Hybrid search with neighborhood reduction for the multiple traveling salesman problem
具有邻域约简的混合搜索,用于多行程推销员问题
Keywords 关键字
1. Introduction 1. 引言
The multiple traveling salesman problem (mTSP) generalizes the popular NP-hard traveling salesman problem (TSP) with multiple salespersons. Formally, the mTSP is the following graph theoretic problem. Let =() be a graph with vertex set and a set of arcs , where 0 of is the depot and the remaining vertices represent cities. Let
() be a non-negative cost (distance) matrix associated with , which satisfies the triangle inequality ( for any and ). The matrix is said to be symmetric when and asymmetric otherwise. A feasible solution is a partition of the set of cities into distinct Hamiltonian tours , such that each tour
starts and ends at the depot, and includes at least one city. The minsum mTSP, first proposed in Svestka and Huckfeldt (1973), is to minimize the total traveling tour-length of a given mTSP instance and can be described by the following mathematical model (Cheikhrouhou and Khoufi, 2021). (1)where is a feasible solution with
representing the th tour composed of the vertices visited by the th salesman, and is the length of the tour . It is easy to observe that the minsum mTSP becomes the conventional TSP when (only one salesman).
多旅行销售员问题 (mTSP) 概括了具有多个销售员的常用 NP 困难旅行销售员问题 (TSP)。从形式上讲,mTSP 是以下图论问题。设 =( ) 是一个具有顶点集 和一组弧的 图形,其中 0 是 仓库,其余顶点 表示 城市。让
( ) 是与 关联的非负成本(距离)矩阵,它满足三角形不等式( 对于任意 和 )。当 矩阵 时称为对称矩阵,否则称为不对称矩阵。可行的解决方案是将城市 集划分为 不同的 Hamiltonian 游览 ,以便每个游览 在站点开始和结束,并且至少包括一个城市。最小 mTSP 于 Svestka 和 Huckfeldt (1973) 首次提出,旨在最小化给定 mTSP 实例的总旅行长度,可以用以下数学模型来描述(Cheikhrouhou 和 Khoufi,2021 年)。 (1) 其中 是一个可行的解决方案,它 表示由 第 TH 个推销员访问的顶点组成的 第 个 tour,并且 是 tour 的长度。很容易观察到,当(只有一个销售人员)时 ,最小 mTSP 会成为传统的 TSP。
By minimizing the total tour-length of all the salesmen, the minsum mTSP aims to optimize the total efficiency of a solution. In some contexts, it is useful to consider the equity criterion by avoiding excessive tour-length differences among the salesmen. To this end, the minmax mTSP was introduced in França et al. (1995), which minimizes the longest tour and can be formulated by the mathematical model as follows (Cheikhrouhou and Khoufi, 2021). (2)
通过最小化所有销售人员的总行程长度,minsum mTSP 旨在优化解决方案的总体效率。在某些情况下,通过避免销售人员之间过多的旅行长度差异来考虑公平标准是有用的。为此,França 等人(1995 年)引入了最小 mTSP,它最大限度地减少了最长的行程,可以通过数学模型公式化如下(Cheikhrouhou 和 Khoufi,2021 年)。 (2)
From an application perspective, these mTSP models are useful for a number of real problems that cannot be formulated conveniently with the classical TSP model (Cheikhrouhou and Khoufi, 2021). Representative examples include news paper delivery (Whizzkids’96, 1996), hot rolling scheduling (Tang et al., 2000), 3D path planning (Ergezer and Leblebicioğlu, 2014), multi-unit service scheduling (Carter and Ragsdale, 2009), path planning for robot and UAV (Zhan and Zeng, 2019, Koubâa et al., 2017), container drayage services (Zhang et al., 2018, Shiri and Huynh, 2016), and harvesters scheduling (He et al., 2018, He et al., 2019). Additional practical problems can be formulated by extended mTSP variants (Bektaş, 2012, Lu et al., 2019, Paydar et al., 2010).
从应用的角度来看,这些 mTSP 模型对于许多无法用经典 TSP 模型方便地表述的实际问题很有用(Cheikhrouhou 和 Khoufi,2021 年)。代表性示例包括新闻纸交付 (Whizzkids'96, 1996)、热轧调度 (Tang et al., 2000)、3D 路径规划 (Ergezer 和 Leblebicioğlu, 2014)、多单元服务调度 (Carter 和 Ragsdale, 2009)、机器人和无人机的路径规划 (Zhan 和 Zeng,2019 年,Koubâa 等人,2017 年)、集装箱拖运服务(Zhang 等人,2018 年,Shiri 和 Huynh,2016 年)和收割机调度 (He 等人,2018 年,He 等人,2019 年).额外的实际问题可以通过扩展的 mTSP 变体来表述(Bektaş,2012 年,Lu 等人,2019 年,Paydar 等人,2010 年)。
On the other hand, as a generalization of the NP-hard TSP problem, the mTSP is computationally challenging from the perspective of optimization.
另一方面,作为NP-hard TSP问题的推广,从优化的角度来看,mTSP在计算上具有挑战性。
Due to its theoretical and practical interest, the mTSP has received much attention from various fields including engineering, operations research and computer science. There are exact algorithms for the minsum mTSP, including a branch-and-bound algorithm (Gavish and Srikanth, 1986) and a cutting plane algorithm (Laporte and Nobert, 1980). Optimal results were reported on instances with up to 500 vertices and 10 salesmen. There are also exact algorithms for variants of the minmax mTSP. For example, a branch-and-cut algorithm (Applegate et al., 2002) was presented to solve a minmax vehicle routing problem on instances up to 120 cities and 4 vehicles. Benders decomposition algorithms (Bektaş, 2012) were proposed to optimally solve the mTSP with load balancing on instances with up to 171 cities and 10 salesmen. Given the NP-hard nature of the problem, a number of heuristic and metaheuristic algorithms have been developed to find suboptimal solutions for large instances that cannot be optimally solved, as reviewed in Section 2.
由于其理论和实践兴趣,mTSP 受到了包括工程、运筹学和计算机科学在内的各个领域的广泛关注。最小和 mTSP 有精确的算法,包括分支定界算法 (Gavish 和 Srikanth, 1986) 和切割平面算法 (Laporte 和 Nobert, 1980)。在具有多达 500 个顶点和 10 名推销员的实例上报告了最佳结果。还有用于最小最大 mTSP 变体的精确算法。例如,提出了一种分支和切割算法(Applegate et al., 2002)来解决多达 120 个城市和 4 辆车实例上的 minmax 车辆路径问题。提出了 Benders 分解算法 (Bektaş, 2012) 以最佳方式解决 mTSP,并在具有多达 171 个城市和 10 名销售人员的实例上进行负载均衡。鉴于问题的 NP-hard 性质,已经开发了许多启发式和元启发式算法,以查找无法最佳求解的大型实例的次优解决方案,如第 2 节 所述。
We observe that computational results have been improved continually with the introduction of new solution approaches and algorithms. Meanwhile, our literature review (see Section 2) indicates that existing methods lack stability and their performances typically degrade when large instances are solved (e.g. ). Moreover, some algorithms were designed only for one mTSP objective (minsum or minmax).
我们观察到,随着新的求解方法和算法的引入,计算结果得到了不断改进。同时,我们的文献综述(见第 2 节)表明,现有方法缺乏稳定性,并且在求解大型实例时性能通常会下降(例如)。 此外,一些算法仅针对一个 mTSP 目标 (minsum 或 minmax) 设计。
In this work, we aim to advance the state-of-the-art of solving large-scale instances of the mTSP for both objectives. For this purpose, we introduce an effective hybrid search algorithm that performs well especially on large mTSP instances. The proposed algorithm benefits from the symbiosis of inter-tour optimization and intra-tour optimization. The inter-tour optimization uses neighborhood search to improve the solution by exchanging information between two tours (via the insert and cross-exchange operators). The intra-tour optimization applies a TSP method (the EAX heuristic Nagata and Kobayashi, 2013) to keep each individual tour as short as possible. We carry out extensive experiments to show the competitiveness of the proposed algorithm. We perform additional experiments to assess the usefulness of its key ingredients. Finally, we present for the first time computational experiments of applying the TSP heuristic EAX to the minsum mTSP, and draw conclusions regarding the effectiveness of this approach.
在这项工作中,我们的目标是推进解决大规模 mTSP 实例的最新技术,以实现这两个目标。为此,我们引入了一种有效的混合搜索算法,该算法在大型 mTSP 实例上表现良好。所提算法受益于 Inter-Tour Optimization 和 Inter-Tour 优化的共生关系。游览间优化使用邻域搜索,通过在两个游览之间交换信息(通过 insert 和 cross-exchange 运算符)来改进解决方案。游览内优化应用 TSP 方法(EAX 启发式 Nagata 和 Kobayashi,2013 年),以使每个单独的游览尽可能短。我们进行了广泛的实验,以展示所提出的算法的竞争力。我们进行额外的实验以评估其关键成分的有用性。最后,我们首次提出了将 TSP 启发式 EAX 应用于最小 mTSP 的计算实验,并得出了关于这种方法有效性的结论。
The remainder of this paper is organized as follows. Section 2 provides a literature review on heuristic algorithms for the mTSP. Section 3 presents the details of the proposed algorithm. Section 4 shows computational results and comparisons. Section 5 investigates key ingredients of the proposed algorithm. Section 6 draws conclusions with research perspectives.
本文的其余部分组织如下。第 2 节提供了有关 mTSP 启发式算法的文献综述。第 3 节 介绍了所提议的算法的详细信息。第 4 部分显示了计算结果和比较。第 5 节调查了所提出的算法的关键组成部分。第 6 节从研究的角度得出结论。
2. Literature review 2. 文献综述
In this section, we provide a literature review of the most representative heuristic algorithms for the mTSP. These algorithms are divided into three categories: population-based evolutionary algorithms, swarm intelligence algorithms and neighborhood-based local optimization. The reviewed algorithms are summarized in Table 1, where “both” means the corresponding algorithm solves both the minsum and minmax mTSP. For a comprehensive survey of exact and heuristic methods, the reader is referred to Bektas (2006) and Cheikhrouhou and Khoufi (2021).
在本节中,我们提供了 mTSP 最具代表性的启发式算法的文献综述。这些算法分为三类:基于种群的进化算法、群体智能算法和基于邻域的局部优化。表 1 总结了回顾的算法,其中 “both” 表示相应的算法同时求解 minsum 和 minmax mTSP。 有关精确和启发式方法的全面调查,读者可参考 Bektas (2006) 和 Cheikhrouhou 和 Khoufi (2021)。
Various population-based evolutionary algorithms have been proposed for solving the mTSP. In 2006, Carter and Ragsdale (2006) presented a grouping genetic algorithm for the mTSP using a two-part chromosome to represent a solution. Compared to two previous chromosome representations, the two-part chromosome representation avoids redundant solutions and thus reduces the solution space. This work also introduced a set of benchmark instances with 50–150 cities and 3–30 salesmen, and showed comparisons with genetic algorithms using other representations. Similarly, in 2007, Brown et al. (2007) showed a follow-up study (Carter and Ragsdale, 2006) of using another two-part chromosome representation where both real-valued genes and integer-valued genes are used. Another group of benchmark instances was proposed for their computational studies. Subsequently, in 2009, Singh and Baghel (2009) presented another grouping genetic algorithm with the so-called m-tour chromosome representation, where each tour is represented by an array and no ordering is imposed among tours. This algorithm employed a steady-state population replacement method, and outperformed the genetic algorithms of Carter and Ragsdale, 2006, Brown et al., 2007 in terms of the minsum mTSP and the minmax mTSP. In 2013, Yuan et al. (2013) investigated a specific crossover operator (called TCX) based on the two-part chromosome of Carter and Ragsdale (2006). The proposed crossover aims to better preserve building block information during solution recombination while ensuring a good diversity. They showed a superior performance of their TCX-based genetic algorithm over genetic algorithms using three other crossover operators including the algorithm of Carter and Ragsdale (2006). In 2017, Wang et al. (2017) designed a memetic algorithm (MASVND) for the minmax mTSP. The algorithm employs recombination and mutation operators based on spatial distribution (Pandiri and Singh, 2015) and incorporates four neighborhood search operators (one-point move, Or-opt2 move, Or-opt move and Or-opt move) for the variable neighborhood descent. They introduced a new set of (large) benchmark instances and assessed MASVND for the minmax mTSP compared to ABC (Pandiri and Singh, 2015), IWO (Pandiri and Singh, 2015) and GVNS (Soylu, 2015). The results indicated that MASVND outperforms its competitors on large instances (with 532–1173 cities), but performs worse than IWO on small instances (with 51–318 cities). In 2021, Karabulut et al. (2021) proposed an evolution strategy (ES) approach for solving the mTSP and multi-depots mTSP with non-predetermined depots. This approach adopts a self-adaptive Ruin and Recreate heuristic to generate offspring solutions, and a local search, including 3-opt, to further enhance the solution quality. The computational experiments showed the competitiveness of this approach on the minsum and minmax mTSP instances.
已经提出了各种基于群体的进化算法来解决 mTSP。2006 年,Carter 和 Ragsdale (2006) 提出了一种 mTSP 的分组遗传算法,使用两部分染色体来表示解决方案。与之前的两种染色体表示相比,两部分染色体表示避免了冗余解,从而减少了解空间。这项工作还引入了一组具有 50-150 个城市和 3-30 名销售人员的基准实例,并显示了与使用其他表示的遗传算法的比较。同样,在 2007 年,Brown 等人(2007 年)展示了一项后续研究(Carter 和 Ragsdale,2006 年),该研究使用另一种由两部分组成的染色体表示,其中同时使用实值基因和整数值基因。另一组基准实例被提议用于他们的计算研究。随后,在 2009 年,Singh 和 Baghel (2009) 提出了另一种具有所谓的 m-tour 染色体表示的分组遗传算法,其中每个旅行都由一个数组表示,并且旅行之间没有强加顺序。该算法采用稳态种群替换方法,在最小 mTSP 和最小 mTSP 方面优于 Carter 和 Ragsdale, 2006, Brown et al., 2007 的遗传算法。2013 年,Yuan 等人。 (2013 年)研究了基于 Carter 和 Ragsdale (2006) 的两部分染色体 的特定交叉运算符(称为 TCX)。拟议的交叉旨在在解决方案重组过程中更好地保留构建模块信息,同时确保良好的多样性。他们展示了基于 TCX 的遗传算法优于使用其他三种交叉运算符的遗传算法,包括 Carter 和 Ragsdale (2006) 的 算法。2017 年,Wang 等人 (2017) 为最小 mTSP 设计了一种模因算法 (MASVND)。该算法采用基于空间分布 的重组和突变运算符(Pandiri 和 Singh,2015 年),并结合了四个邻域搜索运算符(单点移动、Or-opt2 移动、Or-opt 移动和 Or-opt 移动)用于可变邻域下降。他们引入了一组新的(大型)基准实例,并与 ABC (Pandiri 和 Singh,2015 年)、IWO(Pandiri 和 Singh,2015 年)和 GVNS (Soylu,2015 年)相比,评估了 MASVND 的最小最大 mTSP).结果表明,MASVND 在大型实例(532-1173 个城市)上的表现优于其竞争对手,但在小型实例(51-318 个城市)上的表现比 IWO 差。2021 年,Karabulut 等人。 (2021 年) 提出了一种进化策略 (ES) 方法,用于求解具有非预定仓库的 mTSP 和多仓库 mTSP。这种方法采用自适应的 Ruin and Recreate 启发式方法来生成后代解决方案,并采用本地搜索(包括 3-opt)来进一步提高解决方案质量。计算实验显示了这种方法在 minsum 和 minmax mTSP 实例上的竞争力。
Algorithm 算法 | Population-based evolutionary algorithms 基于群体的进化算法 | Swarm intelligence algorithms 群体智能算法 | Neighborhood-based local search 基于邻域的本地搜索 | Problem solved 问题已解决 |
---|---|---|---|---|
Carter and Ragsdale (2006) 卡特和拉格斯代尔 (2006) | ✓ | both 双 | ||
Brown et al. (2007) Brown等人(2007年) | ✓ | both 双 | ||
Singh and Baghel (2009) Singh 和 Baghel (2009) | ✓ | both 双 | ||
Yuan et al. (2013) Yuan等人(2013) | ✓ | both 双 | ||
Wang et al. (2017) Wang等人(2017) | ✓ | minmax 最小 | ||
Karabulut et al. (2021) Karabulut 等人 (2021) | ✓ | both 双 | ||
Pan and Wang (2006) Pan和Wang(2006) | ✓ | both 双 | ||
Liu et al. (2009) Liu等人(2009) | ✓ | both 双 | ||
Pandiri and Singh (2015) Pandiri和Singh(2015) | ✓ | both 双 | ||
Lu and Yue (2019) Lu and Yue (2019) | ✓ | minmax 最小 | ||
Soylu (2015) 索伊鲁 (2015) | ✓ | both 双 | ||
Penna et al. (2013) Penna等人(2013) | ✓ | minsum 最小 | ||
Uchoa et al. (2017) Uchoa 等人 (2017) | ✓ | minsum 最小 |
Another popular approach for solving the mTSP concerns swarm intelligence methods. In 2006, Pan and Wang (2006) presented a basic ant colony optimization (ACO) algorithm and showed a limited comparison with a genetic algorithm. In 2009, Liu et al. (2009) exposed another ACO algorithm which integrates local search for search intensification. They showed competitive results for the minsum mTSP and the minmax mTSP compared to a genetic algorithm on some benchmark instances. In 2019, Lu and Yue (2019) introduced a mission-oriented ant-team ACO algorithm and reported comparative studies with previous algorithms on the instances of Carter and Ragsdale (2006). In 2015, Pandiri and Singh (2015) presented several algorithms based on artificial bee colony (ABC) and invasive weed optimization (IWO) for the minsum mTSP and the minmax mTSP, which use local search for the post-optimization. There are two versions of the ABC algorithm, where neighboring solutions are generated from the original solution based on different distance strategies. IWO can be considered as a reinforced ABC algorithm because it generalizes ABC, by visiting more neighboring solutions at each generation. These algorithms showed excellent performances and updated a majority of the best results of previous algorithms for the benchmark instances of Carter and Ragsdale, 2006, Brown et al., 2007, Singh and Baghel, 2009.
解决 mTSP 的另一种流行方法涉及群体智能方法。2006 年,Pan 和 Wang (2006) 提出了一种基本的蚁群优化 (ACO) 算法,并展示了与遗传算法的有限比较。2009 年,Liu et al. (2009) 提出了另一种 ACO 算法,该算法集成了本地搜索以进行搜索强化。与某些基准实例上的遗传算法相比,它们显示了 minsum mTSP 和 minmax mTSP 的竞争结果。2019 年,Lu 和 Yue (2019) 引入了一种面向任务的蚂蚁团队 ACO 算法,并报告了与 Carter 和 Ragsdale (2006) 实例 上先前算法的比较研究。2015 年,Pandiri 和 Singh (2015) 提出了几种基于人工蜂群 (ABC) 和侵入性杂草优化 (IWO) 的算法,用于最小 mTSP 和最小最大 mTSP,它们使用局部搜索进行后优化。ABC 算法有两个版本,其中相邻解是根据不同的距离策略从原始解生成的。IWO 可以被视为一种增强的 ABC 算法,因为它通过在每一代访问更多相邻解决方案来泛化 ABC。这些算法显示出出色的性能,并更新了 Carter 和 Ragsdale, 2006, Brown et al., 2007, Singh and Baghel, 2009 的基准实例之前算法的大部分最佳结果。
Compared to the aforementioned approaches, there are relatively few studies using neighborhood-based local optimization to solve the mTSP, among which the general variable neighborhood search heuristic (GVNS) presented by Soylu (2015) is a representative example. Based on the m-tour solution representation, this algorithm applies six neighborhood search operators (one-point move, two types of Or-opt move, two-point move and three-point move, as well as 2-opt) to find local optima and uses a random shaking method to escape local optimum traps. Experimental results indicated that the algorithm globally competes well with previous methods, except IWO (Pandiri and Singh, 2015) which showed superior results on the instances of Carter and Ragsdale (2006).
与上述方法相比,使用基于邻域的局部优化来解决 mTSP 的研究相对较少,其中 Soylu (2015) 提出的一般变量邻域搜索启发式 (GVNS) 就是一个典型的例子。该算法基于 m-tour 解表示,采用 6 个邻域搜索算子(单点移动、两种 Or-opt 移动、2 点移动和 3 点移动,以及 2-opt)来寻找局部最优值,并使用随机摇动方法逃脱局部最优陷阱。实验结果表明,该算法与以前的方法在全球范围内竞争良好,除了 IWO (Pandiri 和 Singh, 2015) 在 Carter 和 Ragsdale (2006) 的实例上显示出更好的结果。
One notices that iterated local search (ILS) algorithms were designed for the related capacitated vehicle routing problem (CVRP), that becomes the minsum mTSP when the capacity is set to 1. In particular, Penna et al. (2013) proposed an ILS algorithm which uses a variable neighborhood descent procedure, with a random neighborhood ordering, in the local search phase. Uchoa et al. (2017) tested an ILS-based matheuristic algorithm on a set of new CVRP benchmark instances and reported several good results for the CVRP with capacity of 1, which is equivalent to the minsum mTSP. Local search algorithms were also proposed for the balanced mTSP (Garn, 2020) and balanced dynamic mTSP (Garn, 2021).
人们注意到迭代本地搜索 (ILS) 算法是为相关的有容量车辆路径问题 (CVRP) 设计的,当容量设置为 1 时,该问题成为最小 mTSP。特别是,Penna 等人(2013 年)提出了一种 ILS 算法,该算法在本地搜索阶段使用可变邻域下降程序,具有随机邻域排序。 Uchoa 等人(2017 年)测试了一种基于 ILS 的数学算法在一组新的 CVRP 基准实例上,并报告了容量为 1 的 CVRP 的几个良好结果,这相当于最小 mTSP。还提出了用于平衡 mTSP (Garn, 2020) 和平衡动态 mTSP (Garn, 2021) 的局部搜索算法。
Among the reviewed studies, the following algorithms hold the best-known results on the commonly used mTSP benchmark instances introduced in Carter and Ragsdale, 2006, Brown et al., 2007, Wang et al., 2017: ABC(VC), IWO (Pandiri and Singh, 2015), GVNS (Soylu, 2015), MASVND (Wang et al., 2017) (for the minmax mTSP only) and ES (Karabulut et al., 2021). Thus they can be considered to be the state-of-the-art methods for solving the mTSP, and are used as the main reference algorithms for the computational studies in this work. Nevertheless, none of the existing mTSP algorithms can be considered as the most effective for all benchmark instances for both the minsum and minmax objectives of the mTSP.
在回顾的研究中,以下算法在 Carter 和 Ragsdale,2006 年、Brown 等人,2007 年,Wang 等人,2017 年引入的常用 mTSP 基准实例上拥有最著名的结果:ABC(VC)、IWO(Pandiri 和 Singh,2015 年)、GVNS (Soylu,2015 年)、MASVND(Wang等人,2017 年)(仅适用于最小最大 mTSP)和 ES(Karabulut等人,2021 年)。因此,它们可以被认为是解决 mTSP 的最先进方法,并被用作本研究中计算研究的主要参考算法。然而,对于 mTSP 的最小和最小目标,现有的 mTSP 算法都不能被视为对所有基准实例最有效。
According to the reviewed studies, we observe that most existing mTSP algorithms are based on population-based and swarm intelligence approaches. These algorithms have fast convergences, and typically performed well on small instances. However, they showed inferior performances on large instances (Wang et al., 2017, Karabulut et al., 2021). To advance the state-of-the-art of solving the mTSP, especially on large instances, this work introduces a hybrid algorithm that combines an efficient neighborhood search (for inter-tour optimization) and a traveling salesman heuristic (for intra-tour optimization).
根据回顾的研究,我们观察到大多数现有的 mTSP 算法都是基于基于群体和群体智能的方法。这些算法具有快速收敛性,通常在小型实例上表现良好。然而,它们在大型实例 上表现出较差的性能(Wang et al., 2017, Karabulut et al., 2021)。为了推进解决 mTSP 的最新技术,尤其是在大型实例上,这项工作引入了一种混合算法,该算法结合了高效的邻域搜索(用于巡演间优化)和旅行推销员启发式(用于巡演内优化)。
Finally, it is known that the minsum mTSP can be conveniently transformed to the conventional TSP (Hong and Padberg, 1977, Rao, 1980). For a minsum mTSP instance with vertices and tours, this transformation leads to an equivalent TSP instance with vertices. is an extension of with additional vertices such that each new vertex is a duplicate of the depot in and each pair of depots have a large enough (e.g., infinite) distance between them. Then a mTSP solution of with tours () can be obtained from a TSP solution of (one single tour) by splitting the TSP solution of with each depot as the delimiter. As the result, the minsum mTSP can be solved by any TSP algorithm in principle. However, this approach has not been investigated experimentally in the literature. We fill the gap in this study by reporting the first computational results obtained by a TSP heuristic algorithm. We also use these results as additional references to assess our algorithm on the minsum mTSP instances.
最后,众所周知,最小 mTSP 可以方便地转换为常规 TSP(Hong 和 Padberg,1977 年,Rao,1980 年)。对于具有顶点和 游览的 minsum mTSP 实例 ,此转换会导致具有 顶点的等效 TSP 实例 。 是 具有 其他顶点的扩展,这样每个新顶点都是 中的站点副本, 并且每对站点之间具有足够大(例如,无限)的距离。然后,通过将每个仓库作为分隔符的 拆分 的 TSP 解,可以从 的 TSP 解 (单个 tour)中获得带有 tours ( ) 的 mTSP 解。 因此,原则上可以通过任何 TSP 算法来解决最小和 mTSP。然而,这种方法尚未在文献中进行实验研究。我们通过报告 TSP 启发式算法获得的第一个计算结果来填补本研究中的空白。我们还使用这些结果作为额外的参考来评估我们在 minsum mTSP 实例上的算法。
3. Hybrid search with neighborhood reduction
3. 具有邻域减少功能的混合搜索
This section introduces the hybrid search algorithm with neighborhood reduction (HSNR) designed to solve the minsum mTSP and the minmax mTSP. The general procedure is first exposed, followed by the detailed presentation of the search components.
本节介绍一种具有邻域约简(HSNR)的混合搜索算法,该算法旨在求解minsum mTSP和minmax mTSP。首先介绍一般过程,然后详细介绍搜索组件。
3.1. General procedure 3.1. 一般程序
HSNR is a hybrid algorithm combining inter-tour optimization by exchanging information between tours and intra-tour optimization by optimizing individual tours. The inter-tour optimization component aims to improve the solution by relocating cities among different tours, while the intra-tour optimization component tries to improve an individual tour by considering it as a TSP tour. By alternating these two complementary optimization components, the algorithm is offered the promise of exploring the search space effectively. To ensure a high computational efficiency, HSNR additionally adopts a specific neighborhood reduction technique to accelerate the examination of candidate solutions.
HSNR 是一种混合算法,通过在旅行之间交换信息来结合旅行间优化,通过优化单个旅行来结合旅行内部优化。Inter-tour optimization 组件旨在通过在不同旅行之间重新定位城市来改进解决方案,而 intra-tour 优化组件则试图通过将单个旅行视为 TSP 旅行来改进单个旅行。通过交替这两个互补的优化组件,该算法有望有效地探索搜索空间。为了确保高计算效率,HSNR 还采用了一种特定的邻域约简技术来加速对候选解的检查。
As shown in Algorithm 1, starting from a feasible solution given by the initialization procedure (Section 3.2) (line 2), the algorithm performs a number of iterations to improve the current solution () (lines 4–8). At each iteration, the solution is first improved by tabu search (Section 3.3.4) with the insert operator (Section 3.3.1) and the cross-exchange operator (Section 3.3.2), where cities are displaced among different tours. Once this insert and cross-exchange based inter-tour optimization is exhausted, the intra-tour optimization using the TSP heuristic EAX (Section 3.4) is triggered to improve each individual tour that was previously modified by insert and cross-exchange during inter-tour optimization. The above steps are then iterated until the stopping condition (typically a cutoff time limit) is met. During the search process, the best solution found () is updated whenever it is needed and finally returned at the end of the algorithm.
如算法 1 所示,从初始化过程(第 3.2 节 )(第 2 行)给出的可行解决方案开始,该算法执行多次迭代以改进当前解决方案 ( )(第 4-8 行)。在每次迭代中,首先通过使用插入运算符(第 3.3.1 节)和交叉交换运算符(第 3.3.2 节)的禁忌搜索(第 3.3.4 节 )来改进解决方案 。),其中城市在不同的旅行中流离失所。一旦这种基于插入和交叉交换的 inter-tour 优化用尽,就会触发使用 TSP 启发式 EAX(第 3.4 节)的 intra-tour 优化,以改进以前在环间优化期间由 insert 和 cross-exchange 修改的每个单独 tour。然后迭代上述步骤,直到满足停止条件(通常是截止时间限制)。在搜索过程中,找到的最佳解决方案 ( ) 会在需要时更新,并最终在算法结束时返回。
3.2. Initial solution 3.2. 初始解决方案
The initialization procedure of HSNR first constructs good candidate solutions and then selects the best one as the starting solution of the HSNR algorithm. To generate each of these solutions, the depot and a random unassigned city in are used to initiate each of the tours of the solution. Then the remaining cities (denoted by ) are added one by one and in a random order into the solution according to a greedy heuristic such that each city is inserted at the best position that increases the least either the total tour-length (for the minsum mTSP) or the current shortest tour (for the minmax mTSP).
HSNR 的初始化过程首先构建 好的候选解,然后选择最佳解作为 HSNR 算法的起始解。为了生成这些 解决方案中的每一个, 将使用 depot 和随机的未分配城市来启动解决方案的每个 游览。然后,根据贪婪启发式方法,将剩余的城市(用 表示)以随机顺序逐个添加到解决方案中,使得每个城市都插入到增加最少的总游览长度(对于最小和 mTSP)或当前最短游览(对于最小最大 mTSP)的最佳位置。
Specifically, in the case of the minsum mTSP, a random tour is picked first among the initial tours including only the depot and another city. Then the unassigned cities in are randomly considered one after the other and each selected city is greedily inserted into the tour at the position that leads to the smallest increase of the minsum objective. For the minmax mTSP, the unassigned cities are also randomly considered one by one. However, given that its objective is to minimize the longest tour, each selected city is inserted into the current shortest tour at the position with the least increase of this shortest tour . It is worth noting that for the minsum mTSP, the same tour is used to host all the unassigned cities in , while for the minmax mTSP, the shortest tour used for each city insertion could change between two successive iterations.
具体来说,对于 minsum mTSP,在 初始行程中首先选择一个随机行程 ,其中仅包括车辆段和另一个城市。然后,未 分配的城市将一个接一个地随机考虑,并且每个选定的城市都被贪婪地插入到游览 中,位于导致最小和目标增加最小的位置。对于 minmax mTSP,未分配的城市也被一一随机考虑。但是,鉴于其目标是最小化最长的游览,因此每个选定的城市都会入到当前最短的游览 中,位于此最短游览 增加最少的位置。值得注意的是,对于 minsum mTSP,相同的游览 用于托管 中的所有 未分配城市,而对于 minmax mTSP,用于每个城市插入的最短游览 可能会在两个连续迭代之间发生变化。
Finally, when all cities are assigned, a feasible solution is obtained. To raise its quality, the solution is improved by the best improvement descent based on the insert and cross-exchange operators (Sections 3.3.1 Insert, 3.3.2 Cross-exchange), followed by the optimization with the TSP heuristic EAX (Section 3.4).
最后,当分配所有城市时,得到一个可行的解决方案。为了提高其质量,通过基于 insert 和 cross-exchange 运算符的最佳改进下降来改进解决方案(第 3.3.1 节 插入,3.3.2 交叉交换),然后使用 TSP 启发式 EAX 进行优化(第 3.4 节)。
3.3. Inter-tour optimization with insert and cross-exchange
3.3. 通过插入和交叉交换进行跨行程优化
The inter-tour optimization component of HSNR relies on the insert and cross-exchange operators, which are popular for solving a variety of vehicle routing problems (e.g., Arnold et al., 2019, Taillard et al., 1997, Vidal et al., 2013). For the mTSP, the insert operator was previously used in the GVNS algorithm (Soylu, 2015) as one of its six move operators and the MASVND algorithm (Wang et al., 2017) one of the four move operators. In this work, in addition to the basic insert operator, we adopt for the first time the cross-exchange operator for solving the mTSP. Compared to insert, cross-exchange is a large neighborhood operator, which may help the algorithm to attain solutions that cannot be accessed with the insert operator.
HSNR 的 inter-tour optimization 组件依赖于 insert 和 cross-exchange 运算符,它们在解决各种车辆路径问题时很受欢迎(例如,Arnold 等人,2019 年,Taillard 等人,1997 年,Vidal 等人,2013 年)。对于 mTSP,插入运算符以前在 GVNS 算法 (Soylu, 2015) 中用作其六个移动运算符之一,而 MASVND 算法 (Wang et al., 2017) 用作四个移动运算符之一。在这项工作中,除了基本的插入运算符外,我们还首次采用了交叉交换运算符来解决 mTSP。与 insert 相比,cross-exchange 是一个大的邻域运算符,这可能有助于算法获得使用 insert 运算符无法访问的解决方案。
3.3.1. Insert 3.3.1. 插入
Let be a candidate solution composed of tours where
() represents the th tour including the cities visited by the th salesman. For each city, the insert operator looks for the best alternative position for the city with the minimal move gain (i.e., objective variation). When all cities are examined, the best move involving a pair of cities and is identified. Then the insert operator removes city from tour and reinserts after city in
(). After that, tour is reconnected by linking the city preceding and the city succeeding , while tour is updated by removing the link between the city preceding and . Fig. 1 illustrates one insert operation with the reconnection of the two impacted tours and .
设 为由 行程组成的候选解,其中
( ) 表示 第 TH 次旅行, 包括第 TH 名推销员访问的城市。对于每个城市,insert 运算符会为移动增益最小(即目标变化)的城市寻找最佳替代位置。当检查所有城市时,确定涉及一对城市 的最佳举措。然后,插入运算符从 tour 中删除 city , 并在 city in 之后 重新插入
( )。之后, tour 通过链接 preceding 和 city aftering 来重新连接,而 tour 则通过删除 preceding 和 之间的链接来更新 。 图 1 说明了一个插入操作,其中重新连接了两个受影响的游览 和 。
Let be the neighboring solution that is obtained by applying the insert operator to and be the induced neighborhood that comprises all the neighboring solutions of . is bounded by in size in the general case because there are pairs of cities.
设 为通过对 应用插入运算符得到的邻域解, 为 包含 的所有 邻域解的诱导邻域。 在一般情况下受 大小限制,因为存在 成对的城市。
For the minsum mTSP, this neighborhood is directly exploited by our algorithm. However, for the minmax mTSP, given that the goal is to minimize the longest tour, we limit the candidate cities to be moved by the insert operator to those of the longest tour in . This naturally reduces the general neighborhood to a much smaller neighborhood. In the HSNR algorithm, this reduced neighborhood is used in the case of the minmax mTSP.
对于最小和 mTSP,我们的算法直接利用这个邻域。但是,对于 minmax mTSP,假设目标是最小化最长的行程,我们将 insert 运算符要移动的候选城市限制为 中 最长行程的候选城市。这自然会将一般邻域 简化为一个小得多的邻域。在 HSNR 算法中,这种缩减 的邻域用于最小 mTSP 的情况。
Given the solution and a neighboring solution generated by displacing city from tour to tour , and the move gain
( is the minsum or minmax objective function) is calculated as follows. For the minsum mTSP, the move gain is computed by Eq. (3) in time. (3)where and are the city preceding and succeeding in tour , respectively, while and are the city preceding and succeeding in tour , respectively.
给定通过将城市 从一个 tour 移动到 tour 生成的解 和相邻解 ,以及移动增益
( 是 minsum 或 minmax 目标函数)的计算方式如下。对于最小和 mTSP,移动增益 由方程 (3) 在时间上 计算。 (3) 其中 和 分别是 tour 之前和之后 的城市,而 和 分别是 tour 之前和之后的城市。
For the minmax mTSP, is also obtained in constant time by Eq. (4). (4)where and are the longest tour and the second longest tour, respectively
对于最小最大值 mTSP, 也可以通过方程 (4) 在恒定时间内获得。 (4) 其中 和 分别是最长的行程和第二长的行程
3.3.2. Cross-exchange 3.3.2. 交叉交换
Given a solution , the cross-exchange operator modifies two tours (say and ) to generate a neighboring solution by removing four arcs in and , and then adding four other arcs (see Fig. 2). Equivalently, a cross-exchange operation can be viewed as exchanging a substring from and a substring from another tour . Besides, one of the two substrings is reversible when they are exchanged, as shown in Fig. 2 (right) where the substring is reversed. Clearly, without any additional condition, this operator can lead to an extremely large neighborhood (denoted by ) due to the size of the two exchanged substrings, making its exploration highly time-consuming.
给定一个解 ,交叉交换运算符修改两个行程(比如 和 ),通过删除 和 中的四个弧,然后添加其他四个弧来生成相邻的解(见图 2)。等效地,可以将交叉交换操作视为交换 another tour 的子字符串 和来自 another tour 的子字符串 。 此外,两个子串中的一个在交换时是可逆的,如图 2(右)所示 ,其中子串 是相反的。显然,在没有任何附加条件的情况下,由于两个交换的子串的大小,该运算符可以导致一个非常大的邻域(用 表示),这使得它的探索非常耗时。
To reduce the cross-exchange neighborhood to a reasonable size, we follow the idea of Taillard et al. (1997) developed for the vehicle routing problem (VRP) and limit the number of cities (the substring size) of the two candidate substrings and to cities at most (i.e., and ) where is a parameter. With this constraint, the cardinality of is bounded by in the general case.
为了将交叉交换邻域减少到合理的大小,我们遵循 Taillard 等人 (1997) 为车辆路径问题 (VRP) 开发的想法,并将两个候选子字符串 的城市数量(子字符串大小)限制为最多城市(即 和 ),其中 是一个参数。使用此约束时,在一般情况下 的 基数受 限制 。
Specifically, as shown in Fig. 2 (left), given a city , a new neighbor in another tour needs to be found. Let be such a neighbor. Suppose that is added as a new edge and the edge needs to be removed, since vertex can only have two adjacent vertices. For each determined pair of vertices and , the corresponding substrings and can consist of at most consecutive cities (i.e., and ). For a given pair of vertices, there are neighborhood solutions which need to be evaluated. For the specific case where the substring only consists of a city (=1), the size of can vary from 1 to
(), and thus neighborhood solutions need to be evaluated. Similarly, the size of substring can also vary from 1 to . Therefore, once a pair of vertices is given, the two corresponding substrings have combinations, leading to neighborhood solutions needed to be evaluated. Furthermore, given that there are pairs of vertices, is thus bounded by in size. To explore the neighborhood , the cross-exchange operator needs to identify, among all pairs of cities, the best pair of cities, and then exchanges their corresponding substrings.
具体来说,如图 2 所示( 左),给定一个城市 ,需要找到另一个旅行中的新邻居。让我们 成为这样的邻居。假设 它 被添加为一条新边,并且需要删除该边 ,因为顶点 只能有两个相邻的顶点。对于每对确定的顶点 和 ,相应的子字符串 和 最多可以由 连续的城市(即 和 )组成。对于给定的一对折点,存在需要评估的 邻域解。对于子字符串 仅包含城市 ( =1) 的特定情况,其 大小可以从 1 到
( ),因此 需要评估邻域解。同样,子字符串 的大小也可以从 1 到 不等。因此,一旦给定了一对折点,两个相应的子字符串就会有 组合,从而导致需要评估 邻域解。此外,假设有 成对的顶点, 因此 以大小为界。要探索 neighborhood ,交叉交换运算符需要在所有城市对中确定最佳城市对,然后交换它们相应的子字符串。
For the minsum mTSP, the move gain is computed by Eq. (5). (5)
对于最小和 mTSP,移动增益 由方程 (5) 计算。 (5)
For the minmax mTSP whose objective is to minimize the longest tour, one of the two substrings is always selected from the longest tour. Let be the longest tour. We first determine the start of substring as city . Then, we determine the start of the substring in another tour . Finally, the length of each substring based on the minimal move gain is determined by Eq. (6), where and are the second and third longest tours, respectively. (6)
对于目标是最小化最长行程的 minmax mTSP,始终从最长行程中选择两个子字符串之一。设 最长的旅行。我们首先将子字符串 的开头确定为 city 。然后,我们在另一个 tour 中确定子字符串 的开头。最后,基于最小移动增益 的每个子串的长度由方程 (6) 确定,其中 和 分别是第二和第三长的行程。 (6)
It is obvious that the move gain can be calculated in time for both the minsum and minmax objectives.
很明显,minsum 和 minmax 目标的移动增益 都可以及时 计算。
By limiting the number of cities in the two candidate substrings using the parameter, the cross-exchange neighborhood is reduced to the size of . However, such a neighborhood is still too large to be efficiently explored for high values. To an ensure high computational efficiency of the proposed algorithm, we introduce in Section 3.3.3 an additional neighborhood reduction technique that allows to reduce drastically the neighborhood without scarifying the search capacity of the algorithm. This technique is also applicable to the insert neighborhood.
通过使用 参数限制两个候选子字符串中的城市数量,交叉交换邻域的大小将减小到 。但是,此类邻域仍然太大,无法针对高 值进行有效探索。为了确保所提出的算法的高计算效率,我们在 Section 3.3.3 中引入了一种额外的邻域缩减技术,该技术允许在不增加算法搜索能力的情况下大幅减少邻域。该技术也适用于 insert 邻域。
3.3.3. Neighborhood reduction
3.3.3. 邻域减少
The difficulty of exploring the large cross-exchange neighborhood has been recognized in the VRP communities for a long time. To cope with the difficulty related to large neighborhoods, neighborhood pruning techniques have been introduced for the VRP, such as -nearest neighbors (Arnold and Sörensen, 2019) and granular neighborhoods (Toth and Vigo, 2003). Rather than examining the entire neighborhood, pruning techniques limit the considered neighboring solutions to specifically identified (promising) solutions. Similar neighborhood reduction techniques have been proposed to accelerate TSP algorithms for solving large instances. One popular technique is the -nearness strategy (Helsgaun, 2000) that was designed to improve the computational efficiency of the well known Lin–Kernighan (LK) heuristic for the TSP (Lin and Kernighan, 1973) and was also applied to the VRP (Arnold et al., 2019).
VRP 社区长期以来一直认识到探索大型交叉交换邻域的难度。为了应对与大型邻域相关的困难,VRP 引入了邻域修剪技术,例如 最近邻(Arnold 和 Sörensen,2019 年)和颗粒邻域(Toth 和 Vigo,2003 年)。修剪技术不是检查整个邻域,而是将考虑的邻域解限制为专门确定的(有希望的)解。已经提出了类似的邻域缩减技术来加速 TSP 算法以求解大型实例。一种流行的技术是 -nearness 策略 (Helsgaun, 2000),该策略旨在提高 TSP 的众所周知的 Lin-Kernighan (LK) 启发式算法的计算效率 (Lin and Kernighan, 1973),也应用于 VRP (Arnold et al., 2019)。
The -nearness strategy is developed by Helsgaun (2000) based on sensitivity analysis using minimum spanning 1-trees and showing a high similarity between a minimum 1-tree and an optimal TSP solution (they typically have 70% to 80% of edges in common). In other words, edges that belong to a minimum 1-tree stand a good chance of also belonging to an optimal tour and vice versa. Based on this, the -nearness strategy uses minimum 1-trees to identify a set of promising edges that are more likely involved in the optimal TSP solution. Given that the mTSP is an extension of the TSP, it is reasonable to use minimum 1-trees as a nearness measure for the mTSP as well. As such, the edges belonging to minimum 1-trees will be considered as promising in the sense that they are highly probably part of the optimal solution of the mTSP. Therefore, the set of promising edges identified by the -nearness strategy (Helsgaun, 2000) can be beneficially adopted for solving the mTSP.
-nearness 策略由 Helsgaun (2000) 开发,基于使用最小跨度 1 树的敏感性分析,并显示最小 1 树和最佳 TSP 解决方案之间的高度相似性(它们通常具有 70% 到 80% 的共同边)。换句话说,属于最小 1 棵树的边很有可能也属于最佳游览,反之亦然。基于此, -nearness 策略使用最小 1 棵树来识别一组更有可能参与最佳 TSP 解决方案的有前途的边缘 。鉴于 mTSP 是 TSP 的扩展,因此使用最小 1 棵树作为 mTSP 的接近度量也是合理的。因此,属于最小 1 棵树的边将被视为有前途,因为它们极有可能是 mTSP 最优解的一部分。因此,由 -nearness 策略 (Helsgaun, 2000) 确定的有前途的边 集可以有益地用于求解 mTSP。
In this work, we explore for the first time the idea of using the -nearness to accelerate the insert and cross-exchange operations for the mTSP and show its practical effectiveness especially for handling large instances. The basic rationale is that one can ignore many neighboring solutions of low quality induced by the insert and cross-exchange operators and focus only on promising neighboring solutions. Consider the insert operator shown in Fig. 1 and let be the set of promising edges identified by the -nearness as explained next. If an edge (say ) belongs to , then the corresponding move gain is evaluated; otherwise, the corresponding neighboring solution is ignored. When all the edges of are considered and the corresponding move gains are evaluated, the best neighboring solution is selected. Because the time complexity of evaluating a move gain is and neighboring solutions are evaluated, the time complexity of evaluating the insert neighborhood is reduced to . Similarly, for the cross-exchange operator shown in Fig. 2, if an arc (say ) belongs to , then the corresponding move gains need to be evaluated. When all the edges of the set are considered, the best neighboring solution is acquired. Therefore, the time complexity of exploring the neighborhood is reduced to .
在这项工作中,我们首次探索了使用 -nearness 来加速 mTSP 的插入和交叉交换操作的想法,并展示了其实际有效性,尤其是在处理大型实例时。基本原理是,人们可以忽略由 insert 和 cross-exchange 运算符引起的许多低质量的相邻解,而只关注有前途的相邻解。考虑图 1 中所示的 insert 运算符,并设 为 - nearness 标识的有前途的边集,如下所述。如果一条边(比如 )属于 ,则计算相应的移动增益 ;否则,将忽略相应的相邻解决方案。当考虑 的所有 边并评估相应的移动增益时,将选择最佳相邻解决方案。由于计算移动增益的时间复杂度为 并且 计算相邻解,因此计算插入邻域的时间复杂度降低到 。同样,对于图 2 所示的交叉交换算子,如果一个弧(比如 )属于 ,则需要评估相应的 移动增益。当考虑集合 的所有边时,将获得最佳邻解。因此,探索 邻域的时间复杂度降低到 。
We now explain how the set of promising edges is identified with the -nearness technique based on the notion of 1-tree. As shown in Algorithm 2, the minimum 1-tree () for a graph is a minimum spanning tree covering the cities of together with two edges of incident to the depot 0 (lines 3–4). By inserting a new edge () to , a cycle containing edge () in the spanning tree is generated (line 7). Then, a new 1-tree is obtained by removing the longest edge on the cycle (line 8). When all edges from incident to vertex are considered, the edges ( is a parameter) corresponding to the shortest 1-trees () are saved in the set (lines 11–12). This process continues until all the vertices in are considered, and then the set of promising edges is obtained. Based on the implementation techniques in Helsgaun (2000), building the set with the -nearness technique requires time.
我们现在解释一下如何用基于 1-tree 概念的 -nearness 技术来识别有前途的边 集。如算法 2 所示,图形 的最小 1 棵树 ( ) 是覆盖站点 0 的城市 和事件的两条边(第 3-4 行)的最小跨度树。通过将新边 ( ) 插入 到 ,将生成生成生成树中包含边 ( ) 的循环(第 7 行)。然后,通过删除循环中最长的边(第 8 行)来获得新的 1 棵树。当考虑从 事件到顶点 的所有边时,对应于最短的 1 棵树 ( ) 的 边( 是一个参数)将保存在集合 中(第 11-12 行)。这个过程一直持续到考虑 中的所有 顶点,然后获得有前途的边 集。基于 Helsgaun (2000) 中的实现技术,使用 -nearness 技术构建集合 需要 时间。
It is worth mentioning that no neighborhood reduction technique was employed in the existing mTSP algorithms including the neighborhood search algorithm GVNS (Soylu, 2015). As we show in Section 5.1, the -nearness technique contributes positively to the performance of the HSNR algorithm.
值得一提的是,现有的 mTSP 算法中没有采用邻域缩减技术,包括邻域搜索算法 GVNS (Soylu, 2015)。正如我们在 5.1 节中所示, -nearness 技术对 HSNR 算法的性能有积极贡献。
3.3.4. Neighborhood exploration with tabu search
3.3.4. 使用禁忌搜索进行邻域探索
To examine candidate solutions of a mTSP instance, HSNR employs the well-known tabu search (TS) metaheuristic (Glover and Laguna, 1997). One notices that TS is a popular method for solving routing problems (e.g., Taillard et al., 1997, Toth and Vigo, 2003), that are more general models than the mTSP. In our case, we design the first tabu search procedure to explore the insert neighborhood and the cross-exchange neighborhood that are reduced by the -nearness technique of Section 3.3.3.
为了检查 mTSP 实例的候选解决方案,HSNR 采用了著名的禁忌搜索 (TS) 元启发式方法 (Glover 和 Laguna,1997)。人们注意到 TS 是解决路由问题的一种流行方法(例如,Taillard et al., 1997, Toth and Vigo, 2003),这是比 mTSP 更通用的模型。在我们的例子中,我们设计了第一个禁忌搜索程序来探索插入邻域 和交叉交换邻域 ,它们被第 3.3.3 节的 -nearness 技术减少。
As described in Algorithm 3, the TS procedure starts by the initialization of the tabu list and the set containing the tours that are modified by the insert and cross-exchange operations. Then it performs a number of iterations until the best solution cannot be improved during consecutive iterations. At each iteration, tabu search identifies within the given neighborhood, the best eligible neighboring solution according to the mTSP objectives and uses to replace the current solution . A neighboring solution is qualified eligible if it is not forbidden by the tabu list or its quality is better than the best solution found so far . After each solution transition, the two modified tours are recorded in and the underlying insert or cross-exchange move leading to the new solution is added in the tabu list to avoid re-visiting the replaced solution. For the tabu list, we use the following mechanism. For a neighboring solution where the city is displaced from the tour to another tour, is recorded in and not allowed to join the tour again for the next iterations, where (called tabu tenure) is set to with being a random integer number in .
如算法 3 中所述,TS 过程从禁忌列表 的初始化开始,该列表和包含由 insert 和 cross-exchange 操作修改的 tours 的集合 。然后,它会执行多次迭代,直到在连续迭代期间 无法改进最佳解决方案 。在每次迭代中,禁忌搜索都会根据 mTSP 目标在给定邻域内确定最符合条件的相邻解决方案 ,并用于 替换当前解决方案 。如果禁忌列表不禁止或其质量优于迄今为止找到的最佳解决方案,则相邻解决方案符合条件 。在每次解决方案转换后,将记录两个修改后的行程, 并将导致新解决方案 的基础插入或交叉交换移动添加到禁忌列表中 ,以避免重新访问替换的解决方案。对于禁忌列表,我们使用以下机制。对于城市 从游览 中置换到另一个游览的相邻解决方案 , 将记录在 中,并且不允许在下一次 迭代中再次加入游览 ,其中 (称为禁忌任期)设置为 中的 随机整数 。
During the tabu search, if its best solution found () is not updated during consecutive iterations, the search is judged to be exhausted and terminates while returning the best solution found, the current solution () and the set of modified tours ().
在禁忌搜索期间,如果找到的最佳解决方案 ( ) 在连续迭代期间 未更新,则搜索将被判断为已穷尽并终止,同时返回找到的最佳解决方案、当前解决方案 ( ) 和修改后的 tours 集 ( )。
3.4. Intra-tour optimization with the TSP heuristic EAX
3.4. 使用 TSP 启发式 EAX 进行巡演内优化
Given a candidate solution , it is easy to observe that each individual tour can be considered as a TSP tour. As the result, existing TSP algorithms (e.g., 2-opt and LK) can directly be used to optimize the mTSP objectives by minimizing an individual tour without the need for designing new optimization methods. Indeed, this idea proved to be quite effective for several VRPs (Arnold et al., 2019, Arnold and Sörensen, 2019) and has been used in the GVNS algorithm for the mTSP (with the 2-opt heuristic) (Soylu, 2015) as well. In this work, the EAX heuristic (Nagata and Kobayashi, 2013),1 which is among the best TSP heuristics, is adopted for intra-tour optimization.
给定一个候选解决方案 ,很容易观察到每个单独的游览 都可以被视为 TSP 游览。因此,现有的 TSP 算法(例如 2-opt 和 LK)可以直接用于优化 mTSP 目标,通过最大限度地减少单个行程,而无需设计新的优化方法。事实上,这个想法被证明对几个 VRP 非常有效(Arnold 等人,2019 年,Arnold 和 Sörensen,2019 年),并且已用于 mTSP 的 GVNS 算法(使用 2 选项启发式)(Soylu,2015 年)。在这项工作中,EAX 启发式方法(Nagata 和 Kobayashi,2013 年)1 是最好的 TSP 启发式方法之一,用于游览内部优化。
Specifically, for each tour in the set (It records the tours modified by the insert and cross-exchange operators during tabu search), EAX is applied to minimize the tour as follows. First, the tour is mapped to a standard TSP tour, by renaming the cities of the tour with consecutive numbers. Second, EAX is run to optimize the TSP tour. Given that the number of cities in a tour is relatively small (typically from several tens to several hundreds of cities for the mTSP benchmark instances), EAX needs a short time to make the TSP tour optimal or close-to-optimal. Third, we map the optimized TSP tour back to the corresponding mTSP tour. Experiments showed that the intra-tour optimization using EAX contributes favorably to the performance of the HSNR algorithm.
具体来说,对于集合 中的每个行程 (它记录了在禁忌搜索期间由 insert 和 crossexchange 运算符修改的行程),将应用 EAX 来最小化行程,如下所示。首先,通过使用连续数字重命名旅行的城市,将旅行 映射到标准 TSP 旅行。其次,运行 EAX 以优化 TSP 之旅。鉴于巡演中的城市数量相对较小(对于 mTSP 基准测试实例,通常从几十个城市到几百个城市),EAX 需要很短的时间来使 TSP 巡演达到最佳或接近最佳状态。第三,我们将优化的 TSP 教程映射回相应的 mTSP 教程。实验表明,使用 EAX 的巡演内优化对 HSNR 算法的性能有很大贡献。
The EAX heuristic firstly constructs randomly a population of solutions by using the coordinates of the cities and then performs a number of generations to improve the tour length. At each generation, two parents solutions are selected randomly and recombined to generate offspring solutions. Let and be the parent solutions, and let and be the sets of edges in and . An offspring solution is created according to the following steps.
EAX 启发式方法首先使用城市的坐标随机构建一组解决方案,然后执行多代以缩短游览时间。在每一代中,随机选择两个亲本解决方案并重新组合以生成后代解决方案。设 和 为父解,设 和 为 和 中的边集。根据以下步骤创建 Offspring 解决方案。
- (1)
Define the undirected multigraph from edge sets and ;
从边集 定义无向多重图 和 ; - (2)
Partition the edges of into AB-cycles, where an AB-cycle is a cycle in , such that edges of and edges of are alternatively linked;
将 的边 划分为 AB 循环,其中 AB 循环是 中的 循环,使得 的 边和 的 边交替链接; - (3)
Build an by selecting some AB-cycles according to a selection criterion;
根据选择标准选择一些 AB 循环来构建一个 ; - (4)
Build an intermediate solution from by removing the edges of that appear in and adding the edges of that appear in , i.e., ;
通过删除 中出现 的边并添加出现在 中的 边 来构建中间解决方案 ,即 ; - (5)
Generate an offspring solution by connecting all subtours of to obtain a single tour.
通过连接 的所有 子 来生成 的后代解决方案,以获得单个 tour。
As we show in Section 5.1, the EAX heuristic is quite beneficial for the proposed algorithm. This is the first application of this TSP heuristic within a mTSP algorithm.
正如我们在 5.1 节中所示,EAX 启发式算法对所提出的算法非常有益。这是此 TSP 启发式方法在 mTSP 算法中的首次应用。
4. Computational results and comparisons
4. 计算结果和比较
This section assesses the proposed algorithm for solving both the minsum mTSP and the minmax mTSP. We show computational results on benchmark instances and comparisons with the state-of-the-art algorithms.
本节评估了所提出的求解最小和 mTSP 和最小最大 mTSP 的算法。我们展示了基准实例的计算结果,并与最先进的算法进行了比较。
Parameters 参数 | Section 部分 | Description 描述 | Considered values 考虑的值 | Final value 最终值 | |
---|---|---|---|---|---|
Empty Cell | Empty Cell | Empty Cell | Empty Cell | Minsum 最小 | Minmax 最小值 |
3.2 | candidate initial solutions 候选初始解决方案 | 15 | 20 | ||
3.3.3 | -nearness in 1-tree -1 棵树中的接近度 | 20 | 10 | ||
3.3.2 | substring size 子字符串大小 | 4 | 7 | ||
3.3.4 | depth of tabu search 禁忌搜索深度 | 10 | 50 | ||
3.3.4 | tabu tenure parameter Tabu 权属参数 | 60 | 20 |
Pair 双 | #Instances | Best 最好 | Empty Cell | Avg. 平均 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Empty Cell | Empty Cell | #Wins | #Tiers | #Losses | p-value P 值 | Empty Cell | #Wins | #Tiers | #Losses | p-value P 值 |
Minsum 最小 | ||||||||||
HSNR vs. BKS HSNR 与 BKS | 17 | 7 | 6 | 4 | – | – | – | – | – | |
HSNR vs. re-ABC(VC) HSNR 与 re-ABC (VC) | 77 | 72 | 5 | 0 | 1.66E−13 | 74 | 3 | 0 | 7.73E−14 | |
HSNR vs. re-IWO HSNR 与 re-IWO | 77 | 69 | 8 | 0 | 5.21E−13 | 74 | 3 | 0 | 7.73E−14 | |
HSNR vs. re-GVNS HSNR 与 re-GVNS | 77 | 71 | 6 | 0 | 2.43E−13 | 74 | 3 | 0 | 7.73E−14 | |
HSNR vs. ES HSNR 与 ES | 41 | 38 | 3 | 0 | 7.74E−08 | 41 | 0 | 0 | 2.42E−08 | |
Minmax 最小值 | ||||||||||
HSNR vs. BKS HSNR 与 BKS | 33 | 12 | 18 | 3 | – | – | – | – | – | |
HSNR vs. re-ABC(VC) HSNR 与 re-ABC (VC) | 77 | 66 | 11 | 0 | 1.64E−12 | 67 | 9 | 1 | 5.69E−13 | |
HSNR vs. re-IWO HSNR 与 re-IWO | 77 | 57 | 19 | 1 | 3.69E−11 | 62 | 10 | 5 | 3.75E−12 | |
HSNR vs. re-GVNS HSNR 与 re-GVNS | 77 | 60 | 17 | 0 | 1.63E−11 | 59 | 16 | 2 | 4.84E−11 | |
HSNR vs. ES HSNR 与 ES | 41 | 21 | 19 | 1 | 6.08E−05 | 28 | 12 | 1 | 1.02E−06 | |
HSNR vs. re-MASVDN HSNR 与 re-MASVDN | 77 | 54 | 22 | 1 | 1.27E−10 | 63 | 13 | 2 | 3.74E−11 |
Empty Cell | Empty Cell | Best 最好 | Empty Cell | Avg. 平均 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pair 双 | Instances 实例 | Wins 获胜 | Ties 关系 | Losses 损失 | p-value P 值 | Empty Cell | Wins 获胜 | Ties 关系 | Losses 损失 | p-value P 值 |
Minsum 最小 | ||||||||||
HSNR vs. HSNR1 HSNR 与 HSNR1 | 20 | 2 | 18 | 0 | 5.00E−01 | 3 | 5 | 12 | 3.00E−03 | |
HSNR vs. HSNR2 HSNR 与 HSNR2 | 20 | 3 | 17 | 0 | 2.50E−01 | 5 | 5 | 10 | 7.90E−02 | |
HSNR vs. HSNR3 HSNR 与 HSNR3 | 20 | 20 | 0 | 0 | 8.85E−05 | 20 | 0 | 0 | 8.85E−05 | |
HSNR vs. HSNR4 HSNR 与 HSNR4 | 20 | 20 | 0 | 0 | 8.85E−05 | 19 | 0 | 1 | 1.20E−04 | |
Minmax 最小值 | ||||||||||
HSNR vs. HSNR1 HSNR 与 HSNR1 | 20 | 12 | 6 | 2 | 5.00E−02 | 12 | 6 | 2 | 2.00E−02 | |
HSNR vs. HSNR2 HSNR 与 HSNR2 | 20 | 15 | 5 | 0 | 6.10E−05 | 15 | 5 | 0 | 6.10E−05 | |
HSNR vs. HSNR3 HSNR 与 HSNR3 | 20 | 12 | 6 | 2 | 1.00E−02 | 10 | 6 | 4 | 4.90E−01 | |
HSNR vs. HSNR4 HSNR 与 HSNR4 | 20 | 10 | 7 | 3 | 9.00E−02 | 7 | 6 | 7 | 6.30E−01 |
4.1. Benchmark instances 4.1. 基准测试实例
Our experiments are based on two sets of 77 instances covering small, medium and large instances (available from the link of footnote 3).
我们的实验基于两组 77 个实例,涵盖小型、中型和大型实例(可从脚注 3 的链接获得)。
Set I (41 instances): These instances were introduced in Carter and Ragsdale, 2006, Brown et al., 2007, Wang et al., 2017. Carter and Ragsdale (2006) presented 12 instances using 3 TSP graphs (with 51, 100, 150 cities and 3, 5, 10, 20 and 30 tours), while Brown et al. (2007) also defined 12 instances using 3 TSP graphs (from 51 cities and 3 tours up to 150 cities and 30 tours). Note that among these 3 graphs adopted in Brown et al. (2007), only one graph (gtsp150) is not used in Carter and Ragsdale (2006). Therefore, most of the instances in Carter and Ragsdale (2006) and Brown et al. (2007) share the same features. We thus exclude the redundant instances and keep 17 distinct instances out of these 24 instances. For these 17 instances, the best-known objective values are available in the literature for both mTSP objectives. Wang et al. (2017) defined 31 instances using 8 graphs (with 51–1173 cities and 3–20 tours) and tested them only for the minmax mTSP. Among the 8 used graphs, one is a graph used in Carter and Ragsdale (2006) and one is a graph used in Brown et al. (2007). By eliminating these redundant instances, we retain 24 instances out of the 31 instances. For these instances, the best-known objective values are available only for the minmax mTSP. The instances of Set I are limited to 1173 cities and 30 tours and their optimal values are still unknown in the literature.
第一组(41 个实例):这些实例是在 Carter 和 Ragsdale,2006 年、Brown 等人,2007 年、Wang 等人,2017 年引入的。Carter 和 Ragsdale (2006) 使用 3 个 TSP 图展示了 12 个实例(包括 51、100、150 个城市和 3、5、10、20 和 30 个旅游),而 Brown 等人(2007 年)也使用 3 个 TSP 图定义了 12 个实例(从 51 个城市和 3 个旅游到 150 个城市和 30 个旅游)。请注意,在 Brown et al. (2007) 采用的这 3 个图表中,只有一个图表 (gtsp150) 在 Carter 和 Ragsdale (2006) 中没有使用。因此,Carter 和 Ragsdale (2006) 以及 Brown et al. (2007) 中的大多数实例具有相同的特征。因此,我们排除了冗余实例,并在这 24 个实例中保留了 17 个不同的实例。对于这 17 个实例,文献中提供了两个 mTSP 目标的最已知目标值。Wang et al. (2017) 使用 8 个图表定义了 31 个实例(包括 51-1173 个城市和 3-20 个旅游),并且仅针对最小最大 mTSP 测试了它们。在使用的 8 个图表中,一个是 Carter 和 Ragsdale (2006) 中使用的图表,一个是 Brown et al. (2007) 使用的图表。通过消除这些冗余实例,我们保留了 31 个实例中的 24 个。对于这些实例,已知目标值仅适用于 minmax mTSP。 集合 I 的实例仅限于 1173 个城市和 30 个旅游区,其最优值在文献中仍然未知。
Set II (36 instances): This is a new set of large instances with 1379–5915 cities and 3–20 tours introduced in this study. Like previous benchmark instances, these instances were generated from 9 TSP graphs in TSPlib2 (nrw1379, fl1400, d1655, u2152, pr2392, pcb3038, fl3795, fnl4461, rl5915), which come from different practical problems. The optimal values for these instances are unknown.
集合 II(36 个实例):这是一组新的大型实例,其中包含 1379-5915 个城市和 3-20 个游览,本研究中引入了这些实例。与之前的基准测试实例一样,这些实例是根据 TSPlib2 中的 9 个 TSP 图(nrw1379、fl1400、d1655、u2152、pr2392、pcb3038、fl3795、fnl4461、rl5915)生成的,它们来自不同的实际问题。这些实例的最佳值是未知的。
Note that most of these instances involve distance matrices whose values are real numbers. Our HSNR algorithm operates directly with these real number distances and reports its results in real numbers.
请注意,这些实例中的大多数都涉及值为实数的距离矩阵。我们的 HSNR 算法直接处理这些实数距离,并以实数报告其结果。
4.2. Experimental protocol and reference algorithms
4.2. 实验协议和参考算法
Parameter setting. HSNR has 5 parameters: number of candidate solutions for initialization , neighborhood reduction parameter , substring size , depth of tabu search and tabu tenure parameter . In order to calibrate these parameters, the “IRACE” package (López-Ibáñez et al., 2016) was used to automatically identify a set of suitable values. The tuning was performed on 8 representative instances (with 150–1173 cities). For the experiment, the tuning budget was set to 1080 runs, with a cutoff time of minutes. The candidate values of these parameters and their final values given by IRACE are shown in Table 2.
参数设置。HSNR 有 5 个参数:初始化 的候选解数、邻域缩减参数 、子字符串大小 、禁忌搜索 深度和禁忌保有权参数 。为了校准这些参数,使用“IRACE”包(López-Ibáñez et al., 2016)来自动识别一组合适的值。在 8 个代表性实例(150-1173 个城市)上执行了调优。对于实验,优化预算设置为 1080 次运行,截止时间为 几分钟。表 2 显示了这些参数的候选值及其由 IRACE 给出的最终值。
Reference algorithms. According to the literature, five algorithms (IWO & ABC(VC) (Pandiri and Singh, 2015), GVNS (Soylu, 2015), MASVND (Wang et al., 2017) and ES (Karabulut et al., 2021)) represent the state-of-the-art for solving the mTSP (MASVND for the minmax mTSP only). Thus these algorithms are adopted as the main references for our comparative studies. Given that only one code is available (an executable code of ES kindly provided by its authors), we faithfully re-implemented ABC(VC), IWO, GVNS and MASVND (denoted by re-ABC(VC), re-IWO, re-GVNS and re-MASVND) and verified that our implementations were able to match the results reported in Pandiri and Singh, 2015, Soylu, 2015, Wang et al., 2017.
参考算法。根据文献,五种算法(IWO和ABC(VC)(Pandiri和Singh,2015),GVNS(Soylu,2015),MASVND(Wang等人,2017)和ES(Karabulut等人,2021)代表了解决mTSP的最新技术(MASVND仅适用于最小mTSP)。因此,这些算法被用作我们比较研究的主要参考。鉴于只有一个代码可用(由其作者友情提供的 ES 的可执行代码),我们忠实地重新实现了 ABC(VC)、IWO、GVNS 和 MASVND(用 re-ABC(VC)、re-IWO、re-GVNS 和 re-MASVND 表示),并验证了我们的实现能够匹配 Pandiri 和 Singh,2015 年,Soylu,2015 年,Wang 等人报告的结果 。 2017 年。
Finally, as indicated in Section 2, the minsum mTSP can be transformed to the standard TSP. We provide the results obtained by the TSP heuristic EAX (Nagata and Kobayashi, 2013) in Appendix A.2.
最后,如第 2 节所示,最小和 mTSP 可以转换为标准 TSP。我们在附录 A.2 中提供了 TSP 启发式 EAX (Nagata 和 Kobayashi, 2013) 获得的结果。
Experimental setting. HSNR and the re-implemented reference algorithms were programmed in C++3 and complied with the g++ compiler with the -O3 option. All the experiments were conducted on a computer with an Intel Xeon E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux. Given the stochastic nature of the compared algorithms, each algorithm was run 20 times on each instance with different random seeds. We used the default parameter setting of Table 2 to run HSNR, while for the reference algorithms, we adopted their default parameter settings given in Pandiri and Singh, 2015, Soylu, 2015, Wang et al., 2017.
实验设置。HSNR 和重新实现的参考算法是用 C++3 编程的,并使用 -O3 选项与 g++ 编译器兼容。所有实验均在一台配备 2.5 GHz CPU 和 6 GB RAM 的 Intel Xeon E2670 处理器和 Linux 的 6 GB RAM 的计算机上进行。鉴于所比较算法的随机性质,每个算法在每个实例上运行 20 次,具有不同的随机种子。我们使用表 2 的默认参数设置来运行 HSNR,而对于参考算法,我们采用了 Pandiri 和 Singh,2015 年、Soylu,2015 年、Wang 等人,2017 年 给出的默认参数设置。
Stopping condition. Each run of the compared algorithm was given the same cutoff time of minutes. This cutoff time allows all the compared algorithms to converge to their best possible solutions. Additional results under shorter cutoff conditions are reported in Appendix A.1.
停止条件。比较算法的每次运行都被赋予相同的截止时间,即 分钟。此截止时间允许所有比较算法收敛到其最佳解决方案。附录 A.1 中报告了较短临界条件下的其他结果。
4.3. Computational results and comparison
4.3. 计算结果和比较
This section reports the comparative results between the proposed HSNR algorithm and the reference algorithms for the minsum mTSP and the minmax mTSP. The results are obtained according to the experimental protocol above and reported for the two sets of 77 benchmark instances (listed in increasing order of numbers of cities). Note that the executable code of ES failed to run on the instances of Set II due to unknown reasons. So its results are ignored as far as Set II is concerned.
本节报告了所提出的 HSNR 算法与最小 mTSP 和最小最大 mTSP 的参考算法之间的比较结果。根据上述实验方案获得结果,并针对两组 77 个基准实例(按城市数量的升序列出)进行报告。注意,由于未知原因,ES 的可执行代码在 Set II 的实例上运行失败。因此,就集合 II 而言,它的结果被忽略了。
For each instance, we show the best-known objective value BKS ever reported in the literature (when it is available), the best objective value obtained by an algorithm Best and the average objective value Avg.. For our HSNR algorithm, we additionally report the gap of its best objective value to the previous best objective value calculated as with and being respectively the best objective value of HSNR and the best objective value from all reference algorithms (including those published in the literature). Given that the mTSP is a minimization problem, a negative gap indicates an improved best result. The background of the top results for each instance is highlighted in dark gray; the second best results in medium gray; and the worst results in the lightest gray. Note that in the literature, the results are rounded to the nearest integers, and we report our results in more precise real values.
对于每个实例,我们展示了文献中报道过的最著名的目标值 BKS(如果可用)、算法获得的最佳目标值 Best 和平均目标值 Avg..对于我们的 HSNR 算法,我们还报告了其最佳目标值与先前最佳目标值的差距,分别计算 为 和 分别是 HSNR 的最佳目标值和所有参考算法(包括文献中发表的算法)的最佳目标值。鉴于 mTSP 是一个最小化问题,负间隙表示改进的最佳结果。每个实例的排名靠前的结果的背景以深灰色突出显示;第二好的结果是中等灰色;最差的结果是最浅的灰色。请注意,在文献中,结果四舍五入到最接近的整数,我们以更精确的实数值报告结果。
For each set of instances, we additionally report the following information. For the best and average objective values of each algorithm, AVG is the average value over the instances of one benchmark set. For each algorithm, BKS# indicates the number of instances out of all the instances of the set for which the algorithm reports the best objective value.
对于每组实例,我们额外报告以下信息。对于每种算法的最佳目标值和平均目标值,AVG 是一个基准测试集实例的平均值。对于每种算法,BKS# 表示算法报告最佳目标值的集合的所有实例中的实例数。
Finally, to assess the statistically significant difference between the results of the HSNR algorithm and the results of each reference algorithm, we show the p-values from the Wilcoxon signed-rank test applied to the best and average objective values with a confidence level of 0.05. A p-value smaller than 0.05 rejects the null hypothesis.
最后,为了评估 HSNR 算法的结果与每个参考算法的结果之间的统计显著性差异,我们显示了应用于最佳和平均目标值的 Wilcoxon 符号秩检验的 p 值,置信水平为 0.05。小于 0.05 的 p 值否定原假设。
4.3.1. Results for the minsum mTSP
4.3.1. 最小和 mTSP 的结果
Table 3, Table 4 show the comparative results of the compared algorithms for the 77 instances of Set I and Set II, respectively.
表 3 和表 4 分别显示了集合 I 和集合 II 的 77 个实例的比较算法的比较结果。
From Table 3, we can make the following comments about the instances of Set I. First, for the 17 instances for which the best-known results (BKS) are available, HSNR finds 6 improved results (with an improvement gap up to −0.24%), 7 equal results and 4 worse results. Second, for the remaining 24 instances of Set I, HSNR clearly outperforms the reference algorithms both in terms of the best and average results, with more important improvements for the largest instances with at least 200 cities (improvement gap up to 10.39% for the largest instance). Also, even the average results of HSNR are better than the best results of the reference algorithms. Third, the small p-values from the Wilcoxon signed-rank tests confirm the statistical difference between the HSNR algorithm and the reference algorithms in terms of the best and average results.
从表 3 中,我们可以对 Set I 的实例进行以下注释。首先,对于已知结果 (BKS) 可用的 17 个实例,HSNR 发现 6 个改进的结果(改进差距高达 -0.24%),7 个相同的结果和 4 个较差的结果。其次,对于集合 I 的其余 24 个实例,HSNR 在最佳结果和平均结果方面都明显优于参考算法,对于至少有 200 个城市的最大实例,有更重要的改进(最大实例的改进差距高达 10.39%)。此外,即使是 HSNR 的平均结果也优于参考算法的最佳结果。第三,来自 Wilcoxon 符号秩检验的小 p 值证实了 HSNR 算法和参考算法在最佳结果和平均结果方面的统计差异。
From Table 4 on the large instances of Set II, we observe that the dominance of the HSNR algorithm over the reference algorithms is even more significant. Indeed, HSNR consistently reports better results in terms of the best and average values, with improvement gaps from 2.37% to 19.45% compared to the best results of the reference algorithms. Once again, even the average results of HSNR are far better than the best results of the compared algorithms. Finally, the Wilcoxon signed-rank tests confirm the statistical difference of these comparisons.
从表 4 中关于集合 II 的大实例中,我们观察到 HSNR 算法相对于参考算法的主导地位更加显着。事实上,HSNR 在最佳值和平均值方面始终报告更好的结果,与参考算法的最佳结果相比,改进差距从 2.37% 到 19.45%。再一次,即使是 HSNR 的平均结果也远优于比较算法的最佳结果。最后,Wilcoxon 符号秩检验证实了这些比较的统计差异。
To further assess the compared algorithms, we also present the performance profiles (Dolan and Moré, 2002) to visually illustrate the performance of each algorithm. Performance profiles rely on a specific performance metric (in our case, we use and ). To compare a set of algorithms over a set of problems , the performance ratio is defined by . If an algorithm does not report result for a problem , . The performance function of an algorithm is computed by . The value computes the fraction of problems that algorithm can solve with at most many times the cost of the best algorithm. For example, equals the number of problems that algorithm solved better than, or as good as the other algorithms in . Similarly, the value is the maximum number of problems that algorithm solved. Therefore, and represent the efficiency and robustness of algorithm . Fig. 3 visually illustrates the competitiveness of HSNR in terms of the best and average values on the benchmark 77 instances. Indeed, HSNR has a much higher value compared to the reference algorithms, by finding better or equal results for nearly all instances. Furthermore, HSNR also reaches first, indicating a high robustness of our approach. In brief, compared with the reference algorithms, HSNR is the best solution approach for the minsum mTSP on both small and large scale instances.
为了进一步评估比较的算法,我们还提供了性能概况 (Dolan and Moré, 2002) 以直观地说明每种算法的性能。性能配置文件依赖于特定的性能指标(在我们的示例中,我们使用 和 )。为了比较一组算法 与一组问题 ,性能比率由 定义。如果算法未报告问题 的结果,则 .算法 的性能函数由 计算 。该值 计算算法 可以解决的问题的分数,其成本最多 是最佳算法的许多倍。例如, 等于该算法 解决的问题数优于 中的 其他算法,或与 中的其他 算法一样好。同样,该值 是算法 解决的最大问题数。因此, 和 表示算法 的效率和鲁棒性。 图 3 直观地说明了 HSNR 在基准 77 个实例上的最佳值和平均值方面的竞争力。事实上,与参考算法相比,HSNR 具有更高的 价值,因为它几乎可以为所有实例找到更好或相等的结果。此外,HSNR 也达到 了第一位,这表明我们的方法具有很高的稳健性。简而言之,与参考算法相比,HSNR 是小型和大型实例上最小 mTSP 的最佳解决方案方法。
Finally, since the minsum mTSP can be transformed to the TSP, we show in Appendix A.2 the results obtained by the effective TSP heuristic EAX (Nagata and Kobayashi, 2013).
最后,由于最小 mTSP 可以转换为 TSP,我们在附录 A.2 中展示了通过有效的 TSP 启发式 EAX 获得的结果(Nagata 和 Kobayashi,2013)。
4.3.2. Results for the minmax mTSP
4.3.2. minmax mTSP的结果
We now assess the performance of the HSNR algorithm for the minmax mTSP. For this problem, ABC(VC) (Pandiri and Singh, 2015), IWO (Pandiri and Singh, 2015), GVNS (Soylu, 2015), MASVND (Wang et al., 2017) and ES (Karabulut et al., 2021) are the state-of-the-art algorithms, which are used for our comparative study. Note that for three graphs kroA200, lin318, att532, the initial solutions of HSNR are generated in such a way that each city is greedily inserted in an arbitrary random tour, not limited to the shortest tour.
我们现在评估 HSNR 算法对最小 mTSP 的性能。对于这个问题,ABC(VC)(Pandiri 和 Singh,2015 年)、IWO(Pandiri 和 Singh,2015 年)、GVNS(Soylu,2015 年)、MASVND(Wang 等人,2017 年)和 ES(Karabulut 等人,2021 年)是最先进的算法,用于我们的比较研究。请注意,对于三个图形 kroA200、lin318、att532,HSNR 的初始解是以这样一种方式生成的:每个城市都被贪婪地插入到任意随机游览中,而不限于最短的游览。
Table 5, Table 6 report the computational results of the compared algorithms on Set I and Set II. From the tables, we observe that in terms of the best objective values, HSNR reaches the best results on 48 out of the 77 instances and matches the best results of the compared algorithms on 25 instances. Only for four instances, HSNR reports a slightly worse result with a gap to the best objective value no larger than 0.61%. In terms of the average objective value, HSNR reports 54 dominating values. It is worth noting that the average results of HSNR are better than the best results of the reference algorithms. Third, the dominance of HSNR over the reference algorithms is better demonstrated on the large instances of Set II with up to 32.81% improvements of their best results. Finally, the small p-values ( 0.05) confirm the statistically significant differences between HSNR and the reference algorithms for the best and average results.
表 5、表 6 报告了在集合 I 和集合 II 上比较算法的计算结果。从表中,我们观察到,就最佳目标值而言,HSNR 在 77 个实例中的 48 个实例上达到最佳结果,并在 25 个实例上与比较算法的最佳结果相匹配。只有 4 个实例,HSNR 报告的结果略差,与最佳目标值的差距不超过 0.61%。就平均目标值而言,HSNR 报告了 54 个主导值。值得注意的是,HSNR 的平均结果优于参考算法的最佳结果。第三,HSNR 对参考算法的主导地位在集 II 的大型实例上得到了更好的证明,其最佳结果提高了 32.81%。最后,小 p 值 ( 0.05) 证实了 HSNR 与参考算法之间获得最佳和平均结果的统计显着差异。
Once again, the performance profiles of Fig. 4 clearly show the competitiveness of HSNR over the compared algorithms. Indeed, HSNR has a much higher value compared to the reference algorithms, indicating that HSNR finds better or equal results for nearly all instances. Furthermore, HSNR reaches first, implying a high robustness of our approach. Therefore, HSNR competes favorably with the state-of-the-art algorithms for the minmax mTSP. Its competitiveness is particularly demonstrated on large instances in terms of the best and average results.
图 4 的性能概况再次清楚地显示了 HSNR 相对于比较算法的竞争力。事实上,与参考算法相比,HSNR 的值要高 得多,这表明 HSNR 几乎在所有实例中都能找到更好或相等的结果。此外,HSNR 首先到达 ,这意味着我们的方法具有很高的稳健性。因此,HSNR 与最小 mTSP 的最先进的算法竞争激烈。它的竞争力在大型实例中尤其体现在最佳和平均结果方面。
Finally, Table 7 summaries the comparative results of each pair of compared algorithms on the 77 benchmark instances, by providing the number of instances for which HSNR obtained a better (Wins), equal (Ties) or worse (Losses) result compared to each reference algorithm and the BKS value.
最后,表 7 通过提供与每个参考算法和 BKS 值相比 HSNR 获得更好( 赢)、等于( 平局)或更差( 输)结果的实例数,总结了每对比较算法在 77 个基准测试实例上的比较结果。
We conclude that HSNR significantly dominates the reference algorithms for both the minsum mTSP and the minmax mTSP. Its competitiveness is even more evident on large-scale instances.
我们得出的结论是,HSNR在minsum mTSP和minmax mTSP的参考算法中都明显占主导地位。其竞争力在大规模实例上更为明显。
5. Analysis 5. 分析
The computational results and comparisons with the state-of-the-art algorithms presented in Section 4 showed high effectiveness of the HSNR algorithm. This section aims to investigate the contributions of two important ingredients of HSNR: the neighborhood reduction strategy (Section 3.3.3) for efficient neighborhood examination and the EAX heuristic (Section 3.4) for effective intra-tour optimization. For this purpose, we performed additional experiments to compare HSNR with several HSNR variants where the studied component (i.e., neighborhood reduction and EAX) was disabled and replaced by another alternative method. These experiments were based on 20 representative instances with different sizes ( from 150 to 2392, from 3 to 20) and followed the experimental protocol of Section 4.2.
计算结果以及与第 4 节中介绍的最先进算法的比较表明 HSNR 算法非常有效。本节旨在研究 HSNR 的两个重要组成部分的贡献:用于有效邻域检查的邻域缩减策略(第 3.3.3 节)和用于有效游览内优化的 EAX 启发式(第 3.4 节)。为此,我们进行了额外的实验,将 HSNR 与几种 HSNR 变体进行比较,其中研究的成分(即邻域减少和 EAX)被禁用并被另一种替代方法取代。这些实验基于 20 个不同大小( 从 150 到 2392, 从 3 到 20)的代表性实例,并遵循第 4.2 节的实验方案。
5.1. Importance of the -nearness technique for neighborhood reduction
5.1. -nearness 技术对邻域减少的重要性
To study the benefit of the -nearness pruning technique (Section 3.3.3), we compared HSNR with two alternative versions: HSNR1 where the -nearness pruning technique was replaced by the method of -nearest neighbors (Arnold et al., 2019, Brandão, 2020), and HSNR2 where no pruning technique was used. As such, at each neighborhood search iteration of HSNR1, city must be one of the -nearest cities of city
( was set to 40), as shown in the illustrative example of Fig. 1. For HSNR2, there is no any restriction between city and .
为了研究 -nearness 修剪技术的好处(第 3.3.3 节),我们将 HSNR 与两个替代版本进行了比较:HSNR1,其中 -nearness 修剪技术被 -最近邻方法取代(Arnold et al., 2019, Brandão, 2020)和 HSNR2 的 HSNR2 中,没有使用修剪技术。因此,在 HSNR1 的每次邻域搜索迭代中,city 必须是 city 的 -最近的城市之一
( 设置为 40),如图 1 的说明性示例 所示。对于 HSNR2,city 和 之间 没有任何限制。
The experimental results of HSNR, HSNR1 and HSNR2 are summarized in Fig. 5, Fig. 6 as well as Table 8. In the figures, the results of HSNR are used as the baseline and the results of HSNR1 and HSNR2 are showed relative to this baseline. From these results, the following observations can be made.
HSNR、HSNR1 和 HSNR2 的实验结果总结在图 5、图 6 和表 8 中。在图中,HSNR 的结果用作基线,HSNR1 和 HSNR2 的结果相对于该基线显示。从这些结果中,可以得出以下观察结果。
For the minsum mTSP, compared to HSNR2 which does not use any neighborhood pruning technique, both reductions (-nearness pruning for HSNR and -nearest pruning for HSNR1) led to slightly better results in terms of the best objectives values, while the average quality was slightly scarified in several cases. The Wilcoxon signed-rank tests in Table 8, however, do not confirm statistically significant differences between the compared algorithms. For the minmax mTSP, both HSNR and HSNR1 significantly outperformed the HSNR2 variant in terms of the best and average values (confirmed by the Wilcoxon signed-rank tests). The importance of the pruning techniques is even more amplified on large instances. One also observes that HSNR using the -nearness pruning technique consistently showed better performances than HSNR1 using the -nearest neighbors technique. As an example, the convergence charts shown in Fig. 7 also illustrate the usefulness of the -nearness pruning technique on a representative instance.
对于最小 mTSP,与不使用任何邻域修剪技术的 HSNR2 相比,两种减少(HSNR 的 -nearness 修剪和 HSNR1 的 -最近修剪)在最佳目标值方面都导致了略好的结果,而平均质量在一些情况下略有下降。然而,表 8 中的 Wilcoxon 符号秩检验并未证实所比较算法之间的统计学显著差异。对于最小最大 mTSP,HSNR 和 HSNR1 在最佳值和平均值方面均显著优于 HSNR2 变体(由 Wilcoxon 符号秩检验证实)。修剪技术的重要性在大型实例上更加凸显。人们还观察到, 使用 -nearness 修剪技术的 HSNR 始终比使用 -nearest neighbors 技术的 HSNR1 表现出更好的性能。例如,图 7 中所示的收敛图也说明了 -nearness 修剪技术在代表性实例上的有用性。
This experiment confirms the interest of heuristic pruning techniques, especially the -nearness technique adopted in the HSNR algorithm. By avoiding useless examinations of non-promising neighboring solutions, the neighborhood reduction strategy is particularly useful for solving large instances of the minmax mTSP, even if its contribution to the minsum mTSP is less significant.
该实验证实了启发式修剪技术的兴趣,尤其是 HSNR 算法中采用的 -nearness 技术。通过避免对无希望的邻域解进行无用的检查,邻域缩减策略对于求解最小 mTSP 的大实例特别有用,即使它对最小 mTSP 的贡献不太显著。
5.2. Importance of the EAX heuristic for intra-optimization
5.2. EAX 启发式算法对内部优化的重要性
To evaluate the benefits of the EAX heuristic for intra-tour optimization (Section 3.4), we compare HSNR with two alternative algorithms: HSNR3 where EAX is replaced by the popular 2-opt heuristic, and HSNR4 where EAX is replaced by the LK algorithm (Lin and Kernighan, 1973). The comparative results are shown in Fig. 8, Fig. 9 as well as Table 8.
为了评估 EAX 启发式算法对巡演内优化的好处(第 3.4 节),我们将 HSNR 与两种替代算法进行了比较:HSNR3 其中 EAX 被流行的 2 选项启发式算法取代,HSNR4 其中 EAX 被 LK 算法取代(Lin 和 Kernighan,1973 年)。比较结果如图 8、图 9 和表 8 所示。
For the minsum mTSP, HSNR with EAX significantly dominates its variants with the 2-opt and LK heuristics in terms of the best and average results (confirmed by the Wilcoxon signed-rank tests). For the minmax mTSP, HSNR also performs better than its competitors except for a small number of instances. This experiment demonstrates clearly the usefulness of the TSP heuristic EAX as a critical intra-tour optimization tool for the mTSP.
对于 minsum mTSP,带有 EAX 的 HSNR 在最佳和平均结果方面显着主导了 2-opt 和 LK 启发式的变体(由 Wilcoxon 符号秩检验确认)。对于minmax mTSP,HSNR的表现也优于其竞争对手,除了少数实例。该实验清楚地证明了 TSP 启发式 EAX 作为 mTSP 的关键内部优化工具的实用性。
6. Conclusions 6. 结论
This work studied the multiple traveling salesman problem, which is a relevant model to formulate a number of practical applications. The presented hybrid search with neighborhood reduction algorithm combines tabu search based inter-tour optimization (with 2 complementary neighborhoods) and a TSP heuristic based intra-tour optimization. A dedicated neighborhood reduction technique was introduced, which avoids the evaluations of non-promising candidate solutions and thus speeds up the neighborhood search.
这项工作研究了多次出差的推销员问题,这是一个相关的模型,可以制定一些实际应用。该算法结合了基于禁忌搜索的跨行程优化(有2个互补的跨域)和基于TSP启发式的跨行程优化。引入了一种专用的邻域约简技术,该技术避免了对无希望的候选解的评估,从而加快了邻域搜索的速度。
Extensive computational results on the set of 41 benchmark instances commonly tested in the literature indicate that the algorithm is highly competitive compared with the existing leading algorithms. In particular, for the minsum mTSP, the proposed algorithm reports 27 best results while matching 10 best-known results. For the minmax mTSP, the algorithm performs also well by reporting 15 best bounds. To assess the presented algorithm on still larger instances, we introduced a new set of 36 large instances and reported the first computational results, which further demonstrated the superiority of the algorithm over the reference algorithms. These new large instances and the presented results can be used to assess other mTSP algorithms.
在文献中通常测试的 41 个基准实例集上的大量计算结果表明,与现有的领先算法相比,该算法具有很强的竞争力。特别是,对于minsum mTSP,所提出的算法报告了27个最佳结果,同时匹配了10个最知名的结果。对于 minmax mTSP,该算法通过报告 15 个最佳边界也表现良好。为了在更大的实例上评估所提出的算法,我们引入了一组新的36个大型实例,并报告了第一个计算结果,这进一步证明了该算法相对于参考算法的优越性。这些新的大型实例和呈现的结果可用于评估其他 mTSP 算法。
The TSP heuristic EAX was also used for the first time to solve the minsum mTSP, based on the fact that the minsum mTSP can be conveniently transformed to the TSP. The results showed that this transformation approach performs remarkably well on most minsum mTSP instances and significantly dominates all algorithms dedicated to the minsum mTSP.
此外,本文还首次利用TSP启发式EAX求解minsum mTSP,其基础是minsum mTSP可以方便地转化为TSP。结果表明,这种转换方法在大多数minsum mTSP实例上表现非常出色,并且在所有专用于minsum mTSP的算法中都明显占主导地位。
For future work, there are several perspectives. First, it would be interesting to adopt the main idea of this study (i.e., neighborhood reduction, TSP tool) to design effective heuristics for other TSP variants and routing problems, including practical problems faced in real-life applications. Second, even if the minsum mTSP can be effectively solved by popular TSP algorithms, this is not the case for the minmax mTSP. As such, more efforts are needed to design effective algorithms for the minmax mTSP. In this regard, it is worth investigating other search framework such as memetic algorithms integrating dedicated crossover operators. Also, few exact algorithms exist for the minmax mTSP, there is much room for making progressive in this area.
对于未来的工作,有几个观点。首先,采用本研究的主要思想(即邻域减少,TSP 工具)为其他 TSP 变体和路由问题设计有效的启发式方法会很有趣,包括实际应用中面临的实际问题。其次,即使流行的 TSP 算法可以有效解决最小和 mTSP,但最小最大 mTSP 并非如此。因此,需要付出更多努力来为 minmax mTSP 设计有效的算法。在这方面,值得研究其他搜索框架,例如集成专用交叉运算符的模因算法。此外,最小最大 mTSP 的精确算法很少,在这方面有很大的进步空间。
CRediT authorship contribution statement
CRediT 作者贡献声明
Pengfei He: Conceptualization, Methodology, Software, Experiments, Data curation, Writing – original draft. Jin-Kao Hao: Supervision, Conceptualization, Methodology, Validation, Writing – review & editing.
何鹏飞:概念化、方法论、软件、实验、数据管理、写作 - 原稿。 郝金高:监督、概念化、方法论、验证、写作 - 审查和编辑。
Declaration of Competing Interest
利益争夺声明
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明,他们没有已知的相互竞争的经济利益或个人关系,这些利益或个人关系可能会影响本文所报告的工作。
Acknowledgments 确认
We are grateful to the reviewers for their useful comments and suggestions which helped us to significantly improve the paper. We would like to thank authors of Karabulut et al., 2021, Pandiri and Singh, 2015, Wang et al., 2017, Yuan et al., 2013: Prof. K. Karabulut and Prof. M. F. Tasgetiren for sharing their executable code; Prof. A. Singh, Dr. Y. Wang, and Dr. S. Yuan for providing their test problems and answering our questions. Support from the China Scholarship Council
(CSC, grant No. 201906850087) for the first author is acknowledged.
我们感谢审稿人的有益意见和建议,帮助我们显着改进了论文。我们要感谢 Karabulut 等人(2021 年)、Pandiri 和 Singh(2015 年)、Wang 等人(2017 年)、Yuan 等人(2013 年)的作者:K. Karabulut 教授和 MF Tasgetiren 教授分享他们的可执行代码;A. Singh 教授、Y. Wang 博士和 S. Yuan 博士提供他们的测试问题并回答我们的问题。国家留学基金委支持
(CSC,授予号201906850087) 对第一作者表示感谢。
Appendix. 附录。
This appendix includes computational results of two additional experiments. The first experiment concerns a comparison between the proposed HSNR algorithm and the reference algorithms under a short cutoff time for the minsum mTSP and the minmax mTSP. The second experiment is about solving the minsum mTSP by running a TSP solver, given that the minsum mTSP can be transformed to the TSP (Hong and Padberg, 1977, Rao, 1980). Even if this transformation is known for a long time, to our knowledge, this is the first study reporting extensive computational results using this approach.
本附录包括两个附加实验的计算结果。第一个实验涉及在最小 mTSP 和最小最小 mTSP 的短截止时间内,所提出的 HSNR 算法与参考算法之间的比较。第二个实验是通过运行 TSP 求解器来求解最小和 mTSP,因为最小和 mTSP 可以转换为 TSP (Hong and Padberg, 1977, Rao, 1980)。即使这种转换已经为人所知很长一段时间了,但据我们所知,这是第一项报告使用这种方法的广泛计算结果的研究。
A.1. Additional computational results and comparisons
A.1. 其他计算结果和比较
We compare the results of the HSNR algorithm with the best results of the reference algorithms directly extracted from the literature. Given that the reference algorithms were coded by different persons and run on different computers under various stopping conditions, this comparison is presented for indicative purposes only. For this study, we used the following reference algorithms.
我们将HSNR算法的结果与直接从文献中提取的参考算法的最佳结果进行了比较。鉴于参考算法是由不同的人编码的,并在不同的停止条件下在不同的计算机上运行,因此此比较仅供参考。在这项研究中,我们使用了以下参考算法。
- -
IWO (Pandiri and Singh, 2015), which reports results on 17 instances of Set I for the minsum mTSP and the minmax mTSP. The algorithm was written in C and run on a computer with a 2.83 GHz CPU and the stopping condition is a maximum of iteration steps.
IWO(Pandiri 和 Singh,2015 年),它报告了最小 mTSP 和最小最大 mTSP 的 17 个集合 I 实例的结果。该算法是用 C 语言编写的,并在具有 2.83 GHz CPU 的计算机上运行,停止条件是最大 迭代步骤。 - -
ABC(VC) (Pandiri and Singh, 2015), which reports results on 17 instances of Set I for the minsum mTSP and the minmax mTSP. The algorithm was written in C and run on the same computer under the same stopping condition as IWO.
ABC(VC)(Pandiri 和 Singh,2015 年),它报告了最小和 mTSP 和最小最大 mTSP 的 17 个集合 I 实例的结果。该算法是用 C 语言编写的,并在与 IWO 相同的停止条件下在同一台计算机上运行。 - -
GVNS (Soylu, 2015), which reports results on 12 instances of Set I for the minsum mTSP and the minmax mTSP. The algorithm was written in C++ and run on a computer with a 2.4 GHz CPU, and the stopping condition is a maximum running time of seconds.
GVNS (Soylu, 2015),它报告了最小 mTSP 和最小最大 mTSP 的 12 个集合 I 实例的结果。该算法是用 C++ 编写的,并在具有 2.4 GHz CPU 的计算机上运行,停止条件是最大运行时间为 秒。 - -
MASVND (Wang et al., 2017), which is designed for the minmax mTSP only and reports results on 31 out of the 41 instances of Set I. The algorithm was written in Java and run on a computer with a 3.4 GHz CPU, and the stopping condition is a maximum running time of seconds.
MASVND (Wang等人,2017 年),它仅针对最小最大 mTSP 设计,并报告了第 I 组 41 个实例中 31 个实例的结果。该算法是用 Java 编写的,并在具有 3.4 GHz CPU 的计算机上运行,停止条件是最大运行时间为 秒。 - -
ES (Karabulut et al., 2021), which reports results on 12 instances of Set I for the minsum mTSP and 31 out of the 41 instances of Set I for the minmax mTSP. The algorithm was written in C++ and run on a computer with a 2.66 GHz CPU, and the stopping condition is a maximum time of and seconds for the minsum mTSP and the minmax mTSP, respectively.
ES(Karabulut等人,2021 年),它报告了最小 mTSP 的 12 个集合 I 实例的结果和最小最大 mTSP 的 41 个集合 I 实例中的 31 个实例的结果。该算法是用 C++ 编写的,并在具有 2.66 GHz CPU 的计算机上运行,停止条件分别为最小 mTSP 和最小最大 mTSP 的最大时间和 秒。
To make the comparison as meaningful as possible, we adopted as our stopping condition the shortest cutoff time among those used by the reference algorithms, i.e., seconds used in Wang et al. (2017). We used the CPU frequency to convert this cutoff time to our computer, leading to a cutoff time of seconds for our HSNR algorithm on our computer. Note that MASVND reports results for the minmax mTSP only, while the other reference algorithms report results for both the minsum mTSP and the minmax mTSP.
为了使比较尽可能有意义,我们采用参考算法使用的最短截止时间作为停止条件,即 Wang et al. (2017) 中使用的 秒。我们使用 CPU 频率将此截止时间转换为我们的计算机,从而得出计算机上 HSNR 算法的截止时间为 秒。请注意,MASVND 仅报告最小 mTSP 的结果,而其他参考算法同时报告最小 mTSP 和最小 mTSP 的结果。
A.1.1. Comparative results for the minsum mTSP
A.1.1. minsum mTSP的比较结果
Table A.1 shows the computational results of the compared algorithms for the minsum mTSP with the same information as in Section 4.
表 A.1 显示了最小和 mTSP 的比较算法的计算结果,其信息与第 4 节相同。
From Table A.1, one observes that the proposed HSNR algorithm performs better than ABC(VC), GVNS, by matching more BKS values, while its performance is slightly worse than the fast IWO algorithm and ES. Interestingly, HSNR reports three new best-known results. This experiment indicates that under short stopping conditions, the fast IWO and ES algorithms perform the best for the minsum mTSP, while HSNR remains competitive by reporting three new upper bounds.
从表 A.1 中可以观察到,所提出的 HSNR 算法通过匹配更多的 BKS 值,性能优于 ABC(VC)、GVNS,而其性能略差于快速 IWO 算法和 ES。有趣的是,HSNR 报告了三个新的最著名的结果。该实验表明,在短停止条件下,快速 IWO 和 ES 算法对最小 mTSP 的性能最佳,而 HSNR 通过报告三个新的上限保持竞争力。
A.1.2. Comparative results for the minmax mTSP
A.1.2. minmax mTSP的比较结果
We show in Table A.2 the computational results of the compared algorithms for the minmax mTSP with the same information as in Section 4. In this table, we included the results of IWO-Wang (Wang et al., 2017), which is a re-implementation of the IWO algorithm of Pandiri and Singh (2015).
我们在表 A.2 中显示了最小 mTSP 的比较算法的计算结果,其信息与第 4 节相同。在此表中,我们包括 IWO-Wang (Wang et al., 2017) 的结果,这是 Pandiri 和 Singh (2015) 的 IWO 算法的重新实现。
Table A.2 indicates that HSNR performs competitively compared to the main reference algorithms, that is MASVND (Wang et al., 2017) and ES (Karabulut et al., 2021). In terms of the best objective value, HSNR updates the best upper bounds (BKS) for 9 out of 33 instances and reaches the BKS values for 17 instances. Given that the BKS values are compiled from the best results ever reported by all existing algorithms in the literature, the performance of HSNR for the minmax mTSP can be considered as remarkable. In summary, these results confirm the competitiveness of HSNR over the state-of-the-art algorithms for the minmax mTSP also under this short cutoff limit.
表 A.2 表明,与主要参考算法相比,HSNR 的性能具有竞争力,即 MASVND (Wang et al., 2017) 和 ES (Karabulut et al., 2021)。在最佳目标值方面,HSNR 更新了 33 个实例中 9 个实例的最佳上限 (BKS),并达到了 17 个实例的 BKS 值。鉴于 BKS 值是根据文献中所有现有算法报告的最佳结果编译而成的,因此 HSNR 对最小最大 mTSP 的性能可以被认为是卓越的。总之,这些结果证实了 HSNR 相对于最小 mTSP 最先进算法的竞争力,也在这个简短的截止限制下。
A.2. Computational results for the minsum mTSP with a TSP heuristic
A.2. 使用 TSP 启发式的 minsum mTSP 的计算结果
We report computational results of running the EAX heuristic (Nagata and Kobayashi, 2013) on the TSP instances transformed from the minsum mTSP instances. Given that most of the 77 instances involve distance matrices of real numbers, we updated the data type of EAX from integer numbers to real numbers. For this experiment, we ran the EAX code with its default parameter setting under the same stopping condition as HSNR (i.e., minutes, see Section 4). Each instance was solved 20 times by EAX with difference random seeds. Note that EAX may also terminate if the gap between the average tour length and the shortest tour length in the population becomes less than 0.0001.
我们报告了在从最小 mTSP 实例转换的 TSP 实例上运行 EAX 启发式方法(Nagata 和 Kobayashi,2013 年)的计算结果。鉴于 77 个实例中的大多数都涉及实数的距离矩阵,我们将 EAX 的数据类型从整数更新为实数。在这个实验中,我们在与 HSNR 相同的停止条件(即 分钟,参见第 4 节)下运行带有默认参数设置的 EAX 代码。每个实例被 EAX 用不同的随机种子解决 20 次。请注意,如果总体中的平均旅行长度与最短旅行长度之间的差距小于 0.0001,则 EAX 也可能终止。
Table A.3, Table A.4 show the comparative results of EAX and HSNR with the same information as in Section 4.3.1. The background of the top results for each instance is highlighted in dark gray; the second best results in medium gray. The results of Table A.3, Table A.4 clearly indicate that EAX significantly dominates HSNR in terms of the best and average results for both sets of instances. Only on three large instances of Set II, HSNR reported better results. Given that HSNR performs better than the existing minsum mTSP algorithms in the literature, we can safely say that EAX dominates all existing minsum mTSP algorithms. Finally, even if we did not show detailed run-time information, we mention that EAX converges much faster than the existing algorithms (by at least one order of magnitude). EAX requires no more than 30 s for Set I and no more than 400 s for Set II.
表 A.3、表 A.4 显示了 EAX 和 HSNR 的比较结果,其信息与第 4.3.1 节相同。每个实例的排名靠前的结果的背景以深灰色突出显示;第二好的结果是中灰色。表 A.3、表 A.4 的结果清楚地表明,EAX 在两组实例的最佳和平均结果方面都明显优于 HSNR。仅在第 II 组的三个大型实例上,HSNR 报告了更好的结果。鉴于 HSNR 的性能优于文献中现有的 minsum mTSP 算法,我们可以肯定地说 EAX 主导了所有现有的 minsum mTSP 算法。最后,即使我们没有显示详细的运行时信息,我们也提到 EAX 的收敛速度比现有算法快得多(至少快一个数量级)。EAX 对 Set I 的要求不超过 30 s,对 Set II 的要求不超过 400 s。
We conclude that the transformation approach of the minsum mTSP to the TSP is particularly effective and can be considered as the current best solution method for the minsum mTSP. It is worth mentioning that this is the first study that demonstrates the high interest of solving the minsum mTSP via TSP algorithms. This finding will benefit future research on the minsum mTSP.
结果表明,minsum mTSP向TSP的转化方法特别有效,可视为当前minsum mTSP的最佳解方法。值得一提的是,这是第一项证明了通过TSP算法求解minsum mTSP的高度兴趣的研究。这一发现将有利于未来对minsum mTSP的研究。
References
- Applegate et al., 2002Solution of a min-max vehicle routing problemINFORMS J. Comput., 14 (2) (2002), pp. 132-143
- Arnold et al., 2019Efficiently solving very large-scale routing problemsComput. Oper. Res., 107 (2019), pp. 32-42
- Arnold and Sörensen, 2019Knowledge-guided local search for the vehicle routing problemComput. Oper. Res., 105 (2019), pp. 32-46
- Bektas, 2006The multiple traveling salesman problem: an overview of formulations and solution proceduresOmega, 34 (3) (2006), pp. 209-219
- Bektaş, 2012Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancingEur. J. Oper. Res., 216 (1) (2012), pp. 83-93
- Brandão, 2020A memory-based iterated local search algorithm for the multi-depot open vehicle routing problemEur. J. Oper. Res., 284 (2) (2020), pp. 559-571
- Brown et al., 2007A grouping genetic algorithm for the multiple traveling salesperson problemInt. J. Inf. Technol. Decis. Making, 6 (02) (2007), pp. 333-347
- Carter and Ragsdale, 2006A new approach to solving the multiple traveling salesperson problem using genetic algorithmsEur. J. Oper. Res., 175 (1) (2006), pp. 246-257
- Carter and Ragsdale, 2009Quality inspection scheduling for multi-unit service enterprisesEur. J. Oper. Res., 194 (1) (2009), pp. 114-126
- Cheikhrouhou and Khoufi, 2021A comprehensive survey on the multiple Traveling Salesman Problem: Applications, approaches and taxonomyComp. Sci. Rev., 40 (2021), Article 100369
- Dolan and Moré, 2002Benchmarking optimization software with performance profilesMath. Program., 91 (2) (2002), pp. 201-213
- Ergezer and Leblebicioğlu, 20143D path planning for multiple UAVs for maximum information collectionJ. Intell. Robot. Syst., 73 (1–4) (2014), pp. 737-762
- França et al., 1995The m-traveling salesman problem with minmax objectiveTransp. Sci., 29 (3) (1995), pp. 267-275
- Garn, 2020Closed form distance formula for the balanced multiple travelling salesmen(2020)arXiv preprint arXiv:2001.07749
- Garn, 2021Balanced dynamic multiple travelling salesmen: Algorithms and continuous approximationsComput. Oper. Res., 136 (2021), Article 105509
- Gavish and Srikanth, 1986An optimal solution method for large-scale multiple traveling salesmen problemsOper. Res., 34 (5) (1986), pp. 698-717
- Glover and Laguna, 1997Tabu SearchKluwer (1997)
- He et al., 2019Using hybrid algorithm to reduce non-working distance in intra-and inter-field logistics simultaneously for heterogeneous harvestersComput. Electron. Agric., 167 (2019), Article 105065
- He et al., 2018Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlandsComput. Electron. Agric., 145 (2018), pp. 226-234
- Helsgaun, 2000An effective implementation of the Lin–Kernighan traveling salesman heuristicEur. J. Oper. Res., 126 (1) (2000), pp. 106-130
- Hong and Padberg, 1977A note on the symmetric multiple traveling salesman problem with fixed chargesOper. Res., 25 (5) (1977), pp. 871-874
- Karabulut et al., 2021Modeling and optimization of multiple traveling salesmen problems: An evolution strategy approachComput. Oper. Res., 129 (2021), Article 105192
- Koubâa et al., 2017Move and improve: a market-based mechanism for the multiple depot multiple travelling salesmen problemJ. Intell. Robot. Syst., 85 (2) (2017), pp. 307-330
- Laporte and Nobert, 1980A cutting planes algorithm for the m-salesmen problemJ. Oper. Res. Soc., 31 (11) (1980), pp. 1017-1023
- Lin and Kernighan, 1973An effective heuristic algorithm for the traveling-salesman problemOper. Res., 21 (2) (1973), pp. 498-516
- Liu et al., 2009An ant colony optimization algorithm for the multiple traveling salesmen problem2009 4th IEEE Conference On Industrial Electronics And Applications, IEEE (2009), pp. 1533-1537
- López-Ibáñez et al., 2016The irace package: Iterated racing for automatic algorithm configurationOper. Res. Perspect., 3 (2016), pp. 43-58
- Lu et al., 2019A population algorithm based on randomized tabu thresholding for the multi-commodity pickup-and-delivery traveling salesman problemComput. Oper. Res., 101 (2019), pp. 285-297
- Lu and Yue, 2019Mission-oriented ant-team ACO for min–max MTSPAppl. Soft Comput., 76 (2019), pp. 436-444
- Nagata and Kobayashi, 2013A powerful genetic algorithm using edge assembly crossover for the traveling salesman problemINFORMS J. Comput., 25 (2) (2013), pp. 346-363
- Pan and Wang, 2006An ant colony optimization algorithm for multiple travelling salesman problemFirst International Conference On Innovative Computing, Information And Control, IEEE Computer Society (2006), pp. 210-213
- Pandiri and Singh, 2015Two metaheuristic approaches for the multiple traveling salesperson problemAppl. Soft Comput., 26 (2015), pp. 74-89
- Paydar et al., 2010Applying simulated annealing for designing cellular manufacturing systems using MDmTSPComput. Ind. Eng., 59 (4) (2010), pp. 929-936
- Penna et al., 2013An iterated local search heuristic for the heterogeneous fleet vehicle routing problemJ. Heuristics, 19 (2) (2013), pp. 201-232
- Rao, 1980A note on the multiple traveling salesmen problemOper. Res., 28 (3-part-i) (1980), pp. 628-632
- Shiri and Huynh, 2016Optimization of drayage operations with time-window constraintsInt. J. Prod. Econ., 176 (2016), pp. 7-20
- Singh and Baghel, 2009A new grouping genetic algorithm approach to the multiple traveling salesperson problemSoft Comput., 13 (1) (2009), pp. 95-101
- Soylu, 2015A general variable neighborhood search heuristic for multiple traveling salesmen problemComput. Ind. Eng., 90 (2015), pp. 390-401
- Svestka and Huckfeldt, 1973Computational experience with an m-salesman traveling salesman algorithmManage. Sci., 19 (7) (1973), pp. 790-799
- Taillard et al., 1997A tabu search heuristic for the vehicle routing problem with soft time windowsTransp. Sci., 31 (2) (1997), pp. 170-186
- Tang et al., 2000A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & steel complexEur. J. Oper. Res., 124 (2) (2000), pp. 267-282
- Toth and Vigo, 2003The granular tabu search and its application to the vehicle-routing problemINFORMS J. Comput., 15 (4) (2003), pp. 333-346
- Uchoa et al., 2017New benchmark instances for the capacitated vehicle routing problemEur. J. Oper. Res., 257 (3) (2017), pp. 845-858
- Vidal et al., 2013Heuristics for multi-attribute vehicle routing problems: A survey and synthesisEur. J. Oper. Res., 231 (1) (2013), pp. 1-21
- Wang et al., 2017Memetic algorithm based on sequential variable neighborhood descent for the minmax multiple traveling salesman problemComput. Ind. Eng., 106 (2017), pp. 105-122
- Whizzkids’96, 1996Whizzkids’96,, 1996. https://www.win.tue.nl/whizzkids/1996/.
- Yuan et al., 2013A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithmsEur. J. Oper. Res., 228 (1) (2013), pp. 72-82
- Zhan and Zeng, 2019Completion time minimization for multi-UAV-enabled data collectionIEEE Trans. Wirel. Commun., 18 (10) (2019), pp. 4859-4872
- Zhang et al., 2018Range-based truck-state transition modeling method for foldable container drayage servicesTransp. Res. Part E: Logist. Transp. Rev., 118 (2018), pp. 225-239
Cited by (25) 被引用次数 (25)
VNSMAS: A constraint-based portfolio profit maximization
VNSMAS:基于约束的投资组合利润最大化2024, Computers and Operations Research
2024, 计算机与运筹学Relative distances approach for multi-traveling salesmen problem
多行程推销员问题的相对距离方法2024, Knowledge-Based Systems
2024, 基于知识的系统A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem
最小-最大多重旅行商问题的混合遗传算法2024, Computers and Operations Research
2024, 计算机与运筹学A reinforced hybrid genetic algorithm for the traveling salesman problem
一种用于旅行推销员问题的强化混合遗传算法2023, Computers and Operations Research
2023, 计算机与运筹学Memetic search for the minmax multiple traveling salesman problem with single and multiple depots
单个和多个 depot 的 minmax multiple traveling salesman 问题的模因搜索2023, European Journal of Operational Research
2023 年,European Journal of Operational ResearchCitation Excerpt : 引文摘录:These benchmark instances and the solution certificates for them obtained by the MA algorithm are available online.3 Reference algorithms For the minmax mTSP, five algorithms (IWO Pandiri & Singh (2015), MASVND (Wang et al., 2017), ES (Karabulut et al., 2021), HSNR (He & Hao, 2022) and ITSHA (Zheng et al., 2022) represent the state-of-the-art for solving the problem. in He & Hao (2022), the authors thoroughly assessed HSNR, IWO and MASVND on the same computing platform as used in this work.
这些基准实例和MA算法获取的解决方案证书可以在线获取。 3 参考算法 对于最小mTSP,五种算法(IWO Pandiri & Singh(2015)、MASVND(Wang等人,ES(Karabulut等人,2021,HSNR(他& Hao,2022)和ITSHA(Zheng et al.,2022代表了解决问题的最新技术。 在He & Hao(2022)中, 作者在与本研究中使用的相同计算平台上全面评估了 HSNR 、 IWO 和 MASVND 。
- 2
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html。
- 3
The source codes of these algorithms and the instances will be available at https://github.com/pengfeihe-angers/mTSP.
这些算法和实例的源代码将在 https://github.com/pengfeihe-angers/mTSP 上提供。
© 2022 爱思唯尔有限公司保留所有权利。