyst comprises the following steps:
加氢脱氧催化剂的制备包括以下步骤:
adding 16.2 g of aluminum isopropoxide into 32 mL of 0.05 mol/L of nitric acid, refluxing and stirring at 80° C. for 3-5 hours, adding 1.2 g of cetyl trimethyl ammonium bromide, and continuously stirring for 2-3 hours to obtain a mixed solution A; adding 0.27 g of sodium silicate into the mixed solution A, refluxing and stirring at 80° C. for 3-5 hours, and aging at a room temperature for 2 hours to obtain a mixed solution B; adding 0.66 g of ethyl orthosilicate into the mixed solution B, refluxing and stirring at 80° C. for 3-5 hours, and aging at the room temperature for 2 hours to obtain a mixed solution C; adding 1-5% of sodium hydroxide into the mixed solution C, refluxing and stirring at 80° C. for 3-5 hours, performing centrifugal separation, drying the obtained solid precipitate at 100° C. for 8 hours, calcining in a nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain a large-specific surface nano-alumina carrier; adding 2.3 g of manganese chloride into 24 g of distilled water under room-temperature stirring conditions, stirring for 3 hours and fully dissolving, adding 7.5 g of the large-specific surface nano-alumina carrier, stirring for 3 hours to obtain a mixed solution, performing suction filtration on the mixed solution, drying the mixed solution at 100° C. for 8 hours, calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain solid powder, and recording the solid powder as D; adding 24 g of distilled water into 10 g of nickel nitrate, 0.25 g of cobalt nitrate and 0.32 g of ammonium metatungstate under room-temperature stirring conditions to stir for 3 hours, fully dissolving, adding the solid powder D, stirring for 3-5 hours to obtain a mixed solution, and standing the mixed solution for 10 hours; drying the mixed solution at 100° C. for 8 hours, calcining the obtained solid powder in the nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst, i.e., cat2, for preparing biological aviation kerosene with castor oil.
将 16.2 g 异丙醇铝加入 32 mL 0.05 mol/L 硝酸中,在 80°C 下回流搅拌 3-5 小时,加入 1.2 g 十六烷基三甲基溴化铵,不断搅拌 2 - 3 小时,得混合溶液 A;在混合溶液 A 中加入 0.27 g 硅酸钠,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 B;在混合溶液 B 中加入 0.66 g 正硅酸乙酯,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 C;在混合溶液C中加入1-5%的氢氧化钠,在80°C下回流搅拌3-5小时,进行离心分离,将得到的固体沉淀在100°C下干燥8小时,在500-600°C的氮气气氛中煅烧4-6小时,得到大比表面积的纳米氧化铝载体;在室温搅拌条件下,将 2.3 g 氯化锰加入 24 g 蒸馏水中,搅拌 3 小时并充分溶解,加入 7.5 g 大比表面积纳米氧化铝载体,搅拌 3 小时得到混合溶液,对混合溶液进行抽滤,将混合溶液在 100°C 下干燥 8 小时, 在 500-600°C 的氮气气氛中煅烧 4-6 小时,得固体粉末,并将固体粉末记录为 D;将 24 克蒸馏水加入 10 克硝酸镍、0.25 克硝酸钴和 0.偏钨酸铵32g在室温搅拌条件下搅拌3h,充分溶解,加入固体粉末D,搅拌3-5h得混合溶液,混合溶液静置10h;将混合溶液在 100°C 下干燥 8 小时,将得到的固体粉末在 500-600°C 的氮气气氛中煅烧 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原得到的固体粉末至少 3 小时,从而得到加氢脱氧催化剂,即 CAT2,用于用蓖麻油制备生物航空煤油。
Preparation of a hydrodeoxygenation catalyst comprises the following steps:
加氢脱氧催化剂的制备包括以下步骤:
adding 16.2 g of aluminum isopropoxide into 32 mL of 0.05 mol/L of nitric acid, refluxing and stirring at 80° C. for 3-5 hours, adding 1.2 g of cetyl trimethyl ammonium bromide, and continuously stirring for 2-3 hours to obtain a mixed solution A; adding 0.27 g of sodium silicate into the mixed solution A, refluxing and stirring at 80° C. for 3-5 hours, and aging at a room temperature for 2 hours to obtain a mixed solution B; adding 0.66 g of ethyl orthosilicate into the mixed solution B, refluxing and stirring at 80° C. for 3-5 hours, and aging at the room temperature for 2 hours to obtain a mixed solution C; adding 1-5% of sodium hydroxide into the mixed solution C, refluxing and stirring at 80° C. for 3-5 hours, performing centrifugal separation, drying the obtained solid precipitate at 100° C. for 8 hours, calcining in a nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain a large-specific surface nano-alumina carrier; adding 2.3 g of manganese chloride into 24 g of distilled water under room-temperature stirring conditions, stirring for 3 hours and fully dissolving, adding 7.5 g of the large-specific surface nano-alumina carrier, stirring for 3 hours to obtain a mixed solution, performing suction filtration on the mixed solution, drying the mixed solution at 100° C. for 8 hours, calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain solid powder, and recording the solid powder as D; adding 24 g of distilled water into 10 g of nickel nitrate, 0.35 g of cobalt nitrate and 0.45 g of ammonium molybdate under room-temperature stirring conditions to stir for 3 hours, fully dissolving, adding the solid powder D, stirring for 3-5 hours to obtain a mixed solution, and standing the mixed solution for 10 hours; drying the mixed solution at 100° C. for 8 hours, calcining the obtained solid powder in the nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst, i.e., cat3, for preparing biological aviation kerosene with castor oil.
将 16.2 g 异丙醇铝加入 32 mL 0.05 mol/L 硝酸中,在 80°C 下回流搅拌 3-5 小时,加入 1.2 g 十六烷基三甲基溴化铵,不断搅拌 2 - 3 小时,得混合溶液 A;在混合溶液 A 中加入 0.27 g 硅酸钠,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 B;在混合溶液 B 中加入 0.66 g 正硅酸乙酯,在 80°C 下回流搅拌 3-5 小时,在室温下老化 2 小时,得混合溶液 C;在混合溶液C中加入1-5%的氢氧化钠,在80°C下回流搅拌3-5小时,进行离心分离,将得到的固体沉淀在100°C下干燥8小时,在500-600°C的氮气气氛中煅烧4-6小时,得到大比表面积的纳米氧化铝载体;在室温搅拌条件下,将 2.3 g 氯化锰加入 24 g 蒸馏水中,搅拌 3 小时并充分溶解,加入 7.5 g 大比表面积纳米氧化铝载体,搅拌 3 小时得到混合溶液,对混合溶液进行抽滤,将混合溶液在 100°C 下干燥 8 小时, 在 500-600°C 的氮气气氛中煅烧 4-6 小时,得固体粉末,并将固体粉末记录为 D;在室温搅拌条件下,将24 g蒸馏水加入10 g硝酸镍、0.35 g硝酸钴和0.45 g钼酸铵中,搅拌3小时,充分溶解,加入固体粉末D,搅拌3-5小时,得混合溶液,混合溶液静置10小时;在 100°C 下干燥混合溶液。 8 h,将得到的固体粉末在 500-600°C 的氮气气氛中煅烧 4-6 h,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原得到的固体粉末至少 3 h,从而得到加氢脱氧催化剂,即 CAT3,用于用蓖麻油制备生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of silane coupling agent in a 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier, i.e., F, and
(1)一种多壁碳纳米管复合分层孔通道NiAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰乳酸镍、2.07 g磷酸和1.28 g伪勃姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiAPO-11复合载体,即F和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.47 g of ammonium metatungstate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat4, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮酸镍、1 g 硝酸镧和 0.47 g 偏钨酸铵溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即 CAT4,用于制备带有蓖麻油的生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 1201° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of silane coupling agent in a 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube (with a diameter of 15 nm and a specific surface area of 500 m2/g) for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-1201° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰乳酸镍、2.07 g磷酸和1.28 g伪勃姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在1201°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管(直径为 15 nm,比表面积为 500 m2/g)连续回流搅拌 1-3 小时,加入 E 回流并在 100-1201°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时, 将所得固体粉末在马弗炉中于500°C煅烧5-10 h,从而得到多壁碳纳米管复合分层孔通道NiAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.45 g of ammonium molybdate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat5, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮镍、1 g 硝酸镧和 0.45 g 钼酸铵溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而获得加氢异构化催化剂,即 CAT5,用于制备带有蓖麻油的生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 2000° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of a silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 5001° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰乳酸镍、2.07 g磷酸和1.28 g伪勃姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在2000°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 5001°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.29 g of cobalt nitrate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat6, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮镍、1 g 硝酸镧和 0.29 g 硝酸钴溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即CAT6,用于用蓖麻油制备生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 2000° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiSAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰丙酮镍、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在2000°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiSAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.47 g of ammonium metatungstate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat7, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮酸镍、1 g 硝酸镧和 0.47 g 偏钨酸铵溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即 CAT7,用于制备带有蓖麻油的生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 2000° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiSAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰丙酮镍、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在2000°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiSAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.45 g of ammonium molybdate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat8, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮镍、1 g 硝酸镧和 0.45 g 钼酸铵溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即 CAT8,用于制备带有蓖麻油的生物航空煤油。
Preparation of a hydroisomerization catalyst comprises the following steps:
加氢异构化催化剂的制备包括以下步骤:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of a silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiSAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰丙酮镍、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiSAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.29 g of cobalt nitrate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat9, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮镍、1 g 硝酸镧和 0.29 g 硝酸钴溶入 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即CAT9,用于制备带有蓖麻油的生物航空煤油。
A using method of a hydrodeoxygenation catalyst comprises the following steps:
加氢脱氧催化剂的使用方法包括以下步骤:
1) pretreatment of the catalyst: forming a catalyst in embodiment 1, filling the catalyst in a fixed bed reactor, heating to 400° C. under nitrogen purging with volume space velocity of 500 h−1, changing into hydrogen with the same volume space velocity, maintaining a temperature of 400° C. for at least 3 hours, and regulating a temperature of the reactor to 300° C.; and
1)催化剂的预处理:在实施例1中形成催化剂,将催化剂填充到固定床反应器中,在体积空速为500 h-1的氮气吹扫下加热至400°C,变为相同体积空速的氢气,保持400°C的温度至少3小时,并将反应器的温度调节至300°C;和
2) hydrodeoxygenation reaction: taking the castor oil (analytically pure, purity of 99%, and purchased from Tianjin Guangfu Reagent Co., Ltd.) as raw oil of the hydrodeoxygenation reaction, and regulating a pressure of a reaction system to 3 MPa, wherein a reaction temperature is 300° C., a hydrogen-oil ratio is 800, and volume space velocity of the fed raw oil is 2 h−1; and collecting a liquid product obtained in the reaction every 2 hours. A method for analyzing the product comprises the following steps: testing by gas chromatography-mass spectrometry, adopting an Agilent gas chromatograph and mass spectrometer, and dividing the temperature of an injection oven into three phases; a phase of maintaining 50° C. for 10 minutes, a phase of heating to 100° C. at a speed of 30° C./min and maintaining for 10 minutes and a phase of heating to 200° C. at a speed of 30° C./min and maintaining for 10 minutes.
2) 加氢脱氧反应:取蓖麻油(分析纯度,纯度为 99%,购自天津广福试剂有限公司)作为加氢脱氧反应的原料油,将反应系统的压力调节至 3 MPa,反应温度为 300°C,氢油比为 800,进料原料油的体积空速为 2 h−1;以及每 2 小时收集一次反应中获得的液体产物。分析产品的方法包括以下步骤:气相色谱-质谱法检测,采用安捷伦气相色谱仪和质谱仪,将注射炉的温度分为三个阶段;一个保持 50°C 10 分钟的阶段,一个以 30°C/min 的速度加热到 100°C 并保持 10 分钟的阶段,以及一个以 30°C/min 的速度加热到 200°C 并保持 10 分钟的阶段。
A using method of a hydrolsomerization catalyst comprises the following steps:
一种水解化催化剂的使用方法包括以下步骤:
1) pretreatment of the catalyst: forming a catalyst in embodiment 6, filling the catalyst in a fixed bed reactor, heating to 400° C. under nitrogen purging with volume space velocity of 500 h−1, changing into hydrogen with the same volume space velocity, maintaining a temperature of 400° C. for at least 3 hours, and regulating a temperature of the reactor to 300° C.; and
1)催化剂的预处理:在实施例6中形成催化剂,将催化剂填充到固定床反应器中,在体积空速为500 h-1的氮气吹扫下加热至400°C,换成相同体积空速的氢气,保持400°C的温度至少3小时,并将反应器的温度调节至300°C;和
2) hydroisomerization reaction: taking a dehydration product obtained by hydrodeoxygenation (composition:90% of C17-C18 and 10% of C5-C16) as a raw material (a preparation method: the hydrodeoxygenation catalyst in embodiments 1-3 is used as a catalyst, conditions in embodiment 10 are used as the conditions, and a method in embodiment 10 is used as an analysis method), and regulating a pressure of a reaction system to 3 MPa, wherein a reaction temperature is 320° C. a hydrogen-oil ratio is 800, and volume space velocity of the fed raw oil is 2 h−1; and collecting a liquid product obtained in the reaction every 2 hours.
2)加氢异构化反应:以加氢脱氧得到的脱水产物(组成:90%的C17-C 18和10%的C5-C 16)为原料(一种制备方法:以实施例1-3中的加氢脱氧催化剂为催化剂,以实施例10中的条件为条件,以实施例10中的方法为分析方法), 将反应系统的压力调节至 3 MPa,其中反应温度为 320°C,氢油比为 800,进料原料油的体积空速度为 2 h−1;以及每 2 小时收集一次反应中获得的液体产物。
A preparation method of an anhydrous liquid product through hydrodeoxygenation of castor oil comprises the following steps:
通过蓖麻油加氢脱氧制备无水液体产品的方法包括以下步骤:
pouring a castor oil hydrodeoxygenation product in embodiment 10 into 500 ml of separating funnel, standing for 5 hours, and separating a lower water layer to obtain an upper transparent solution layer, i.e., the anhydrous hydrodeoxygenation product, wherein the composition of the product comprises 90% of C17-C18 and 10% of C5-C16.
将实施例10中的蓖麻油加氢脱氧产物倒入500ml分离漏斗中,静置5小时,并分离出下层水,得到上层透明溶液层,即无水加氢脱氧产物,其中,产物的组合物包括90%的C17-C 18和10%的C5-C 16。
The purpose is to compare preparation steps of an ordinary alumina carrier and a hydrodeoxygenation catalyst without an assistant Mn with embodiment 1:
目的是将普通氧化铝载体和无助剂Mn的加氢脱氧催化剂的制备步骤与实施例1进行比较:
adding 24 g of distilled water into 10 g of nickel acetylacetonate, 0.45 g of ammonium molybdate and 0.32 g of ammonium metatungstate under room-temperature stirring conditions, stirring for 3 hours, and fully dissolving; adding ordinary alumina, stirring for 3-5 hours to obtain a mixed solution, standing the mixed solution for 10 hours, drying at 100° C. for 8 hours, calcining the obtained solid powder in a nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst, i.e., cat10, for preparing biological aviation kerosene with castor oil.
在室温搅拌条件下,将24 g蒸馏水加入10 g乙酰丙酮酸镍、0.45 g钼酸铵和0.32 g偏钨酸铵中,搅拌3 h,充分溶解;加入普通氧化铝,搅拌 3-5 小时得到混合溶液,混合溶液静置 10 小时,在 100°C 下干燥 8 小时,在 500-600°C 的氮气气氛中煅烧得到的固体粉末 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原得到的固体粉末至少 3 小时, 从而得到加氢脱氧催化剂,即 CAT10,用于用蓖麻油制备生物航空煤油。
The purpose is to compare preparation steps of an ordinary nickel salt and a hydrodeoxygenation catalyst without an assistant Mn with embodiment 2:
目的是将普通镍盐和无助剂Mn的加氢脱氧催化剂的制备步骤与实施例2进行比较:
adding 24 g of distilled water into 10 g of nickel nitrate, 0.45 g of ammonium molybdate and 0.32 g of ammonium metatungstate under room-temperature stirring conditions, stirring for 3 hours, and fully dissolving; adding self-made large-specific surface nano-alumina, stirring for 3-5 hours to obtain a mixed solution, standing the mixed solution for 10 hours, drying at 100° C. for 8 hours, calcining the obtained solid powder in a nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst, i.e., cat11, for preparing biological aviation kerosene with castor oil.
在室温搅拌条件下,将 24 g 蒸馏水加入 10 g 硝酸镍、0.45 g 钼酸铵和 0.32 g 偏钨酸铵中,搅拌 3 h,充分溶解;加入自制的大比表面纳米氧化铝,搅拌 3-5 小时得到混合溶液,混合溶液静置 10 小时,在 100°C 下干燥 8 小时,将得到的固体粉末在 500-600°C 的氮气气氛中煅烧 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原所得固体粉末至少 3 小时, 从而得到加氢脱氧催化剂,即CAT11,用于用蓖麻油制备生物航空煤油。
The purpose is to compare preparation steps of a microporous SAPO-11 catalyst with embodiment 4:
目的是将微孔 SAPO-11 催化剂的制备步骤与实施例 4 进行比较:
(1) a preparation method of SAPO-11: respectively mixing 15 g of deionized water, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, and calcining in a muffle furnace at 600° C. for 12 hours, thereby obtaining the hierarchical-pore-channel SAPO-11, i.e., sample C; and
(1)SAPO-11的制备方法:分别将15 g去离子水、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪勃姆石混合在一起,均匀搅拌;加入 0.54 g 二正丙胺和 0.36 g 二异丙胺,再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在600°C的马弗炉中煅烧12小时,从而得到分层孔道SAPO-11,即样品C;和
(2) uploading of active components: dissolving 1.41 g of nickel acetylacetonate and 0.32 g of cobalt nitrate into 22 g of ethanol under 30-50° C. stirring conditions, and fully dissolving to obtain a solution T; adding 7.52 g of the sample C into the solution T, stirring for at least 12 hours, standing for 10 hours, drying the obtained solution in an air atmosphere at 1200° C., and calcining in the air atmosphere at 600° C. for at least 4 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat12, for preparing biological aviation kerosene with castor oil.
(2)活性组分上传:在30-50°C搅拌条件下,将1.41 g乙酰乙酰乙酮镍和0.32 g硝酸钴溶于22 g乙醇中,并充分溶解,得到溶液T;将7.52 g样品C加入溶液T中,搅拌至少12小时,静置10小时,将所得溶液在1200°C的空气气氛中干燥,并在600°C的空气气氛中煅烧至少4小时,从而得到加氢异构化催化剂,即CAT12,用于制备蓖麻油生物航空煤油。
The purpose is to compare preparation steps of a multi-walled-carbon-nanotube-free composite hierarchical-pore-channel NiAPO-11 catalyst with embodiment 5:
目的是将多壁无碳纳米管复合多级孔通道NiAPO-11催化剂的制备步骤与实施例5进行比较:
a preparation method of hierarchical-pore-channel NiAPO-11: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, and calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; and
一种分层孔通道NiAPO-11的制备方法:分别将15 g去离子水、0.36 g乙酰乙酰乳糖酸镍、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;和
uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.45 g of ammonium molybdate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier E to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat13, for preparing the biological aviation kerosene with castor oil.
在 30-50°C 下上传活性组分搅拌,将 1.41 g 乙酰乙酰丙酮镍、1 g 硝酸镧和 0.45 g 钼酸铵溶解到 30 g N,N-二甲基甲酰胺中,并完全溶解得到溶液 T;加入载体 E 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即 CAT13,用于制备带有蓖麻油的生物航空煤油。
The purpose is to compare preparation steps of a multi-walled-carbon-nanotube-free composite hierarchical-pore-channel NiSAPO-11 catalyst with embodiment 7:
目的是将多壁无碳纳米管复合分层孔通道NiSAPO-11催化剂的制备步骤与实施例7进行比较:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, and calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiSAPO-11, i.e., E; and
(1)一种多壁碳纳米管复合分层孔通道NiSAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰丙酮镍、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiSAPO-11,即E;和
(2) uploading active components under 30-501° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate, 1 g of lanthanum nitrate and 0.47 g of ammonium metatungstate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier E to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-6001° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat14, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-501°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮酸镍、1 g 硝酸镧和 0.47 g 偏钨酸铵溶于 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 E 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-6001°C 下以 200-300 mL/min 的氢气流速降低至少 3 小时, 从而得到加氢异构化催化剂,即 CAT14,用于制备带有蓖麻油的生物航空煤油。
The purpose is to compare preparation steps of a multi-walled carbon-nanotube composite hierarchical-pore-channel NiAPO-11 catalyst without adding an assistant La with embodiment 6:
目的是比较不添加助剂 La 的多壁碳纳米管复合多级孔通道 NiAPO-11 催化剂的制备步骤与实施例 6:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 200° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of a silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-120° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰乳酸镍、2.07 g磷酸和1.28 g伪勃姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬有聚四氟的高压结晶釜中,密封,在200°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在马弗炉中于600°C下煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-120°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate and 0.29 g of cobalt nitrate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat15, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 搅拌条件下上传活性组分,将 1.41 g 乙酰丙酮酸镍和 0.29 g 硝酸钴溶解到 30 g N,N-二甲基甲酰胺中,并充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即 CAT15,用于制备带有蓖麻油的生物航空煤油。
The purpose is to compare preparation steps of a multi-walled carbon-nanotube composite hierarchical-pore-channel NiSAPO-11 catalyst without adding an assistant La with embodiment 8:
目的是比较不添加助剂La的多壁碳纳米管复合分层孔通道NiSAPO-11催化剂的制备步骤与实施例8:
(1) a preparation method of multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 comprises the following steps: respectively mixing 15 g of deionized water, 0.36 g of nickel acetylacetonate, 0.36 g of silica sol, 2.07 g of phosphoric acid and 1.28 g of pseudo-boehmite together and uniformly stirring; adding 0.1 g of starch to carry out a hydrolysis reaction and stir for 5 hours, adding 0.54 g of di-n-propylamine and 0.36 g of diisopropylamine and stirring for 3 hours again; and adding the mixture into a high-pressure crystallization kettle with a polytetrafluoro lining, sealing, crystallizing at 2001° C. for 24 hours, taking out the mixture, washing a solid product, drying at 120° C. for 12 hours, calcining in a muffle furnace at 600° C. for 12 hours to obtain the hierarchical-pore-channel NiAPO-11, i.e., E; dissolving 1 g of a silane coupling agent in 30 g of DMF solvent; adding 1 g of multi-walled carbon nanotube for continuously refluxing and stirring for 1-3 hours, adding the E to reflux and stir at 100-1201° C. for 1-3 hours, performing suction filtration on the obtained mixed solution, drying at 120° C. for 5 hours, and calcining the obtained solid powder in a muffle furnace at 500° C. for 5-10 hours, thereby obtaining the multi-walled carbon nanotube composite hierarchical-pore-channel NiSAPO-11 composite carrier, i.e., F; and
(1)一种多壁碳纳米管复合分层孔通道NiSAPO-11的制备方法,包括以下步骤:分别将15 g去离子水、0.36 g乙酰乙酰丙酮镍、0.36 g硅溶胶、2.07 g磷酸和1.28 g伪博姆石混合均匀搅拌;加入 0.1 g 淀粉进行水解反应并搅拌 5 小时,加入 0.54 g 二正丙胺和 0.36 g 二异丙胺并再次搅拌 3 小时;将混合物加入内衬聚四氟的高压结晶釜中,密封,在2001°C下结晶24小时,取出混合物,洗涤固体产品,在120°C下干燥12小时,在600°C的马弗炉中煅烧12小时,得到分层孔道NiAPO-11,即E;将 1 g 硅烷偶联剂溶解在 30 g DMF 溶剂中;加入 1 g 多壁碳纳米管连续回流搅拌 1-3 小时,加入 E 回流并在 100-1201°C 下搅拌 1-3 小时,对得到的混合溶液进行抽滤,在 120°C 下干燥 5 小时,将得到的固体粉末在 500°C 的马弗炉中煅烧 5-10 小时, 从而得到多壁碳纳米管复合分层孔通道NiSAPO-11复合载体,即F;和
(2) uploading active components under 30-50° C. stirring conditions, dissolving 1.41 g of nickel acetylacetonate and 0.45 g of ammonium molybdate into 30 g of N,N-dimethylformamide, and fully dissolving to obtain a solution T; adding the carrier F to continuously stir for 12 hours, standing for 10 hours, drying in a drying oven at 100° C., calcining the obtained solid powder at 600° C. in an air atmosphere for at least 4 hours, and reducing at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydroisomerization catalyst, i.e., cat16, for preparing the biological aviation kerosene with castor oil.
(2) 在 30-50°C 下上传活性组分搅拌,将 1.41 g 乙酰丙酮酸镍和 0.45 g 钼酸铵溶解到 30 g N,N-二甲基甲酰胺中,充分溶解得到溶液 T;加入载体 F 连续搅拌 12 小时,静置 10 小时,在 100°C 的烘箱中干燥,将得到的固体粉末在 600°C 的空气气氛中煅烧至少 4 小时,然后在 550-600°C 下以 200-300 mL/min 的氢气流速还原至少 3 小时, 从而得到加氢异构化催化剂,即CAT16,用于用蓖麻油制备生物航空煤油。
催化剂 CAT1-CAT16 的评估结果如下:
CAT1-CAT3 的评估条件包括 300°C.、3 MPa 和 1-2 h-1;
CAT6-CAT16 的评估条件包括 300-360°C,3 MPa
和 1-2 h − 1。评价标准如下:一、转换
计算蓖麻油用量和 C8-C 16 选择性
按气相色谱法的峰面积比;和质量
催化剂直接影响
航空煤油的作用,也影响催化剂的寿命。
生物的物理和化学性质比较
蓖麻油的航空煤油与生物航空的煤油
麻风树煤油和 Jet 3# 航空煤油:
密度 (Kg · m−3)
(毫米2 S-1)
Cat1-cat9 in Table 1 are modified catalysts and have extremely high life, conversion rates of castor oil and selectivity of aviation kerosene components, while unmodified catalysts have extremely low conversion rates and selectivity, which indicates that modification of the hydrodeoxygenation catalyst really increases hydrothermal stability, thereby increasing the life of the catalyst. For the hydroisomerization catalyst, due to the introduction of the hierarchical pore channel and multi-walled carbon nanotubes, the life of the catalyst is greatly increased while increasing the selectivity of the aviation kerosene, thereby proving effects after modification.
表 1 中的 Cat1-cat9 是改性催化剂,具有极高的寿命、蓖麻油转化率和航空煤油成分的选择性,而未改性催化剂具有极低的转化率和选择性,这表明加氢脱氧催化剂的改性确实增加了水热稳定性,从而延长了催化剂的寿命。对于加氢异构化催化剂,由于引入了多级孔通道和多壁碳纳米管,催化剂的寿命大大增加,同时增加了航空煤油的选择性,从而证明了改性后的效果。
In Table 2, it can be seen from comparison that all items are within standards except the density. For the density, since the components in the biological aviation kerosene with castor oil are C8-C18 alkanes, the density may not exceed 790. However, the biological aviation kerosene can be used when doped with petroleum-based aviation kerosene, so the density after doping may be within the standard.
在表 2 中,从比较中可以看出,除密度外,所有项目都在标准范围内。对于密度,由于含蓖麻油的生物航空煤油中的成分是 C8-C 18 烷烃,因此密度不得超过 790。但是,生物航空煤油在掺杂石油基航空煤油时可以使用,因此掺杂后的密度可能在标准范围内。
Claims 索赔
1. A method for preparing a catalyst, the catalyst for preparing biological aviation kerosene with castor oil, comprising porous large-specific surface nano-alumina as a carrier, NixMoW, NixCoW or NixCoMo as an active component, and Mn as an assistant, wherein mass of the active component accounts for 10-30% of total mass of the catalyst; x is an atomic ratio and ranges from 2 to 20; mass of the component Mn accounts for 1-5% of the total mass of the catalyst; and a specific surface area of the porous large-specific surface nano-alumina carrier is 500-800 m2/g;
1.一种催化剂的制备方法,一种以蓖麻油制备生物航空煤油的催化剂,包括以多孔大比表面纳米氧化铝为载体,以NixMoW、NixCoW或NixCoMo为活性组分,以Mn为助剂,其中,所述活性组分的质量占催化剂总质量的10-30%;x 是原子比,范围从 2 到 20;组分 Mn 的质量占催化剂总质量的 1-5%;多孔大比表面积纳米氧化铝载体的比表面积为 500-800 m2/g;
- the method comprising the following steps:
该方法包括以下步骤:
- 1) adding aluminum isopropoxide into 0.05 mol/L of nitric acid, refluxing and stirring at 80° C. for 3-5 hours, adding cetyl trimethyl ammonium bromide, and continuously stirring for 2-3 hours to obtain a mixed solution;
1)将异丙醇铝加入0.05mol/L硝酸中,在80°C回流搅拌3-5h,加入十六烷基三甲基溴化铵,不断搅拌2-3h,得混合溶液;
- 2) adding sodium silicate into the mixed solution, refluxing and stirring at 80° C. for 3-5 hours, and aging at a room temperature for 2 hours to obtain a mixed solution;
2)在混合溶液中加入硅酸钠,在80°C下回流搅拌3-5小时,在室温下老化2小时,得混合溶液;
- 3) adding ethyl orthosilicate into the mixed solution, refluxing and stirring at 80° C. for 3-5 hours, and aging at the room temperature for 2 hours;
3)将正硅酸乙酯加入混合溶液中,在80°C下回流搅拌3-5小时,在室温下老化2小时;
- 4) adding 1-5% of sodium hydroxide into the mixed solution obtained in the step 3), refluxing and stirring at 80° C. for 3-5 hours, performing centrifugal separation, drying the obtained solid precipitate at 100° C., and calcining in a nitrogen atmosphere at 500-600° C. for 4-6 hours, thereby obtaining the large-specific surface nano-alumina carrier;
4)在步骤3得到的混合溶液中加入1-5%的氢氧化钠),在80°C下回流搅拌3-5小时,进行离心分离,将得到的固体沉淀在100°C下干燥,在500-600°C的氮气气氛中煅烧4-6小时,从而得到大比表面积纳米氧化铝载体;
- 5) adding an assistant manganese chloride into an aqueous solution in an amount of three times that of mass of the carrier according to a ratio for stirring for 3 hours under room-temperature stirring conditions, adding the large-specific surface nano-alumina carrier for stirring 3-5 hours to obtain a mixed solution, performing suction filtration on the mixed solution, drying a solid product at 100° C. for 8 hours, and calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours to obtain solid powder; and
5) 在室温搅拌条件下,按搅拌 3 小时的比例,将助氯化锰按载体质量的三倍的量加入水溶液中,搅拌 3 小时,加入大比表面积纳米氧化铝载体搅拌 3-5 小时,得到混合溶液,对混合溶液进行抽滤, 将固体产品在 100°C 下干燥 8 小时,并在 500-600°C 的氮气气氛中煅烧 4 至 6 小时,得固体粉末;和
- 6) sequentially adding an active component soluble salt into the aqueous solution of an amount of three times of mass of the carrier according to a ratio for stirring for 3 hours under the room-temperature stirring conditions, adding the solid powder in the step 5) for stirring 3-5 hours to obtain a mixed solution, standing for 10 hours, drying the standing mixed solution at 100° C. for 8 hours, calcining in the nitrogen atmosphere at 500-600° C. for 4-6 hours, and reducing the obtained solid powder at 550-600° C. at hydrogen flow velocity of 200-300 mL/min for at least 3 hours, thereby obtaining the hydrodeoxygenation catalyst for preparing the biological aviation kerosene with castor oil.
6) 在室温搅拌条件下,按比例依次将活性成分可溶性盐加入载体质量的三倍水溶液中搅拌 3 小时,加入步骤 5) 中的固体粉末搅拌 3-5 小时,得到混合溶液,静置 10 小时, 将静置混合溶液在 100°C 下干燥 8 小时,在 500-600°C 的氮气气氛中煅烧 4-6 小时,并在 550-600°C 下以 200-300 mL/min 的氢气流速还原所得固体粉末至少 3 小时,从而获得用于制备蓖麻油生物航空煤油的加氢脱氧催化剂。
2. The method according to claim 1, wherein a molar ratio of various raw materials in the steps 1) to 3) is: the aluminum isopropoxide to the 0.05 mol/L of nitric acid to the cetyl trimethyl ammonium bromide to the sodium silicate to the ethyl orthosilicate is (50-120):1:(0.5-5):(0.5-5):(0.5-5); and the active component soluble salt refers to a combination of nickel nitrate with cobalt nitrate, ammonium metatungstate or ammonium molybdate.
2.根据权利要求1所述的方法,其特征在于,步骤1)至3)中各种原料的摩尔比为:所述异丙醇铝与0.05 mol/L的硝酸与十六烷基三甲基溴化铵与硅酸钠的对正硅酸乙酯的比为(50-120):1:(0.5-5):(0.5-5):(0.5-5));而活性成分可溶性盐是指硝酸镍与硝酸钴、偏钨酸铵或钼酸铵的结合。
6162350 | December 19, 2000 2000 年 12 月 19 日 | Soled 底 |
6733657 | May 11, 2004 2004 年 5 月 11 日 | Benazzi 贝纳齐 |
20040230085 | November 18, 2004 2004 年 11 月 18 日 | Jakkula 贾库拉 |
20150190789 | July 9, 2015 七月 9, 2015 | Li 李 |
10 4255247 | April 2015 2015 年 4 月 | CN |
专利号:10479944
Type: Grant
类型: 授予
Filed: Nov 18, 2017
提交时间: 2017-11-18
Date of Patent: Nov 19, 2019
专利日期:2019 年 11 月 19 日
Patent Publication Number: 20180134968
专利公布号:20180134968
Inventors: Wei Li (Tianjin), SiYang Liu (Tianjin), Qingxin Guan (Tianjin), Bohan Chai (Tianjin), Liangnian He (Tianjin), Feng Ye (Tianjin), Xiaoying Cui (Tianjin)
发明人: 李伟 (天津), 刘思阳 (天津), 关庆欣 (天津), 柴博汉 (天津), 何亮年 (天津), 叶峰 (天津), 崔小英 (天津)
Primary Examiner: Patricia L. Hailey
主考官: Patricia L. Hailey
Application Number: 15/817,168
申请编号 : 15/817,168
当前美国班级: 催化 (208/113)
International Classification: B01J 37/04 (20060101); B01J 37/08 (20060101); B01J 37/18 (20060101); B01J 21/04 (20060101); B01J 21/12 (20060101); B01J 23/28 (20060101); B01J 23/30 (20060101); B01J 23/34 (20060101); B01J 23/882 (20060101); B01J 23/888 (20060101); B01J 23/889 (20060101); C10G 3/00 (20060101); C10L 1/04 (20060101);
国际分类: B01J 37/04 (20060101); B01J 37/08 (20060101); B01J 37/18 (20060101); B01J 21/04 (20060101); B01J 21/12 (20060101); B01J 23/28 (20060101); B01J 23/30 (20060101); B01J 23/34 (20060101); B01J 23/882 (20060101); B01J 23/888 (20060101); B01J 23/889 (20060101); C10G 3/00 (20060101); C10L 1/04 (20060101);