这是用户在 2024-12-30 16:30 为 https://app.immersivetranslate.com/pdf-pro/7051fc82-31bd-4a4e-a228-7f56c522f344 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials for detection of ascorbic acid, dopamine, and uric acid: A review
基于分子印迹聚合物和纳米材料的电化学传感器在检测抗坏血酸、多巴胺和尿酸方面的最新进展:综述

Girma Salale GeletaSalale University, College of Natural Sciences, Department of Chemistry, P.O. Box 245, Fiche, Oromia, Ethiopia
萨拉莱大学,自然科学学院,化学系,邮政信箱 245,菲切,奥罗米亚,埃塞俄比亚

A R T I C L E I N F O
文章信息

Keywords:  关键词:

Ascorbic acid  抗坏血酸
Dopamine  多巴胺
Uric acid  尿酸
MIPs
Nanomaterial  纳米材料
Electrochemical sensors  电化学传感器

Abstract  摘要

The demand for analysing biological molecules such as dopamine (DA), ascorbic acid (AA), and uric acid (UA) is growing more than ever in applied science for better health and medicine. Over the past two decades, molecular imprinted polmers (MIPs) have been developed as synthetic receptors or substitute materials for antibodies due to their high stability, short time needed for electropolymerization, and high specificity towards the target analyte. However, the sensitivity of electrochemical sensors decreased as a result of MIPs’ low conductivity and lack of electrocatalytic activity. To overcome this limitation, nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), graphene (GR), titanium carbide MXene ( Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} ), carbon dots (CDs), molybdenum diselenide ( MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} ), and black phosphorus quantum dots (BPQDs) and their nanocomposites have been employed as biosensing transducers to construct MIPs based on electrochemical biosensors for cost-effective detection of biological molecules with high sensitivity and specificity. This is because the high surface area, good electrical conductivity, and ease of functionalization of nanomaterials all increase MIP sensitivity to targeted biological molecules. When these advantages of nanomaterials are combined with those of electrochemical methods, such as rapid response time, ease of use, low cost, and miniature ability, MIPs based on nanomaterial-modified electrodes are widely preferred tools for sensing AA, DA, and UA. Herein, this review provides insight into recent developments in the application of molecularly imprinted polymer (MIP) nanomaterial-based electrochemical biosensors for detecting biological molecules, including AA, DA, and UA. The integration of nanomaterials with MIPs into electrochemical biosensors has led to an unprecedented impact on improving the limit of detection of biomolecules, indicating great potential for use in public health and medical care.
在应用科学中,分析生物分子如多巴胺(DA)、抗坏血酸(AA)和尿酸(UA)的需求比以往任何时候都更为迫切,以促进更好的健康和医学。在过去的二十年中,分子印迹聚合物(MIPs)作为合成受体或抗体的替代材料得到了发展,原因在于其高稳定性、所需的电聚合时间短以及对目标分析物的高特异性。然而,由于 MIPs 的低导电性和缺乏电催化活性,电化学传感器的灵敏度下降。为了克服这一限制,金纳米颗粒(AuNPs)、碳纳米管(CNTs)、石墨烯(GR)、碳化钛 MXene( Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} )、碳点(CDs)、二硒化钼( MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} )和黑磷量子点(BPQDs)及其纳米复合材料被用作生物传感器换能器,以构建基于电化学生物传感器的 MIPs,实现对生物分子的高灵敏度和高特异性的经济有效检测。 这是因为纳米材料的高表面积、良好的电导率和易于功能化的特性都增加了分子印迹聚合物(MIP)对靶生物分子的敏感性。当纳米材料的这些优势与电化学方法的优势相结合时,例如快速响应时间、易用性、低成本和微型化能力,基于纳米材料修饰电极的 MIP 成为检测 AA、DA 和 UA 的广泛首选工具。在此,本文回顾了基于纳米材料的分子印迹聚合物(MIP)电化学生物传感器在检测生物分子(包括 AA、DA 和 UA)方面的最新进展。纳米材料与 MIP 的结合在电化学生物传感器中产生了前所未有的影响,提高了生物分子的检测限,显示出在公共卫生和医疗保健中应用的巨大潜力。

1. Introduction  1. 介绍

Ascorbic acid (2,3-enediol-L-gluconic acid, AA), dopamine (3,4dihydroxy phenyl ethylamine, DA), and uric acid (2,6,8-trihydroxy purine, UA) are three physiologically relevant small biomolecules that are crucial to human metabolism [1-6]. These biomolecules are found in biological matrices (blood and urine) as well as extracellular fluid. AA is a water-soluble vitamin, an important antioxidant, and a powerful freeradical scavenger that is very important for maintaining the physiological function of the human body [7-10]. It enhances cellular metabolism and intestinal iron absorption in the gut [11]. It is a cofactor for at least 15 enzymes that are involved in collagen synthesis, carnitine biosynthesis, norepinephrine, and neuronal hormones [10,12]. In addition, AA can be used to treat and prevent burns, methemoglobinemia, infertility, upper respiratory tract disease, scurvy, and mental
抗坏血酸(2,3-烯二醇-L-葡萄糖酸,AA)、多巴胺(3,4-二羟基苯乙胺,DA)和尿酸(2,6,8-三羟基嘌呤,UA)是三种对人类新陈代谢至关重要的生理相关小生物分子。这些生物分子存在于生物基质(血液和尿液)以及细胞外液中。AA 是一种水溶性维生素,是一种重要的抗氧化剂和强效自由基清除剂,对维持人体的生理功能非常重要。它增强细胞代谢和肠道对铁的吸收。它是至少 15 种参与胶原合成、肉碱生物合成、去甲肾上腺素和神经激素的酶的辅因子。此外,AA 可用于治疗和预防烧伤、亚硝酸血红蛋白症、不孕症、上呼吸道疾病、坏血病和心理健康问题。

illness [4]. Despite the importance of vitamin C, consuming excessive AA has been associated with several health risks, such as gastric irritation, oxidative stress, diabetes, liver disease, and kidney problems [10]. Conversely, DA is a neurotransmitter and catecholamine that plays important roles in the human body, including controlling the central nervous system and cardiovascular, renal, and hormonal systems. On the other hand, low levels of DA in the central nervous system have been associated with several neurological diseases, including Parkinson’s disease, schizophrenia, Alzheimer’s disease, stress, and depression [13-18]. The typical range of its concentration range is approximately 10 7 10 3 molL 1 10 7 10 3 molL 1 10^(-7)-10^(-3)molL^(-1)10^{-7}-10^{-3} \mathrm{molL}^{-1} [19]. However, UA, which is present in human fluids such as blood and urine, is the main byproduct of purine metabolism [20]. Gout inflammatory arthritis is caused by UA crystals building up in the joints, surrounding tissues, kidneys, and body when UA levels rise above saturation ( 6.8 mg dL 1 6.8 mg dL 1 6.8mgdL^(-1)6.8 \mathrm{mg} \mathrm{dL}^{-1} in serum) [21-23]. Human blood plasma
疾病[4]。尽管维生素 C 很重要,但过量摄入 AA 与多种健康风险相关,如胃刺激、氧化压力、糖尿病、肝病和肾脏问题[10]。相反,DA 是一种神经递质和儿茶酚胺,在人体中发挥重要作用,包括控制中枢神经系统以及心血管、肾脏和内分泌系统。另一方面,中枢神经系统中 DA 水平低与多种神经系统疾病相关,包括帕金森病、精神分裂症、阿尔茨海默病、压力和抑郁症[13-18]。其浓度的典型范围约为 10 7 10 3 molL 1 10 7 10 3 molL 1 10^(-7)-10^(-3)molL^(-1)10^{-7}-10^{-3} \mathrm{molL}^{-1} [19]。然而,UA 存在于人类体液中,如血液和尿液,是嘌呤代谢的主要副产品[20]。当 UA 水平超过饱和( 6.8 mg dL 1 6.8 mg dL 1 6.8mgdL^(-1)6.8 \mathrm{mg} \mathrm{dL}^{-1} 在血清中)时,尿酸结晶在关节、周围组织、肾脏和身体中积聚,导致痛风性炎性关节炎[21-23]。人类血浆
E-mail address: girma_salale@slu.edu.et.
电子邮件地址:girma_salale@slu.edu.et。

typically contains UA in the range of 3.6 to 8.3 mg dL 1 8.3 mg dL 1 8.3mgdL^(-1)8.3 \mathrm{mg} \mathrm{dL}^{-1} or 0.214 to 0.493 mmol L 1 0.493 mmol L 1 0.493mmolL^(-1)0.493 \mathrm{mmol} \mathrm{L}^{-1}. The abnormal level of UA is an indicator of many diseases, including hyperuricemia, diabetes (type 2), Lesch-Nyhan syndrome, cardiovascular disease, heart disease, hypertension, and kidney disease [20,24,25]. Therefore, the demand for analysing these biological molecules is growing more than ever in the field of applied science to improve medicine and health.
通常包含 UA 在 3.6 到 8.3 mg dL 1 8.3 mg dL 1 8.3mgdL^(-1)8.3 \mathrm{mg} \mathrm{dL}^{-1} 或 0.214 到 0.493 mmol L 1 0.493 mmol L 1 0.493mmolL^(-1)0.493 \mathrm{mmol} \mathrm{L}^{-1} 的范围内。UA 的异常水平是许多疾病的指标,包括高尿酸血症、糖尿病(2 型)、莱施-尼汉综合症、心血管疾病、心脏病、高血压和肾脏疾病[20,24,25]。因此,在应用科学领域,分析这些生物分子的需求比以往任何时候都更为迫切,以改善医学和健康。
Numerous techniques, such as UV-visible spectrophotometry [26], chemiluminescence [27], high-performance liquid chromatography (HPLC) [28], fluorimetry [29], titration [30], and electrochemical techniques [31], have been developed to date for the detection of AA, DA, and UA in real samples [32]. However, some of the methods lack the necessary sensitivity and selectivity, while others are expensive, timeconsuming, and require special training for equipment operators [33].
到目前为止,已经开发了多种技术,例如紫外-可见分光光度法 [26]、化学发光法 [27]、高效液相色谱法 (HPLC) [28]、荧光法 [29]、滴定法 [30] 和电化学技术 [31],用于在真实样本中检测 AA、DA 和 UA [32]。然而,一些方法缺乏必要的灵敏度和选择性,而另一些则昂贵、耗时,并且需要对设备操作员进行特殊培训 [33]。
Among these techniques, electrochemical detection of AA, DA, and UA has attracted much interest because of its inherent advantages, including being low cost, easy to miniaturize, simple, quick, and highly sensitive [34]. Nonetheless, selectivity and simultaneous detection of three molecules (AA, DA, and UA) on bare electrodes in the same mixed solution have proven to be difficult. Due to the close oxidation potentials of DA, AA, and UA, the peaks overlap in electrochemical measurements [25,35]. Therefore, a variety of cutting-edge materials that can establish an enzyme-substrate relationship with a particular analyte have been used to modify working electrodes to overcome this difficulty and improve the method’s selectivity, sensitivity, and limit of detection. It should be demonstrated that the lock and key system will improve the electrochemical detection of a particular analyte in the presence of other analytes if such a modifier has bound a specific site for an analyte. MIPs (MIPs) fit this concept perfectly and have emerged as an effective solution for the selective detection of target molecules in complex matrices.
在这些技术中,AA、DA 和 UA 的电化学检测因其固有的优点而受到广泛关注,包括低成本、易于微型化、简单、快速和高灵敏度。然而,在同一混合溶液中,裸电极对三种分子(AA、DA 和 UA)的选择性和同时检测已被证明是困难的。由于 DA、AA 和 UA 的氧化电位接近,电化学测量中的峰值重叠。因此,已经使用多种前沿材料来修饰工作电极,以建立与特定分析物的酶-底物关系,以克服这一困难并提高方法的选择性、灵敏度和检测限。如果这样的修饰剂已绑定特定分析物的特定位点,则应证明锁和钥匙系统将在其他分析物存在的情况下改善特定分析物的电化学检测。分子印迹聚合物(MIPs)完美契合这一概念,并已成为在复杂基质中选择性检测目标分子的有效解决方案。
MIPs (MIPs) are artificially synthesized polymers that are capable of mimicking the molecular recognition process of biological macromolecules such as substrate enzymes or antigen antibodies [36,37]. MIPs are highly promising materials for the construction of chemical sensors due to their high chemical, mechanical, and thermal stability, high specificity, reusability, reproducibility, and low production cost [ 9 , 38 ] [ 9 , 38 ] [9,38][9,38]. The production of MIPs begins with the copolymerization of functional monomers, cross-linkers, and a target molecule, resulting in polymers with target molecules either covalently or noncovalently attached to a functional group of the host. Template molecules are removed from the polymer host by solvent extraction or chemical decomposition, leaving a target-specific cavity available for rebinding. The prepared MIP is then exposed to the target-containing sample, and the cavity selectively takes up the target molecule from a complex sample [34,36]. Various polymers, such as polypyrrole (Ppy), among many other CPs, such as polyaniline, poly(ethylenedioxythiophene) (PEDOT), and o o oo phenylenediamine (O-PD), are the most frequently used for the formation of MIP-based sensing structures due to possible electrodeposition from aqueous solution devices [24]. Various polymerization methods, such as bulk polymerization, the sol-gel process, electropolymerization, and layer-by-layer deposition, are used for the formation of MIPs. Among these methods, electrochemical polymerization is widely employed polymerization due to its low-cost, simple, and fast method that can control porosity, density, and thickness in the formation of the sensing platform. In addition, it creates a rigid, uniform, and compact molecularly imprinted layer that adheres well to the transducer surface of any shape and size.
MIPs(分子印迹聚合物)是人工合成的聚合物,能够模拟生物大分子(如底物酶或抗原抗体)的分子识别过程[36,37]。由于其高化学、机械和热稳定性、高特异性、可重复使用性、可再生性和低生产成本,MIPs 在化学传感器的构建中具有很大的潜力 [ 9 , 38 ] [ 9 , 38 ] [9,38][9,38] 。MIPs 的生产始于功能单体、交联剂和目标分子的共聚合,形成的聚合物中目标分子以共价或非共价方式附着在宿主的功能基团上。模板分子通过溶剂提取或化学分解从聚合物宿主中去除,留下一个特定于目标的腔体以供重新结合。然后,将制备好的 MIP 暴露于含有目标的样品中,腔体选择性地从复杂样品中吸附目标分子[34,36]。 各种聚合物,如聚吡咯(Ppy),以及许多其他导电聚合物,如聚苯胺、聚(乙烯二氧噻吩)(PEDOT)和 o o oo 苯二胺(O-PD),由于可以从水溶液设备中电沉积,因此最常用于基于分子印迹聚合物(MIP)的传感结构的形成[24]。用于 MIP 形成的聚合方法有多种,如大宗聚合、溶胶-凝胶过程、电聚合和层层沉积。在这些方法中,电化学聚合因其低成本、简单和快速的方法而被广泛采用,可以控制传感平台的孔隙率、密度和厚度。此外,它还创建了一个刚性、均匀和紧凑的分子印迹层,能够很好地附着在任何形状和大小的传感器表面。
Despite the advantages of MIPs, they have some drawbacks, such as heterogeneous distribution, low electroconductivity, low binding capacity, low sensitivity, and lack of electrochemical catalytic effect [39]. To reduce these limitations and significantly improve the analytical performance of MIPs, nanomaterials should be combined with selective MIP strategies to enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface area, increasing the mechanical strength, increasing the electron transfer, and
尽管分子印迹聚合物(MIPs)具有一些优点,但它们也存在一些缺点,例如分布不均、导电性差、结合能力低、灵敏度低以及缺乏电化学催化效应[39]。为了减少这些限制并显著提高 MIPs 的分析性能,应将纳米材料与选择性 MIP 策略相结合,通过扩大电极表面积、增加机械强度、提高电子转移来增强分子印迹电化学传感器的灵敏度。

catalyzing the electrochemical reactions [40-42]. The use of nanomaterials in MIPs is necessary, as they can improve the response signal, increase sensitivity, and reduce the limit of detection of the sensors [39]. Nanomaterials include materials that have at least one dimension at the nanoscale ( 0.1 100 nm 0.1 100 nm 0.1-100nm0.1-100 \mathrm{~nm} ) or nano-objects that have two dimensions less than 100 nm (e.g., carbon nanotubes) and nanoparticles with three dimensions of less than 100 nm [43]. A variety of nanomaterials, such as noble metal nanoparticles, carbon nanotubes (MWCNTs/SWCNTs), graphene, carbon dots (CDs), black phosphorus (BP), and MXenes ( Ti 3 AlC 3 Ti 3 AlC 3 (Ti_(3)AlC_(3):}\left(\mathrm{Ti}_{3} \mathrm{AlC}_{3}\right. ), are commonly employed to boost the sensitivity of MIP biomimetic sensors. The presence of these nanomaterials enhanced the electrocatalysis of AA, DA, and UA by lowering the charge transfer resistance and oxidation potential.
催化电化学反应[40-42]。在分子印迹聚合物(MIPs)中使用纳米材料是必要的,因为它们可以改善响应信号、提高灵敏度并降低传感器的检测限[39]。纳米材料包括至少有一个维度在纳米尺度( 0.1 100 nm 0.1 100 nm 0.1-100nm0.1-100 \mathrm{~nm} )的材料,或两个维度小于 100 纳米的纳米物体(例如,碳纳米管)以及三维小于 100 纳米的纳米颗粒[43]。各种纳米材料,如贵金属纳米颗粒、碳纳米管(MWCNTs/SWCNTs)、石墨烯、碳点(CDs)、黑磷(BP)和 MXenes ( Ti 3 AlC 3 Ti 3 AlC 3 (Ti_(3)AlC_(3):}\left(\mathrm{Ti}_{3} \mathrm{AlC}_{3}\right. ),通常用于提高 MIP 仿生传感器的灵敏度。这些纳米材料的存在通过降低电荷转移电阻和氧化电位增强了 AA、DA 和 UA 的电催化作用。
The working principle of electrochemistry based on MIPs involves the use of MIPs, which are immobilized or electropolymerized onto nanomaterial-modified electrodes for the detection of AA, DA, and UA, as shown in Fig. 1. The first step of this process is to design and synthesize nanomaterials and modify them on the surface of polished electrodes to increase their conductivity and enhance their specific surface area. Next, the polymer and template molecules are electropolymerized on the nanomaterial-modified electrode, and the template molecules are then removed by solvent elution, leaving 3D cavities that can specifically match the template molecules. When the nanomaterialmodified electrode is used for detection, the electric signals appear weak due to the blocking of charge transfer between the electrode and the redox probes. The peak current, which is proportional to the concentration of the target molecule (AA, DA, and UA), is displayed when the voltage is scanned, [41].
基于分子印迹聚合物(MIPs)的电化学工作原理涉及使用 MIPs,这些 MIPs 被固定或电聚合到纳米材料修饰的电极上,以检测 AA、DA 和 UA,如图 1 所示。该过程的第一步是设计和合成纳米材料,并将其修饰在抛光电极的表面,以提高其导电性并增强其比表面积。接下来,聚合物和模板分子在纳米材料修饰的电极上进行电聚合,然后通过溶剂洗脱去除模板分子,留下可以与模板分子特异性匹配的 3D 腔体。当使用纳米材料修饰的电极进行检测时,由于电极与氧化还原探针之间的电荷转移被阻塞,电信号显得微弱。当扫描电压时,峰值电流与目标分子(AA、DA 和 UA)的浓度成正比。
This review summarizes recent advances in the combination of nanomaterials with MIPs for the electrochemical sensing of biomolecules, particularly UA, DA, and AA. The most representative studies were highlighted to demonstrate the main strategies used for constructing MIPs on nanomaterial-modified electrodes, which could lead to the development of advanced sensing devices for AA, DA, and UA in the presence of complex matrices. To the best of my knowledge, no review article has been published on molecularly imprinted polymer (MIP) electrochemical sensors based on nanomaterial-modified electrodes for the determination of AA, although there are numerous published reviews for the determination of DA and uric acid. Thus, this study provides a comprehensive review of MIP electrochemical sensors, which are based on electrodes modified with nanomaterials and are used to measure three biological substances, including UA, AA, and DA. The comparison of the analytical figure of merits, particularly the linearity range and limit of detection of various modified electrodes for UA, AA, and DA analysis, is provided in Table 1.
本综述总结了纳米材料与分子印迹聚合物(MIPs)结合在生物分子电化学传感中的最新进展,特别是尿酸(UA)、多巴胺(DA)和抗坏血酸(AA)。突出了最具代表性的研究,以展示在纳米材料修饰电极上构建 MIPs 的主要策略,这可能导致在复杂基质中开发用于 AA、DA 和 UA 的先进传感器。据我所知,尚未发表关于基于纳米材料修饰电极的分子印迹聚合物(MIP)电化学传感器用于 AA 测定的综述文章,尽管已有许多关于 DA 和尿酸测定的综述。因此,本研究提供了基于纳米材料修饰电极的 MIP 电化学传感器的全面综述,用于测量包括 UA、AA 和 DA 在内的三种生物物质。表 1 提供了不同修饰电极在 UA、AA 和 DA 分析中的分析优点比较,特别是线性范围和检测限。

2. Molecularly imprinted polymer-based electrochemical sensor for detection of ascorbic acid
基于分子印迹聚合物的电化学传感器用于检测抗坏血酸

2.1.1. Black phosphorene quantum dot-modified electrode for AA detection
2.1.1. 黑磷量子点修饰电极用于 AA 检测

Zero-dimensional (OD) black phosphorus quantum dots (BPQDs) are widely used in biosensing due to their outstanding properties, such as a higher specific surface area, more surface-active sites, high hole mobility, quantum confinement, and edge effect [44,45]. The combination of this nanomaterial with selective MIPs should be considered as one of the important parameters in electrochemical sensing strategies to increase sensitivity.
零维(OD)黑磷量子点(BPQDs)因其优异的特性,如更高的比表面积、更多的表面活性位点、高孔迁移率、量子限制和边缘效应,广泛应用于生物传感 [44,45]。将这种纳米材料与选择性分子印迹聚合物(MIPs)结合,应被视为提高电化学传感策略灵敏度的重要参数之一。
Zhang et al. [45] fabricated molecularly imprinted polypyrrole (PPy) decorated with black phosphorene quantum dots (BPQDs) onto poly (3,4-ethylenedioxythiophene) nanorods (PEDOTNRs) by electrochem ical polymerization for voltammetric sensing of vitamin C. Due to its conductivity, stability, transparency, and biocompatibility, poly(3,4ethylenedioxythiophene) (PEDOT) is one of the most exceptional CPs
张等人[45]通过电化学聚合将装饰有黑磷量子点(BPQDs)的分子印迹聚吡咯(PPy)制备到聚(3,4-乙烯二氧噻吩)(PEDOTNRs)纳米棒上,用于维生素 C 的伏安传感。由于其导电性、稳定性、透明性和生物相容性,聚(3,4-乙烯二氧噻吩)(PEDOT)是最杰出的导电聚合物之一。

Fig. 1. Schematic illustration of the working principle of nanomaterial-modified electrodes for molecularly imprinted electrochemical biosensing of AA, DA, and UA [41].
图 1. 纳米材料修饰电极用于分子印迹电化学生物传感 AA、DA 和 UA 的工作原理示意图[41]。
Table 1  表 1
Summary of some applications of electrochemical sensors based on MIPs combined with nanomaterials for the detection of AA, DA, and UA.
基于分子印迹聚合物与纳米材料结合的电化学传感器在 AA、DA 和 UA 检测中的一些应用总结。
Electrode Modifier  电极修饰剂 Analyte  分析物 Linear range  线性范围 Detection methods  检测方法 Limit of Detection (LOD)
检测限 (LOD)
Ref.  参考。
PPy-BPQDs-MIPs/PEDOTNRs/GCE AA 0.01 4.00 mmol L 1 0.01 4.00 mmol L 1 0.01-4.00mmolL^(-1)0.01-4.00 \mathrm{mmol} \mathrm{L}^{-1} DPV 3.30 μ mol L 1 3.30 μ mol L 1 3.30 mumolL^(-1)3.30 \mu \mathrm{~mol} \mathrm{~L}^{-1} [45]
AuNPs/MWCNTs/GCE AA 0.01 2.00 μ mol L 1 ; 2.00 100 μ mol L 1 0.01 2.00 μ mol L 1 ; 2.00 100 μ mol L 1 0.01-2.00 mumolL^(-1);2.00-100 mumolL^(-1)0.01-2.00 \mu \mathrm{~mol} \mathrm{~L}^{-1} ; 2.00-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 2.00 nmol L 1 2.00 nmol L 1 2.00nmolL^(-1)2.00 \mathrm{nmol} \mathrm{L}^{-1} [50]
CA/MWCNTs/PVP AA 10.0 1000 μ mol L 1 10.0 1000 μ mol L 1 10.0-1000 mumolL^(-1)10.0-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 3 μ mol L 1 3 μ mol L 1 3mumolL^(-1)3 \mu \mathrm{~mol} \mathrm{~L}^{-1} [51]
MIPs/MXene/GCE AA 0.50 10 μ mol L 1 0.50 10 μ mol L 1 0.50-10 mumolL^(-1)0.50-10 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.27 mol L 1 0.27 mol L 1 0.27molL^(-1)0.27 \mathrm{~mol} \mathrm{~L}^{-1} [58]
MI-PANI-FSA-C-dots/PGE AA 6.0 165.0 nmol L 1 6.0 165.0 nmol L 1 6.0-165.0nmolL^(-1)6.0-165.0 \mathrm{nmol} \mathrm{L}^{-1} DPV 0.001 nM [65]
PPy/graphene/GCE  PPy/石墨烯/GCE AA 2.0 8 mmol L 1 2.0 8 mmol L 1 2.0-8mmolL^(-1)2.0-8 \mathrm{mmol} \mathrm{L}^{-1} DPV 0.10 mmolL 1 0.10 mmolL 1 0.10mmolL^(-1)0.10 \mathrm{mmolL}^{-1} [70]
nMIP/AuNPs@COFTFPB-NBPDA/GCE AA 7.81-60 mmol L 1 mmol L 1 mmolL^(-1)\mathrm{mmol} \mathrm{L}^{-1} DPV 2.57 μ mol L 1 2.57 μ mol L 1 2.57 mumolL^(-1)2.57 \mu \mathrm{~mol} \mathrm{~L}^{-1} [72]
GR-MIP/gold electrode  GR-MIP/金电极 DA 0.1 10 μ mol L 1 0.1 10 μ mol L 1 0.1-10 mumolL^(-1)0.1-10 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.033 μ mol L 1 0.033 μ mol L 1 0.033 mumolL^(-1)0.033 \mu \mathrm{~mol} \mathrm{~L}^{-1} [74]
GSCR-MIPs DA 10 830 μ mol L 1 10 830 μ mol L 1 10-830 mumolL^(-1)10-830 \mu \mathrm{~mol} \mathrm{~L}^{-1} 10 μ mol L 1 10 μ mol L 1 10 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1} [75]
AuNP/GR/OPPy-MIP/GCE DA 0.5 8 μ mol L 1 0.5 8 μ mol L 1 0.5-8mumolL^(-1)0.5-8 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.01 μ mol L 1 0.01 μ mol L 1 0.01 mumolL^(-1)0.01 \mu \mathrm{~mol} \mathrm{~L}^{-1} [80]
S-MoSe 2 2 _(2){ }_{2} /NSG/Au/MIPs/GCE DA 0.05 100 μ mol L 1 0.05 100 μ mol L 1 0.05-100 mumolL^(-1)0.05-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.02 μ mol L 1 0.02 μ mol L 1 0.02 mumolL^(-1)0.02 \mu \mathrm{~mol} \mathrm{~L}^{-1} [84]
GO/ / SiO 2 / SiO 2 //SiO_(2)/ \mathrm{SiO}_{2}-MIPs DA 0.05.0-160 μ mol L 1 μ mol L 1 mumolL-1\mu \mathrm{mol} \mathrm{L}-1 CA 0.03 μ mol L 1 0.03 μ mol L 1 0.03 mumolL^(-1)0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1} [86]
MIP/MWCNTs/GAs/GCE DA 0.005 20.0 μ mol L 1 0.005 20.0 μ mol L 1 0.005-20.0 mumolL^(-1)0.005-20.0 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 1.67 nmol L 1 1.67 nmol L 1 1.67nmolL^(-1)1.67 \mathrm{nmol} \mathrm{L}^{-1} [87]
PPy-MIP/ZrO2 @ @ @@ C/NPG/GCE DA 0.005 100 μ mol L 1 0.005 100 μ mol L 1 0.005-100 mumolL^(-1)0.005-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.33 nmol L 1 0.33 nmol L 1 0.33nmolL^(-1)0.33 \mathrm{nmol} \mathrm{L}^{-1} [88]
PPy/CNTs-MIPs/GCE DA 0.00005-5.0 μ mol L 1 μ mol L 1 mumolL-1\mu \mathrm{mol} \mathrm{L}-1 DPV 0.01 nmol L 1 0.01 nmol L 1 0.01nmolL-10.01 \mathrm{nmol} \mathrm{L-1} [89]
GO/PPy/CPE DA 0.064 200 μ mol L 1 0.064 200 μ mol L 1 0.064-200 mumolL^(-1)0.064-200 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 10 nmol L 1 10 nmol L 1 10nmolL^(-1)10 \mathrm{nmol} \mathrm{L}^{-1} [90]
aGO/CB-OMNiDIP/SPCE DAEP 0.120 4.578 ng mL 1 0.075 1.188 ng mL 1 0.120 4.578 ng mL 1 0.075 1.188 ng mL 1 {:[0.120-4.578ngmL^(-1)],[0.075-1.188ngmL^(-1)]:}\begin{aligned} & 0.120-4.578 \mathrm{ng} \mathrm{~mL}^{-1} \\ & 0.075-1.188 \mathrm{ng} \mathrm{~mL}^{-1} \end{aligned} DPV 0.028 0.061 ng mL 1 0.017 0.020 ng mL 1 0.028 0.061 ng mL 1 0.017 0.020 ng mL 1 {:[0.028-0.061ngmL^(-1)],[0.017-0.020ngmL^(-1)]:}\begin{aligned} & 0.028-0.061 \mathrm{ng} \mathrm{~mL}^{-1} \\ & 0.017-0.020 \mathrm{ng} \mathrm{~mL}^{-1} \end{aligned} [91]
MIPs-PPy/MWNTs/GCE DA 0.625 100 μ mol L 1 0.625 100 μ mol L 1 0.625-100 mumolL-10.625-100 \mu \mathrm{~mol} \mathrm{~L}-1 DPV 60 nmol L 1 60 nmol L 1 60nmolL^(-1)60 \mathrm{nmol} \mathrm{L}^{-1} [93]
MIPs/ / HSO 3 / HSO 3 //HSO_(3)/ \mathrm{HSO}_{3}-GS/Au electrode
MIPs/ / HSO 3 / HSO 3 //HSO_(3)/ \mathrm{HSO}_{3} -GS/金电极
DA 0.5 7.0 mg L 1 0.5 7.0 mg L 1 0.5-7.0mgL^(-1)0.5-7.0 \mathrm{mg} \mathrm{L}^{-1} CA 0.11 mg L 1 0.11 mg L 1 0.11mgL^(-1)0.11 \mathrm{mg} \mathrm{L}^{-1} [13]
AuNPs@SiO2-MIPs 48 50 nmolL 1 48 50 nmolL 1 48-50nmolL^(-1)48-50 \mathrm{nmolL}^{-1} DPV 20 nmol L 1 20 nmol L 1 20nmolL^(-1)20 \mathrm{nmol} \mathrm{L}^{-1} [94]
MIP-modified MWCNT-CE  MIP 改性 MWCNT-CE DA 0.994-83.942 ng mL 1 1 ^(-1){ }^{-1} DPV 0.143 0.154 ng mL 1 0.143 0.154 ng mL 1 0.143-0.154ngmL^(-1)0.143-0.154 \mathrm{ng} \mathrm{mL}^{-1} [95]
MIP/ErGO/PEDOT:PSS/GCE UA 0.1 100 μ mol L 1 0.1 100 μ mol L 1 0.1-100 mumolL^(-1)0.1-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.05 μ mol L 1 0.05 μ mol L 1 0.05 mumolL^(-1)0.05 \mu \mathrm{~mol} \mathrm{~L}^{-1} [101]
RGO/AMT MIP UA 0.01 100 μ mol L 1 0.01 100 μ mol L 1 0.01-100 mumolL^(-1)0.01-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.0032 μ mol L 1 0.0032 μ mol L 1 0.0032 mumolL^(-1)0.0032 \mu \mathrm{~mol} \mathrm{~L}^{-1} [102]
Cys-MWCNTs/o-phenylenediamine MIP/GCE
Cys-MWCNTs/o-苯二胺 MIP/GCE
UA 0.1 3.3 μ mol L 1 0.1 3.3 μ mol L 1 0.1-3.3 mumolL^(-1)0.1-3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} DPV 0.03 μ mol L 1 0.03 μ mol L 1 0.03 mumolL^(-1)0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1} [103]
MIP-MWCNTs/PMAA/GCE UA 80 500 μ mol L 1 80 500 μ mol L 1 80-500 mumolL^(-1)80-500 \mu \mathrm{~mol} \mathrm{~L}^{-1} CA 22 μ mol L 1 22 μ mol L 1 22 mumolL^(-1)22 \mu \mathrm{~mol} \mathrm{~L}^{-1} [105]
NPGL/o-phenylenediamine MIP/GCE
NPGL/o-苯二胺 MIP/GCE
UA 5.0-160 mol L 1 mol L 1 molL^(-1)\mathrm{mol} \mathrm{L}^{-1} DPV 0.4 μ mol L 1 0.4 μ mol L 1 0.4 mumolL^(-1)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} [111]
DA imprinted PPy -ta-C/CNFs DA 0.01 1 μ mol L 1 0.01 1 μ mol L 1 0.01-1mumolL^(-1)0.01-1 \mu \mathrm{~mol} \mathrm{~L}^{-1} (F-12 K) DPV 62.57 nmol L 1 62.57 nmol L 1 62.57nmolL^(-1)62.57 \mathrm{nmol} \mathrm{L}^{-1} [100]
0.01 10 μ mol L 1 0.01 10 μ mol L 1 0.01-10 mumolL^(-1)0.01-10 \mu \mathrm{~mol} \mathrm{~L}^{-1} (PBS (pH 7.4) 5.4 nmol L 1 5.4 nmol L 1 5.4nmolL^(-1)5.4 \mathrm{nmol} \mathrm{L}^{-1}
0.01-1 μ mol L 1 μ mol L 1 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1} (DMEM/F-12) 39 nmol L 1 39 nmol L 1 39nmolL^(-1)39 \mathrm{nmol} \mathrm{L}^{-1}
0.01 1 μ mol L 1 0.01 1 μ mol L 1 0.01-1mumolL^(-1)0.01-1 \mu \mathrm{~mol} \mathrm{~L}^{-1} (DMEM/F-12, 15% HS and 2.5% FBS)
0.01 1 μ mol L 1 0.01 1 μ mol L 1 0.01-1mumolL^(-1)0.01-1 \mu \mathrm{~mol} \mathrm{~L}^{-1} (DMEM/F-12, 15% HS 和 2.5% FBS)
53.26 nmol L 1 53.26 nmol L 1 53.26nmolL^(-1)53.26 \mathrm{nmol} \mathrm{L}^{-1}
Electrode Modifier Analyte Linear range Detection methods Limit of Detection (LOD) Ref. PPy-BPQDs-MIPs/PEDOTNRs/GCE AA 0.01-4.00mmolL^(-1) DPV 3.30 mumolL^(-1) [45] AuNPs/MWCNTs/GCE AA 0.01-2.00 mumolL^(-1);2.00-100 mumolL^(-1) DPV 2.00nmolL^(-1) [50] CA/MWCNTs/PVP AA 10.0-1000 mumolL^(-1) DPV 3mumolL^(-1) [51] MIPs/MXene/GCE AA 0.50-10 mumolL^(-1) DPV 0.27molL^(-1) [58] MI-PANI-FSA-C-dots/PGE AA 6.0-165.0nmolL^(-1) DPV 0.001 nM [65] PPy/graphene/GCE AA 2.0-8mmolL^(-1) DPV 0.10mmolL^(-1) [70] nMIP/AuNPs@COFTFPB-NBPDA/GCE AA 7.81-60 mmolL^(-1) DPV 2.57 mumolL^(-1) [72] GR-MIP/gold electrode DA 0.1-10 mumolL^(-1) DPV 0.033 mumolL^(-1) [74] GSCR-MIPs DA 10-830 mumolL^(-1) 10 mumolL^(-1) [75] AuNP/GR/OPPy-MIP/GCE DA 0.5-8mumolL^(-1) DPV 0.01 mumolL^(-1) [80] S-MoSe _(2) /NSG/Au/MIPs/GCE DA 0.05-100 mumolL^(-1) DPV 0.02 mumolL^(-1) [84] GO/ //SiO_(2)-MIPs DA 0.05.0-160 mumolL-1 CA 0.03 mumolL^(-1) [86] MIP/MWCNTs/GAs/GCE DA 0.005-20.0 mumolL^(-1) DPV 1.67nmolL^(-1) [87] PPy-MIP/ZrO2 @ C/NPG/GCE DA 0.005-100 mumolL^(-1) DPV 0.33nmolL^(-1) [88] PPy/CNTs-MIPs/GCE DA 0.00005-5.0 mumolL-1 DPV 0.01nmolL-1 [89] GO/PPy/CPE DA 0.064-200 mumolL^(-1) DPV 10nmolL^(-1) [90] aGO/CB-OMNiDIP/SPCE DAEP "0.120-4.578ngmL^(-1) 0.075-1.188ngmL^(-1)" DPV "0.028-0.061ngmL^(-1) 0.017-0.020ngmL^(-1)" [91] MIPs-PPy/MWNTs/GCE DA 0.625-100 mumolL-1 DPV 60nmolL^(-1) [93] MIPs/ //HSO_(3)-GS/Au electrode DA 0.5-7.0mgL^(-1) CA 0.11mgL^(-1) [13] AuNPs@SiO2-MIPs 48-50nmolL^(-1) DPV 20nmolL^(-1) [94] MIP-modified MWCNT-CE DA 0.994-83.942 ng mL ^(-1) DPV 0.143-0.154ngmL^(-1) [95] MIP/ErGO/PEDOT:PSS/GCE UA 0.1-100 mumolL^(-1) DPV 0.05 mumolL^(-1) [101] RGO/AMT MIP UA 0.01-100 mumolL^(-1) DPV 0.0032 mumolL^(-1) [102] Cys-MWCNTs/o-phenylenediamine MIP/GCE UA 0.1-3.3 mumolL^(-1) DPV 0.03 mumolL^(-1) [103] MIP-MWCNTs/PMAA/GCE UA 80-500 mumolL^(-1) CA 22 mumolL^(-1) [105] NPGL/o-phenylenediamine MIP/GCE UA 5.0-160 molL^(-1) DPV 0.4 mumolL^(-1) [111] DA imprinted PPy -ta-C/CNFs DA 0.01-1mumolL^(-1) (F-12 K) DPV 62.57nmolL^(-1) [100] 0.01-10 mumolL^(-1) (PBS (pH 7.4) 5.4nmolL^(-1) 0.01-1 mumolL^(-1) (DMEM/F-12) 39nmolL^(-1) 0.01-1mumolL^(-1) (DMEM/F-12, 15% HS and 2.5% FBS) 53.26nmolL^(-1) | Electrode Modifier | Analyte | Linear range | Detection methods | Limit of Detection (LOD) | Ref. | | :---: | :---: | :---: | :---: | :---: | :---: | | PPy-BPQDs-MIPs/PEDOTNRs/GCE | AA | $0.01-4.00 \mathrm{mmol} \mathrm{L}^{-1}$ | DPV | $3.30 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [45] | | AuNPs/MWCNTs/GCE | AA | $0.01-2.00 \mu \mathrm{~mol} \mathrm{~L}^{-1} ; 2.00-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $2.00 \mathrm{nmol} \mathrm{L}^{-1}$ | [50] | | CA/MWCNTs/PVP | AA | $10.0-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $3 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [51] | | MIPs/MXene/GCE | AA | $0.50-10 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.27 \mathrm{~mol} \mathrm{~L}^{-1}$ | [58] | | MI-PANI-FSA-C-dots/PGE | AA | $6.0-165.0 \mathrm{nmol} \mathrm{L}^{-1}$ | DPV | 0.001 nM | [65] | | PPy/graphene/GCE | AA | $2.0-8 \mathrm{mmol} \mathrm{L}^{-1}$ | DPV | $0.10 \mathrm{mmolL}^{-1}$ | [70] | | nMIP/AuNPs@COFTFPB-NBPDA/GCE | AA | 7.81-60 $\mathrm{mmol} \mathrm{L}^{-1}$ | DPV | $2.57 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [72] | | GR-MIP/gold electrode | DA | $0.1-10 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.033 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [74] | | GSCR-MIPs | DA | $10-830 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | | $10 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [75] | | AuNP/GR/OPPy-MIP/GCE | DA | $0.5-8 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.01 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [80] | | S-MoSe ${ }_{2}$ /NSG/Au/MIPs/GCE | DA | $0.05-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.02 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [84] | | GO/ $/ \mathrm{SiO}_{2}$-MIPs | DA | 0.05.0-160 $\mu \mathrm{mol} \mathrm{L}-1$ | CA | $0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [86] | | MIP/MWCNTs/GAs/GCE | DA | $0.005-20.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $1.67 \mathrm{nmol} \mathrm{L}^{-1}$ | [87] | | PPy-MIP/ZrO2 $@$ C/NPG/GCE | DA | $0.005-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.33 \mathrm{nmol} \mathrm{L}^{-1}$ | [88] | | PPy/CNTs-MIPs/GCE | DA | 0.00005-5.0 $\mu \mathrm{mol} \mathrm{L}-1$ | DPV | $0.01 \mathrm{nmol} \mathrm{L-1}$ | [89] | | GO/PPy/CPE | DA | $0.064-200 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $10 \mathrm{nmol} \mathrm{L}^{-1}$ | [90] | | aGO/CB-OMNiDIP/SPCE | DAEP | $\begin{aligned} & 0.120-4.578 \mathrm{ng} \mathrm{~mL}^{-1} \\ & 0.075-1.188 \mathrm{ng} \mathrm{~mL}^{-1} \end{aligned}$ | DPV | $\begin{aligned} & 0.028-0.061 \mathrm{ng} \mathrm{~mL}^{-1} \\ & 0.017-0.020 \mathrm{ng} \mathrm{~mL}^{-1} \end{aligned}$ | [91] | | MIPs-PPy/MWNTs/GCE | DA | $0.625-100 \mu \mathrm{~mol} \mathrm{~L}-1$ | DPV | $60 \mathrm{nmol} \mathrm{L}^{-1}$ | [93] | | MIPs/ $/ \mathrm{HSO}_{3}$-GS/Au electrode | DA | $0.5-7.0 \mathrm{mg} \mathrm{L}^{-1}$ | CA | $0.11 \mathrm{mg} \mathrm{L}^{-1}$ | [13] | | AuNPs@SiO2-MIPs | | $48-50 \mathrm{nmolL}^{-1}$ | DPV | $20 \mathrm{nmol} \mathrm{L}^{-1}$ | [94] | | MIP-modified MWCNT-CE | DA | 0.994-83.942 ng mL ${ }^{-1}$ | DPV | $0.143-0.154 \mathrm{ng} \mathrm{mL}^{-1}$ | [95] | | MIP/ErGO/PEDOT:PSS/GCE | UA | $0.1-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.05 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [101] | | RGO/AMT MIP | UA | $0.01-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.0032 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [102] | | Cys-MWCNTs/o-phenylenediamine MIP/GCE | UA | $0.1-3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | DPV | $0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [103] | | MIP-MWCNTs/PMAA/GCE | UA | $80-500 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | CA | $22 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [105] | | NPGL/o-phenylenediamine MIP/GCE | UA | 5.0-160 $\mathrm{mol} \mathrm{L}^{-1}$ | DPV | $0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ | [111] | | DA imprinted PPy -ta-C/CNFs | DA | $0.01-1 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ (F-12 K) | DPV | $62.57 \mathrm{nmol} \mathrm{L}^{-1}$ | [100] | | | | $0.01-10 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ (PBS (pH 7.4) | | $5.4 \mathrm{nmol} \mathrm{L}^{-1}$ | | | | | 0.01-1 $\mu \mathrm{mol} \mathrm{L}^{-1}$ (DMEM/F-12) | | $39 \mathrm{nmol} \mathrm{L}^{-1}$ | | | | | $0.01-1 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ (DMEM/F-12, 15% HS and 2.5% FBS) | | $53.26 \mathrm{nmol} \mathrm{L}^{-1}$ | |
for applications in electrochemical chemo/biosensors as a support substrate for the construction of electrochemical sensors based on MIPs. Nanocomposites containing PPy and BPQDs were applied to the surface of PEDOT nanorods (PEDOTNRs) to increase the stability of BPQDs in damp or water-rich air. Then, the molecularly imprinted material was prepared by using template molecules of vitamin C (VC) and BPQDs selfassembled on the surface of the positively charged PEDOTNRs, where pyrrole was also self-assembled with template molecules, which were termed PPy-BPQDs-MIPs/PEDOTNRs/GCE (Fig. 2). Using DPV, peak currents were recorded, and a linear proportion of VC concentrations ranging from 0.01 to 4.00 mmol L 1 4.00 mmol L 1 4.00mmolL^(-1)4.00 \mathrm{mmol} \mathrm{L}^{-1} and a detection limit of 3.30 μ molL 1 μ molL 1 mumolL^(-1)\mu \mathrm{molL}^{-1} was reported. Moreover, the electrode displayed good repeatability, stability, reproducibility, and selectivity for the electrochemical analysis of VC in commercial drink soft samples.
用于电化学化学/生物传感器应用,作为基于分子印迹聚合物(MIPs)构建电化学传感器的支撑基底。含有聚吡咯(PPy)和蓝磷量子点(BPQDs)的纳米复合材料被应用于 PEDOT 纳米棒(PEDOTNRs)的表面,以提高 BPQDs 在潮湿或富水空气中的稳定性。然后,通过使用维生素 C(VC)和自组装在正电荷 PEDOTNRs 表面的 BPQDs 的模板分子制备了分子印迹材料,其中吡咯也与模板分子自组装,称为 PPy-BPQDs-MIPs/PEDOTNRs/GCE(图 2)。使用差分脉冲伏安法(DPV)记录了峰电流,并报告了 VC 浓度范围为 0.01 到 4.00 mmol L 1 4.00 mmol L 1 4.00mmolL^(-1)4.00 \mathrm{mmol} \mathrm{L}^{-1} 的线性比例和 3.30 μ molL 1 μ molL 1 mumolL^(-1)\mu \mathrm{molL}^{-1} 的检测限。此外,该电极在商业饮料软样品中对 VC 的电化学分析显示出良好的重复性、稳定性、重现性和选择性。

2.1.2. AuNP/MWCNT-based molecularly imprinted sensor for A A A A AAA A detection
2.1.2. 基于 AuNP/MWCNT 的分子印迹传感器用于 A A A A AAA A 检测

In 1991, Iijima discovered carbon nanotubes (CNTs), which are now widely used as carbon nanomaterials in combination with MIP employed for the construction of electrochemical sensors [46]. Because of their high electrical conductivity, large surface area, and electrocatalytic activity, CNTs have been used extensively as one of the components of various composites for the modification of electrodes [47]. Single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) are the two types of carbon nanotubes (CNTs) [43]. MWCNTs are especially beneficial for the design of electrochemical sensors because of their high strength, low charge-transfer resistance, large active surface area, and chemical inertness… However, they are insoluble in the majority of solvents [47,48]. so they are functionalized with AuNPs to improve the electrochemical features and solubility because AuNPs are known for their ability to increase the electrode surface area, biocompatibility, and good conductivity[49].
在 1991 年,饭岛发现了碳纳米管(CNTs),现在它们被广泛用作与 MIP 结合的碳纳米材料,用于构建电化学传感器[46]。由于其高电导率、大表面积和电催化活性,CNTs 被广泛用作各种复合材料的组成部分,以改性电极[47]。单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)是两种类型的碳纳米管(CNTs)[43]。MWCNTs 在电化学传感器的设计中尤其有利,因为它们具有高强度、低电荷转移电阻、大活性表面积和化学惰性……然而,它们在大多数溶剂中不溶[47,48]。因此,它们与 AuNPs 功能化,以改善电化学特性和溶解性,因为 AuNPs 以其增加电极表面积、生物相容性和良好导电性而闻名[49]。

Fig. 2. A) Schematic showing the fabrication of the PPy-BPQD-MIP/PEDOTNR/GCE sensor. (B) DPV curves of VC at different concentrations using the MIP electrode. The VC concentration ranged from 0 to 6 mM . © The linear relationship between anodic peak currents and the concentration of VC for the MIP electrode and NIP electrode. (reproduced with permission from [45].
图 2。A) 示意图显示了 PPy-BPQD-MIP/PEDOTNR/GCE 传感器的制造过程。B) 使用 MIP 电极在不同浓度下的 VC DPV 曲线。VC 浓度范围为 0 到 6 mM。C) MIP 电极和 NIP 电极的阳极峰电流与 VC 浓度之间的线性关系。(经[45]许可转载)

Fig. 3. Schematic representation of molecular imprinting by electropolymerization of oPD and AA on AuNPs/MWCNTs/GCE. (reproduced with permission from [50].
图 3. 在 AuNPs/MWCNTs/GCE 上通过 oPD 和 AA 的电聚合进行分子印迹的示意图。(经[50]许可转载。)
Youyuan Peng et al. [50] fabricated a molecularly imprinted sensor for the highly sensitive and selective determination of AA by combining multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (AuNPs) with a surface molecularly imprinted polymer, as shown in Fig. 3. The imprinted polymer film was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). AuNPs and the MWCNTs were employed to modify the electrode surface to accelerate the electron transfer rate and enhance the chemical stability as well as improve the adhesion of MIP to electrodes. In this work, two distinct linear responses were reported in the range of 0.01 to 2.00 μ mol L 1 2.00 μ mol L 1 2.00 mumolL^(-1)2.00 \mu \mathrm{~mol} \mathrm{~L}^{-1} and 2.00 to 100 μ mol L 1 100 μ mol L 1 100 mumolL^(-1)100 \mu \mathrm{~mol} \mathrm{~L}^{-1} towards the concentrations of AA. The limit of detection was reported to be 2.00 nmol L 1 ( S / N = 3 2.00 nmol L 1 ( S / N = 3 2.00nmolL^(-1)(S//N=32.00 \mathrm{nmol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}=3 ).
彭友源等人[50]制造了一种分子印刷传感器,通过将多壁碳纳米管(MWCNTs)和金纳米颗粒(AuNPs)与表面分子印刷聚合物结合,实现了对 AA 的高灵敏度和选择性测定,如图 3 所示。使用扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)光谱、循环伏安法(CV)和差分脉冲伏安法(DPV)对印刷聚合物薄膜进行了表征。AuNPs 和 MWCNTs 被用于修饰电极表面,以加速电子转移速率,增强化学稳定性,并改善 MIP 与电极的粘附性。在这项工作中,报告了在 0.01 到 2.00 μ mol L 1 2.00 μ mol L 1 2.00 mumolL^(-1)2.00 \mu \mathrm{~mol} \mathrm{~L}^{-1} 和 2.00 到 100 μ mol L 1 100 μ mol L 1 100 mumolL^(-1)100 \mu \mathrm{~mol} \mathrm{~L}^{-1} 的 AA 浓度范围内的两个不同线性响应。检测限被报告为 2.00 nmol L 1 ( S / N = 3 2.00 nmol L 1 ( S / N = 3 2.00nmolL^(-1)(S//N=32.00 \mathrm{nmol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}=3
Zhai and colleagues [51] developed nanofiber membranes of cellulose acetate (CA)/multiwalled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) (CA/MWCNTs/PVP) by electrospinning. To enhance its surface area, porosity, flexibility, and conductivity, they modified a glassy carbon electrode (GCE) with a prepared nanofiber. Then, cyclic voltammetry (CV) was utilized to electropolymerize pyrrole and AA onto a nanofibre interface-modified glass carbon electrode. Following the removal of the analyte, they employed electrochemical molecularly imprinted sensors for the recognition and detection of AA and found a linear range of 10.0 1000 μ mol L 1 10.0 1000 μ mol L 1 10.0-1000 mumolL^(-1)10.0-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1} with a low detection limit down to 3 μ mol L 1 ( S / N = 3 ) 3 μ mol L 1 ( S / N = 3 ) 3mumolL^(-1)(S//N=3)3 \mu \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3).
Zhai 及其同事[51]通过静电纺丝法开发了由醋酸纤维素(CA)/多壁碳纳米管(MWCNTs)/聚乙烯吡咯烷酮(PVP)(CA/MWCNTs/PVP)制成的纳米纤维膜。为了增强其表面积、孔隙率、柔韧性和导电性,他们用制备的纳米纤维改性了一种玻璃碳电极(GCE)。然后,利用循环伏安法(CV)在纳米纤维界面改性玻璃碳电极上电聚合吡咯和 AA。在去除分析物后,他们采用电化学分子印迹传感器对 AA 进行识别和检测,发现线性范围为 10.0 1000 μ mol L 1 10.0 1000 μ mol L 1 10.0-1000 mumolL^(-1)10.0-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,最低检测限可低至 3 μ mol L 1 ( S / N = 3 ) 3 μ mol L 1 ( S / N = 3 ) 3mumolL^(-1)(S//N=3)3 \mu \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3)

2.1.3. MXene-modified molecularly imprinted sensors for A A A A AAA A detection
2.1.3. MXene 修饰的分子印迹传感器用于 A A A A AAA A 检测

MXenes, a new family of two-dimensional metal carbides, nitrides, and carbonitrides, have been proposed as materials for electrochemical biosensors [ 52 , 53 ] [ 52 , 53 ] [52,53][52,53]. The formula of MXene is M n + 1 X n T x M n + 1 X n T x M_(n+1)X_(n)T_(x)M_{n+1} X_{n} T_{x}, wherein M M MM
MXenes,一种新型的二维金属碳化物、氮化物和碳氮化物家族,已被提议作为电化学生物传感器的材料 [ 52 , 53 ] [ 52 , 53 ] [52,53][52,53] 。MXene 的公式是 M n + 1 X n T x M n + 1 X n T x M_(n+1)X_(n)T_(x)M_{n+1} X_{n} T_{x} ,其中 M M MM

stands for transition metals (such as Ti , V , Nb , Cr Ti , V , Nb , Cr Ti,V,Nb,Cr\mathrm{Ti}, \mathrm{V}, \mathrm{Nb}, \mathrm{Cr}, and Mo ). X is carbon and/or nitrogen, Tx represents the surface terminations (such as - OH, -O , and - F), and n ranges from 1 to 3 [54]. Among MXenes, titanium carbide MXene ( Ti 3 C 2 T x ) Ti 3 C 2 T x (Ti_(3)C_(2)T_(x))\left(\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}\right) has particularly been noted for its potential in analytical chemistry applications due to its numerous advantages, such as high surface area, abundant surface functional groups, high conductivity, high stability, excellent metallicity, hydrophilicity, good stretchability, production in large batches, and biocompatibility, [55-57] making it an attractive option for the fabrication of electrochemical (bio)sensors.
代表过渡金属(如 Ti , V , Nb , Cr Ti , V , Nb , Cr Ti,V,Nb,Cr\mathrm{Ti}, \mathrm{V}, \mathrm{Nb}, \mathrm{Cr} 和 Mo)。X 是碳和/或氮,Tx 代表表面终止(如-OH,-O 和-F),n 的范围是 1 到 3 [54]。在 MXenes 中,钛碳化物 MXene ( Ti 3 C 2 T x ) Ti 3 C 2 T x (Ti_(3)C_(2)T_(x))\left(\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}\right) 因其在分析化学应用中的潜力而特别受到关注,原因在于其众多优点,如高表面积、丰富的表面官能团、高导电性、高稳定性、优良的金属性、亲水性、良好的延展性、大批量生产和生物相容性[55-57],使其成为制造电化学(生物)传感器的一个有吸引力的选择。
For example, Qiuguo Wang and colleagues developed an electrochemical sensor for the detection of AA using molecularly imprinted MXene-modified glassy carbon electrodes (MIPs/MXene/GCE) (Fig. 4) [58]. This MXene-MIP composite has a wide range of properties, such as active surface area, enhanced conductivity, catalytic performance, and improved electrochemical detection, which makes it attractive for various applications. Moreover, electrochemical sensors have the advantages of repeatability, reusability, and stability [59]. The MXenes were prepared using the chemical etching method, and the electrode surface was then modified and electropolymerized with o-phenylenediamine (o-PD) in the presence of AA. The sensor has a linear range of 0.50 μ mol L 1 0.50 μ mol L 1 0.50 mumolL^(-1)0.50 \mu \mathrm{~mol} \mathrm{~L}^{-1} to 10 μ mol L 1 10 μ mol L 1 10 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1} and a detection limit of 0.27 μ mol L 1 0.27 μ mol L 1 0.27 mumolL^(-1)0.27 \mu \mathrm{~mol} \mathrm{~L}^{-1}. This proposed sensor has been successfully applied to determine AA in vitamin C tablets and was found to be highly selective.
例如,王秋国及其同事开发了一种用于检测 AA 的电化学传感器,采用分子印刷的 MXene 改性玻璃碳电极(MIPs/MXene/GCE)(图 4)[58]。这种 MXene-MIP 复合材料具有广泛的特性,如活性表面积、增强的导电性、催化性能和改善的电化学检测,使其在各种应用中具有吸引力。此外,电化学传感器具有重复性、可重复使用性和稳定性的优点[59]。MXenes 是通过化学蚀刻法制备的,然后在 AA 存在的情况下,电极表面被修饰并电聚合了邻苯二胺(o-PD)。该传感器的线性范围为 0.50 μ mol L 1 0.50 μ mol L 1 0.50 mumolL^(-1)0.50 \mu \mathrm{~mol} \mathrm{~L}^{-1} 10 μ mol L 1 10 μ mol L 1 10 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,检测限为 0.27 μ mol L 1 0.27 μ mol L 1 0.27 mumolL^(-1)0.27 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。该传感器已成功应用于维生素 C 片中 AA 的测定,并且被发现具有很高的选择性。

2.1.4. Carbon dot-modified molecularly imprinted sensor for A A A A AAA A detection
2.1.4. 碳点修饰的分子印迹传感器用于 A A A A AAA A 检测

Carbon dots (CDs), a class of ‘zero-dimensional’ carbon nanomaterials, are widely used in the construction of electrochemical sensors owing to their appealing electrochemical properties [60]. CDs offer
碳点(CDs),一种“零维”碳纳米材料,因其优良的电化学特性而广泛应用于电化学传感器的构建[60]。CDs 提供

Fig. 4. A) Schematic representation of the MIP sensor preparation process. (B) DPV response of the sensor to different concentrations of AA (from a to h: blank, 0.50 μ mol L 1 , 1.00 μ molL 1 , 2.00 μ molL 1 , 4.00 μ molL 1 , 6.00 μ molL 1 , 8.00 μ molL 1 1 and 10 μ molL 1 μ mol L 1 , 1.00 μ molL 1 , 2.00 μ molL 1 , 4.00 μ molL 1 , 6.00 μ molL 1 , 8.00 μ molL 1 1 and 10 μ molL 1 mumolL^(-1),1.00 mumolL^(-1),2.00 mumolL^(-1),4.00 mumolL^(-1),6.00 mumolL^(-1),8.00 mumolL^(-1)1and10 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1}, 1.00 \mu \mathrm{molL}^{-1}, 2.00 \mu \mathrm{molL}^{-1}, 4.00 \mu \mathrm{molL}^{-1}, 6.00 \mu \mathrm{molL}^{-1}, 8.00 \mu \mathrm{molL}^{-1} 1 \mathrm{and} 10 \mu \mathrm{molL}^{-1} ). © Calibration plot of the sensor to different concentrations of AA. Error bars = = == standard deviations ( n = 3 ) ( n = 3 ) (n=3)(n=3). (reproduced with permission from [58].
图 4。A) MIP 传感器制备过程的示意图。B) 传感器对不同浓度 AA 的 DPV 响应(从 a 到 h:空白,0.50 μ mol L 1 , 1.00 μ molL 1 , 2.00 μ molL 1 , 4.00 μ molL 1 , 6.00 μ molL 1 , 8.00 μ molL 1 1 and 10 μ molL 1 μ mol L 1 , 1.00 μ molL 1 , 2.00 μ molL 1 , 4.00 μ molL 1 , 6.00 μ molL 1 , 8.00 μ molL 1 1 and 10 μ molL 1 mumolL^(-1),1.00 mumolL^(-1),2.00 mumolL^(-1),4.00 mumolL^(-1),6.00 mumolL^(-1),8.00 mumolL^(-1)1and10 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1}, 1.00 \mu \mathrm{molL}^{-1}, 2.00 \mu \mathrm{molL}^{-1}, 4.00 \mu \mathrm{molL}^{-1}, 6.00 \mu \mathrm{molL}^{-1}, 8.00 \mu \mathrm{molL}^{-1} 1 \mathrm{and} 10 \mu \mathrm{molL}^{-1} )。C) 传感器对不同浓度 AA 的校准图。误差条 = = == 标准偏差 ( n = 3 ) ( n = 3 ) (n=3)(n=3) 。(经[58]许可转载)

advantages over metal quantum dots or nanoparticles in terms of cost, high aqueous solubility, robustness, chemical inertness, inexpensiveness, abundant functional groups (e.g., amino, hydroxyl, carboxyl), low toxicity, eco-friendliness, and good biocompatibility [61-63]. Furthermore, when compared to other carbon-based nanomaterials, CDs are known to possess exceptional charge transferability, improved electroconductivity, larger effective surface area, electrocatalytic properties, low toxicity, and low cost [64].
相较于金属量子点或纳米颗粒,具有成本低、高水溶性、稳健性、化学惰性、价格便宜、丰富的功能团(如氨基、羟基、羧基)、低毒性、环保性和良好的生物相容性[61-63]。此外,与其他碳基纳米材料相比,碳点被认为具有卓越的电荷转移能力、改善的电导率、更大的有效表面积、电催化特性、低毒性和低成本[64]。
Pandey and Jha [65] fabricated a molecularly imprinted polypyrrole polyaniline ferrocene sulfonic acid-C-dot modified pencil graphite electrode to separate and quantify D / L AA D / L AA D-//L-AA\mathrm{D}-/ \mathrm{L}-\mathrm{AA} in aqueous and some biological samples. It was observed that the fabricated electrodes had high chiral selectivity and sensitivity for detecting L-AA. To further characterize the surface morphologies and electrochemical properties of the proposed sensor, different techniques, such as scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy, were employed. The sensor was found to display excellent selectivity towards L-AA with a linear range of 6.0 165.0 nmol L 1 6.0 165.0 nmol L 1 6.0-165.0nmolL^(-1)6.0-165.0 \mathrm{nmol} \mathrm{L}^{-1} and a detection limit of
Pandey 和 Jha [65] 制造了一种分子印迹聚吡咯聚苯胺铁烯磺酸-C 点修饰的铅笔石墨电极,以分离和定量水相和一些生物样品中的 D / L AA D / L AA D-//L-AA\mathrm{D}-/ \mathrm{L}-\mathrm{AA} 。观察到制造的电极对检测 L-AA 具有高的手性选择性和灵敏度。为了进一步表征所提议传感器的表面形态和电化学特性,采用了不同的技术,如扫描电子显微镜、循环伏安法、差分脉冲伏安法、计时安培法和电化学阻抗谱。该传感器对 L-AA 显示出优异的选择性,线性范围为 {{1 }},检测限为

1.00 μ mol L 1 1.00 μ mol L 1 1.00 mumolL^(-1)1.00 \mu \mathrm{~mol} \mathrm{~L}^{-1}. To validate the proposed sensor, pharmaceuticals and human plasma samples were used, which yielded good recovery results.
为了验证所提议的传感器,使用了药物和人类血浆样本,得到了良好的回收结果。

2.1.5. Graphene-modified molecularly imprinted sensor for AA detection
2.1.5. 石墨烯修饰的分子印迹传感器用于 AA 检测

In 2004, researchers discovered a method to prepare single-layer planar graphene sheets of atomic thickness [66]. Graphene is described as a large polycyclic aromatic compound with 2D sheets consisting of sp2-bonded carbon atoms [67]. Graphene is highly attractive for electrochemical sensors due to its large electrical conductivity, large surface area, high tensile strength, and low cost [68]. MIPs have several advantages, such as fast and easy fabrication, high chemical, mechanical and thermal stability, reusability, low manufacturing costs, and high specificity [69]. They also have some drawbacks, such as slow mass transfer and low binding capacity. To address these issues, graphene materials have been utilized to increase the conductivity and surface area of the transducer for the construction of electrochemical sensors, thus creating a synergistic effect between graphene and MIPs. This has resulted in improved sensor signal and response selectivity with an increased range and number of active
在 2004 年,研究人员发现了一种制备原子厚度单层平面石墨烯薄片的方法[66]。石墨烯被描述为一种大型多环芳香化合物,具有由 sp2 键合的碳原子组成的二维薄片[67]。由于其较大的电导率、较大的表面积、高拉伸强度和低成本,石墨烯在电化学传感器中具有很高的吸引力[68]。分子印迹聚合物(MIPs)具有多个优点,如快速和简单的制造、高化学、机械和热稳定性、可重复使用、低制造成本和高特异性[69]。它们也有一些缺点,如质量转移慢和结合能力低。为了解决这些问题,石墨烯材料被用来提高传感器的导电性和表面积,从而在石墨烯和 MIPs 之间产生协同效应。这导致传感器信号和响应选择性的改善,同时增加了活性范围和数量。

Fig. 5. Schematic diagram of the preparation process of A) PVP-coated AuNPs, B) AuNPs@ COFTFPB-NBPDA, and C) nMIP/AuNPs@COFTFPB-NBPDA/GC. D) DPV of AA detected by nMIP/AuNPs@COFTFPB-NBPDA/GCE. E) Linear relationship between the response current of nMIP/AuNPs@COFTFPB-NBPDA/GCE and AA concentration. (Reproduced with permission from [72]).
图 5. A) PVP 涂层金纳米粒子的制备过程示意图,B) AuNPs@ COFTFPB-NBPDA,C) nMIP/AuNPs@COFTFPB-NBPDA/GC。D) nMIP/AuNPs@COFTFPB-NBPDA/GCE 检测的 AA 的 DPV。E) nMIP/AuNPs@COFTFPB-NBPDA/GCE 的响应电流与 AA 浓度之间的线性关系。(经[72]许可转载)。

molecular recognition sites.
分子识别位点。

For example, S.M. Oliveira et al. [70] fabricated molecularly imprinted polymer-graphene sensors for the determination of AA. In this work, three different glassy carbon electrodes were modified separately using graphene, molecularly imprinted polypyrrole-graphene, and nonimprinted polypyrrole-graphene for the determination of AA. Molecularly imprinted and nonimprinted polypyrrole on graphene exhibited the highest sensitivity to AA ( 6.14 and 5.87 μ A / mmol L 1 5.87 μ A / mmol L 1 5.87 muA//mmolL^(-1)5.87 \mu \mathrm{~A} / \mathrm{mmol} \mathrm{L}^{-1}, respectively). However, their detection limits ( 0.56 and 0.10 mmolL 1 0.10 mmolL 1 0.10mmolL^(-1)0.10 \mathrm{mmolL}^{-1}, respectively) were found to be poorer than that of uncoated graphene ( 0.02 mmolL 1 0.02 mmolL 1 0.02mmolL^(-1)0.02 \mathrm{mmolL}^{-1} ). Furthermore, graphene-modified glassy carbon electrodes showed good reproducibility. On the other hand, a molecularly imprinted polypyrrole-graphene electrode was reported to exhibit better response and selectivity for AA in the presence of interferences, such as DA and UA.
例如,S.M. Oliveira 等人[70]制造了分子印迹聚合物-石墨烯传感器用于 AA 的测定。在这项工作中,分别使用石墨烯、分子印迹聚吡咯-石墨烯和非印迹聚吡咯-石墨烯对三种不同的玻璃碳电极进行了改性,以测定 AA。分子印迹和非印迹聚吡咯在石墨烯上的表现出对 AA 的最高灵敏度(分别为 6.14 和 5.87 μ A / mmol L 1 5.87 μ A / mmol L 1 5.87 muA//mmolL^(-1)5.87 \mu \mathrm{~A} / \mathrm{mmol} \mathrm{L}^{-1} )。然而,它们的检测限(分别为 0.56 和 0.10 mmolL 1 0.10 mmolL 1 0.10mmolL^(-1)0.10 \mathrm{mmolL}^{-1} )被发现比未涂层石墨烯( 0.02 mmolL 1 0.02 mmolL 1 0.02mmolL^(-1)0.02 \mathrm{mmolL}^{-1} )差。此外,石墨烯改性玻璃碳电极显示出良好的重现性。另一方面,报道的分子印迹聚吡咯-石墨烯电极在存在干扰物(如 DA 和 UA)时对 AA 表现出更好的响应和选择性。

2.1.6. AuNPs@covalent organic frameworks (COFs) with MIPs for AA detection
2.1.6. AuNPs@共价有机框架(COFs)与 MIPs 用于 AA 检测

Covalent organic frameworks (COFs) are new porous crystalline materials with adjustable pore sizes and structures, high surface areas, remarkable chemical stability, easy-to-realize functionalization, and attractive morphologies [6]. Unfortunately, due to the poor conductivity of COFs, their direct applications in electrochemical sensing are still limited, and only a few reports have been published thus far [71]. To solve this problem, AuNPs (AuNPs) were introduced to prepare composite materials for the modification of electrodes due to their high electrical conductivity, good catalytic activity, high chemical stability, and easy surface modification, which are very important parameters for applications in the sensing and biosensing fields.
共价有机框架(COFs)是一种新型多孔晶体材料,具有可调的孔径和结构、高表面积、显著的化学稳定性、易于实现的功能化和吸引人的形态[6]。不幸的是,由于 COFs 的导电性差,它们在电化学传感中的直接应用仍然有限,目前仅有少数报告发表[71]。为了解决这个问题,引入了金纳米颗粒(AuNPs)来制备复合材料,以改性电极,因为它们具有高电导率、良好的催化活性、高化学稳定性和易于表面改性,这些都是在传感和生物传感领域应用的重要参数。
For example, Chen and colleagues developed an electrochemical sensor by electropolymerization of o o oo-phenylenediamine (O-PD) in the presence of AA as a template molecule on the surface of a glassy carbon electrode (GCE) modified by AuNPs@covalent organic framework (COF) microspheres (Fig. 5). By chemical reduction, polyvinylpyrrolidone (PVP)-coated AuNPs were prepared, and an aminaldehyde condensation reaction of 1,3,5-tri(p-formyl phenyl)benzene (TFPB) and N-boc-1,4-phenylene diamine (NBPDA) took place to form AuNPs@COFTFPB-NBPDA microspheres. The high specific surface area of the porous spherical structure of AuNPs@COFTFPB-NBPDA and the catalytic activity of PVP-coated AuNPs enhance the mass transfer. The electrochemical sensors based on AuNPs@COFTFPB-NBPDA/GCE and nMIPs/AuNPs@COFTFPB-NBPDA/GCE have detection limits of 1.69 and 2.57 μ mol L 1 2.57 μ mol L 1 2.57 mumolL^(-1)2.57 \mu \mathrm{~mol} \mathrm{~L}^{-1} and linear ranges of 5.07 to 60 mmol L 1 60 mmol L 1 60mmolL^(-1)60 \mathrm{mmol} \mathrm{L}^{-1} and 7.81 to 60 mmol L 1 60 mmol L 1 60mmolL^(-1)60 \mathrm{mmol} \mathrm{L}^{-1}, respectively. The nMIP/AuNPs@COFTFPB-NBPDA sensor exhibits satisfactory stability, selectivity, and reproducibility for AA detection[72].
例如,陈及其同事通过在金纳米颗粒@共价有机框架(COF)微球修饰的玻碳电极(GCE)表面上以 AA 作为模板分子对 o o oo -苯二胺(O-PD)进行电聚合,开发了一种电化学传感器(图 5)。通过化学还原,制备了聚乙烯吡咯烷酮(PVP)包覆的金纳米颗粒,并发生了 1,3,5-三(对甲醛苯基)苯(TFPB)与 N-boc-1,4-苯二胺(NBPDA)的亚胺缩合反应,形成了金纳米颗粒@COFTFPB-NBPDA 微球。金纳米颗粒@COFTFPB-NBPDA 的多孔球形结构的高比表面积和 PVP 包覆金纳米颗粒的催化活性增强了质量传递。基于金纳米颗粒@COFTFPB-NBPDA/GCE 和 nMIPs/金纳米颗粒@COFTFPB-NBPDA/GCE 的电化学传感器的检测限分别为 1.69 和 2.57 μ mol L 1 2.57 μ mol L 1 2.57 mumolL^(-1)2.57 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,线性范围为 5.07 到 60 mmol L 1 60 mmol L 1 60mmolL^(-1)60 \mathrm{mmol} \mathrm{L}^{-1} 和 7.81 到 60 mmol L 1 60 mmol L 1 60mmolL^(-1)60 \mathrm{mmol} \mathrm{L}^{-1} 。nMIP/金纳米颗粒@COFTFPB-NBPDA 传感器在 AA 检测中表现出令人满意的稳定性、选择性和重现性[72]。

2.2. Molecularly imprinted polymer-based electrochemical sensor for detection of dopamine
2.2. 基于分子印迹聚合物的电化学传感器用于多巴胺的检测

2.2.1. Graphene-modified electrode for DA electrochemical sensors
2.2.1. 石墨烯改性电极用于多巴胺电化学传感器

Graphene is a two-dimensional, single-layered sp 2 sp 2 sp^(2)\mathrm{sp}^{2}-hybridized carbon atomic sheet tightly packed in a hexagonal lattice structure [66]. Graphene derivatives such as graphene oxide (GO) are layered and oxygenated graphene sheets with a 3 : 1 3 : 1 3:13: 1 carbon-to-oxygen ratio on the surface that contain the oxygen functional groups carboxyl, alcohols, and epoxides. Following reduction, GO is transformed into rGO and utilized for the fabrication of electrochemical sensors because of several advantages, including high stability, low noise, large specific surface area, excellent thermal and electrical conductivity, and electrocatalytic effects. To prevent variation in the distance of imprinted cavities from the sensor surface, researchers are currently concentrating on producing ultrathin and homogeneous polymeric films on the surface of graphene, which results in good signal quality of recognition sites of MIP layers [35,73].
石墨烯是一种二维、单层的 sp 2 sp 2 sp^(2)\mathrm{sp}^{2} -杂化碳原子薄片,紧密排列在六角晶格结构中[66]。石墨烯衍生物如氧化石墨烯(GO)是层状和氧化的石墨烯薄片,表面具有 3 : 1 3 : 1 3:13: 1 的碳氧比,包含羧基、醇和环氧等氧功能团。经过还原后,GO 转变为 rGO,并因其多种优点而被用于电化学传感器的制造,包括高稳定性、低噪声、大比表面积、优良的热导电性和电催化效应。为了防止印刷腔体与传感器表面之间距离的变化,研究人员目前正集中于在石墨烯表面生产超薄和均匀的聚合物薄膜,从而提高 MIP 层识别位点的信号质量[35,73]。
Liu and colleagues developed a graphene-modified molecular
刘和同事们开发了一种石墨烯改性的分子

imprinting electrochemical sensor for the detection of DA. MIPs and graphene combine to provide improved sensitivity, selectivity, a low limit of detection, good stability, and reusability in electrochemical sensor development. The imprinted sensor’s current response, obtained under the optimized experimental conditions, was linear to the concentration within the range of 0.1 10 μ mol L 1 0.1 10 μ mol L 1 0.1-10 mumolL^(-1)0.1-10 \mu \mathrm{~mol} \mathrm{~L}^{-1} and with a limit of detection of 0.033 μ mol L 1 0.033 μ mol L 1 0.033 mumolL^(-1)0.033 \mu \mathrm{~mol} \mathrm{~L}^{-1}. DA in human urine was successfully detected using the proposed sensor [74]. Another study employing a graphene sheet/Congo red-molecular imprinted polymer (GSCR-MIP) for DA electroanalysis was reported by Mao et al. [75]. At the Congo red functionalized graphene surface (GSCR), methacrylic acid (MAA), azodiisobutyronitrile (AIBN), ethylene glycol dimethacrylate (EGDMA), and DA were polymerized. Selective detection of DA under experimental conditions was reported with a lower limit of detection of 10 μ mol L 1 10 μ mol L 1 10 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1} and a linear concentration range of 10 μ mol L 1 830 μ mol L 1 10 μ mol L 1 830 μ mol L 1 10 mumolL^(-1)-830 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1}-830 \mu \mathrm{~mol} \mathrm{~L}^{-1}. They stated that excellent repeatability was also demonstrated by a DA electrochemical sensor based on GSCR-MIP composites, with a relative standard deviation (RSD) of approximately 2.50 % 2.50 % 2.50%2.50 \% for 30 consecutive analyses of 20 M DA.
用于检测 DA 的印刷电化学传感器。MIPs 和石墨烯结合提供了更好的灵敏度、选择性、低检测限、良好的稳定性和在电化学传感器开发中的可重复使用性。在优化实验条件下获得的印刷传感器的电流响应与浓度在 0.1 10 μ mol L 1 0.1 10 μ mol L 1 0.1-10 mumolL^(-1)0.1-10 \mu \mathrm{~mol} \mathrm{~L}^{-1} 范围内呈线性关系,检测限为 0.033 μ mol L 1 0.033 μ mol L 1 0.033 mumolL^(-1)0.033 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。使用所提出的传感器成功检测到人尿中的 DA [74]。Mao 等人报道了另一项使用石墨烯薄膜/刚果红分子印刷聚合物(GSCR-MIP)进行 DA 电分析的研究 [75]。在刚果红功能化石墨烯表面(GSCR)上,聚合了甲基丙烯酸(MAA)、偶氮二异丁腈(AIBN)、乙二醇二甲基丙烯酸酯(EGDMA)和 DA。在实验条件下报告了对 DA 的选择性检测,检测限为 10 μ mol L 1 10 μ mol L 1 10 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,线性浓度范围为 10 μ mol L 1 830 μ mol L 1 10 μ mol L 1 830 μ mol L 1 10 mumolL^(-1)-830 mumolL^(-1)10 \mu \mathrm{~mol} \mathrm{~L}^{-1}-830 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。 他们表示,基于 GSCR-MIP 复合材料的 DA 电化学传感器也展示了优异的重复性,对于 20 M DA 的 30 次连续分析,相对标准偏差(RSD)约为 2.50 % 2.50 % 2.50%2.50 \%
A molecularly imprinted electrochemical sensor based on 5-amino 8hydroxy quinoline (AHQ) electrodeposited on a reduced graphene oxide (rGO)-modified glassy carbon (GC) electrode was fabricated for the selective determination of DA [76]. rGO with a large specific surface area and good electrical conductivity was introduced to construct a sensitive imprinting platform. The molecularly imprinted polymer film was prepared through a simple electropolymerization method using DA as the template molecule and 5-amino 8-hydroxy quinoline (AHQ) as the functional monomer. Due to the presence of an imprinted site created by a hydrogen bonding interaction between DA and the poly (AHQ) membrane, the electrode modified by molecularly imprinted polymer (MIP) exhibited a high affinity towards DA. The sensor shows great analytical performance in the concentration range of 1 × 10 7 molL 1 1 × 10 7 molL 1 1xx10^(-7)molL^(-1)1 \times 10^{-7} \mathrm{molL}^{-1} to 14 × 10 7 molL 1 14 × 10 7 molL 1 14 xx10^(-7)molL-114 \times 10^{-7} \mathrm{molL}-1, and the detection limit is as low as 32.7 nmolL 1 1 ^(-1){ }^{-1}. Even with high concentrations of potential physiological interferents, the imprintintechnique demonstrated remarkable selectivity for DA detection. Additionally, the created electrode was effectively used to detect DAin humanblood plasma samples, demonstrating the sensor’s efficacy for sensitive detecti of DA from actual samples
基于电沉积在还原氧化石墨烯(rGO)修饰的玻璃碳(GC)电极上的 5-氨基-8-羟基喹啉(AHQ)分子印迹电化学传感器被制造用于选择性测定多巴胺(DA)[76]。引入具有大比表面积和良好电导率的 rGO 以构建灵敏的印迹平台。分子印迹聚合物薄膜通过简单的电聚合方法制备,使用 DA 作为模板分子,5-氨基-8-羟基喹啉(AHQ)作为功能单体。由于 DA 与聚(AHQ)膜之间通过氢键相互作用形成的印迹位点的存在,经过分子印迹聚合物(MIP)修饰的电极对 DA 表现出高亲和力。该传感器在浓度范围 1 × 10 7 molL 1 1 × 10 7 molL 1 1xx10^(-7)molL^(-1)1 \times 10^{-7} \mathrm{molL}^{-1} 14 × 10 7 molL 1 14 × 10 7 molL 1 14 xx10^(-7)molL-114 \times 10^{-7} \mathrm{molL}-1 内显示出良好的分析性能,检测限低至 32.7 nmolL 1 1 ^(-1){ }^{-1} 。即使在高浓度潜在生理干扰物的情况下,印迹技术在 DA 检测中表现出显著的选择性。此外,所创建的电极有效地用于检测人血浆样本中的 DA,证明了传感器在实际样本中对 DA 的敏感检测能力

2.2.2. AuNP/gr/OPPy-MIP/GCE-modified electrode for DA electrochemical sensors
2.2.2. AuNP/gr/OPPy-MIP/GCE 改性电极用于 DA 电化学传感器

Due to its high conductivity, ease of fabrication, proper redox properties, good biocompatibility and good stability, polypyrrole (PPy) is a significant conductive polymer with a conjugated structure that is frequently used in electrochemical preparation [77,78]. Electrochemical oxidation of polypyrrole yields overoxidized polypyrrole (OPPy). Overoxidation of polypyrrole ( PPy ) results in the formation of electronegative groups ( COOH , C = O ) ( COOH , C = O ) (COOH,C=O)(\mathrm{COOH}, \mathrm{C}=\mathrm{O}) on the dorsal skeleton of PPy. These groups can repel anionic molecules such as AA and attract the electropositive groups of DA [18]. However, overoxidation of PPy causes it to become electrically nonconductive, making it unsuitable for the creation of electrochemical sensors. To overcome this problem, nanomaterials such as graphene and AuNPs have been incorporated to improve the electronic conductivity and novel catalytic activity of molecularly imprinted electrochemical sensors [79].
由于其高导电性、易于制造、适当的氧化还原特性、良好的生物相容性和良好的稳定性,聚吡咯(PPy)是一种重要的导电聚合物,具有共轭结构,常用于电化学制备[77,78]。聚吡咯的电化学氧化产生过氧化聚吡咯(OPPy)。聚吡咯的过氧化导致在 PPy 的背部骨架上形成电负性基团 ( COOH , C = O ) ( COOH , C = O ) (COOH,C=O)(\mathrm{COOH}, \mathrm{C}=\mathrm{O}) 。这些基团可以排斥阴离子分子如 AA,并吸引 DA 的电正性基团[18]。然而,PPy 的过氧化使其变得电绝缘,不适合用于电化学传感器的制造。为了解决这个问题,纳米材料如石墨烯和金纳米颗粒(AuNPs)被引入以提高分子印迹电化学传感器的电子导电性和新颖的催化活性[79]。
For instance, Phuc and colleagues developed a molecularly imprinted electrochemical sensor (MIES) for the detection of DA by combining the unique properties of graphene films with the excellent cation selective properties of molecularly imprinted (MIP) overoxidized polypyrrole (OPPy) and electrochemically deposited AuNPs (AuNPs). For the previously stated reason, the prepared electrode demonstrated a good recognition capacity for the template molecule (DA) in the presence of other structurally similar molecules (AA, UA). The electrocatalytic oxidation current showed a linear dependence on DA concentrations, ranging from 0.5 to 8 μ mol L 1 8 μ mol L 1 8mumolL^(-1)8 \mu \mathrm{~mol} \mathrm{~L}^{-1}. The detection limit was reported to be 0.01 mol L 1 ( S / N = 3 ) 0.01 mol L 1 ( S / N = 3 ) 0.01molL^(-1)(S//N=3)0.01 \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3) [80].
例如,Phuc 及其同事开发了一种分子印迹电化学传感器(MIES),通过将石墨烯薄膜的独特性质与分子印迹(MIP)过氧化聚吡咯(OPPy)和电化学沉积的金纳米颗粒(AuNPs)的优良阳离子选择性相结合,用于检测多巴胺(DA)。出于上述原因,所制备的电极在存在其他结构相似分子(AA,UA)的情况下,对模板分子(DA)表现出良好的识别能力。电催化氧化电流与 DA 浓度呈线性关系,范围从 0.5 到 8 μ mol L 1 8 μ mol L 1 8mumolL^(-1)8 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。检测限被报告为 0.01 mol L 1 ( S / N = 3 ) 0.01 mol L 1 ( S / N = 3 ) 0.01molL^(-1)(S//N=3)0.01 \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3) [80]。

2.2.3. MoSe 2 / MoSe 2 / MoSe_(2)//\mathrm{MoSe}_{2} / graphene composite-modified electrode for D A D A DAD A electrochemical sensors
2.2.3. MoSe 2 / MoSe 2 / MoSe_(2)//\mathrm{MoSe}_{2} / 石墨烯复合改性电极用于 D A D A DAD A 电化学传感器

Because of their distinctive two-dimensional layered structures and exceptional electrochemical performance, transition metal dichalcogenides (TMDs), particularly molybdenum diselenide ( MoSe 2 ) MoSe 2 (MoSe_(2))\left(\mathrm{MoSe}_{2}\right), have attracted attention for use in optoelectronic applications. Although MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} has been investigated as an important material for many applications, its low electrical conductivity and sluggish rate of charge transfer limit electrochemical activity [81]. This has an impact on the electrochemical performance of the developed electrochemical sensors. To overcome such issues, hybridization of MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} with highly conductive carbon supportive materials or substitution/doping of heterogeneous atoms usually enhances the electronic conductivity and electrocatalytic activity of metal chalcogenides [82]. For example, using graphene, MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2}, and conductive polymers in nanocomposites is essential to prepare electrodes with better performance [81,83].
由于其独特的二维层状结构和卓越的电化学性能,过渡金属二硫化物(TMDs),特别是二硒化钼 ( MoSe 2 ) MoSe 2 (MoSe_(2))\left(\mathrm{MoSe}_{2}\right) ,在光电应用中引起了关注。尽管 MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} 已被研究作为许多应用的重要材料,但其低电导率和缓慢的电荷转移速率限制了电化学活性[81]。这对开发的电化学传感器的电化学性能产生了影响。为了解决这些问题, MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} 与高导电碳支撑材料的杂化或异质原子的替代/掺杂通常会增强金属硫化物的电子导电性和电催化活性[82]。例如,在纳米复合材料中使用石墨烯 MoSe 2 MoSe 2 MoSe_(2)\mathrm{MoSe}_{2} 和导电聚合物对于制备性能更好的电极至关重要[81,83]。
Zang et al. synthesized a few layers of sulfur-doped MoSe 2 ( S MoSe 2 MoSe 2 S MoSe 2 MoSe_(2)((S)-MoSe_(2):}\mathrm{MoSe}_{2}\left(\mathrm{~S}-\mathrm{MoSe}_{2}\right. ) with S,N-codoped graphene (NSG) using a novel hydrothermal method. This resulted in an S MoSe 2 / NSG S MoSe 2 / NSG S-MoSe_(2)//NSG\mathrm{S}-\mathrm{MoSe}_{2} / \mathrm{NSG} composite, which together improved the specific surface area, conductivity, and catalytic activity (Fig. 6). The high sensitivity and selectivity recognition of DA in the S-MoSe 2 2 _(2){ }_{2} / NSG/Au/MIP biosensor is made possible by the improved conductivity of the nanoparticles and the unique recognition capacity of the MIP. According to this work, S-MoSe 2 /NSG/Au/MIPs exhibit a low detection
Zang 等人使用一种新颖的水热法合成了几层掺硫的 MoSe 2 ( S MoSe 2 MoSe 2 S MoSe 2 MoSe_(2)((S)-MoSe_(2):}\mathrm{MoSe}_{2}\left(\mathrm{~S}-\mathrm{MoSe}_{2}\right. 和 S,N 共掺杂的石墨烯 (NSG)。这导致了一个 S MoSe 2 / NSG S MoSe 2 / NSG S-MoSe_(2)//NSG\mathrm{S}-\mathrm{MoSe}_{2} / \mathrm{NSG} 复合材料,整体上提高了比表面积、导电性和催化活性 (图 6)。在 S-MoSe 2 2 _(2){ }_{2} / NSG/Au/MIP 生物传感器中,DA 的高灵敏度和选择性识别得益于纳米颗粒的导电性提高和 MIP 的独特识别能力。根据这项工作,S-MoSe 2 /NSG/Au/MIPs 显示出低检测

limit ( 0.02 μ mol L 1 ) 0.02 μ mol L 1 (0.02 mu(mol)L^(-1))\left(0.02 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right), a wide linear range ( 0.05 100 μ mol L 1 0.05 100 μ mol L 1 (0.05-100 mu(mol)L^(-1):}\left(0.05-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right., 100 1000 μ mol L 1 100 1000 μ mol L 1 100-1000 mumolL^(-1)100-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1} ), good reproducibility (95.3%), stability (97.2%), and an acceptable recovery rate with RSD less than 5%. The sensors were successfully tested in real blood samples[84].
限制 ( 0.02 μ mol L 1 ) 0.02 μ mol L 1 (0.02 mu(mol)L^(-1))\left(0.02 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right) ,宽线性范围 ( 0.05 100 μ mol L 1 0.05 100 μ mol L 1 (0.05-100 mu(mol)L^(-1):}\left(0.05-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right. 100 1000 μ mol L 1 100 1000 μ mol L 1 100-1000 mumolL^(-1)100-1000 \mu \mathrm{~mol} \mathrm{~L}^{-1} ),良好的重现性(95.3%),稳定性(97.2%),以及可接受的回收率,RSD 小于 5%。传感器在真实血样中成功测试[84]。

2.2.4. GO/SiO 2 2 _(2)-{ }_{2}- MIP composite-modified electrode for DA electrochemical sensors
2.2.4. GO/SiO 2 2 _(2)-{ }_{2}- MIP 复合改性电极用于 DA 电化学传感器

Interestingly, porous and open structures of silicon dioxide ( SiO 2 ) SiO 2 (SiO_(2))\left(\mathrm{SiO}_{2}\right) nanospheres have been reported to enhance analyte detection sensitivity by enabling MIP to be covalently coupled and thermally polymerized to their surfaces. In contrast to conventional MIPs, SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}-based SMIPs decrease nonspecific adsorption and expose a substantial portion of the molecularly imprinted material surface [85]. SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} can be used directly in electrochemistry, but its low charge transfer efficiency makes other materials necessary for electron transfer [49]. Therefore, GO, with hydrophilicity, unique electrical properties, and a large area, should be an excellent support material for preparing surface MIP composites to enhance the charge transfer efficiency of SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}.
有趣的是,二氧化硅 ( SiO 2 ) SiO 2 (SiO_(2))\left(\mathrm{SiO}_{2}\right) 纳米球的多孔和开放结构已被报道能够通过使 MIP 共价耦合并热聚合到其表面来增强分析物检测灵敏度。与传统的 MIP 相比, SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} -基 SMIP 减少了非特异性吸附,并暴露了分子印迹材料表面的相当大一部分[85]。 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} 可以直接用于电化学,但其低电荷转移效率使得其他材料在电子转移中是必要的[49]。因此,具有亲水性、独特电气特性和大面积的 GO 应该是制备表面 MIP 复合材料以增强 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} 的电荷转移效率的优秀支撑材料。
For example, Zeng et al. [86] developed a molecularly imprinted polymer (GO/SiO 2 2 _(2){ }_{2}-MIP) that is both selective and sensitive through the use of the sol-gel technique for the electrochemical sensing of DA. To polymerize DA via vinyl group bonding in the presence of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), they employed a SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}-coated GO support. The preparation scheme of the MIP
例如,Zeng 等人 [86] 开发了一种分子印迹聚合物 (GO/SiO 2 2 _(2){ }_{2} -MIP),通过使用溶胶-凝胶技术实现了对多巴胺 (DA) 的选择性和灵敏的电化学传感。为了在存在甲基丙烯酸 (MAA) 和乙二醇二甲基丙烯酸酯 (EGDMA) 的情况下通过乙烯基基团键合聚合 DA,他们采用了 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} -涂层 GO 支持。MIP 的制备方案

Fig. 6. (A) Schematic illustration of the formation of S-MoSe 2 / NSG / Au / MIP 2 / NSG / Au / MIP _(2)//NSG//Au//MIP{ }_{2} / \mathrm{NSG} / \mathrm{Au} / \mathrm{MIP} nanocomposites and the application of-prepared S-MoSe 2 /NSG/Au/MIP in the detection of DA. (B) DPV curves of the S MoSe 2 / NSG / Au / MIP / GCE S MoSe 2 / NSG / Au / MIP / GCE S-MoSe_(2)//NSG//Au//MIP//GCE\mathrm{S}-\mathrm{MoSe}_{2} / \mathrm{NSG} / \mathrm{Au} / \mathrm{MIP} / \mathrm{GCE} electrode in 0.1 M PBS ( pH = 7.0 pH = 7.0 pH=7.0\mathrm{pH}=7.0 ) containing different concentrations of DA solution; (B) Plot of the peak current against the concentration of DA. Error bar: n = 3 n = 3 n=3n=3 (reproduced with permission from[84]).
图 6. (A) S-MoSe 2 / NSG / Au / MIP 2 / NSG / Au / MIP _(2)//NSG//Au//MIP{ }_{2} / \mathrm{NSG} / \mathrm{Au} / \mathrm{MIP} 纳米复合材料形成的示意图以及预制的 S-MoSe 2 /NSG/Au/MIP 在 DA 检测中的应用。 (B) 在含有不同浓度 DA 溶液的 0.1 M PBS ( pH = 7.0 pH = 7.0 pH=7.0\mathrm{pH}=7.0 ) 中 S MoSe 2 / NSG / Au / MIP / GCE S MoSe 2 / NSG / Au / MIP / GCE S-MoSe_(2)//NSG//Au//MIP//GCE\mathrm{S}-\mathrm{MoSe}_{2} / \mathrm{NSG} / \mathrm{Au} / \mathrm{MIP} / \mathrm{GCE} 电极的 DPV 曲线;(B) 峰电流与 DA 浓度的关系图。误差条: n = 3 n = 3 n=3n=3 (经[84]许可转载)。

A


(MAPS-GO/SiO 2 2 _(2){ }_{2} )


Fig. 7. A) The preparation scheme of the GO / SiO 2 MIP GO / SiO 2 MIP GO//SiO_(2)-MIP\mathrm{GO} / \mathrm{SiO}_{2}-\mathrm{MIP} composite; B) Chronoamperometry current response curve at GO / SiO 2 MIPs GO / SiO 2 MIPs GO//SiO_(2)-MIPs^(-)\mathrm{GO} / \mathrm{SiO}_{2}-\mathrm{MIPs}^{-}with the addition of increasing concentrations of DA in PBS; C) Calibration curve for DA obtained by i-t curve (reproduced with permission from Elsevier publications from ref. [86]
图 7。A) GO / SiO 2 MIP GO / SiO 2 MIP GO//SiO_(2)-MIP\mathrm{GO} / \mathrm{SiO}_{2}-\mathrm{MIP} 复合材料的制备方案;B) 在 GO / SiO 2 MIPs GO / SiO 2 MIPs GO//SiO_(2)-MIPs^(-)\mathrm{GO} / \mathrm{SiO}_{2}-\mathrm{MIPs}^{-} 下,随着 DA 在 PBS 中浓度增加的电流响应曲线的计时安培法;C) 通过 i-t 曲线获得的 DA 的校准曲线(经 Elsevier 出版物的许可转载,参考文献[86])

composite sensor is shown in Fig. 7. A sensitive and selective MIP electrochemical sensor was built using the prepared SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} /GO-MIPs, demonstrating a current response that is 3.2 times greater than that of the sensor without GO. The GO/ SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}-MIP sensor demonstrated a broad window of opportunity for DA detection with a limit of detection of 0.03 μ mol L 1 ( S / N = 3 ) μ mol L 1 ( S / N = 3 ) mumolL^(-1)(S//N=3)\mu \mathrm{mol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}=3) and a concentration range of 0.05 160 μ mol L 1 0.05 160 μ mol L 1 0.05-160 mumolL^(-1)0.05-160 \mu \mathrm{~mol} \mathrm{~L}^{-1}. This sensing technique was used to detect DA in human urine samples and demonstrated a high selectivity towards DA in comparison to norepinephrine and adrenaline molecules.
复合传感器如图 7 所示。使用制备的 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} /GO-MIPs 构建了一种灵敏且选择性的 MIP 电化学传感器,显示出其电流响应是没有 GO 的传感器的 3.2 倍。GO/ SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} -MIP 传感器在 DA 检测方面展示了广泛的机会窗口,检测限为 0.03 μ mol L 1 ( S / N = 3 ) μ mol L 1 ( S / N = 3 ) mumolL^(-1)(S//N=3)\mu \mathrm{mol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}=3) ,浓度范围为 0.05 160 μ mol L 1 0.05 160 μ mol L 1 0.05-160 mumolL^(-1)0.05-160 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。该传感技术用于检测人尿样本,并显示出对 DA 的高选择性,相较于去甲肾上腺素和肾上腺素分子。

2.2.5. MWCNT/graphene-MIP composite-modified electrode for DA electrochemical sensors.
2.2.5. MWCNT/石墨烯-MIP 复合改性电极用于 DA 电化学传感器。

Using polypyrrole (PPy) as a molecularly imprinted polymer (MIP) and multiwalled carbon nanotube-spaced graphene aerogels (MWCNTs/ GAs) as a sensing substrate, Ma and colleagues developed a novel molecularly imprinted electrochemical sensor for the detection of DA. The integration of MWCNTs improved the composite aerogel’s electrical conductivity and electrochemical performance while also increasing the effective surface area of GA. The benefits of MWCNTs/GAs demonstrated a marked increase in DA electrocatalytic activity. The prepared MIP/MWCNT/GA electrode detected DA in a wide linear range of 0.005 20.0 μ mol L 1 0.005 20.0 μ mol L 1 0.005-20.0 mumolL^(-1)0.005-20.0 \mu \mathrm{~mol} \mathrm{~L}^{-1} and a low limit of detection ( 67 nmol L 1 ( S / N = 67 nmol L 1 ( S / N = 67nmolL^(-1)(S//N=67 \mathrm{nmol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}= 3)). Furthermore, the sensor demonstrated good stability and selectivity. The developed sensor was effectively utilized to identify DA in serum,
使用聚吡咯(PPy)作为分子印迹聚合物(MIP),多壁碳纳米管间隔石墨烯气凝胶(MWCNTs/GAs)作为传感基底,Ma 及其同事开发了一种新型分子印迹电化学传感器用于检测多巴胺(DA)。MWCNTs 的整合提高了复合气凝胶的电导率和电化学性能,同时增加了 GA 的有效表面积。MWCNTs/GAs 的优势显著提高了 DA 的电催化活性。所制备的 MIP/MWCNT/GA 电极在 0.005 20.0 μ mol L 1 0.005 20.0 μ mol L 1 0.005-20.0 mumolL^(-1)0.005-20.0 \mu \mathrm{~mol} \mathrm{~L}^{-1} 的宽线性范围内检测到 DA,并具有低检测限( 67 nmol L 1 ( S / N = 67 nmol L 1 ( S / N = 67nmolL^(-1)(S//N=67 \mathrm{nmol} \mathrm{L}^{-1}(\mathrm{~S} / \mathrm{N}= 3))。此外,该传感器表现出良好的稳定性和选择性。开发的传感器有效用于识别血清中的 DA,

indicating that the prepared sensor may have the potential for identifying DA in complex real samples [87].
表明所准备的传感器可能具有在复杂真实样本中识别 DA 的潜力[87]。
Bu et al. synthesized a molecularly imprinted polymer by electropolymerizing polypyrrole in the presence of DA on a glassy carbon electrode (GCE) modified with nitrogen-doped graphene (NPG) and zirconia and a carbon core-shell structure ( ZrO 2 @ C ) . ZrO 2 @ C ZrO 2 @ C . ZrO 2 @ C {:ZrO_(2)@C).ZrO_(2)@C\left.\mathrm{ZrO}_{2} @ \mathrm{C}\right) . \mathrm{ZrO}_{2} @ \mathrm{C} was synthesized by annealing a zirconium-based metal-organic framework (UiO-66), while NPG was prepared by sacrificial-template-assisted pyrolysis. A straightforward overoxidation procedure was used to elute the DA in alkaline conditions. The synthesized MIP-based electrochemical sensor with particular binding sites was utilized to selectively recognize DA using DPV. It was reported that the sensor detected DA in the linear range of 0.005 100 μ mol L 1 0.005 100 μ mol L 1 0.005-100mumolL^(-1)0.005-100 ~ \mu \mathrm{~mol} \mathrm{~L}^{-1} with a low detection limit of 0.33 nmol L 1 0.33 nmol L 1 0.33nmolL^(-1)0.33 \mathrm{nmol} \mathrm{L}^{-1} (S/N = 3). This sensor exhibited suitable selectivity, stability, and reproducibility, which suggested that it could be a promising candidate for rapid diagnostic methods in DA investigations [88]. In a study conducted by Qian et al., polypyrrole (PPy)-decorated carbon nanotubes (CNTs) were fabricated for in vivo detection of DA. According to reports, the detection of DA has a linear range of 0.00005-5.0 μ mol L 1 μ mol L 1 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1} and a limit of detection of 0.01 nmol L 1 0.01 nmol L 1 0.01nmolL^(-1)0.01 \mathrm{nmol} \mathrm{L}^{-1}. This could be because there are many cavities available for binding DA through π π π π pi-pi\pi-\pi stacking between aromatic rings and hydrogen bonds between DA’s amino groups and oxygen-containing groups of the novel PPy [89].
Bu 等人通过在改性氮掺杂石墨烯(NPG)和氧化锆的玻璃碳电极(GCE)上电聚合聚吡咯的方式合成了分子印迹聚合物。 ZrO 2 @ C ) . ZrO 2 @ C ZrO 2 @ C . ZrO 2 @ C {:ZrO_(2)@C).ZrO_(2)@C\left.\mathrm{ZrO}_{2} @ \mathrm{C}\right) . \mathrm{ZrO}_{2} @ \mathrm{C} 是通过退火锆基金属有机框架(UiO-66)合成的,而 NPG 是通过牺牲模板辅助热解制备的。采用简单的过氧化程序在碱性条件下洗脱 DA。合成的基于 MIP 的电化学传感器具有特定的结合位点,用于选择性识别 DA,采用 DPV 进行检测。据报道,该传感器在 0.005 100 μ mol L 1 0.005 100 μ mol L 1 0.005-100mumolL^(-1)0.005-100 ~ \mu \mathrm{~mol} \mathrm{~L}^{-1} 的线性范围内检测 DA,检测限为 0.33 nmol L 1 0.33 nmol L 1 0.33nmolL^(-1)0.33 \mathrm{nmol} \mathrm{L}^{-1} (S/N = 3)。该传感器表现出良好的选择性、稳定性和重现性,表明它可能是 DA 研究中快速诊断方法的有前景的候选者[88]。在 Qian 等人进行的一项研究中,制造了装饰有聚吡咯(PPy)的碳纳米管(CNTs)用于体内检测 DA。据报道,DA 的检测线性范围为 0.00005-5.0 μ mol L 1 μ mol L 1 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1} ,检测限为 0.01 nmol L 1 0.01 nmol L 1 0.01nmolL^(-1)0.01 \mathrm{nmol} \mathrm{L}^{-1} 。 这可能是因为有许多空位可供通过 π π π π pi-pi\pi-\pi 堆叠在芳香环之间以及 DA 的氨基与新型 PPy 的含氧基团之间的氢键结合 DA [89]。
Wang and his colleagues synthesized molecularly imprinted polymer
王和他的同事合成了分子印迹聚合物

membranes of graphene oxide and polypyrrole modified on the surface of a micropipette tip carbon paste electrode. The merit of the method is evaluated under optimized conditions via differential pulse voltammetry. The prepared sensor exhibits remarkable sensitivity towards DA with a linear range of 0.064 200 μ mol L 1 0.064 200 μ mol L 1 0.064-200 mumolL^(-1)0.064-200 \mu \mathrm{~mol} \mathrm{~L}^{-1} and a limit of detection as low as 10 nmol L 1 10 nmol L 1 10nmolL^(-1)10 \mathrm{nmol} \mathrm{L}^{-1}. The proposed method is applied for the determination of DA in urine samples by the standard addition route. The relative recoveries are in the range of 95.2 % 104 % 95.2 % 104 % 95.2%-104%95.2 \%-104 \%. The proposed method has acceptable performance for the determination of DA in real samples with excellent sensitivity and selectivity [90].
氧化石墨烯和聚吡咯膜修饰在微量移液管尖端碳糊电极的表面。该方法的优点在优化条件下通过差分脉冲伏安法进行评估。所制备的传感器对多巴胺(DA)表现出显著的灵敏度,线性范围为 0.064 200 μ mol L 1 0.064 200 μ mol L 1 0.064-200 mumolL^(-1)0.064-200 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,检测限低至 10 nmol L 1 10 nmol L 1 10nmolL^(-1)10 \mathrm{nmol} \mathrm{L}^{-1} 。所提方法通过标准添加法应用于尿液样本中多巴胺的测定。相对回收率在 95.2 % 104 % 95.2 % 104 % 95.2%-104%95.2 \%-104 \% 范围内。所提方法在实际样本中对多巴胺的测定具有可接受的性能,灵敏度和选择性均优异[90]。
Fatma et al. [91] developed a dual-imprinted graphene oxide/carbon black composite polymer using a ‘surface-grafting from’ approach on a screen-printed carbon electrode for the electrochemical sensing of DA and epinephrine. The introduction of carbon black (CB) into the graphene layers of graphene oxide (GO) prevents agglomeration. aGO/CB composite with an acrylic functional group on the graphene was prepared. This acryloylated-graphene oxide/carbon black is used as a monomer and a crosslinker to reduce a loss in molecular recognition of the MIPs with an increase in the quantity of crosslinker and enhance fast electron transfer from the redox center to the electrode. The extra functionalities contributed by the acrylic groups on GO made the inclusion of a crosslinker necessary for MIP preparation, as evident in the cage-like 3D structure of the polymer. Both DA and epinephrine oxidation peak potentials were found to be separated by 200 mV , which enabled their simultaneous analysis in real-world samples without any cross-reactivity, interference, or false positives. The limits of detection realized by the proposed sensor (aGO/CB-OMNiDIP/SPCE), under optimized analytical conditions, were reported to be as low as 0.028 , 0.028 , 0.061 0.028 , 0.061 0.028,0.0610.028,0.061 and 0.029 ng mL 1 0.029 ng mL 1 0.029ngmL^(-1)0.029 \mathrm{ng} \mathrm{mL}^{-1} for DA and 0.017 , 0.018 , 0.019 0.017 , 0.018 , 0.019 0.017,0.018,0.0190.017,0.018,0.019 and 0.020 ng mL 1 0.020 ng mL 1 0.020ngmL^(-1)0.020 \mathrm{ng} \mathrm{mL}^{-1} for epinephrine ( S / N = 3 S / N = 3 S//N=3\mathrm{S} / \mathrm{N}=3 ) ) in aqueous, blood serum, urine, and pharmaceutical samples, respectively.
Fatma et al. [91] 开发了一种双印刷的氧化石墨烯/炭黑复合聚合物,采用“表面接枝法”在屏幕印刷的碳电极上进行多巴胺和肾上腺素的电化学传感。将炭黑(CB)引入氧化石墨烯(GO)的石墨烯层中可以防止聚集。制备了具有丙烯酸功能基团的 aGO/CB 复合材料。这种丙烯酰化的氧化石墨烯/炭黑作为单体和交联剂使用,以减少 MIPs 的分子识别损失,并随着交联剂数量的增加增强从氧化还原中心到电极的快速电子转移。GO 上丙烯酸基团所提供的额外功能使得在 MIP 制备中引入交联剂成为必要,这在聚合物的笼状 3D 结构中得到了体现。发现多巴胺和肾上腺素的氧化峰电位相隔 200 mV,这使得它们在实际样品中能够同时分析,而不会出现交叉反应、干扰或假阳性。 在优化的分析条件下,所提议的传感器(aGO/CB-OMNiDIP/SPCE)实现的检测限被报告为在水、血清、尿液和药物样本中,DA 的检测限低至 0.028, 0.028 , 0.061 0.028 , 0.061 0.028,0.0610.028,0.061 0.029 ng mL 1 0.029 ng mL 1 0.029ngmL^(-1)0.029 \mathrm{ng} \mathrm{mL}^{-1} ,肾上腺素的检测限为 0.017 , 0.018 , 0.019 0.017 , 0.018 , 0.019 0.017,0.018,0.0190.017,0.018,0.019 0.020 ng mL 1 0.020 ng mL 1 0.020ngmL^(-1)0.020 \mathrm{ng} \mathrm{mL}^{-1} S / N = 3 S / N = 3 S//N=3\mathrm{S} / \mathrm{N}=3 )。
Kan et al. fabricated a molecularly imprinted polymer (MIP) film for detecting DA by electropolymerizing pyrrole in the presence of DA on a carboxyl-functionalized multiwalled carbon nanotube (MWNT-COOH)modified glassy carbon electrode (GCE) surface. When compared to MWCNTs, carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs-COOH) exhibit superior dispersion and stability [92]. In this electrode modification, multiwalled carbon nanotubes (MWNTs) are used to increase conductivity, increase electrode surface areas, and facilitate electron transfers. Compared to other structurally similar molecules, the prepared MIP-based sensor displayed an excellent recognition capacity towards DA. Additionally, the DPV peak current was linear to the DA concentration in the range from 0.625 to 100 μ mol 100 μ mol 100 mumol100 \mu \mathrm{~mol} L 1 L 1 L^(-1)\mathrm{L}^{-1}, with a detection limit of 60 nmol L 1 60 nmol L 1 60nmolL^(-1)60 \mathrm{nmol} \mathrm{L}^{-1}. The prepared sensor also showed stability, reproducibility, and regeneration capacity [93].
Kan 等人通过在羧基功能化的多壁碳纳米管(MWNT-COOH)修饰的玻碳电极(GCE)表面上,在 DA 存在的情况下电聚合吡咯,制造了一种用于检测 DA 的分子印迹聚合物(MIP)薄膜。与 MWCNTs 相比,羧基功能化的多壁碳纳米管(MWCNTs-COOH)表现出更优越的分散性和稳定性[92]。在这种电极改性中,多壁碳纳米管(MWNTs)用于提高导电性、增加电极表面积并促进电子转移。与其他结构相似的分子相比,制备的基于 MIP 的传感器对 DA 表现出优异的识别能力。此外,DPV 峰电流与 DA 浓度在 0.625 到 100 μ mol 100 μ mol 100 mumol100 \mu \mathrm{~mol} L 1 L 1 L^(-1)\mathrm{L}^{-1} 的范围内呈线性关系,检测限为 60 nmol L 1 60 nmol L 1 60nmolL^(-1)60 \mathrm{nmol} \mathrm{L}^{-1} 。制备的传感器还显示出稳定性、重现性和再生能力[93]。
Wu et al. fabricated a sensitive and selective sensor using a sulfonated graphene-modified electrode based on a molecularly imprinted electrolyzer of o-phenylenediamine (OPD) for DA determination. Here, the current response was amplified by an Au electrode modified with sulfonated graphene. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the prepared molecular imprints (MIPs). With the prepared sensor, the low detection limit was 0.11 mg L 1 0.11 mg L 1 0.11mgL^(-)10.11 \mathrm{mg} \mathrm{L}^{-} 1, and the linear range of DA was reported to be 0.5 7.0 mg L 1 0.5 7.0 mg L 1 0.5-7.0mgL^(-1)0.5-7.0 \mathrm{mg} \mathrm{L}^{-1}. The prepared sensor was applied to the analysis of DA in human serum samples with satisfactory results. Additionally, it demonstrated consistent reproducibility and was inexpensive to produce [13].
Wu 等人利用基于对苯二胺(OPD)分子印迹电解槽的磺化石墨烯修饰电极制造了一种灵敏且选择性的传感器用于多巴胺(DA)测定。在这里,电流响应通过磺化石墨烯修饰的金电极得到了放大。采用电化学阻抗谱(EIS)和循环伏安法(CV)对制备的分子印迹(MIPs)进行了表征。使用制备的传感器,低检测限为 0.11 mg L 1 0.11 mg L 1 0.11mgL^(-)10.11 \mathrm{mg} \mathrm{L}^{-} 1 ,多巴胺的线性范围报告为 0.5 7.0 mg L 1 0.5 7.0 mg L 1 0.5-7.0mgL^(-1)0.5-7.0 \mathrm{mg} \mathrm{L}^{-1} 。制备的传感器被应用于人血清样本中多巴胺的分析,结果令人满意。此外,它表现出一致的重现性且生产成本低廉[13]。
Yu et al. [94] prepared a core-shell composite of AuNPs (AuNPs) and SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} MIPs (AuNPs@SiO2-MIPs) by the sol-gel technique for the determination of DA. The functional monomer (phenyltrimethoxysilane, or PTMOS), template (DA), and crosslinker (trimethoxysilane, or TMOS) were combined with continuous stirring in the presence of PVP-modified AuNPs to produce the MIPs via the sol-gel technique. After DA molecules were removed from the imprinted membrane using cyclic voltammetry (CV), the imprinted silica network resulting from the interaction of the monomeric PTMOS and the organic DA left behind complementary
Yu et al. [94] 通过溶胶-凝胶技术制备了 AuNPs(AuNPs)和 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} MIPs(AuNPs@SiO2-MIPs)的核壳复合材料,用于 DA 的测定。功能单体(苯基三甲氧基硅烷,或 PTMOS)、模板(DA)和交联剂(三甲氧基硅烷,或 TMOS)在 PVP 修饰的 AuNPs 存在下持续搅拌结合,以通过溶胶-凝胶技术生产 MIPs。在使用循环伏安法(CV)从印刷膜中去除 DA 分子后,由单体 PTMOS 和有机 DA 的相互作用形成的印刷二氧化硅网络留下了互补的。

binding sites. Although it is expected that SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} would reduce the conductivity of the core-shell composite, the conductivity of the AuNP core was augmented. The characterization of AuNPs@SiO2-MIPs was conducted using Fourier transform infrared spectrometry (FT-IR), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) absorbance spectroscopy. The prepared AuNPs@SiO 2 2 _(2){ }_{2}-MIPs sensor not only has a high selectivity for DA but also has a wide linear range over DA concentrations from 48 nmol L 1 48 nmol L 1 48nmolL^(-1)48 \mathrm{nmol} \mathrm{L}^{-1} to 50 nmol L 1 50 nmol L 1 50nmolL^(-1)50 \mathrm{nmol} \mathrm{L}^{-1} with a detection limit of 20 nmol L 1 20 nmol L 1 20nmolL^(-1)20 \mathrm{nmol} \mathrm{L}^{-1}. Furthermore, the novel electrochemical sensor has been effectively applied to the selective detection of DA in real samples, such as human urine samples and DA hydrochloride injections [94]. This demonstrates that more MIPs with a comparable architecture can be developed with the knowledge that the biomolecule imprinted on silica may enhance the composite’s ability to form.
结合位点。尽管预计 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} 会降低核壳复合材料的导电性,但 AuNP 核心的导电性却有所增强。使用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和紫外-可见光吸收光谱法对 AuNPs@SiO2-MIPs 进行了表征。所制备的 AuNPs@SiO 2 2 _(2){ }_{2} -MIPs 传感器不仅对 DA 具有高选择性,而且在 DA 浓度范围从 48 nmol L 1 48 nmol L 1 48nmolL^(-1)48 \mathrm{nmol} \mathrm{L}^{-1} 50 nmol L 1 50 nmol L 1 50nmolL^(-1)50 \mathrm{nmol} \mathrm{L}^{-1} 内具有较宽的线性范围,检测限为 20 nmol L 1 20 nmol L 1 20nmolL^(-1)20 \mathrm{nmol} \mathrm{L}^{-1} 。此外,这种新型电化学传感器已有效应用于人尿样本和 DA 盐酸注射液等真实样本中 DA 的选择性检测[94]。这表明,更多具有可比架构的 MIPs 可以在了解生物分子在二氧化硅上印记可能增强复合材料形成能力的基础上开发。
Prasad et al. developed a sol-gel-derived multiwalled carbon nanotube ceramic electrode modified with molecularly imprinted polymer for ultratrace sensing of DA in various real samples. As illustrated in Fig. 8, this prepared electrode, a multiwalled carbon nanotube ceramic electrode, was modified with an iniferter (benzyl N,Ndiethyldithiocarbamate (BDC)), and photopolymerization was carried out using UV irradiation in the presence of 4-nitrophenyl acrylate (NPA), ethylene glycol dimethyl acrylate (EGDMA), and DA. DA was detected in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples using the MIP multiwalled carbon nanotube-ceramic electrode, which has a reported low limit of detection in the range of 0.143 0.154 ng 0.143 0.154 ng 0.143-0.154ng0.143-0.154 \mathrm{ng} mL 1 mL 1 mL^(-1)\mathrm{mL}^{-1} and a linear range of 0.994 83.942 ng mL 1 0.994 83.942 ng mL 1 0.994-83.942ngmL^(-1)0.994-83.942 \mathrm{ng} \mathrm{mL}^{-1} without any crossreactivity, interferences, or false-positive contributions. Compared to carbon ceramic electrodes, these composite electrodes provide greater stability, electron kinetics, and renewable porous surfaces with larger electroactive areas. Moreover, chrono-coulometry and cyclic voltammetry (stripping mode) studies were carried out to investigate the electrodynamics and kinetics of the electro-oxidation of DA [95].
Prasad 等人开发了一种由溶胶-凝胶法制备的多壁碳纳米管陶瓷电极,该电极用分子印迹聚合物进行了改性,以实现对各种真实样品中 DA 的超微量检测。如图 8 所示,所制备的电极是一种多壁碳纳米管陶瓷电极,采用了引发剂(苄基 N,N-二乙基二硫代氨基甲酸酯(BDC))进行改性,并在 4-硝基苯基丙烯酸酯(NPA)、二乙烯 glycol 二甲基丙烯酸酯(EGDMA)和 DA 的存在下进行紫外光照射聚合。使用 MIP 多壁碳纳米管陶瓷电极在水相、血清、脑脊液和药物样品中检测到 DA,该电极的报告检测限低至 0.143 0.154 ng 0.143 0.154 ng 0.143-0.154ng0.143-0.154 \mathrm{ng} mL 1 mL 1 mL^(-1)\mathrm{mL}^{-1} ,线性范围为 0.994 83.942 ng mL 1 0.994 83.942 ng mL 1 0.994-83.942ngmL^(-1)0.994-83.942 \mathrm{ng} \mathrm{mL}^{-1} ,且没有交叉反应、干扰或假阳性贡献。与碳陶瓷电极相比,这些复合电极提供了更大的稳定性、电子动力学和可再生的多孔表面,具有更大的电活性面积。此外,还进行了计时库仑法和循环伏安法(剥离模式)研究,以探讨 DA 的电氧化的电动动力学和动力学[95]。

2.2.6. DA-imprinted PPy-ta-C/CNF-modified electrode for DA electrochemical sensors
2.2.6. DA 印刷的 PPy-ta-C/CNF 改性电极用于 DA 电化学传感器

Carbon nanofibers (CNFs) are nanoscale filaments, ranging in diameter from 3 to 100 nm , made up of stacked graphene layers oriented in a specific way relative to the fibre axis [96]. They have all of the intrinsic qualities of carbon nanomaterials, including high electrical conductivity, compact structure, light weight, good mechanical qualities, and thermal stability. They also have easy processing and controlled preparation and functionalization [97-99]. It is widely recognized that 1D architectures can lead to enhanced sensing performance by shortening electron transfer pathways and facilitating electrolyte penetration along the longitudinal axis of the nanofiber/ nanowire.
碳纳米纤维(CNFs)是纳米级的细丝,直径范围从 3 到 100 纳米,由以特定方式相对于纤维轴堆叠的石墨烯层组成[96]。它们具有碳纳米材料的所有内在特性,包括高电导率、紧凑结构、轻量、良好的机械性能和热稳定性。它们还具有易于加工和可控的制备与功能化[97-99]。广泛认为,1D 结构可以通过缩短电子转移路径和促进电解质沿纳米纤维/纳米线的纵向轴渗透,从而提高传感性能。
Khadijeh Nekoueian and colleagues [100] fabricated an ultrasensitive sensing platform for the detection of physiologically relevant basal DA levels in a culture medium as a complex biological environment by combining carbon hybrid nanomaterials with molecular imprinting technology (Fig. 9). Using plasma-enhanced chemical vapour deposition (PECVD), carbon nanofibers (CNFs) were grown on tetrahedral amorphous carbon (ta-C) thin films on silicon wafers. Electrochemical coating of DA-imprinted polypyrrole, the molecularly imprinted polymer (MIP), was applied to the ta-C/CNF sensing platforms. The trace levels of DA in phosphate-buffered saline solution (PBS) pH 7.4 (LOD = 5.43 nM = 5.43 nM =5.43nM=5.43 \mathrm{nM} ) and absolute culture media, such as DMEM/F-12 medium (LOD = 39 nM = 39 nM =39nM=39 \mathrm{nM} ), DMEM/F-12 medium supplemented with 2.5% fetal bovine serum and 15 % 15 % 15%15 \% horse serum ( LOD = 53.26 nM LOD = 53.26 nM LOD=53.26nM\mathrm{LOD}=53.26 \mathrm{nM} ), and F -12 K-cell culture medium (LOD = 62.57 nM = 62.57 nM =62.57nM=62.57 \mathrm{nM} ), were detected by the three-dimensional MIP receptors with highly physiologically relevant sensitivity and without any interference from other coexisting biomolecules and biological components. They demonstrated that the current results pave the way for integrating these ultrasensitive electrodes into microelectrode array (MEA) platforms used for human DArgic neuron studies in vitro and enable continuous measurement of the basal DA concentration in real
Khadijeh Nekoueian 和同事们 [100] 制造了一种超灵敏传感平台,用于在复杂生物环境中的培养基中检测生理相关的基础多巴胺(DA)水平,方法是将碳混合纳米材料与分子印迹技术相结合(图 9)。通过等离子体增强化学气相沉积(PECVD),在硅片上的四面体无定形碳(ta-C)薄膜上生长了碳纳米纤维(CNFs)。对印迹多巴胺的聚吡咯(MIP)进行电化学涂层,应用于 ta-C/CNF 传感平台。在磷酸盐缓冲盐水(PBS)pH 7.4 中的多巴胺痕量水平(LOD = 5.43 nM = 5.43 nM =5.43nM=5.43 \mathrm{nM} )和绝对培养基中,例如 DMEM/F-12 培养基(LOD = 39 nM = 39 nM =39nM=39 \mathrm{nM} )、补充了 2.5%胎牛血清和 15 % 15 % 15%15 \% 马血清的 DMEM/F-12 培养基( LOD = 53.26 nM LOD = 53.26 nM LOD=53.26nM\mathrm{LOD}=53.26 \mathrm{nM} )以及 F-12 K 细胞培养基(LOD = 62.57 nM = 62.57 nM =62.57nM=62.57 \mathrm{nM} ),通过三维 MIP 受体以高度生理相关的灵敏度检测到,且没有其他共存生物分子和生物成分的干扰。他们证明了当前的结果为将这些超灵敏电极集成到用于人类多巴胺能神经元体外研究的微电极阵列(MEA)平台铺平了道路,并能够实时连续测量基础多巴胺浓度

Fig. 8. Schematic representation of MIP-modified MWCNT-ceramic electrode fabrication for DA. (reproduced with permission from [95])
图 8. MIP 改性 MWCNT-陶瓷电极制造用于 DA 的示意图。(经[95]许可转载)

Fig. 9. Schematic representation of DA-imprinted PPy-ta-C/CNF fabrication for the detection of DA. (reproduced with permission from [100]).
图 9. DA 印迹 PPy-ta-C/CNF 制造的示意图,用于 DA 的检测。(经[100]许可转载)。

time, for example, in organoid studies. This is because all the fabrication steps of the composite electrode are compatible with standard microsystem technology processes.
时间,例如,在类器官研究中。这是因为复合电极的所有制造步骤都与标准微系统技术过程兼容。

2.3. Molecularly imprinted polymer-based electrochemical sensor for detection of uric acid
2.3. 基于分子印迹聚合物的电化学传感器用于尿酸检测

2.3.1. Graphene-modified electrodes for UA electrochemical sensors
2.3.1. 石墨烯修饰电极用于尿酸电化学传感器

Having a high surface area, good electrical conductivity, and high mechanical strength, graphene is an excellent two-dimensional (2D) carbon material. However, π π π π pi-pi\pi-\pi interactions between layers make graphene hydrophobic, reducing its solubility and causing agglomeration. Reducing graphene oxide (GO) to reduced graphene oxide (rGO) can solve these issues by producing high conductivity, good electrochemical
具有高表面积、良好的电导率和高机械强度,石墨烯是一种优秀的二维(2D)碳材料。然而,层间的 π π π π pi-pi\pi-\pi 相互作用使石墨烯具有疏水性,降低了其溶解度并导致聚集。将氧化石墨烯(GO)还原为还原氧化石墨烯(rGO)可以通过产生高导电性和良好的电化学性能来解决这些问题。

activity, and high electron transfer. When rGO and PEDOT are combined, a superior biosensor platform for UA detection is created. In addition, maintaining the oxygenated groups in rGO at the basal and plane edges allows the formation of bonds with PEDOT [21].
活性和高电子转移。当还原氧化石墨烯(rGO)和聚(3,4-乙烯二氧噻吩)(PEDOT)结合时,形成了一个优越的尿酸(UA)检测生物传感器平台。此外,保持 rGO 在基底和平面边缘的氧化基团可以与 PEDOT 形成键 [21]。
By electropolymerizing polypyrrole onto a composite of electrochemically reduced graphene oxide (ErGO) and poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) modified on a glassy carbon electrode (GCE), a molecularly imprinted electrochemical sensor (MIES) for the rapid detection of UA was developed by Putra et al. [101]. Excellent analytical performance was demonstrated by this fabricated nonenzymatic electrochemical sensor (MIP/ErGO/PEDOT: PSS-modified GCE). Because of its excellent mechanical, thermal, and electrical stability and large surface area, reduced graphene oxide has been used to prepare composites. However, because of its good
通过在电化学还原的氧化石墨烯(ErGO)和改性聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)复合材料上电聚合聚吡咯,在玻碳电极(GCE)上开发了一种用于快速检测尿酸(UA)的分子印迹电化学传感器(MIES),由 Putra 等人提出。该制造的非酶电化学传感器(MIP/ErGO/PEDOT:PSS 改性 GCE)展示了优异的分析性能。由于其优良的机械、热和电稳定性以及较大的表面积,氧化石墨烯被用于制备复合材料。然而,由于其良好的

mechanical properties, high stability of electrochemical performance and electrical conductivity, and excellent dispersibility in a wide range of solvents, environmental, physical and chemical stability, mass production, film-forming ability, miscibility, cost effectiveness, and commercial availability, the conductive polymer poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) was used in this study [48]. To improve the selectivity and sensitivity, electrochemical polymerization of pyrrole was carried out on the surface of the modified electrode. Because of this, the fabricated UA sensor demonstrated strong stability and repeatability for UA measurements. With a low detection limit of 0.05 μ mol L 1 0.05 μ mol L 1 0.05 mumolL^(-1)0.05 \mu \mathrm{~mol} \mathrm{~L}^{-1}, MIES was able to detect UA in a wide concentration range of 0.1 100 μ mol L 1 0.1 100 μ mol L 1 0.1-100 mumolL^(-1)0.1-100 \mu \mathrm{~mol} \mathrm{~L}^{-1}. Furthermore, this sensor exhibits very selective UA detection even in the presence of multiple interfering species, including magnesium ions, DA, urea, glucose, and AA. According to reports, the proposed UA sensor demonstrated satisfactory UA measurement in human urine samples.
机械性能、电化学性能和电导率的高稳定性,以及在广泛溶剂中的优良分散性、环境、物理和化学稳定性、大规模生产、成膜能力、相容性、成本效益和商业可用性,导电聚合物聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)在本研究中被使用[48]。为了提高选择性和灵敏度,在改性电极表面进行了吡咯的电化学聚合。因此,制造的尿酸传感器在尿酸测量中表现出强稳定性和重复性。MIES 以低检测限 0.05 μ mol L 1 0.05 μ mol L 1 0.05 mumolL^(-1)0.05 \mu \mathrm{~mol} \mathrm{~L}^{-1} 能够在广泛浓度范围 0.1 100 μ mol L 1 0.1 100 μ mol L 1 0.1-100 mumolL^(-1)0.1-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} 内检测尿酸。此外,该传感器即使在存在多种干扰物质(包括镁离子、多巴胺、尿素、葡萄糖和抗坏血酸)的情况下也表现出非常选择性的尿酸检测。根据报告,所提出的尿酸传感器在人体尿液样本中表现出令人满意的尿酸测量。
Based on an RGO composite and a novel 2-amino-5-mercapto-1,3,4thiadiazole (AMT) monomer, Zeng and colleagues developed an MIP sensor for the simultaneous determination of two analytes, tyrosine and UA [102]. MIPs and RGO composites have been used to create electrochemical sensors through a simple electropolymerization process on glassy carbon electrodes using CV. After that, ethanol was used to wash UA and tyrosine for 30 min . The authors claim that UA and tyrosine interactions with the polyAMT-based MIP layer were caused by hydrogen bonding and π π π π pi-pi\pi-\pi stacking. At pH 5.0 , UA exists mainly in enol form, which can serve as a hydrogen bonding donor and interact with the nitrogen in the poly-AMT-based MIP layer. The obtained film was characterized using CV, EIS, and DPV in PBS (pH 5.0) solution using a redox probe of 10 mmol L 1 K 3 [ Fe ( CN ) 6 ] / K 4 [ Fe ( CN ) 6 ] 10 mmol L 1 K 3 Fe ( CN ) 6 / K 4 Fe ( CN ) 6 10mmolL^(-1)K_(3)[Fe(CN)_(6)]//K_(4)[Fe(CN)_(6)]10 \mathrm{mmol} \mathrm{L}^{-1} \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]. The sensor showed wide linear ranges for UA ( 0.01 100 μ mol L 1 0.01 100 μ mol L 1 0.01-100 mumolL^(-1)0.01-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} ) and tyrosine ( 0.1 400 μ mol L 1 ) 0.1 400 μ mol L 1 (0.1-400 mu(mol)L^(-1))\left(0.1-400 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right) with detection limits of 0.0032 μ mol L 1 0.0032 μ mol L 1 0.0032 mumolL^(-1)0.0032 \mu \mathrm{~mol} \mathrm{~L}^{-1} and 0.046 μ mol L 1 μ mol L 1 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1}, respectively. The selectivity of the MIP/RGO sensor was
基于 RGO 复合材料和一种新型的 2-氨基-5-巯基-1,3,4-噻二唑(AMT)单体,Zeng 及其同事开发了一种用于同时测定两种分析物——酪氨酸和尿酸的 MIP 传感器[102]。MIPs 和 RGO 复合材料已通过在玻碳电极上使用循环伏安法(CV)进行简单的电聚合过程来创建电化学传感器。之后,使用乙醇洗涤尿酸和酪氨酸 30 分钟。作者声称,尿酸和酪氨酸与基于聚 AMT 的 MIP 层的相互作用是由氢键和 π π π π pi-pi\pi-\pi 堆叠引起的。在 pH 5.0 时,尿酸主要以烯醇形式存在,可以作为氢键供体并与基于聚 AMT 的 MIP 层中的氮相互作用。所获得的薄膜在 PBS(pH 5.0)溶液中使用 10 mmol L 1 K 3 [ Fe ( CN ) 6 ] / K 4 [ Fe ( CN ) 6 ] 10 mmol L 1 K 3 Fe ( CN ) 6 / K 4 Fe ( CN ) 6 10mmolL^(-1)K_(3)[Fe(CN)_(6)]//K_(4)[Fe(CN)_(6)]10 \mathrm{mmol} \mathrm{L}^{-1} \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] / \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] 的氧化还原探针通过 CV、EIS 和 DPV 进行表征。传感器对尿酸( 0.01 100 μ mol L 1 0.01 100 μ mol L 1 0.01-100 mumolL^(-1)0.01-100 \mu \mathrm{~mol} \mathrm{~L}^{-1} )和酪氨酸( ( 0.1 400 μ mol L 1 ) 0.1 400 μ mol L 1 (0.1-400 mu(mol)L^(-1))\left(0.1-400 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right) )显示出宽广的线性范围,检测限分别为 0.0032 μ mol L 1 0.0032 μ mol L 1 0.0032 mumolL^(-1)0.0032 \mu \mathrm{~mol} \mathrm{~L}^{-1} 和 0.046 μ mol L 1 μ mol L 1 mumolL^(-1)\mu \mathrm{mol} \mathrm{L}^{-1} 。MIP/RGO 传感器的选择性是

Fig. 10. A) Schematic for the fabrication of the molecularly imprinted sensor for UA detection. B) DPV of MIES at 0.01 M K 3 [ Fe ( CN ) 6 ] 0.01 M K 3 Fe ( CN ) 6 0.01MK_(3)[Fe(CN)_(6)]0.01 \mathrm{M} \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] after rebinding in different concentrations of UA (from a to g , 0.1 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 , 3.3 μ mol L 1 g , 0.1 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 , 3.3 μ mol L 1 g,0.1,0.5,1.0,1.5,2.0,2.5,3.3 mumolL^(-1)\mathrm{g}, 0.1,0.5,1.0,1.5,2.0,2.5,3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} ) and © calibration curve of the peak current versus UA concentration. Reproduced with permission from [103]).
图 10。A) 用于制造分子印迹传感器以检测尿酸的示意图。B) 在不同浓度的尿酸(从 a 到 g , 0.1 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 , 3.3 μ mol L 1 g , 0.1 , 0.5 , 1.0 , 1.5 , 2.0 , 2.5 , 3.3 μ mol L 1 g,0.1,0.5,1.0,1.5,2.0,2.5,3.3 mumolL^(-1)\mathrm{g}, 0.1,0.5,1.0,1.5,2.0,2.5,3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} )中重新结合后,MIES 在 0.01 M K 3 [ Fe ( CN ) 6 ] 0.01 M K 3 Fe ( CN ) 6 0.01MK_(3)[Fe(CN)_(6)]0.01 \mathrm{M} \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] 的 DPV 和© 峰电流与尿酸浓度的校准曲线。经[103]许可转载。

assessed using DPV responses of 0.4 μ mol 0.4 μ mol 0.4 mumol0.4 \mu \mathrm{~mol} L-1 tyrosine and 0.4 μ mol 0.4 μ mol 0.4 mumol0.4 \mu \mathrm{~mol} L-1 UA in the presence of 50 -fold higher concentrations of interfering compounds, such as DA, epinephrine, adenine, xanthine, AA, and glucose. By detecting 0.4 μ mol L 1 0.4 μ mol L 1 0.4 mumolL^(-1)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} tyrosine and 0.4 μ mol L 1 UA 0.4 μ mol L 1 UA 0.4 mumolL^(-1)UA0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{UA} eleven times, repeatability was also examined. Relative standard deviation (RSD) values of 3.86 % 3.86 % 3.86%3.86 \% and 4.23 % 4.23 % 4.23%4.23 \% indicated good repeatability. The reproducibility was examined by utilizing six distinct MIP/RGO sensors to detect 0.4 μ mol L 1 0.4 μ mol L 1 0.4 mumolL^(-1)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} tyrosine and 0.4 μ mol L 1 UA 0.4 μ mol L 1 UA 0.4 mumolL^(-1)UA0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{UA}, and an RSD value of 4.68 % 4.68 % 4.68%4.68 \% was reported. The MIP/RGO sensor showed good stability after storage for 20 days at room temperature, retaining 90.6% of the initial response, which indicated good stability.
使用 DPV 响应评估 0.4 μ mol 0.4 μ mol 0.4 mumol0.4 \mu \mathrm{~mol} L-1 酪氨酸和 0.4 μ mol 0.4 μ mol 0.4 mumol0.4 \mu \mathrm{~mol} L-1 尿酸,在 50 倍浓度的干扰化合物(如多巴胺、肾上腺素、腺嘌呤、黄嘌呤、抗坏血酸和葡萄糖)存在下进行。通过检测 0.4 μ mol L 1 0.4 μ mol L 1 0.4 mumolL^(-1)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} 酪氨酸和 0.4 μ mol L 1 UA 0.4 μ mol L 1 UA 0.4 mumolL^(-1)UA0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{UA} 十一次,也检查了重复性。相对标准偏差(RSD)值 3.86 % 3.86 % 3.86%3.86 \% 4.23 % 4.23 % 4.23%4.23 \% 表明良好的重复性。通过利用六个不同的 MIP/RGO 传感器检测 0.4 μ mol L 1 0.4 μ mol L 1 0.4 mumolL^(-1)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} 酪氨酸和 0.4 μ mol L 1 UA 0.4 μ mol L 1 UA 0.4 mumolL^(-1)UA0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{UA} ,报告了 RSD 值 4.68 % 4.68 % 4.68%4.68 \% 。MIP/RGO 传感器在室温下存储 20 天后显示出良好的稳定性,保留了初始响应的 90.6%,这表明良好的稳定性。

2.3.2. MWCNT-modified electrode for UA electrochemical sensors
2.3.2. MWCNT 修饰电极用于尿酸电化学传感器

Zhao and co-workers, [103] developed a novel MIES based on a Cys-MWCNT-modified electrode, with o-phenylenediamine as the functional monomer and UA as the template molecule for the rapid detection of UA (Fig. 10). The purpose of MWCNTs is to enhance the electrocatalytic performance of the modified electrode in addition to improving the electron transfer rate at the electrochemical sensing interface [104]. It has been reported that when the prepared sensor is placed in a solution containing a certain concentration of UA and incubated for some time, the oxidation peak current of the redox probe ( K 3 [ Fe ( CN ) 6 ] K 3 Fe ( CN ) 6 (K_(3)[Fe(CN)_(6)]:}\left(\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\right. decreases with increasing UA concentration. They found that the current peak has a good linear relationship with UA concentrations in the range of 0.1 to 3.3 μ mol L 1 3.3 μ mol L 1 3.3 mumolL^(-1)3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} and a detection limit of 0.03 μ mol L 1 0.03 μ mol L 1 0.03 mumolL^(-1)0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1}. The sensor showed high selectivity for the rapid detection of UA in human serum samples.
赵及其同事[103]开发了一种基于 Cys-MWCNT 修饰电极的新型 MIES,以邻苯二胺作为功能单体,以 UA 作为模板分子,用于快速检测 UA(图 10)。MWCNT 的目的是增强修饰电极的电催化性能,此外还提高电化学传感界面的电子转移速率[104]。据报道,当制备的传感器放置在含有一定浓度 UA 的溶液中并孵育一段时间后,氧化峰电流随着 UA 浓度的增加而降低。他们发现电流峰与 0.1 到 3.3 μ mol L 1 3.3 μ mol L 1 3.3 mumolL^(-1)3.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} 范围内的 UA 浓度之间具有良好的线性关系,检测限为 0.03 μ mol L 1 0.03 μ mol L 1 0.03 mumolL^(-1)0.03 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。该传感器在快速检测人血清样本中的 UA 方面表现出高选择性。
Using a thermal polymerization technique initiated by 2 , 2 2 , 2 2,2^(')2,2^{\prime}-azobis(2isobutyric) nitrile (AIBN), MIPs based on molecularly imprinted polymethacrylic acid on multiwalled carbon nanotubes (MIP-MWCNTs/ PMAA) were produced [105]. UA was extracted from the MIP-MWCNT/ PMAA particles using a 3 : 1 , v / v 3 : 1 , v / v 3:1,v//v3: 1, v / v, water:methanol mixture. These thermally polymerized MIP-MWCNTs/PMAA were applied to a glassy carbon electrode and utilized in 20 mM PBS solution at pH 7.4 for amperometric, CV, and LSV measurements. Compared to NIP-MWCNTs/ PMAA, MIP-MWCNTs/PMAA detected UA approximately 4.4 times more effectively. It was reported that a linear relationship between the current density and the concentration of UA was found in the range of 80 500 μ mol L 1 80 500 μ mol L 1 80-500 mumolL^(-1)80-500 \mu \mathrm{~mol} \mathrm{~L}^{-1} with a limit of detection of 22 μ mol L 1 22 μ mol L 1 22 mumolL^(-1)22 \mu \mathrm{~mol} \mathrm{~L}^{-1}.
使用由 2 , 2 2 , 2 2,2^(')2,2^{\prime} -偶氮(2-异丁腈) (AIBN) 引发的热聚合技术,基于分子印迹聚甲基丙烯酸的多壁碳纳米管 (MIP-MWCNTs/ PMAA) 被生产 [105]。UA 是通过使用 3 : 1 , v / v 3 : 1 , v / v 3:1,v//v3: 1, v / v 的水:甲醇混合物从 MIP-MWCNT/ PMAA 粒子中提取的。这些热聚合的 MIP-MWCNTs/PMAA 被应用于玻碳电极,并在 pH 7.4 的 20 mM PBS 溶液中用于安培法、循环伏安法和线性扫描伏安法测量。与 NIP-MWCNTs/ PMAA 相比,MIP-MWCNTs/PMAA 检测 UA 的效果约提高了 4.4 倍。据报道,在 80 500 μ mol L 1 80 500 μ mol L 1 80-500 mumolL^(-1)80-500 \mu \mathrm{~mol} \mathrm{~L}^{-1} 范围内发现电流密度与 UA 浓度之间存在线性关系,检测限为 22 μ mol L 1 22 μ mol L 1 22 mumolL^(-1)22 \mu \mathrm{~mol} \mathrm{~L}^{-1}

2.3.3. Nanoporous gold leaf (NPGL)-modified electrode for electrochemical sensors for UA
2.3.3. 纳米多孔金箔(NPGL)修饰电极用于尿酸电化学传感器

Nanoporous gold leaf (NPGL) is a low-cost free-standing mesoporous thin film that can be mass-produced by dealloying commercially available Ag / Au Ag / Au Ag//Au\mathrm{Ag} / \mathrm{Au} alloy leaves. When compared to gold nanoparticle particles, the rigid 3D framework structure of NPGL prevents particle aggregation, thereby improving the stability and applicability of NPGL-based electrochemical sensors. Nanoporous gold leaf (NPGL) has unique
纳米多孔金箔(NPGL)是一种低成本的自支撑介孔薄膜,可以通过去合金化商业可用的 Ag / Au Ag / Au Ag//Au\mathrm{Ag} / \mathrm{Au} 合金叶片进行大规模生产。与金纳米颗粒相比,NPGL 的刚性三维框架结构防止了颗粒聚集,从而提高了基于 NPGL 的电化学传感器的稳定性和适用性。纳米多孔金箔(NPGL)具有独特的

mechanical, facile-to-fabricate, physical, and chemical properties connected to its rigid three-dimensional framework structure [106-110]. The high electrochemical response, high specific surface area, facile preparation, stability, and modification make NPG an ideal candidate as an electrochemical sensor.
与其刚性三维框架结构相关的机械、易于制造的物理和化学性质[106-110]。高电化学响应、高比表面积、易于制备、稳定性和可修改性使 NPG 成为电化学传感器的理想候选者。
For instance, Li et al. [111] developed a nanoporous gold leaf (NPGL)-based MIP nanosensor for UA and DA (Fig. 11). This study demonstrates that a large accessible surface area and the excellent electrical conductivity of NPGL were used to increase the sensing capacity. After that, dual-template MIP was prepared by the electropolymerization method in a three-electrode cell in which NPGL/GCE was employed in the presence of o-phenylenediamine monomer and dual templates (DA and UA) to provide specific recognition. According to reports, the sensor’s good linear ranges are 2.0 180 μ mol L 1 2.0 180 μ mol L 1 2.0-180 mumolL^(-1)2.0-180 \mu \mathrm{~mol} \mathrm{~L}^{-1} for DA at a working potential of 0.15 V (vs. Ag / AgCl ) Ag / AgCl ) Ag//AgCl)\mathrm{Ag} / \mathrm{AgCl}) and 5.0 160 μ mol L 1 5.0 160 μ mol L 1 5.0-160 mumolL^(-1)5.0-160 \mu \mathrm{~mol} \mathrm{~L}^{-1} for UA at 0.35 V (vs. Ag / AgCl Ag / AgCl Ag//AgCl\mathrm{Ag} / \mathrm{AgCl} ), respectively. For DA and UA, limits of detection of 0.3 μ mol L 1 0.3 μ mol L 1 0.3 mumolL^(-1)0.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} and 0.4 μ mol L 1 ( S / N = 3 ) 0.4 μ mol L 1 ( S / N = 3 ) 0.4 mumolL^(-1)(S//N=3)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3), respectively, were reported. The selectivity of the sensor between interfering species and templates was good. After 30 days of storage, the responses remained higher than 96 % 96 % 96%96 \% of the original values, and the relative standard deviation was less than 3.0 % 3.0 % 3.0%3.0 \%. The created sensor was used to identify DA and UA in bovine serum samples, and the outcomes were in good agreement with those from high-performance liquid chromatography.
例如,Li 等人[111]开发了一种基于纳米多孔金叶(NPGL)的 MIP 纳米传感器,用于检测尿酸(UA)和多巴胺(DA)(图 11)。这项研究表明,NPGL 的大可接触表面积和优良的电导率被用来提高传感能力。之后,采用电聚合方法在三电极池中制备了双模板 MIP,其中在邻苯二胺单体和双模板(DA 和 UA)存在下使用了 NPGL/GCE,以提供特异性识别。据报道,该传感器在工作电位为 0.15 V 时,DA 的良好线性范围为 2.0 180 μ mol L 1 2.0 180 μ mol L 1 2.0-180 mumolL^(-1)2.0-180 \mu \mathrm{~mol} \mathrm{~L}^{-1} ,而 UA 在 0.35 V 时的线性范围为 Ag / AgCl ) Ag / AgCl ) Ag//AgCl)\mathrm{Ag} / \mathrm{AgCl}) 5.0 160 μ mol L 1 5.0 160 μ mol L 1 5.0-160 mumolL^(-1)5.0-160 \mu \mathrm{~mol} \mathrm{~L}^{-1} 。对于 DA 和 UA,分别报告了检测限为 0.3 μ mol L 1 0.3 μ mol L 1 0.3 mumolL^(-1)0.3 \mu \mathrm{~mol} \mathrm{~L}^{-1} 0.4 μ mol L 1 ( S / N = 3 ) 0.4 μ mol L 1 ( S / N = 3 ) 0.4 mumolL^(-1)(S//N=3)0.4 \mu \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{~S} / \mathrm{N}=3) 。传感器在干扰物质和模板之间的选择性良好。经过 30 天的存储,响应仍高于原始值的 96 % 96 % 96%96 \% ,相对标准偏差小于 3.0 % 3.0 % 3.0%3.0 \% 。所创建的传感器用于识别牛血清样本中的 DA 和 UA,结果与高效液相色谱法的结果良好一致。

3. Conclusions and perspectives
3. 结论与展望

There is a great need for the rapid detection of biomolecules, particularly DA, UA, and AA, due to their abnormal concentrations associated with various diseases. Molecular imprinting has been recognized as a promising technology used to create selective recognition cavities in macromolecular polymer networks for the detection of these biomolecules. Designing MIPs is made possible by the ability to create molecular imprints of AA, DA, and UA within different polymers. While a wide range of polymers can be utilized to create MIPs, the best ones are conducting polymers, such as polypyrrole, which can be deposited electrochemically on conducting surfaces. Compared with natural receptors such as enzymes and antibodies, MIPs have shown tremendous advantages, such as cost-effectiveness, long-term stability, high selectivity, and robustness. In particular, recent advances in the assembly of nanomaterial-modified electrodes have led to the development of MIPs, which enable the detection of biomolecules in vivo and in vitro with high selectivity and sensitivity. However, many challenges need to be overcome to commercialize this technology. For example, electrochemical sensors based on MIPs and nonmaterials still face some challenges, including the heterogeneous distribution of recognition sites, a nonnegligible amount of the target analyte needed during MIP preparation, deterioration of the recognition sites during the target analyte
由于与各种疾病相关的异常浓度,快速检测生物分子(特别是 DA、UA 和 AA)有着巨大的需求。分子印迹被认为是一种有前景的技术,用于在大分子聚合物网络中创建选择性识别腔体,以检测这些生物分子。设计 MIPs 的可能性在于能够在不同聚合物中创建 AA、DA 和 UA 的分子印迹。虽然可以利用广泛的聚合物来创建 MIPs,但最佳的聚合物是导电聚合物,例如聚吡咯,可以在导电表面上电化学沉积。与天然受体(如酶和抗体)相比,MIPs 显示出巨大的优势,如成本效益、长期稳定性、高选择性和稳健性。特别是,最近在纳米材料修饰电极组装方面的进展导致了 MIPs 的发展,使其能够以高选择性和灵敏度在体内和体外检测生物分子。然而,要实现这一技术的商业化,仍需克服许多挑战。例如,基于分子印迹聚合物(MIPs)和非材料的电化学传感器仍面临一些挑战,包括识别位点的非均匀分布、在 MIP 制备过程中所需的目标分析物的不可忽视的量,以及在目标分析物存在期间识别位点的恶化

Fig. 11. Schematic diagram for the preparation of the MIP/NPGL/GCE[111].
图 11. MIP/NPGL/GCE 的制备示意图[111]。

step removal, difficult regeneration of the sensors in some cases, and residual analyte at trace levels still captured in the MIP cavities during the preparation of the imprinted polymer. The use of MIP-based electrochemical sensors for selective multianalyte determination is also a challenge. Despite these challenges, the promising results reported in this review demonstrated the applicability of this novel sensing strategy for the detection of DA, UA, and AA in complicated matrices such as pharmaceutical drugs, biological fluids, and food samples.
步骤去除,在某些情况下传感器的再生困难,以及在制备印刷聚合物过程中仍然在 MIP 腔体中捕获的微量残留分析物。基于 MIP 的电化学传感器用于选择性多分析物测定也是一个挑战。尽管面临这些挑战,本综述中报告的有希望的结果证明了这种新型传感策略在复杂基质中检测 DA、UA 和 AA 的适用性,例如药物、生物液体和食品样本。

CRediT authorship contribution statement

Girma Salale Geleta: Conceptualization, Formal analysis, Funding acquisition, Investigation, Visualization, Writing - original draft, Writing - review & editing.
Girma Salale Geleta:概念化,形式分析,资金获取,调查,视觉化,撰写 - 原始草稿,撰写 - 审阅与编辑。

Declaration of Competing Interest
利益冲突声明

The author declares no conflict of interest.
作者声明没有利益冲突。

Data availability  数据可用性

No data was used for the research described in the article
文章中描述的研究没有使用任何数据

Acknowledgements  致谢

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
本研究未获得来自公共、商业或非营利部门的任何特定资助。

References  参考文献

[1] B. Demirkan, S. Bozkurt, A. Şavk, K. Cellat, F. Gulbagca, M.S. Nas, M.H. Alma, F. Sen, Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid, Sci. Rep. 9 (2019), 12258, https://doi.org/10.1038/ s41598-019-48802-0.
[1] B. Demirkan, S. Bozkurt, A. Şavk, K. Cellat, F. Gulbagca, M.S. Nas, M.H. Alma, F. Sen, 由双金属铂-钴合金纳米颗粒和还原氧化石墨烯组成的复合材料用于电化学测定抗坏血酸、多巴胺和尿酸, Sci. Rep. 9 (2019), 12258, https://doi.org/10.1038/ s41598-019-48802-0.

[2] A. Jing, G. Liang, Y. Yuan, W. Feng, Three-dimensional au/holey-graphene as efficient electrochemical Interface for simultaneous determination of ascorbic acid, dopamine and Uric Acid, Micromachines 10 (2019) 84, https://doi.org/ 10.3390/mi10020084.
[2] A. Jing, G. Liang, Y. Yuan, W. Feng, 三维金/孔石墨烯作为高效电化学界面,用于同时测定抗坏血酸、多巴胺和尿酸,Micromachines 10 (2019) 84, https://doi.org/ 10.3390/mi10020084.

[3] Y. Xue, Y. Zheng, E. Wang, T. Yang, H. Wang, X. Hou, Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{x} (MXene)/Pt nanoparticle electrode for the accurate detection of DA coexisting with AA and UA, Dalton Trans. 51 (2022) 4549-4559.
[3] Y. Xue, Y. Zheng, E. Wang, T. Yang, H. Wang, X. Hou, Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{x} (MXene)/Pt 纳米颗粒电极用于准确检测与 AA 和 UA 共存的 DA, Dalton Trans. 51 (2022) 4549-4559.

[4] B. Demirkan, S. Bozkurt, K. Cellat, K. Arıkan, M. Yılmaz, A. Şavk, M.H. Çalımlı, M.S. Nas, M.N. Atalar, M.H. Alma, F. Sen, Palladium supported on polypyrrole/ reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid, Sci. Rep. 10 (2020) 2946, https://doi. org/10.1038/s41598-020-59935-y.
[4] B. Demirkan, S. Bozkurt, K. Cellat, K. Arıkan, M. Yılmaz, A. Şavk, M.H. Çalımlı, M.S. Nas, M.N. Atalar, M.H. Alma, F. Sen, 钯支持的聚吡咯/还原氧化石墨烯纳米颗粒用于同时生物传感应用的抗坏血酸、多巴胺和尿酸, Sci. Rep. 10 (2020) 2946, https://doi. org/10.1038/s41598-020-59935-y.

[5] K. Zhang, N. Zhang, L. Zhang, H. Wang, H. Shi, Q. Liu, Simultaneous voltammetric detection of dopamine, ascorbic acid, and uric acid using a poly(2-(N-morpholine)ethane sulfonic acid)/RGO modified electrode, RSC Adv. 8 (2018) 5280-5285, https://doi.org/10.1039/C7RA13267K.
[5] K. Zhang, N. Zhang, L. Zhang, H. Wang, H. Shi, Q. Liu, 同时伏安检测多巴胺、抗坏血酸和尿酸,使用聚(2-(N-吗啉)乙烷磺酸)/RGO 改性电极,RSC Adv. 8 (2018) 5280-5285, https://doi.org/10.1039/C7RA13267K.

[6] L. Zhang, C. Liu, Q. Wang, X. Wang, S. Wang, Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets ( C 3 N 4 ) C 3 N 4 (C_(3)N_(4))\left(\mathrm{C}_{3} \mathrm{~N}_{4}\right) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine, and uric acid, Mikrochim Acta 187 (2020) 149, https://doi.org/ 10.1007/s00604-019-4081-6.
[6] L. Zhang, C. Liu, Q. Wang, X. Wang, S. Wang, 基于嵌入氧化石墨烯的多孔石墨氮化碳纳米片修饰电极的电化学传感器,用于同时测定抗坏血酸、多巴胺和尿酸,Mikrochim Acta 187 (2020) 149, https://doi.org/ 10.1007/s00604-019-4081-6.

[7] Y. Kong, X. Shan, J. Ma, M. Chen, Z. Chen, A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly (o -phenylenediamine-co-oaminophenol), Anal. Chim. Acta 809 (2014) 54-60, https://doi.org/10.1016/j. aca.2013.12.003.
[7] Y. Kong, X. Shan, J. Ma, M. Chen, Z. Chen, 一种基于分子印迹聚(o-苯二胺-co-o-氨基酚)的新型伏安传感器用于抗坏血酸,分析化学学报 809 (2014) 54-60, https://doi.org/10.1016/j. aca.2013.12.003.

[8] L. Ozcan, M. Şahin, Y. Şahin, Electrochemical preparation of a molecularly imprinted Polypyrrole-modified pencil graphite electrode for determination of ascorbic acid, Sensors 8 (2008) 5792-5805, https://doi.org/10.3390/s8095792.
[8] L. Ozcan, M. Şahin, Y. Şahin, 电化学制备分子印迹聚吡咯修饰的铅笔石墨电极用于维生素 C 的测定,传感器 8 (2008) 5792-5805, https://doi.org/10.3390/s8095792.

[9] Y. Suwanwong, S. Boonpangrak, MIPs for the extraction and determination of water-soluble vitamins: a review from 2001 to 2020, Eur. Polym. J. 161 (2021), 110835, https://doi.org/10.1016/J.EURPOLYMJ.2021.110835.
[9] Y. Suwanwong, S. Boonpangrak, MIPs 用于水溶性维生素的提取和测定:2001 年至 2020 年的综述,Eur. Polym. J. 161 (2021), 110835, https://doi.org/10.1016/J.EURPOLYMJ.2021.110835.

[10] G. Alberti, C. Zanoni, L.R. Magnaghi, R. Biesuz, G. A., Ascorbic Acid Sensing by Molecularly Imprinted Electrosynthesized Polymer (e-MIP) on Screen-Printed Electrodes, Chemosensors 11 (2023) 348, https://doi.org/10.20944/ preprints202305.1340.v1.
[10] G. Alberti, C. Zanoni, L.R. Magnaghi, R. Biesuz, G. A., 通过在丝网印刷电极上合成的分子印迹聚合物(e-MIP)进行抗坏血酸传感,Chemosensors 11 (2023) 348, https://doi.org/10.20944/ preprints202305.1340.v1.

[11] E. Piskin, D. Cianciosi, S. Gulec, M. Tomas, E. Capanoglu, Iron absorption: factors, limitations, and improvement methods, ACS Omega 7 (2022) 20441-20456, https://doi.org/10.1021/acsomega.2c01833.
[11] E. Piskin, D. Cianciosi, S. Gulec, M. Tomas, E. Capanoglu, 铁的吸收:因素、限制和改善方法,ACS Omega 7 (2022) 20441-20456,https://doi.org/10.1021/acsomega.2c01833。

[12] C. Yan, X. Liu, R. Zhang, Y. Chen, G. Wang, A selective strategy for the determination of ascorbic acid based on molecular imprinted copolymer of ophenylenediamine and pyrrole, J. Electroanal. Chem. 780 (2016) 276-281, https://doi.org/10.1016/j.jelechem.2016.09.046.
[12] C. Yan, X. Liu, R. Zhang, Y. Chen, G. Wang, 一种基于对苯二胺和吡咯的分子印迹共聚物的选择性抗坏血酸测定策略, J. Electroanal. Chem. 780 (2016) 276-281, https://doi.org/10.1016/j.jelechem.2016.09.046.

[13] D. Wu, H. Li, X. Xue, H. Fan, Q. Xin, Q. Wei, Sensitive and selective determination of dopamine by electrochemical sensor based on molecularly imprinted electropolymerization of o -phenylenediamine, Anal. Methods 5 (2013) 1469-1473, https://doi.org/10.1039/c3ay26200f.
[13] D. Wu, H. Li, X. Xue, H. Fan, Q. Xin, Q. Wei, 基于分子印迹电聚合的对苯二胺电化学传感器对多巴胺的敏感和选择性测定, Anal. Methods 5 (2013) 1469-1473, https://doi.org/10.1039/c3ay26200f.

[14] B.B. Prasad, S. Srivastava, K. Tiwari, P.S. Sharma, Trace-level sensing of dopamine in real samples using molecularly imprinted polymer-sensor, Biochem. Eng. J. 44 (2009) 232-239, https://doi.org/10.1016/j.bej.2008.12.013.
[14] B.B. Prasad, S. Srivastava, K. Tiwari, P.S. Sharma, 使用分子印迹聚合物传感器在真实样品中对多巴胺进行痕量传感,生化工程杂志 44 (2009) 232-239, https://doi.org/10.1016/j.bej.2008.12.013.

[15] V. Sharma, A. Sundaramurthy, A. Tiwari, Graphene nanoplatelets-silver nanorods-polymer based in situ hybrid electrode for electroanalysis of dopamine and ascorbic acid in biological samples, Appl. Sci. 449 (2018) 558-566, https:// doi.org/10.1016/j.apsusc.2017.10.177.
[15] V. Sharma, A. Sundaramurthy, A. Tiwari, 基于石墨烯纳米片-银纳米棒-聚合物的原位混合电极用于生物样本中多巴胺和抗坏血酸的电分析, Appl. Sci. 449 (2018) 558-566, https:// doi.org/10.1016/j.apsusc.2017.10.177.

[16] N. Maouche, M. Guergouri, S. Gam-derouich, M. Jouini, B. Nessark, Molecularly imprinted polypyrrole films : some key parameters for electrochemical picomolar detection of dopamine, J. Electroanal. Chem. 685 (2012) 21-27, https://doi.org/ 10.1016/j.jelechem.2012.08.020.
[16] N. Maouche, M. Guergouri, S. Gam-derouich, M. Jouini, B. Nessark, 分子印迹聚吡咯薄膜:电化学皮摩尔检测多巴胺的一些关键参数, J. Electroanal. Chem. 685 (2012) 21-27, https://doi.org/ 10.1016/j.jelechem.2012.08.020.

[17] X. Zhou, A. Wang, C. Yu, S. Wu, J. Shen, Facile synthesis of molecularly imprinted graphene quantum dots for the determination of dopamine with affinityadjustable, ACS Appl. Mater. Interfaces 7 (2015) 11741-11747, https://doi.org/ 10.1021/am5078478.
[17] X. Zhou, A. Wang, C. Yu, S. Wu, J. Shen, 方便合成分子印迹石墨烯量子点用于多巴胺的测定,具有可调亲和力,ACS Appl. Mater. Interfaces 7 (2015) 11741-11747, https://doi.org/ 10.1021/am5078478.

[18] S. Slimi, C. Mabrouk, H. Barhoumi, N. Jaffrezic-Renault, A simple over-oxidized molecularly imprinted Polypyrrole for the sensitive detection of dopamine in human serum, J. Sens. Sci. Technol. 12 (2022) 33-44, https://doi.org/10.4236/ jst.2022.123003.
[18] S. Slimi, C. Mabrouk, H. Barhoumi, N. Jaffrezic-Renault, 一种简单的过氧化分子印迹聚吡咯用于在人血清中灵敏检测多巴胺, J. Sens. Sci. Technol. 12 (2022) 33-44, https://doi.org/10.4236/ jst.2022.123003.

[19] S.A. Zaidi, Development of molecular imprinted polymers based strategies for the determination of dopamine . Elsevier B.V, Sens. Actuators B: Chem. 265 (2018) 488-497, https://doi.org/10.1016/j.snb.2018.03.076.
[19] S.A. Zaidi, 开发用于多巴胺测定的分子印迹聚合物策略。Elsevier B.V, Sens. Actuators B: Chem. 265 (2018) 488-497, https://doi.org/10.1016/j.snb.2018.03.076.

[20] D. Lakshmi, M.J. Whitcombe, F. Davis, S. Sharma, B. Prasad, Electrochemical detection of uric acid in mixed and clinical samples : a review, Electroanalysis. 23 (2011) 305-320, https://doi.org/10.1002/elan. 201000525.
[20] D. Lakshmi, M.J. Whitcombe, F. Davis, S. Sharma, B. Prasad, 电化学检测混合和临床样本中的尿酸:综述,电分析。23 (2011) 305-320, https://doi.org/10.1002/elan. 201000525.

[21] N. Tukimin, J. Abdullah, Y. Sulaiman, Development of a PrGO-modified electrode for uric acid determination in the presence of ascorbic acid by an electrochemical technique, Sensors. 17 (2017) 1539, https://doi.org/10.3390/s17071539.
[21] N. Tukimin, J. Abdullah, Y. Sulaiman, 开发一种 PrGO 改性电极用于在抗坏血酸存在下通过电化学技术测定尿酸,传感器。17 (2017) 1539, https://doi.org/10.3390/s17071539.

[22] T. Rattanaumpa, S. Maensiri, K. Ngamchuea, Microporous carbon in the selective electro-oxidation of molecular biomarkers : uric acid, ascorbic acid, and dopamine, RSC Adv. 12 (2022) 18709-18721, https://doi.org/10.1039/ d2ra03126d.
[22] T. Rattanaumpa, S. Maensiri, K. Ngamchuea, 微孔碳在分子生物标志物的选择性电氧化中的应用:尿酸、抗坏血酸和多巴胺, RSC Adv. 12 (2022) 18709-18721, https://doi.org/10.1039/ d2ra03126d.

[23] A. Mujahid, A. Idrees, K. Adeel, Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid, Appl. Nanosci. 5 (2014) 527-534, https://doi.org/10.1007/s13204-014-0346-x.
[23] A. Mujahid, A. Idrees, K. Adeel, 分子印迹钛纳米颗粒用于选择性识别和测定尿酸, Appl. Nanosci. 5 (2014) 527-534, https://doi.org/10.1007/s13204-014-0346-x.

[24] V. Ratautaite, U. Samukaite-bubniene, D. Plausinaitis, R. Boguzaite,
A. Ramanavicius, Molecular imprinting Technology for Determination of uric acid, Int. J. Mol. Sci. 22 (2021) 5032, https://doi.org/10.3390/ijms22095032.
A. Ramanavicius, 分子印迹技术用于尿酸的测定, Int. J. Mol. Sci. 22 (2021) 5032, https://doi.org/10.3390/ijms22095032.

[25] C. Su, C. Sun, Y. Liao, Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite, ACS, Omega 2 (2017) 4245-4252, https://doi.org/10.1021/acsomega.7b00681.
[25] C. Su, C. Sun, Y. Liao, 打印组合传感器用于同时检测抗坏血酸、尿酸、多巴胺和亚硝酸盐, ACS, Omega 2 (2017) 4245-4252, https://doi.org/10.1021/acsomega.7b00681.

[26] K. Zarei, S. Moghaddary, Sensitive spectrophotometric determination of ascorbic acid in drugs and foods using surface plasmon resonance band of silver nanoparticles, Cogent Chem. 42 (2015) 1109172, https://doi.org/10.1080/ 23312009.2015.1109172.
[26] K. Zarei, S. Moghaddary, 使用银纳米颗粒的表面等离子体共振带对药物和食品中抗坏血酸的敏感分光光度法测定, Cogent Chem. 42 (2015) 1109172, https://doi.org/10.1080/ 23312009.2015.1109172.

[27] C. Wang, M.I. Halawa, B. Lou, W. Gao, J. Li, G. Xu, Detection of ascorbic acid based on its quenching effect on luminol-artemisinin chemiluminescence, Analyst. 146 (2021) 1981-1985, https://doi.org/10.1039/d0an02280b.
[27] C. Wang, M.I. Halawa, B. Lou, W. Gao, J. Li, G. Xu, 基于抗坏血酸对鲁米诺-青蒿素化学发光的猝灭效应的检测,分析师。146 (2021) 1981-1985, https://doi.org/10.1039/d0an02280b.

[28] C.D. Zappielo, Determination of L-ascorbic acid in Milk by ultra-highperformance liquid chromatography coupled to tandem mass spectrometry analysis, J. Braz. Chem. Soc. 30 (2019) 1130-1137, https://doi.org/10.21577/ 0103-5053.20190008.
[28] C.D. Zappielo, 通过超高效液相色谱联用串联质谱法测定牛奶中的 L-抗坏血酸, J. Braz. Chem. Soc. 30 (2019) 1130-1137, https://doi.org/10.21577/ 0103-5053.20190008.

[29] W. Cui, Y. Wang, D. Yang, J. Du, Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase - mimetic properties of cobalt oxyhydroxide nanosheets, Microchim. Acta 184 (2017) 4749-4755, https://doi. org/10.1007/s00604-017-2525-4.
[29] W. Cui, Y. Wang, D. Yang, J. Du, 利用其对氧化酶模拟性质的钴氧氢氧化物纳米片的抑制作用进行荧光法测定抗坏血酸, Microchim. Acta 184 (2017) 4749-4755, https://doi. org/10.1007/s00604-017-2525-4.

[30] E. Evana, M.S. Bareka, Determination of Vitamin C (Ascorbic Acid) Contents in Two Varieties of Melon Fruits (Cucumis melo L.) by Iodometric Titration, J Fluor Chem 6 (2021), https://doi.org/10.37033/fjc.v6i2.342.
[30] E. Evana, M.S. Bareka, 通过碘量法测定两种甜瓜(Cucumis melo L.)中维生素 C(抗坏血酸)含量, J Fluor Chem 6 (2021), https://doi.org/10.37033/fjc.v6i2.342.

[31] T.J. Sona Skrovankova, Jiri Mlcek, Jiri Sochor, Mojmir Baron, Jindrich Kynicky, Determination of ascorbic acid by electrochemical techniques and other methods, Int. J. Electrochem. Sci. 10 (2015) 2421-2431, https://doi.org/10.1016/S1452-3981(23)04857-5.
[31] T.J. Sona Skrovankova, Jiri Mlcek, Jiri Sochor, Mojmir Baron, Jindrich Kynicky, 通过电化学技术和其他方法测定抗坏血酸, Int. J. Electrochem. Sci. 10 (2015) 2421-2431, https://doi.org/10.1016/S1452-3981(23)04857-5.

[32] M. Yaman, J. Catak, H. Ugur, M. Gurbuz, I. Belli, S.N. Tanyıldız, H. Yıldırım, S. Cengiz, B.B. Yavuz, C. Kişmiroglu, B. Ozgur, M.C. Yaldız, The bioaccessibility of water-soluble vitamins: a review, Trends Food Sci. Technol. 109 (2021) 552-563, https://doi.org/10.1016/j.tifs.2021.01.056.
[32] M. Yaman, J. Catak, H. Ugur, M. Gurbuz, I. Belli, S.N. Tanyıldız, H. Yıldırım, S. Cengiz, B.B. Yavuz, C. Kişmiroglu, B. Ozgur, M.C. Yaldız, 水溶性维生素的生物可及性:综述,食品科学与技术趋势 109 (2021) 552-563, https://doi.org/10.1016/j.tifs.2021.01.056.

[33] Z. Bitew, M. Amare, Electrochemical determination of ascorbic acid in pharmaceutical tablets using carbon paste electrode, OMCIJ 8 (2019) 124-132, https://doi.org/10.19080/OMCIJ.2019.08.555749.
[33] Z. Bitew, M. Amare, 使用碳糊电极在药物片剂中电化学测定抗坏血酸,OMCIJ 8 (2019) 124-132, https://doi.org/10.19080/OMCIJ.2019.08.555749.

[34] Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, A glassy carbon electrode modified with MoS 2 MoS 2 MoS_(2)\mathrm{MoS}_{2} nanosheets and poly (3,4-ethylene dioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid, Microchim. Acta 183 (2016) 2517-2523, https://doi.org/10.1007/s00604-016-1897-1.
[34] Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, 一种用 MoS 2 MoS 2 MoS_(2)\mathrm{MoS}_{2} 纳米片和聚(3,4-乙烯二氧噻吩)修饰的玻璃碳电极,用于同时电化学检测抗坏血酸、多巴胺和尿酸,Microchim. Acta 183 (2016) 2517-2523, https://doi.org/10.1007/s00604-016-1897-1.

[35] M.Z.H. Khan, Graphene Oxide Modified Electrodes for dopamine Sensing, J. Nanomater. 11 (2017) 8178314, https://doi.org/10.1155/2017/8178314.
[35] M.Z.H. Khan, 石墨烯氧化物改性电极用于多巴胺传感, J. Nanomater. 11 (2017) 8178314, https://doi.org/10.1155/2017/8178314.

[36] J.J. Belbruno, MIPs, Chem. Rev. 119 (2018) 94-119, https://doi.org/10.1021/ acs.chemrev.8b00171.
[37] H.F. Trevizan, C.X. Cardoso, M.F.S. Teixeira, Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer : unusual approaches using electrochemical impedance/capacitance spectroscopy
[37] H.F. Trevizan, C.X. Cardoso, M.F.S. Teixeira, 基于导电偶氮聚合物的尿酸传感分子印迹聚合物的开发:使用电化学阻抗/电容光谱的非寻常方法

without a soluble redox probe, Sens. Actuators B: Chem. 343 (2021), 130141, https://doi.org/10.1016/j.snb.2021.130141.
没有可溶性红氧探针,Sens. Actuators B: Chem. 343 (2021), 130141, https://doi.org/10.1016/j.snb.2021.130141.

[38] S. Lingxin, As featured in molecular imprinting : perspectives and applications, Chem. Soc. Rev. 45 (2016) 2137-2211, https://doi.org/10.1039/C6CS00061D.
[39] C. Zhong, B. Yang, X. Jiang, J. Li, Current Progress of nanomaterials in molecularly imprinted electrochemical sensing, Crit. Rev. Anal. Chem. 48 (2018) 15-32, https://doi.org/10.1080/10408347.2017.1360762.
[39] C. Zhong, B. Yang, X. Jiang, J. Li, 纳米材料在分子印迹电化学传感中的当前进展, Crit. Rev. Anal. Chem. 48 (2018) 15-32, https://doi.org/10.1080/10408347.2017.1360762.

[40] M. Mahmoudpour, M. Torbati, M.M. Mousavi, M. de la Guardia, J. Ezzati Nazhad Dolatabadi, Nanomaterial-based MIPs for pesticides detection: Recent trends and prospects, TrAC, Trends Anal. Chem. 129 (2020) 115943, https://doi. org/10.1016/j.trac.2020.115943.
[40] M. Mahmoudpour, M. Torbati, M.M. Mousavi, M. de la Guardia, J. Ezzati Nazhad Dolatabadi, 基于纳米材料的分子印迹聚合物用于农药检测:近期趋势与前景,TrAC,趋势分析化学 129 (2020) 115943, https://doi. org/10.1016/j.trac.2020.115943.

[41] X. Dong, C. Zhang, X. Du, Recent advances of nanomaterials-based molecularly imprinted electrochemical sensors, Nanomaterials 12 (2022) 1913, https://doi. org/10.3390/nano12111913.
[41] X. Dong, C. Zhang, X. Du, 基于纳米材料的分子印迹电化学传感器的最新进展, Nanomaterials 12 (2022) 1913, https://doi. org/10.3390/nano12111913.

[42] A.A. Lahcen, A. Amine, Recent advances in electrochemical sensors based on MIPs and nanomaterials, Electroanalysis 31 (2019) 188-201, https://doi.org/ 10.1002/elan. 201800623.
[42] A.A. Lahcen, A. Amine, 基于分子印迹聚合物和纳米材料的电化学传感器的最新进展, Electroanalysis 31 (2019) 188-201, https://doi.org/ 10.1002/elan. 201800623.

[43] R. Gui, H. Jin, Z. Wang, J. Li, Black phosphorus quantum dots: synthesis, properties, functionalized modification, and applications, Chem. Soc. Rev. 47 (2018) 6795-6823, https://doi.org/10.1039/c8cs00387d.
[43] R. Gui, H. Jin, Z. Wang, J. Li, 黑磷量子点:合成、性质、功能化改性及应用,化学学会评论 47 (2018) 6795-6823, https://doi.org/10.1039/c8cs00387d.

[44] Y. Miao, X. Wang, J. Sun, Z. Yan, Recent advances in the biomedical applications of black phosphorus quantum dots, Nanoscale Adv. 3 (2021) 1532-1550, https:// doi.org/10.1039/d0na01003k.
[44] Y. Miao, X. Wang, J. Sun, Z. Yan, 黑磷量子点在生物医学应用中的最新进展, Nanoscale Adv. 3 (2021) 1532-1550, https:// doi.org/10.1039/d0na01003k.

[45] Z. Zhang, Y. Li, J. Xu, Y. Wen, Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C, J. Electroanal. Chem. 814 (2018) 153-160, https://doi.org/10.1016/j. jelechem.2018.02.059.
[45] Z. Zhang, Y. Li, J. Xu, Y. Wen, 电聚合分子印迹聚吡咯装饰黑磷量子点于聚(3,4-乙烯二氧噻吩)纳米棒及其对维生素 C 的伏安传感, J. Electroanal. Chem. 814 (2018) 153-160, https://doi.org/10.1016/j. jelechem.2018.02.059.

[46] H. Pandey, P. Khare, S. Singh, S.P. Singh, Carbon nanomaterials integrated MIPs for biological sample analysis: a critical review, Mater. Chem. Phys. 239 (2020), 121966, https://doi.org/10.1016/j.matchemphys.2019.121966.
[46] H. Pandey, P. Khare, S. Singh, S.P. Singh, 碳纳米材料集成的分子印迹聚合物用于生物样品分析:一项关键评述,Mater. Chem. Phys. 239 (2020), 121966, https://doi.org/10.1016/j.matchemphys.2019.121966.

[47] R. Dubey, D. Dutta, A. Sarkar, P. Chattopadhyay, Functionalized carbon nanotubes: synthesis, properties, and applications in water purification, drug delivery, and material and biomedical sciences, Nanoscale Adv. 3 (2021) 5722-5744, https://doi.org/10.1039/D1NA00293G.
[47] R. Dubey, D. Dutta, A. Sarkar, P. Chattopadhyay, 功能化碳纳米管:合成、性质及其在水净化、药物传递和材料与生物医学科学中的应用, Nanoscale Adv. 3 (2021) 5722-5744, https://doi.org/10.1039/D1NA00293G.

[48] J. Zhang, W. Ding, Z. Zhang, J. Xu, Y. Wen, Preparation of black phosphorusPEDOT: PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen, RSC Adv. 6 (2016) 76174-76182, https://doi.org/10.1039/c6ra14762c.
[48] J. Zhang, W. Ding, Z. Zhang, J. Xu, Y. Wen, 制备具有良好成膜性能和在含氧水中环境稳定性的黑磷 PEDOT: PSS 杂化半导体复合材料,RSC Adv. 6 (2016) 76174-76182, https://doi.org/10.1039/c6ra14762c.

[49] S. Wang, S. Wang, M. Pan, K. Liu, X. Xie, J. Yang, L. Hong, S. Wang, A SiO 2 2 _(2){ }_{2} @MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate, Food Chem. 381 (2022) 132225, https://doi.org/10.1016/j.foodchem.2022.132225.
[49] S. Wang, S. Wang, M. Pan, K. Liu, X. Xie, J. Yang, L. Hong, S. Wang, 一种基于 MWCNTs 和 AuNPs 的 SiO 2 2 _(2){ }_{2} @MIP 电化学传感器,用于对二丁基邻苯二甲酸酯的高灵敏度和选择性识别与检测,食品化学. 381 (2022) 132225, https://doi.org/10.1016/j.foodchem.2022.132225.

[50] Y. Peng, Q. Miao, Molecularly imprinted sensor for ascorbic acid based on AuNPs and multiwalled carbon nanotubes, Curr. Anal. Chem. 16 (2020) 905-913, https://doi.org/10.2174/1573411015666191029152332.
[50] Y. Peng, Q. Miao, 基于金纳米颗粒和多壁碳纳米管的分子印迹传感器用于抗坏血酸, Curr. Anal. Chem. 16 (2020) 905-913, https://doi.org/10.2174/1573411015666191029152332.

[51] Y. Zhai, D. Wang, H. Liu, Y. Zeng, Z. Yin, L. Li, Electrochemical molecular imprinted sensors based on electrospun nanofiber and determination of ascorbic acid, Anal. Sci. 31 (2015) 793-798, https://doi.org/10.2116/analsci.31.793.
[51] Y. Zhai, D. Wang, H. Liu, Y. Zeng, Z. Yin, L. Li, 基于电纺纳米纤维的电化学分子印迹传感器及其对抗坏血酸的测定, Anal. Sci. 31 (2015) 793-798, https://doi.org/10.2116/analsci.31.793.

[52] P.K. Kalambate, et al., Recent advances in MXene-based electrochemical sensors and biosensors, TrAC, Trends Anal. Chem. 120 (2019), 115643, https://doi.org/ 10.1016/j.trac.2019.115643.
[52] P.K. Kalambate 等,基于 MXene 的电化学传感器和生物传感器的最新进展,TrAC,趋势分析化学,120(2019),115643,https://doi.org/ 10.1016/j.trac.2019.115643。

[53] M. Wen, Y. Xing, G. Liu, S. Hou, S. Hou, Electrochemical sensor based on Ti 3 C 2 Ti 3 C 2 Ti_(3)C_(2)\mathrm{Ti}_{3} \mathrm{C}_{2} membrane doped with UIO-66- NH 2 NH 2 NH_(2)\mathrm{NH}_{2} for dopamine, Microchim. Acta 189 (2022) 1-8, https://doi.org/10.1007/s00604-022-05222-8.
[53] M. Wen, Y. Xing, G. Liu, S. Hou, S. Hou, 基于掺杂 UIO-66 的 Ti 3 C 2 Ti 3 C 2 Ti_(3)C_(2)\mathrm{Ti}_{3} \mathrm{C}_{2} 膜的电化学传感器用于多巴胺, Microchim. Acta 189 (2022) 1-8, https://doi.org/10.1007/s00604-022-05222-8.

[54] M. Liu, M. Liu, B. Pan, S. Tang, W. Wang, H. Hou, B. Xie, A. Liang, A. Luo, A labelfree molecularly imprinted electrochemical sensor based on MXene Nanosheets modified by AuNPs for sensitive and selective detection of homocysteine,
[54] M. Liu, M. Liu, B. Pan, S. Tang, W. Wang, H. Hou, B. Xie, A. Liang, A. Luo, 一种基于金纳米颗粒修饰的 MXene 纳米片的无标记分子印迹电化学传感器,用于同型半胱氨酸的灵敏和选择性检测,

J. Electrochem. Soc. 169 (2022), 087503, https://doi.org/10.1149/1945-7111/ ac837b.
[55] Y. Zhu, et al., A double-deck structure of reduced graphene oxide modified porous Ti 3 C 2 T × Ti 3 C 2 T × Ti_(3)C_(2)Txx\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T} \times electrode towards ultrasensitive and simultaneous detection of dopamine and Uric acid, Biosensors. 11 (2021) 462, https://doi.org/10.3390/ bios11110462.
[55] Y. Zhu, et al., 一种双层结构的还原氧化石墨烯改性多孔 Ti 3 C 2 T × Ti 3 C 2 T × Ti_(3)C_(2)Txx\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T} \times 电极用于超灵敏和同时检测多巴胺和尿酸, 生物传感器. 11 (2021) 462, https://doi.org/10.3390/ bios11110462.

[56] M. Yang, L. Wang, H. Lu, Q. Dong, Advances in MXene-based electrochemical (bio) sensors for neurotransmitter detection, Micromachines. 14 (2023) 1088, https://doi.org/10.3390/mi14051088.
[56] M. Yang, L. Wang, H. Lu, Q. Dong, 基于 MXene 的电化学(生物)传感器在神经递质检测中的进展, Micromachines. 14 (2023) 1088, https://doi.org/10.3390/mi14051088.

[57] A. Parihar, A. Singhal, N. Kumar, R. Khan, Next-generation intelligent MXene based electrochemical Aptasensors for point-of-care Cancer diagnostics, Nanomicro Lett. 14 (2022) 100, https://doi.org/10.1007/s40820-022-00845-1.
[57] A. Parihar, A. Singhal, N. Kumar, R. Khan, 下一代基于 MXene 的智能电化学适配体传感器用于现场癌症诊断, Nanomicro Lett. 14 (2022) 100, https://doi.org/10.1007/s40820-022-00845-1.

[58] Q. Wang, X. Xiao, X. Hu, L. Huang, T. Li, M. Yang, Molecularly imprinted electrochemical sensor for ascorbic acid determination based on MXene modified electrode, Mater. Lett. 285 (2021), 129158, https://doi.org/10.1016/j. matlet.2020.129158.
[58] Q. Wang, X. Xiao, X. Hu, L. Huang, T. Li, M. Yang, 基于 MXene 修饰电极的分子印迹电化学传感器用于抗坏血酸测定, Mater. Lett. 285 (2021), 129158, https://doi.org/10.1016/j. matlet.2020.129158.

[59] H. Liu, W. Qin, X. Li, L. Feng, C. Gu, J. Chen, Z. Tian, J. Chen, M. Yang, H. Qiao, X. Guo, Y. Zhang, B. Zhao, S. Yin, Molecularly imprinted electrochemical sensors based on Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}}-MXene and graphene composite modifications for ultrasensitive cortisol detection, Anal. Chem. 95 (2023) 16079-16088, https://doi.org/ 10.1021/acs.analchem.3c01715.
[59] H. Liu, W. Qin, X. Li, L. Feng, C. Gu, J. Chen, Z. Tian, J. Chen, M. Yang, H. Qiao, X. Guo, Y. Zhang, B. Zhao, S. Yin, 基于 Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} -MXene 和石墨烯复合改性的分子印迹电化学传感器用于超灵敏皮质醇检测, Anal. Chem. 95 (2023) 16079-16088, https://doi.org/ 10.1021/acs.analchem.3c01715.

[60] C.C. Chusuei, Carbon nanotubes, graphene, and carbon dots as electrochemical biosensing composites, Molecules 26 (2021) 6674, https://doi.org/10.3390/ molecules26216674.
[60] C.C. Chusuei, 碳纳米管、石墨烯和碳点作为电化学生物传感复合材料, Molecules 26 (2021) 6674, https://doi.org/10.3390/ molecules26216674.

[61] Z. Hassanvand, F. Jalali, M. Nazari, F. Parnianchi, C. Santoro, Carbon Nanodots in electrochemical sensors and biosensors: a review, ChemElectroChem 8 (2021) 15-35, https://doi.org/10.1002/celc.202001229.
[61] Z. Hassanvand, F. Jalali, M. Nazari, F. Parnianchi, C. Santoro, 碳纳米点在电化学传感器和生物传感器中的应用:综述,ChemElectroChem 8 (2021) 15-35, https://doi.org/10.1002/celc.202001229.

[62] X. Lin, et al., Carbon dots based on natural resources: Synthesis and applications in sensors, Microchem. J. 16 (2020) 105604, https://doi.org/10.1016/j. microc.2020.105604.
[62] X. Lin, et al., 基于自然资源的碳点:合成及其在传感器中的应用, Microchem. J. 16 (2020) 105604, https://doi.org/10.1016/j. microc.2020.105604.

[63] J. Liu, R. Li, B. Yang, Carbon dots : a new type of carbon-based nanomaterial with wide applications, ACS Cent. Sci. 6 (2020) 2179-2195, https://doi.org/10.1021/ acscentsci.0c01306.
[63] J. Liu, R. Li, B. Yang, 碳点:一种具有广泛应用的新型碳基纳米材料, ACS Cent. Sci. 6 (2020) 2179-2195, https://doi.org/10.1021/ acscentsci.0c01306.

[64] B.D. Mansuriya, Carbon dots : classification, properties, synthesis, characterization, and applications in health care-an updated review (2018-2021), Nanomaterials. 11 (2021) 2525, https://doi.org/10.3390/nano11102525.
[64] B.D. Mansuriya, 碳点:分类、性质、合成、表征及其在医疗保健中的应用——更新综述(2018-2021),纳米材料。11 (2021) 2525, https://doi.org/10.3390/nano11102525.

[65] I. Pandey, S.S. Jha, Molecularly imprinted polyaniline-ferrocene-sulfonic acidcarbon dots modified pencil graphite electrodes for chiral selective sensing of Dascorbic acid and L-ascorbic acid: a clinical biomarker for preeclampsia, Electrochim. Acta 182 (2015) 917-928, https://doi.org/10.1016/j. electacta.2015.10.005.
[65] I. Pandey, S.S. Jha, 分子印迹聚苯胺-铁烯-磺酸碳点修饰的铅笔石墨电极用于对 D-抗坏血酸和 L-抗坏血酸的手性选择性传感:妊娠高血压的临床生物标志物,Electrochim. Acta 182 (2015) 917-928, https://doi.org/10.1016/j. electacta.2015.10.005.

[66] Z. Hsine, R. Mlika, N. Jaffrezic-renault, Review -recent Progress in graphenebased modified electrodes for electrochemical detection of dopamine, Chemosensors 10 (2022) 249, https://doi.org/10.3390/chemosensors10070249.
[67] M. Sajid, M.K. Nazal, M. Hakir, A. Alsharaa, S. Jillani, B. Chanbasha, Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid : a review, TrAC - Trends Anal. Chem. 76 (2015) 15-29, https://doi.org/10.1016/j.trac.2015.09.006.
[67] M. Sajid, M.K. Nazal, M. Hakir, A. Alsharaa, S. Jillani, B. Chanbasha, 化学修饰电极在尿酸和抗坏血酸存在下对多巴胺的电化学检测:综述,TrAC - Trends Anal. Chem. 76 (2015) 15-29, https://doi.org/10.1016/j.trac.2015.09.006.

[68] A. Enache, C. Albu, G. Radu, S.C. Lit, Synergism between graphene and MIPs in developing electrochemical sensors for Agri-food and environmental analyses, Chemosensors 11 (2023) 380, https://doi.org/10.3390/chemosensors11070380.
[69] A. Lamaoui, J.M. Palacios-Santander, A. Amine, L. Cubillana-Aguilera, MIPs based on polydopamine : assessment of nonspecific adsorption, Microchem. J. 164 (2021), 106043, https://doi.org/10.1016/j.microc.2021.106043.
[69] A. Lamaoui, J.M. Palacios-Santander, A. Amine, L. Cubillana-Aguilera, 基于聚多巴胺的分子印迹聚合物:非特异性吸附的评估,Microchem. J. 164 (2021), 106043, https://doi.org/10.1016/j.microc.2021.106043.

[70] S.M. Oliveira, J.M. Luzardo, L.A. Silva, D.C. Aguiar, C.A. Senna, R. Verdan, A. Kuznetsov, T.L. Vasconcelos, B.S. Archanjo, C.A. Achete, Eliane D’Elia, J. R. Arauj, High-performance electrochemical sensor based on molecularly imprinted polypyrrole-graphene modified glassy carbon electrode, Thin Solid Films 699 (2020) 137875, https://doi.org/10.1016/j.tsf.2020.137875.
[70] S.M. Oliveira, J.M. Luzardo, L.A. Silva, D.C. Aguiar, C.A. Senna, R. Verdan, A. Kuznetsov, T.L. Vasconcelos, B.S. Archanjo, C.A. Achete, Eliane D’Elia, J. R. Arauj, 高性能电化学传感器基于分子印刷聚吡咯-石墨烯改性玻璃碳电极, Thin Solid Films 699 (2020) 137875, https://doi.org/10.1016/j.tsf.2020.137875.

[71] Q. Guan, et al., Electrochemical sensor based on covalent organic frameworks-MWCNT- NH 2 / A u N P s NH 2 / A u N P s NH_(2)//AuNPs\mathrm{NH}_{2} / A u N P s for simultaneous detection of dopamine and uric acid, J. Electroanal. Chem. 880 (2021), 114932, https://doi.org/10.1016/j. jelechem.2020.114932.
[71] Q. Guan 等,基于共价有机框架-MWCNT- NH 2 / A u N P s NH 2 / A u N P s NH_(2)//AuNPs\mathrm{NH}_{2} / A u N P s 的电化学传感器用于多巴胺和尿酸的同时检测,J. Electroanal. Chem. 880 (2021), 114932, https://doi.org/10.1016/j. jelechem.2020.114932。

[72] Y. Chen, X. Peng, Y. Song, G. Ma, An ascorbic acid-imprinted poly (ophenylenediamine)/AuNPs @ COF TFPB-NBPDA for electrochemical sensing ascorbic acid, Chemosensors 10 (2022) 407, https://doi.org/10.3390/ chemosensors10100407.
[72] Y. Chen, X. Peng, Y. Song, G. Ma, 一种用于电化学传感抗坏血酸的抗坏血酸印迹聚(苯二胺)/金纳米颗粒@ COF TFPB-NBPDA,化学传感器 10 (2022) 407, https://doi.org/10.3390/ chemosensors10100407.

[73] M. Zhang, et al., Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid, Sens. Actuators B: Chem. 252 (2017) 991-1002, https://doi.org/10.1016/j.snb.2017.04.159.
[73] M. Zhang, et al., 在石墨烯表面上的分子印迹聚合物用于选择性和灵敏的电化学传感吡虫啉, Sens. Actuators B: Chem. 252 (2017) 991-1002, https://doi.org/10.1016/j.snb.2017.04.159.

[74] R. Liu, J. Li, T. Zhong, L. Long, Graphene modified molecular imprinting electrochemical sensor for determining the content of dopamine, Curr. Anal. Chem. 15 (2019) 628-634, https://doi.org/10.2174/ 1573411014666180730112304.
[74] R. Liu, J. Li, T. Zhong, L. Long, 石墨烯修饰的分子印迹电化学传感器用于测定多巴胺含量, Curr. Anal. Chem. 15 (2019) 628-634, https://doi.org/10.2174/ 1573411014666180730112304.

[75] Y. Mao, Y. Bao, S. Gan, F. Li, L. Niu, Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymer composite recognition element, Biosens. Bioelectron. 28 (2011) 291-297, https://doi.org/10.1016/j. bios.2011.07.034.
[75] Y. Mao, Y. Bao, S. Gan, F. Li, L. Niu, 基于新型石墨烯分子印迹聚合物复合识别元件的多巴胺电化学传感器, Biosens. Bioelectron. 28 (2011) 291-297, https://doi.org/10.1016/j. bios.2011.07.034.

[76] V.M.A. Mohanan, A.K. Kunnummal, V.M.N. Biju, Selective electrochemical detection of dopamine based on molecularly imprinted poly(5-amino 8-hydroxy quinoline) immobilized reduced graphene oxide, J. Mater. Sci. 53 (2018) 10627-10639, https://doi.org/10.1007/s10853-018-2355-8.
[76] V.M.A. Mohanan, A.K. Kunnummal, V.M.N. Biju, 基于分子印迹聚(5-氨基-8-羟基喹啉)固定化还原氧化石墨烯的选择性电化学检测多巴胺, J. Mater. Sci. 53 (2018) 10627-10639, https://doi.org/10.1007/s10853-018-2355-8.

[77] K. Namsheer, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties, and applications, RSC Adv. 11 (2021) 5659-5697, https://doi.org/10.1039/d0ra07800j.
[77] K. Namsheer, C.S. Rout, 导电聚合物:关于合成、性质和应用的最新进展的综合评述, RSC Adv. 11 (2021) 5659-5697, https://doi.org/10.1039/d0ra07800j.

[78] L. Deng, L. Liu, H. Huang, C. Deng, L. Lu, L. Wang, X. Wang, A molecularly imprinted electrochemical sensor based on TiO 2 TiO 2 TiO_(2)\mathrm{TiO}_{2} @ Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} for highly sensitive and selective detection of chlortetracycline, Molecules 28 (2023) 7475, https:// doi.org/10.3390/molecules28227475.
[78] L. Deng, L. Liu, H. Huang, C. Deng, L. Lu, L. Wang, X. Wang, 一种基于 TiO 2 TiO 2 TiO_(2)\mathrm{TiO}_{2} @ Ti 3 C 2 T x Ti 3 C 2 T x Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} 的分子印迹电化学传感器,用于高灵敏度和选择性检测氯四环素,Molecules 28 (2023) 7475, https:// doi.org/10.3390/molecules28227475.

[79] X. Chen, D. Li, W. Ma, T. Yang, Y. Zhang, D. Zhang, Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid, Microchim. Acta 186 (2019) 407, https://doi.org/10.1007/s00604-019-3518-2.
[79] X. Chen, D. Li, W. Ma, T. Yang, Y. Zhang, D. Zhang, 制备一种用还原氧化石墨烯和过氧化电聚合聚吡咯修饰的玻碳电极及其在抗坏血酸和尿酸存在下测定多巴胺的应用,Microchim. Acta 186 (2019) 407, https://doi.org/10.1007/s00604-019-3518-2.

[80] D. Phuc, D. Phuc, N. Hai, V.C. Nguyen, T. Dai, L. Trong, A highly sensitive electrode modi fi ed with graphene, AuNPs, and molecularly imprinted overoxidized polypyrrole for electrochemical determination of dopamine, J. Mol. Liq. 198 (2014) 307-312, https://doi.org/10.1016/j.molliq.2014.07.029.
[80] D. Phuc, D. Phuc, N. Hai, V.C. Nguyen, T. Dai, L. Trong, 一种高度灵敏的电极,改性为石墨烯、金纳米颗粒和分子印迹过氧化聚吡咯,用于多巴胺的电化学测定,J. Mol. Liq. 198 (2014) 307-312, https://doi.org/10.1016/j.molliq.2014.07.029.

[81] K. Ahmad, H. Kim, Hydrothermally synthesized MoSe 2 / rGO 2 / rGO _(2)//rGO{ }_{2} / \mathrm{rGO} composite as electrode modifier for the construction of nonenzymatic urea sensor, Mater. Chem. Phys. 286 (2022), 126206, https://doi.org/10.1016/j. matchemphys.2022.126206.
[81] K. Ahmad, H. Kim, 水热合成的 MoSe 2 / rGO 2 / rGO _(2)//rGO{ }_{2} / \mathrm{rGO} 复合材料作为非酶尿素传感器构建的电极修饰剂,Mater. Chem. Phys. 286 (2022), 126206, https://doi.org/10.1016/j. matchemphys.2022.126206.

[82] M. Sakthivel, R. Sukanya, S.M. Chen, K.-C. Ho, Synthesis and characterization of samarium-substituted molybdenum Diselenide and its graphene oxide Nanohybrid for enhancing the selective sensing of chloramphenicol in a Milk sample, ACS Appl. Mater. Interfaces 10 (2018) 29712-29723, https://doi.org/ 10.1021/acsami.8b12006.
[82] M. Sakthivel, R. Sukanya, S.M. Chen, K.-C. Ho, 合成和表征掺锶钼二硒化物及其石墨烯氧化物纳米杂化物,以增强在牛奶样品中选择性检测氯霉素的能力,ACS Appl. Mater. Interfaces 10 (2018) 29712-29723, https://doi.org/ 10.1021/acsami.8b12006.

[83] R. Zribi, G. Neri, Mo-based layered nanostructures for the electrochemical sensing of biomolecules, Sensors 20 (2020) 5404, https://doi.org/10.3390/s20185404.
[83] R. Zribi, G. Neri, 基于钼的分层纳米结构用于生物分子的电化学传感,传感器 20 (2020) 5404, https://doi.org/10.3390/s20185404.

[84] Y. Zang, J. Nie, B. He, W. Yin, Fabrication of S-MoSe 2 /NSG/au/MIPs imprinted composites for electrochemical detection of dopamine based on synergistic effect, materials chemistry, and physics, Microchem. J. 156 (2020), 104845, https://doi.org/10.1016/j.microc.2020.104845.
[84] Y. Zang, J. Nie, B. He, W. Yin, 制备 S-MoSe 2 /NSG/au/MIPs 印刷复合材料用于基于协同效应的多巴胺电化学检测,材料化学与物理,Microchem. J. 156 (2020), 104845, https://doi.org/10.1016/j.microc.2020.104845.

[85] M. Niu, C. Pham-Huy, H. He, Core-shell nanoparticles coated with MIPs: a review Microchim. Acta 183 (2016) 2677-2695, https://doi.org/10.1007/s00604-016-1930-4.
[85] M. Niu, C. Pham-Huy, H. He, 用 MIPs 涂覆的核壳纳米颗粒:综述 Microchim. Acta 183 (2016) 2677-2695, https://doi.org/10.1007/s00604-016-1930-4.

[86] Y. Zeng, Y. Zhou, L. Kong, T. Zhou, G. Shi, A novel composite of SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2}-coated graphene oxide and MIPs for electrochemical sensing dopamine, Biosens. Bioelectron. 45 (2013) 25-33, https://doi.org/10.1016/j.bios.2013.01.036.
[86] Y. Zeng, Y. Zhou, L. Kong, T. Zhou, G. Shi, 一种新型复合材料 SiO 2 SiO 2 SiO_(2)\mathrm{SiO}_{2} -涂层氧化石墨烯和分子印迹聚合物用于电化学传感多巴胺,Biosens. Bioelectron. 45 (2013) 25-33, https://doi.org/10.1016/j.bios.2013.01.036.

[87] M. Xue, G. Feng, D. Runying, L. Guangbin, Z. Ying, L. Limin, Y. Yongfang, A novel electrochemical sensing platform based on molecularly imprinted polymer decorated 3D multiwalled carbon nanotube-intercalated graphene aerogel for selective and sensitive detection of dopamine, Anal. Methods 12 (2020) 1845-1851, https://doi.org/10.1039/D0AY00033G.
[87] M. Xue, G. Feng, D. Runying, L. Guangbin, Z. Ying, L. Limin, Y. Yongfang, 一种基于分子印刷聚合物修饰的三维多壁碳纳米管插层石墨烯气凝胶的新型电化学传感平台,用于选择性和灵敏地检测多巴胺,分析方法 12 (2020) 1845-1851, https://doi.org/10.1039/D0AY00033G.

[88] L. Bu, Q. Song, D. Jiang, X. Shan, W. Wang, Z. Chen, Hypersensitive detection of dopamine based on molecularly imprinted polypyrrole at ZrO 2 @ C ZrO 2 @ C ZrO_(2)@C\mathrm{ZrO}_{2} @ \mathrm{C} and NPG modified electrode, 2022, https://doi.org/10.2139/ssrn.4169982.
[88] L. Bu, Q. Song, D. Jiang, X. Shan, W. Wang, Z. Chen, 基于分子印迹聚吡咯的多巴胺超灵敏检测在 ZrO 2 @ C ZrO 2 @ C ZrO_(2)@C\mathrm{ZrO}_{2} @ \mathrm{C} 和 NPG 改性电极上的应用, 2022, https://doi.org/10.2139/ssrn.4169982.

[89] T. Qian, C.X. Zhou, P. Ma, S. Wu, L. Xu, J. Shen, Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes, Biosens. Bioelectron. 58 (2014) 237-241, https://doi.org/10.1016/j. bios.2014.02.081.
[89] T. Qian, C.X. Zhou, P. Ma, S. Wu, L. Xu, J. Shen, 基于新型分子印迹聚吡咯涂层碳纳米管的超灵敏多巴胺传感器, Biosens. Bioelectron. 58 (2014) 237-241, https://doi.org/10.1016/j. bios.2014.02.081.

[90] Y. Wang, J. Tang, Detection of dopamine by a minimized electrochemical sensor using a graphene oxide molecularly imprinted polymer modified micropipette tip shaped graphite electrode, J. Chem. Res. 45 (2021) 702-707, https://doi.org/ 10.1177/1747519821989957.
[90] Y. Wang, J. Tang, 通过使用石墨烯氧化物分子印迹聚合物改性的微量移液管尖形石墨电极检测多巴胺, J. Chem. Res. 45 (2021) 702-707, https://doi.org/ 10.1177/1747519821989957.

[91] S. Fatma, B.B. Prasad, S. Jaiswal, R. Singh, K. Singh, Electrochemical simultaneous analysis of dopamine and epinephrine using double imprinted one MoNomer acryloylated graphene oxide-carbon black composite polymer, Biosens. Bioelectron. 135 (2019) 36-44, https://doi.org/10.1016/j.bios.2019.04.016.
[91] S. Fatma, B.B. Prasad, S. Jaiswal, R. Singh, K. Singh, 使用双重印刷的单体丙烯酰化石墨烯氧化物-碳黑复合聚合物对多巴胺和肾上腺素进行电化学同时分析, Biosens. Bioelectron. 135 (2019) 36-44, https://doi.org/10.1016/j.bios.2019.04.016.

[92] F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, Y. Zhou, Synergetic signal amplification of multiwalled carbon nanotubes- Fe 3 O 4 Fe 3 O 4 Fe_(3)O_(4)\mathrm{Fe}_{3} \mathrm{O}_{4} hybrid and trimethyl octadecyl ammonium bromide as a highly sensitive detection platform for tetrabromobisphenol a, Sci. Rep. 6 (2016) 38000, https://doi.org/10.1038/ srep38000.
[92] F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, Y. Zhou, 多壁碳纳米管- Fe 3 O 4 Fe 3 O 4 Fe_(3)O_(4)\mathrm{Fe}_{3} \mathrm{O}_{4} 混合物和三甲基十八烷基溴化铵作为四溴双酚 A 的高灵敏度检测平台的协同信号放大,Sci. Rep. 6 (2016) 38000, https://doi.org/10.1038/ srep38000.

[93] X. Kan, H. Zhou, C. Li, A. Zhu, Z. Xing, Z. Zhao, Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/ polypyrrole film, Electrochim. Acta 63 (2012) 69-75, https://doi.org/10.1016/j. electacta.2011.12.086.
[93] X. Kan, H. Zhou, C. Li, A. Zhu, Z. Xing, Z. Zhao, 基于碳纳米管/聚吡咯薄膜的多巴胺识别和测定的印迹电化学传感器,Electrochim. Acta 63 (2012) 69-75, https://doi.org/10.1016/j. electacta.2011.12.086.

[94] D. Yu, Y. Zeng, Y. Qi, T. Zhou, G. Shi, A novel electrochemical sensor for determination of dopamine based on AuNPs @SiO 2 core-shell imprinted composite, Biosens. Bioelectron. 38 (2012) 270-277, https://doi.org/10.1016/j. bios.2012.05.045.
[94] D. Yu, Y. Zeng, Y. Qi, T. Zhou, G. Shi, 一种基于 AuNPs @SiO 2 核壳印刷复合材料的多巴胺测定新型电化学传感器,Biosens. Bioelectron. 38 (2012) 270-277, https://doi.org/10.1016/j. bios.2012.05.045.

[95] B.B. Prasad, D. Kumar, R. Madhuri, M.P. Tiwari, Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultratrace sensing of dopamine in real samples, Electrochim. Acta 56 (2011) 7202-7211, https://doi.org/10.1016/j.electacta.2011.04.090.
[95] B.B. Prasad, D. Kumar, R. Madhuri, M.P. Tiwari, 溶胶-凝胶法制备的多壁碳纳米管陶瓷电极,经过分子印迹聚合物改性,用于真实样品中多巴胺的超痕量检测,Electrochim. Acta 56 (2011) 7202-7211, https://doi.org/10.1016/j.electacta.2011.04.090.

[96] Juan C. Ruiz-Cornejo, David, M.J. Lázaro, Synthesis and applications of carbon nanofibers: a review, Rev. Chem. Eng. 36 (2020) 493-511, https://doi.org/ 10.1515/revce-2018-0021.
[96] Juan C. Ruiz-Cornejo, David, M.J. Lázaro, 碳纳米纤维的合成与应用:综述, Rev. Chem. Eng. 36 (2020) 493-511, https://doi.org/ 10.1515/revce-2018-0021.

[97] T. Wang, Z. Chen, W. Gong, F. Xu, X. Song, X. He, M. Fan, Electrospun carbon nanofibers and their applications in several areas, ACS Omega 8 (2023) 22316-22330, https://doi.org/10.1021/acsomega.3c01114.
[97] T. Wang, Z. Chen, W. Gong, F. Xu, X. Song, X. He, M. Fan, 电纺碳纳米纤维及其在多个领域的应用, ACS Omega 8 (2023) 22316-22330, https://doi.org/10.1021/acsomega.3c01114.

[98] Z. Wang, S. Wu, J. Wang, A. Yu, G. Wei, Carbon nanofiber-based functional nanomaterials for sensor applications, Nanomaterials 9 (2019) 1045, https://doi. org/10.3390/nano9071045.
[98] Z. Wang, S. Wu, J. Wang, A. Yu, G. Wei, 基于碳纳米纤维的功能纳米材料在传感器应用中的研究, 纳米材料 9 (2019) 1045, https://doi. org/10.3390/nano9071045.

[99] T.D. Nguyen, J.S. Lee, Electrospinning-based carbon nanofibers for energy and sensor applications, Appl. Sci. 12 (2022) 6048, https://doi.org/10.3390/ app12126048.
[99] T.D. Nguyen, J.S. Lee, 基于电纺丝的碳纳米纤维在能源和传感器应用中的应用, Appl. Sci. 12 (2022) 6048, https://doi.org/10.3390/ app12126048.

[100] K. Nekoueian, M. Akhoundian, N. Wester, T. Laurila, An ultrasensitive dopamine measurement platform based on molecularly imprinted polymer-carbon hybrid nanomaterials for in vitro use, Electrochim. Acta 445 (2022), 142029, https:// doi.org/10.1016/j.electacta.2023.142029.
[100] K. Nekoueian, M. Akhoundian, N. Wester, T. Laurila, 一种基于分子印刷聚合物-碳混合纳米材料的超灵敏多巴胺测量平台,用于体外使用,Electrochim. Acta 445 (2022), 142029, https:// doi.org/10.1016/j.electacta.2023.142029.

[101] B.R.B.R. Putra, R. Heryanto, M. Khalil, Selective nonenzymatic uric acid sensing in the poly-pyrrole modified with reduced graphene, Analyst 147 (2022) 5334-5346, https://doi.org/10.1039/d2an01463g.
[101] B.R.B.R. Putra, R. Heryanto, M. Khalil, 在改性还原石墨烯的聚吡咯中选择性非酶尿酸传感,分析师 147 (2022) 5334-5346, https://doi.org/10.1039/d2an01463g.

[102] W. Zheng, M. Zhao, W. Liu, S. Yu, L. Niu, G. Li, H. Li, W. Liu, Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine, J. Electroanal. Chem. 813 (2018) 75-82, https://doi.org/10.1016/j. jelechem.2018.02.022.
[102] W. Zheng, M. Zhao, W. Liu, S. Yu, L. Niu, G. Li, H. Li, W. Liu, 基于分子印迹聚合物/还原氧化石墨烯复合材料的电化学传感器用于同时测定尿酸和酪氨酸, J. Electroanal. Chem. 813 (2018) 75-82, https://doi.org/10.1016/j. jelechem.2018.02.022.

[103] Y. Zhao, H. Liu, W. Lv, Y. Wang, Molecularly imprinted electrochemical sensor based on electrode modified by functionalized carbon nanotube for selective detection of uric acid, Indian J. Chem. 60 (2021) 1151-1158, https://doi.org/ 10.56042/ijca.v60i9.51467.
[103] Y. Zhao, H. Liu, W. Lv, Y. Wang, 基于功能化碳纳米管修饰电极的分子印迹电化学传感器用于选择性检测尿酸, 印度化学杂志 60 (2021) 1151-1158, https://doi.org/ 10.56042/ijca.v60i9.51467.

[104] Y. Wu, G. Li, Y. Tian, J. Feng, J. Xiao, J. Liu, X. Liu, Q. He, Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth, J. Electroanal. Chem. 8959 (2021) 115494, https://doi.org/10.1016/j. jelechem.2021.115494.
[104] Y. Wu, G. Li, Y. Tian, J. Feng, J. Xiao, J. Liu, X. Liu, Q. He, 在多壁碳纳米管表面电聚合分子印迹聚吡咯薄膜,以高选择性和稳定性测定致癌性苋菜红,J. Electroanal. Chem. 8959 (2021) 115494, https://doi.org/10.1016/j. jelechem.2021.115494.

[105] P. Chen, P. Nien, C. Hu, K. Ho, Detection of uric acid based on multiwalled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA, Sens. Actuators B: Chem. 146 (2010) 466-471, https://doi.org/10.1016/j. snb.2009.11.035.
[105] P. Chen, P. Nien, C. Hu, K. Ho, 基于多壁碳纳米管聚合的分子印迹 PMAA 层的尿酸检测, Sens. Actuators B: Chem. 146 (2010) 466-471, https://doi.org/10.1016/j. snb.2009.11.035.

[106] J. van der Zalm, S. Chen, W. Huang, A. Chen, Recent advances in the development of Nanoporous Au for sensing applications, J. Electrochem. Soc. 167 (2020) 037532, https://doi.org/10.1149/1945-7111/ab64c0.
[106] J. van der Zalm, S. Chen, W. Huang, A. Chen, 纳米多孔金在传感应用中的最新进展, J. Electrochem. Soc. 167 (2020) 037532, https://doi.org/10.1149/1945-7111/ab64c0.

[107] Y. Li, J. Liu, F. Yu, H. Tang, F. Zhao, B-CB.-C. Ye, W. Chen, X. Lv, Electrochemical determination of trace lead(II) with enhanced sensitivity and selectivity by threedimensional nanoporous gold leaf and self-assembled homocysteine monolayer, J. Electroanal. Chem. 758 (2015) 78-84, https://doi.org/10.1016/j. jelechem.2015.10.019.
[107] Y. Li, J. Liu, F. Yu, H. Tang, F. Zhao, B-CB.-C. Ye, W. Chen, X. Lv, 通过三维纳米多孔金叶和自组装的同型半胱氨酸单层增强灵敏度和选择性的微量铅(II)的电化学测定, J. Electroanal. Chem. 758 (2015) 78-84, https://doi.org/10.1016/j. jelechem.2015.10.019.

[108] Y. Li, Y. Liu, JJ. Liu, J. Liu, H. Tang, C. Cao, D. Zhao, Y. Ding, Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors, Sci. Rep. 5 (2015) 7699, https://doi.org/10.1038/ srep07699.
[108] Y. Li, Y. Liu, JJ. Liu, J. Liu, H. Tang, C. Cao, D. Zhao, Y. Ding, 分子印迹聚合物修饰的纳米多孔金用于高选择性和高灵敏度的电化学传感器, Sci. Rep. 5 (2015) 7699, https://doi.org/10.1038/ srep07699.

[109] Y. Li, L. Zhang, J. Liu, S.-F. Zhou, K. A.K.A. Al-Ghanim, S. Mahboob, B.-C. Ye, X. Zhang, A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination, RSC Adv 6 (2016) 43724-43731, https://doi. org/10.1039/C6RA05553B.
[109] Y. Li, L. Zhang, J. Liu, S.-F. Zhou, K. A.K.A. Al-Ghanim, S. Mahboob, B.-C. Ye, X. Zhang, 一种基于分子印迹聚合物的敏感选择性电化学传感器,用于在纳米多孔金叶修饰电极上测定华法林钠,RSC Adv 6 (2016) 43724-43731, https://doi. org/10.1039/C6RA05553B.

[110] S. Xiao, S. Wang, X. Wang, P. Xu, Nanoporous gold: A review and potentials in biotechnological and biomedical applications, Nano Sel 2 (2021) 1437-1458, https://doi.org/10.1002/nano. 202000291.
[110] S. Xiao, S. Wang, X. Wang, P. Xu, 纳米多孔金:生物技术和生物医学应用的综述与潜力, Nano Sel 2 (2021) 1437-1458, https://doi.org/10.1002/nano. 202000291.

[111] N. Li, C. Nan, X. Mei, Y. Sun, H. Feng, Y. Li, sensor based on dual-template molecularly imprinted polymer and nanoporous gold leaf modified electrode for simultaneous determination of dopamine and uric acid, Microchim. Acta 187 (2020) 496, https://doi.org/10.1007/s00604-020-04413-5.
[111] N. Li, C. Nan, X. Mei, Y. Sun, H. Feng, Y. Li, 基于双模板分子印迹聚合物和纳米多孔金叶修饰电极的传感器,用于多巴胺和尿酸的同时测定,Microchim. Acta 187 (2020) 496, https://doi.org/10.1007/s00604-020-04413-5.