这是用户在 2025-3-11 14:04 为 https://app.immersivetranslate.com/pdf-pro/421955a8-78a8-42f9-8512-82e2f7ce2014/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Handbook: Design of Bolted Joints
手册:螺栓连接设计

Document author  文档作者 Document owner  文档所有者
MICHS DEBGO
Document author Document owner MICHS DEBGO| Document author | Document owner | | :--- | :--- | | MICHS | DEBGO |
ID Document type  文档类型
DMS 0066-0500 Handbook  手册
ID Document type DMS 0066-0500 Handbook| ID | Document type | | :--- | :--- | | DMS 0066-0500 | Handbook |
Document Area  文档区域 Reviewer  审稿人
CAD ANDKR, KHJAC, SVECH
Document Area Reviewer CAD ANDKR, KHJAC, SVECH| Document Area | Reviewer | | :--- | :--- | | CAD | ANDKR, KHJAC, SVECH |

History of this document
本文件的历史

  版本号
Version
no.
Version no.| Version | | :--- | | no. |
Date  日期 Description of changes  更改说明
00 2021 07 01 2021 07 01 2021-07-012021-07-01 First edition.  第一版。
"Version no." Date Description of changes 00 2021-07-01 First edition. | Version <br> no. | Date | Description of changes | | :--- | :--- | :--- | | 00 | $2021-07-01$ | First edition. | | | | |

1 PURPOSE … .4
1 目的 … .4

2 SCOPE AND CONTENT … 4
2 范围和内容 … 4

3 ABBREVIATIONS AND TECHNICAL TERMS … 5
3 缩略语和技术术语 … 5

4 PARTS USED FOR BOLTING … 7
4 用于螺栓连接的部件 … 7

4.1 What to be aware of? … 7
4.1 需要注意什么?… 7

4.2 HOW DETERMINE THE PRETENSION OF A BOLT? … 7
4.2 如何确定螺栓的预紧力? … 7

4.3 Standard torque and coatings … 9
4.3 标准扭矩和涂层 … 9

4.4 Standard bolt and nuts … 10
4.4 标准螺栓和螺母 … 10

4.5 Standardization overview … 11
4.5 标准化概述 … 11

4.6 Special Nuts. … 13
4.6 特殊螺母。… 13

4.7 SPECIAL WASHERS … 14
4.7 特殊垫圈 … 14

4.8 Special Bolting … 15
4.8 特殊螺栓 … 15

4.9 Other … 17
4.9 其他 … 17

4.10 VOC AND VOA … 17
4.10 VOC 和 VOA … 17

4.11 Tool Class … 21
4.11 工具类别 … 21

4.12 SURFACE bELOW bolt head / nut / WASher. … 22
4.12 螺栓头/螺母/垫圈下方的表面。… 22

4.13 Clamping length … 25
4.13 夹紧长度 … 25

4.14 Hole size … 29
4.14 孔径 … 29

4.15 General Thread Design rules … 30
4.15 一般螺纹设计规则 … 30

4.16 BOLT CONNECTION FOR OVERSIZE OR SLOTTED HOLES … 32
4.16 超大或开槽孔的螺栓连接 … 32

4.17 Hole position (Distance between holes) … 33
4.17 孔位(孔间距)… 33

4.18 CORROSION … 34
4.18 腐蚀 … 34

4.19 Marking plate. … 37
4.19 标记板。… 37

4.20 Anchor Points … 37
4.20 锚点 … 37

4.21 Reuse of bolts and nuts … 37
4.21 螺栓和螺母的重复使用 … 37

4.22 Cold-welding / Burning stainless-steel bolt connection (SEizing, Galling or fretting) … 38
4.22 冷焊/烧结不锈钢螺栓连接(卡滞、磨损或摩擦)… 38

4.23 СнескLIST … 38
5 BOLT CONNECTIONS … 39
5 螺栓连接 … 39

5.1 LOADS ON BOLT CONNECTION. … 39
5.1 螺栓连接上的载荷。… 39

5.2 Torque Wrench … 39
5.2 扭矩扳手 … 39

5.3 Bolt tensioner (Tension tool) … 39
5.3 螺栓张紧器(张紧工具)… 39

5.4 Bolt joint diagram. … 41
5.4 螺栓连接图。… 41

5.5 EXTERNAL FORCE … 41
5.5 外部力 … 41

5.6 VDI 2230:2015 AND EN 1993-1-8 … 42
5.6 VDI 2230:2015 和 EN 1993-1-8 … 42

5.7 LUBRICATION … 43
5.7 润滑 … 43

5.8 Program DMS 0066-0218 … 45
5.8 程序 DMS 0066-0218 … 45

5.9 Tension and angular controlled tightening program … 48
5.9 拉伸和角度控制紧固程序 … 48

5.10 SAFETY OF CONNECTION … 48
5.10 连接的安全性 … 48

5.11 Fatigue … 49
5.11 疲劳 … 49

5.12 Hole … 51
5.12 孔 … 51

5.13 Jam Nut (Counter Nut) … 52
5.13 垫圈螺母(反向螺母)… 52

5.14 Traceability Requirements … 52
5.14 可追溯性要求 … 52

5.15 Design recommendation … 53
5.15 设计建议 … 53

5.16 Process Specification (PS) … 54
5.16 过程规范 (PS) … 54

5.17 Production (PWI) and Service (SWI) … 54
5.17 生产 (PWI) 和服务 (SWI) … 54

5.18 Service Inspection Form (SIF) … 55
5.18 服务检查表 (SIF) … 55

5.19 A Semi-Knocked-Down Kit (SKD) … 55
5.19 半拆卸套件 (SKD) … 55

6 REFERENCES … 56
6 参考文献 … 56

6.1 DOCUMENTS … 56
6.1 文件 … 56

6.2 Standards … 57
6.2 标准 … 57

6.3 Guideline … 57
6.3 指南 … 57

6.4 Bоокs … 57
6.4 书籍 … 57

6.5 Article. … 58
6.5 文章。… 58

7 APPENDIX. … 59
7 附录. … 59

7.1 APPENDIX - LOADS ON BOLT CONNECTION. … 59
7.1 附录 - 螺栓连接上的载荷。 … 59

7.2 APPENDIX - Description of tool … 60
7.2 附录 - 工具描述 … 60

7.3 Appendix - EXAMPLE how to do PS (Process specification) … 64
7.3 附录 - 示例如何进行 PS(过程规范)… 64

7.4 Appendix - Equations relevant for bolt calculation. … 65
7.4 附录 - 与螺栓计算相关的方程式。… 65

7.5 ApPENDIX - CASE how to work … 72
7.5 附录 - 案例如何工作 … 72

7.6 Appendix - Hydraulic Torque Wrench Sockets … 76
7.6 附录 - 液压扭矩扳手插座 … 76

7.7 Appendix Friction test. … 78
7.7 附录 摩擦测试。… 78

7.8 APPENDIX - Checklists for Creating Bolts, Studs and Rods … 79
7.8 附录 - 创建螺栓、螺柱和杆的检查清单 … 79

1 Purpose  1 目的

Purpose of this Handbook is describing of:
本手册的目的是描述:
  • Best practice of bolted joints
    螺栓连接的最佳实践
  • Standardization  标准化
  • Bolt calculation program
    螺栓计算程序

2 Scope and content
2 范围和内容

In scope:  在范围内:

  • HR bolts (High Resistance bolts EN14399-3).
    HR 螺栓(高抗力螺栓 EN14399-3)。
  • Huck Bobtail.  哈克鲍比尾。
  • Pin bolts.  销钉螺栓。

Out of scope:  超出范围:

  • HV (Hochfeste Bolzen mit Vorspannung EN14399-4)
    HV (高强度预紧螺栓 EN14399-4)
  • Bolt for electrical power bars, Torx, hexagon socket and countersunk screws.
    电力条用螺栓,Torx,六角内孔和沉头螺钉。
  • Bolting soft items like fiberglass parts and plastic parts (DMS 0004-1976).
    将玻璃纤维部件和塑料部件等软物品进行螺栓连接(DMS 0004-1976)。
  • Blades  刀片
  • Description of loads.  载荷描述。
  • Bolt of quality 12.9
    12.9 级螺栓
For electrical connections see guideline 0033-3263.
有关电气连接,请参见指南 0033-3263。
Regarding 12.9 bolts:  关于 12.9 级螺栓:
“General Bolted joints used in wind turbines shall be installed using an adequate amount of preload. Due to increased danger of stress corrosion cracking for higher strength steels, only bolts of the strength category 8.8 or 10.9 according to ISO 898-1:2009 are permissible for preloaded bolted connections in load carrying components of wind turbines”
“风力发电机中使用的普通螺栓连接应采用足够的预紧力进行安装。由于高强度钢材存在更高的应力腐蚀开裂风险,因此仅允许使用符合 ISO 898-1:2009 标准的 8.8 或 10.9 强度等级的螺栓用于风力发电机承载部件的预紧螺栓连接。”
Ref: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-09/DNVGL-ST-0361.pdf
参考: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-09/DNVGL-ST-0361.pdf

12.9 bolts are used in special cases, e.g. blade bearings. When working with 12.9 bolt is dialog with DNV-GL important.
12.9 螺栓在特殊情况下使用,例如刀片轴承。在使用 12.9 螺栓时,与 DNV-GL 的对话很重要。

3 Abbreviations and technical Terms
3 缩略语和技术术语

Abbreviation  缩写 Explanation  解释
D Diameter  直径
DFMEA / PFMEA Design / Process Failure Mode and Effect Analysis
设计/过程失效模式及影响分析
DIN Deutsches Institut für Normung (German Standards)
德国标准化学会 (German Standards)
DMS SAP Document Management System
SAP 文档管理系统
EN European Standards  欧洲标准
FEA Finite Element Analysis  有限元分析
HR High Resistance bolts  高强度螺栓
HV Hardness Vickers or Hochfeste Bolzen mit Vorspannung
维氏硬度或高强度预紧螺栓
ISO International Organization for Standardization
国际标准化组织
L Length  长度
None or N/A  无或不适用 None or N/A mean not preferred.
None 或 N/A 表示不优先考虑。
PS Process specification  过程规范
PWI Production work instruction
生产工作指令
R 0 , 2 R 0 , 2 R_(0,2)R_{0,2} Yield strength  屈服强度
Rz Ten-point mean roughness
十点均方粗糙度
SWI Service work instruction
服务工作指令
SIF Service Inspection Form  服务检查表
SKD Semi-Knocked-Down kit  半拆卸套件
TPS Technical Purchase Specification
技术采购规范
UNSPSC® United Nations Standard Products and Services Code®
联合国标准产品和服务代码®
VOA / VOC Volume of Activity / Volume of Control
活动体积 / 控制体积
Abbreviation Explanation D Diameter DFMEA / PFMEA Design / Process Failure Mode and Effect Analysis DIN Deutsches Institut für Normung (German Standards) DMS SAP Document Management System EN European Standards FEA Finite Element Analysis HR High Resistance bolts HV Hardness Vickers or Hochfeste Bolzen mit Vorspannung ISO International Organization for Standardization L Length None or N/A None or N/A mean not preferred. PS Process specification PWI Production work instruction R_(0,2) Yield strength Rz Ten-point mean roughness SWI Service work instruction SIF Service Inspection Form SKD Semi-Knocked-Down kit TPS Technical Purchase Specification UNSPSC® United Nations Standard Products and Services Code® VOA / VOC Volume of Activity / Volume of Control| Abbreviation | Explanation | | :--- | :--- | | D | Diameter | | DFMEA / PFMEA | Design / Process Failure Mode and Effect Analysis | | DIN | Deutsches Institut für Normung (German Standards) | | DMS | SAP Document Management System | | EN | European Standards | | FEA | Finite Element Analysis | | HR | High Resistance bolts | | HV | Hardness Vickers or Hochfeste Bolzen mit Vorspannung | | ISO | International Organization for Standardization | | L | Length | | None or N/A | None or N/A mean not preferred. | | PS | Process specification | | PWI | Production work instruction | | $R_{0,2}$ | Yield strength | | Rz | Ten-point mean roughness | | SWI | Service work instruction | | SIF | Service Inspection Form | | SKD | Semi-Knocked-Down kit | | TPS | Technical Purchase Specification | | UNSPSC® | United Nations Standard Products and Services Code® | | VOA / VOC | Volume of Activity / Volume of Control |
Table 3-1: Abbreviations
表 3-1:缩略语
Term  术语 Explanation  解释
FIZnLnc-720h Zinc flake coated acc. ISO 10683-720h corrosion resistance
锌片涂层符合 ISO 10683-720h 耐腐蚀性
tZn Hot dip galvanized, acc. ISO 10684
热浸镀锌,符合 ISO 10684
A2 and A4  A2 和 A4 Stainless fasteners normal don't have any surface treatment.
不锈钢紧固件通常没有任何表面处理。
C3, C4 or C5
C3、C4 或 C5
Corrosion category e.g. C3
腐蚀类别,例如 C3
M4 to M64  M4 到 M64 Metric bolt dimension from size M4 to size M64
从 M4 到 M64 的公制螺栓尺寸
S355 Steel with yield strength 355 N / mm 2 355 N / mm 2 355N//mm^(2)355 \mathrm{~N} / \mathrm{mm}^{2}
屈服强度为 355 N / mm 2 355 N / mm 2 355N//mm^(2)355 \mathrm{~N} / \mathrm{mm}^{2} 的钢
a D a D a_(D)\mathrm{a}_{\mathrm{D}} The tightening factor  紧固系数
Term Explanation FIZnLnc-720h Zinc flake coated acc. ISO 10683-720h corrosion resistance tZn Hot dip galvanized, acc. ISO 10684 A2 and A4 Stainless fasteners normal don't have any surface treatment. C3, C4 or C5 Corrosion category e.g. C3 M4 to M64 Metric bolt dimension from size M4 to size M64 S355 Steel with yield strength 355N//mm^(2) a_(D) The tightening factor| Term | Explanation | | :--- | :--- | | FIZnLnc-720h | Zinc flake coated acc. ISO 10683-720h corrosion resistance | | tZn | Hot dip galvanized, acc. ISO 10684 | | A2 and A4 | Stainless fasteners normal don't have any surface treatment. | | C3, C4 or C5 | Corrosion category e.g. C3 | | M4 to M64 | Metric bolt dimension from size M4 to size M64 | | S355 | Steel with yield strength $355 \mathrm{~N} / \mathrm{mm}^{2}$ | | $\mathrm{a}_{\mathrm{D}}$ | The tightening factor |
Table 3-2: Explanation of terms
表 3-2:术语解释

Figure 3-1 Nomenclature  图 3-1 命名法

4 4 4quad4 \quad Parts used for bolting
4 4 4quad4 \quad 用于螺栓连接的零件

This chapter describes bolts used at Vestas and what to be aware of.
本章描述了 Vestas 使用的螺栓及需要注意的事项。

Bolts are based on metric dimensions. Properties see TPS 900182 (TPS for ISO bolts and studs).
螺栓基于公制尺寸。属性见 TPS 900182(ISO 螺栓和螺柱的 TPS)。

4.1 What to be aware of?
4.1 需要注意什么?

Important points the designer must be aware of:
设计师必须注意的重要事项:
  • Clamping force  夹紧力
  • Friction  摩擦
  • Clamping length ratio L/D
    夹紧长度比 L/D
  • Settlement  结算
  • Tolerances  公差
  • Corrosion protection  防腐保护

4.1.1 Pros and cons of bolt connections
4.1.1 螺栓连接的优缺点

4.1.1.1 Pros  4.1.1.1 优点

  • Bolted connections have good fatigue properties
    螺栓连接具有良好的疲劳性能
  • Bolted designs can be transported in smaller pieces
    螺栓设计可以以较小的部件运输

4.1.1.2 Cons  4.1.1.2 缺点

  • Friction requirement  摩擦要求
  • Surfaces must match  表面必须匹配
  • Settlement over time due the deformation and surface treatment
    由于变形和表面处理而导致的随时间的沉降
  • Design freedom limited  设计自由受限
  • If flange gaps are not closed the are fatigue properties are bad
    如果法兰间隙未关闭,其疲劳性能较差
  • Corrosion protection  防腐保护

4.2 How determine the pretension of a bolt?
4.2 如何确定螺栓的预紧力?

Below are frequently used methods of applying bolt preload and the approximate accuracy listed.
以下是常用的施加螺栓预紧力的方法及其大致准确度。
Tool  工具 Accuracy  准确性 Tool  工具 Accuracy  准确性
Turn-of-nut  拧紧螺母 ± 25 % ± 25 % +-25%\pm 25 \% Computer-controlled wrench
计算机控制扳手
Treload indicating washer
Treload 指示垫圈
± 10 % ± 10 % +-10%\pm 10 \%

下屈服(螺母转动)屈服点传感
below yield (turn-of-nut)
yield-point sensing
below yield (turn-of-nut) yield-point sensing| below yield (turn-of-nut) | | :--- | | yield-point sensing |
± 15 % ± 15 % +-15%\pm 15 \%
Strain gages  应变计 ± 1 % ± 1 % +-1%\pm 1 \% Bolt elongation  螺栓伸长 ± 8 % ± 8 % +-8%\pm 8 \%
Ultrasonic sensing  超声波传感 ± 5 % ± 5 % +-5%\pm 5 \%
Tool Accuracy Tool Accuracy Turn-of-nut +-25% Computer-controlled wrench Treload indicating washer +-10% "below yield (turn-of-nut) yield-point sensing" +-15% Strain gages +-1% Bolt elongation +-8% Ultrasonic sensing +-5%| Tool | Accuracy | Tool | Accuracy | | :--- | :--- | :--- | :--- | | Turn-of-nut | $\pm 25 \%$ | Computer-controlled wrench | | | Treload indicating washer | $\pm 10 \%$ | below yield (turn-of-nut) <br> yield-point sensing | $\pm 15 \%$ | | Strain gages | $\pm 1 \%$ | Bolt elongation | $\pm 8 \%$ | | | | Ultrasonic sensing | $\pm 5 \%$ |
Table 4-1: Ref Machinery’s Handbook 27th Edition
表 4-1:参考机械工程手册第 27 版

4.2.1 Tools  4.2.1 工具

Guide values of the tightening factor α A α A alpha_(A)\alpha_{A} are described in VDI 2230:2015 table A8.
紧固系数 α A α A alpha_(A)\alpha_{A} 的指导值在 VDI 2230:2015 的表 A8 中描述。

Tightening factors α D α D alphaD\alpha \mathrm{D} used at Vestas are described in 0075-1340 Bolt Analysis Guideline
Vestas 使用的紧固因素 α D α D alphaD\alpha \mathrm{D} 在 0075-1340 螺栓分析指南中进行了描述
Tightening method  紧固方法 Class   σ M , N o m σ M , N o m sigma_(M,Nom)\boldsymbol{\sigma}_{\boldsymbol{M}, \boldsymbol{N o m}} α D α D alpha_(D)\boldsymbol{\alpha}_{\boldsymbol{D}} α D , p a r t , m a x α D , p a r t , m a x alpha_(D,part,max)\boldsymbol{\alpha}_{\boldsymbol{D}, \boldsymbol{p a r t}, \boldsymbol{m a x}} α D , p a r t , m i n α D , p a r t , m i n alpha_(D,part,min)\boldsymbol{\alpha}_{\boldsymbol{D}, \boldsymbol{\operatorname { p a r t } , \boldsymbol { \operatorname { m i n } }}}
Tension tightening  拉紧拧紧 A 90 % 95 % R p , 0 , 2 90 % 95 % R p , 0 , 2 90%-95%*R_(p,0,2)90 \%-95 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2} 1,20 0,913 1,095
Torque and angular tightening
扭矩和角度紧固
B 90 % R p , 0 , 2 90 % R p , 0 , 2 90%*R_(p,0,2)90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2} 1 , 59 / 1 , 14 1 , 59 / 1 , 14 1,59//1,141,59 / 1,14 0 , 97 / 0 , 95 0 , 97 / 0 , 95 0,97//0,950,97 / 0,95 1 , 55 / 1 , 08 1 , 55 / 1 , 08 1,55//1,081,55 / 1,08
Torque tightening with automatic tool
使用自动工具进行扭矩紧固
C 90 % R p , 0 , 2 90 % R p , 0 , 2 90%*R_(p,0,2)90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2} 1,59 0,97 1,55
Torque tightening with manual tool
手动工具扭矩紧固
D 90 % R p , 0 , 2 90 % R p , 0 , 2 90%*R_(p,0,2)90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2} 2,13 0,86 1,83
Impact wrenches  冲击扳手 E 25 90 % R p , 0 , 2 25 90 % R p , 0 , 2 25-90%*R_(p,0,2)25-90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2} 4 N / A N / A N//A\mathrm{~N} / \mathrm{A} N / A N / A N//A\mathrm{N} / \mathrm{A}
Tightening method Class sigma_(M,Nom) alpha_(D) alpha_(D,part,max) alpha_(D,part,min) Tension tightening A 90%-95%*R_(p,0,2) 1,20 0,913 1,095 Torque and angular tightening B 90%*R_(p,0,2) 1,59//1,14 0,97//0,95 1,55//1,08 Torque tightening with automatic tool C 90%*R_(p,0,2) 1,59 0,97 1,55 Torque tightening with manual tool D 90%*R_(p,0,2) 2,13 0,86 1,83 Impact wrenches E 25-90%*R_(p,0,2) 4 N//A N//A| Tightening method | Class | $\boldsymbol{\sigma}_{\boldsymbol{M}, \boldsymbol{N o m}}$ | $\boldsymbol{\alpha}_{\boldsymbol{D}}$ | $\boldsymbol{\alpha}_{\boldsymbol{D}, \boldsymbol{p a r t}, \boldsymbol{m a x}}$ | $\boldsymbol{\alpha}_{\boldsymbol{D}, \boldsymbol{\operatorname { p a r t } , \boldsymbol { \operatorname { m i n } }}}$ | | :--- | :---: | :---: | :---: | :---: | :---: | | Tension tightening | A | $90 \%-95 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2}$ | 1,20 | 0,913 | 1,095 | | Torque and angular tightening | B | $90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2}$ | $1,59 / 1,14$ | $0,97 / 0,95$ | $1,55 / 1,08$ | | Torque tightening with automatic tool | C | $90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2}$ | 1,59 | 0,97 | 1,55 | | Torque tightening with manual tool | D | $90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2}$ | 2,13 | 0,86 | 1,83 | | Impact wrenches | E | $25-90 \% \cdot \mathrm{R}_{\mathrm{p}, 0,2}$ | 4 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
Table 4-2: Modified and simplified table from 0075-1340. For more information see 0075-1340
表 4-2:来自 0075-1340 的修改和简化表格。有关更多信息,请参见 0075-1340。

Figure 4-1 Typical torque tool used at Vestas assembly factory: Electric torque tool from Atlas Copco. http://www.atlascopco.com.br/content/dam/atlas-copco/industrial-technique/products/electric-assembly-tools-and-systems/electric-assembly-tools/documents/W_ElectricNutrunners.pdf
图 4-1 Vestas 组装工厂使用的典型扭矩工具:来自 Atlas Copco 的电动扭矩工具。 http://www.atlascopco.com.br/content/dam/atlas-copco/industrial-technique/products/electric-assembly-tools-and-systems/electric-assembly-tools/documents/W_ElectricNutrunners.pdf

4.2.2 Lubrication  4.2.2 润滑

Beside the tool accuracy is surface lubrication important for clamping force. The clamping force when using a bolt with zinc flake (fIZnLnc) is bigger than a galvanized (tZn) by same torque! Beside is the below figure is showing the impact of lubrication type, e.g. Never Seez RG compared White Oil. White oil allowed at Vestas.
除了工具精度,表面润滑对夹紧力也很重要。使用锌片螺栓(fIZnLnc)时的夹紧力比同样扭矩下的镀锌螺栓(tZn)要大!下面的图显示了润滑类型的影响,例如 Never Seez RG 与白油的比较。白油在 Vestas 是允许使用的。

Figure 4-2 Clamping load test. 45 bolts are torqued, and clamping force measured. 1986Nm for Never Seez RG and 2280Nm for White Oil. Reference “M33_Anti_corrosion_Friction_test_all_results”
图 4-2 夹紧载荷测试。45 个螺栓被扭紧,并测量夹紧力。Never Seez RG 为 1986Nm,White Oil 为 2280Nm。参考“M33_Anti_corrosion_Friction_test_all_results”

90 % 90 % 90%90 \% of yield for M33 = 562 kN = 562 kN =562kN=562 \mathrm{kN}
M33 的屈服强度 = 562 kN = 562 kN =562kN=562 \mathrm{kN}

Blue: t Z n t Z n tZn\mathbf{t Z n} and Never Seez RG going from 340 kN to 410 kN = 410 kN = 410kN=410 \mathrm{kN}=
蓝色: t Z n t Z n tZn\mathbf{t Z n} 和 Never Seez RG 从 340 kN 变为 410 kN = 410 kN = 410kN=410 \mathrm{kN}=

60 % 60 % 60%60 \% to 73 % 73 % 73%73 \% of 562 kN
60 % 60 % 60%60 \% 73 % 73 % 73%73 \% 的 562 kN

Yellow: Zinc flake and Never Seez RG going from 410 kN to 500 kN = 73 % 500 kN = 73 % 500kN=quad73%500 \mathrm{kN}=\quad 73 \% to 89 % 89 % 89%89 \% of 562 kN
黄色:锌片和 Never Seez RG 从 410 kN 变为 500 kN = 73 % 500 kN = 73 % 500kN=quad73%500 \mathrm{kN}=\quad 73 \% 89 % 89 % 89%89 \% 的 562 kN

Red: Zinc flake and White Oil going from 460 kN to 630 kN = 630 kN = 630kN=630 \mathrm{kN}=
红色:锌片和白油从 460 kN 降至 630 kN = 630 kN = 630kN=630 \mathrm{kN}=

73 % 73 % 73%73 \% to 112 % 112 % 112%112 \% of 562 kN
73 % 73 % 73%73 \% 112 % 112 % 112%112 \% 的 562 kN

White oil allowed at Vestas.
Vestas 允许使用白油。

A designer can’t just replace a zinc flake bolt with a tZn bolt. The reduced clamping force must be evaluated before this change.
设计师不能仅仅用 tZn 螺栓替换锌片螺栓。在进行此更改之前,必须评估减小的夹紧力。

4.3 Standard torque and coatings
4.3 标准扭矩和涂层

Vestas mainly use hot dip galvanized ( tZn ) and zinc flake (flZnLnc) as coatings.
Vestas 主要使用热浸镀锌(tZn)和锌片(flZnLnc)作为涂层。

From Oct 2006, Anti-Seize has been used in the assembly of all bolts, but with following exceptions:
从 2006 年 10 月起,所有螺栓的组装中都使用了防咬合剂,但有以下例外:
  • Do not lubricate HV bolts and bolts with locking agent.
    请勿给 HV 螺栓和带锁定剂的螺栓润滑。
  • Leave bolts with Prevailing torque lock nut (lubricate them with thin mineral oil).
    使用具有预紧扭矩锁紧螺母的螺栓(用薄矿物油润滑它们)。

4.4 Standard bolt and nuts
4.4 标准螺栓和螺母

Preferred sizes are:  首选尺寸为:
M4, M5, M6, M8, M10, M12, M16, M20, M24, M30, M36, M42, M48, M56, M64, (M72 stud).
M4, M5, M6, M8, M10, M12, M16, M20, M24, M30, M36, M42, M48, M56, M64, (M72 stud)。

To find the preferred bolt length use the program Standard Design Catalogue:
要找到首选的螺栓长度,请使用程序标准设计目录:

http://plm-pm.vestas.net/StandardDesignCatalogue/
UNSPSC Classification fasteners, clamps etc. is 3116XX.
UNSPSC 分类紧固件、夹具等为 3116XX。

For more information see standard parts governance 0106-0751
有关更多信息,请参见标准零件管理 0106-0751

Threads tolerances are following ISO 965-1unless otherwise mentioned:
螺纹公差遵循 ISO 965-1,除非另有说明:
  • 6 H for internal threads (Nut)
    6 H 用于内螺纹(螺母)
  • 6 g for external threads (Bolt)
    外螺纹(螺栓)6 g

4.4.1 Undersize "U"  4.4.1 缺少尺寸 "U"

Undersize " U U UU " threading of external threads is required before hot dip galvanizing. Bolt thread must in this case follow tolerance class 6az.
在热浸镀锌之前,外螺纹的“ U U UU ”尺寸必须小于标准。此情况下,螺栓螺纹必须遵循公差等级 6az。
A hexagon head bolt in accordance with ISO 4014, size M12 x 80, property class 8.8 , thread tolerance class 6 a z 6 a z 6az6 a z and hot dip galvanized is designated as follows:
根据 ISO 4014 标准,尺寸为 M12 x 80,性能等级为 8.8,螺纹公差等级为 6 a z 6 a z 6az6 a z ,热浸镀锌的六角头螺栓指定如下:
Hexagon head bolt ISO 4014 4014 4014-4014- M12 x 80 8.8 U 80 8.8 U 80-8.8 U-80-8.8 U- tZn
六角头螺栓 ISO 4014 4014 4014-4014- M12 x 80 8.8 U 80 8.8 U 80-8.8 U-80-8.8 U- tZn
The mating hexagon nut in accordance with ISO 4032, size M12, property class 8, hot dip galvanized and tapped to thread tolerance class 6 H is designated as follows:
根据 ISO 4032 标准,尺寸为 M12,性能等级为 8,热浸镀锌并加工至螺纹公差等级 6 H 的配合六角螺母指定如下:
Hexagon nut ISO 4032-M12-8 - tZn
六角螺母 ISO 4032-M12-8 - tZn

4.5 Standardization overview
4.5 标准化概述

Typical areas  典型区域 Tower   Nacelle and hub  机舱和轮毂 Nacelle, hub and blade
机舱、轮毂和叶片
Special cases  特殊情况
Bolt type  螺栓类型 Stud bolt  螺栓 HR-Bolt Stud or rod  螺柱或杆
  六角形 D
Hexagon
D
Hexagon D| Hexagon | | :--- | | D |
Bolt standard  螺栓标准 TPS 0081 3753  TPS  0081 3753 [" TPS "],[0081-3753]\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}

ISO4014(可选 ISO4017)
ISO4014
(Optional ISO4017)
ISO4014 (Optional ISO4017)| ISO4014 | | :--- | | (Optional ISO4017) |
Acc. to drawing or DIN 976-1-B
根据图纸或 DIN 976-1-B
ISO 4762
Bolt quality  螺栓质量 TPS 0081 3753  TPS  0081 3753 {:[" TPS "],[0081-3753]:}\begin{aligned} & \text { TPS } \\ & 0081-3753 \end{aligned} A4-70: M8 8.8 or 10.9 : M10 and M16 10.9 : M20 and M64  A4-70:   M8  8.8  or  10.9 :  M10 and   M16  10.9 :  M20 and   M64  {:[" A4-70: " <= " M8 "],[8.8" or "10.9:],[ >= " M10 and " <= " M16 "],[10.9:],[ >= " M20 and " <= " M64 "]:}\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & 8.8 \text { or } 10.9: \\ & \geq \text { M10 and } \leq \text { M16 } \\ & 10.9: \\ & \geq \text { M20 and } \leq \text { M64 } \end{aligned} A4-70: M8 10.9: M24 and M72  A4-70:   M8   10.9:   M24 and   M72  {:[" A4-70: " <= " M8 "],[" 10.9: "],[ >= " M24 and " <= " M72 "]:}\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & \text { 10.9: } \\ & \geq \text { M24 and } \leq \text { M72 } \end{aligned} A4-70: M8 10.9: M10  A4-70:   M8   10.9:   M10  {:[" A4-70: " <= " M8 "],[" 10.9: "],[ >= " M10 "]:}\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & \text { 10.9: } \\ & \geq \text { M10 } \end{aligned}
Bolt surface treatment  螺栓表面处理 TPS 0081 3753  TPS  0081 3753 [" TPS "],[0081-3753]\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}

A4-70 <=\leq M8tZn 用于 8.8 和 10.9 M 20 10.9 M 20 10.9 <= M 2010.9 \leq M 20 flZnLnc-720h 用于 10.9 10.9 10.9 >=10.9 \geq M24 避免冷焊 / 烧焊:fIZnLnc 螺母与 A4-70 一起使用。见 TPS 0079-4264。Foodlube ® ® ^(®){ }^{\circledR} Multi-Lube
A4-70 <=\leq M8
tZn for 8.8 and 10.9 M 20 10.9 M 20 10.9 <= M 2010.9 \leq M 20
flZnLnc-720h for 10.9 10.9 10.9 >=10.9 \geq M24
Avoiding cold-welding / Burning:
fIZnLnc nut to be used with A4-70. See TPS 0079-4264.
Foodlube ® ® ^(®){ }^{\circledR} Multi-Lube
A4-70 <= M8 tZn for 8.8 and 10.9 <= M 20 flZnLnc-720h for 10.9 >= M24 Avoiding cold-welding / Burning: fIZnLnc nut to be used with A4-70. See TPS 0079-4264. Foodlube ^(®) Multi-Lube| A4-70 $\leq$ M8 | | :--- | | tZn for 8.8 and $10.9 \leq M 20$ | | flZnLnc-720h for $10.9 \geq$ M24 | | Avoiding cold-welding / Burning: | | fIZnLnc nut to be used with A4-70. See TPS 0079-4264. | | Foodlube ${ }^{\circledR}$ Multi-Lube |
Washer for round holes
圆孔用垫圈
TPS 0081 3753  TPS  0081 3753 [" TPS "],[0081-3753]\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}

默认:A4 <=\leq M8:ISO7089 A4 不锈钢 M10 58.8 58.8 58.8 <=58.8 \leq M16:ISO7089 tZn HV300 M10 10.9 10.9 <= 10.9 <=\leq 10.9 \leq M64:TPS 900194(EN14399)特殊垫圈(非 ISO7089 或 TPS900194):对于 8.8 级螺栓,最小硬度 HV200 的垫圈是可接受的。对于 10.9 级螺栓,硬度必须为 HV300。
Default:
A4 <=\leq M8: ISO7089 A4 Stainless
M10 58.8 58.8 58.8 <=58.8 \leq M16: ISO7089 tZn HV300
M10 10.9 10.9 <= 10.9 <=\leq 10.9 \leq M64: TPS 900194 (EN14399)
Special washers (Not ISO7089 or TPS900194):
For 8.8 bolt quality are washers with min. hardness HV200 acceptable. For 10.9 bolts must hardness be HV300.
Default: A4 <= M8: ISO7089 A4 Stainless M10 58.8 <= M16: ISO7089 tZn HV300 M10 <= 10.9 <= M64: TPS 900194 (EN14399) Special washers (Not ISO7089 or TPS900194): For 8.8 bolt quality are washers with min. hardness HV200 acceptable. For 10.9 bolts must hardness be HV300.| Default: | | :--- | | A4 $\leq$ M8: ISO7089 A4 Stainless | | M10 $58.8 \leq$ M16: ISO7089 tZn HV300 | | M10 $\leq 10.9 \leq$ M64: TPS 900194 (EN14399) | | Special washers (Not ISO7089 or TPS900194): | | For 8.8 bolt quality are washers with min. hardness HV200 acceptable. For 10.9 bolts must hardness be HV300. |
Washer for long slotted holes.
长槽孔用垫圈。
N/A  不适用 See chapter for long slotted holes for more information.
有关长槽孔的更多信息,请参见章节。
Nuts  螺母 TPS 0081 3753  TPS  0081 3753 [[" TPS "],[0081-3753]]\begin{array}{|l|} \hline \text { TPS } \\ 0081-3753 \end{array}

ISO7040 A4-70: <=\leq M8:ISO4032 质量 8 或 10 :≥ 10 :≥ 10:≥10: \geq M10 质量和表面处理必须等于螺栓质量。对于抗扭锁紧螺母仅使用 A4 此要求是为了避免在紧固过程中出现错误。ISO4032 = 标准 ISO7040 = 抗扭锁紧螺母
ISO7040 A4-70: <=\leq M8:
ISO4032 Quality 8 or 10 :≥ 10 :≥ 10:≥10: \geq M10
Quality and surface treatment must be equal to bolt quality.
For prevailing torque lock nut only use A4
This requirement is made to avoid mistakes during tighten.
ISO4032 = Standard
ISO7040 = Prevailing torque lock nut
ISO7040 A4-70: <= M8: ISO4032 Quality 8 or 10:≥ M10 Quality and surface treatment must be equal to bolt quality. For prevailing torque lock nut only use A4 This requirement is made to avoid mistakes during tighten. ISO4032 = Standard ISO7040 = Prevailing torque lock nut| ISO7040 A4-70: $\leq$ M8: | | :--- | | ISO4032 Quality 8 or $10: \geq$ M10 | | Quality and surface treatment must be equal to bolt quality. | | For prevailing torque lock nut only use A4 | | This requirement is made to avoid mistakes during tighten. | | ISO4032 = Standard | | ISO7040 = Prevailing torque lock nut |
Typical areas Tower Nacelle and hub Nacelle, hub and blade Special cases Bolt type Stud bolt HR-Bolt Stud or rod "Hexagon D" Bolt standard " TPS 0081-3753" "ISO4014 (Optional ISO4017)" Acc. to drawing or DIN 976-1-B ISO 4762 Bolt quality " TPS 0081-3753" " A4-70: <= M8 8.8 or 10.9: >= M10 and <= M16 10.9: >= M20 and <= M64 " " A4-70: <= M8 10.9: >= M24 and <= M72 " " A4-70: <= M8 10.9: >= M10 " Bolt surface treatment " TPS 0081-3753" "A4-70 <= M8 tZn for 8.8 and 10.9 <= M 20 flZnLnc-720h for 10.9 >= M24 Avoiding cold-welding / Burning: fIZnLnc nut to be used with A4-70. See TPS 0079-4264. Foodlube ^(®) Multi-Lube" Washer for round holes " TPS 0081-3753" "Default: A4 <= M8: ISO7089 A4 Stainless M10 58.8 <= M16: ISO7089 tZn HV300 M10 <= 10.9 <= M64: TPS 900194 (EN14399) Special washers (Not ISO7089 or TPS900194): For 8.8 bolt quality are washers with min. hardness HV200 acceptable. For 10.9 bolts must hardness be HV300." Washer for long slotted holes. N/A See chapter for long slotted holes for more information. Nuts [" TPS 0081-3753"] "ISO7040 A4-70: <= M8: ISO4032 Quality 8 or 10:≥ M10 Quality and surface treatment must be equal to bolt quality. For prevailing torque lock nut only use A4 This requirement is made to avoid mistakes during tighten. ISO4032 = Standard ISO7040 = Prevailing torque lock nut" | Typical areas | Tower | Nacelle and hub | Nacelle, hub and blade | Special cases | | :---: | :---: | :---: | :---: | :---: | | Bolt type | Stud bolt | HR-Bolt | Stud or rod | Hexagon <br> D | | Bolt standard | $\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}$ | ISO4014 <br> (Optional ISO4017) | Acc. to drawing or DIN 976-1-B | ISO 4762 | | Bolt quality | $\begin{aligned} & \text { TPS } \\ & 0081-3753 \end{aligned}$ | $\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & 8.8 \text { or } 10.9: \\ & \geq \text { M10 and } \leq \text { M16 } \\ & 10.9: \\ & \geq \text { M20 and } \leq \text { M64 } \end{aligned}$ | $\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & \text { 10.9: } \\ & \geq \text { M24 and } \leq \text { M72 } \end{aligned}$ | $\begin{aligned} & \text { A4-70: } \leq \text { M8 } \\ & \text { 10.9: } \\ & \geq \text { M10 } \end{aligned}$ | | Bolt surface treatment | $\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}$ | A4-70 $\leq$ M8 <br> tZn for 8.8 and $10.9 \leq M 20$ <br> flZnLnc-720h for $10.9 \geq$ M24 <br> Avoiding cold-welding / Burning: <br> fIZnLnc nut to be used with A4-70. See TPS 0079-4264. <br> Foodlube ${ }^{\circledR}$ Multi-Lube | | | | Washer for round holes | $\begin{aligned} & \hline \text { TPS } \\ & 0081-3753 \end{aligned}$ | Default: <br> A4 $\leq$ M8: ISO7089 A4 Stainless <br> M10 $58.8 \leq$ M16: ISO7089 tZn HV300 <br> M10 $\leq 10.9 \leq$ M64: TPS 900194 (EN14399) <br> Special washers (Not ISO7089 or TPS900194): <br> For 8.8 bolt quality are washers with min. hardness HV200 acceptable. For 10.9 bolts must hardness be HV300. | | | | Washer for long slotted holes. | N/A | See chapter for long slotted holes for more information. | | | | Nuts | $\begin{array}{\|l\|} \hline \text { TPS } \\ 0081-3753 \end{array}$ | ISO7040 A4-70: $\leq$ M8: <br> ISO4032 Quality 8 or $10: \geq$ M10 <br> Quality and surface treatment must be equal to bolt quality. <br> For prevailing torque lock nut only use A4 <br> This requirement is made to avoid mistakes during tighten. <br> ISO4032 = Standard <br> ISO7040 = Prevailing torque lock nut | | |
Table 4-3 Bolts for structural steel design. Overview of preferred bolts.
表 4-3 结构钢设计用螺栓。首选螺栓概述。

4.6 Special Nuts  4.6 特殊螺母

This chapter describes some special nut solutions.
本章描述了一些特殊的螺母解决方案。

For M12 and M16 spot weld or 4 x 4 x 4x4 x a3 welds
对于 M12 和 M16 点焊或 4 x 4 x 4x4 x a3 焊接

Preferred weld nut:  优选焊接螺母:

The standard weld nut is DIN 929 M4 - M16.
标准焊接螺母为 DIN 929 M4 - M16。

Use maximum 8.8 bolt because strength reduced due to welding.
使用最大 8.8 级螺栓,因为焊接会降低强度。

For hot dip galvanizing after welding are following nuts recommended: 29020014 M6 & 29021656 M10 - Both weld nuts with no thread + Add cut thread note on the drawing
对于焊接后的热浸镀锌,推荐使用以下螺母:29020014 M6 和 29021656 M10 - 两种焊接螺母均无螺纹 + 在图纸上添加切割螺纹的说明
Weld nuts with thread must be re-cut after hot dip galvanizing.
热浸镀锌后,带螺纹的焊接螺母必须重新切割。

Not use weld nuts above M16.
不使用 M16 以上的焊接螺母。

Add note on drawing:
在图纸上添加注释:

“Optional if weld nut is spot or fillet welded.”
“如果焊接螺母是点焊或角焊,则为可选。”

Do not weld stainless steel nut on mild steel plate.
请勿在碳钢板上焊接不锈钢螺母。
Table 4-4 Steel weld nut
表 4-4 钢焊接螺母

可选铝焊接螺母:用于铝部件的特殊焊接螺母。螺母为 290833086 M8 和 75943492 M10。焊接在 3 x 3 x 3x3 x 周围,长度为 10mm。
Optional aluminum weld nut:
For aluminum parts are special weld nuts used. The nuts are 290833086 M8
and 75943492 M10. Welded around 3 x 3 x 3x3 x a3 length 10mm.
Optional aluminum weld nut: For aluminum parts are special weld nuts used. The nuts are 290833086 M8 and 75943492 M10. Welded around 3x a3 length 10mm.| Optional aluminum weld nut: | | :--- | | For aluminum parts are special weld nuts used. The nuts are 290833086 M8 | | and 75943492 M10. Welded around $3 x$ a3 length 10mm. |
"Optional aluminum weld nut: For aluminum parts are special weld nuts used. The nuts are 290833086 M8 and 75943492 M10. Welded around 3x a3 length 10mm."| | Optional aluminum weld nut: <br> For aluminum parts are special weld nuts used. The nuts are 290833086 M8 <br> and 75943492 M10. Welded around $3 x$ a3 length 10mm. | | :--- | :--- |
Table 4-5 Aluminium weld nut
表 4-5 铝焊接螺母
Optional press nut:  可选压紧螺母:
To be used for thin plate like DC51 and DX51 where weld nuts can't be used.
用于像 DC51 和 DX51 这样的薄板,无法使用焊接螺母。
Thread size M3 - M12. Can be used in corrosion class C3 environment or less.
螺纹尺寸 M3 - M12。可用于腐蚀等级 C3 环境或更低。
Check if plate thickness and diameter fits to nut.
检查板厚和直径是否适合螺母。
The nuts are described in TPS 0034-9502
螺母在 TPS 0034-9502 中描述
Optional press nut: To be used for thin plate like DC51 and DX51 where weld nuts can't be used. Thread size M3 - M12. Can be used in corrosion class C3 environment or less. Check if plate thickness and diameter fits to nut. The nuts are described in TPS 0034-9502 | | Optional press nut: | | :--- | :--- | | To be used for thin plate like DC51 and DX51 where weld nuts can't be used. | | | Thread size M3 - M12. Can be used in corrosion class C3 environment or less. | | | Check if plate thickness and diameter fits to nut. | | | The nuts are described in TPS 0034-9502 | |
Table 4-6 Press nut
表 4-6 压母
Optional rivet nut:  可选铆钉螺母:
May not be used in structural or dynamic loaded joints. The fatigue sensitivity
不得用于结构或动态加载接头。疲劳敏感性
is higher than standard nuts. Be aware of plate thickness and hole tolerance
高于标准螺母。注意板材厚度和孔公差。
For corrosion class C4 or higher, be aware that galvanic corrosion.
对于腐蚀等级 C4 或更高,请注意电偶腐蚀。
Rivet nut is described in TPS 0007-8734.
铆钉螺母在 TPS 0007-8734 中描述。
Example of use: 29098778 or 29099860
使用示例:29098778 或 29099860
Optional rivet nut: May not be used in structural or dynamic loaded joints. The fatigue sensitivity is higher than standard nuts. Be aware of plate thickness and hole tolerance For corrosion class C4 or higher, be aware that galvanic corrosion. Rivet nut is described in TPS 0007-8734. Example of use: 29098778 or 29099860| Optional rivet nut: | | :--- | :--- | | May not be used in structural or dynamic loaded joints. The fatigue sensitivity | | is higher than standard nuts. Be aware of plate thickness and hole tolerance | | For corrosion class C4 or higher, be aware that galvanic corrosion. | | Rivet nut is described in TPS 0007-8734. | | Example of use: 29098778 or 29099860 |
Table 4-7 Rivet nut
表 4-7 铆钉螺母

4.7 Special Washers  4.7 特殊垫圈

4.7.1 Wedge Lock Washer
4.7.1 楔形锁垫圈

Lock washers are used to avoid bolt loosening when having a bolt connection which is exposed to vibration. Alternative to lock washer is higher L/D ratio or Locking agent ® ® ^(®){ }^{\circledR}
锁紧垫圈用于避免在暴露于振动的螺栓连接中螺栓松动。锁紧垫圈的替代方案是更高的 L/D 比或锁紧剂 ® ® ^(®){ }^{\circledR}
May not be used on soft items with big embedding - e.g. fiberglass.
可能不适用于具有大嵌入的软物品 - 例如玻璃纤维。

Washer made of stainless steel 1.4547 for corrosion class C5.
用于腐蚀等级 C5 的不锈钢 1.4547 垫圈。

For corrosion class C4 is 1.4404 acceptable.
对于腐蚀等级 C4,1.4404 是可接受的。

For corrosion class C3 and below is zinc flake acceptable.
对于腐蚀等级 C3 及以下,锌片是可接受的。

Figure 4-3 All rotation parts in an assembly shall have a lock washers. Not to use on washer. For large / slotted holes or with soft underlying surface use a big plate with more holes so the plate can’t rotate.
图 4-3 组装中的所有旋转部件应配有锁紧垫圈。不要在垫圈上使用。对于大孔/开槽孔或软底面,使用带有更多孔的大垫片,以防止垫片旋转。
Wedge Lock washers can normally be re-used. As with all fasteners, they should be inspected for wear before reassembly.
楔形锁紧垫圈通常可以重复使用。与所有紧固件一样,在重新组装之前应检查其磨损情况。

4.7.2 Spring Washer  4.7.2 弹簧垫圈

Conical spring washer are to be used for electrical applications, see DMS 0033-3263 Electrical power connections guideline. If bolt loosening an issue, then must wedge lock washer be used.
锥形弹簧垫圈用于电气应用,请参见 DMS 0033-3263 电力连接指南。如果螺栓松动是一个问题,则必须使用楔形锁紧垫圈。

Preferred  首选
Conical spring washer.  锥形弹簧垫圈。
Used in electrical applications to ensure
用于电气应用以确保

contact during thermal loads.
在热负荷下的接触。

TPS for spring washers: 0028-3122 6796
弹簧垫圈的 TPS:0028-3122 6796
Figure 4-4 Conical spring washer describe in bolt guideline 0002-3433
图 4-4 锥形弹簧垫圈在螺栓指南 0002-3433 中的描述

If the disc spring has no signs of damage and the overall height is still within tolerance, then the disc spring can be reused.
如果碟形弹簧没有损坏迹象,并且整体高度仍在公差范围内,则可以重复使用该碟形弹簧。
For tolerances see TPS 0028-3122_V00 - Conical Spring Washers.
有关公差,请参见 TPS 0028-3122_V00 - 锥形弹簧垫圈。

4.8 Special Bolting  4.8 特殊螺栓

4.8.1 HUCK Bob Tail

HUCK BobTail® is a bolting assembly method which can’t be disassembled without cutting up the collar.
HUCK BobTail® 是一种无法在不切割颈圈的情况下拆卸的螺栓装配方法。

Bobtails can’t be retightened, and clamping force can’t be checked after mounting.
鲍比尾不能重新紧固,安装后无法检查夹紧力。

Beware of selecting the HUCK BobTail® with the length fitting the grip range - see TSS 0005-7135 TSS-bobtail.
注意选择适合握持范围的 HUCK BobTail® 长度 - 请参见 TSS 0005-7135 TSS-bobtail。

Figure 4-5 The BobTail® System delivers a quick installation cycle time - as fast as 2-3 seconds. By removal of the Bobtail the collar must be cut up by special tool .
图 4-5 BobTail®系统提供快速的安装周期时间 - 快至 2-3 秒。通过拆除 Bobtail,领圈必须使用特殊工具切割。
Clamping forces, clamping lengths, hole diameters and tolerances are described in TSS 0005-7135.
夹紧力、夹紧长度、孔径和公差在 TSS 0005-7135 中进行了描述。

May not be used with slotted holes without a stiff washer or plate.
不得与带槽孔一起使用,除非使用刚性垫圈或板。

4.8.2 Studs and threaded rods
4.8.2 螺柱和螺纹杆

Preferred when high structure load capacity is needed. Example: Blade bearings to hub, blade bearing to blade, main bearing housing to machine frame, towers etc.
在需要高结构负载能力时首选。示例:叶片轴承到轮毂,叶片轴承到叶片,主轴承壳体到机器框架,塔等。
  • A stud >=\geq M24 is ALWAYS acc. to drawing or TPS. See 0002-3433 how to document.
    一个螺柱 >=\geq M24 始终按照图纸或 TPS。请参见 0002-3433 如何记录。
  • Available dimension see DMS 0035-6117
    可用尺寸见 DMS 0035-6117
  • Used when a long bolt connection is needed and the standard bolt length is not sufficient.
    用于需要长螺栓连接且标准螺栓长度不足时。
  • Be aware of the stud can rotate when mounting the direct tension tool. The stud must therefore be fixed during mounting of direct tension tool
    请注意,在安装直接拉紧工具时,螺柱可能会旋转。因此,在安装直接拉紧工具时,螺柱必须固定。

Figure 4-6 Stud bolt
图 4-6 螺柱螺栓
Checklist for creating drawing can be found in appendix. List of available dimensions see Standard Design Catalogue (Ref: Chapter 4.4)
创建图纸的检查清单可以在附录中找到。可用尺寸的列表见标准设计目录(参考:第 4.4 章)
For sizes M20 and down is standard threaded rods normally used e.g. for supporting the nacelle bottom.
对于 M20 及以下的尺寸,通常使用标准螺纹杆,例如用于支撑机舱底部。

A stud assembly used for towers is described in TPS 0081-3753 - Stud bolt assembly. Can be used for other items than tower.
用于塔的螺柱组件在 TPS 0081-3753 - Stud bolt assembly 中进行了描述。可用于除塔以外的其他项目。

4.8.3 Dowel pins  4.8.3 定位销

A dowel pin can take shear load. Often a cheap solution where shear loads are big. Be aware of tolerances when using dowel pins.
销钉可以承受剪切载荷。通常是一个便宜的解决方案,适用于剪切载荷较大的情况。使用销钉时要注意公差。
  • ISO 8734 A and size Ø16 and Ø20 preferred
    ISO 8734 A 和尺寸 Ø16 和 Ø20 优先
  • Holes for pins acc. to EN1090-2
    根据 EN1090-2 的销孔
  • Pins calculated acc. to EN 1993-1-8
    根据 EN 1993-1-8 计算的销钉
  • Often used pin material: EN 10083-3-34CrNiMo6 +QT or EN 10277-5 34CrNiM06+QT
    常用销材料:EN 10083-3-34CrNiMo6 +QT 或 EN 10277-5 34CrNiM06+QT

Figure 4-7: Pin  图 4-7:销
Example where pins are use are on 2MW yaw beams 29095702.
示例中使用销钉的地方是在 2MW 偏航梁 29095702 上。

Example of big pin 762034 is assembly 760201 with 760167 (nacelle_2mw_mk5.asm)
大销 762034 的示例是与 760167(nacelle_2mw_mk5.asm)组装的 760201。

Example of lifting hook pin 29000179
提升钩销 29000179 的示例

Example of lock pin 76282301
锁销 76282301 的示例

4.8.4 HV bolts  4.8.4 HV 螺栓

HV bolts are out of scope of this document.
HV 螺栓不在本文件的范围内。
Are typically used for tower assembly.
通常用于塔的组装。
HV Garniture bolt sets (Bolt, nut & washer).
HV Garniture 螺栓套件(螺栓、螺母和垫圈)。

This consists of a bolt, nut and 2 washers, and are bought as a kit.
这包括一个螺栓、一个螺母和两个垫圈,作为一个套件购买。

It is not allowed to mix these bolts or nuts with other types of bolts or nuts.
不允许将这些螺栓或螺母与其他类型的螺栓或螺母混合使用。
Mostly used in towers. Over time going to be replaced by tension tightening bolts.
主要用于塔架。随着时间的推移,将被张紧螺栓取代。
List of available dimensions: DMS 0035-6117
可用尺寸列表:DMS 0035-6117

Figure 4 8 4 8 4-84-8 HV bolt   4 8 4 8 4-84-8 HV 螺栓

4.9 Other  4.9 其他

4.9.1 Eye nut  4.9.1 眼螺母

An eye nut is not personal hook points in turbines, but can be used as lifting point.
眼螺母不是涡轮机中的个人挂钩点,但可以用作吊点。
Must be acc. to DIN 522, Material C15 E and CE mark.
必须符合 DIN 522,材料 C15 E 和 CE 标志。

THESE NUTS CAN NEVER REPLACE A STANDARD BOLT OR NUT
这些螺母绝不能替代标准螺栓或螺母

Surface treatment TZN.  表面处理 TZN。
DIN 582 DIN 580
Figure 4-9 Eye bolt
图 4-9 眼螺栓

4.9.2 Locking rings  4.9.2 锁定环

DIN 471 to be used at shafts.
DIN 471 应用于轴。

DIN 472 to be used in holes
在孔中使用 DIN 472

DIN 471
DIN 472
Figure 4-10 Locking ring
图 4-10 锁定环

4.10 VOC and VOA
4.10 VOC 和 VOA

4.10.1 Cad parts of tools
4.10.1 工具的 CAD 零件

3D cad parts can be used for check of volume of control and volume of activity (Installation and service)
3D CAD 零件可用于检查控制体积和活动体积(安装和服务)

See DMS# - 0090-1000 Torque Tool 3D
查看 DMS# - 0090-1000 扭矩工具 3D

Other assembly of tools can be found here: “tension_torch_tool.asm”
其他工具的组装可以在这里找到:“tension_torch_tool.asm”

The CAD files will be regularly updated.
CAD 文件将定期更新。

Figure 4-11 “tension_torch_tool.asm”
图 4-11 “tension_torch_tool.asm”

In appendix are the tools described. Be aware of having the right distance between the bolts.
附录中描述了工具。请注意螺栓之间的正确距离。

4.10.2 Design space recommendations
4.10.2 设计空间建议

It is very important to check collision when using a tool.
使用工具时检查碰撞非常重要。

I appendix is an overview of standard sockets for ISO bolts.
附录 I 是 ISO 螺栓标准插座的概述。

Solutions see Stanley Engineered Fastening Selection and configuration guide, DIN 3110 or DIN 974.
解决方案请参见 Stanley Engineered Fastening 选择和配置指南、DIN 3110 或 DIN 974。
Size  尺寸 Hole D ISO 273
孔 D ISO 273
Min P  最小 P Clearance  间隙 G F (S) d4*
a b c
M4 4.5 17 10 8 12 14 7 12
M5 5.5 20 10 8 12 14 8 15
M6 6.6 24 14 10 15 17 10 20
M8 9.0 30 18 12 18 22 13 24
M10 11.0 37 28 14 21 27 17 33
M12 13.5 42 30 16 22 30 19 43
M16 17.5 50 30 20 26 38 24 48
M20 22,0 60 32 22 32 46 30 58
M24 26,0 75 48 25 38 55 36 63
M30 33.0 94 60 30 48 70 46 80
M36 39.0 104 60 34 52 90 55 90
https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-18.jpg?height=383&width=1626&top_left_y=769&top_left_x=204 Size Hole D ISO 273 Min P Clearance G F (S) d4* a b c M4 4.5 17 10 8 12 14 7 12 M5 5.5 20 10 8 12 14 8 15 M6 6.6 24 14 10 15 17 10 20 M8 9.0 30 18 12 18 22 13 24 M10 11.0 37 28 14 21 27 17 33 M12 13.5 42 30 16 22 30 19 43 M16 17.5 50 30 20 26 38 24 48 M20 22,0 60 32 22 32 46 30 58 M24 26,0 75 48 25 38 55 36 63 M30 33.0 94 60 30 48 70 46 80 M36 39.0 104 60 34 52 90 55 90| ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-18.jpg?height=383&width=1626&top_left_y=769&top_left_x=204) | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Size | Hole D ISO 273 | Min P | Clearance | | | G | F (S) | d4* | | | | | a | b | c | | | | | M4 | 4.5 | 17 | 10 | 8 | 12 | 14 | 7 | 12 | | M5 | 5.5 | 20 | 10 | 8 | 12 | 14 | 8 | 15 | | M6 | 6.6 | 24 | 14 | 10 | 15 | 17 | 10 | 20 | | M8 | 9.0 | 30 | 18 | 12 | 18 | 22 | 13 | 24 | | M10 | 11.0 | 37 | 28 | 14 | 21 | 27 | 17 | 33 | | M12 | 13.5 | 42 | 30 | 16 | 22 | 30 | 19 | 43 | | M16 | 17.5 | 50 | 30 | 20 | 26 | 38 | 24 | 48 | | M20 | 22,0 | 60 | 32 | 22 | 32 | 46 | 30 | 58 | | M24 | 26,0 | 75 | 48 | 25 | 38 | 55 | 36 | 63 | | M30 | 33.0 | 94 | 60 | 30 | 48 | 70 | 46 | 80 | | M36 | 39.0 | 104 | 60 | 34 | 52 | 90 | 55 | 90 |
Table 4-8 Bolts holes, min spacing, and spanner clearances precision hexagon bolts and screws. The dimensions for clearance of open-ended spanners, ring spanners, and sockets are conservative. *Modified DIN 974 values.
表 4-8 螺栓孔、最小间距和扳手间隙 精密六角螺栓和螺钉。开放式扳手、环形扳手和套筒的间隙尺寸较为保守。*修改后的 DIN 974 值。
The designer must be aware of required space for mounting. Both for the fitter and for the tool
设计师必须注意安装所需的空间。这既适用于装配工,也适用于工具。


Figure 4-12 Preferred torque reaction arm solution at Vestas which minimize the risk for accident. Bolt connections must be designed so bolts can be tightened with bolt standard torque reaction arm and with reaction arm safety with tube.
图 4-12 Vestas 推荐的扭矩反应臂解决方案,旨在最小化事故风险。螺栓连接必须设计成可以使用螺栓标准扭矩反应臂和带管的反应臂安全地拧紧螺栓。

Figure 4-13 Example of bolt placed where it is difficult to torque
图 4-13 在难以施加扭矩的位置放置螺栓的示例

Figure 4-14 Example of M16 bolt placed where it is difficult to torque. Here are the nuts difficult to hold during torque. Up to and incl M12 is possible to hold by hand if no lubrication of counterpart. For M16 and up must tool be used. For the case displayed in the figure is an expensive tool needed for counter hold - this must be avoided
图 4-14 M16 螺栓放置在难以施加扭矩的地方的示例。这里是施加扭矩时难以握住的螺母。对于 M12 及以下的螺母,如果没有润滑对方,可以用手握住。对于 M16 及以上的螺母必须使用工具。对于图中显示的情况,需要一种昂贵的工具来进行反向固定 - 这必须避免。
Often designers are not aware of collision between tools or washers and welds.
设计师通常没有意识到工具或垫圈与焊缝之间的碰撞。

Especially fillet welds protrude far out. The designer must also be aware of weld tolerances which must be added. ISO 5817 describes tolerance of welding
特别是角焊缝突出得很远。设计师还必须注意必须添加的焊接公差。ISO 5817 描述了焊接的公差。
No.  编号 Reference to ISO 6520-1  Reference to   ISO 6520-1  {:[" Reference to "],[" ISO 6520-1 "]:}\begin{aligned} & \text { Reference to } \\ & \text { ISO 6520-1 } \end{aligned} Imperfection designation
缺陷标识
Remarks  备注 t mm t mm {:[t],[mm]:}\begin{gathered} t \\ \mathrm{~mm} \end{gathered} Limits for imperfections for quality levels
缺陷的限值对于质量等级
D C B
1.10 503 Excessive convexity (fillet weld)
过度的凸度(焊接角)
CC1(C2CCC2)CCCC1
0 , 5 0 , 5 >= 0,5\geq 0,5 h 1 mm + 0 , 25 b h 1 mm + 0 , 25 b h <= 1mm+0,25 bh \leq 1 \mathrm{~mm}+0,25 b, but max. 5 mm
h 1 mm + 0 , 25 b h 1 mm + 0 , 25 b h <= 1mm+0,25 bh \leq 1 \mathrm{~mm}+0,25 b ,但最大为 5 毫米
h 1 mm + 0 , 15 b h 1 mm + 0 , 15 b h <= 1mm+0,15 bh \leq 1 \mathrm{~mm}+0,15 b, but max. 4 mm
h 1 mm + 0 , 15 b h 1 mm + 0 , 15 b h <= 1mm+0,15 bh \leq 1 \mathrm{~mm}+0,15 b ,但最大为 4 毫米
h 1 mm + 0 , 1 b h 1 mm + 0 , 1 b h <= 1mm+0,1bh \leq 1 \mathrm{~mm}+0,1 b, but max. 3 mm
h 1 mm + 0 , 1 b h 1 mm + 0 , 1 b h <= 1mm+0,1bh \leq 1 \mathrm{~mm}+0,1 b ,但最大为 3 毫米
1.11 504 Excess penetration  过度穿透
0 , 5 to 3 > 3 0 , 5  to  3 > 3 {:[0","5" to "3],[ > 3]:}\begin{aligned} & 0,5 \text { to } 3 \\ & >3 \end{aligned} h 1 mm + 0 , 6 b h 1 mm + 1 , 0 b , but max .5 mm h 1 mm + 0 , 6 b h 1 mm + 1 , 0 b , but  max .5 mm {:[h <= 1mm+0","6b],[h <= 1mm+1","0b", but "],[ max.5mm]:}\begin{aligned} & h \leq 1 \mathrm{~mm}+0,6 b \\ & h \leq 1 \mathrm{~mm}+1,0 b \text {, but } \\ & \max .5 \mathrm{~mm} \end{aligned} h 1 mm + 0 , 3 b h 1 mm + 0 , 6 b , but max. 4 mm h 1 mm + 0 , 3 b h 1 mm + 0 , 6 b ,  but max.  4 mm {:[h <= 1mm+0","3b],[h <= 1mm+0","6b","" but max. "],[4mm]:}\begin{aligned} & h \leq 1 \mathrm{~mm}+0,3 b \\ & h \leq 1 \mathrm{~mm}+0,6 b, \text { but max. } \\ & 4 \mathrm{~mm} \end{aligned} h 1 mm + 0 , 1 b h 1 mm + 0 , 2 b , but max .3 mm h 1 mm + 0 , 1 b h 1 mm + 0 , 2 b ,  but  max .3 mm {:[h <= 1mm+0","1b],[h <= 1mm+0","2b","" but "],[ max.3mm]:}\begin{aligned} & h \leq 1 \mathrm{~mm}+0,1 b \\ & h \leq 1 \mathrm{~mm}+0,2 b, \text { but } \\ & \max .3 \mathrm{~mm} \end{aligned}
No. " Reference to ISO 6520-1 " Imperfection designation Remarks "t mm" Limits for imperfections for quality levels D C B 1.10 503 Excessive convexity (fillet weld) CC1(C2CCC2)CCCC1 >= 0,5 h <= 1mm+0,25 b, but max. 5 mm h <= 1mm+0,15 b, but max. 4 mm h <= 1mm+0,1b, but max. 3 mm 1.11 504 Excess penetration https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-20.jpg?height=418&width=329&top_left_y=931&top_left_x=667 "0,5 to 3 > 3" "h <= 1mm+0,6b h <= 1mm+1,0b, but max.5mm" "h <= 1mm+0,3b h <= 1mm+0,6b, but max. 4mm" "h <= 1mm+0,1b h <= 1mm+0,2b, but max.3mm"| No. | $\begin{aligned} & \text { Reference to } \\ & \text { ISO 6520-1 } \end{aligned}$ | Imperfection designation | Remarks | $\begin{gathered} t \\ \mathrm{~mm} \end{gathered}$ | Limits for imperfections for quality levels | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | | | | | D | C | B | | 1.10 | 503 | Excessive convexity (fillet weld) | <smiles>CC1(C2CCC2)CCCC1</smiles> | $\geq 0,5$ | $h \leq 1 \mathrm{~mm}+0,25 b$, but max. 5 mm | $h \leq 1 \mathrm{~mm}+0,15 b$, but max. 4 mm | $h \leq 1 \mathrm{~mm}+0,1 b$, but max. 3 mm | | 1.11 | 504 | Excess penetration | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-20.jpg?height=418&width=329&top_left_y=931&top_left_x=667) | $\begin{aligned} & 0,5 \text { to } 3 \\ & >3 \end{aligned}$ | $\begin{aligned} & h \leq 1 \mathrm{~mm}+0,6 b \\ & h \leq 1 \mathrm{~mm}+1,0 b \text {, but } \\ & \max .5 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & h \leq 1 \mathrm{~mm}+0,3 b \\ & h \leq 1 \mathrm{~mm}+0,6 b, \text { but max. } \\ & 4 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & h \leq 1 \mathrm{~mm}+0,1 b \\ & h \leq 1 \mathrm{~mm}+0,2 b, \text { but } \\ & \max .3 \mathrm{~mm} \end{aligned}$ |
Figure 4-15 Weld tolerance acc. to ISO 5817. The size of tolerances is linked to the quality level
图 4-15 焊接公差符合 ISO 5817。公差的大小与质量等级相关。

4.10.3 Tool overview  4.10.3 工具概述

See DMS 0090-1000 for tool selection.
请参阅 DMS 0090-1000 以获取工具选择。

Hand process means tool can be handled and lifted manually without support.
手工过程意味着工具可以手动处理和提升,无需支撑。

Balanced means support is needed. When in bracket ( ) we are on the limit
平衡意味着需要支持。当在括号中 ( ) 时,我们处于极限。
Process  过程 Hand   Hand  
  手/(平衡)
Hand/
(Balance)
Hand/ (Balance)| Hand/ | | :--- | | (Balance) |
  手/平衡
Hand/
Balance
Hand/ Balance| Hand/ | | :--- | | Balance |
  (手)/ 平衡
(Hand)/
Balance
(Hand)/ Balance| (Hand)/ | | :--- | | Balance |
Balance  平衡
Size  尺寸 M16 M20 M24 M30 M36 M42
Quality  质量 8.8 10.9 10.9 10.9 10.9 10.9
Tool Power  工具功率 Battery  电池 Battery  电池 Cable / Hydr.  电缆 / 液压 Cable / Hydr.  电缆 / 液压 Cable / Hydr.  电缆 / 液压 Cable / Hydr.  电缆 / 液压
Process Hand Hand "Hand/ (Balance)" "Hand/ Balance" "(Hand)/ Balance" Balance Size M16 M20 M24 M30 M36 M42 Quality 8.8 10.9 10.9 10.9 10.9 10.9 Tool Power Battery Battery Cable / Hydr. Cable / Hydr. Cable / Hydr. Cable / Hydr.| Process | Hand | Hand | Hand/ <br> (Balance) | Hand/ <br> Balance | (Hand)/ <br> Balance | Balance | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Size | M16 | M20 | M24 | M30 | M36 | M42 | | Quality | 8.8 | 10.9 | 10.9 | 10.9 | 10.9 | 10.9 | | Tool Power | Battery | Battery | Cable / Hydr. | Cable / Hydr. | Cable / Hydr. | Cable / Hydr. |
Table 4-9 Bolts holes, min spacing, and spanner clearances precision hexagon bolts and screws. Torque ref DMS 960501-8.8 & 10.9-Torque. From M24 and up can balance be needed
表 4-9 螺栓孔、最小间距和扳手间隙 精密六角螺栓和螺钉。扭矩参考 DMS 960501-8.8 & 10.9-扭矩。从 M24 开始可能需要平衡。
Overview of tool list:
工具清单概述:
2MW_MK11B Torque Tools list
2MW_MK11B 扭矩工具清单

DMS 0089-3368
4MW Tools list  4MW 工具清单
4MW_MK3E Torque Tools list
4MW_MK3E 扭矩工具列表

Vidar Hub Tool Tracker
Vidar Nacelle Tool Tracker
DMS 0067-0783
DMS 0088-6726
DMS 0084-3456
DMS 0078-3766

4.11 Tool Class  4.11 工具类别

The tools are divided into 5 different tool classes: A, B, C, D and E. This is aligned with 0066-0218 Bolt tightening program. For bolts M 10 M 10 >= M10\geq \mathrm{M} 10 is tool class D preferred. Only go for tool class C when lower tightening factor really needed.
工具分为 5 个不同的工具类别:A、B、C、D 和 E。这与 0066-0218 螺栓紧固程序一致。对于螺栓 M 10 M 10 >= M10\geq \mathrm{M} 10 ,首选工具类别 D。只有在确实需要较低的紧固系数时,才选择工具类别 C。
Tool Class  工具类别 Tool Class A  工具类别 A Tool Class B  工具类别 B Tool Class C  工具类别 C Tool Class D  工具类别 D Tool Class E  工具类别 E
Type  类型 Hydraulic Bolt Tensioners
液压螺栓张紧器
Angle controlled tightening.
角度控制紧固。
Automatic Torque Tools Manual transduced controlled torque tools Hydraulic tools
自动扭矩工具手册 转换控制扭矩工具 液压工具
Manual torque wrench: Click-type torque wrench. Digital non-click torque wrench.
手动扭矩扳手:点击式扭矩扳手。数字非点击扭矩扳手。
Impact wrenches and other tools without functions for defining and specific torque
冲击扳手和其他没有定义和特定扭矩功能的工具
When   Default Stud.  默认螺柱。 Special solution  特殊解决方案 Default >=\geq M20 unless otherwise specified
默认 >=\geq M20,除非另有说明
Preferred for all sizes >=\geq M10 Default >=\geq M10 and <=\leq M16 unless otherwise specified
除非另有说明,所有尺寸首选 >=\geq M10 默认 >=\geq M10 和 <=\leq M16
Default <=\leq M8 unless otherwise specified
默认 <=\leq M8,除非另有说明
How  如何 Tool is heavy for assembly. Support for lifting tool needed.
工具对于组装来说很重。需要支持提升工具。
- >=\geq M24 Tool heavy for assembly. Support lift tool often needed
>=\geq M24 工具重于组装。通常需要支撑提升工具。
Tool can be handled in assembly
工具可以在装配中处理
Tool can be handled in assembly
工具可以在装配中处理
Bolt quality  螺栓质量 Quality 10.9  质量 10.9 Quality 10.9  质量 10.9 Quality 10.9  质量 10.9 Quality 8.8 & 10.9
质量 8.8 和 10.9
Quality A4-70  质量 A4-70
Tightening factor  紧固系数 α D = 1 , 2 α D = 1 , 2 alpha_(D)=1,2\alpha_{D}=1,2 α D ( Torque/Angle = 1 , 59 / 1 , 14 α D (  Torque/Angle  = 1 , 59 / 1 , 14 {:[alpha_(D)(" Torque/Angle "=],[1","59//1","14]:}\begin{aligned} & \alpha_{\mathrm{D}}(\text { Torque/Angle }= \\ & 1,59 / 1,14 \end{aligned} α D = 1 , 59 α D = 1 , 59 alpha_(D)=1,59\alpha_{D}=1,59 α D = 2 , 13 α D = 2 , 13 alpha_(D)=2,13\alpha_{D}=2,13 α A = 4 α A = 4 alpha_(A)=4\alpha_{A}=4
Max tool accuracy  最大工具精度 +/- 5% (+ Load loss)
+/- 5% (+ 负载损失)
+/-5% +/-10% +/-30% +/-60%
Illustration  插图
Tool Class Tool Class A Tool Class B Tool Class C Tool Class D Tool Class E Type Hydraulic Bolt Tensioners Angle controlled tightening. Automatic Torque Tools Manual transduced controlled torque tools Hydraulic tools Manual torque wrench: Click-type torque wrench. Digital non-click torque wrench. Impact wrenches and other tools without functions for defining and specific torque When Default Stud. Special solution Default >= M20 unless otherwise specified Preferred for all sizes >= M10 Default >= M10 and <= M16 unless otherwise specified Default <= M8 unless otherwise specified How Tool is heavy for assembly. Support for lifting tool needed. - >= M24 Tool heavy for assembly. Support lift tool often needed Tool can be handled in assembly Tool can be handled in assembly Bolt quality Quality 10.9 Quality 10.9 Quality 10.9 Quality 8.8 & 10.9 Quality A4-70 Tightening factor alpha_(D)=1,2 "alpha_(D)( Torque/Angle = 1,59//1,14" alpha_(D)=1,59 alpha_(D)=2,13 alpha_(A)=4 Max tool accuracy +/- 5% (+ Load loss) +/-5% +/-10% +/-30% +/-60% Illustration https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=267&width=186&top_left_y=1503&top_left_x=478 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=235&width=273&top_left_y=1509&top_left_x=869 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=261&width=308&top_left_y=1509&top_left_x=1323 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=160&width=412&top_left_y=1529&top_left_x=1789 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=186&width=183&top_left_y=1512&top_left_x=2379| Tool Class | Tool Class A | Tool Class B | Tool Class C | Tool Class D | Tool Class E | | :---: | :---: | :---: | :---: | :---: | :---: | | Type | Hydraulic Bolt Tensioners | Angle controlled tightening. | Automatic Torque Tools Manual transduced controlled torque tools Hydraulic tools | Manual torque wrench: Click-type torque wrench. Digital non-click torque wrench. | Impact wrenches and other tools without functions for defining and specific torque | | When | Default Stud. | Special solution | Default $\geq$ M20 unless otherwise specified | Preferred for all sizes $\geq$ M10 Default $\geq$ M10 and $\leq$ M16 unless otherwise specified | Default $\leq$ M8 unless otherwise specified | | How | Tool is heavy for assembly. Support for lifting tool needed. | - | $\geq$ M24 Tool heavy for assembly. Support lift tool often needed | Tool can be handled in assembly | Tool can be handled in assembly | | Bolt quality | Quality 10.9 | Quality 10.9 | Quality 10.9 | Quality 8.8 & 10.9 | Quality A4-70 | | Tightening factor | $\alpha_{D}=1,2$ | $\begin{aligned} & \alpha_{\mathrm{D}}(\text { Torque/Angle }= \\ & 1,59 / 1,14 \end{aligned}$ | $\alpha_{D}=1,59$ | $\alpha_{D}=2,13$ | $\alpha_{A}=4$ | | Max tool accuracy | +/- 5% (+ Load loss) | +/-5% | +/-10% | +/-30% | +/-60% | | Illustration | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=267&width=186&top_left_y=1503&top_left_x=478) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=235&width=273&top_left_y=1509&top_left_x=869) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=261&width=308&top_left_y=1509&top_left_x=1323) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=160&width=412&top_left_y=1529&top_left_x=1789) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-21.jpg?height=186&width=183&top_left_y=1512&top_left_x=2379) |
Table 4-10 Tools used for tool class A to E. M24/M30 is in some cases free hand. Remember to evaluate VOA and VOC for heavy tools.
表 4-10 工具类别 A 到 E 所使用的工具。M24/M30 在某些情况下是自由手工操作。请记得评估重型工具的 VOA 和 VOC。

Tightening factor α D α D alpha_(D)\alpha_{D}. Ref values see 0075-1340 Bolt Analysis Guideline. α D = α D = alpha_(D)=\alpha_{D}= max clamping force / / /// min clamping force. See table Table 4-2
紧固系数 α D α D alpha_(D)\alpha_{D} 。参考值见 0075-1340 螺栓分析指南。 α D = α D = alpha_(D)=\alpha_{D}= 最大夹紧力 / / /// 最小夹紧力。见表 4-2。

Vestas Wind Systems A/S • Hedeager 42 • 8200 Aarhus N • Denmark • www.vestas.comClassification: Restricted
Vestas Wind Systems A/S • Hedeager 42 • 8200 Aarhus N • 丹麦 • www.vestas.com 分类:受限

4.12 Surface below bolt head / nut / washer
4.12 螺栓头/螺母/垫圈下方的表面

4.12.1 Washer  4.12.1 垫圈

A washer is always preferred for all bolt torque connections unless by use of flange nuts.
除非使用法兰螺母,垫圈在所有螺栓扭矩连接中总是首选。

Standard washers have two main purposes:
标准垫圈有两个主要目的:
  • To distribute the pressure of the nut evenly over the surface
    将螺母的压力均匀分布在表面上
  • To ensure that the nut is pressed against a friction-controlled surface
    为了确保螺母压紧在一个摩擦控制的表面上
The Bolt Program DMS 0066-0218 is calculating the surface pressure below the bolt head and below the washer. The acceptable surface pressure is 70% of the values listed in VDI 2230:2015. Be aware VDI 2230 perhaps is updated after version 2015 and the 70 % 70 % 70%70 \% value included.
螺栓程序 DMS 0066-0218 正在计算螺栓头下方和垫圈下方的表面压力。可接受的表面压力为 VDI 2230:2015 中列出值的 70%。请注意,VDI 2230 可能在 2015 版本之后进行了更新,并包含了 70 % 70 % 70%70 \% 值。
Surface pressure check:  表面压力检查:
P M = F M max / ( ( π ( r w + h ) 2 ) ( π ( r 1 ) 2 ) ) P M = F M max / π r w + h 2 π r 1 2 P_(M)=F_(M max)//((pi^(**)(r_(w)+h)^(2))-(pi^(**)(r_(1))^(2)))P_{M}=F_{M \max } /\left(\left(\pi^{*}\left(r_{w}+h\right)^{2}\right)-\left(\pi^{*}\left(r_{1}\right)^{2}\right)\right) < acceptable surface pressure acc. to VDI 2230:2015 * 70%.
P M = F M max / ( ( π ( r w + h ) 2 ) ( π ( r 1 ) 2 ) ) P M = F M max / π r w + h 2 π r 1 2 P_(M)=F_(M max)//((pi^(**)(r_(w)+h)^(2))-(pi^(**)(r_(1))^(2)))P_{M}=F_{M \max } /\left(\left(\pi^{*}\left(r_{w}+h\right)^{2}\right)-\left(\pi^{*}\left(r_{1}\right)^{2}\right)\right) < 根据 VDI 2230:2015,允许的表面压力 * 70%。

r w r w r_(w)r_{w} : outer radius of the bolt interface
r w r w r_(w)r_{w} : 螺栓接口的外半径

h h hh : height of washer
h h hh : 垫圈的高度

r 1 r 1 r_(1)r_{1} : is radius of hole
r 1 r 1 r_(1)r_{1} : 是孔的半径

Figure 4-16 Dimensions for surface pressure
图 4-16 表面压力的尺寸

4.12.2 Machined surface roughness.
4.12.2 加工表面粗糙度。

Surface roughness below Rz20 = expensive and above Rz40 = cheap.
表面粗糙度低于 Rz20 = 昂贵,高于 Rz40 = 便宜。

Preferred Rz values for friction connections are
摩擦连接的优选 Rz 值为
  • Rz 20 - for structure important friction connections with not surface treatment and where Rz is relevant for the bolt pre-tension loss.
    Rz 20 - 用于结构重要的摩擦连接,且没有表面处理,并且在螺栓预紧力损失中 Rz 是相关的。
  • Rz 40 - for metallized connections, frictions where one part is galvanized or Rz is not relevant for the bolt pre-tension loss because of long clamping length
    Rz 40 - 对于金属化连接,摩擦其中一部分是镀锌的,或者由于长夹紧长度,Rz 与螺栓预紧力损失无关
Rz has influence on the settlement - see appendix
Rz 对沉降有影响 - 见附录

4.12.3 Additional bending loading of the bolt.
4.12.3 螺栓的额外弯曲载荷。

If surfaces of bolted parts are not parallel, then is the bolt subjected to bending stress. Another case can be the holes are misaligned at the bolt therefore is tilting.
如果螺栓部件的表面不平行,则螺栓会受到弯曲应力。另一种情况是螺栓的孔不对齐,因此会倾斜。
Bending stress calculation is based on angle, bolt diameter and clamping length.
弯曲应力计算基于角度、螺栓直径和夹紧长度。

Θ Rad := Θ Deg π 180 σ b := Θ Rad d bolt E 2 I clamping Θ Rad  := Θ Deg  π 180 σ b := Θ Rad  d bolt  E 2 I clamping  {:[Theta_("Rad "):=Theta_("Deg ")*(pi)/(180)],[sigma_(b):=(Theta_("Rad ")*d_("bolt ")*E)/(2*I_("clamping "))]:}\begin{aligned} & \Theta_{\text {Rad }}:=\Theta_{\text {Deg }} \cdot \frac{\pi}{180} \\ & \sigma_{\mathrm{b}}:=\frac{\Theta_{\text {Rad }} \cdot d_{\text {bolt }} \cdot \mathrm{E}}{2 \cdot I_{\text {clamping }}} \end{aligned}
Figure 4-17 Joint Face angularity will create bending stress. The acceptable angularity and thereby the maximum additional bending stress must be agreed with the design responsible. < 10 % < 10 % < 10%<10 \% of bolt yield strength can be used as default value. E.g. for 8.8 is that 64 MPa
图 4-17 接头面角度会产生弯曲应力。可接受的角度以及由此产生的最大附加弯曲应力必须与设计负责人达成一致。 < 10 % < 10 % < 10%<10 \% 的螺栓屈服强度可以作为默认值。例如,对于 8.8,值为 64 MPa。
A program for evaluating the additional bending stress is attached to DMS 0066-0500. On next page is a calculation example.
附加弯曲应力评估程序附在 DMS 0066-0500 上。下一页是一个计算示例。
If only one side is machined, it important to add requirements to back side to secure the surfaces are parallel to an acceptable extent and thereby avoiding too much additional bending.
如果仅加工一侧,重要的是在背面添加要求,以确保表面在可接受的范围内平行,从而避免过多的额外弯曲。

Figure 4-18 Example of connention. Over a length of 100 mm is the parallelism tolerance 0,15 or 1 . Clamping length is 60 mm or 100 mm . Bolt is 8.8 M 20 .
图 4-18 连接示例。在 100 mm 的长度上,平行度公差为 0.15 或 1。夹紧长度为 60 mm 或 100 mm。螺栓为 8.8 M 20。
  螺栓尺寸
Bolt
size
Bolt size| Bolt | | :--- | | size |
  夹紧长度 ( m m ) ( m m ) (mm)(\mathbf{m m})
Clamping
length
( m m ) ( m m ) (mm)(\mathbf{m m})
Clamping length (mm)| Clamping | | :--- | | length | | $(\mathbf{m m})$ |
LID
  角度(度)
Angle
(Degree)
Angle (Degree)| Angle | | :--- | | (Degree) |
  平整度超过 1 0 0 m m 1 0 0 m m 100mm\mathbf{1 0 0 m m}
Flatness over
1 0 0 m m 1 0 0 m m 100mm\mathbf{1 0 0 m m}
Flatness over 100mm| Flatness over | | :--- | | $\mathbf{1 0 0 m m}$ |

螺栓中的应力 (MPa)
Stress in bolt
(MPa)
Stress in bolt (MPa)| Stress in bolt | | :--- | | (MPa) |
Ok / Not Ok
好的 / 不好
8.8 M 20 100 5 0,085 0 , 15 mm 0 , 15 mm 0,15mm0,15 \mathrm{~mm} 30 < 64 30 < 64 30 < 6430<64 Ok  好的
8.8 M 20 60 3 0,570 1 , 00 mm 1 , 00 mm 1,00mm1,00 \mathrm{~mm} 348 < 64 348 < 64 348 < 64348<64 Not Ok  不可以
8.8 M 20 100 5 0,570 1 , 00 mm 1 , 00 mm 1,00mm1,00 \mathrm{~mm} 209 < 64 209 < 64 209 < 64209<64 Not Ok  不可以
8.8 M 20 60 3 0,085 0 , 15 mm 0 , 15 mm 0,15mm0,15 \mathrm{~mm} 52 < 64 52 < 64 52 < 6452<64 Ok  好的
"Bolt size" "Clamping length (mm)" LID "Angle (Degree)" "Flatness over 100mm" "Stress in bolt (MPa)" Ok / Not Ok 8.8 M 20 100 5 0,085 0,15mm 30 < 64 Ok 8.8 M 20 60 3 0,570 1,00mm 348 < 64 Not Ok 8.8 M 20 100 5 0,570 1,00mm 209 < 64 Not Ok 8.8 M 20 60 3 0,085 0,15mm 52 < 64 Ok| Bolt <br> size | Clamping <br> length <br> $(\mathbf{m m})$ | LID | Angle <br> (Degree) | Flatness over <br> $\mathbf{1 0 0 m m}$ | Stress in bolt <br> (MPa) | Ok / Not Ok | | :--- | :---: | :---: | :---: | :---: | :---: | :---: | | 8.8 M 20 | 100 | 5 | 0,085 | $0,15 \mathrm{~mm}$ | $30<64$ | Ok | | 8.8 M 20 | 60 | 3 | 0,570 | $1,00 \mathrm{~mm}$ | $348<64$ | Not Ok | | 8.8 M 20 | 100 | 5 | 0,570 | $1,00 \mathrm{~mm}$ | $209<64$ | Not Ok | | 8.8 M 20 | 60 | 3 | 0,085 | $0,15 \mathrm{~mm}$ | $52<64$ | Ok |
Table 4-11 - Example of stress in bolt by joint face angularity. Both clamping length and angle has impact of stress in bolt caused by additional bending.
表 4-11 - 连接面角度对螺栓应力的影响示例。夹紧长度和角度都会影响由于额外弯曲而导致的螺栓应力。

4.12.4 Spot Facing  4.12.4 点面加工

To secure parallelism between bolt head and nut is spot facing often used.
为了确保螺栓头与螺母之间的平行,通常使用点面加工。

Figure 4-19 There are 2 types of spot faces. See above. The spotfacing can be made from back (left picture) or front (right picture). Normal front spot facing always preferred because this is easier to machine.
图 4-19 有两种类型的局部平面。见上文。局部平面可以从背面(左图)或正面(右图)加工。通常优先选择正面局部平面,因为这更容易加工。
Below some points to be aware of when making back spot facing:
以下是进行背面铣削时需要注意的一些要点:

Figure 4-20 Tool for back spot facing
图 4-20 后背面铣削工具

4.13 Clamping length  4.13 夹紧长度

A bushing is often used to get long clamping length.
衬套通常用于获得较长的夹紧长度。

4.13.1 Design of bushings
4.13.1 衬套设计

Overview of standard bushing can be found in DMS 0077-2590 or Valmon.
标准衬套的概述可以在 DMS 0077-2590 或 Valmon 中找到。

Bushings can be made of seamless heavy-wall tubes or by drilling a hole in a rod.
衬套可以由无缝厚壁管制成或通过在杆上钻孔制成。

A rod is preferred because heavy-wall tubes have too big hole diameters and tolerances.
杆是首选,因为厚壁管的孔径和公差太大。

Surface treatment can be hot dip galvanizing or electroplating.
表面处理可以是热浸镀锌或电镀。

There must always be a washer between bolt head/nut and the bushing unless the bushings are in a quality able to take the surface pressure.
在螺栓头/螺母和衬套之间必须始终有一个垫圈,除非衬套的质量能够承受表面压力。
Surface pressure must be below 70% of limited pressure value from VDI 2230:2015 to avoid pressure marks and settlement.
表面压力必须低于 VDI 2230:2015 中限制压力值的 70%,以避免压力痕迹和沉降。
In the table below is the preferred rod for bushing material listed.
下表列出了推荐的衬套材料的杆。
Standard  标准 Headline  标题 Comment  评论 Material  材料

最低屈服强度高达 80 80 O/80\varnothing 80
Lowest yield
strength up to 80 80 O/80\varnothing 80
Lowest yield strength up to O/80| Lowest yield | | :--- | | strength up to $\varnothing 80$ |

外径公差高达 80 80 O/80\varnothing 80
Tolerance on
outer dia.
up to 80 80 O/80\varnothing 80
Tolerance on outer dia. up to O/80| Tolerance on | | :--- | | outer dia. | | up to $\varnothing 80$ |
EN 10025-2
EN 10060
EN 10025-2 EN 10060| EN 10025-2 | | :--- | | EN 10060 |

热轧结构钢产品。
Hot rolled products
of structural steels.
Hot rolled products of structural steels.| Hot rolled products | | :--- | | of structural steels. |

在杆上钻孔
Hole drilled
in a rod
Hole drilled in a rod| Hole drilled | | :--- | | in a rod |
S355J2 325 MPa + / 1 mm + / 1 mm +//-1mm+/-1 \mathrm{~mm}
Standard Headline Comment Material "Lowest yield strength up to O/80" "Tolerance on outer dia. up to O/80" "EN 10025-2 EN 10060" "Hot rolled products of structural steels." "Hole drilled in a rod" S355J2 325 MPa +//-1mm| Standard | Headline | Comment | Material | Lowest yield <br> strength up to $\varnothing 80$ | Tolerance on <br> outer dia. <br> up to $\varnothing 80$ | | :--- | :--- | :--- | :---: | :---: | :---: | | EN 10025-2 <br> EN 10060 | Hot rolled products <br> of structural steels. | Hole drilled <br> in a rod | S355J2 | 325 MPa | $+/-1 \mathrm{~mm}$ |
Table 4-12 Prefered rod material
表 4-12 优选杆材料
It is possible to design a special bushing if a standard bushing does not fit the design.
如果标准衬套不适合设计,可以设计一个特殊的衬套。

Use 0066-2985 Standardization Rod for selection of rod.
使用 0066-2985 标准化杆进行杆的选择。
When designing a bushing go for a maximum allowable surface pressure of 343 N / mm 2 343 N / mm 2 343N//mm^(2)343 \mathrm{~N} / \mathrm{mm}^{2} so it can be used in several other designs too.
在设计衬套时,选择最大允许表面压力为 343 N / mm 2 343 N / mm 2 343N//mm^(2)343 \mathrm{~N} / \mathrm{mm}^{2} ,以便它可以在其他多个设计中使用。
Material  材料
  抗拉强度 R m min ( N / mm 2 ) R m  min  N / mm 2 R_(m" min ")(N//mm^(2))R_{\mathrm{m} \text { min }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Tensile strength
R m min ( N / mm 2 ) R m  min  N / mm 2 R_(m" min ")(N//mm^(2))R_{\mathrm{m} \text { min }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Tensile strength R_(m" min ")(N//mm^(2))| Tensile strength | | :--- | | $R_{\mathrm{m} \text { min }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |

屈服强度 R p 0 , 2 R p 0 , 2 R_(p0,2)\mathrm{R}_{\mathrm{p} 0,2} 最小 ( N / mm 2 ) N / mm 2 (N//mm^(2))\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Yield strength
R p 0 , 2 R p 0 , 2 R_(p0,2)\mathrm{R}_{\mathrm{p} 0,2} min
( N / mm 2 ) N / mm 2 (N//mm^(2))\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Yield strength R_(p0,2) min (N//mm^(2))| Yield strength | | :--- | | $\mathrm{R}_{\mathrm{p} 0,2}$ min | | $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
  有限压力 P G ( N / mm 2 ) P G N / mm 2 P_(G)(N//mm^(2))\mathrm{P}_{\mathrm{G}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Limited pressure
P G ( N / mm 2 ) P G N / mm 2 P_(G)(N//mm^(2))\mathrm{P}_{\mathrm{G}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)
Limited pressure P_(G)(N//mm^(2))| Limited pressure | | :--- | | $\mathrm{P}_{\mathrm{G}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |

有限压力的 ( N / mm 2 ) N / mm 2 (N//mm^(2))\left(\mathrm{N} / \mathrm{mm}^{2}\right) 70 % 70 % 70%70 \%
70 % 70 % 70%70 \% of limited
pressure ( N / mm 2 ) N / mm 2 (N//mm^(2))\left(\mathrm{N} / \mathrm{mm}^{2}\right)
70% of limited pressure (N//mm^(2))| $70 \%$ of limited | | :--- | | pressure $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
S235 JR 340 230 490 343
S355 J0 490 325 760 532
S355 MC 430 355 600 (Estimate)  600(估计) 420
Material "Tensile strength R_(m" min ")(N//mm^(2))" "Yield strength R_(p0,2) min (N//mm^(2))" "Limited pressure P_(G)(N//mm^(2))" "70% of limited pressure (N//mm^(2))" S235 JR 340 230 490 343 S355 J0 490 325 760 532 S355 MC 430 355 600 (Estimate) 420| Material | Tensile strength <br> $R_{\mathrm{m} \text { min }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Yield strength <br> $\mathrm{R}_{\mathrm{p} 0,2}$ min <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Limited pressure <br> $\mathrm{P}_{\mathrm{G}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | $70 \%$ of limited <br> pressure $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | | :--- | :---: | :---: | :---: | :---: | | S235 JR | 340 | 230 | 490 | 343 | | S355 J0 | 490 | 325 | 760 | 532 | | S355 MC | 430 | 355 | 600 (Estimate) | 420 |
Table 4-13 Values for surface pressure acc. to VDI 2230:2015 table A9.
表 4-13 根据 VDI 2230:2015 表 A9 的表面压力值。
There are 2 types of bushings. One for round holes and one for slotted holes. See next 2 tables.
有两种类型的衬套。一种用于圆孔,另一种用于槽孔。请参见接下来的两个表格。
Outside diameter ( + - -1 mm )
外径(+ - -1 毫米)
Bolt (mm)  螺栓 (毫米) Clearance (mm)  间隙 (毫米) Hole diameter ( + 0 , 5 / 1 mm ) ( + 0 , 5 / 1 mm ) (+0,5//-1mm)(+0,5 /-1 \mathrm{~mm})  孔径 ( + 0 , 5 / 1 mm ) ( + 0 , 5 / 1 mm ) (+0,5//-1mm)(+0,5 /-1 \mathrm{~mm}) Bushing area (mm)  衬套面积 (mm) As ( mm 2 ) As mm 2 {:[As],[(mm^(2))]:}\begin{gathered} \mathrm{As} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered} Yield strength x As (kN)
屈服强度 x As (kN)
Surface pressure ( N / mm 2 N / mm 2 N//mm^(2)\mathrm{N} / \mathrm{mm}^{2} )
表面压力 ( N / mm 2 N / mm 2 N//mm^(2)\mathrm{N} / \mathrm{mm}^{2} )
Ø25 M12 2 Ø14 337 84,3 76 225
Ø 30 M16 2 Ø18 452 157 141 313
40 40 O/40\varnothing 40 M20 2 Ø22 876 245 221 252
50 50 O/50\emptyset 50 M24 2 Ø26 1.432 353 318 222
60 60 O/60\varnothing 60 M30 3 Ø33 1.971 561 505 256
70 70 O/70\varnothing 70 M36 3 Ø 39 2.653 817 735 277
80 80 O/80\varnothing 80 M42 3 45 45 O/45\varnothing 45 3.434 1.121 1.009 294
Ø90 M48 3 51 51 O/51\varnothing 51 4.317 1.473 1.326 307
Outside diameter ( + - -1 mm ) Bolt (mm) Clearance (mm) Hole diameter (+0,5//-1mm) Bushing area (mm) "As (mm^(2))" Yield strength x As (kN) Surface pressure ( N//mm^(2) ) Ø25 M12 2 Ø14 337 84,3 76 225 Ø 30 M16 2 Ø18 452 157 141 313 O/40 M20 2 Ø22 876 245 221 252 O/50 M24 2 Ø26 1.432 353 318 222 O/60 M30 3 Ø33 1.971 561 505 256 O/70 M36 3 Ø 39 2.653 817 735 277 O/80 M42 3 O/45 3.434 1.121 1.009 294 Ø90 M48 3 O/51 4.317 1.473 1.326 307| Outside diameter ( + - -1 mm ) | Bolt (mm) | Clearance (mm) | Hole diameter $(+0,5 /-1 \mathrm{~mm})$ | Bushing area (mm) | $\begin{gathered} \mathrm{As} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$ | Yield strength x As (kN) | Surface pressure ( $\mathrm{N} / \mathrm{mm}^{2}$ ) | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Ø25 | M12 | 2 | Ø14 | 337 | 84,3 | 76 | 225 | | Ø 30 | M16 | 2 | Ø18 | 452 | 157 | 141 | 313 | | $\varnothing 40$ | M20 | 2 | Ø22 | 876 | 245 | 221 | 252 | | $\emptyset 50$ | M24 | 2 | Ø26 | 1.432 | 353 | 318 | 222 | | $\varnothing 60$ | M30 | 3 | Ø33 | 1.971 | 561 | 505 | 256 | | $\varnothing 70$ | M36 | 3 | Ø 39 | 2.653 | 817 | 735 | 277 | | $\varnothing 80$ | M42 | 3 | $\varnothing 45$ | 3.434 | 1.121 | 1.009 | 294 | | Ø90 | M48 | 3 | $\varnothing 51$ | 4.317 | 1.473 | 1.326 | 307 |
Table 4-14 Prefered bushing dimensions for round holes.
表 4-14 圆孔的优选衬套尺寸。
  外径 ( + 1 m m ) ( + 1 m m ) (+-1mm)(\mathbf{+} \mathbf{- 1} \mathbf{~ m m})
Outside
diameter
( + 1 m m ) ( + 1 m m ) (+-1mm)(\mathbf{+} \mathbf{- 1} \mathbf{~ m m})
Outside diameter (+-1mm)| Outside | | :---: | | diameter | | $(\mathbf{+} \mathbf{- 1} \mathbf{~ m m})$ |
  螺栓 ( m m ) ( m m ) (mm)(\mathbf{m m})
Bolt
( m m ) ( m m ) (mm)(\mathbf{m m})
Bolt (mm)| Bolt | | :---: | | $(\mathbf{m m})$ |
  间隙 ( m m ) ( m m ) (mm)(\mathbf{m m})
Clearance
( m m ) ( m m ) (mm)(\mathbf{m m})
Clearance (mm)| Clearance | | :---: | | $(\mathbf{m m})$ |
  开槽孔宽度 ( + 0 , 5 1 m m m ) ( + 0 , 5 1 m m m ) (+0,51-mmm)(\mathbf{+ 0 , 5 1 - \mathbf { m } \mathbf { ~ m m } )}
Slotted
hole width
( + 0 , 5 1 m m m ) ( + 0 , 5 1 m m m ) (+0,51-mmm)(\mathbf{+ 0 , 5 1 - \mathbf { m } \mathbf { ~ m m } )}
Slotted hole width (+0,51-mmm)| Slotted | | :---: | | hole width | | $(\mathbf{+ 0 , 5 1 - \mathbf { m } \mathbf { ~ m m } )}$ |
  压力区域 ( m m ) ( m m ) (mm)(\mathbf{m m})
Pressure
area
( m m ) ( m m ) (mm)(\mathbf{m m})
Pressure area (mm)| Pressure | | :---: | | area | | $(\mathbf{m m})$ |
  作为 ( m m 2 ) m m 2 (mm^(2))\left(\mathbf{m m}^{\mathbf{2}}\right)
As
( m m 2 ) m m 2 (mm^(2))\left(\mathbf{m m}^{\mathbf{2}}\right)
As (mm^(2))| As | | :---: | | $\left(\mathbf{m m}^{\mathbf{2}}\right)$ |

屈服强度 x x x\mathbf{x} 作为 ( k N ) ( k N ) (kN)(\mathbf{k N})
Yield
strengh x x x\mathbf{x} As
( k N ) ( k N ) (kN)(\mathbf{k N})
Yield strengh x As (kN)| Yield | | :---: | | strengh $\mathbf{x}$ As | | $(\mathbf{k N})$ |
  表面压力 ( N / m m 2 ) N / m m 2 (N//mm^(2))\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)
Surface
pressure
( N / m m 2 ) N / m m 2 (N//mm^(2))\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)
Surface pressure (N//mm^(2))| Surface | | :---: | | pressure | | $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$ |
30 30 O/30\varnothing 30 M 12 2 14 303 84,3 76 251
40 40 O/40\varnothing 40 M 16 2 18 562 157 141 251
50 50 O/50\varnothing 50 M 20 2 22 900 245 221 246
60 60 O/60\varnothing 60 M 24 2 26 1.318 353 318 241
70 70 O/70\varnothing 70 M 30 3 33 1.627 561 505 310
90 90 O/90\varnothing 90 M 36 3 39 2.965 817 735 248
100 100 O/100\varnothing 100 M 42 3 45 3.511 1.121 1.009 287
110 110 O/110\varnothing 110 M 48 3 51 4.101 1.473 1.326 323
"Outside diameter (+-1mm)" "Bolt (mm)" "Clearance (mm)" "Slotted hole width (+0,51-mmm)" "Pressure area (mm)" "As (mm^(2))" "Yield strengh x As (kN)" "Surface pressure (N//mm^(2))" O/30 M 12 2 14 303 84,3 76 251 O/40 M 16 2 18 562 157 141 251 O/50 M 20 2 22 900 245 221 246 O/60 M 24 2 26 1.318 353 318 241 O/70 M 30 3 33 1.627 561 505 310 O/90 M 36 3 39 2.965 817 735 248 O/100 M 42 3 45 3.511 1.121 1.009 287 O/110 M 48 3 51 4.101 1.473 1.326 323| Outside <br> diameter <br> $(\mathbf{+} \mathbf{- 1} \mathbf{~ m m})$ | Bolt <br> $(\mathbf{m m})$ | Clearance <br> $(\mathbf{m m})$ | Slotted <br> hole width <br> $(\mathbf{+ 0 , 5 1 - \mathbf { m } \mathbf { ~ m m } )}$ | Pressure <br> area <br> $(\mathbf{m m})$ | As <br> $\left(\mathbf{m m}^{\mathbf{2}}\right)$ | Yield <br> strengh $\mathbf{x}$ As <br> $(\mathbf{k N})$ | Surface <br> pressure <br> $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\varnothing 30$ | M 12 | 2 | 14 | 303 | 84,3 | 76 | 251 | | $\varnothing 40$ | M 16 | 2 | 18 | 562 | 157 | 141 | 251 | | $\varnothing 50$ | M 20 | 2 | 22 | 900 | 245 | 221 | 246 | | $\varnothing 60$ | M 24 | 2 | 26 | 1.318 | 353 | 318 | 241 | | $\varnothing 70$ | M 30 | 3 | 33 | 1.627 | 561 | 505 | 310 | | $\varnothing 90$ | M 36 | 3 | 39 | 2.965 | 817 | 735 | 248 | | $\varnothing 100$ | M 42 | 3 | 45 | 3.511 | 1.121 | 1.009 | 287 | | $\varnothing 110$ | M 48 | 3 | 51 | 4.101 | 1.473 | 1.326 | 323 |
Table 4-15 Prefered bushing dimension dimensions for slotted holes.
表 4-15 槽孔的优选衬套尺寸。
It is possible to use a tube instead of a rod with machined hole but be aware of surface pressure below washer and support of bolt head and nut.
可以使用管子代替带有加工孔的杆,但要注意垫圈下的表面压力以及螺栓头和螺母的支撑。
Standard  标准 Headline  标题 Comment  评论
EN 10297-1 Seamless circular steel tubes.
无缝圆形钢管。
Seamless  无缝
EN 10294-1 Hollow bars for machining.
用于加工的空心棒。
Seamless  无缝
EN 10216-3 Seamless steel tubes for pressure purposes.
用于压力目的的无缝钢管。
Seamless  无缝
EN 10210-1 Hot finished structural hollow sections.
热轧结构空心截面。
Seamless  无缝
EN 10210-2
Standard Headline Comment EN 10297-1 Seamless circular steel tubes. Seamless EN 10294-1 Hollow bars for machining. Seamless EN 10216-3 Seamless steel tubes for pressure purposes. Seamless EN 10210-1 Hot finished structural hollow sections. Seamless EN 10210-2 | Standard | Headline | Comment | | :--- | :--- | :--- | | EN 10297-1 | Seamless circular steel tubes. | Seamless | | EN 10294-1 | Hollow bars for machining. | Seamless | | EN 10216-3 | Seamless steel tubes for pressure purposes. | Seamless | | EN 10210-1 | Hot finished structural hollow sections. | Seamless | | EN 10210-2 | | |
Table 4-16: Standard tube for bushing
表 4-16:衬套标准管

Using washer on top of bushings is often preferred because of surface pressure - see VDI or table below. If not possible to place washer then shall the bushing be chamfered to avoid rounding hitting bolt hitting the edge, see “r” in figure to the right. The chamfer is only needed by bolt head end.
在衬套上方使用垫圈通常是首选,因为表面压力 - 请参见 VDI 或下表。如果无法放置垫圈,则应对衬套进行倒角,以避免螺栓撞击边缘时出现圆角,请参见右侧图中的“r”。倒角仅在螺栓头端需要。

Figure 4-21 Be aware of " " and surface pressire
图 4-21 注意“ ”和表面压力
Bushing without washer can sometime be nesseasy. Example of bushing without washer: 29014536
没有垫圈的衬套有时是必要的。没有垫圈的衬套示例:29014536

4.13.2 Main rules of compression length.
4.13.2 压缩长度的主要规则。

To ensure the right performance of a bolt joint (Not relevant for Bob tails) below rules must be followed, where L L LL is clamping length incl. washer and D D DD is diameter of the bolt:
为了确保螺栓连接的正确性能(与 Bob tails 无关),必须遵循以下规则,其中 L L LL 是包括垫圈在内的夹紧长度, D D DD 是螺栓的直径:
The final connection must always be approved by designer responsible for structural strength of the bolted connection.
最终连接必须始终经过负责螺栓连接结构强度的设计师的批准。

Figure 4-22 Compresion length
图 4-22 压缩长度

Figure 4-23 Example of splice plate connection. Be aware of plate thickness tolerance issues
图 4-23 拼接板连接示例。注意板厚公差问题。

Figure 4-24 Loosening a wedge lock washer requires higher torque
图 4-24 松开楔形锁垫圈需要更高的扭矩
  • LID 8 8 >= 8\geq 8 recommend for tension tightened stud bolt. Must be evaluated by specialists because this type of connection has a load loss (spring back). The spring back depends both on nut type and clamping length. Tests performed by Vestas measured remaining clamping force from 65 % 65 % 65%65 \% to 85 % 85 % 85%85 \% depending on nut type by L / D = 4 L / D = 4 L//D=4L / D=4. Clamping length has big impact too. See 5.3.
    LID 8 8 >= 8\geq 8 推荐用于张紧螺栓。必须由专家评估,因为这种连接类型存在负载损失(回弹)。回弹取决于螺母类型和夹紧长度。Vestas 进行的测试根据螺母类型测量了剩余夹紧力,从 65 % 65 % 65%65 \% 85 % 85 % 85%85 \% ,由 L / D = 4 L / D = 4 L//D=4L / D=4 进行。夹紧长度也有很大影响。见 5.3。
  • LID 5 5 >= 5\geq 5. Compression length if the bolted joint is vibration loaded. (Example connection between main rear structural beam and front base frame, 4MW platform)
    LID 5 5 >= 5\geq 5 . 如果螺栓连接受到振动载荷,压缩长度。 (示例连接:主后结构梁与前底座框架之间,4MW 平台)
  • LID >=\geq 4. For vibration loaded splice plate connection (friction connections) where the bolt is not directly fatigue loaded. (Example stiffness cross, 4MW platform)
    LID >=\geq 4. 对于振动加载的拼接板连接(摩擦连接),其中螺栓并未直接承受疲劳载荷。(示例刚度交叉,4MW 平台)
  • LID 3 , 5 3 , 5 >= 3,5\geq 3,5. For limited vibration loaded machined flanges. (Example crane gallery 4MW platform)
    LID 3 , 5 3 , 5 >= 3,5\geq 3,5 。用于有限振动负载的机械法兰。(例如起重机画廊 4MW 平台)
  • LID 3 3 >= 3\geq 3. Compression length if not vibration loaded and joint not high load. (Example moveable beam, 4MW platform)
    LID 3 3 >= 3\geq 3 . 如果没有振动载荷且接头不是高载荷,则为压缩长度。(例如可移动梁,4MW 平台)
  • LID < 3. Short connection. Issue with a short bolt connection is loss of clamping load, reduced fatigue strength and sensitive to bending stress because of joint face angularity. (Example floor plate support, 4MW platform)
    LID < 3。短连接。短螺栓连接的问题是夹紧载荷的丧失、疲劳强度降低以及由于接头面角度不正而对弯曲应力敏感。(例如地板板支撑,4MW 平台)
  • LID < 4. Short bolts up to and including M20: Prevailing torque locks nut, locking agent solution or wedge lock washers often needed. Prevailing torque lock nut preferred. Locking agent is not used when retightening is required. For details see TPS 920098 chapter about using thread-locking agent
    LID < 4. 短螺栓(包括 M20): 预紧扭矩锁定螺母,通常需要锁定剂溶液或楔形锁垫圈。优选使用预紧扭矩锁定螺母。当需要重新紧固时不使用锁定剂。有关详细信息,请参见 TPS 920098 中关于使用螺纹锁定剂的章节。

Max bolt length torque/tension
最大螺栓长度扭矩/拉力

The standard EN1090-2:  标准 EN1090-2:
Standard bolt normally limited to about length / / /// diameter = 10 = 10 =10=10. If the ratio length / / /// diameter is > 10 > 10 > 10>10 then is stud bolt solution with direct tension tool recommended
标准螺栓通常限制在约长度 / / /// 直径 = 10 = 10 =10=10 。如果长度 / / /// 与直径的比率为 > 10 > 10 > 10>10 ,则建议使用带有直接拉紧工具的螺柱螺栓解决方案。

Figure 4-25 If ratio compression length / diameter L/D < 4 < 4 < 4<4 there is a risk of bolt loosening.
图 4-25 如果比率压缩长度/直径 L/D < 4 < 4 < 4<4 ,则存在螺栓松动的风险。

4.14 Hole size  4.14 孔径

In below table are the preferred diameters listed. For tolerance see DMS 0007-0179.
下表列出了首选直径。有关公差,请参见 DMS 0007-0179。
  • Normal size holes preferred for machined structural items.
    优选用于机械加工结构件的标准尺寸孔。
  • Oversize holes are needed for galvanized welded and sheet metal
    镀锌焊接和薄板需要超大孔
  • Be aware of the reduced friction force using oversize holes and slotted holes.
    注意使用超大孔和开槽孔时摩擦力的减少。
  • Towers are using +3 mm for all bolt sizes
    塔楼对所有螺栓尺寸使用 +3 mm
Thread diameter  螺纹直径 M4 M5 M6 M8 M10 M12 M16 M20
Normal-ISO273(M) & EN1090 5 5 O/5\varnothing 5 6 6 O/6\varnothing 6 7 7 O/7\varnothing 7 9 9 O/9\varnothing 9 11 11 O/11\varnothing 11 13 , 5 13 , 5 O/13,5\varnothing 13,5 17 , 5 17 , 5 O/17,5\varnothing 17,5 22 22 O/22\varnothing 22
Oversize-EN1090-2 5 , 5 5 , 5 O/5,5\varnothing 5,5 6 , 5 6 , 5 O/6,5\varnothing 6,5 8 8 O/8\varnothing 8 10 10 O/10\varnothing 10 12 12 O/12\varnothing 12 15 15 O/15\varnothing 15 20 20 O/20\varnothing 20 24 24 O/24\varnothing 24
Thread diameter M4 M5 M6 M8 M10 M12 M16 M20 Normal-ISO273(M) & EN1090 O/5 O/6 O/7 O/9 O/11 O/13,5 O/17,5 O/22 Oversize-EN1090-2 O/5,5 O/6,5 O/8 O/10 O/12 O/15 O/20 O/24| Thread diameter | M4 | M5 | M6 | M8 | M10 | M12 | M16 | M20 | | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Normal-ISO273(M) & EN1090 | $\varnothing 5$ | $\varnothing 6$ | $\varnothing 7$ | $\varnothing 9$ | $\varnothing 11$ | $\varnothing 13,5$ | $\varnothing 17,5$ | $\varnothing 22$ | | Oversize-EN1090-2 | $\varnothing 5,5$ | $\varnothing 6,5$ | $\varnothing 8$ | $\varnothing 10$ | $\varnothing 12$ | $\varnothing 15$ | $\varnothing 20$ | $\varnothing 24$ |
Thread diameter  螺纹直径 M24 M30 M33 M36 M42 M48 M56 M64
Normal- ISO273(M) & EN1090
正常 - ISO273(M) & EN1090
26 26 O/26\varnothing 26 33 33 O/33\varnothing 33 36 36 O/36\varnothing 36 39 39 O/39\varnothing 39 45 45 O/45\varnothing 45 51 51 O/51\varnothing 51 61 61 O/61\varnothing 61 67 67 O/67\varnothing 67
Oversize - EN 1090-2
超大 - EN 1090-2
30 30 O/30\varnothing 30 38 38 O/38\varnothing 38 41 41 O/41\varnothing 41 44 44 O/44\varnothing 44 50 50 O/50\varnothing 50 56 56 O/56\varnothing 56 62 62 O/62\varnothing 62 72 72 O/72\varnothing 72
Thread diameter M24 M30 M33 M36 M42 M48 M56 M64 Normal- ISO273(M) & EN1090 O/26 O/33 O/36 O/39 O/45 O/51 O/61 O/67 Oversize - EN 1090-2 O/30 O/38 O/41 O/44 O/50 O/56 O/62 O/72| Thread diameter | M24 | M30 | M33 | M36 | M42 | M48 | M56 | M64 | | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Normal- ISO273(M) & EN1090 | $\varnothing 26$ | $\varnothing 33$ | $\varnothing 36$ | $\varnothing 39$ | $\varnothing 45$ | $\varnothing 51$ | $\varnothing 61$ | $\varnothing 67$ | | Oversize - EN 1090-2 | $\varnothing 30$ | $\varnothing 38$ | $\varnothing 41$ | $\varnothing 44$ | $\varnothing 50$ | $\varnothing 56$ | $\varnothing 62$ | $\varnothing 72$ |
Table 4-17 Dimensions of normal and oversize. Normal holes fulfill both ISO273 (M) & EN1090-2 and oversize only EN1090-2
表 4-17 正常孔和超大孔的尺寸。正常孔符合 ISO273 (M)和 EN1090-2,而超大孔仅符合 EN1090-2。
Thread diameter  螺纹直径 M12 M16 M20 M24

短槽孔 - EN1090-2 - DNVGL-ST-0126:2016
Short slotted holes - EN1090-2
-DNVGL-ST-0126:2016
Short slotted holes - EN1090-2 -DNVGL-ST-0126:2016| Short slotted holes - EN1090-2 | | :--- | | -DNVGL-ST-0126:2016 |
13 , 5 × 16 13 , 5 × 16 13,5xx1613,5 \times 16 17 , 5 × 22 17 , 5 × 22 17,5xx2217,5 \times 22 22 × 26 22 × 26 22 xx2622 \times 26 26 × 32 26 × 32 26 xx3226 \times 32

长槽孔 EN 1090-2 -DNVGL-ST-0126:2016
Long slotted holes EN 1090-2
-DNVGL-ST-0126:2016
Long slotted holes EN 1090-2 -DNVGL-ST-0126:2016| Long slotted holes EN 1090-2 | | :--- | | -DNVGL-ST-0126:2016 |
15 × 30 15 × 30 15 xx3015 \times 30 19 × 40 19 × 40 19 xx4019 \times 40 23 × 50 23 × 50 23 xx5023 \times 50 28 × 60 28 × 60 28 xx6028 \times 60
Thread diameter M12 M16 M20 M24 "Short slotted holes - EN1090-2 -DNVGL-ST-0126:2016" 13,5xx16 17,5xx22 22 xx26 26 xx32 "Long slotted holes EN 1090-2 -DNVGL-ST-0126:2016" 15 xx30 19 xx40 23 xx50 28 xx60| Thread diameter | M12 | M16 | M20 | M24 | | :--- | :---: | :---: | :---: | :---: | | Short slotted holes - EN1090-2 <br> -DNVGL-ST-0126:2016 | $13,5 \times 16$ | $17,5 \times 22$ | $22 \times 26$ | $26 \times 32$ | | Long slotted holes EN 1090-2 <br> -DNVGL-ST-0126:2016 | $15 \times 30$ | $19 \times 40$ | $23 \times 50$ | $28 \times 60$ |
Table 4-18 Dimensions slotted holes.
表 4-18 开槽孔的尺寸。

4.15 General Thread Design rules
4.15 一般螺纹设计规则

4.15.1 Thread after nut.
4.15.1 螺母后的螺纹。

The standard DIN 78 describes thread length after nut.
标准 DIN 78 描述了螺母后的螺纹长度。
Thread D  螺纹 D M3 M4 M5 M6 M8
P b P P^("b ")P^{\text {b }} 0,5 0,7 0,8 1 1,25
max.  最大。 3,45 4,60 5,75 6,75 8,75
a a min a a min a_(a)min\mathrm{a}_{\mathrm{a}} \mathrm{min}. 3,00 4,00 5,00 6,00 8,00
d w min d min d_("w ")quadmind_{\text {w }} \quad \mathrm{min}. 4,57 5,88 6,88 8,88 11,63
e min e min e quadmine \quad \mathrm{~min}. 6,01 7,66 8,79 11,05 14,38
h max.  h 最大值。 4,50 6,00 6,80 8,00 9,50
https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-30.jpg?height=271&width=519&top_left_y=670&top_left_x=219 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-30.jpg?height=289&width=377&top_left_y=721&top_left_x=797 Thread D M3 M4 M5 M6 M8 P^("b ") 0,5 0,7 0,8 1 1,25 max. 3,45 4,60 5,75 6,75 8,75 a_(a)min. 3,00 4,00 5,00 6,00 8,00 d_("w ")quadmin. 4,57 5,88 6,88 8,88 11,63 e quadmin. 6,01 7,66 8,79 11,05 14,38 h max. 4,50 6,00 6,80 8,00 9,50| ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-30.jpg?height=271&width=519&top_left_y=670&top_left_x=219) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-30.jpg?height=289&width=377&top_left_y=721&top_left_x=797) | Thread D | M3 | M4 | M5 | M6 | M8 | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | | $P^{\text {b }}$ | 0,5 | 0,7 | 0,8 | 1 | 1,25 | | | | max. | 3,45 | 4,60 | 5,75 | 6,75 | 8,75 | | | | $\mathrm{a}_{\mathrm{a}} \mathrm{min}$. | 3,00 | 4,00 | 5,00 | 6,00 | 8,00 | | | | $d_{\text {w }} \quad \mathrm{min}$. | 4,57 | 5,88 | 6,88 | 8,88 | 11,63 | | | | $e \quad \mathrm{~min}$. | 6,01 | 7,66 | 8,79 | 11,05 | 14,38 | | | | h max. | 4,50 | 6,00 | 6,80 | 8,00 | 9,50 |
Figure 4-26 By standard nut (left picture) must thread length be at least 2,5xP (Vestas rule - 2xP acc. to DIN 78) after the nut. The thread length for prevailing torque lock nuts (right) shall be 3 × P 3 × P 3xxP3 \times \mathrm{P} acc. to DIN78 (and max 7xP acc. ISO 2320)
图 4-26 标准螺母(左图)在螺母后必须至少有 2.5xP 的螺纹长度(Vestas 规则 - 根据 DIN 78 为 2xP)。对于抗扭锁螺母(右图),根据 DIN78 螺纹长度应为 3 × P 3 × P 3xxP3 \times \mathrm{P} (并且根据 ISO 2320 最大为 7xP)。

4.15.2 Threaded blind bolt hole connection / length of thread.
4.15.2 螺纹盲孔连接 / 螺纹长度。

A threaded hole is more expensive than a nut/bolt solution.
螺纹孔比螺母/螺栓解决方案更昂贵。

Threaded hole - be aware of:
螺纹孔 - 注意:
  • Risk of bolt hitting the hole bottom and thereby no pre-tension.
    螺栓撞击孔底的风险,从而没有预紧力。
  • If possible, use through threaded hole (not blind hole)
    如果可能,请使用通孔(而不是盲孔)
  • Surface treatment, hole need to be covered or cut after surface treatment
    表面处理,孔在表面处理后需要被覆盖或切割
  • Damaged thread difficult to repair (Use Heli-Coi ® ® ^(®){ }^{\circledR} )
    损坏的螺纹难以修复(使用 Heli-Coi ® ® ^(®){ }^{\circledR}
PWI 0009-4182 Heli-Coil General up to and including M16
PWI 0009-4182 Heli-Coil 一般适用于 M16 及以下

M20 and above must evaluated separately case by case and unique PWI made
M20 及以上必须逐个案例单独评估,并制作独特的 PWI

Vestas has successful used Heli-Coil ® ® ^(®){ }^{\circledR} for non-conformity cases
Vestas 成功地在不合规案例中使用了 Heli-Coil ® ® ^(®){ }^{\circledR}
  • Blind hole. Difficult to manufacture and clean after manufacturing
    盲孔。制造困难,制造后清洁困难。
  • Corrosion protection of thread
    螺纹的防腐保护
  • Clamping length shorter  夹紧长度较短
  • Check thread depth of engagement
    检查螺纹啮合深度
  • Check length of thread by through threaded hole
    通过螺纹孔检查螺纹长度


    Figure  图形
Size 'M'  尺寸 'M' Coarse Pitch [mm]  粗螺距 [mm] 'U' [ m m ] [ m m ] [mm]\mathbf{~ [ m m ] ~}
5 0,8 1,6
6 1 2,0
8 1,25 2,5
10 1,5 3
12 1,75 3,5
16 2 4
20 2,5 5
24 3 6
30 3,5 7
36 4 8
42 4,5 9
48 52 48 52 48-5248-52 5 10
56 5,5 11
64 6 12
Size 'M' Coarse Pitch [mm] 'U' [mm] 5 0,8 1,6 6 1 2,0 8 1,25 2,5 10 1,5 3 12 1,75 3,5 16 2 4 20 2,5 5 24 3 6 30 3,5 7 36 4 8 42 4,5 9 48-52 5 10 56 5,5 11 64 6 12| Size 'M' | Coarse Pitch [mm] | 'U' $\mathbf{~ [ m m ] ~}$ | | :---: | :---: | :---: | | 5 | 0,8 | 1,6 | | 6 | 1 | 2,0 | | 8 | 1,25 | 2,5 | | 10 | 1,5 | 3 | | 12 | 1,75 | 3,5 | | 16 | 2 | 4 | | 20 | 2,5 | 5 | | 24 | 3 | 6 | | 30 | 3,5 | 7 | | 36 | 4 | 8 | | 42 | 4,5 | 9 | | $48-52$ | 5 | 10 | | 56 | 5,5 | 11 | | 64 | 6 | 12 |
Figure 4-27 Blind holes. Minimum 3xP thread clearance at bottom of hole + unthreaded hole below thread.
图 4-27 盲孔。孔底部最小 3xP 螺纹间隙 + 螺纹下方的无螺纹孔。
An overlap (thread contact length) I e / D 2 I e / D 2 I_(e)//D >= 2I_{e} / D \geq 2 is not recommended as then the bolt can lock itself.
不推荐使用重叠(螺纹接触长度) I e / D 2 I e / D 2 I_(e)//D >= 2I_{e} / D \geq 2 ,因为这样螺栓可能会自锁。

Length of drilled thread = I e + 3 P = I e + 3 P =I_(e)+3P=I_{e}+3 P.
钻孔螺纹的长度 = I e + 3 P = I e + 3 P =I_(e)+3P=I_{e}+3 P

Link to tool supplier: http://www.camcut.fi/pdf/handbook-prototyp-threading-us.pdf
工具供应商链接:http://www.camcut.fi/pdf/handbook-prototyp-threading-us.pdf
The bore diameter must be the same as holes for bolts.
孔径直径必须与螺栓孔相同。

The thread run-out “e” must be minimum according to DIN 76-1
螺纹延伸“e”必须符合 DIN 76-1 的最小要求
General tolerance on “e” is:
“e”的一般公差是:

Upper: +5 mm .
上限:+5 毫米。

Lower: 0 mm .
下限:0 毫米。
As a rule of thumb, chamfer f 2 f 2 f_(2)\mathrm{f}_{2} can be expressed as a function of the pitch.
作为经验法则,倒角 f 2 f 2 f_(2)\mathrm{f}_{2} 可以表示为螺距的函数。

f 2 = P × 0 , 8 f 2 = P × 0 , 8 f_(2)=Pxx0,8\mathrm{f}_{2}=\mathrm{P} \times 0,8
f 2 f 2 f_(2)\mathrm{f}_{2} must be used in the thread engagement length calculation. Not to be displayed in the model.
f 2 f 2 f_(2)\mathrm{f}_{2} 必须用于螺纹啮合长度的计算。不得在模型中显示。

STANDARD
OPTIONAL
M-size e le ]
3 2,8 1,8 4,5
4 3,8 2,4 6,1
5 4,2 2,7 6,8
6 5,1 3,2 8,2
8 6,2 3,9 10
10 7,3 4,6 11,6
12 8,3 5,2 13,3
14 14 14 14 14^(14)14{ }^{14} 9,3 5,8 14,8
18
22 20 22 20 22quad2022 \quad 20 11,2 17,9
24.27 13,1 8,2 21
3033 15,2 9,5 24,3
3639
STANDARD OPTIONAL M-size e le ] 3 2,8 1,8 4,5 4 3,8 2,4 6,1 5 4,2 2,7 6,8 6 5,1 3,2 8,2 8 6,2 3,9 10 10 7,3 4,6 11,6 12 8,3 5,2 13,3 14^(14) 9,3 5,8 14,8 18 22quad20 11,2 17,9 24.27 13,1 8,2 21 3033 15,2 9,5 24,3 3639 | STANDARD | | | | | :---: | :---: | :---: | :---: | | OPTIONAL | | | | | M-size | e | le | ] | | 3 | 2,8 | 1,8 | 4,5 | | 4 | 3,8 | 2,4 | 6,1 | | 5 | 4,2 | 2,7 | 6,8 | | 6 | 5,1 | 3,2 | 8,2 | | 8 | 6,2 | 3,9 | 10 | | 10 | 7,3 | 4,6 | 11,6 | | 12 | 8,3 | 5,2 | 13,3 | | $14{ }^{14}$ | 9,3 | 5,8 | 14,8 | | 18 | | | | | $22 \quad 20$ | 11,2 | | 17,9 | | 24.27 | 13,1 | 8,2 | 21 | | 3033 | 15,2 | 9,5 | 24,3 | | 3639 | | | |
Figure 4-28 Thread run-out “e” & " f 2 f 2 f_(2)\mathrm{f}_{2} "
图 4-28 螺纹延伸 “e” & " f 2 f 2 f_(2)\mathrm{f}_{2} "
Minimum thread engagement l e l e l_(e)l_{e} must be calculated using 0066-0218.
最小螺纹啮合 l e l e l_(e)l_{e} 必须使用 0066-0218 进行计算。

4.16 Bolt connection for oversize or slotted holes
4.16 超大或开槽孔的螺栓连接

4.16.1 Oversize and short slotted holes
4.16.1 超大和短槽孔

A standard washer can be used with oversize holes and short slotted holes
标准垫圈可用于超大孔和短槽孔

4.16.2 Long slotted holes
4.16.2 长槽孔

Designs with long slotted holes are often needed because of tolerance chains.
由于公差链的原因,通常需要带有长槽孔的设计。

A special thick washer ISO 7093 must be together with a washer ISO 7089.
特殊厚垫圈 ISO 7093 必须与垫圈 ISO 7089 一起使用。

In case where space is limited washers acc. to TPS 0001-0721 can be used.
在空间有限的情况下,可以使用符合 TPS 0001-0721 的垫圈。

Figure 4-29 Washer ISO 7093 + ISO 7089 for slotted hole. If slotted below both bolt head and nut ISO 7089 is to be used at both places.
图 4-29 用于开槽孔的垫圈 ISO 7093 + ISO 7089。如果在螺栓头和螺母下方都有开槽,则在两个地方都应使用 ISO 7089。
Bolt  螺栓 M6 M8 M10 M12 M16 M20 M 24 M 24 >= M24\geq \mathrm{M} 24
A4-70 ISO 7093 ISO 7093 Avoid  避免 Avoid  避免 Avoid  避免 Avoid  避免 Avoid long slotted  避免长槽型
8.8 Avoid  避免 Avoid  避免 ISO 7093 + ISO 7089  ISO  7093 +  ISO  7089 {:[" ISO "7093],[+],[" ISO "7089]:}\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered} ISO 7093 + ISO 7089  ISO  7093 +  ISO  7089 {:[" ISO "7093],[+],[" ISO "7089]:}\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered} ISO 7093 + ISO 7089  ISO  7093 +  ISO  7089 [" ISO "7093],[+],[" ISO "7089]\begin{gathered} \hline \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered} ISO 7093 + ISO 7089  ISO  7093 +  ISO  7089 {:[" ISO "7093],[+],[" ISO "7089]:}\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered} Avoid long slotted  避免长槽型
8.8 Optional solution  8.8 可选解决方案 Avoid  避免 Avoid  避免 897313 897314 897316 897317 Avoid long slotted  避免长槽型
10.9 Avoid  避免 Avoid  避免 ISO 7093 + TPS 900194  ISO  7093  + TPS  900194 {:[" ISO "7093],[" + TPS "],[900194]:}\begin{gathered} \text { ISO } 7093 \\ \text { + TPS } \\ 900194 \end{gathered} ISO 7093 + TPS 900194  ISO  7093 +  TPS  900194 {:[" ISO "7093],[+" TPS "],[900194]:}\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered} ISO 7093 + TPS 900194  ISO  7093 +  TPS  900194 {:[" ISO "7093],[+" TPS "],[900194]:}\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered} ISO 7093 + TPS 900194  ISO  7093 +  TPS  900194 {:[" ISO "7093],[+" TPS "],[900194]:}\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered} Avoid long slotted  避免长槽型
Bolt M6 M8 M10 M12 M16 M20 >= M24 A4-70 ISO 7093 ISO 7093 Avoid Avoid Avoid Avoid Avoid long slotted 8.8 Avoid Avoid " ISO 7093 + ISO 7089" " ISO 7093 + ISO 7089" " ISO 7093 + ISO 7089" " ISO 7093 + ISO 7089" Avoid long slotted 8.8 Optional solution Avoid Avoid 897313 897314 897316 897317 Avoid long slotted 10.9 Avoid Avoid " ISO 7093 + TPS 900194" " ISO 7093 + TPS 900194" " ISO 7093 + TPS 900194" " ISO 7093 + TPS 900194" Avoid long slotted| Bolt | M6 | M8 | M10 | M12 | M16 | M20 | $\geq \mathrm{M} 24$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | A4-70 | ISO 7093 | ISO 7093 | Avoid | Avoid | Avoid | Avoid | Avoid long slotted | | 8.8 | Avoid | Avoid | $\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered}$ | $\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered}$ | $\begin{gathered} \hline \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered}$ | $\begin{gathered} \text { ISO } 7093 \\ + \\ \text { ISO } 7089 \end{gathered}$ | Avoid long slotted | | 8.8 Optional solution | Avoid | Avoid | 897313 | 897314 | 897316 | 897317 | Avoid long slotted | | 10.9 | Avoid | Avoid | $\begin{gathered} \text { ISO } 7093 \\ \text { + TPS } \\ 900194 \end{gathered}$ | $\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered}$ | $\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered}$ | $\begin{gathered} \text { ISO } 7093 \\ + \text { TPS } \\ 900194 \end{gathered}$ | Avoid long slotted |
Table 4-19 Bolt quality acc Table 4-3 used.
表 4-19 螺栓质量 acc 表 4-3 使用。

4.17 Hole position (Distance between holes)
4.17 孔位(孔间距)

Important: Be aware of hole reduces the cross section and introduced notch effect.
重要:请注意,孔会减少截面并引入缺口效应。

If more bolts are needed in a joint, some dimensions between holes and to edges must be kept.
如果在一个接头中需要更多的螺栓,则必须保持孔与边缘之间的一些尺寸。

DNVGL-ST-0361 2016 describes when to use VDI 2230:2015 or EN 1993-1-8. See chap. 5.3.2
DNVGL-ST-0361 2016 描述了何时使用 VDI 2230:2015 或 EN 1993-1-8。见第 5.3.2 节。

4.17.1 Recommendations taken from EN 1993-1-8: 2005
4.17.1 根据 EN 1993-1-8: 2005 的建议

Figure 4-30: Position of holes
图 4-30:孔的位置
Distances  距离 Minimum  最小值
End distance e1  端距 e1 1 , 2 × 1 , 2 × 1,2xx1,2 \times
Edge distance e2  边距 e2 1 , 2 × d 1 , 2 × d 1,2xxd1,2 \times \mathrm{d}
Edge distances in slotted holes e3
开槽孔中的边距 e3
1 , 5 × d 1 , 5 × d 1,5xxd1,5 \times \mathrm{d}
End distance in slotted holes e4
开槽孔的端距 e4
1 , 5 × d 1 , 5 × d 1,5xxd1,5 \times \mathrm{d}
Spacing p1  间距 p1 2 , 2 × d 2 , 2 × d 2,2xxd2,2 \times \mathrm{d}
Spacing p2  间距 p2 2 , 4 × d 2 , 4 × d 2,4xxd2,4 \times \mathrm{d}
't' is the smallest material thickness in the joint.
't' 是接头中最小的材料厚度。
Distances Minimum End distance e1 1,2xx Edge distance e2 1,2xxd Edge distances in slotted holes e3 1,5xxd End distance in slotted holes e4 1,5xxd Spacing p1 2,2xxd Spacing p2 2,4xxd 't' is the smallest material thickness in the joint. | Distances | Minimum | | | :--- | :--- | :---: | | End distance e1 | $1,2 \times$ | | | Edge distance e2 | $1,2 \times \mathrm{d}$ | | | Edge distances in slotted holes e3 | $1,5 \times \mathrm{d}$ | | | End distance in slotted holes e4 | $1,5 \times \mathrm{d}$ | | | Spacing p1 | $2,2 \times \mathrm{d}$ | | | Spacing p2 | $2,4 \times \mathrm{d}$ | | | 't' is the smallest material thickness in the joint. | | |
Table 4-20 Minimum distances between holes and to edge.
表 4-20 孔与边缘之间的最小距离。

4.17.2 Recommendations taken from VDI 2230:2015
4.17.2 根据 VDI 2230:2015 的建议

For the geometrical design of the hole pattern, with the distances e e ee (starting from the hole/bolt longitudinal axis), the following applies:
对于孔型的几何设计,距离 e e ee (从孔/螺栓纵向轴开始)适用以下内容:
In the direction of the transverse load:
在横向载荷的方向上:
  • Up to the edges e0 min = 3 d h = 3 d h =3*dh=3 \cdot d \mathrm{~h}
    到边缘 e0 min = 3 d h = 3 d h =3*dh=3 \cdot d \mathrm{~h}
  • Between the bolts e1 min =3 dh dh *dh\cdot \mathrm{dh}
    在螺栓之间 e1 min =3 dh dh *dh\cdot \mathrm{dh}
Perpendicularly to the transverse load:
垂直于横向载荷:
  • Up to the edges e2 min = 1,5 • dh
    到边缘 e2 min = 1.5 • dh
  • Between the bolts e3 min =3 d h d h *dh\cdot d \mathrm{~h}
    在螺栓之间 e3 min =3 d h d h *dh\cdot d \mathrm{~h}

4.18 Corrosion  4.18 腐蚀

4.18.1 Galvanic corrosion
4.18.1 电化学腐蚀

Galvanic scale: Gold passive and zinc active
电化学系列:金被动和锌主动
Cu A A Cu A A Cu_(A)A\mathrm{Cu}_{\mathrm{A}} \mathrm{A}
Zn
3 Cu , A 2 Cu , A 2 Cu,A2\mathrm{Cu}, \mathrm{A} 2
Zn 3 Cu,A2| Zn | | :--- | | 3 $\mathrm{Cu}, \mathrm{A} 2$ |
Gold, solid and plated.
金,实心和镀金。
Silver, solid or plated.
银,实心或镀层。
Nickel, solid or plated.
镍,实心或镀镍。
Copper, brass and bronzes, solid or plated.
铜、黄铜和青铜,实心或镀层。
Stainless steels  不锈钢
Iron or steels  铁或钢
Aluminium,  铝,
Hot-dip-zinc plate; galvanized steel
热浸锌板;镀锌钢
Zinc  
Galvanic scale: Gold passive and zinc active Cu_(A)A "Zn 3 Cu,A2" Gold, solid and plated. Silver, solid or plated. Nickel, solid or plated. Copper, brass and bronzes, solid or plated. Stainless steels https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-34.jpg?height=315&width=288&top_left_y=895&top_left_x=1120 Iron or steels Aluminium, Hot-dip-zinc plate; galvanized steel Zinc | Galvanic scale: Gold passive and zinc active | $\mathrm{Cu}_{\mathrm{A}} \mathrm{A}$ | Zn <br> 3 $\mathrm{Cu}, \mathrm{A} 2$ | | :---: | :---: | :---: | | Gold, solid and plated. | | | | Silver, solid or plated. | | | | Nickel, solid or plated. | | | | Copper, brass and bronzes, solid or plated. | | | | Stainless steels | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-34.jpg?height=315&width=288&top_left_y=895&top_left_x=1120) | | | Iron or steels | | | | | Aluminium, | | | | | Hot-dip-zinc plate; galvanized steel | | | | | Zinc | | | |
Table 4-21 In case of contact between two different metals and in the presence of moisture (electrolyte) there is a potential difference. E.g. tZn bolt on copper is bad but copper bolt on zinc is acceptable.
表 4-21 在两种不同金属接触并存在湿气(电解质)的情况下,会产生电位差。例如,锌螺栓与铜接触是不好的,但铜螺栓与锌接触是可以接受的。

Figure 4-31 Risk for galvanic corrosion for a stainless steel A4. A4 is cathode and zinc plate anode. To reduce risk must the surface of the anode be much bigger than the cathode. Other combinations listed too.
图 4-31 不锈钢 A4 的电偶腐蚀风险。A4 为阴极,锌板为阳极。为了降低风险,阳极的表面必须远大于阴极。其他组合也列出。

4.18.2 Crevice corrosion
4.18.2 裂缝腐蚀

Crevice corrosion occurs in cracks, pores and other places where there is little or no fluid exchange. The oxid layer of the stainlesssteel surface is damaged.
缝隙腐蚀发生在裂缝、孔隙和其他流体交换很少或没有的地方。不锈钢表面的氧化层受到损害。
It is important water can run of and there no gap between interfaces where water can be caught.
重要的是水可以流走,并且接口之间没有水可以滞留的缝隙。

Figure 4-32: Crevice corrosion
图 4-32:缝隙腐蚀
Crevice can be avoided using good stain steel quality.
可以通过使用优质不锈钢来避免缝隙。

Crevice corrosion can happen between two surfaces made from the same metal, different metals or even a metal and a non-metal.
缝隙腐蚀可以发生在由相同金属、不同金属或甚至金属与非金属组成的两个表面之间。
However, the critical crevice width depends on several factors such as the type of metals involved, the corroding environment, wet/dry cycles and temperature.
然而,临界缝隙宽度取决于多个因素,例如所涉及的金属类型、腐蚀环境、湿/干循环和温度。
Higher crevice corrosion temperatures (CCT) indicate greater resistance to the initiation of these forms of corrosion
较高的缝隙腐蚀温度(CCT)表明对这些腐蚀形式的起始具有更大的抵抗力

Figure 4-33: Crevice corrosion
图 4-33:缝隙腐蚀
Some stainless steels, including 1.4301 and 1.4401, are susceptible to crevice corrosion when chlorides or salts are present in the environment.
某些不锈钢,包括 1.4301 和 1.4401,在环境中存在氯化物或盐时容易发生缝隙腐蚀。

4.18.3 Corrosion Resistance Class (CRC)
4.18.3 腐蚀抵抗等级 (CRC)

EN 1993-1-4 gives a procedure for the selection of stainless steel
EN 1993-1-4 提供了不锈钢选择的程序

The procedure is suitable for environments found within Europe only. It may be particularly misleading in certain parts of the world. The procedure involves the following steps:
该程序仅适用于欧洲的环境。在世界某些地区可能特别具有误导性。该程序包括以下步骤:
  • Determination of the Corrosion Resistance Factor (CRF) for the environment
    环境腐蚀抗力因子(CRF)的确定
  • Determination of the Corrosion Resistance Class (CRC) from the CRF
    从 CRF 确定腐蚀抗力等级(CRC)
The CRF is calculated as follows: CRF = F 1 + F 2 + F 3 = F 1 + F 2 + F 3 =F1+F2+F3=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3 where
CRF 的计算如下:CRF = F 1 + F 2 + F 3 = F 1 + F 2 + F 3 =F1+F2+F3=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3 其中

F1 = Risk of exposure to chlorides from salt water or de-icing salts
F1 = 暴露于盐水或除冰盐中的氯化物的风险

F2 = Risk of exposure to sulphur dioxide
F2 = 接触二氧化硫的风险

F3 = Cleaning regime or exposure to washing by rain.
F3 = 清洁方案或暴露于雨水洗涤。
Materials acc. to the different CRC's
根据不同的 CRC 的材料
I II III IV V
1.4003 1.4301 = 1.4301 = 1.4301=1.4301= A2 1.4401 = 1.4401 = 1.4401=1.4401= A4 1.4439 1.4565
1.4016 = 1.4016 = 1.4016=1.4016= F1 1.4307 1.4404 1.4462 = 1.4462 = 1.4462=1.4462= D6 1.4529 = 1.4529 = 1.4529=1.4529= A8
1.4512 1.4311 1.4435 1.4539 1.4547
1.4541 1.4571 1.4410 = 1.4410 = 1.4410=1.4410= D8
1.4318 1.4429 1.4501
1.4306 1.4432 1.4507
1.4567 1.4162
1.4482 1.4662
1.4362
1.4062
1.4578
Materials acc. to the different CRC's I II III IV V 1.4003 1.4301= A2 1.4401= A4 1.4439 1.4565 1.4016= F1 1.4307 1.4404 1.4462= D6 1.4529= A8 1.4512 1.4311 1.4435 1.4539 1.4547 1.4541 1.4571 1.4410= D8 1.4318 1.4429 1.4501 1.4306 1.4432 1.4507 1.4567 1.4162 1.4482 1.4662 1.4362 1.4062 1.4578 | Materials acc. to the different CRC's | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | | I | II | III | IV | V | | | 1.4003 | $1.4301=$ A2 | $1.4401=$ A4 | 1.4439 | 1.4565 | | | $1.4016=$ F1 | 1.4307 | 1.4404 | $1.4462=$ D6 | $1.4529=$ A8 | | | 1.4512 | 1.4311 | 1.4435 | 1.4539 | 1.4547 | | | | 1.4541 | 1.4571 | | $1.4410=$ D8 | | | | 1.4318 | 1.4429 | | 1.4501 | | | | 1.4306 | 1.4432 | | 1.4507 | | | | 1.4567 | 1.4162 | | | | | | 1.4482 | 1.4662 | | | | | | | 1.4362 | | | | | | | 1.4062 | | | | | | | 1.4578 | | | | | | | | | | | | | | | | | |
Figure 4-34: Materials acc. to different CRC’s
图 4-34:根据不同 CRC 的材料

4.18.4 Protective caps  4.18.4 保护帽

The DNV/GL guideline DNVGL-ST-0361:2016 states that bolted joint must be protected to the same extent as the adjacent parts. The caps protect Bolt Head, nut, avoiding water going into the tread and protects outside thread so nut can be dismounted.
DNV/GL 指南 DNVGL-ST-0361:2016 规定,螺栓连接必须与相邻部件一样受到保护。保护帽保护螺栓头、螺母,避免水进入螺纹,并保护外螺纹,以便螺母可以拆卸。
The zinc thickness of tZn bolt is approx. 40 μ m 40 μ m 40 mum40 \mu \mathrm{~m}. This is too thin for meeting corrosion class C5. Cap must therefore be added from corrosion class C5.
tZn 螺栓的锌厚度约为 40 μ m 40 μ m 40 mum40 \mu \mathrm{~m} 。这对于满足腐蚀等级 C5 来说太薄。因此必须添加来自腐蚀等级 C5 的盖。
For C4 must threads be protected with caps if the bolts are tightened using direct tension. Torqued bolts don’t need cap protection.
对于 C4,如果螺栓使用直接拉紧方式拧紧,则必须用帽子保护螺纹。扭矩螺栓不需要帽子保护。
However, bolts from C4 environment must always be evaluated if they are of high structural important and often exposed to water. In such cases must caps be added.
然而,来自 C4 环境的螺栓必须始终评估,如果它们具有高结构重要性并且经常暴露在水中。在这种情况下,必须添加盖子。

Figure 4-35 Protective caps. Different caps solution can cover only thread, bolthead or thread and nut. Default: For C5 is fully covering required. C4 only thread of tension tightened bolts. Non Nafta to be added before cap mounted.
图 4-35 保护帽。不同的帽子解决方案可以仅覆盖螺纹、螺栓头或螺纹和螺母。默认:C5 需要完全覆盖。C4 仅覆盖张紧螺栓的螺纹。在安装帽子之前,非 Nafta 需添加。
Vestas uses Radolid Caps acc. to TSS 0018-4133. If a new cap is needed remember to add item number to the TSS.
Vestas 使用 Radolid Caps,符合 TSS 0018-4133。如果需要新的盖子,请记得将项目编号添加到 TSS 中。
Alternative make special design for special cases, example 29203632
替代方案为特殊情况进行特殊设计,例如 29203632

Inside protective cap must be Non Nafta. Add note on 2D drawing.
保护盖内部必须是非石油基的。请在 2D 图纸上添加注释。

Add note below note or similar on 2D drawing:
在二维图纸上添加注释或类似的注释:

“Seal bolt head, nut and thread with Suvo Non Nafta before adding the protection caps. Apply Suvo Non Nafta with a spray or from bottle (Paint brush). Quantity of Suvo Non Nafta: As needed”
“在添加保护帽之前,用 Suvo Non Nafta 密封螺栓头、螺母和螺纹。可以使用喷雾或瓶子(油漆刷)涂抹 Suvo Non Nafta。Suvo Non Nafta 的用量:根据需要。”

4.19 Marking plate.  4.19 标记板。

For marking plate is the screw No. 4 × 3 / 16 4 × 3 / 16 4xx3//164 \times 3 / 16 " Type U Hammer Drive Screw used.
用于标记板的是螺钉编号 4 × 3 / 16 4 × 3 / 16 4xx3//164 \times 3 / 16 " U 型锤驱动螺钉。
Item number: 159395  项目编号:159395
Example of use: 29190091
使用示例:29190091

Figure 4-36 Marking plate
图 4-36 标记板

4.20 Anchor Points  4.20 锚点

Bolts holes used for anchor points assembly must by normal hole (Not slotted or oversize)
用于锚点组装的螺栓孔必须是标准孔(不能是开槽孔或超大孔)

For more information see Vestas Anchor Points DMS 0000-5184.
有关更多信息,请参见 Vestas Anchor Points DMS 0000-5184。

4.21 Reuse of bolts and nuts
4.21 螺栓和螺母的重复使用

Reuse of a structural bolt connection is permitted if it has not been stressed past its yield point.
如果结构螺栓连接没有超过其屈服点,则允许重复使用。

Bolts may only be reused if they have been tightened accurately meaning class A , B A , B A,B\mathrm{A}, \mathrm{B} or C
螺栓只有在准确拧紧的情况下才能重复使用,这意味着等级 A , B A , B A,B\mathrm{A}, \mathrm{B} 或 C

Detailed information about bolt reuse is described in DMS 920098
关于螺栓重复使用的详细信息在 DMS 920098 中描述

Reuse of prevailing torque lock nut not recommended because the nylon part of the nut is deformed and thereby reducing the locking function.
不建议重复使用现行扭矩锁紧螺母,因为螺母的尼龙部分已变形,从而降低了锁紧功能。
Take into account when re-tightening the friction can change the clamping force therefore reduced.
在重新紧固时要考虑摩擦可能会改变夹紧力,因此会减少。

Figure 4-37 The drop in preload between the first time installation and the first reuse without lubrication can be very large, and also vary a lot.
图 4-37 第一次安装与第一次无润滑重用之间的预紧力下降可能非常大,并且变化也很大。

4.22 Cold-welding / Burning stainless-steel bolt connection (Seizing, galling or fretting)
4.22 冷焊/烧结不锈钢螺栓连接(卡滞、磨损或摩擦)

To avoid cold-welding stainless-steel bolts can be coated with zinc flake, see TPS 0079-4264.
为了避免冷焊,不锈钢螺栓可以涂覆锌片,参见 TPS 0079-4264。

Foodlube ® ® ^(®){ }^{\circledR} Multi-Lube can be added too to avoid cold-welding / Burning.
Foodlube ® ® ^(®){ }^{\circledR} Multi-Lube 也可以添加,以避免冷焊/烧毁。

4.23 Checklist  4.23 检查清单

In appendix is a general check list what to be aware of when making a bolted design.
附录中是一个在进行螺栓设计时需要注意的一般检查清单。

DMS 0037-1824 has 3D check list for bolted design.
DMS 0037-1824 有用于螺栓设计的 3D 检查清单。

5 Bolt Connections  5 螺栓连接

This chapter describes design of bolt connections.
本章描述了螺栓连接的设计。

5.1 Loads on bolt connection.
5.1 螺栓连接上的载荷。

Before designing a bolt connection, loads acting on the bolted flange must be defined. The wind turbine is loaded with both static and dynamic loads. In appendix is a short description of loads.
在设计螺栓连接之前,必须定义作用在螺栓法兰上的载荷。风力发电机承受静态和动态载荷。在附录中有载荷的简要描述。

5.2 Torque Wrench  5.2 扭矩扳手

Even using a tool giving a high precision torque and having low friction coefficients, the accuracy of the final tightening load on can’t be better than a tightening factor of α A = 1 , 59 α A = 1 , 59 alpha_(A)=1,59\alpha_{A}=1,59 meaning there is nearly 40 % 40 % 40%40 \% between max and min clamping force.
即使使用提供高精度扭矩并具有低摩擦系数的工具,最终的紧固载荷的准确性也不能超过 α A = 1 , 59 α A = 1 , 59 alpha_(A)=1,59\alpha_{A}=1,59 的紧固系数,这意味着最大和最小夹紧力之间几乎有 40 % 40 % 40%40 \% 的差距。

5.3 Bolt tensioner (Tension tool)
5.3 螺栓张紧器(张紧工具)

Bolt tensioner has many advantages such as better accuracy, high tightening load capacity, no torsion stress and possible retightening.
螺栓张紧器具有许多优点,如更好的精度、高紧固载荷能力、无扭转应力和可能的重新紧固。
Hence, the remaining tightening load in the bolt F 0 F 0 F_(0)F_{0} is lower than the hydraulic load F h F h F_(h)F_{h}. F h / F 0 F h / F 0 F_(h)//F_(0)F_{h} / F_{0} is depending on the ratio L/D (tightened length/diameter).
因此,螺栓 F 0 F 0 F_(0)F_{0} 中剩余的紧固载荷低于液压载荷 F h F h F_(h)F_{h} F h / F 0 F h / F 0 F_(h)//F_(0)F_{h} / F_{0} 取决于 L/D 比率(紧固长度/直径)。
High L/D ratio means low load loss (Pretension loss). Low L/D ration mean high load loss.
高 L/D 比意味着低负载损失(预紧损失)。低 L/D 比意味着高负载损失。

A ratio below L/D=3 is not recommended
不推荐 L/D 比小于 3

Figure 5-1 The figure illustrates why a tension tightened bolts has spring back. When tensioning a bolt, the nut is turned down on a surface with a low torques (Max 100Nm). There is therefore nearly no relaxation below the nut due to the low torque. When the tension force is “moved” from tool to bolt there will be relaxation / spring back. By big L/D (L/D>8) ration is the spring back relatively low and by low L/D is the spring back relatively high.
图 5-1 该图说明了为什么拉紧的螺栓会有回弹。当对螺栓施加张力时,螺母在低扭矩(最大 100Nm)的表面上旋转。因此,由于低扭矩,螺母下几乎没有松弛。当张力从工具“转移”到螺栓时,会发生松弛/回弹。大 L/D 比(L/D>8)时,回弹相对较低,而低 L/D 时,回弹相对较高。

Figure 5-2 Load loss by direct tension. Ref http://www.skf.com/binary/83-124616/PUB_MTP2_10255_EN.pdf
图 5-2 直接拉伸造成的载荷损失。参考 http://www.skf.com/binary/83-124616/PUB_MTP2_10255_EN.pdf
The upper limit of the graph (orange) applies mainly to large pitches while the bottom limit (green) is mainly for small pitches. Standard pitches lie in the bottom third of the graph. The top nut design has a big impact of the load loss. See TPS 0081-3753 for special top nut design.
图表的上限(橙色)主要适用于大螺距,而下限(绿色)主要适用于小螺距。标准螺距位于图表的下三分之一。顶部螺母设计对负载损失有很大影响。有关特殊顶部螺母设计,请参见 TPS 0081-3753。
Example:  示例:
20 mm bolt, 200 mm clamping length (L/D=10), 20 mm bolt, 100 mm clamping length (L/D=5),
20 mm 螺栓,200 mm 夹紧长度 (L/D=10),20 mm 螺栓,100 mm 夹紧长度 (L/D=5),

F h / F o : 1 , 12 1 , 22 F h / F o : 1 , 12 1 , 22 F_(h)//F_(o):1,12-1,22F_{\mathrm{h}} / \mathrm{F}_{\mathrm{o}}: 1,12-1,22
F h / F 0 : 1 , 18 1 , 35 F h / F 0 : 1 , 18 1 , 35 F_(h)//F_(0):1,18-1,35F_{h} / F_{0}: 1,18-1,35

Load Transfer Factor (LTF) = 1.01 + ( D / C ) = 1.01 + ( D / C ) =1.01+(D//C)=1.01+(\mathrm{D} / \mathrm{C})
载荷转移系数 (LTF) = 1.01 + ( D / C ) = 1.01 + ( D / C ) =1.01+(D//C)=1.01+(\mathrm{D} / \mathrm{C})

Units:-  单位:-
D = D = D=\mathrm{D}= Nominal Bolt Thread Diameter ( mm or In )
D = D = D=\mathrm{D}= 名义螺栓螺纹直径(毫米或英寸)

C = Joint Clamp Length ( mm or In )
C = 接头夹长度(毫米或英寸)

Note: If the calculated LTF is less than 1.15 , then use 1.15
注意:如果计算得出的 LTF 小于 1.15,则使用 1.15。


% Yield Check = ( = ( =(=( Reqd Bolt Stress / / /// Bolt Yield Strength ) × ) × )xx) \times LTF × 100 × 100 xx100\times 100
% 屈服检查 = ( = ( =(=( 所需螺栓应力 / / /// 螺栓屈服强度 ) × ) × )xx) \times LTF × 100 × 100 xx100\times 100

Figure 5-3 Formula from Tentec for spring back
图 5-3 Tentec 的回弹公式
Important. For designs using tension tightened bolt contact specialist within this area.
重要。对于使用拉紧螺栓的设计,请联系该领域的专家。

5.4 Bolt joint diagram
5.4 螺栓连接图示

Below figure shows a joint diagram showing forces which are important knowledge when designing.
下图显示了一个连接图,展示了在设计时重要的力。
Where   哪里 F A = Axial load = F S A + F P A F P A = Axial load change of the clamped parts. F S A = Axial additional bolt load. F S max = Max bolt load before yield. F M zul = Permissible assembly preload ( 100 % ) F M max = α A F M min . M a x a s s e m b l y p r e l o a d F M min = Minimum assembly preload F K R = F M min F P A F Z . F A =  Axial load  = F S A + F P A F P A =  Axial load change of the clamped parts.  F S A =  Axial additional bolt load.  F S  max  =  Max bolt load before yield.  F M  zul  =  Permissible assembly preload  ( 100 % ) F M  max  = α A F M  min  . M a x a s s e m b l y p r e l o a d F M  min  =  Minimum assembly preload  F K R = F M  min  F P A F Z . {:[F_(A)=" Axial load "=F_(SA)+F_(PA)],[F_(PA)=" Axial load change of the clamped parts. "],[F_(SA)=" Axial additional bolt load. "],[F_(S" max ")=" Max bolt load before yield. "],[F_(M" zul ")=" Permissible assembly preload "(100%)],[F_(M" max ")=alpha_(A)*F_(M" min ".Maxassemblypreload)],[F_(M" min ")=" Minimum assembly preload "],[F_(KR)=F_(M" min ")-F_(PA)-F_(Z).]:}\begin{aligned} & F_{A}=\text { Axial load }=F_{S A}+F_{P A} \\ & F_{P A}=\text { Axial load change of the clamped parts. } \\ & F_{S A}=\text { Axial additional bolt load. } \\ & F_{S \text { max }}=\text { Max bolt load before yield. } \\ & F_{M \text { zul }}=\text { Permissible assembly preload }(100 \%) \\ & F_{M \text { max }}=\alpha_{A} \cdot F_{M \text { min } . ~ M a x ~ a s s e m b l y ~ p r e l o a d ~} \\ & F_{M \text { min }}=\text { Minimum assembly preload } \\ & F_{K R}=F_{M \text { min }}-F_{P A}-F_{Z} . \end{aligned} F K R = Clamp force after load F P A and embedding F Z F K R =  Clamp force after load  F P A  and embedding  F Z F_(KR)=" Clamp force after load "F_(PA)" and embedding "F_(Z)F_{K R}=\text { Clamp force after load } F_{P A} \text { and embedding } F_{Z}
Längenänderung / change in length f f ff
长度变化 / change in length f f ff
F Kerf = F Kerf  = F_("Kerf ")=F_{\text {Kerf }}= Clamp load required for friction and sealing.
F Kerf = F Kerf  = F_("Kerf ")=F_{\text {Kerf }}= 夹紧负荷要求用于摩擦和密封。
https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-41.jpg?height=625&width=718&top_left_y=581&top_left_x=198 Where "F_(A)= Axial load =F_(SA)+F_(PA) F_(PA)= Axial load change of the clamped parts. F_(SA)= Axial additional bolt load. F_(S max )= Max bolt load before yield. F_(M zul )= Permissible assembly preload (100%) F_(M max )=alpha_(A)*F_(M min .Maxassemblypreload) F_(M min )= Minimum assembly preload F_(KR)=F_(M min )-F_(PA)-F_(Z)." F_(KR)=" Clamp force after load "F_(PA)" and embedding "F_(Z) Längenänderung / change in length f F_("Kerf ")= Clamp load required for friction and sealing.| ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-41.jpg?height=625&width=718&top_left_y=581&top_left_x=198) | Where $\begin{aligned} & F_{A}=\text { Axial load }=F_{S A}+F_{P A} \\ & F_{P A}=\text { Axial load change of the clamped parts. } \\ & F_{S A}=\text { Axial additional bolt load. } \\ & F_{S \text { max }}=\text { Max bolt load before yield. } \\ & F_{M \text { zul }}=\text { Permissible assembly preload }(100 \%) \\ & F_{M \text { max }}=\alpha_{A} \cdot F_{M \text { min } . ~ M a x ~ a s s e m b l y ~ p r e l o a d ~} \\ & F_{M \text { min }}=\text { Minimum assembly preload } \\ & F_{K R}=F_{M \text { min }}-F_{P A}-F_{Z} . \end{aligned}$ $F_{K R}=\text { Clamp force after load } F_{P A} \text { and embedding } F_{Z}$ | | :---: | :---: | | Längenänderung / change in length $f$ | $F_{\text {Kerf }}=$ Clamp load required for friction and sealing. |
Figure 5-4 Joint diagram (without thermal Δ Fvtr Δ Fvtr DeltaFvtr\Delta \mathrm{Fvtr} ) Reference VDI 2230:2015
图 5-4 接头示意图(不带热 Δ Fvtr Δ Fvtr DeltaFvtr\Delta \mathrm{Fvtr} )参考 VDI 2230:2015

5.5 External force  5.5 外力

Low stiffness bolt with L/D>3 is preferred. By high stiffness bolt L/D < 3 < 3 < 3<3 is the bolt high loaded.
优选 L/D>3 的低刚度螺栓。通过高刚度螺栓 L/D < 3 < 3 < 3<3 是高负载螺栓。

Figure 5-5 Forces applied to the joint. By soft joint, then is the bolt high loaded. The red curve indicates load applied to the bolt itself. As displayed for soft joint a big part of the applied load goes into the bolt. See figure 5-11 for more information
图 5-5 施加在接头上的力。通过软接头,螺栓承受高负载。红色曲线表示施加在螺栓本身上的负载。如图所示,对于软接头,施加负载的大部分进入螺栓。有关更多信息,请参见图 5-11。

5.6 5.6 5.6quad5.6 \quad VDI 2230:2015 and EN 1993-1-8
5.6 5.6 5.6quad5.6 \quad VDI 2230:2015 和 EN 1993-1-8

When designing the design codes and analytical methodologies must be agreed with DNVGL. The standard DNVGL-ST-0361: 2016 describes when to use VDI 2230:2015 or Eurocode EN 1993-1-8.
在设计时,设计规范和分析方法必须与 DNVGL 达成一致。标准 DNVGL-ST-0361: 2016 描述了何时使用 VDI 2230:2015 或欧盟标准 EN 1993-1-8。
Bolt Program 0066-0218 is based on VDI 2230:2015
螺栓程序 0066-0218 基于 VDI 2230:2015

5.6.1 Axially and shear loaded bolted connections acc. to VDI 2230:2015
5.6.1 按照 VDI 2230:2015 的轴向和剪切载荷螺栓连接

VDI 2230:2015 is used for axial loaded or both axial and shear loaded bolted joints.
VDI 2230:2015 用于轴向载荷或同时承受轴向和剪切载荷的螺栓连接。

The bolt tightening program DMS 0066-0218 is based on VDI 2230:2015. The program is used for:
螺栓紧固程序 DMS 0066-0218 基于 VDI 2230:2015。该程序用于:
  • Thread length  螺纹长度
  • Clamping force  夹紧力
  • Selection of tool.  工具选择。
0066-0218 does not take the load introduction factor n and embedding Fz into account.
0066-0218 没有考虑载荷引入因子 n 和嵌入 Fz。
Formula for clamping load F Kerf F Kerf  F_("Kerf ")F_{\text {Kerf }} is (modified with k s k s k_(s)k_{s} which is influence of hole):
夹紧载荷 F Kerf F Kerf  F_("Kerf ")F_{\text {Kerf }} 的公式为(经过 k s k s k_(s)k_{s} 的修正,影响孔的因素):
F Kerf = F max q F μ T min k s + M Y max q M r a μ T min k s (Ref VDI 2230:2015 page 32) F Kerf  = F max q F μ T min k s + M Y max q M r a μ T min k s  (Ref VDI 2230:2015 page 32)  F_("Kerf ")=(F_(max))/(q_(F)*mu_(T min)*k_(s))+(M_(Y max))/(q_(M)*r_(a)*mu_(T min)*k_(s))" (Ref VDI 2230:2015 page 32) "F_{\text {Kerf }}=\frac{F_{\max }}{q_{F} \cdot \mu_{T \min } \cdot k_{s}}+\frac{M_{Y \max }}{q_{M} \cdot r_{a} \cdot \mu_{T \min } \cdot k_{s}} \text { (Ref VDI 2230:2015 page 32) }
Where q F q F q_(F)q_{F} and q M q M q_(M)q_{M} is number of interfaces and μ T min μ T min  mu_(T_("min "))\mu_{T_{\text {min }}} is the friction incl. safety. k s k s k_(s)k_{s} is the influence of the hole size.
其中 q F q F q_(F)q_{F} q M q M q_(M)q_{M} 是接口的数量, μ T min μ T min  mu_(T_("min "))\mu_{T_{\text {min }}} 是摩擦,包括安全因素。 k s k s k_(s)k_{s} 是孔径的影响。
Safety against sliding.  防滑安全。
S G = F KRmin F Kerf > 1 , 25 or 1 , 8 S G = F KRmin  F Kerf  > 1 , 25  or  1 , 8 S_(G)=(F_("KRmin "))/(F_("Kerf ")) > 1,25" or "1,8S_{G}=\frac{F_{\text {KRmin }}}{F_{\text {Kerf }}}>1,25 \text { or } 1,8
The safety margin:  安全裕度:
  • Normal values for static loading: S G 1 , 25 S G 1 , 25 S_(G) >= 1,25\mathrm{S}_{\mathrm{G}} \geq 1,25 and for metallized S G 1 , 1 S G 1 , 1 S_(G) >= 1,1^(**)\mathrm{S}_{\mathrm{G}} \geq 1,1^{*}
    静态加载的正常值: S G 1 , 25 S G 1 , 25 S_(G) >= 1,25\mathrm{S}_{\mathrm{G}} \geq 1,25 和金属化的 S G 1 , 1 S G 1 , 1 S_(G) >= 1,1^(**)\mathrm{S}_{\mathrm{G}} \geq 1,1^{*}
  • Alternating loading S G 1 , 8 S G 1 , 8 S_(G) >= 1,8^(****)S_{G} \geq 1,8^{* *}
    交替加载 S G 1 , 8 S G 1 , 8 S_(G) >= 1,8^(****)S_{G} \geq 1,8^{* *}
If EN, IEC and ISO specify higher safety margin then are these values to be used, E.g. 1,25 acc. 1993- 1 8 1 8 1-81-8. Must be evaluated from case to case. (Acc. VDI 2230:2015 to S G = 1 , 2 S G = 1 , 2 S_(G)=1,2\mathrm{S}_{\mathrm{G}}=1,2 )
如果 EN、IEC 和 ISO 规定了更高的安全裕度,那么这些值是否应被使用,例如 1.25 根据 1993- 1 8 1 8 1-81-8 。必须逐案评估。(根据 VDI 2230:2015 至 S G = 1 , 2 S G = 1 , 2 S_(G)=1,2\mathrm{S}_{\mathrm{G}}=1,2

**
If the requirements regarding L/D is fulfilled is safety of 1,8 not needed. A safety factor of 1,8 is only needed if in doubt of loss of clamping force during alternating loaded.
如果满足 L/D 的要求,则不需要 1.8 的安全系数。只有在怀疑交变载荷下夹紧力会丧失时,才需要 1.8 的安全系数。

5.6.2 Influence of holes size
5.6.2 孔径大小的影响

Acc. to DNVGL-ST-0126: 2016 “If oversized holes are considered, the impact shall be considered in the design according to EN 1993-1-8”
根据 DNVGL-ST-0126: 2016 “如果考虑超大孔,设计时应根据 EN 1993-1-8 考虑其影响”
Description  描述 k s k s k_(s)\mathbf{k}_{\mathbf{s}} γ M γ gamma_("M ")\gamma_{\text {M }}
Bolts in normal holes
普通孔中的螺栓
1,00 1,25
Bolts in oversized or short slotted holes perpendicular to load direction.
在超大或短槽孔中,螺栓垂直于载荷方向。
0,85 1,40
Bolts in long slotted holes perpendicular to load direction.
在与载荷方向垂直的长槽孔中的螺栓。
0,70 1,40
Bolts in short slotted holes parallel to load direction.
在与载荷方向平行的短槽孔中的螺栓。
0,76 1,40
Bolts in long slotted holes parallel to load direction.
在与载荷方向平行的长槽孔中的螺栓。
0,63 1,40
Description k_(s) gamma_("M ") Bolts in normal holes 1,00 1,25 Bolts in oversized or short slotted holes perpendicular to load direction. 0,85 1,40 Bolts in long slotted holes perpendicular to load direction. 0,70 1,40 Bolts in short slotted holes parallel to load direction. 0,76 1,40 Bolts in long slotted holes parallel to load direction. 0,63 1,40| Description | $\mathbf{k}_{\mathbf{s}}$ | $\gamma_{\text {M }}$ | | :--- | :---: | :---: | | Bolts in normal holes | 1,00 | 1,25 | | Bolts in oversized or short slotted holes perpendicular to load direction. | 0,85 | 1,40 | | Bolts in long slotted holes perpendicular to load direction. | 0,70 | 1,40 | | Bolts in short slotted holes parallel to load direction. | 0,76 | 1,40 | | Bolts in long slotted holes parallel to load direction. | 0,63 | 1,40 |
Table 5-1 Factor taking the hole clearance into account. k s k s k_(s)\mathrm{k}_{\mathrm{s}} is a factor taking the hole clearance into account. γ м = γ м  = gamma_("м ")=\gamma_{\text {м }}=м Partial coefficient ( 1,25 for normal holes)
表 5-1 考虑孔隙间隙的系数。 k s k s k_(s)\mathrm{k}_{\mathrm{s}} 是一个考虑孔隙间隙的系数。 γ м = γ м  = gamma_("м ")=\gamma_{\text {м }}=м 部分系数(正常孔的系数为 1.25)

5.6.3 Friction coefficient
5.6.3 摩擦系数

For a bolted connection the friction is often important. The values are displayed below.
对于螺栓连接,摩擦通常很重要。以下是数值。

Safety factor for metallized/metallized or metallized/clean is 1,1 - else 1,25, ref DMS 0019-1289
金属化/金属化或金属化/清洁的安全系数为 1.1 - 否则为 1.25,参考 DMS 0019-1289

By friction connection is lager friction μ μ mu\mu better
通过摩擦连接,摩擦力更大 μ μ mu\mu 更好

表面处理 1 表面处理 2
Surf. Treat. 1
Surf. treat 2
Surf. Treat. 1 Surf. treat 2| Surf. Treat. 1 | | :--- | | Surf. treat 2 |
Metallization  金属化 Hot Dip Galvanization  热浸镀锌 Hot Dip Galv. Brush blasted
热浸镀锌。刷砂处理
Untreated (and clean)  未处理(且干净) Figure showing the frictional force
显示摩擦力的图形
Metallization  金属化 0.50 - - -
Hot Dip Galvanization  热浸镀锌 0.50 0.17 - -
Hot Dip Galv., BB
热浸镀锌,BB
0.50 - 0.30 -
Untreated (and clean)  未处理(且干净) 0.30 - - 0.20
Friction plates  摩擦片 - - - 0.50
"Surf. Treat. 1 Surf. treat 2" Metallization Hot Dip Galvanization Hot Dip Galv. Brush blasted Untreated (and clean) Figure showing the frictional force Metallization 0.50 - - - https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-43.jpg?height=269&width=727&top_left_y=1813&top_left_x=1175 Hot Dip Galvanization 0.50 0.17 - - Hot Dip Galv., BB 0.50 - 0.30 - Untreated (and clean) 0.30 - - 0.20 Friction plates - - - 0.50 | Surf. Treat. 1 <br> Surf. treat 2 | Metallization | Hot Dip Galvanization | Hot Dip Galv. Brush blasted | Untreated (and clean) | Figure showing the frictional force | | :---: | :---: | :---: | :---: | :---: | :---: | | Metallization | 0.50 | - | - | - | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-43.jpg?height=269&width=727&top_left_y=1813&top_left_x=1175) | | Hot Dip Galvanization | 0.50 | 0.17 | - | - | | | Hot Dip Galv., BB | 0.50 | - | 0.30 | - | | | Untreated (and clean) | 0.30 | - | - | 0.20 | | | Friction plates | - | - | - | 0.50 | |
Table 5-2 Frictional coefficients between surface combinations with references, BB = Brush Blasted, ref DMS 0019-1289.
表 5-2 表面组合之间的摩擦系数,参考文献,BB = 刷砂,参考 DMS 0019-1289。
For detail information regarding friction coefficient see DMS 0019-1289.
有关摩擦系数的详细信息,请参见 DMS 0019-1289。

5.7 Lubrication  5.7 润滑

To control the friction both tZn and Zinc Flake is Anti-Seize is used at Vestas.
在 Vestas 使用 tZn 和锌片作为防止摩擦的抗咬合剂。

Locking agent is used for locking the bolts.
锁定剂用于锁紧螺栓。

5.7.1 Anti-Seize  5.7.1 防止卡死

Lubrication is very important because roughly 90% of the input energy is lost in overcoming the mating friction.
润滑非常重要,因为大约 90%的输入能量在克服配合摩擦时损失。

The remaining 10 % 10 % 10%10 \% of input energy is turned into bolt stretch.
剩余的 10 % 10 % 10%10 \% 输入能量转化为螺栓拉伸。

See Bolt Program 0066-0218 for more precise data.
请参阅螺栓程序 0066-0218 以获取更精确的数据。

DMS 920098 describes lubrication.
DMS 920098 描述了润滑。

Friction used for calculation:
用于计算的摩擦力:
\mu
\mu
Figure 5-6 Torque. Thread must be lubricated and the part which is torqued, e.g. the nut and bolt head.
图 5-6 扭矩。螺纹必须润滑,并且需要施加扭矩的部分,例如螺母和螺栓头。
Friction coefficient of Anti-Seize has been measured by Vestas on M24, M36 and M48, see DMS 0059-6842. Test of how waters, WD40 or lubrication (Nut or bolt) impacts on Anti-Seize: DMS 00700431
抗咬合剂的摩擦系数已由 Vestas 在 M24、M36 和 M48 上测量,见 DMS 0059-6842。关于水、WD40 或润滑剂(螺母或螺栓)对抗咬合剂影响的测试:DMS 00700431

5.7.2 Brands  5.7.2 品牌

5.7.2.1 Anti-Seize  5.7.2.1 防止卡死

Normally are the brands Kema® and Never Seez RG® used. Other brands can be used if approved by Vestas.
通常使用的品牌是 Kema®和 Never Seez RG®。如果获得 Vestas 的批准,可以使用其他品牌。

5.7.2.2 Locking agent  5.7.2.2 锁定剂

Vestas is often using the brand Loctite® but similar product allowed
Vestas 通常使用 Loctite®品牌,但允许使用类似产品

When using Loctite ® ® ^(®){ }^{\circledR} bolts can’t retightened.
使用 Loctite ® ® ^(®){ }^{\circledR} 螺栓无法重新拧紧。

Loctite ® ® ^(®){ }^{\circledR} has a high friction μ = 0 , 16 μ = 0 , 16 mu=0,16\mu=0,16. Clamping force is therefore low when using Loctite ® ® ®®
Loctite ® ® ^(®){ }^{\circledR} 具有高摩擦 μ = 0 , 16 μ = 0 , 16 mu=0,16\mu=0,16 。因此,使用 Loctite ® ® ®® 时夹紧力较低。

Loctite ® ® ®® is used in following situation unless otherwise required, see 4.13:
除非另有要求,Loctite ® ® ®® 在以下情况下使用,见 4.13:
  • In bolts connection up to M20 with L/D less than x 4
    在连接 M20 及以下的螺栓时,L/D 小于 x 4
  • In bolts connection items which can creep over time, typically plastic items
    在螺栓连接中,通常是塑料件的项目可能会随着时间的推移而蠕变
  • In bolts connection items which can be turned, moved etc.
    在螺栓连接中,可以旋转、移动等的项目。

5.8 Program DMS 0066-0218
5.8 程序 DMS 0066-0218

The bolt calculation program DMS 0066-0218 is the within Vestas approved program for calculating bolt connections.
螺栓计算程序 DMS 0066-0218 是 Vestas 批准的用于计算螺栓连接的程序。

5.8.1 Axial Clamping force ( Fm min Fm min Fm_(min)\mathrm{Fm}_{\mathrm{min}} )
5.8.1 轴向夹紧力 ( Fm min Fm min Fm_(min)\mathrm{Fm}_{\mathrm{min}} )

Figure 5-7 Screen plot of torque page from 0066-0218
图 5-7 来自 0066-0218 的扭矩页面的屏幕图
  1. Bolt standard. See table Table 4-3
    螺栓标准。见表 4-3
  2. Bolt quality  螺栓质量
  3. Bolt size  螺栓尺寸

4) Surface treatment  4) 表面处理

  1. Lubrication on thread and bolt head / nut. Ref DMS 920098. 2 typical types of lubrication:
    螺纹和螺栓头/螺母的润滑。参考 DMS 920098。两种典型的润滑类型:
1- Anti-Seize to use in the 8.8 and 10.9 bolts assembly connections where length/diameter 4 4 >= 4\geq 4
1- 在 8.8 和 10.9 螺栓组装连接中使用防卡剂,长度/直径 4 4 >= 4\geq 4

2- Locking Agent when L/D <4, connections with high embedding (Plastic) and hinge assemblies.
2- 当 L/D <4 时的锁定剂,高嵌入连接(塑料)和铰链组件。

6) Degree of pretension. 90 % 90 % 90%90 \% is based on Delta (Zinc flake coating). 85 % 85 % 85%85 \% for 8.8 tZn and 83.8 % 83.8 % 83.8%83.8 \% for 10.9 tZn . Reason for this adjustment is that e.g. all 10.9 M 36 are torqued with same moment independent of surface treatment. Be aware clamping load differs!
6) 预紧程度。 90 % 90 % 90%90 \% 基于 Delta(锌片涂层)。 85 % 85 % 85%85 \% 适用于 8.8 tZn, 83.8 % 83.8 % 83.8%83.8 \% 适用于 10.9 tZn。调整的原因是,例如,所有 10.9 M 36 的扭矩都是以相同的力矩施加的,与表面处理无关。请注意,夹紧载荷是不同的!

7) Torque  7) 扭矩

Figure 5-8 Screen plot of clamping_force_Torque page from 0066-0218
图 5-8 来自 0066-0218 的夹紧力-扭矩页面的屏幕图

8) F M max = F M max = F_(M max)=F_{M \max }= Theoretical clamping value without tool α D α D alpha_(D)\alpha_{D}
8) F M max = F M max = F_(M max)=F_{M \max }= 理论夹紧值无工具 α D α D alpha_(D)\alpha_{D}

9) Tool class selection.
9) 工具类别选择。

10) α D α D alpha_(D)\alpha_{D} min - based on tool class
10) α D α D alpha_(D)\alpha_{D} 分钟 - 基于工具类别

11) α D α D alpha_(D)\alpha_{D} max - based on tool class
11) α D α D alpha_(D)\alpha_{D} 最大 - 基于工具类别

12) F M min = F M  min  = F_(M" min ")=F_{M \text { min }}= Value divided with α D α D alpha_(D)\alpha_{D} min
12) F M min = F M  min  = F_(M" min ")=F_{M \text { min }}= 值除以 α D α D alpha_(D)\alpha_{D} 最小值

13) F M max = F M  max  = F_(M" max ")=\mathrm{F}_{\mathrm{M} \text { max }}= Value divided with α D α D alpha_(D)\alpha_{D} max
13) F M max = F M  max  = F_(M" max ")=\mathrm{F}_{\mathrm{M} \text { max }}= 值除以 α D α D alpha_(D)\alpha_{D} 最大值

5.8.2 Thread length  5.8.2 螺纹长度

The Program is calculating a blind thread hole 0066-0218.
该程序正在计算盲孔螺纹孔 0066-0218。


Figure 5-9 Screen plot of thread length page from 0066-0218
图 5-9 来自 0066-0218 的螺纹长度页面的屏幕图

14) Safety of 1,25
14) 1,25 的安全性

15) The outer diameter is diameter of the compression zone
15) 外径是压缩区的直径

16) Material of the threaded item
16) 螺纹件的材料

17) Recommended value. The thread length is based on a clamping load 120 % 120 % 120%120 \% of R m R m R_(m)R_{m} for material
17) 推荐值。螺纹长度基于材料的夹紧载荷 120 % 120 % 120%120 \% R m R m R_(m)R_{m}

18) Not Recommended value. The thread length is based on a clamping load 90 % 90 % 90%90 \% of R 02 R 02 R_(02)R_{02} for material
18) 不推荐的值。螺纹长度基于材料的夹紧载荷 90 % 90 % 90%90 \% R 02 R 02 R_(02)R_{02}

19) Thread length of bolt. Important for tolerance analyse
19) 螺栓的螺纹长度。对公差分析很重要。

20) Thread length hole:
20) 螺纹长度孔:

For blind thread hole:
对于盲孔:

2xP (Bolt end) + 0.8 × P + 0.8 × P +0.8 xx P+0.8 \times P (Run-in).
2xP (螺栓端) + 0.8 × P + 0.8 × P +0.8 xx P+0.8 \times P (运行)。

E.g.: For P = 2 P = 2 P=2P=2 is needed extra thread 2 x P + 0 , 8 × P = 4 m m + 1 , 6 mm = 5 , 6 mm 2 x P + 0 , 8 × P = 4 m m + 1 , 6 mm = 5 , 6 mm 2xP+0,8xx P=4mm+1,6mm=5,6mm2 x P+0,8 \times P=4 m m+1,6 \mathrm{~mm}=5,6 \mathrm{~mm}. This value is included in the calculated overlapping thread (Default value in 0066-0218)
例如:对于 P = 2 P = 2 P=2P=2 需要额外的螺纹 2 x P + 0 , 8 × P = 4 m m + 1 , 6 mm = 5 , 6 mm 2 x P + 0 , 8 × P = 4 m m + 1 , 6 mm = 5 , 6 mm 2xP+0,8xx P=4mm+1,6mm=5,6mm2 x P+0,8 \times P=4 m m+1,6 \mathrm{~mm}=5,6 \mathrm{~mm} 。该值包含在计算的重叠螺纹中(0066-0218 中的默认值)。
For threaded bushing with 2 run-in:
对于带有 2 个导入的螺纹衬套:

2xP (Bolt end) + 2 × 0.8 × P + 2 × 0.8 × P +2xx0.8 xx P+2 \times 0.8 \times P (Run-in). E.g.:
2xP (螺栓端) + 2 × 0.8 × P + 2 × 0.8 × P +2xx0.8 xx P+2 \times 0.8 \times P (预装)。例如:

E.g.: For P = 2 P = 2 P=2P=2 is needed extra thread 2 x P + 2 x 0 , 8 x P = 4 m m + 3 , 2 m m = 7 , 2 m m 2 x P + 2 x 0 , 8 x P = 4 m m + 3 , 2 m m = 7 , 2 m m 2xP+2x0,8xP=4mm+3,2mm=7,2mm2 x P+2 x 0,8 x P=4 m m+3,2 m m=7,2 m m. This is not the default value meaning 0 , 8 × P 0 , 8 × P 0,8xx P0,8 \times P must be added to the overlapping thread ( 5 , 6 mm + 1 , 6 mm = 7 , 2 mm 5 , 6 mm + 1 , 6 mm = 7 , 2 mm 5,6mm+1,6mm=7,2mm5,6 \mathrm{~mm}+1,6 \mathrm{~mm}=7,2 \mathrm{~mm} )
例如:对于 P = 2 P = 2 P=2P=2 需要额外的螺纹 2 x P + 2 x 0 , 8 x P = 4 m m + 3 , 2 m m = 7 , 2 m m 2 x P + 2 x 0 , 8 x P = 4 m m + 3 , 2 m m = 7 , 2 m m 2xP+2x0,8xP=4mm+3,2mm=7,2mm2 x P+2 x 0,8 x P=4 m m+3,2 m m=7,2 m m 。这不是默认值,意味着必须将 0 , 8 × P 0 , 8 × P 0,8xx P0,8 \times P 添加到重叠螺纹 ( 5 , 6 mm + 1 , 6 mm = 7 , 2 mm 5 , 6 mm + 1 , 6 mm = 7 , 2 mm 5,6mm+1,6mm=7,2mm5,6 \mathrm{~mm}+1,6 \mathrm{~mm}=7,2 \mathrm{~mm} )

21) Thread length bolt:
21) 螺纹长度螺栓:
The is the standard length of bolt. Check for collisions
这是螺栓的标准长度。检查是否有碰撞。

5.9 Tension and angular controlled tightening program
5.9 拉伸和角度控制紧固程序

There are 2 other programs which are used at Vestas:
在 Vestas 还有另外两个程序:

0070-0719 - Tension controlled tightening
0070-0719 - 张力控制紧固

0024-4908 - Torque angular controlled bolt tightening
0024-4908 - 扭矩角度控制螺栓紧固
These programs will not be described in this document because they are only to be use in few specialized cases.
这些程序在本文件中不会被描述,因为它们仅在少数专业情况下使用。
Description about tension tightened bolt can be found here: Chapter 5.3
关于张紧螺栓的描述可以在这里找到:第 5.3 章

5.10 Safety of connection
5.10 连接的安全性

For an estimate is following often enough for static analysis: F M min = F K e r f + F A max F M  min  = F K e r f + F A max F_(M" min ")=F_(Kerf)+F_(A max)F_{M \text { min }}=F_{K e r f}+F_{A \max }
对于静态分析,以下估算通常足够: F M min = F K e r f + F A max F M  min  = F K e r f + F A max F_(M" min ")=F_(Kerf)+F_(A max)F_{M \text { min }}=F_{K e r f}+F_{A \max }

F M min F M min F_(Mmin)F_{\mathrm{M} \min } - the min. required assembly preload which must smaller than clamping force in 0066-0218
F M min F M min F_(Mmin)F_{\mathrm{M} \min } - 在 0066-0218 中,所需的最小装配预紧力必须小于夹紧力。

F Kerf F Kerf  F_("Kerf ")quadF_{\text {Kerf }} \quad - clamp load required for friction grip or sealing
F Kerf F Kerf  F_("Kerf ")quadF_{\text {Kerf }} \quad - 夹紧负荷要求用于摩擦夹持或密封

F A max F A max  F_("A max ")F_{\text {A max }} - is maximum axial load
F A max F A max  F_("A max ")F_{\text {A max }} - 是最大轴向载荷

Equation for required clamping force acc to VDI 2230:2015 which takes the load factor and settlement into account:
根据 VDI 2230:2015 的要求,计算所需夹紧力的公式,考虑了载荷系数和沉降因素:

F M min = F K e r f + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) F M  min  = F K e r f + 1 Φ e n F A max + F Z + Δ F V t h F_(M" min ")=F_(Kerf)+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quadF_{M \text { min }}=F_{K e r f}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad (Ref VDI 2230:2015 R5/1 page 33)
F M min = F K e r f + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) F M  min  = F K e r f + 1 Φ e n F A max + F Z + Δ F V t h F_(M" min ")=F_(Kerf)+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quadF_{M \text { min }}=F_{K e r f}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad (参考 VDI 2230:2015 R5/1 第 33 页)

Φ en Φ en  Phi_("en ")quad\Phi_{\text {en }} \quad - load factor for load introduction via the clamped parts
Φ en Φ en  Phi_("en ")quad\Phi_{\text {en }} \quad - 通过夹紧部件引入负载的负载系数

F Z F Z F_(Z)quadF_{Z} \quad - loss of preload because of embedding during operation
F Z F Z F_(Z)quadF_{Z} \quad - 由于操作过程中嵌入导致的预紧力损失

Δ F vth Δ F vth DeltaF_(vth)quad\Delta \mathrm{F}_{\mathrm{vth}} \quad - change in the preload because of a temperature (Not described in this document)
Δ F vth Δ F vth DeltaF_(vth)quad\Delta \mathrm{F}_{\mathrm{vth}} \quad - 由于温度引起的预紧力变化(本文件未描述)

Preferred min safety SRF = F M min based on program / F M min required < 1 , 25 SRF = F M  min based on program  / F M  min required  < 1 , 25 SRF=F_(M" min based on program ")//F_(M" min required ") < 1,25\operatorname{SRF}=\mathrm{F}_{\mathrm{M} \text { min based on program }} / \mathrm{F}_{\mathrm{M} \text { min required }}<1,25 (EN 1993-1-8, Normal hole)
优选最小安全 SRF = F M min based on program / F M min required < 1 , 25 SRF = F M  min based on program  / F M  min required  < 1 , 25 SRF=F_(M" min based on program ")//F_(M" min required ") < 1,25\operatorname{SRF}=\mathrm{F}_{\mathrm{M} \text { min based on program }} / \mathrm{F}_{\mathrm{M} \text { min required }}<1,25 (EN 1993-1-8,普通孔)

In appendix is an example of a bolt calculation.
附录中是一个螺栓计算的示例。

This example shows that calculating load factor Φ en Φ en  Phi_("en ")\Phi_{\text {en }} and embedding F z F z F_(z)F_{z}
此示例显示了计算负载因子 Φ en Φ en  Phi_("en ")\Phi_{\text {en }} 和嵌入 F z F z F_(z)F_{z}

5.11 Fatigue  5.11 疲劳

A wind turbine is highly fatigue loaded. The bolt and the hole must therefore often be analysed.
风力发电机承受着高度的疲劳载荷。因此,螺栓和孔必须经常进行分析。

5.11.1 Thread  5.11.1 螺纹

The bolt has high stress concentration factors which limit its fatigue resistance.
该螺栓具有高应力集中系数,限制了其疲劳抗力。
Test made acc. ISO 3800 and DIN 50100 is used for defining the fatigue strength.
根据 ISO 3800 和 DIN 50100 进行的测试用于定义疲劳强度。
If the external load doesn’t cause separation in the joint, only a portion of load is seen by the bolt. The percentage of the load seen by the bolt only depends on the relative stiffness.
如果外部载荷没有导致接头分离,则只有一部分载荷由螺栓承受。螺栓承受的载荷百分比仅取决于相对刚度。
Figure 5-10 Fatigue strength
图 5-10 疲劳强度
Rule of thumb for thread length before nut (below nut) is min 3 x P min 3 x P min3xP\min 3 x \mathrm{P}.
螺母下方螺纹长度的经验法则是 min 3 x P min 3 x P min3xP\min 3 x \mathrm{P}

Fully threaded is not preferred to because an unthreaded shank has better fatigue properties.
全螺纹不被优先选择,因为无螺纹的杆件具有更好的疲劳性能。
Often when having a ratio of length / diameter (L/D) > 5 > 5 > 5>5 fatigue is not an issue. Attention by L/D < 3 < 3 < 3<3 !
当长度/直径比 (L/D) > 5 > 5 > 5>5 时,疲劳通常不是问题。注意 L/D < 3 < 3 < 3<3

Figure 5-11 Improvement of fatigue strength by larger L/D ratio.
图 5-11 通过增大 L/D 比提高疲劳强度。

5.11.1.1 Fatigue strength
5.11.1.1 疲劳强度

Fatigue strength is verified as described in DMS 0075-1340 Bolt Analysis Guideline
疲劳强度的验证如 DMS 0075-1340 螺栓分析指南中所述
  详细类别 [MPa]
Detail Category
[MPa]
Detail Category [MPa]| Detail Category | | :---: | | [MPa] |
N DC N DC N_(DC)\mathbf{N}_{\mathrm{DC}}
[ ] [ ] [-][-]
N_(DC) [-]| $\mathbf{N}_{\mathrm{DC}}$ | | :---: | | $[-]$ |
m 1 m 1 m1\mathrm{m1}
[ ] [ ] [-][-]
m1 [-]| $\mathrm{m1}$ | | :---: | | $[-]$ |
m 2
[ ] [ ] [-][-]
m 2 [-]| m 2 | | :---: | | $[-]$ |
σ c o , min σ c o , min sigma_(co,min)\boldsymbol{\sigma}_{c o, \min }
[MPa]
sigma_(co,min) [MPa]| $\boldsymbol{\sigma}_{c o, \min }$ | | :---: | | [MPa] |
Comments  评论 Reference  参考
71 ( 2 F s , max F 0 , 2 , min ) 85 71 2 F s , max F 0 , 2 , min 85 71*(2-(F_(s,max))/(F_(0,2,min))) <= 8571 \cdot\left(2-\frac{F_{s, \max }}{F_{0,2, \min }}\right) \leq 85 2 10 6 2 10 6 2*10^(6)2 \cdot 10^{6} 6 11 1

热处理后滚制螺纹,无热涂层(例如 flZnLnc)仅限主螺栓
Thread rolled after heat treat-
ment, no thermal coating (e.g.
flZnLnc)
Primary bolts only
Thread rolled after heat treat- ment, no thermal coating (e.g. flZnLnc) Primary bolts only| Thread rolled after heat treat- | | :--- | | ment, no thermal coating (e.g. | | flZnLnc) | | Primary bolts only |
DNV-GL 0361
[23]
DNV-GL 0361 [23]| DNV-GL 0361 | | :---: | | [23] |
71 2 10 6 2 10 6 2*10^(6)2 \cdot 10^{6} 3 5 1

热处理前滚制螺纹,无热涂层(例如 flZnLnc)
Thread rolled before heat treat-
ment, no thermal coating (e.g.
flZnLnc)
Thread rolled before heat treat- ment, no thermal coating (e.g. flZnLnc)| Thread rolled before heat treat- | | :--- | | ment, no thermal coating (e.g. | | flZnLnc) |
DNV-GL 0361
[23]
DNV-GL 0361 [23]| DNV-GL 0361 | | :---: | | [23] |
50 2 10 6 2 10 6 2*10^(6)2 \cdot 10^{6} 3 5 1

滚轧螺纹,热涂层(例如 TZN)切削螺纹
Rolled threas, Thermal coating
(e.g. TZN)
Cut threads
Rolled threas, Thermal coating (e.g. TZN) Cut threads| Rolled threas, Thermal coating | | :--- | | (e.g. TZN) | | Cut threads |
DNV-GL 0361
[23]
DNV-GL 0361 [23]| DNV-GL 0361 | | :---: | | [23] |
50 2 10 6 2 10 6 2*10^(6)2 \cdot 10^{6} 3 5 20,2

轧制螺纹,热涂层(例如 TZN)切割螺纹仅限于二次螺栓
Rolled threads, Thermal coating
(e.g. TZN)
Cut threads
Secondary bolts only
Rolled threads, Thermal coating (e.g. TZN) Cut threads Secondary bolts only| Rolled threads, Thermal coating | | :--- | | (e.g. TZN) | | Cut threads | | Secondary bolts only |
  欧盟规范 3 [29]
Eurocode 3
[29]
Eurocode 3 [29]| Eurocode 3 | | :---: | | [29] |
63 2 10 6 2 10 6 2*10^(6)2 \cdot 10^{6} 3 5 27,1
BobTail bolts  BobTail 螺栓
BobTail bolts| BobTail bolts | | :--- |
[32]
"Detail Category [MPa]" "N_(DC) [-]" "m1 [-]" "m 2 [-]" "sigma_(co,min) [MPa]" Comments Reference 71*(2-(F_(s,max))/(F_(0,2,min))) <= 85 2*10^(6) 6 11 1 "Thread rolled after heat treat- ment, no thermal coating (e.g. flZnLnc) Primary bolts only" "DNV-GL 0361 [23]" 71 2*10^(6) 3 5 1 "Thread rolled before heat treat- ment, no thermal coating (e.g. flZnLnc)" "DNV-GL 0361 [23]" 50 2*10^(6) 3 5 1 "Rolled threas, Thermal coating (e.g. TZN) Cut threads" "DNV-GL 0361 [23]" 50 2*10^(6) 3 5 20,2 "Rolled threads, Thermal coating (e.g. TZN) Cut threads Secondary bolts only" "Eurocode 3 [29]" 63 2*10^(6) 3 5 27,1 "BobTail bolts" [32] | Detail Category <br> [MPa] | $\mathbf{N}_{\mathrm{DC}}$ <br> $[-]$ | $\mathrm{m1}$ <br> $[-]$ | m 2 <br> $[-]$ | $\boldsymbol{\sigma}_{c o, \min }$ <br> [MPa] | Comments | Reference | | :---: | :---: | :---: | :---: | :---: | :--- | :---: | | $71 \cdot\left(2-\frac{F_{s, \max }}{F_{0,2, \min }}\right) \leq 85$ | $2 \cdot 10^{6}$ | 6 | 11 | 1 | Thread rolled after heat treat- <br> ment, no thermal coating (e.g. <br> flZnLnc) <br> Primary bolts only | DNV-GL 0361 <br> [23] | | 71 | $2 \cdot 10^{6}$ | 3 | 5 | 1 | Thread rolled before heat treat- <br> ment, no thermal coating (e.g. <br> flZnLnc) | DNV-GL 0361 <br> [23] | | 50 | $2 \cdot 10^{6}$ | 3 | 5 | 1 | Rolled threas, Thermal coating <br> (e.g. TZN) <br> Cut threads | DNV-GL 0361 <br> [23] | | 50 | $2 \cdot 10^{6}$ | 3 | 5 | 20,2 | Rolled threads, Thermal coating <br> (e.g. TZN) <br> Cut threads <br> Secondary bolts only | Eurocode 3 <br> [29] | | 63 | $2 \cdot 10^{6}$ | 3 | 5 | 27,1 | BobTail bolts | | | [32] | | | | | | |
  • DC Detail Category. Fatigue strength at Noc cycles [MPa].
    DC 细节类别。Noc 周期的疲劳强度 [MPa]。
  • Noc Number of cycles to failure at DC.
    Noc 失效时的循环次数在 DC。
  • m1 Negative inverse slope for N < 5 10 6 N < 5 10 6 N < 5*10^(6)\mathrm{N}<5 \cdot 10^{6} cycles
    m1 N < 5 10 6 N < 5 10 6 N < 5*10^(6)\mathrm{N}<5 \cdot 10^{6} 周期的负反斜率
  • m2 Negative inverse slope for N 5 10 6 N 5 10 6 N >= 5*10^(6)\mathrm{N} \geq 5 \cdot 10^{6} cycles
    m2 负反斜率 N 5 10 6 N 5 10 6 N >= 5*10^(6)\mathrm{N} \geq 5 \cdot 10^{6} 周期
  • σ c o , min σ c o , min sigma_(co,min)\sigma_{c o, \min } Minimum cut off [MPa]. The fatigue analysis should not be affected by minimum cut off.
    σ c o , min σ c o , min sigma_(co,min)\sigma_{c o, \min } 最小切断 [MPa]。疲劳分析不应受到最小切断的影响。
  • F S , max F S , max F_(S,max)\boldsymbol{F}_{\boldsymbol{S}, \max } Maximum bolt axial force calculated from FE with pretension force F M , m i n F M , m i n F_(M,min)\boldsymbol{F}_{\boldsymbol{M}, \boldsymbol{m i n}}
    F S , max F S , max F_(S,max)\boldsymbol{F}_{\boldsymbol{S}, \max } 从有限元分析计算的最大螺栓轴向力,考虑预紧力 F M , m i n F M , m i n F_(M,min)\boldsymbol{F}_{\boldsymbol{M}, \boldsymbol{m i n}}
  • F 0 , 2 , min = R p , 0 , 2 A stress , R p , 0 , 2 F 0 , 2 , min = R p , 0 , 2 A stress  , R p , 0 , 2 F_(0,2,min)=R_(p,0,2)*A_("stress "),R_(p,0,2)\boldsymbol{F}_{0,2, \min }=\mathrm{R}_{\mathrm{p}, 0,2} \cdot \mathrm{~A}_{\text {stress }}, \mathrm{R}_{\mathrm{p}, 0,2} : According to Table 2-2.
    F 0 , 2 , min = R p , 0 , 2 A stress , R p , 0 , 2 F 0 , 2 , min = R p , 0 , 2 A stress  , R p , 0 , 2 F_(0,2,min)=R_(p,0,2)*A_("stress "),R_(p,0,2)\boldsymbol{F}_{0,2, \min }=\mathrm{R}_{\mathrm{p}, 0,2} \cdot \mathrm{~A}_{\text {stress }}, \mathrm{R}_{\mathrm{p}, 0,2} : 根据表 2-2。
Figure 5-12 Table from 0075-1340. Bolt threads rolled before heat treatment (SV) have a lower fatigue strength compared with bolts rolled after the heat treatment (SG)
图 5-12 来自 0075-1340 的表格。热处理前(SV)滚压的螺栓螺纹与热处理后(SG)滚压的螺栓相比,疲劳强度较低。

5.12 Hole  5.12 孔

5.12.1 Stress around a hole
5.12.1 孔周围的应力

A hole is creating a notch.
一个孔正在形成一个缺口。

Finite element analysis is needed for making a detail evaluation of the structural lifetime.
有限元分析对于对结构寿命进行详细评估是必要的。

Figure 5-13 Stress around circular hole. To the left is hole, to the right a pin. Shigley’s Mechanical Engineering Design is describing fatigue issues well.
图 5-13 圆孔周围的应力。左侧是孔,右侧是销。Shigley’s Mechanical Engineering Design 对疲劳问题的描述非常到位。

σ rev max = K f σ rev nom σ rev max  = K f σ rev nom  sigma_("rev max ")=K_(f)*sigma_("rev nom ")\sigma_{\text {rev max }}=K_{f} \cdot \sigma_{\text {rev nom }}, where σ rev nom = F / A 0 σ rev nom  = F / A 0 sigma_("rev nom ")=F//A_(0)\sigma_{\text {rev nom }}=F / A_{0} and A 0 = ( w d ) t A 0 = ( w d ) t A_(0)=(w-d)tA_{0}=(w-d) t
σ rev max = K f σ rev nom σ rev max  = K f σ rev nom  sigma_("rev max ")=K_(f)*sigma_("rev nom ")\sigma_{\text {rev max }}=K_{f} \cdot \sigma_{\text {rev nom }} ,其中 σ rev nom = F / A 0 σ rev nom  = F / A 0 sigma_("rev nom ")=F//A_(0)\sigma_{\text {rev nom }}=F / A_{0} A 0 = ( w d ) t A 0 = ( w d ) t A_(0)=(w-d)tA_{0}=(w-d) t

Always safe to use K f = K t K f = K t K_(f)=K_(t)\mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{t}} if there is any doubt.
如果有任何疑问,始终安全使用 K f = K t K f = K t K_(f)=K_(t)\mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{t}}

Neuber equation can improve fatigue strength if the design is on the limit. Neuber equation is not described here. See structure analysis guideline 0076-9278 for information about Neuber equation.
如果设计处于极限状态,Neuber 方程可以提高疲劳强度。这里不描述 Neuber 方程。有关 Neuber 方程的信息,请参见结构分析指南 0076-9278。

5.13 Jam Nut (Counter Nut)
5.13 垫圈螺母(反向螺母)

An alternative to a Prevailing torque lock nut or a lock washer solution can be a counter nut solution where 2 nuts are clamming together. Below figure explains the concept of using a jam nut.
一种替代现行扭矩锁紧螺母或锁垫圈解决方案的方法是使用对锁螺母解决方案,其中两个螺母相互夹紧。下图解释了使用锁紧螺母的概念。

Figure 5-14 Left is a standard solution and right is with counter nut. The bottom nut is in contact with top nut and the surface. For making the jamming successful is it important clamping force (F3) between top nut and bottom nut is higher than between bottom nut and surface (F2)
图 5-14 左侧是标准解决方案,右侧是带有反向螺母的方案。底部螺母与顶部螺母和表面接触。为了使卡滞成功,顶部螺母与底部螺母之间的夹紧力(F3)必须大于底部螺母与表面之间的夹紧力(F2)。
Bottom nut must be tightened before the top nut. When the tightening is done right the locking mechanism will work and the fastener will be held tightly even by vibration. Torque of bottom nut will often be around 25 50 % 25 50 % 25-50%25-50 \% of the top nut torque. The small counter nut must be in bottom and the big in the top. Ref http://www.boltscience.com/pages/twonuts.html
底螺母必须在顶螺母之前拧紧。当拧紧正确时,锁定机制将正常工作,紧固件即使在振动下也会牢牢固定。底螺母的扭矩通常约为顶螺母扭矩的 25 50 % 25 50 % 25-50%25-50 \% 。小的反螺母必须在底部,大的在顶部。参考 http://www.boltscience.com/pages/twonuts.html

5.14 Traceability Requirements
5.14 可追溯性要求

TPS 900182 describes which bolt must have traceability requirements. The VUI label covers the batch and not individual.
TPS 900182 描述了哪些螺栓必须具有可追溯性要求。VUI 标签涵盖的是批次而不是单个。

Figure 5-15 Example of drawing note and head of bolt assembly which requires traceability
图 5-15 需要可追溯性的螺栓组件的图纸注释和头部示例

5.15 Design recommendation
5.15 设计建议

Detail  细节 Comment  评论

一个经验法则是使用至少 3 个螺栓。如果设计承受弯矩,请不要将其放在一条线上。
A rule a thumb is to use minimum 3 bolts. Do not
place on one line if the design is loaded with a
bending moment.
A rule a thumb is to use minimum 3 bolts. Do not place on one line if the design is loaded with a bending moment.| A rule a thumb is to use minimum 3 bolts. Do not | | :--- | | place on one line if the design is loaded with a | | bending moment. |
Detail Comment "A rule a thumb is to use minimum 3 bolts. Do not place on one line if the design is loaded with a bending moment."| Detail | Comment | | :--- | :--- | | | A rule a thumb is to use minimum 3 bolts. Do not <br> place on one line if the design is loaded with a <br> bending moment. |
Figure 5-16 Number of bolts.
图 5-16 螺栓数量。
Detail  细节 Comment  评论

螺纹周围的材料最小必须为:Douter > 2 M > 2 M > 2**M>2 * M 示例:DMS 29080105 (M24 和 Douter = 50 mm = 50 mm =50mm=50 \mathrm{~mm} )此规则对于一个板也是相同的
The material round the thread must minimum be:
Douter > 2 M > 2 M > 2**M>2 * M
Example: DMS 29080105 (M24 and Douter = 50 mm = 50 mm =50mm=50 \mathrm{~mm} )
This rule is the same for a plate
The material round the thread must minimum be: Douter > 2**M Example: DMS 29080105 (M24 and Douter =50mm ) This rule is the same for a plate| The material round the thread must minimum be: | | :--- | | Douter $>2 * M$ | | Example: DMS 29080105 (M24 and Douter $=50 \mathrm{~mm}$ ) | | This rule is the same for a plate |
Detail Comment "The material round the thread must minimum be: Douter > 2**M Example: DMS 29080105 (M24 and Douter =50mm ) This rule is the same for a plate"| Detail | Comment | | :--- | :--- | | | The material round the thread must minimum be: <br> Douter $>2 * M$ <br> Example: DMS 29080105 (M24 and Douter $=50 \mathrm{~mm}$ ) <br> This rule is the same for a plate |
Figure 5-17 Material around a thread
图 5-17 螺纹周围的材料
Detail  细节 Comment  评论

在夹紧轮廓时,确保支撑不太软是很重要的。这可以通过使用衬套来解决。示例:DMS 29083040。
When clamping around a profile is it important to
secure the support is not too soft. This can be solved
by using bushings.
Example: DMS 29083040.
When clamping around a profile is it important to secure the support is not too soft. This can be solved by using bushings. Example: DMS 29083040.| When clamping around a profile is it important to | | :--- | | secure the support is not too soft. This can be solved | | by using bushings. | | Example: DMS 29083040. |
Detail Comment "When clamping around a profile is it important to secure the support is not too soft. This can be solved by using bushings. Example: DMS 29083040."| Detail | Comment | | :--- | :--- | | | When clamping around a profile is it important to <br> secure the support is not too soft. This can be solved <br> by using bushings. <br> Example: DMS 29083040. |
Figure 5-18 Bushing solution for improving stiffness
图 5-18 提高刚度的衬套解决方案
Roloff/Matek describes some design recommendations. Some displayed below.
Roloff/Matek 描述了一些设计建议。以下是一些展示的内容。
Bad   Preferred  首选 Comment  评论
By high fatigue loads are long bolts and good load introduction (small n) preferred.
在高疲劳载荷下,长螺栓和良好的载荷引入(小 n)是首选。
C1CC2([Si]1)[Si]CCC21CC[SiH2]1SiSiSiH2
Reduced crevice corrosion.
减少缝隙腐蚀。
Is not symmentric loads can bend the plates:
不对称载荷会使板材弯曲:
Bad Preferred Comment https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=250&width=322&top_left_y=564&top_left_x=313 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=274&width=284&top_left_y=540&top_left_x=829 By high fatigue loads are long bolts and good load introduction (small n) preferred. C1CC2([Si]1)[Si]CCC21CC[SiH2]1 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=281&width=383&top_left_y=881&top_left_x=771 Reduced crevice corrosion. https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=199&width=404&top_left_y=1369&top_left_x=255 https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=202&width=537&top_left_y=1366&top_left_x=713 Is not symmentric loads can bend the plates:| Bad | Preferred | Comment | | :---: | :---: | :---: | | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=250&width=322&top_left_y=564&top_left_x=313) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=274&width=284&top_left_y=540&top_left_x=829) | By high fatigue loads are long bolts and good load introduction (small n) preferred. | | <smiles>C1CC2([Si]1)[Si]CCC21CC[SiH2]1</smiles> | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=281&width=383&top_left_y=881&top_left_x=771) | Reduced crevice corrosion. | | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=199&width=404&top_left_y=1369&top_left_x=255) | ![](https://cdn.mathpix.com/cropped/2025_03_11_910ac3060075e5ab196ag-54.jpg?height=202&width=537&top_left_y=1366&top_left_x=713) | Is not symmentric loads can bend the plates: |
Figure 5-19 Design proposals
图 5-19 设计方案

5.16 Process Specification (PS)
5.16 过程规范 (PS)

PS stands for “Process Specification”. Process Specifications are used for describing the tools and torques to be used. Example of PS can be found in appendix.
PS 代表“过程规范”。过程规范用于描述将要使用的工具和扭矩。PS 的示例可以在附录中找到。

5.17 Production (PWI) and Service (SWI)
5.17 生产 (PWI) 和服务 (SWI)

PWI stands for “Production Work Instruction”. Describing assembly
PWI 代表“生产作业指导书”。描述组装

Example of PWI: Rear frame assembly: DMS 0059-1040
PWI 示例:后框架组件:DMS 0059-1040
SWI stands for “Service Work Instruction”. Describing how to do service service
SWI 代表“服务工作指令”。描述如何进行服务工作。

5.18 Service Inspection Form (SIF)
5.18 服务检查表 (SIF)

In Vestas the service requirement is described in the document called SIF.
在维斯塔斯,服务要求在名为 SIF 的文件中描述。

SIF stands for “Service Inspection Form”
SIF 代表“服务检查表”

Some examples of SIF:
SIF 的一些示例:
  • Preservation of nacelle: DMS 0042-5377
    机舱的保护:DMS 0042-5377
  • Inspection after 3 months of operation: DMS 0062-8662
    运行三个月后的检查:DMS 0062-8662
  • SIF for yearly inspection: DMS 0062-8665
    年度检查的 SIF:DMS 0062-8665
  • Inspection of tower flange bolt pretension: DMS 0002-1230
    塔法兰螺栓预紧力检查:DMS 0002-1230

5.19 A Semi-Knocked-Down kit (SKD)
5.19 半拆卸套件 (SKD)

A Semi-Knocked-Down kit (SKD) is a kit of the partially assembled parts of a product - typically assembly at a sub supplier.
半散装套件(SKD)是部分组装产品部件的套件 - 通常在子供应商处组装。
In these kits are bolt assemblies displayed.
这些套件中展示了螺栓组件。
Example of SKD:  SKD 的示例:
  • Generator Foundation SUB ASSY: DMS 29111237
    发电机基础子组件:DMS 29111237
  • 4MW Generator Foundation SKD: DMS 0069-1150
    4MW 发电机基础 SKD: DMS 0069-1150

6 References  6 参考文献

6.1 Documents  6.1 文件

DMS no.  DMS 编号 Title  标题
0001-0721 TPS, Washers S355 for oblong holes
TPS,S355 垫圈用于椭圆孔
0002-0694 Drawing guideline  绘图指南
0002-3433 Bolt guideline  螺栓指南
0002-8030 TPS, Anchor bolts assemblies for wind turbine foundations
风力发电机基础的锚栓组件
0003-5954 TSS, Welded nut with flange
TSS,带法兰的焊接螺母
0004-1976 Bolt Torque, Glassfiber parts
螺栓扭矩,玻璃纤维部件
0005-7135 TSS-bobtail
0005-4921 Nomenclature for materials
材料命名法
0007-0179 hole size and tolerances
孔径和公差
0007-8734 TPS, Rivet nuts  TPS, 铆钉螺母
0009-6797 TS for bolts and studs
螺栓和螺柱的 TS
0019-1289 Friction values. Bolt and contact analysis guideline
摩擦值。螺栓和接触分析指南
0019-5859 FMEA for bolt failures
螺栓失效的 FMEA
0019-5860 DFMEA for bolted joints
螺栓连接的 DFMEA
0019-5868 TPS, Blind rivets  TPS, 盲铆钉
0020-0391 TPS, Locking washers  TPS, 锁紧垫圈
0024-0437 Bolt defect Catalogue  螺栓缺陷目录
0024-4908 Torque angular controlled bolt tightening
扭矩角度控制螺栓紧固
0066-0218 To be used to determine clamping load and thread length
用于确定夹紧载荷和螺纹长度
0028-3122 TPS, Conical spring washers
TPS,锥形弹簧垫圈
0033-3263 Electrical power connections guideline
电力连接指南
0034-9502 TPS, Self-clinching nuts
TPS,自锁螺母
0034-9502 TPS Press nut  TPS 压紧螺母
0035-6117 Studs and HV bolts
螺柱和 HV 螺栓
0037-1824 Check list  检查清单
0044-2633 PS for bolt tightening categories of bolts in V164 skeleton
V164 骨架中的螺栓紧固类别的 PS
0045-6874 Verify Standard Design Catalogue utilization
验证标准设计目录的使用情况
0056-0933 Technology guideline for Design of bolted connections
螺栓连接设计的技术指南
0059-6842 Bolt Thread Friction Test Data Analysis
螺栓螺纹摩擦测试数据分析
0061-9758 Doc containing details on the definition of the categories
包含类别定义详细信息的文档
0064-0897 Calculation of USL and LSL for bolt tightening
螺栓紧固的 USL 和 LSL 计算
0064-0899 PS for bolt tightening categories of bolts in 3MW MK3
3MW MK3 螺栓紧固类别的 PS
0066-0500 Overview of special washer and bushings
特殊垫圈和衬套概述
0067-9245 Tool recommendation  工具推荐
0070-0431 Effect of Water on Never Seez
水对 Never Seez 的影响
0070-0719 Tension controlled tightening
张力控制紧固
0075-1340 Bolt Analysis Guideline  螺栓分析指南
0076-9278 Structure Guideline  结构指南
0077-2590 Bushing recommendation  衬套推荐
0081-3753 TPS, Fastener assembly for direct tension
TPS,直接拉伸的紧固件组件
0090-1000 Torque Tool 3D models
扭矩工具 3D 模型
0106-0751 Standard parts governance
标准件管理
900177 TPS, Tower bolt assemblies - HV bolt garniture sets
TPS,塔螺栓组件 - HV 螺栓配件套件
900182 TPS, Fasteners and studs
TPS,紧固件和螺柱
900194 TPS, Washers with inner chamfer
TPS,带内倒角的垫圈
920098 Torque Wrench Settings information
扭矩扳手设置信息
960501 Torque, tension and angular tools settings
扭矩、张力和角度工具设置
990803 Design guidelines Tower IECWTO
设计指南 塔 IECWTO
DMS no. Title 0001-0721 TPS, Washers S355 for oblong holes 0002-0694 Drawing guideline 0002-3433 Bolt guideline 0002-8030 TPS, Anchor bolts assemblies for wind turbine foundations 0003-5954 TSS, Welded nut with flange 0004-1976 Bolt Torque, Glassfiber parts 0005-7135 TSS-bobtail 0005-4921 Nomenclature for materials 0007-0179 hole size and tolerances 0007-8734 TPS, Rivet nuts 0009-6797 TS for bolts and studs 0019-1289 Friction values. Bolt and contact analysis guideline 0019-5859 FMEA for bolt failures 0019-5860 DFMEA for bolted joints 0019-5868 TPS, Blind rivets 0020-0391 TPS, Locking washers 0024-0437 Bolt defect Catalogue 0024-4908 Torque angular controlled bolt tightening 0066-0218 To be used to determine clamping load and thread length 0028-3122 TPS, Conical spring washers 0033-3263 Electrical power connections guideline 0034-9502 TPS, Self-clinching nuts 0034-9502 TPS Press nut 0035-6117 Studs and HV bolts 0037-1824 Check list 0044-2633 PS for bolt tightening categories of bolts in V164 skeleton 0045-6874 Verify Standard Design Catalogue utilization 0056-0933 Technology guideline for Design of bolted connections 0059-6842 Bolt Thread Friction Test Data Analysis 0061-9758 Doc containing details on the definition of the categories 0064-0897 Calculation of USL and LSL for bolt tightening 0064-0899 PS for bolt tightening categories of bolts in 3MW MK3 0066-0500 Overview of special washer and bushings 0067-9245 Tool recommendation 0070-0431 Effect of Water on Never Seez 0070-0719 Tension controlled tightening 0075-1340 Bolt Analysis Guideline 0076-9278 Structure Guideline 0077-2590 Bushing recommendation 0081-3753 TPS, Fastener assembly for direct tension 0090-1000 Torque Tool 3D models 0106-0751 Standard parts governance 900177 TPS, Tower bolt assemblies - HV bolt garniture sets 900182 TPS, Fasteners and studs 900194 TPS, Washers with inner chamfer 920098 Torque Wrench Settings information 960501 Torque, tension and angular tools settings 990803 Design guidelines Tower IECWTO| DMS no. | Title | | :---: | :---: | | 0001-0721 | TPS, Washers S355 for oblong holes | | 0002-0694 | Drawing guideline | | 0002-3433 | Bolt guideline | | 0002-8030 | TPS, Anchor bolts assemblies for wind turbine foundations | | 0003-5954 | TSS, Welded nut with flange | | 0004-1976 | Bolt Torque, Glassfiber parts | | 0005-7135 | TSS-bobtail | | 0005-4921 | Nomenclature for materials | | 0007-0179 | hole size and tolerances | | 0007-8734 | TPS, Rivet nuts | | 0009-6797 | TS for bolts and studs | | 0019-1289 | Friction values. Bolt and contact analysis guideline | | 0019-5859 | FMEA for bolt failures | | 0019-5860 | DFMEA for bolted joints | | 0019-5868 | TPS, Blind rivets | | 0020-0391 | TPS, Locking washers | | 0024-0437 | Bolt defect Catalogue | | 0024-4908 | Torque angular controlled bolt tightening | | 0066-0218 | To be used to determine clamping load and thread length | | 0028-3122 | TPS, Conical spring washers | | 0033-3263 | Electrical power connections guideline | | 0034-9502 | TPS, Self-clinching nuts | | 0034-9502 | TPS Press nut | | 0035-6117 | Studs and HV bolts | | 0037-1824 | Check list | | 0044-2633 | PS for bolt tightening categories of bolts in V164 skeleton | | 0045-6874 | Verify Standard Design Catalogue utilization | | 0056-0933 | Technology guideline for Design of bolted connections | | 0059-6842 | Bolt Thread Friction Test Data Analysis | | 0061-9758 | Doc containing details on the definition of the categories | | 0064-0897 | Calculation of USL and LSL for bolt tightening | | 0064-0899 | PS for bolt tightening categories of bolts in 3MW MK3 | | 0066-0500 | Overview of special washer and bushings | | 0067-9245 | Tool recommendation | | 0070-0431 | Effect of Water on Never Seez | | 0070-0719 | Tension controlled tightening | | 0075-1340 | Bolt Analysis Guideline | | 0076-9278 | Structure Guideline | | 0077-2590 | Bushing recommendation | | 0081-3753 | TPS, Fastener assembly for direct tension | | 0090-1000 | Torque Tool 3D models | | 0106-0751 | Standard parts governance | | 900177 | TPS, Tower bolt assemblies - HV bolt garniture sets | | 900182 | TPS, Fasteners and studs | | 900194 | TPS, Washers with inner chamfer | | 920098 | Torque Wrench Settings information | | 960501 | Torque, tension and angular tools settings | | 990803 | Design guidelines Tower IECWTO |
Special documents  特殊文件
Document no.  文档编号。 Title  标题
0059 1040 0059 1040 0059-10400059-1040 PWI - Rear frame assembly:
PWI - 后框架组件:
0042 5377 0042 5377 0042-53770042-5377 SIF - Preservation of nacelle
SIF - 机舱保护
0062 8662 0062 8662 0062-86620062-8662 SIF - Inspection after 3 months of operation
SIF - 运行三个月后的检查
0062 8665 0062 8665 0062-86650062-8665 SIF - SIF for yearly inspection
SIF - 年度检查的 SIF
0002 1230 0002 1230 0002-12300002-1230 SIF - Inspection of tower flange bolt pretension
SIF - 塔 flange 螺栓预紧的检查
29111237 SKD - Generator Foundation SUB ASSY
SKD - 发电机基础子组件
0069 1150 0069 1150 0069-11500069-1150 SKD - 4MW Generator Foundation SKD
SKD - 4MW 发电机基础 SKD
Document no. Title 0059-1040 PWI - Rear frame assembly: 0042-5377 SIF - Preservation of nacelle 0062-8662 SIF - Inspection after 3 months of operation 0062-8665 SIF - SIF for yearly inspection 0002-1230 SIF - Inspection of tower flange bolt pretension 29111237 SKD - Generator Foundation SUB ASSY 0069-1150 SKD - 4MW Generator Foundation SKD| Document no. | Title | | :--- | :--- | | $0059-1040$ | PWI - Rear frame assembly: | | $0042-5377$ | SIF - Preservation of nacelle | | $0062-8662$ | SIF - Inspection after 3 months of operation | | $0062-8665$ | SIF - SIF for yearly inspection | | $0002-1230$ | SIF - Inspection of tower flange bolt pretension | | 29111237 | SKD - Generator Foundation SUB ASSY | | $0069-1150$ | SKD - 4MW Generator Foundation SKD |

6.2 Standards  6.2 标准

Standard ID.  标准 ID。 Title  标题
EN1993-1-8:2005 Eurocode 3: Design of steel structures - Part 1-8: Design of joints
欧洲规范 3:钢结构设计 - 第 1-8 部分:连接设计
EN14399-3 High Resistance bolts  高强度螺栓
EN14399-4 Hochfeste Bolzen mit Vorspannung
高强度预紧螺栓
DIN 78 Bolt end protrusions  螺栓端部突出部分
Standard ID. Title EN1993-1-8:2005 Eurocode 3: Design of steel structures - Part 1-8: Design of joints EN14399-3 High Resistance bolts EN14399-4 Hochfeste Bolzen mit Vorspannung DIN 78 Bolt end protrusions| Standard ID. | Title | | :--- | :--- | | EN1993-1-8:2005 | Eurocode 3: Design of steel structures - Part 1-8: Design of joints | | EN14399-3 | High Resistance bolts | | EN14399-4 | Hochfeste Bolzen mit Vorspannung | | DIN 78 | Bolt end protrusions |

6.3 Guideline  6.3 指南

Guideline ID.  指导方针 ID。 Title  标题
VDI 2230:2015

螺栓组件分析指南。要阅读该文档,请使用您的登录信息登录远程桌面计算机:按 rarr\rightarrow Windows + R 输入 mstsc rarr\rightarrow 输入计算机名称 W9398 并使用您的用户 ID 和密码连接,以查看 C:/Temp/recent 中的 PDF 文件。
Bolt assembly analysis guideline.
To read the document, please log onto the remote desktop
machine with your login details: Press rarr\rightarrow Windows + R
type mstsc rarr\rightarrow type computer name W9398 & connect with
your User ID and Password to view the PDF file in the
C:/Temp/recent
Bolt assembly analysis guideline. To read the document, please log onto the remote desktop machine with your login details: Press rarr Windows + R type mstsc rarr type computer name W9398 & connect with your User ID and Password to view the PDF file in the C:/Temp/recent| Bolt assembly analysis guideline. | | :--- | | To read the document, please log onto the remote desktop | | machine with your login details: Press $\rightarrow$ Windows + R | | type mstsc $\rightarrow$ type computer name W9398 & connect with | | your User ID and Password to view the PDF file in the | | C:/Temp/recent |
DNVGL-ST-0361
2016
DNVGL-ST-0361 2016| DNVGL-ST-0361 | | :--- | | 2016 |

风力涡轮机的机械设备。链接:https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-09/DNVGL-ST-0361.pdf
Machinery for wind turbines.
Link: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-
09/DNVGL-ST-0361.pdf
Machinery for wind turbines. Link: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016- 09/DNVGL-ST-0361.pdf| Machinery for wind turbines. | | :--- | | Link: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016- | | 09/DNVGL-ST-0361.pdf |
GL Edition 2010  GL 版 2010 Guideline for the Certification of Wind Turbines Edition 2010
风力发电机认证指南 2010 年版
Guideline ID. Title VDI 2230:2015 "Bolt assembly analysis guideline. To read the document, please log onto the remote desktop machine with your login details: Press rarr Windows + R type mstsc rarr type computer name W9398 & connect with your User ID and Password to view the PDF file in the C:/Temp/recent" "DNVGL-ST-0361 2016" "Machinery for wind turbines. Link: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016- 09/DNVGL-ST-0361.pdf" GL Edition 2010 Guideline for the Certification of Wind Turbines Edition 2010| Guideline ID. | Title | | :--- | :--- | | VDI 2230:2015 | Bolt assembly analysis guideline. <br> To read the document, please log onto the remote desktop <br> machine with your login details: Press $\rightarrow$ Windows + R <br> type mstsc $\rightarrow$ type computer name W9398 & connect with <br> your User ID and Password to view the PDF file in the <br> C:/Temp/recent | | DNVGL-ST-0361 <br> 2016 | Machinery for wind turbines. <br> Link: https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016- <br> 09/DNVGL-ST-0361.pdf | | GL Edition 2010 | Guideline for the Certification of Wind Turbines Edition 2010 |

6.4 Books  6.4 书籍

Author  作者 Title  标题

J.A. Packer, J. Wardenier, X.-L. Zhao, G.J. van der Vegte 和 Y. Kurobane
J.A. Packer, J. Wardenier,
X.-L. Zhao, G.J. van der Vegte and Y.
Kurobane
J.A. Packer, J. Wardenier, X.-L. Zhao, G.J. van der Vegte and Y. Kurobane| J.A. Packer, J. Wardenier, | | :--- | | X.-L. Zhao, G.J. van der Vegte and Y. | | Kurobane |

矩形空心截面(RHS)接头在主要静态荷载下的设计指南。链接:http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt-version-02-12-09.pdf
Design guide for rectangular hollow section (RHS) joints
under predominantly static loading.Link:
http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt-
version-02-12-09.pdf
Design guide for rectangular hollow section (RHS) joints under predominantly static loading.Link: http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt- version-02-12-09.pdf| Design guide for rectangular hollow section (RHS) joints | | :--- | | under predominantly static loading.Link: | | http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt- | | version-02-12-09.pdf |

ECSS 秘书处 ESA-ESTEC 需求与标准部 荷兰 诺德维克
ECSS Secretariat ESA-ESTEC
Requirements & Standards Division
Noordwijk, The Netherlands
ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands| ECSS Secretariat ESA-ESTEC | | :--- | | Requirements & Standards Division | | Noordwijk, The Netherlands |

空间工程 链接: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded-fasteners-handbook/
Space engineering
Link: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded-
fasteners-handbook/
Space engineering Link: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded- fasteners-handbook/| Space engineering | | :--- | | Link: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded- | | fasteners-handbook/ |

Shigley, J. E., C. R. Mischke, 和 R. G. Budynas
Shigley, J. E., C. R. Mischke, and R.
G. Budynas
Shigley, J. E., C. R. Mischke, and R. G. Budynas| Shigley, J. E., C. R. Mischke, and R. | | :--- | | G. Budynas |

机械工程设计,第 7 版,麦格劳-希尔书公司,纽约,2004 年。
Mechanical Engineering Design, 7th Ed., McGraw-Hill Book
Company, NY, 2004.
Mechanical Engineering Design, 7th Ed., McGraw-Hill Book Company, NY, 2004.| Mechanical Engineering Design, 7th Ed., McGraw-Hill Book | | :--- | | Company, NY, 2004. |
Industrial Press  工业出版社 Machinery's Handbook 27th Edition
机械工程手册第 27 版
Author Title "J.A. Packer, J. Wardenier, X.-L. Zhao, G.J. van der Vegte and Y. Kurobane" "Design guide for rectangular hollow section (RHS) joints under predominantly static loading.Link: http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt- version-02-12-09.pdf" "ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands" "Space engineering Link: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded- fasteners-handbook/" "Shigley, J. E., C. R. Mischke, and R. G. Budynas" "Mechanical Engineering Design, 7th Ed., McGraw-Hill Book Company, NY, 2004." Industrial Press Machinery's Handbook 27th Edition| Author | Title | | :--- | :--- | | J.A. Packer, J. Wardenier, <br> X.-L. Zhao, G.J. van der Vegte and Y. <br> Kurobane | Design guide for rectangular hollow section (RHS) joints <br> under predominantly static loading.Link: <br> http://212.150.245.105/shared/eBooks/DG3-eng-2nd-edt- <br> version-02-12-09.pdf | | ECSS Secretariat ESA-ESTEC <br> Requirements & Standards Division <br> Noordwijk, The Netherlands | Space engineering <br> Link: http://ecss.nl/hbstms/ecss-e-hb-32-23a-threaded- <br> fasteners-handbook/ | | Shigley, J. E., C. R. Mischke, and R. <br> G. Budynas | Mechanical Engineering Design, 7th Ed., McGraw-Hill Book <br> Company, NY, 2004. | | Industrial Press | Machinery's Handbook 27th Edition |

6.5 Article  6.5 文章

Author  作者 Title  标题
Zhi-Yu Wang, Lihui Li, Yong-Jie Fatigue Property of Open-Hole Steel Plates Influenced by
受影响的开孔钢板的疲劳性能
Liu and Qing-Yuan Wang
刘和王青元
Sichuan University and Chengdu
四川大学和成都
University  大学
Author Title Zhi-Yu Wang, Lihui Li, Yong-Jie Fatigue Property of Open-Hole Steel Plates Influenced by Liu and Qing-Yuan Wang Sichuan University and Chengdu University | Author | Title | | :--- | :--- | | Zhi-Yu Wang, Lihui Li, Yong-Jie | Fatigue Property of Open-Hole Steel Plates Influenced by | | Liu and Qing-Yuan Wang | | | Sichuan University and Chengdu | | | University | |
quad\quad
Link: www.mdpi.com/1996-1944/9/8/698/pdf
链接:www.mdpi.com/1996-1944/9/8/698/pdf
Link: www.mdpi.com/1996-1944/9/8/698/pdf| Link: www.mdpi.com/1996-1944/9/8/698/pdf | | :--- | :--- |

7 Appendix  7 附录

7.1 Appendix - Loads on bolt connection.
7.1 附录 - 螺栓连接上的载荷。

Loads are explained below. The final verification always must be done by the structural department.
负载如下所述。最终验证必须由结构部门完成。

7.1.1 Extreme loads  7.1.1 极端载荷

Extreme loads sources: Gravity, movement and from wind.
极端载荷来源:重力、运动和风。

Figure 7-1 Coordinate system when defining loads
图 7-1 定义载荷时的坐标系统

7.1.1.1 Extreme acceleration loads
7.1.1.1 极端加速度载荷

Acceleration loads are calculated in an aerodynamic program like FLEX5
加速度载荷是在像 FLEX5 这样的气动程序中计算的

Below are some typical accelerations.
以下是一些典型的加速度。

Extreme Loads at Nacelle/Tower Interface:
机舱/塔接口处的极端载荷:

AxK = 4 , 0 m / s 2 = 4 , 0 m / s 2 =4,0m//s2=4,0 \mathrm{~m} / \mathrm{s} 2, AyK = 5 , 5 m / s 2 = 5 , 5 m / s 2 =5,5m//s2=5,5 \mathrm{~m} / \mathrm{s} 2, AzK = 9 , 8 m / s 2 = 9 , 8 m / s 2 =-9,8m//s2=-9,8 \mathrm{~m} / \mathrm{s} 2

7.1.1.2 Extreme wind loads
7.1.1.2 极端风荷载

IEC is used for calculation the extreme wind loads.
IEC 用于计算极端风荷载。
Load Type  载荷类型 References  参考文献 Characteristic load F k F k F_(k)\mathrm{F}_{\mathrm{k}}
特征载荷 F k F k F_(k)\mathrm{F}_{\mathrm{k}}
Survival Wind 50 year gust
生存风速 50 年阵风
IEC 61400-1, p 21-31
IEC 61400-1,第 21-31 页
70 m / S 70 m / S 70m//S70 \mathrm{~m} / \mathrm{S}
Load Type References Characteristic load F_(k) Survival Wind 50 year gust IEC 61400-1, p 21-31 70m//S| Load Type | References | Characteristic load $\mathrm{F}_{\mathrm{k}}$ | | :--- | :--- | :--- | | Survival Wind 50 year gust | IEC 61400-1, p 21-31 | $70 \mathrm{~m} / \mathrm{S}$ |
Safety Survival 50year gust. γ n γ n gamma_(n)\gamma_{n} : Consequences of failure - Class 2, according to IEC 61400-1 pp. 43 and γ f = 1 , 35 γ f = 1 , 35 gamma_(f)=1,35\gamma_{\mathrm{f}}=1,35 acc. to normal unfavourable load.
安全生存 50 年风速。 γ n γ n gamma_(n)\gamma_{n} : 失效后果 - 根据 IEC 61400-1 第 43 页的第 2 类,以及 γ f = 1 , 35 γ f = 1 , 35 gamma_(f)=1,35\gamma_{\mathrm{f}}=1,35 根据正常不利载荷。

7.1.2 Fatigue loads  7.1.2 疲劳载荷

7.1.2.1 Fatigue acceleration loads
7.1.2.1 疲劳加速载荷

Equivalent fatigue loads at Nacelle/Tower Interface (Neq=1E7):
机舱/塔接口处的等效疲劳载荷 (Neq=1E7):

AxK = 1 , 5 m / s 2 , m = 4.00 = 1 , 5 m / s 2 , m = 4.00 =1,5m//s2,m=4.00=1,5 \mathrm{~m} / \mathrm{s} 2, \mathrm{~m}=4.00
AyK = 2 , 0 m / s 2 , m = 4.00 = 2 , 0 m / s 2 , m = 4.00 =2,0m//s2,m=4.00=2,0 \mathrm{~m} / \mathrm{s} 2, \mathrm{~m}=4.00

7.1.2.2 Fatigue wind loads
7.1.2.2 疲劳风荷载

Equivalent wind load based on IEC 61400. See this standard for more information
基于 IEC 61400 的等效风载荷。有关更多信息,请参见该标准。

The partial factor for fatigue strength acc. to EN 1993-1-9:2005:
根据 EN 1993-1-9:2005 的疲劳强度部分系数:
Table 3.1: Recommended values for partial factors for fatigue strength
表 3.1:疲劳强度的推荐部分系数值
Assessment method  评估方法 Consequence of failure  失效的后果
Low consequence  低后果 High consequence  高后果
Damage tolerant  耐损伤 1,00 1,15
Safe life  安全寿命 1,15 1,35
Assessment method Consequence of failure Low consequence High consequence Damage tolerant 1,00 1,15 Safe life 1,15 1,35| Assessment method | Consequence of failure | | | :---: | :---: | :---: | | | Low consequence | High consequence | | Damage tolerant | 1,00 | 1,15 | | Safe life | 1,15 | 1,35 |
Rule of thumb: Only check acc. to fatigue wind load when having a connection where stress in bolts are higher than 400 MPa by 70 m / s 70 m / s 70m//s70 \mathrm{~m} / \mathrm{s} extreme wind speed.
经验法则:仅在连接处螺栓应力超过 400 MPa 且风速达到 70 m / s 70 m / s 70m//s70 \mathrm{~m} / \mathrm{s} 极端风速时,才检查疲劳风载荷。

7.2 Appendix - Description of tool
7.2 附录 - 工具描述

7.2.1 Hydraulic Bolt Tensioners (TC 1)
7.2.1 液压螺栓张紧器 (TC 1)

Hydraulic Bolt Tensioners is tool class A.
液压螺栓张紧器是工具 A 类。

When using bolt tensioners be aware of the surrounding dimension of the bolted joint
使用螺栓张紧器时,请注意螺栓连接的周围尺寸

Be in dialog with the assembly and the supplier.
与装配和供应商进行对话。

Figure 7-2 Hydraulic Bolt Tensioners incl. dimensional symbols of what to be aware of.
图 7-2 液压螺栓张紧器,包括需要注意的尺寸符号。

Be aware of tool size and surface pressure created from tool.
注意工具的尺寸和工具产生的表面压力。

7.2.2 Hydraulic tool  7.2.2 液压工具

Hydraulic torque wrenches are in tool classes B and C.
液压扭矩扳手属于工具类别 B 和 C。

Example tool used in assembly factory:
组装工厂中使用的示例工具:
Tool  工具
  最大扭矩
Max
Torque
Max Torque| Max | | :--- | | Torque |
  方形驱动尺寸
Square Drive
Sizes
Square Drive Sizes| Square Drive | | :--- | | Sizes |

最大螺栓尺寸(质量)*
Max Bolt Size
(Quality)*
Max Bolt Size (Quality)*| Max Bolt Size | | :--- | | (Quality)* |

距离螺栓中心到反应臂 ( ( L 1 + L 2 ) / 2 ) ( ( L 1 + L 2 ) / 2 ) ((L1+L2)//2)^(****)((L 1+L 2) / 2)^{* *}
Distance bolt
center to
reaction arm
( ( L 1 + L 2 ) / 2 ) ( ( L 1 + L 2 ) / 2 ) ((L1+L2)//2)^(****)((L 1+L 2) / 2)^{* *}
Distance bolt center to reaction arm ((L1+L2)//2)^(****)| Distance bolt | | :--- | | center to | | reaction arm | | $((L 1+L 2) / 2)^{* *}$ |

距离螺栓中心到反应臂 ( ( R 1 + R 2 ) / 2 ) ( ( R 1 + R 2 ) / 2 ) ((R1+R2)//2)^(****)((R 1+R 2) / 2)^{* *}
Distance bolt
center to
reaction arm
( ( R 1 + R 2 ) / 2 ) ( ( R 1 + R 2 ) / 2 ) ((R1+R2)//2)^(****)((R 1+R 2) / 2)^{* *}
Distance bolt center to reaction arm ((R1+R2)//2)^(****)| Distance bolt | | :--- | | center to | | reaction arm | | $((R 1+R 2) / 2)^{* *}$ |
TITAN T1 1.843 Nm 1 / 2 & 1 1 / 2 & 1 1//2^('')&1^('')1 / 2^{\prime \prime} \& 1^{\prime \prime} M 30 ( 10.9 ) M 30 ( 10.9 ) M30(10.9)\mathrm{M} 30(10.9) 150 mm  150 毫米 136 mm  136 毫米
TITAN T3 4.236 Nm 3 / 4 & 11 / 2 3 / 4 & 11 / 2 3//4^('')&11//2^('')3 / 4^{\prime \prime} \& 11 / 2^{\prime \prime} M 39 ( 10.9 ) M 39 ( 10.9 ) M39(10.9)\mathrm{M} 39(10.9) 197 mm  197 毫米 178 mm  178 毫米
TITAN T5 7.601 Nm 1 & 2 1 / 2 1 & 2 1 / 2 1^('')&2^(1//2^(''))1^{\prime \prime} \& 2^{1 / 2^{\prime \prime}} M 48 ( 10.9 ) M 48 ( 10.9 ) M48(10.9)\mathrm{M} 48(10.9) 236 mm  236 毫米 213 mm  213 毫米
Tool "Max Torque" "Square Drive Sizes" "Max Bolt Size (Quality)*" "Distance bolt center to reaction arm ((L1+L2)//2)^(****)" "Distance bolt center to reaction arm ((R1+R2)//2)^(****)" TITAN T1 1.843 Nm 1//2^('')&1^('') M30(10.9) 150 mm 136 mm TITAN T3 4.236 Nm 3//4^('')&11//2^('') M39(10.9) 197 mm 178 mm TITAN T5 7.601 Nm 1^('')&2^(1//2^('')) M48(10.9) 236 mm 213 mm| Tool | Max <br> Torque | Square Drive <br> Sizes | Max Bolt Size <br> (Quality)* | Distance bolt <br> center to <br> reaction arm <br> $((L 1+L 2) / 2)^{* *}$ | Distance bolt <br> center to <br> reaction arm <br> $((R 1+R 2) / 2)^{* *}$ | | :--- | :--- | :--- | :---: | :---: | :---: | | TITAN T1 | 1.843 Nm | $1 / 2^{\prime \prime} \& 1^{\prime \prime}$ | $\mathrm{M} 30(10.9)$ | 150 mm | 136 mm | | TITAN T3 | 4.236 Nm | $3 / 4^{\prime \prime} \& 11 / 2^{\prime \prime}$ | $\mathrm{M} 39(10.9)$ | 197 mm | 178 mm | | TITAN T5 | 7.601 Nm | $1^{\prime \prime} \& 2^{1 / 2^{\prime \prime}}$ | $\mathrm{M} 48(10.9)$ | 236 mm | 213 mm |
Table 7-1 Values for Hydraulic torque wrenches. *Use 0066-0218 to find the need torque **See figure
表 7-1 液压扭矩扳手的值。*使用 0066-0218 查找所需扭矩 **见图

T SERIES ACCESSORIES  T 系列配件

Figure 7-3 Hydraulic torque wrench. Reaction arm can be adjusted
图 7-3 液压扭矩扳手。反应臂可以调节。

When making volume of control and volume of activity analysis be aware of needed space for reaction arm both for mounting and demounting.
在进行控制体积和活动体积分析时,请注意反应臂所需的空间,以便于安装和拆卸。
For more information about the hydraulic torque wrenches and dimensions see www.titanti.com
有关液压扭矩扳手和尺寸的更多信息,请访问 www.titanti.com

7.2.3 Electric torque wrenches
7.2.3 电动扭矩扳手

Electric torque wrenches are in tool classes C.
电动扭矩扳手属于工具类别 C。

Figure 7-4 Electric torque wrenches are available both with battery and cable.
图 7-4 电动扭矩扳手有电池和电缆两种可供选择。

The benefits electric torque wrenches are brushless operation, transducer control and memory
电动扭矩扳手的优点是无刷操作、传感器控制和记忆功能

A reaction bar and bracket must always be used in high torque applications above 70 Nm
在高扭矩应用中,超过 70 Nm 时必须始终使用反应杆和支架

For more info see http://products.clecotools.com/Web Assets/PL12EN-67EA.pdf
有关更多信息,请参见 http://products.clecotools.com/Web Assets/PL12EN-67EA.pdf

Some examples of tools:
一些工具的例子:
Tool  工具 Torque  扭矩
  方形驱动尺寸
Square
Drive
Sizes
Square Drive Sizes| Square | | :--- | | Drive | | Sizes |

最大螺栓尺寸(质量)*
Max Bolt
Size
(Quality)*
Max Bolt Size (Quality)*| Max Bolt | | :--- | | Size | | (Quality)* |
Length  长度 Reaction arm note**  反应臂注释**
67EA
2010AH8
67EA 2010AH8| 67EA | | :--- | | 2010AH8 |
400 2000 Nm 400 2000 Nm 400-2000Nm400-2000 \mathrm{Nm} 1 " M30 (10.9) 668 mm  668 毫米 With long angle head.
带长角头。
67EA 460AM6 95 460 Nm 95 460 Nm 95-460Nm95-460 \mathrm{Nm} 3 / 4 3 / 4 3//4^('')3 / 4^{\prime \prime} M20 (10.9) 803 mm  803 毫米

带短角头。
With short angle
head.
With short angle head.| With short angle | | :--- | | head. |
47BAY
SB70AH4
47BAY SB70AH4| 47BAY | | :--- | | SB70AH4 |
24 70 Nm 24 70 Nm 24-70Nm24-70 \mathrm{Nm} 1 / 2 1 / 2 1//2^('')1 / 2^{\prime \prime} M12 (8.8) 678 mm  678 毫米 Not needed  不需要
47BAY
SB35AM3
47BAY SB35AM3| 47BAY | | :--- | | SB35AM3 |
12 35 Nm 12 35 Nm 12-35Nm12-35 \mathrm{Nm} 3 / 8 3 / 8 3//8^('')3 / 8^{\prime \prime} M6 (A4-70) 600 mm  600 毫米 Not needed  不需要
Tool Torque "Square Drive Sizes" "Max Bolt Size (Quality)*" Length Reaction arm note** "67EA 2010AH8" 400-2000Nm 1 " M30 (10.9) 668 mm With long angle head. 67EA 460AM6 95-460Nm 3//4^('') M20 (10.9) 803 mm "With short angle head." "47BAY SB70AH4" 24-70Nm 1//2^('') M12 (8.8) 678 mm Not needed "47BAY SB35AM3" 12-35Nm 3//8^('') M6 (A4-70) 600 mm Not needed| Tool | Torque | Square <br> Drive <br> Sizes | Max Bolt <br> Size <br> (Quality)* | Length | Reaction arm note** | | :--- | :--- | :--- | :--- | :--- | :--- | | 67EA <br> 2010AH8 | $400-2000 \mathrm{Nm}$ | 1 " | M30 (10.9) | 668 mm | With long angle head. | | 67EA 460AM6 | $95-460 \mathrm{Nm}$ | $3 / 4^{\prime \prime}$ | M20 (10.9) | 803 mm | With short angle <br> head. | | 47BAY <br> SB70AH4 | $24-70 \mathrm{Nm}$ | $1 / 2^{\prime \prime}$ | M12 (8.8) | 678 mm | Not needed | | 47BAY <br> SB35AM3 | $12-35 \mathrm{Nm}$ | $3 / 8^{\prime \prime}$ | M6 (A4-70) | 600 mm | Not needed |
Table 7-2 Values for electric torque wrenches. *Use 0066-0218 to find the need torque.
表 7-2 电动扭矩扳手的数值。*使用 0066-0218 查找所需扭矩。

7.2.4 Manual click tool
7.2.4 手动点击工具

Manual click tool is in tool classes D.
手动点击工具在工具类别 D 中。

Figure 7-5 Interchangeable head and ratcheting wrench. The accuracy of the Interchangeable head models is lower than ratcheting wrench.
图 7-5 可更换头和棘轮扳手。可更换头模型的精度低于棘轮扳手。
Some examples of tools listed below. Above 300 Nm difficult to meet by manpower:
以下是一些工具的示例。超过 300 Nm 的扭矩难以通过人力满足:
Tool  工具 Torque  扭矩
  方形驱动尺寸
Square Drive
Sizes
Square Drive Sizes| Square Drive | | :--- | | Sizes |
Length  长度
TECH4FRM600 80 800 Nm 80 800 Nm 80-800Nm80-800 \mathrm{Nm} 3 / 4 3 / 4 3//4^('')3 / 4^{\prime \prime} 1220 mm  1220 毫米
TECH3FRM600 35 340 Nm 35 340 Nm 35-340Nm35-340 \mathrm{Nm} 1 / 2 1 / 2 1//2^('')1 / 2^{\prime \prime} 667 mm  667 毫米
TECH2FRM100 6 135 Nm 6 135 Nm 6-135Nm6-135 \mathrm{Nm} 3 / 8 3 / 8 3//8^('')3 / 8^{\prime \prime} 440 mm  440 毫米
TECH1FRM240 3 27 Nm 3 27 Nm 3-27Nm3-27 \mathrm{Nm} 1 / 4 1 / 4 1//4^('')1 / 4^{\prime \prime} 387 mm  387 毫米
Tool Torque "Square Drive Sizes" Length TECH4FRM600 80-800Nm 3//4^('') 1220 mm TECH3FRM600 35-340Nm 1//2^('') 667 mm TECH2FRM100 6-135Nm 3//8^('') 440 mm TECH1FRM240 3-27Nm 1//4^('') 387 mm| Tool | Torque | Square Drive <br> Sizes | Length | | :--- | :--- | :--- | :--- | | TECH4FRM600 | $80-800 \mathrm{Nm}$ | $3 / 4^{\prime \prime}$ | 1220 mm | | TECH3FRM600 | $35-340 \mathrm{Nm}$ | $1 / 2^{\prime \prime}$ | 667 mm | | TECH2FRM100 | $6-135 \mathrm{Nm}$ | $3 / 8^{\prime \prime}$ | 440 mm | | TECH1FRM240 | $3-27 \mathrm{Nm}$ | $1 / 4^{\prime \prime}$ | 387 mm |
Table 7-3 Values for manual click tool. *Use 0066-0218 to find the need torque.
表 7-3 手动点击工具的值。*使用 0066-0218 查找所需扭矩。

7.2.5 Pneumatic Impact wrench
7.2.5 气动冲击扳手

Pneumatic Impact wrench is in tool classes E.
气动冲击扳手属于工具类别 E。

Some examples of tools (Above 500 Nm difficult to meet by manpower):
一些工具的例子(超过 500 Nm 的人力难以满足):
Tool  工具 Torque  扭矩 Square Drive Sizes  方形驱动尺寸
GT200PSS 50 270 Nm 50 270 Nm 50-270Nm50-270 \mathrm{Nm} 3 / 4 3 / 4 3//4^('')3 / 4^{\prime \prime}
GT800PSS 200 1085 Nm 200 1085 Nm 200-1085Nm200-1085 \mathrm{Nm} 3 / 4 3 / 4 3//4^('')3 / 4^{\prime \prime} or 1"   3 / 4 3 / 4 3//4^('')3 / 4^{\prime \prime} 或 1"
GT2600SS 746 3525 Nm 746 3525 Nm 746-3525Nm746-3525 \mathrm{Nm} 1 / 1 / 1//^(')1 /{ }^{\prime}
Tool Torque Square Drive Sizes GT200PSS 50-270Nm 3//4^('') GT800PSS 200-1085Nm 3//4^('') or 1" GT2600SS 746-3525Nm 1//^(')| Tool | Torque | Square Drive Sizes | | :--- | :--- | :--- | | GT200PSS | $50-270 \mathrm{Nm}$ | $3 / 4^{\prime \prime}$ | | GT800PSS | $200-1085 \mathrm{Nm}$ | $3 / 4^{\prime \prime}$ or 1" | | GT2600SS | $746-3525 \mathrm{Nm}$ | $1 /{ }^{\prime}$ |
Table 7-4 Values for manual click tool. *Use 0066-0218 to find the need torque.
表 7-4 手动点击工具的值。*使用 0066-0218 查找所需扭矩。

7.3 Appendix - Example how to do PS (Process specification)
7.3 附录 - PS(过程规范)示例如何进行

Example 2 based on 0064-0899
基于 0064-0899 的示例 2
# # #\# Figure  图形
  评论 1
Comments
1
Comments 1| Comments | | :--- | | 1 |
# Figure "Comments 1" | $\#$ | Figure | Comments <br> 1 | | | :--- | :--- | :--- | :--- |
Important that assembly are involved in review of PS.
重要的是,组装部门参与 PS 的审查。

7.4 Appendix - Equations relevant for bolt calculation
7.4 附录 - 与螺栓计算相关的方程式

Equation for required clamping force:
所需夹紧力的公式:

F M min = F Kerf + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) ( F M  min  = F Kerf  + 1 Φ e n F A max + F Z + Δ F V t h ( F_(M" min ")=F_("Kerf ")+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quad(F_{M \text { min }}=F_{\text {Kerf }}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad( Ref VDI 2230:2015 R5/1 page 33)
F M min = F Kerf + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) ( F M  min  = F Kerf  + 1 Φ e n F A max + F Z + Δ F V t h ( F_(M" min ")=F_("Kerf ")+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quad(F_{M \text { min }}=F_{\text {Kerf }}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad( Ref VDI 2230:2015 R5/1 第 33 页)

Preferred min safety SRF = F M min based on program / F M min required < 1 , 25 SRF = F M  min based on program  / F M  min required  < 1 , 25 SRF=F_(M" min based on program ")//F_(M" min required ") < 1,25\mathrm{SRF}=\mathrm{F}_{\mathrm{M} \text { min based on program }} / \mathrm{F}_{\mathrm{M} \text { min required }}<1,25 (EN 1993-1-8, Normal hole)
优选最小安全 SRF = F M min based on program / F M min required < 1 , 25 SRF = F M  min based on program  / F M  min required  < 1 , 25 SRF=F_(M" min based on program ")//F_(M" min required ") < 1,25\mathrm{SRF}=\mathrm{F}_{\mathrm{M} \text { min based on program }} / \mathrm{F}_{\mathrm{M} \text { min required }}<1,25 (EN 1993-1-8,普通孔)

F M min F M  min  F_(M" min ")F_{\mathrm{M} \text { min }} - the min. required assembly preload which must smaller than clamping force in 0066-0218
F M min F M  min  F_(M" min ")F_{\mathrm{M} \text { min }} - 在 0066-0218 中,所需的最小装配预紧力必须小于夹紧力。

F Kerf F Kerf  F_("Kerf ")quadF_{\text {Kerf }} \quad - clamp load required for friction grip or sealing
F Kerf F Kerf  F_("Kerf ")quadF_{\text {Kerf }} \quad - 夹紧负荷要求用于摩擦夹持或密封

Φ en Φ en  Phi_("en ")quad-\Phi_{\text {en }} \quad- load factor for load introduction via the clamped parts. Conservative Φ en = 0 Φ en  = 0 Phi_("en ")=0^(**)\Phi_{\text {en }}=0^{*}
Φ en Φ en  Phi_("en ")quad-\Phi_{\text {en }} \quad- 通过夹紧部件引入负载的负载系数。保守的 Φ en = 0 Φ en  = 0 Phi_("en ")=0^(**)\Phi_{\text {en }}=0^{*}

F A max F A max  F_("A max ")F_{\text {A max }} - is maximum axial load
F A max F A max  F_("A max ")F_{\text {A max }} - 是最大轴向载荷

F z F z F_(z)quadF_{z} \quad - loss of preload because of embedding during operation
F z F z F_(z)quadF_{z} \quad - 由于操作过程中嵌入导致的预紧力损失

Δ F Vth Δ F Vth DeltaF_(Vth)quad\Delta \mathrm{F}_{\mathrm{Vth}} \quad - change in the preload because of a temperature (Not described in this document)
Δ F Vth Δ F Vth DeltaF_(Vth)quad\Delta \mathrm{F}_{\mathrm{Vth}} \quad - 由于温度变化导致的预紧力变化(本文件未描述)

*Often the load factor is conservative set to Φ en = 0 Φ en  = 0 Phi_("en ")=0\Phi_{\text {en }}=0 and thereby no reduction of the load. A more detail calculation it therefore only needed if the Designer will go closer to the limit.
*通常负载系数保守地设定为 Φ en = 0 Φ en  = 0 Phi_("en ")=0\Phi_{\text {en }}=0 ,因此没有负载的减少。只有在设计师希望接近极限时,才需要更详细的计算。
In the next chapter is a short description of load factor described
在下一章中将简要描述负载因子

Large Φ K Φ K Phi_(K)\Phi_{\mathrm{K}} and large load introduction factor n is preferred
大型 Φ K Φ K Phi_(K)\Phi_{\mathrm{K}} 和大型载荷引入因子 n 是首选

A bushing has a bad impact on the load factor with an n n nn of typically 0,3
衬套对负载系数有不良影响,通常为 n n nn 的 0.3

Φ e n = n Φ K Φ e n = n Φ K Phi_(en)=n*Phi_(K)\Phi_{e n}=n \cdot \Phi_{K}

7.4.1 Φ K Φ K Phi_(K)\Phi_{K} - Load factor concentric load factor
7.4.1 Φ K Φ K Phi_(K)\Phi_{K} - 载荷系数 同心载荷系数

The basic force ratio is calculated using equation:
基本力比是使用以下方程计算的:

Φ K = δ P δ P + δ S Φ K = δ P δ P + δ S Phi_(K)=(delta_(P))/(delta_(P)+delta_(S))quad\Phi_{K}=\frac{\delta_{P}}{\delta_{P}+\delta_{S}} \quad (Roloff Matek Simplified compared to VDI)
Φ K = δ P δ P + δ S Φ K = δ P δ P + δ S Phi_(K)=(delta_(P))/(delta_(P)+delta_(S))quad\Phi_{K}=\frac{\delta_{P}}{\delta_{P}+\delta_{S}} \quad (Roloff Matek 简化版与 VDI 相比)

δ s ( mm / N ) δ s ( mm / N ) delta s(mm//N)\delta s(\mathrm{~mm} / \mathrm{N}) is resilience of the bolt and δ P ( mm / N ) δ P ( mm / N ) delta_(P)(mm//N)\delta_{\mathrm{P}}(\mathrm{mm} / \mathrm{N}) resilience of the clamped parts
δ s ( mm / N ) δ s ( mm / N ) delta s(mm//N)\delta s(\mathrm{~mm} / \mathrm{N}) 是螺栓的韧性, δ P ( mm / N ) δ P ( mm / N ) delta_(P)(mm//N)\delta_{\mathrm{P}}(\mathrm{mm} / \mathrm{N}) 是夹紧部分的韧性

If the support is stiff ( δ P δ P delta_(P)\delta_{\mathrm{P}} low) compared with the bolt ( δ S δ S delta_(S)\delta_{\mathrm{S}} high) then is Φ K Φ K Phi_(K)\Phi_{\mathrm{K}} small which is preferred.
如果支撑相对于螺栓比较刚性( δ P δ P delta_(P)\delta_{\mathrm{P}} 低),那么 Φ K Φ K Phi_(K)\Phi_{\mathrm{K}} 小,这是更可取的。

7.4.1.1 δ s δ s delta_(s)\delta_{s} - Resilience of the bolt.
7.4.1.1 δ s δ s delta_(s)\delta_{s} - 螺栓的韧性。

Deformations of the head and engaged regions has influence on the preload.
头部和接合区域的变形对预紧力有影响。

Figure 7-6 Dimensions important for resilience of fastener
图 7-6 紧固件韧性的重要尺寸
The equation for resilience of the bolt is:
螺栓的韧性公式为:
δ S = 1 E S [ L S K A nom + L n A N + L Gew A 3 + L G A 3 ] + L M E M A nom δ S = 1 E S L S K A nom  + L n A N + L Gew  A 3 + L G A 3 + L M E M A nom  delta_(S)=(1)/(E_(S))[(L_(SK))/(A_("nom "))+(L_(n))/(A_(N))+(L_("Gew "))/(A_(3))+(L_(G))/(A_(3))]+(L_(M))/(E_(M)A_("nom "))\delta_{S}=\frac{1}{E_{S}}\left[\frac{L_{S K}}{A_{\text {nom }}}+\frac{L_{n}}{A_{N}}+\frac{L_{\text {Gew }}}{A_{3}}+\frac{L_{G}}{A_{3}}\right]+\frac{L_{M}}{E_{M} A_{\text {nom }}}
where;  哪里;
Part of Fastener  紧固件的一部分 Parameter  参数

紧固件/接头配置
FastenerlJoint
Configuration
FastenerlJoint Configuration| FastenerlJoint | | :--- | | Configuration |

典型替代长度
Typical Substitution
Length
Typical Substitution Length| Typical Substitution | | :--- | | Length |
Bolt head  螺栓头 L sk L sk  L_("sk ")\mathrm{L}_{\text {sk }} Hexagon head  六角头 0.5 d
Cylindrical head  圆柱形头部 0.4 d
Engaged thread  啮合螺纹 L G L G L_(G)\mathrm{L}_{\mathrm{G}} Any  任何 0.5 d
Nut-Tightened  螺母紧固 0.4 d
Threaded hole  螺纹孔 0.33 d
Part of Fastener Parameter "FastenerlJoint Configuration" "Typical Substitution Length" Bolt head L_("sk ") Hexagon head 0.5 d Cylindrical head 0.4 d Engaged thread L_(G) Any 0.5 d Nut-Tightened 0.4 d Threaded hole 0.33 d | Part of Fastener | Parameter | FastenerlJoint <br> Configuration | Typical Substitution <br> Length | | :--- | :--- | :--- | :--- | | Bolt head | $\mathrm{L}_{\text {sk }}$ | Hexagon head | 0.5 d | | | | Cylindrical head | 0.4 d | | Engaged thread | $\mathrm{L}_{\mathrm{G}}$ | Any | 0.5 d | | | | Nut-Tightened | 0.4 d | | | Threaded hole | 0.33 d | |
A nom A nom  A_("nom ")A_{\text {nom }} is the fastener’s nominal cross-sectional area,
A nom A nom  A_("nom ")A_{\text {nom }} 是紧固件的名义横截面积,

A 3 A 3 A_(3)A_{3} is the fasteners minor diameter area.
A 3 A 3 A_(3)A_{3} 是紧固件的次要直径面积。

A N A N A_(N)A_{N} is the effective cross-sectional area at the N N NN 'th segment of the fastener’s shank L N L N L_(N)\mathrm{L}_{N} is the length of the N N NN 'th segment of the fastener’s shank.
A N A N A_(N)A_{N} 是紧固件杆件第 N N NN 段的有效横截面积, L N L N L_(N)\mathrm{L}_{N} 是紧固件杆件第 N N NN 段的长度。

7.4.1.2 δ P δ P delta_(P)\delta_{P} - Compliance of the clamped parts
7.4.1.2 δ P δ P delta_(P)\delta_{P} - 被夹持部件的合规性

The compliance of the clamped parts is named δ p δ p delta_(p)\delta_{p}
夹紧部件的顺应性被称为 δ p δ p delta_(p)\delta_{p}

The compressed zone is used defining compliance of the clamped parts
压缩区用于定义夹紧部件的合规性

D avail D avail  D_("avail ")D_{\text {avail }} is the diameter of the available diameter:
D avail D avail  D_("avail ")D_{\text {avail }} 是可用直径的直径:

Figure 7-7 Definition of the available diameter and the limit diameter
图 7-7 可用直径和极限直径的定义
The existence of the sleeve is determined as follows:
套筒的存在由以下方式确定:

If D avail > D lim D avail  > D lim  D_("avail ") > D_("lim ")D_{\text {avail }}>D_{\text {lim }}, the compression zone is fully developed into a cone
如果 D avail > D lim D avail  > D lim  D_("avail ") > D_("lim ")D_{\text {avail }}>D_{\text {lim }} ,压缩区完全发展成一个锥体

If D avail < D lim D avail  < D lim  D_("avail ") < D_("lim ")D_{\text {avail }}<D_{\text {lim }}, that compression zone is formed by a partial compression sleeve
如果 D avail < D lim D avail  < D lim  D_("avail ") < D_("lim ")D_{\text {avail }}<D_{\text {lim }} ,则该压缩区由部分压缩套筒形成
It is acceptable to have gap between the compressed parts outside the compression zone, see figure below. A gap in the compression zone will have big impact on the connection stiffness and must be avoided.
在压缩区外的压缩部件之间有间隙是可以接受的,见下图。在压缩区内的间隙会对连接刚度产生重大影响,必须避免。

A Bolt Through a Plate
一个穿过板的螺栓

The Assumed Stress Field
假定应力场
Figure 7-8 Compression zone
图 7-8 压缩区

To determine the compassion zone the angle, α α alpha\alpha, is used:
为了确定同情区,使用角度 α α alpha\alpha
  • α = 30 α = 30 alpha=30\alpha=30 degrees is often used.
    α = 30 α = 30 alpha=30\alpha=30 度通常被使用。
  • Angle can be calculated analytical. See VDI 2230:2015.
    角度可以通过分析计算。请参见 VDI 2230:2015。
Limit diameter of the compression cone as given by
压缩锥的限制直径如所示

D lim = d w + w L c tan ( φ ) D lim  = d w + w L c tan ( φ ) D_("lim ")=d_(w)+w**L_(c)**tan(varphi)\mathrm{D}_{\text {lim }}=\mathrm{d}_{\mathrm{w}}+\mathrm{w} * \mathrm{~L}_{\mathrm{c}} * \tan (\varphi)
where;  在哪里;
d w d w d_(w)d_{w} is the fastener’s under-head bearing diameter,
d w d w d_(w)d_{w} 是紧固件的头下支承直径,

L c L c L_(c)L_{c} is the compression length,
L c L c L_(c)L_{c} 是压缩长度,

φ φ varphi\varphi is the compression cone half angle,
φ φ varphi\varphi 是压缩锥的半角,

w = 1 w = 1 w=1w=1 for a nut-tightened joint and w = 2 w = 2 w=2w=2 for a threaded hole joint,.
w = 1 w = 1 w=1w=1 用于螺母紧固接头, w = 2 w = 2 w=2w=2 用于螺纹孔接头。
The compression cone’s half angle, φ φ varphi\varphi, depends strongly on the available area of the flanges. It is also influenced by the fastener’s under-head diameter, the hole diameter and the distribution of the compression load φ φ varphi\varphi
压缩锥的半角 φ φ varphi\varphi 强烈依赖于法兰的可用面积。它还受到紧固件下头直径、孔直径和压缩载荷分布 φ φ varphi\varphi 的影响。
Nut-tightened joints tan ( φ ) tan ( φ ) tan(varphi)\tan (\varphi) is given by;
螺母紧固接头 tan ( φ ) tan ( φ ) tan(varphi)\tan (\varphi) 的计算公式为;

tan φ = 0.362 + 0.032 ln ( x / 2 ) + 0.153 ln ( y ) tan φ = 0.362 + 0.032 ln ( x / 2 ) + 0.153 ln ( y ) tan varphi=0.362+0.032 ln(x//2)+0.153 ln(y)\tan \varphi=0.362+0.032 \ln (x / 2)+0.153 \ln (y)
Insert joints it is given by;
插入接头由此给出;
tan φ = 1.295 0.246 ln ( x ) + 0.94 ln ( y ) tan φ = 1.295 0.246 ln ( x ) + 0.94 ln ( y ) tan varphi=1.295-0.246 ln(x)+0.94 ln(y)\tan \varphi=1.295-0.246 \ln (x)+0.94 \ln (y)
where the following non-dimensional parameters are used,
其中使用了以下无量纲参数,
x = L c d W y = D avail d W x = L c d W y = D avail  d W x=(L_(c))/(d_(W))quad y=(D_("avail "))/(d_(W))x=\frac{L_{c}}{d_{W}} \quad y=\frac{D_{\text {avail }}}{d_{W}}

7.4.1.3 D avail > D lim D avail  > D lim  D_("avail ") > D_("lim ")D_{\text {avail }}>D_{\text {lim }}

The compliance of the clamped parts, δ p δ p delta_(p)\delta_{p}, for the case of fully developed compression cone/s (i.e. with Davail > > >> Dlim) is given by,
夹紧部件的顺应性, δ p δ p delta_(p)\delta_{p} ,在完全发育的压缩锥情况下(即,Davail > > >> Dlim),由以下公式给出,

δ p = 2 ln [ ( d W + d h ) ( D lim d h ) ( d W d h ) ( D lim + d h ) ] E c π w d h tan ( φ ) δ p = 2 ln d W + d h D lim  d h d W d h D lim  + d h E c π w d h tan ( φ ) delta_(p)=(2ln[((d_(W)+d_(h))(D_("lim ")-d_(h)))/((d_(W)-d_(h))(D_("lim ")+d_(h)))])/(E_(c)pi wd_(h)tan(varphi))\delta_{p}=\frac{2 \ln \left[\frac{\left(d_{W}+d_{h}\right)\left(D_{\text {lim }}-d_{h}\right)}{\left(d_{W}-d_{h}\right)\left(D_{\text {lim }}+d_{h}\right)}\right]}{E_{c} \pi w d_{h} \tan (\varphi)}
where E c E c E_(c)E_{c} is the modulus of elasticity of the clamped parts and d h d h d_(h)\mathrm{d}_{\mathrm{h}} is hole diameter.
其中 E c E c E_(c)E_{c} 是夹紧部分的弹性模量, d h d h d_(h)\mathrm{d}_{\mathrm{h}} 是孔径。

7.4.1.4 Davail < D lim Davail < D lim  Davail < D_("lim ")\mathrm{Davail}<\mathrm{D}_{\text {lim }}

For partially developed compression cone/s (i.e. D W < D avail < D lim D W < D avail  < D lim  D_(W) < D_("avail ") < D_("lim ")D_{W}<D_{\text {avail }}<D_{\text {lim }} ), the clamped parts compliance is given by
对于部分开发的压缩锥(即 D W < D avail < D lim D W < D avail  < D lim  D_(W) < D_("avail ") < D_("lim ")D_{W}<D_{\text {avail }}<D_{\text {lim }} ),夹紧部分的顺应性由以下公式给出

δ p = 2 w d h tan ( φ ) ln [ ( d W + d h ) ( d W d h ) ( d W d h ) ( d W + d h ) ] + 4 D avail 2 d 2 [ L c D avail d W w tan ( φ ) ] E c π δ p = 2 w d h tan ( φ ) ln d W + d h d W d h d W d h d W + d h + 4 D avail  2 d 2 L c D avail  d W w tan ( φ ) E c π delta_(p)=((2)/(wd_(h)tan(varphi))ln[((d_(W)+d_(h))(d_(W)-d_(h)))/((d_(W)-d_(h))(d_(W)+d_(h)))]+(4)/(D_("avail ")^(2)-d^(2))[L_(c)-(D_("avail ")-d_(W))/(w tan(varphi))])/(E_(c)pi)\delta_{p}=\frac{\frac{2}{w d_{h} \tan (\varphi)} \ln \left[\frac{\left(d_{W}+d_{h}\right)\left(d_{W}-d_{h}\right)}{\left(d_{W}-d_{h}\right)\left(d_{W}+d_{h}\right)}\right]+\frac{4}{D_{\text {avail }}{ }^{2}-d^{2}}\left[L_{c}-\frac{D_{\text {avail }}-d_{W}}{w \tan (\varphi)}\right]}{E_{c} \pi}

7.4.2 n - Load introduction factor
7.4.2 n - 载荷引入系数

Big n preferred.  大 n 优先。
See figure below where a k a k a_(k)a_{k} is the stiff part e.g. distance bushing and I A I A I_(A)I_{A} is the flange.
请参见下图,其中 a k a k a_(k)a_{k} 是刚性部分,例如距离衬套, I A I A I_(A)I_{A} 是法兰。

The distance I A I A I_(A)\mathrm{I}_{\mathrm{A}} must be estimated or found using FEA.
距离 I A I A I_(A)\mathrm{I}_{\mathrm{A}} 必须通过有限元分析(FEA)进行估算或查找。

The load F A F A F_(A)F_{A} is place where the sectional moment is 0 . It is assumed that the bolted connection fixed.
载荷 F A F A F_(A)F_{A} 是截面弯矩为 0 的位置。假设螺栓连接是固定的。

I A / h I A / h I_(A)//hI_{A} / h 0,00 0,10 0,20 0 , 30 0 , 30 >= 0,30\geq 0,30
a k / h a k / h a_(k)//ha_{\mathrm{k}} / h 0,00 0,10 0,30 0 , 50 0 , 50 >= 0,50\geq 0,50 0,00 0,10 0,30 0 , 50 0 , 50 >= 0,50\geq 0,50 0,00 0,10 0,30 0 , 50 0 , 50 >= 0,50\geq 0,50 0,00 0,10 0,30 0 , 50 0 , 50 >= 0,50\geq 0,50
SV 1 0,70 0,55 0,30 0,13 0,52 0,41 0,22 0,10 0,34 0,28 0,16 0,07 0,16 0,14 0,12 0,04
SV 2 0,57 0,46 0,30 0,13 0,44 0,36 0,21 0,10 0,30 0,25 0,16 0,07 0,16 0,14 0,12 0,04
SV 3 0,44 0,37 0,26 0,12 0,35 0,30 0,20 0,09 0,26 0,23 0,15 0,07 0,16 0,14 0,12 0,04
SV 4 0,42 0,34 0,25 0,12 0,33 0,27 0,16 0,08 0,23 0,19 0,12 0,06 0,14 0,13 0,10 0,03
SV 5 0,30 0,25 0,22 0,10 0,24 0,21 0,15 0,07 0,19 0,17 0,12 0,06 0,14 0,13 0,10 0,03
SV 6 0,15 0,14 0,14 0,07 0,13 0,12 0,10 0,06 0,11 0,11 0,09 0,06 0,10 0,10 0,08 0,03
I_(A)//h 0,00 0,10 0,20 >= 0,30 a_(k)//h 0,00 0,10 0,30 >= 0,50 0,00 0,10 0,30 >= 0,50 0,00 0,10 0,30 >= 0,50 0,00 0,10 0,30 >= 0,50 SV 1 0,70 0,55 0,30 0,13 0,52 0,41 0,22 0,10 0,34 0,28 0,16 0,07 0,16 0,14 0,12 0,04 SV 2 0,57 0,46 0,30 0,13 0,44 0,36 0,21 0,10 0,30 0,25 0,16 0,07 0,16 0,14 0,12 0,04 SV 3 0,44 0,37 0,26 0,12 0,35 0,30 0,20 0,09 0,26 0,23 0,15 0,07 0,16 0,14 0,12 0,04 SV 4 0,42 0,34 0,25 0,12 0,33 0,27 0,16 0,08 0,23 0,19 0,12 0,06 0,14 0,13 0,10 0,03 SV 5 0,30 0,25 0,22 0,10 0,24 0,21 0,15 0,07 0,19 0,17 0,12 0,06 0,14 0,13 0,10 0,03 SV 6 0,15 0,14 0,14 0,07 0,13 0,12 0,10 0,06 0,11 0,11 0,09 0,06 0,10 0,10 0,08 0,03| $I_{A} / h$ | 0,00 | | | | 0,10 | | | | 0,20 | | | $\geq 0,30$ | | | | | | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $a_{\mathrm{k}} / h$ | 0,00 | 0,10 | 0,30 | $\geq 0,50$ | 0,00 | 0,10 | 0,30 | $\geq 0,50$ | 0,00 | 0,10 | 0,30 | $\geq 0,50$ | 0,00 | 0,10 | 0,30 | $\geq 0,50$ | | SV 1 | 0,70 | 0,55 | 0,30 | 0,13 | 0,52 | 0,41 | 0,22 | 0,10 | 0,34 | 0,28 | 0,16 | 0,07 | 0,16 | 0,14 | 0,12 | 0,04 | | SV 2 | 0,57 | 0,46 | 0,30 | 0,13 | 0,44 | 0,36 | 0,21 | 0,10 | 0,30 | 0,25 | 0,16 | 0,07 | 0,16 | 0,14 | 0,12 | 0,04 | | SV 3 | 0,44 | 0,37 | 0,26 | 0,12 | 0,35 | 0,30 | 0,20 | 0,09 | 0,26 | 0,23 | 0,15 | 0,07 | 0,16 | 0,14 | 0,12 | 0,04 | | SV 4 | 0,42 | 0,34 | 0,25 | 0,12 | 0,33 | 0,27 | 0,16 | 0,08 | 0,23 | 0,19 | 0,12 | 0,06 | 0,14 | 0,13 | 0,10 | 0,03 | | SV 5 | 0,30 | 0,25 | 0,22 | 0,10 | 0,24 | 0,21 | 0,15 | 0,07 | 0,19 | 0,17 | 0,12 | 0,06 | 0,14 | 0,13 | 0,10 | 0,03 | | SV 6 | 0,15 | 0,14 | 0,14 | 0,07 | 0,13 | 0,12 | 0,10 | 0,06 | 0,11 | 0,11 | 0,09 | 0,06 | 0,10 | 0,10 | 0,08 | 0,03 |
Figure 7-9 Table and figure helping to define " n ". Linear interpolation is applicable.
图 7-9 表格和图形帮助定义“n”。线性插值适用。

Figure 7-10 More examples from Roloff/Matek how to define “n”. Linear interpolation is applicable
图 7-10 Roloff/Matek 关于如何定义“n”的更多示例。线性插值适用。

7.4.3 Fz - Embedding / Pretension Loss.
7.4.3 Fz - 嵌入/预紧损失。

Typically embedding accounts for only a few percent loss, however 10% preload loss is not uncommon. Critical cases should preload loss be determined by experiment.
通常嵌入只占几个百分点的损失,但 10%的预载损失并不少见。关键情况下,预载损失应通过实验确定。

Figure 7-11 The size of pretension loss is highly depending of the length/diameter ration.
图 7-11 预紧损失的大小高度依赖于长度/直径比。

Acc. to DNVGL-ST-0361 all bolted connections which rely on a defined preload level and were tightened using a torque-controlled or tensioning-force-controlled method shall be retightened.
根据 DNVGL-ST-0361,所有依赖于定义预紧力水平并采用扭矩控制或张力控制方法紧固的螺栓连接应重新紧固。
Retightening is done because of embedding = preload loss.
重新紧固是因为嵌入 = 预载损失。

Equation for preload loss F z F z F_(z)F_{z} is:
预紧力损失 F z F z F_(z)F_{z} 的公式是:

F Z = f Z ( δ S + δ P ) F Z = f Z δ S + δ P F_(Z)=(f_(Z))/((delta_(S)+delta_(P)))quadF_{Z}=\frac{f_{Z}}{\left(\delta_{S}+\delta_{P}\right)} \quad Ref VDI 2230:2015 R4/1 page 33
F Z = f Z ( δ S + δ P ) F Z = f Z δ S + δ P F_(Z)=(f_(Z))/((delta_(S)+delta_(P)))quadF_{Z}=\frac{f_{Z}}{\left(\delta_{S}+\delta_{P}\right)} \quad 参考 VDI 2230:2015 R4/1 第 33 页

Where f z f z f_(z)f_{z} depends on the surface roughness and surface treatment. f z = f z surface + f z _roughness f z = f z surface  + f z _roughness  f_(z)=f_(z_(-)"surface ")+f_(z_("_roughness "))f_{z}=f_{z_{-} \text {surface }}+f_{z_{\text {_roughness }}}
其中 f z f z f_(z)f_{z} 取决于表面粗糙度和表面处理。 f z = f z surface + f z _roughness f z = f z surface  + f z _roughness  f_(z)=f_(z_(-)"surface ")+f_(z_("_roughness "))f_{z}=f_{z_{-} \text {surface }}+f_{z_{\text {_roughness }}}

The elastic resilience of the bolt ( δ s δ s delta_(s)\delta_{s} ) and clamped parts ( δ p ) δ p (delta_(p))\left(\delta_{p}\right) is needed for calculation the preload loss.
螺栓( δ s δ s delta_(s)\delta_{s} )和夹紧部分 ( δ p ) δ p (delta_(p))\left(\delta_{p}\right) 的弹性恢复力是计算预紧力损失所需的。

7.4.3.1 Surface treatment embedding
7.4.3.1 表面处理嵌入

If no experiment available can follow equation be used for HDG, metallizing and zinc silicate data from “Loss of preload in pretensioned bolts” ref. 2) be used:
如果没有可用的实验,可以使用方程来处理 HDG、金属化和锌硅酸盐数据,参考文献“预紧螺栓中的预载损失”第 2 条。

f Z surface = 25 10 3 t c + 35 f Z surface  = 25 10 3 t c + 35 f_(Z_(-)"surface ")=25*10^(-3)*sumt_(c)+35quadf_{Z_{-} \text {surface }}=25 \cdot 10^{-3} \cdot \sum t_{c}+35 \quad Modified ref. 2).   f Z surface = 25 10 3 t c + 35 f Z surface  = 25 10 3 t c + 35 f_(Z_(-)"surface ")=25*10^(-3)*sumt_(c)+35quadf_{Z_{-} \text {surface }}=25 \cdot 10^{-3} \cdot \sum t_{c}+35 \quad 修改的参考文献 2)。
By total surface treatment of 1000 micron, fz = 60 fz = 60 fz=60\mathrm{fz}=60 micron and 2000 micron, fz = 85 fz = 85 fz=85\mathrm{fz}=85 micron
通过 1000 微米、 fz = 60 fz = 60 fz=60\mathrm{fz}=60 微米和 2000 微米的总表面处理, fz = 85 fz = 85 fz=85\mathrm{fz}=85 微米

This is more conservative than “Loss of preload in pretensioned bolts” because this is a 20years value without retightening
这比“预紧螺栓的预载损失”更为保守,因为这是一个 20 年的值,没有重新紧固

Figure 7-12 “Loss of preload in pretensioned bolts” ref. 2) Impact of surface treatment.
图 7-12 “预紧螺栓中的预载损失” 参考文献 2) 表面处理的影响。
For other more information regarding surface treatment embedding see:
有关表面处理嵌入的更多信息,请参见:

DMS 0024-4908 - Angle tightening
DMS 0024-4908 - 角度紧固

DMS 0070-0719 - Tension tightening
DMS 0070-0719 - 拉紧拧紧

7.4.3.2 Surface roughness embedding
7.4.3.2 表面粗糙度嵌入

f z roughness = f z thread + f Bolt head \& Nut + f z inter flange f z roughness  = f z thread  + f Bolt head \& Nut  + f z inter flange  f_(z_(-)"roughness ")=f_(z_(-)"thread ")+f_("Bolt head \& Nut ")+f_(z_(-)"inter flange ")f_{z_{-} \text {roughness }}=f_{z_{-} \text {thread }}+f_{\text {Bolt head \& Nut }}+f_{z_{-} \text {inter flange }}
Table 7-5 Approximate values for plastic deformation, ref VDI 2230:2015 Table 5
表 7-5 塑性变形的近似值,参考 VDI 2230:2015 表 5

7.4.4 Strength of a bolt
7.4.4 螺栓的强度

If a bolt is never tensioned beyond its specified proof load, it has maintained its original size and shape, and may be safely reused.
如果螺栓从未超过其规定的证明载荷被拉紧,它保持了原来的大小和形状,可以安全地重复使用。
Bolt  螺栓 Nut  螺母
  公制属性等级
Metric
Property
Class
Metric Property Class| Metric | | :--- | | Property | | Class |
  尺寸范围
Size
Range
Size Range| Size | | :--- | | Range |

最小抗拉强度 MPa
Min. Proof
Strength
MPa
Min. Proof Strength MPa| Min. Proof | | :--- | | Strength | | MPa |

最小抗拉强度 MPa
Min. Tensile
Strength
MPa
Min. Tensile Strength MPa| Min. Tensile | | :--- | | Strength | | MPa |

最小屈服强度 MPa
Min. Yield
Strength
MPa
Min. Yield Strength MPa| Min. Yield | | :--- | | Strength | | MPa |
  属性等级
Property
Class
Property Class| Property | | :--- | | Class |

典型材料证明应力 MPa
Typical Material
Proof Stress
MPa
Typical Material Proof Stress MPa| Typical Material | | :--- | | Proof Stress | | MPa |
8.8 M5-M16 580 800 640 Class 8  8 级 800
10.9 M18- M39 600 830 660
M39 830 1040 940 Class 10  10 级 1000
Bolt Nut "Metric Property Class" "Size Range" "Min. Proof Strength MPa" "Min. Tensile Strength MPa" "Min. Yield Strength MPa" "Property Class" "Typical Material Proof Stress MPa" 8.8 M5-M16 580 800 640 Class 8 800 10.9 M18- M39 600 830 660 M39 830 1040 940 Class 10 1000 | Bolt | | Nut | | | | | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Metric <br> Property <br> Class | Size <br> Range | Min. Proof <br> Strength <br> MPa | Min. Tensile <br> Strength <br> MPa | Min. Yield <br> Strength <br> MPa | Property <br> Class | Typical Material <br> Proof Stress <br> MPa | | 8.8 | M5-M16 | 580 | 800 | 640 | Class 8 | 800 | | 10.9 | M18- M39 | 600 | 830 | 660 | | | | M39 | 830 | 1040 | 940 | Class 10 | 1000 | |
Table 7-6 Bolt strength
表 7-6 螺栓强度

7.5 Appendix - Case how to work
7.5 附录 - 案例如何工作

In this chapter is a bolt calculated analytical used bolt program and VDI 2230:2015.
本章介绍了一种基于 VDI 2230:2015 的螺栓计算分析程序。

The calculation is just an example. (For certificate is deeper analysis needed)
计算只是一个示例。(对于证书,需要更深入的分析)

This is a simplified calculation. See e.g. example B5 in VDI 2230:2015 how to make a complete calculation
这是一个简化的计算。请参见例如 VDI 2230:2015 中的示例 B5,了解如何进行完整的计算。

Data for connection:  连接数据:

Bolt size: M42 (Bolt head 55 , 90 mm 55 , 90 mm O/55,90mm\varnothing 55,90 \mathrm{~mm} )
螺栓尺寸:M42(螺栓头 55 , 90 mm 55 , 90 mm O/55,90mm\varnothing 55,90 \mathrm{~mm}

Tool class C  工具类 C
Hole diameter 46 46 O/46\varnothing 46  孔径 46 46 O/46\varnothing 46
Outer diameter of washer 78 mm
垫圈外径 78 毫米

L/D 4 , 8 4 , 8 ~~4,8\approx 4,8 (Acceptable. Loctite etc. not needed)
L/D 4 , 8 4 , 8 ~~4,8\approx 4,8 (可接受。无需使用 Loctite 等)

Bolt quality: 10.9  螺栓质量:10.9
Surface treatment: Zinc flake
表面处理:锌片

Flange material: S355  法兰材料:S355
Flange roughness: Rz = 50 μ m Rz = 50 μ m Rz=50 mum\mathrm{Rz}=50 \mu \mathrm{~m}  法兰粗糙度: Rz = 50 μ m Rz = 50 μ m Rz=50 mum\mathrm{Rz}=50 \mu \mathrm{~m}
Surface is metallized friction thickness between flanges and HDG C3 on top plate acc. TPS 900173.
表面是法兰之间的金属化摩擦厚度,顶板上的 HDG C3 符合 TPS 900173。

On bolt, washer and nut is thickness 40 μ m 40 μ m 40 mum40 \mu \mathrm{~m}
在螺栓、垫圈和螺母的厚度为 40 μ m 40 μ m 40 mum40 \mu \mathrm{~m}

Distance from bolt center to load, I b = 66 mm I b = 66 mm I_(b)=66mm\mathrm{I}_{\mathrm{b}}=66 \mathrm{~mm}
从螺栓中心到负载的距离, I b = 66 mm I b = 66 mm I_(b)=66mm\mathrm{I}_{\mathrm{b}}=66 \mathrm{~mm}

Loads are considered concentric.
载荷被视为同心的。

The load of the bolt is estimated to 2 kN shear and 400 kN axial incl safety
螺栓的载荷估计为 2 kN 剪切和 400 kN 轴向,包括安全系数

Axial fatigue load is + / 50 kN + / 50 kN +//-50kN+/-50 \mathrm{kN} (From 300 kN to 400 kN )
轴向疲劳载荷为 + / 50 kN + / 50 kN +//-50kN+/-50 \mathrm{kN} (从 300 kN 到 400 kN)

Safety on friction =1,1
摩擦安全 = 1,1

Safety of clamping force 1,25 EN 1993-1-8, Normal hole
夹紧力的安全性 1.25 EN 1993-1-8,普通孔

Figure 7-13 Each bolt loaded with 400 kN in axial direction and 2 kN in shear
图 7-13 每个螺栓在轴向承载 400 kN 和剪切 2 kN

Step 1  步骤 1

The min assembly preload is calculated using VDI because there is both axial and shear.
最小装配预紧力是使用 VDI 计算的,因为存在轴向和剪切。

F M min = F K e r f + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) F M  min  = F K e r f + 1 Φ e n F A max + F Z + Δ F V t h F_(M" min ")=F_(Kerf)+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quadF_{M \text { min }}=F_{K e r f}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad (Ref VDI 2230:2015 R5/1 page 33)
F M min = F K e r f + ( 1 Φ e n ) F A max + F Z ( + Δ F V t h ) F M  min  = F K e r f + 1 Φ e n F A max + F Z + Δ F V t h F_(M" min ")=F_(Kerf)+(1-Phi_(en))F_(A max)+F_(Z)(+DeltaF_(Vth))quadF_{M \text { min }}=F_{K e r f}+\left(1-\Phi_{e n}\right) F_{A \max }+F_{Z}\left(+\Delta F_{V t h}\right) \quad (参考 VDI 2230:2015 R5/1 第 33 页)
Step 2  步骤 2
The clamping force is calculated to acc. 0066-0218. Clamping force for 10.9 M 42 is
夹紧力的计算遵循 0066-0218。10.9 M 42 的夹紧力是

Step 3  步骤 3

To transmit the transverse load F Q F Q FQF Q, the given friction requires a minimum clamp load of
为了传递横向载荷 F Q F Q FQF Q ,所需的摩擦力要求最低夹紧载荷为

F Kerfd = F Q S G S Friction μ Metalized = 2 kN 1 , 8 1 , 1 0 , 5 = 7 , 9 kN F Kerfd  = F Q S G S Friction  μ Metalized  = 2 kN 1 , 8 1 , 1 0 , 5 = 7 , 9 kN F_("Kerfd ")=(F_(Q)*S_(G)*S_("Friction "))/(mu_("Metalized "))=(2kN*1,8*1,1)/(0,5)=7,9kNF_{\text {Kerfd }}=\frac{F_{Q} \cdot S_{G} \cdot S_{\text {Friction }}}{\mu_{\text {Metalized }}}=\frac{2 \mathrm{kN} \cdot 1,8 \cdot 1,1}{0,5}=7,9 \mathrm{kN}

Step 4  步骤 4

Elastic resilience of the bolt is calculated. The equation for resilience of the bolt is:
螺栓的弹性恢复力被计算。螺栓的恢复力公式为:

δ S = 1 E S [ L S K A N + L n A N + L G e w A 3 + L G A 3 ] + L M E M A n o m δ S = 1 E S L S K A N + L n A N + L G e w A 3 + L G A 3 + L M E M A n o m delta_(S)=(1)/(E_(S))[(L_(SK))/(A_(N))+(L_(n))/(A_(N))+(L_(Gew))/(A_(3))+(L_(G))/(A_(3))]+(L_(M))/(E_(M)A_(nom))\delta_{S}=\frac{1}{E_{S}}\left[\frac{L_{S K}}{A_{N}}+\frac{L_{n}}{A_{N}}+\frac{L_{G e w}}{A_{3}}+\frac{L_{G}}{A_{3}}\right]+\frac{L_{M}}{E_{M} A_{n o m}}
δ S = 1 205000 MPa [ 0 , 5 42 mm 1385 mm 2 + 180 mm 1385 mm 2 + 10 mm 1045 mm 2 + 0 , 5 42 mm 1045 mm 2 ] + 0 , 4 42 mm 205000 MPa 1385 mm 2 δ S = 1 205000 MPa 0 , 5 42 mm 1385 mm 2 + 180 mm 1385 mm 2 + 10 mm 1045 mm 2 + 0 , 5 42 mm 1045 mm 2 + 0 , 4 42 mm 205000 MPa 1385 mm 2 delta_(S)=(1)/(205000MPa)[(0,5*42(mm))/(1385mm^(2))+(180(mm))/(1385mm^(2))+(10(mm))/(1045mm^(2))+(0,5*42(mm))/(1045mm^(2))]+(0,4*42(mm))/(205000MPa*1385mm^(2))\delta_{S}=\frac{1}{205000 \mathrm{MPa}}\left[\frac{0,5 \cdot 42 \mathrm{~mm}}{1385 \mathrm{~mm}^{2}}+\frac{180 \mathrm{~mm}}{1385 \mathrm{~mm}^{2}}+\frac{10 \mathrm{~mm}}{1045 \mathrm{~mm}^{2}}+\frac{0,5 \cdot 42 \mathrm{~mm}}{1045 \mathrm{~mm}^{2}}\right]+\frac{0,4 \cdot 42 \mathrm{~mm}}{205000 \mathrm{MPa} \cdot 1385 \mathrm{~mm}^{2}}
δ S = 9 , 11 10 7 mm / N δ S = 9 , 11 10 7 mm / N delta_(S)=9,11*10^(-7)mm//N\delta_{S}=9,11 \cdot 10^{-7} \mathrm{~mm} / \mathrm{N}

Step 5  步骤 5

Elastic resilience of the support is calculated.
支撑的弹性恢复力被计算。

If D avail > D lim D avail  > D lim  D_("avail ") > D_("lim ")D_{\text {avail }}>D_{\text {lim }}, the compression zone is fully developed into a cone, then use L c L c L_(c)L_{c} as D avail D avail  D_("avail ")D_{\text {avail }}
如果 D avail > D lim D avail  > D lim  D_("avail ") > D_("lim ")D_{\text {avail }}>D_{\text {lim }} ,压缩区完全发展成一个锥体,则使用 L c L c L_(c)L_{c} 作为 D avail D avail  D_("avail ")D_{\text {avail }}
The limit diameter of the compression cone as given by,
压缩锥的极限直径如所示,

D lim = d w + w L c tan ( φ ) = 55.90 + 1 190 m m 0 , 534 = 157 m m D lim  = d w + w L c tan ( φ ) = 55.90 + 1 190 m m 0 , 534 = 157 m m D_("lim ")=d_(w)+w**L_(c)**tan(varphi)=55.90+1**190 mm**0,534=157 mmD_{\text {lim }}=d_{w}+w * L_{c} * \tan (\varphi)=55.90+1 * 190 m m * 0,534=157 m m
For nut-tightened joints tan ( φ ) tan ( φ ) tan(varphi)\tan (\varphi) is given by:
对于螺母紧固的接头, tan ( φ ) tan ( φ ) tan(varphi)\tan (\varphi) 的计算公式为:
tan φ = 0.362 + 0.032 ln ( 3 , 40 / 2 ) + 0.153 ln ( 2 , 75 ) = 0.534 tan φ = 0.362 + 0.032 ln ( 3 , 40 / 2 ) + 0.153 ln ( 2 , 75 ) = 0.534 tan varphi=0.362+0.032 ln(3,40//2)+0.153 ln(2,75)=0.534\tan \varphi=0.362+0.032 \ln (3,40 / 2)+0.153 \ln (2,75)=0.534
where the following non-dimensional parameters are used,
其中使用了以下无量纲参数,

x = L c d W = 2.95 mm 55 , 90 mm = 3 , 40 x x = L c d W = 2.95 mm 55 , 90 mm = 3 , 40 x x=(L_(c))/(d_(W))=(2.95(mm))/(55,90(mm))=3,40 xx=\frac{L_{c}}{d_{W}}=\frac{2.95 \mathrm{~mm}}{55,90 \mathrm{~mm}}=3,40 x
y = D avail d W = 2 ( 55 + 22 ) mm 55 , 90 mm = 2 , 75 y y = D avail  d W = 2 ( 55 + 22 ) mm 55 , 90 mm = 2 , 75 y y=(D_("avail "))/(d_(W))=(2*(55+22)mm)/(55,90(mm))=2,75 yy=\frac{D_{\text {avail }}}{d_{W}}=\frac{2 \cdot(55+22) \mathrm{mm}}{55,90 \mathrm{~mm}}=2,75 y