Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors
开发一组机器学习算法以建模好氧颗粒污泥反应器
Graphical Abstract 图形摘要
Keywords 关键词
机器学习 人工神经网络 自适应神经模糊推理系统 支持向量回归 好氧颗粒污泥 序批反应器
1. Introduction 1. 引言
好氧颗粒污泥(AGS)是一种有前景的生物废水处理技术,在实验室中对生活污水和高强度废水的处理表现出色,并开始在全规模废水处理厂(WWTPs)中应用(Pronk 等,2015;Zheng 等,2020)。与传统活性污泥(CAS)相比,AGS 在反应器占地面积更小、有机负荷能力更高以及同时去除营养物质和有机物方面具有一定优势(He 等,2020)。生物质颗粒的紧凑结构使反应器对冲击负荷和有毒废水具有更高的抗压能力,并由于增强的沉降特性提供了更好的生物质保留(Franca 等,2018;Nancharaiah & Reddy,2018)。
尽管 AGS 在性能方面一直显示出良好的前景,但由于影响过程的因素众多,AGS 生物反应器的操作仍然具有挑战性(Wilén 等,2018)。进水废水的特性、反应器内的生物质特性以及操作条件在反应器的去除效率中都起着重要作用。此外,这些因素是相互关联的,并且具有复杂的非线性关系(Khan 等,2013)。进水特性和序批反应器(SBR)的操作模式在生物质微生物培养中起着重要作用,这反过来又影响颗粒结构的完整性和沉降能力。生物质的沉降能力还受到沉降时间、体积交换比和排放时间的影响。在沉降时间结束时,未能沉降到排放口下方的缓慢沉降生物质会在排水阶段被冲出反应器,留下沉降较快的颗粒在反应器内(Qin 等,2004;Wang 等,2004)。 这也影响了每个操作周期后反应器内剩余生物量的浓度,这为新颗粒的形成提供了种子,因此直接影响有机物和营养物质的去除水平。为了有氧降解有机物、硝化以及提供触发生物量絮凝体颗粒化过程所需的剪切力,必须有一定的曝气时间,后者是主导因素(Hamza et al., 2018)。影响 AGS 过程的其他因素包括进水 pH 值、体积交换比、水力停留时间(HRT)和温度(Khan et al., 2013)。这些因素的突然变化可能导致颗粒的结构完整性失效以及生物量从反应器中冲洗出去,导致反应器无法满足所需的出水质量。由于这些因素持续变化,AGS 系统的操作具有挑战性,需要仔细监测。
2. Methods
2.1. Experimental Setup

Fig. 1. SBR reactors setup.
Table 1. Reactor operation parameters.
Parameter | Empty Cell | Reactor R1 | Reactor R2 | Reactor R3 |
---|---|---|---|---|
Fill Time (min) | 6 – 7 | 6 – 8 | 60 | |
Idle Time (min) | 0 – 5 | 1 – 3 | 2 | |
Aeration Time (min) | 180 – 182 | 180 – 222 | 145 – 172 | |
Settling Time (min) | 3 – 15 | 8 – 30 | 5 – 30 | |
Decanting Time (min) | 1 – 6 | 1 | 1 | |
Superficial Air Velocity (cm/s) | 1.6 – 4 | 2.11 | 3 |
2.2. Model Structure

Fig. 2. Multi-stage model structure (stage 1 contains parameters after multicollinearity reduction).

Fig. 3. Algorithm alternatives flowchart: each model output is predicted using eight different algorithms.

Fig. 4. Data division for model development and evaluation.
2.3. Data Pre-Processing
Table 2. Statistical properties of the training and evaluation dataset.
Parameter | Max. | Min. | Mean | Coef. Of Var. | ||||
---|---|---|---|---|---|---|---|---|
Train. | Eval. | Train. | Eval. | Train. | Eval. | Train. | Eval. | |
Influent COD (mg/L) | 8758 | 7445 | 1287 | 1518 | 3352 | 3069 | 0.56 | 0.51 |
Influent NH4-N (mg/L) | 234 | 201 | 53 | 68 | 129 | 135 | 0.32 | 0.28 |
Influent PO43− (mg/L) | 124 | 83 | 3 | 6 | 48 | 47 | 0.38 | 0.33 |
Influent Flowrate (L/d) | 74.81 | 74.81 | 11.03 | 11.03 | 62.63 | 60.95 | 0.28 | 0.31 |
Volume (L) | 19 | 19 | 4.5 | 4.5 | 17.49 | 17.16 | 0.25 | 0.28 |
Influent pH | 9.06 | 8.47 | 0.00 | 6.62 | 7.17 | 7.19 | 0.08 | 0.04 |
OLR (kg COD/m3) | 33.08 | 26.87 | 3.48 | 4.47 | 11.06 | 9.70 | 0.66 | 0.57 |
HRT (h) | 9.67 | 9.67 | 5.92 | 5.92 | 7.69 | 7.79 | 0.10 | 0.09 |
Exchange Ratio (%) | 0.56 | 0.56 | 0.35 | 0.35 | 0.50 | 0.50 | 0.09 | 0.09 |
Superficial Air Vel (cm/s) | 3 | 3 | 1.56 | 1.56 | 2.51 | 2.53 | 0.18 | 0.18 |
Temperature (°C) | 24.1 | 23.7 | 12.4 | 14.3 | 20.5 | 20.5 | 0.09 | 0.09 |
Settling time (min) | 30 | 30 | 3 | 3 | 13.14 | 14.17 | 0.41 | 0.40 |
Aeration time (min) | 221 | 221 | 163 | 163 | 187 | 185 | 0.13 | 0.13 |
MLSS (mg/L) | 25157 | 24411 | 779 | 2485 | 7966 | 7446 | 0.66 | 0.61 |
MLVSS (mg/L) | 19303 | 18675 | 523 | 2015 | 6329 | 6023 | 0.61 | 0.57 |
SVI5 (mL/g) | 446 | 241 | 20 | 22 | 113 | 117 | 0.56 | 0.49 |
SVI30 (mL/g) | 278 | 137 | 18 | 21 | 73 | 75 | 0.48 | 0.39 |
Granule Size (μm) | 952 | 930 | 66 | 76 | 440 | 468 | 0.47 | 0.44 |
F/M Ratio | 12.14 | 4.21 | 0.54 | 0.92 | 2.07 | 1.89 | 0.51 | 0.34 |
Effluent COD (mg/L) | 4227 | 2940 | 0 | 9 | 210 | 136 | 3.03 | 3.11 |
Effluent NH3-N (mg/L) | 116 | 115 | 0 | 0 | 24 | 31 | 1.19 | 1.13 |
Effluent PO43− (mg/L) | 51 | 27 | 0 | 0 | 8 | 8 | 1.14 | 1.09 |
2.4. Feature Selection

Fig. 5. Stability of input scores (y-axes) with varying k values (x-axes).
2.5. Artificial neural networks
2.6. Adaptive neuro-fuzzy inference systems
2.7. Support vector regression
3. Results and Discussion
3.1. Aerobic Granular Sludge Performance
3.2. Feature Selection
Table 3. Multicollinearity reduction.
Model stage | Max. VIF before reduction | Max. VIF after reduction | Initial number of inputs | Final number of inputs | Number of inputs removed |
---|---|---|---|---|---|
Stage 2 | 990.55 | 4.63 | 13 | 9 | 4 |
Stage 3 | 1078.9 | 2.49 | 15 | 10 | 5 |
Stage 4 | 1132.1 | 3.11 | 18 | 10 | 8 |
Stage 5 | 1141.9 | 4.28 | 19 | 12 | 7 |
Table 4. Algorithms in which each of the inputs was used for each output.
Parameter | Outputs | |||||||
---|---|---|---|---|---|---|---|---|
MLSS | MLVSS | SVI5 | SVI30 | Granule Size | Effluent COD | Effluent NH4-N | Effluent PO43− | |
Influent NH4-N (mg/L) | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A |
Influent PO43− (mg/L) | N - S - A | N - S - A | N - S | N - S | N - S | N - S - A | N - S - A | N - S - A |
Volume (L) | N - S - A | N - S | N - S | N - S - A | N - S - A | |||
Influent pH | N - S - A | N - S | N - S | N - S | N - S | N - S | N - S | |
OLR (kg COD/m3) | N - S - A | N - S - A | ||||||
HRT (h) | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | N - S |
Superficial Air Vel. (cm/s) | A | N - S - A | N - S - A | N - S - A | N - S - A | N - S - A | ||
Temperature (°C) | N - S | N - S | N - S | N - S - A | N - S - A | N - S - A | N - S | |
Settling time (min) | S | N - S - A | N - S - A | N - S | N - S - A | N - S | ||
MLVSS (mg/L) | N - S - A | N - S - A | N - S | N - S - A | N - S - A | |||
SVI5 (mL/g) | N - S - A | |||||||
SVI30 (mL/g) | N - S - A | |||||||
Granule Size (μm) | N - S - A | N | N - S - A | |||||
F/M Ratio | N - S | N | N - S |
3.3. Model Development
Table 5. ANN architectures, SVR hyperparameters and ANFIS membership functions.
Output | ANN Architectures | SVR Hyperparameters | ANFIS Membership Function | ||
---|---|---|---|---|---|
C | γ | ε | |||
Empty Cell | |||||
MLSS (mg/L) | 6-4-3 | 1.763 | 1.8302 | 1.33E-04 | Triangular |
MLVSS (mg/L) | 5-4-9 | 244.46 | 8.6594 | 0.0004098 | Triangular |
SVI5 (mL/g) | 6-3-1 | 49.959 | 4.1236 | 0.0001425 | Gaussian Combination |
SVI30 (mL/g) | 2-7-4 | 0.59194 | 5.2062 | 0.013026 | Triangular |
Granule Size (μm) | 2-9-8 | 121.55 | 1.4949 | 0.0003605 | Gaussian Combination |
Effluent COD (mg/L) | 7-1-1 | 7.9007 | 2.7712 | 7.226E-06 | Gaussian Combination |
Effluent NH4-N (mg/L) | 6-6-1 | 1.2535 | 1.0669 | 0.0007429 | Triangular |
Effluent PO43− (mg/L) | 5-1-1 | 17.613 | 2.87 | 0.0002448 | Gaussian Combination |
Table 6. E-ANN architectures, E-SVR hyperparameters and E-ANFIS membership functions.
Output | E-ANN Architectures | E-SVR Hyperparameters | E-ANFIS Membership Function | ||
---|---|---|---|---|---|
C | γ | ε | |||
Empty Cell | |||||
MLSS (mg/L) | 1 | 274.69 | 3.1267 | 0.0001948 | Gaussian Combination |
MLVSS (mg/L) | 1 | 969.84 | 16.172 | 0.0006375 | Gaussian Combination |
SVI5 (mL/g) | 1 | 932.21 | 222.88 | 0.0005993 | Gaussian Combination |
SVI30 (mL/g) | 1 | 286.84 | 38.591 | 0.0071388 | Gaussian Combination |
Granule Size (μm) | 1 | 892.45 | 377.84 | 0.0002951 | Gaussian Combination |
Effluent COD (mg/L) | 1 | 998.2 | 115.86 | 0.0001844 | Gaussian Combination |
Effluent NH4-N (mg/L) | 1 | 886.38 | 329.18 | 0.0002088 | Gaussian Combination |
Effluent PO43− (mg/L) | 1 | 942.59 | 231.49 | 0.0012618 | Gaussian Combination |
3.4. Model Performance
Table 7. Overall average evaluation performance.
Metric | ANN | SVR | ANFIS | E-ANN | E-SVR | E-ANFIS | E-AVG | E-WAVG |
---|---|---|---|---|---|---|---|---|
R2 | 94.2% | 92.4% | 85.6% | 95.2% | 94.5% | 80.3% | 94.6% | 95% |
nRMSE | 0.037 | 0.043 | 0.062 | 0.034 | 0.036 | 0.081 | 0.037 | 0.035 |
sMAPE | 4.2% | 4.6% | 7.7% | 3.8% | 4% | 6.4% | 4.5% | 4.2% |
Table 8. Final model performance using the best performing algorithms.
Output | Chosen Algorithm | R2 (%) | nRMSE | sMAPE (%) | |||
---|---|---|---|---|---|---|---|
Training | Evaluation | Training | Evaluation | Training | Evaluation | ||
MLSS (mg/L) | E-NN | 97.80% | 96.11% | 0.031 | 0.036 | 3.06% | 4.05% |
MLVSS (mg/L) | E-NN | 97.58% | 94.30% | 0.031 | 0.043 | 2.91% | 4.56% |
SVI5 (mL/g) | E-NN | 98.53% | 95.89% | 0.017 | 0.028 | 2.29% | 3.16% |
SVI30 (mL/g) | E-NN | 95.81% | 92.19% | 0.025 | 0.030 | 2.93% | 3.49% |
Granule Size (μm) | E-WAVG | 97.06% | 88.75% | 0.038 | 0.073 | 2.54% | 3.78% |
Effluent COD (mg/L) | NN | 99.65% | 99.65% | 0.009 | 0.008 | 3.06% | 5.63% |
Effluent NH4-N (mg/L) | E-NN | 99.89% | 99.53% | 0.008 | 0.021 | 0.92% | 1.98% |
Effluent PO43− (mg/L) | E-NN | 99.72% | 98.96% | 0.010 | 0.018 | 1.85% | 2.88% |

Fig. 6. Diagonal plots of the final model predictions vs. target measured values using the evaluation dataset.
Table 9. Comparison between the dataset size and prediction R2 (%) of this study and other machine learning models for AGS and CAS.
Study | Algorithm | Model | Dataset Size (days) | Biomass | Effluent | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLSS | MLVSS | SVI5 | SVI30 | Granule Size | COD | NH4-N | TKN | TN | PO43− | ||||
This study | Ensemble | AGS | 475 | 96.1 | 94.3 | 95.9 | 92.2 | 88.75 | 99.7 | 99.5 | - | - | 99.0 |
(Zaghloul et al., 2020) | ANFIS | AGS | 2920 | 87.5 | 86.6 | 96.3 | 95.6 | 81.5 | 98.5 | 99.6 | - | - | 86.7 |
SVR | 99.9 | 99.9 | 99.9 | 99.8 | 99.8 | 99.9 | 99.9 | - | - | 99.7 | |||
(Zaghloul et al., 2018) | ANN | AGS | 2886 | 99.5 | 99.6 | 99.6 | 99.0 | 99.2 | 100.0 | 99.9 | - | - | 99.9 |
(Gong et al., 2018) | ANN | AGS | 205 (136)⁎ | - | - | - | - | - | 90.0 | - | - | 81.0 | - |
(Mahmod & Wahab, 2017) | ANN | AGS | 21 | - | - | - | - | - | 91.2 | - | - | - | - |
(Manu & Thalla, 2017) | ANFIS | CAS | 88 | - | - | - | - | - | - | - | 72.0 | - | - |
SVR | - | - | - | - | - | - | - | 82.5 | - | - | |||
(Guo et al., 2015) | ANN | CAS | 305 | - | - | - | - | - | - | - | - | 47.0 | - |
SVR | - | - | - | - | - | - | - | - | 46.0 | - |
- ⁎
- COD dataset was 205 days, TN dataset was 136 days.
4. Multi-Stage Model Structure
5. Failure prediction

Fig. 7. Measured vs predicted values with the local treated effluent regulations.
6. Conclusion
Declaration of Competing Interest
Acknowledgements
References
- Alin, 2010Multicollinearity. Wiley Interdisciplinary ReviewsComputational Statistics, 2 (3) (2010), pp. 370-374, 10.1002/wics.84
- Awad and Khanna, 2015Support vector regression. In Efficient Learning MachinesSpringer (2015), pp. 67-80
- Baeten et al., 2019Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors - A reviewWater Research, 149 (2019), pp. 322-341, 10.1016/j.watres.2018.11.026
- Baeten et al., 2018Modelling aerobic granular sludge reactors through apparent half-saturation coefficientsWater Research, 146 (2018), pp. 134-145, 10.1016/j.watres.2018.09.025
- Corominas et al., 2018Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniquesEnvironmental Modelling & Software, 106 (2018), pp. 89-103, 10.1016/j.envsoft.2017.11.023
- Cristianini and Shawe-Taylor, 2000An introduction to support vector machines and other kernel-based learning methodsCambridge university press (2000)
- Cui et al., 2020Pseudo-analytical solutions for multi-species biofilm model of aerobic granular sludgeEnvironmental Technology (United Kingdom) (0) (2020), pp. 1-11, 10.1080/09593330.2020.17336730
- de Kreuk et al., 2005Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludgeBiotechnology and Bioengineering, 90 (6) (2005), pp. 761-769, 10.1002/bit.20470
- El-Din et al., 2004Application of artificial neural networks in wastewater treatmentJournal of Environmental Engineering and Science, 3 (1) (2004), pp. S81-S95, 10.1139/s03-067
- Fernando and Shamseldin, 2009Investigation of Internal Functioning of the Radial-Basis-Function Neural Network River Flow Forecasting ModelsJournal of Hydrologic Engineering, 14 (3) (2009), pp. 286-292, 10.1061/(ASCE)1084-0699(2009)14
- Foresee and Hagan, 1997Gauss-Newton approximation to Bayesian learningProceedings of International Conference on Neural Networks ({ICNN}{\textquotesingle}97), 3 (1997), pp. 1930-1935, 10.1109/icnn.1997.614194
- Franca et al., 2018Stability of aerobic granules during long-term bioreactor operationBiotechnology Advances, 36 (1) (2018), pp. 228-246, 10.1016/j.biotechadv.2017.11.005
- Gong et al., 2018Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state conditionEnvironmental Technology, 40 (24) (2018), pp. 3124-3139, 10.1080/09593330.2018.1466920
- Goyal and Ojha, 2011Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model TreeWater Resources Management, 25 (9) (2011), pp. 2177-2195, 10.1007/s11269-011-9801-6
- Guo et al., 2015Prediction of effluent concentration in a wastewater treatment plant using machine learning modelsJournal of Environmental Sciences (China), 32 (2015), pp. 90-101, 10.1016/j.jes.2015.01.007
- Hamed et al., 2004Prediction of wastewater treatment plant performance using artificial neural networksEnvironmental Modelling & Software, 19 (10) (2004), pp. 919-928, 10.1016/j.envsoft.2003.10.005
- Hamza et al., 2018Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatmentJournal of Water Process Engineering (2018), p. 22, 10.1016/j.jwpe.2018.01.002
- Hamza et al., 2018Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewaterWater Research, 147 (2018), pp. 287-298, 10.1016/j.watres.2018.09.061
- He et al., 2020Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludgeJournal of Hazardous Materials, 382 (2020), Article 121043, 10.1016/j.jhazmat.2019.121043June 2019
- Iorhemen et al., 2020Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRTJournal of Environmental Chemical Engineering, 8 (2) (2020), Article 103681, 10.1016/j.jece.2020.103681
- Jang, 1993ANFIS: adaptive-network-based fuzzy inference systemIEEE Transactions on Systems, Man, and Cybernetics, 23 (3) (1993), pp. 665-685, 10.1109/21.256541
- Karamizadeh et al., 2014, SeptemberAdvantage and drawback of support vector machine functionality2014 International Conference on Computer, Communications, and Control Technology (I4CT) (2014, September), 10.1109/i4ct.2014.6914146
- Khan et al., 2013Aerobic granulation for wastewater bioremediation: A reviewThe Canadian Journal of Chemical Engineering, 91 (6) (2013), pp. 1045-1058, 10.1002/cjce.21729
- Kocaturk and Erguder, 2016Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granulesEcological Engineering, 90 (2016), pp. 12-24, 10.1016/j.ecoleng.2016.01.077
- Lakshminarayan et al., 1999Imputation of missing data in industrial databasesApplied Intelligence, 11 (3) (1999), pp. 259-275, 10.1023/A:1008334909089
- Lawrence and Giles, 2000Overfitting and neural networks: Conjugate gradient and backpropagationProceedings of the International Joint Conference on Neural Networks, 1 (2000), pp. 114-119, 10.1109/ijcnn.2000.857823
- Lee et al., 2008Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensorsProcess Biochemistry, 43 (10) (2008), pp. 1107-1113, 10.1016/j.procbio.2008.06.002
- Liang et al., 2020Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural networkBioresource Technology, 313 (2020), Article 123687, 10.1016/j.biortech.2020.123687June
- Liu et al., 2010Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periodsWater Science & Technology, 62 (6) (2010), p. 1281, 10.2166/wst.2010.408
- Liu et al., 2017Deep ordinal regression based on data relationship for small datasetsIJCAI International Joint Conference on Artificial Intelligence (2017), pp. 2372-2378
- Liu et al., 2007Microbial granulation technology for nutrient removal from wastewaterNova Publishers (2007)
- Mahmod and Wahab, 2017Dynamic Modelling of Aerobic Granular Sludge Artificial Neural NetworksInternational Journal of Electrical and Computer Engineering, 7 (3) (2017), p. 1568, 10.11591/ijece.v7i3.pp1568-1573
- Manu and Thalla, 2017Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewaterApplied Water Science, 7 (7) (2017), pp. 3783-3791, 10.1007/s13201-017-0526-4
- Nancharaiah and Reddy, 2018Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applicationsBioresource Technology, 247 (2018), pp. 1128-1143, 10.1016/j.biortech.2017.09.131
- Newhart et al., 2019Data-driven performance analyses of wastewater treatment plants: A reviewWater Research, 157 (2019), pp. 498-513, 10.1016/j.watres.2019.03.030
- Ni and Yu, 2010Mathematical modeling of aerobic granular sludge: A reviewBiotechnology Advances, 28 (6) (2010), pp. 895-909, 10.1016/j.biotechadv.2010.08.004
- Price, 1998Applied math for wastewater plant operatorsCRC Press (1998)
- Pronk et al., 2015Full scale performance of the aerobic granular sludge process for sewage treatmentWater Research, 84 (2015), pp. 207-217, 10.1016/j.watres.2015.07.011
- Qin et al., 2004Selection pressure is a driving force of aerobic granulation in sequencing batch reactorsProcess Biochemistry, 39 (5) (2004), pp. 579-584, 10.1016/S0032-9592(03)00125-0
- Read and Belsley, 1994Conditioning Diagnostics: Collinearity and Weak Data in RegressionBiometrics, 50 (1) (1994), p. 314, 10.2307/2533229
- Rice et al., 2017Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd Edition (23rd ed.). American Public Health Association, American Water Works Association, Water Environment Federation.
- Robnik-Šikonja and Kononenko, 1997An adaptation of {R}elief for attribute estimation in regressionMachine {L}earning: {P}roceedings of the {F}ourteenth International Conference, 5, ICML’97 (1997), pp. 296-304
- Sammut et al., 2016Sammut, C., & Webb, G. I. (2016). Encyclopedia of Machine Learning and Data Mining (C. Sammut & G. I. Webb (eds.)). Springer {US}. 10.1007/978-1-4899-7687-1
- Seshan et al., 2014Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: Effect of stress and bioaugmentationWater Research, 53 (2014), pp. 282-296, 10.1016/j.watres.2014.01.015
- Shaikhina and Khovanova, 2017Handling limited datasets with neural networks in medical applications: A small-data approachArtificial Intelligence in Medicine, 75 (2017), pp. 51-63, 10.1016/j.artmed.2016.12.003
- Smola and Schölkopf, 2004A tutorial on support vector regressionStatistics and Computing, 14 (3) (2004), pp. 199-222, 10.1023/b:stco.0000035301.49549.88
- Stathakis et al., 2006Neuro-Fuzzy Modelling For Crop Yield Prediction. The International Archives of the PhotogrammetryRemote Sensing and Spatial Information Sciences, 34 (2006), pp. 8-11
- Tay et al., 2002Characteristics of Aerobic Granules Grown on Glucose and Acetate in Sequential Aerobic Sludge Blanket ReactorsEnvironmental Technology, 23 (8) (2002), pp. 931-936, 10.1080/09593332308618363
- Urbanowicz et al., 2018Relief-based feature selection: Introduction and reviewJournal of Biomedical Informatics, 85 (June) (2018), pp. 189-203, 10.1016/j.jbi.2018.07.014
- Vapnik, 2000The Nature of Statistical Learning TheorySpringer, New York (2000), 10.1007/978-1-4757-3264-1
- Wang et al., 2008Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactorApplied Microbiology and Biotechnology, 79 (4) (2008), pp. 679-685, 10.1007/s00253-008-1466-6
- Wang et al., 2004Aerobic granular sludge cultivated under the selective pressure as a driving forceProcess Biochemistry, 39 (2004), pp. 557-563, 10.1016/S0032-9592(03)00128-6
- Wilén et al., 2018The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent qualityApplied Microbiology and Biotechnology, 102 (12) (2018), pp. 5005-5020, 10.1007/s00253-018-8990-9
- Wójcik and Kurdziel, 2019Training neural networks on high-dimensional data using random projectionPattern Analysis and Applications, 22 (3) (2019), pp. 1221-1231, 10.1007/s10044-018-0697-0
- Ye et al., 2020Tackling environmental challenges in pollution controls using artificial intelligence: A reviewScience of the Total Environment, 699 (2020), Article 134279, 10.1016/j.scitotenv.2019.134279
- Yilmaz et al., 2008Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludgeBiotechnology and Bioengineering, 100 (3) (2008), pp. 529-541, 10.1002/bit.21774
- Zaghloul et al., 2018Performance prediction of an aerobic granular SBR using modular multilayer artificial neural networksScience of the Total Environment, 645 (2018), pp. 449-459, 10.1016/j.scitotenv.2018.07.140
- Zaghloul et al., 2020Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactorsJournal of Environmental Chemical Engineering, 8 (3) (2020), Article 103742, 10.1016/j.jece.2020.103742
- Zheng et al., 2020The recent development of the aerobic granular sludge for industrial wastewater treatment: a mini reviewEnvironmental Technology Reviews, 9 (1) (2020), pp. 55-66, 10.1080/21622515.2020.1732479
Cited by (40)
Machine-learning-based prediction and optimization of emerging contaminants' adsorption capacity on biochar materials
2023, Chemical Engineering JournalApplication of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal
2022, Journal of Environmental Chemical EngineeringCitation Excerpt :This paper presents a machine learning ensemble model for a full-scale BNR process. It is the first application of the modular multi-stage model structure developed by Zaghloul et al. [34] in full-scale using real wastewater, after its success in laboratory-scale applications using synthetic wastewater. It is also the first model to predict 15 process parameters using machine learning.
Multidisciplinary characterization of nitrogen-removal granular sludge: A review of advances and technologies
2022, Water ResearchCitation Excerpt :The attempt in NRGS began by using various models, such as adaptive neuro-fuzzy inference system, support vector regression, and artificial neuron network, in AGS to achieve process-simulation and performance-prediction (Liang et al., 2020; Zaghloul et al., 2018; 2020). In recent studies, an ensemble of machine learning was developed with a good fit to model AGS reactors: A five-stage machine learning model was proposed, which could predict the performance of AGS and explain the reason for predicted failures (Zaghloul et al., 2021). Although these properties are artificially classified as physical-, chemical-, biological- and systematic, their inherent associations cannot be overlooked.
Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process
2022, Bioresource TechnologyMachine learning in natural and engineered water systems
2021, Water ResearchCitation Excerpt :Then the outputs were combined as inputs for the subsequent ensemble algorithms, of which the best outputs were determined to be the final prediction. This approach improved the performance of ML models with a small dataset by combining the advantages of different algorithms instead of discussing and selecting the best single one (Zaghloul et al., 2020b). In addition to the common indicators mentioned above, some other parameters related to WWTPs have also been predicted.
Performance prediction of trace metals and cod in wastewater treatment using artificial neural network
2021, Computers and Chemical EngineeringCitation Excerpt :Global development of supervision tools and reliable real-time control was applied to the wastewater treatment process. The ANNs have proven to be the universal tool for forecasting and prediction where the much-desired input to output is determined by external and supervised adjustment of the system parameters (Zaghloul et al., 2021). Artificial neural network (ANNs) are designed to solve problems with unknown required output (unsupervised learning algorithms) and known output (supervised learning algorithms) (Fernando and Surgenor, 2017).
- #
- Deceased.