Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials for detection of ascorbic acid, dopamine, and uric acid: A review 基于分子印迹聚合物和纳米材料的电化学传感器在检测抗坏血酸、多巴胺和尿酸方面的最新进展:综述
Girma Salale GeletaSalale University, College of Natural Sciences, Department of Chemistry, P.O. Box 245, Fiche, Oromia, Ethiopia 萨拉莱大学,自然科学学院,化学系,邮政信箱 245,菲切,奥罗米亚,埃塞俄比亚
The demand for analysing biological molecules such as dopamine (DA), ascorbic acid (AA), and uric acid (UA) is growing more than ever in applied science for better health and medicine. Over the past two decades, molecular imprinted polmers (MIPs) have been developed as synthetic receptors or substitute materials for antibodies due to their high stability, short time needed for electropolymerization, and high specificity towards the target analyte. However, the sensitivity of electrochemical sensors decreased as a result of MIPs’ low conductivity and lack of electrocatalytic activity. To overcome this limitation, nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), graphene (GR), titanium carbide MXene ( Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} ), carbon dots (CDs), molybdenum diselenide ( MoSe_(2)\mathrm{MoSe}_{2} ), and black phosphorus quantum dots (BPQDs) and their nanocomposites have been employed as biosensing transducers to construct MIPs based on electrochemical biosensors for cost-effective detection of biological molecules with high sensitivity and specificity. This is because the high surface area, good electrical conductivity, and ease of functionalization of nanomaterials all increase MIP sensitivity to targeted biological molecules. When these advantages of nanomaterials are combined with those of electrochemical methods, such as rapid response time, ease of use, low cost, and miniature ability, MIPs based on nanomaterial-modified electrodes are widely preferred tools for sensing AA, DA, and UA. Herein, this review provides insight into recent developments in the application of molecularly imprinted polymer (MIP) nanomaterial-based electrochemical biosensors for detecting biological molecules, including AA, DA, and UA. The integration of nanomaterials with MIPs into electrochemical biosensors has led to an unprecedented impact on improving the limit of detection of biomolecules, indicating great potential for use in public health and medical care. 在应用科学中,分析生物分子如多巴胺(DA)、抗坏血酸(AA)和尿酸(UA)的需求比以往任何时候都更为迫切,以促进更好的健康和医学。在过去的二十年中,分子印迹聚合物(MIPs)作为合成受体或抗体的替代材料得到了发展,原因在于其高稳定性、所需的电聚合时间短以及对目标分析物的高特异性。然而,由于 MIPs 的低导电性和缺乏电催化活性,电化学传感器的灵敏度下降。为了克服这一限制,金纳米颗粒(AuNPs)、碳纳米管(CNTs)、石墨烯(GR)、碳化钛 MXene( Ti_(3)C_(2)T_(x)\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} )、碳点(CDs)、二硒化钼( MoSe_(2)\mathrm{MoSe}_{2} )和黑磷量子点(BPQDs)及其纳米复合材料被用作生物传感器换能器,以构建基于电化学生物传感器的 MIPs,实现对生物分子的高灵敏度和高特异性的经济有效检测。 这是因为纳米材料的高表面积、良好的电导率和易于功能化的特性都增加了分子印迹聚合物(MIP)对靶生物分子的敏感性。当纳米材料的这些优势与电化学方法的优势相结合时,例如快速响应时间、易用性、低成本和微型化能力,基于纳米材料修饰电极的 MIP 成为检测 AA、DA 和 UA 的广泛首选工具。在此,本文回顾了基于纳米材料的分子印迹聚合物(MIP)电化学生物传感器在检测生物分子(包括 AA、DA 和 UA)方面的最新进展。纳米材料与 MIP 的结合在电化学生物传感器中产生了前所未有的影响,提高了生物分子的检测限,显示出在公共卫生和医疗保健中应用的巨大潜力。
1. Introduction 1. 介绍
Ascorbic acid (2,3-enediol-L-gluconic acid, AA), dopamine (3,4dihydroxy phenyl ethylamine, DA), and uric acid (2,6,8-trihydroxy purine, UA) are three physiologically relevant small biomolecules that are crucial to human metabolism [1-6]. These biomolecules are found in biological matrices (blood and urine) as well as extracellular fluid. AA is a water-soluble vitamin, an important antioxidant, and a powerful freeradical scavenger that is very important for maintaining the physiological function of the human body [7-10]. It enhances cellular metabolism and intestinal iron absorption in the gut [11]. It is a cofactor for at least 15 enzymes that are involved in collagen synthesis, carnitine biosynthesis, norepinephrine, and neuronal hormones [10,12]. In addition, AA can be used to treat and prevent burns, methemoglobinemia, infertility, upper respiratory tract disease, scurvy, and mental 抗坏血酸(2,3-烯二醇-L-葡萄糖酸,AA)、多巴胺(3,4-二羟基苯乙胺,DA)和尿酸(2,6,8-三羟基嘌呤,UA)是三种对人类新陈代谢至关重要的生理相关小生物分子。这些生物分子存在于生物基质(血液和尿液)以及细胞外液中。AA 是一种水溶性维生素,是一种重要的抗氧化剂和强效自由基清除剂,对维持人体的生理功能非常重要。它增强细胞代谢和肠道对铁的吸收。它是至少 15 种参与胶原合成、肉碱生物合成、去甲肾上腺素和神经激素的酶的辅因子。此外,AA 可用于治疗和预防烧伤、亚硝酸血红蛋白症、不孕症、上呼吸道疾病、坏血病和心理健康问题。
illness [4]. Despite the importance of vitamin C, consuming excessive AA has been associated with several health risks, such as gastric irritation, oxidative stress, diabetes, liver disease, and kidney problems [10]. Conversely, DA is a neurotransmitter and catecholamine that plays important roles in the human body, including controlling the central nervous system and cardiovascular, renal, and hormonal systems. On the other hand, low levels of DA in the central nervous system have been associated with several neurological diseases, including Parkinson’s disease, schizophrenia, Alzheimer’s disease, stress, and depression [13-18]. The typical range of its concentration range is approximately 10^(-7)-10^(-3)molL^(-1)10^{-7}-10^{-3} \mathrm{molL}^{-1} [19]. However, UA, which is present in human fluids such as blood and urine, is the main byproduct of purine metabolism [20]. Gout inflammatory arthritis is caused by UA crystals building up in the joints, surrounding tissues, kidneys, and body when UA levels rise above saturation ( 6.8mgdL^(-1)6.8 \mathrm{mg} \mathrm{dL}^{-1} in serum) [21-23]. Human blood plasma 疾病[4]。尽管维生素 C 很重要,但过量摄入 AA 与多种健康风险相关,如胃刺激、氧化压力、糖尿病、肝病和肾脏问题[10]。相反,DA 是一种神经递质和儿茶酚胺,在人体中发挥重要作用,包括控制中枢神经系统以及心血管、肾脏和内分泌系统。另一方面,中枢神经系统中 DA 水平低与多种神经系统疾病相关,包括帕金森病、精神分裂症、阿尔茨海默病、压力和抑郁症[13-18]。其浓度的典型范围约为 10^(-7)-10^(-3)molL^(-1)10^{-7}-10^{-3} \mathrm{molL}^{-1} [19]。然而,UA 存在于人类体液中,如血液和尿液,是嘌呤代谢的主要副产品[20]。当 UA 水平超过饱和( 6.8mgdL^(-1)6.8 \mathrm{mg} \mathrm{dL}^{-1} 在血清中)时,尿酸结晶在关节、周围组织、肾脏和身体中积聚,导致痛风性炎性关节炎[21-23]。人类血浆
E-mail address: girma_salale@slu.edu.et. 电子邮件地址:girma_salale@slu.edu.et。
typically contains UA in the range of 3.6 to 8.3mgdL^(-1)8.3 \mathrm{mg} \mathrm{dL}^{-1} or 0.214 to 0.493mmolL^(-1)0.493 \mathrm{mmol} \mathrm{L}^{-1}. The abnormal level of UA is an indicator of many diseases, including hyperuricemia, diabetes (type 2), Lesch-Nyhan syndrome, cardiovascular disease, heart disease, hypertension, and kidney disease [20,24,25]. Therefore, the demand for analysing these biological molecules is growing more than ever in the field of applied science to improve medicine and health. 通常包含 UA 在 3.6 到 8.3mgdL^(-1)8.3 \mathrm{mg} \mathrm{dL}^{-1} 或 0.214 到 0.493mmolL^(-1)0.493 \mathrm{mmol} \mathrm{L}^{-1} 的范围内。UA 的异常水平是许多疾病的指标,包括高尿酸血症、糖尿病(2 型)、莱施-尼汉综合症、心血管疾病、心脏病、高血压和肾脏疾病[20,24,25]。因此,在应用科学领域,分析这些生物分子的需求比以往任何时候都更为迫切,以改善医学和健康。
Numerous techniques, such as UV-visible spectrophotometry [26], chemiluminescence [27], high-performance liquid chromatography (HPLC) [28], fluorimetry [29], titration [30], and electrochemical techniques [31], have been developed to date for the detection of AA, DA, and UA in real samples [32]. However, some of the methods lack the necessary sensitivity and selectivity, while others are expensive, timeconsuming, and require special training for equipment operators [33]. 到目前为止,已经开发了多种技术,例如紫外-可见分光光度法 [26]、化学发光法 [27]、高效液相色谱法 (HPLC) [28]、荧光法 [29]、滴定法 [30] 和电化学技术 [31],用于在真实样本中检测 AA、DA 和 UA [32]。然而,一些方法缺乏必要的灵敏度和选择性,而另一些则昂贵、耗时,并且需要对设备操作员进行特殊培训 [33]。
Among these techniques, electrochemical detection of AA, DA, and UA has attracted much interest because of its inherent advantages, including being low cost, easy to miniaturize, simple, quick, and highly sensitive [34]. Nonetheless, selectivity and simultaneous detection of three molecules (AA, DA, and UA) on bare electrodes in the same mixed solution have proven to be difficult. Due to the close oxidation potentials of DA, AA, and UA, the peaks overlap in electrochemical measurements [25,35]. Therefore, a variety of cutting-edge materials that can establish an enzyme-substrate relationship with a particular analyte have been used to modify working electrodes to overcome this difficulty and improve the method’s selectivity, sensitivity, and limit of detection. It should be demonstrated that the lock and key system will improve the electrochemical detection of a particular analyte in the presence of other analytes if such a modifier has bound a specific site for an analyte. MIPs (MIPs) fit this concept perfectly and have emerged as an effective solution for the selective detection of target molecules in complex matrices. 在这些技术中,AA、DA 和 UA 的电化学检测因其固有的优点而受到广泛关注,包括低成本、易于微型化、简单、快速和高灵敏度。然而,在同一混合溶液中,裸电极对三种分子(AA、DA 和 UA)的选择性和同时检测已被证明是困难的。由于 DA、AA 和 UA 的氧化电位接近,电化学测量中的峰值重叠。因此,已经使用多种前沿材料来修饰工作电极,以建立与特定分析物的酶-底物关系,以克服这一困难并提高方法的选择性、灵敏度和检测限。如果这样的修饰剂已绑定特定分析物的特定位点,则应证明锁和钥匙系统将在其他分析物存在的情况下改善特定分析物的电化学检测。分子印迹聚合物(MIPs)完美契合这一概念,并已成为在复杂基质中选择性检测目标分子的有效解决方案。
MIPs (MIPs) are artificially synthesized polymers that are capable of mimicking the molecular recognition process of biological macromolecules such as substrate enzymes or antigen antibodies [36,37]. MIPs are highly promising materials for the construction of chemical sensors due to their high chemical, mechanical, and thermal stability, high specificity, reusability, reproducibility, and low production cost [9,38][9,38]. The production of MIPs begins with the copolymerization of functional monomers, cross-linkers, and a target molecule, resulting in polymers with target molecules either covalently or noncovalently attached to a functional group of the host. Template molecules are removed from the polymer host by solvent extraction or chemical decomposition, leaving a target-specific cavity available for rebinding. The prepared MIP is then exposed to the target-containing sample, and the cavity selectively takes up the target molecule from a complex sample [34,36]. Various polymers, such as polypyrrole (Ppy), among many other CPs, such as polyaniline, poly(ethylenedioxythiophene) (PEDOT), and oo phenylenediamine (O-PD), are the most frequently used for the formation of MIP-based sensing structures due to possible electrodeposition from aqueous solution devices [24]. Various polymerization methods, such as bulk polymerization, the sol-gel process, electropolymerization, and layer-by-layer deposition, are used for the formation of MIPs. Among these methods, electrochemical polymerization is widely employed polymerization due to its low-cost, simple, and fast method that can control porosity, density, and thickness in the formation of the sensing platform. In addition, it creates a rigid, uniform, and compact molecularly imprinted layer that adheres well to the transducer surface of any shape and size. MIPs(分子印迹聚合物)是人工合成的聚合物,能够模拟生物大分子(如底物酶或抗原抗体)的分子识别过程[36,37]。由于其高化学、机械和热稳定性、高特异性、可重复使用性、可再生性和低生产成本,MIPs 在化学传感器的构建中具有很大的潜力 [9,38][9,38] 。MIPs 的生产始于功能单体、交联剂和目标分子的共聚合,形成的聚合物中目标分子以共价或非共价方式附着在宿主的功能基团上。模板分子通过溶剂提取或化学分解从聚合物宿主中去除,留下一个特定于目标的腔体以供重新结合。然后,将制备好的 MIP 暴露于含有目标的样品中,腔体选择性地从复杂样品中吸附目标分子[34,36]。 各种聚合物,如聚吡咯(Ppy),以及许多其他导电聚合物,如聚苯胺、聚(乙烯二氧噻吩)(PEDOT)和 oo 苯二胺(O-PD),由于可以从水溶液设备中电沉积,因此最常用于基于分子印迹聚合物(MIP)的传感结构的形成[24]。用于 MIP 形成的聚合方法有多种,如大宗聚合、溶胶-凝胶过程、电聚合和层层沉积。在这些方法中,电化学聚合因其低成本、简单和快速的方法而被广泛采用,可以控制传感平台的孔隙率、密度和厚度。此外,它还创建了一个刚性、均匀和紧凑的分子印迹层,能够很好地附着在任何形状和大小的传感器表面。
Despite the advantages of MIPs, they have some drawbacks, such as heterogeneous distribution, low electroconductivity, low binding capacity, low sensitivity, and lack of electrochemical catalytic effect [39]. To reduce these limitations and significantly improve the analytical performance of MIPs, nanomaterials should be combined with selective MIP strategies to enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface area, increasing the mechanical strength, increasing the electron transfer, and 尽管分子印迹聚合物(MIPs)具有一些优点,但它们也存在一些缺点,例如分布不均、导电性差、结合能力低、灵敏度低以及缺乏电化学催化效应[39]。为了减少这些限制并显著提高 MIPs 的分析性能,应将纳米材料与选择性 MIP 策略相结合,通过扩大电极表面积、增加机械强度、提高电子转移来增强分子印迹电化学传感器的灵敏度。
catalyzing the electrochemical reactions [40-42]. The use of nanomaterials in MIPs is necessary, as they can improve the response signal, increase sensitivity, and reduce the limit of detection of the sensors [39]. Nanomaterials include materials that have at least one dimension at the nanoscale ( 0.1-100nm0.1-100 \mathrm{~nm} ) or nano-objects that have two dimensions less than 100 nm (e.g., carbon nanotubes) and nanoparticles with three dimensions of less than 100 nm [43]. A variety of nanomaterials, such as noble metal nanoparticles, carbon nanotubes (MWCNTs/SWCNTs), graphene, carbon dots (CDs), black phosphorus (BP), and MXenes (Ti_(3)AlC_(3):}\left(\mathrm{Ti}_{3} \mathrm{AlC}_{3}\right. ), are commonly employed to boost the sensitivity of MIP biomimetic sensors. The presence of these nanomaterials enhanced the electrocatalysis of AA, DA, and UA by lowering the charge transfer resistance and oxidation potential. 催化电化学反应[40-42]。在分子印迹聚合物(MIPs)中使用纳米材料是必要的,因为它们可以改善响应信号、提高灵敏度并降低传感器的检测限[39]。纳米材料包括至少有一个维度在纳米尺度( 0.1-100nm0.1-100 \mathrm{~nm} )的材料,或两个维度小于 100 纳米的纳米物体(例如,碳纳米管)以及三维小于 100 纳米的纳米颗粒[43]。各种纳米材料,如贵金属纳米颗粒、碳纳米管(MWCNTs/SWCNTs)、石墨烯、碳点(CDs)、黑磷(BP)和 MXenes (Ti_(3)AlC_(3):}\left(\mathrm{Ti}_{3} \mathrm{AlC}_{3}\right. ),通常用于提高 MIP 仿生传感器的灵敏度。这些纳米材料的存在通过降低电荷转移电阻和氧化电位增强了 AA、DA 和 UA 的电催化作用。
The working principle of electrochemistry based on MIPs involves the use of MIPs, which are immobilized or electropolymerized onto nanomaterial-modified electrodes for the detection of AA, DA, and UA, as shown in Fig. 1. The first step of this process is to design and synthesize nanomaterials and modify them on the surface of polished electrodes to increase their conductivity and enhance their specific surface area. Next, the polymer and template molecules are electropolymerized on the nanomaterial-modified electrode, and the template molecules are then removed by solvent elution, leaving 3D cavities that can specifically match the template molecules. When the nanomaterialmodified electrode is used for detection, the electric signals appear weak due to the blocking of charge transfer between the electrode and the redox probes. The peak current, which is proportional to the concentration of the target molecule (AA, DA, and UA), is displayed when the voltage is scanned, [41]. 基于分子印迹聚合物(MIPs)的电化学工作原理涉及使用 MIPs,这些 MIPs 被固定或电聚合到纳米材料修饰的电极上,以检测 AA、DA 和 UA,如图 1 所示。该过程的第一步是设计和合成纳米材料,并将其修饰在抛光电极的表面,以提高其导电性并增强其比表面积。接下来,聚合物和模板分子在纳米材料修饰的电极上进行电聚合,然后通过溶剂洗脱去除模板分子,留下可以与模板分子特异性匹配的 3D 腔体。当使用纳米材料修饰的电极进行检测时,由于电极与氧化还原探针之间的电荷转移被阻塞,电信号显得微弱。当扫描电压时,峰值电流与目标分子(AA、DA 和 UA)的浓度成正比。
This review summarizes recent advances in the combination of nanomaterials with MIPs for the electrochemical sensing of biomolecules, particularly UA, DA, and AA. The most representative studies were highlighted to demonstrate the main strategies used for constructing MIPs on nanomaterial-modified electrodes, which could lead to the development of advanced sensing devices for AA, DA, and UA in the presence of complex matrices. To the best of my knowledge, no review article has been published on molecularly imprinted polymer (MIP) electrochemical sensors based on nanomaterial-modified electrodes for the determination of AA, although there are numerous published reviews for the determination of DA and uric acid. Thus, this study provides a comprehensive review of MIP electrochemical sensors, which are based on electrodes modified with nanomaterials and are used to measure three biological substances, including UA, AA, and DA. The comparison of the analytical figure of merits, particularly the linearity range and limit of detection of various modified electrodes for UA, AA, and DA analysis, is provided in Table 1. 本综述总结了纳米材料与分子印迹聚合物(MIPs)结合在生物分子电化学传感中的最新进展,特别是尿酸(UA)、多巴胺(DA)和抗坏血酸(AA)。突出了最具代表性的研究,以展示在纳米材料修饰电极上构建 MIPs 的主要策略,这可能导致在复杂基质中开发用于 AA、DA 和 UA 的先进传感器。据我所知,尚未发表关于基于纳米材料修饰电极的分子印迹聚合物(MIP)电化学传感器用于 AA 测定的综述文章,尽管已有许多关于 DA 和尿酸测定的综述。因此,本研究提供了基于纳米材料修饰电极的 MIP 电化学传感器的全面综述,用于测量包括 UA、AA 和 DA 在内的三种生物物质。表 1 提供了不同修饰电极在 UA、AA 和 DA 分析中的分析优点比较,特别是线性范围和检测限。
2. Molecularly imprinted polymer-based electrochemical sensor for detection of ascorbic acid 基于分子印迹聚合物的电化学传感器用于检测抗坏血酸
2.1.1. Black phosphorene quantum dot-modified electrode for AA detection 2.1.1. 黑磷量子点修饰电极用于 AA 检测
Zero-dimensional (OD) black phosphorus quantum dots (BPQDs) are widely used in biosensing due to their outstanding properties, such as a higher specific surface area, more surface-active sites, high hole mobility, quantum confinement, and edge effect [44,45]. The combination of this nanomaterial with selective MIPs should be considered as one of the important parameters in electrochemical sensing strategies to increase sensitivity. 零维(OD)黑磷量子点(BPQDs)因其优异的特性,如更高的比表面积、更多的表面活性位点、高孔迁移率、量子限制和边缘效应,广泛应用于生物传感 [44,45]。将这种纳米材料与选择性分子印迹聚合物(MIPs)结合,应被视为提高电化学传感策略灵敏度的重要参数之一。
Zhang et al. [45] fabricated molecularly imprinted polypyrrole (PPy) decorated with black phosphorene quantum dots (BPQDs) onto poly (3,4-ethylenedioxythiophene) nanorods (PEDOTNRs) by electrochem ical polymerization for voltammetric sensing of vitamin C. Due to its conductivity, stability, transparency, and biocompatibility, poly(3,4ethylenedioxythiophene) (PEDOT) is one of the most exceptional CPs 张等人[45]通过电化学聚合将装饰有黑磷量子点(BPQDs)的分子印迹聚吡咯(PPy)制备到聚(3,4-乙烯二氧噻吩)(PEDOTNRs)纳米棒上,用于维生素 C 的伏安传感。由于其导电性、稳定性、透明性和生物相容性,聚(3,4-乙烯二氧噻吩)(PEDOT)是最杰出的导电聚合物之一。
Fig. 1. Schematic illustration of the working principle of nanomaterial-modified electrodes for molecularly imprinted electrochemical biosensing of AA, DA, and UA [41]. 图 1. 纳米材料修饰电极用于分子印迹电化学生物传感 AA、DA 和 UA 的工作原理示意图[41]。
Table 1 表 1
Summary of some applications of electrochemical sensors based on MIPs combined with nanomaterials for the detection of AA, DA, and UA. 基于分子印迹聚合物与纳米材料结合的电化学传感器在 AA、DA 和 UA 检测中的一些应用总结。