这是用户在 2025-1-6 21:35 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

AN INTRODUCTION TO
介绍

Transport Phenomena in Materials Engineering
材料工程中的传输现象

S E C O N D E D I T I O N
第二版

DAVID R. GASKELL
大卫·R·加斯凯尔

An Introduction to TRANSPORT PHENOMENA
运输现象导论

in

MATERIALS ENGINEERING,
材料工程,

2nd Edition
第二版

An Introduction to TRANSPORT PHENOMENA
运输现象导论

in

MATERIALS ENGINEERING,
材料工程,

2nd Edition
第二版

DAVID R. GASKELL
大卫·R·加斯凯尔

MOMENTUM PRESS, LLC, NEW JERSEY
动量出版社,有限责任公司,新泽西

An Introduction to Transport Phenomena in Materials Engineering, 2nd Edition
材料工程中的传输现象导论(第二版)

Copyright © Momentum Press®, LLC, 2013
版权 © Momentum Press®, LLC, 2013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording or any other—except for brief quotations, not to exceed 400 words, without the prior permission of the publisher.
版权所有。未经出版商事先许可,任何部分不得以任何形式或通过任何手段(电子、机械、复印、录音或其他)复制、存储在检索系统中或传输——除非是简短引用,不超过 400 字。

First edition published by Macmillan Publishing Company, New York;
第一版由麦克米伦出版公司出版,纽约;

Maxwell Macmillan Canada, Toronto; Maxwell Macmillan International in 1991
麦克斯韦·麦克米兰加拿大,多伦多;1991 年麦克斯韦·麦克米兰国际

Second edition published in 2012 by Momentum Press®, LLC
2012 年由 Momentum Press®,LLC 出版的第二版

222 East 46th Street New York, NY 10017
纽约,东 46 街 222 号,邮政编码 10017

www.momentumpress.net

ISBN-13: 978-1-60650-355-3 (hard cover, case bound) ISBN-10: 1-60650-355-3 (hard cover, case bound) ISBN-13: 978-1-60650-357-7 (e-book)
ISBN-13: 978-1-60650-355-3(精装,盒装) ISBN-10: 1-60650-355-3(精装,盒装) ISBN-13: 978-1-60650-357-7(电子书)

ISBN-10: 1-60650-357-X (e-book) DOI: 10.5643/9781606503577
ISBN-10: 1-60650-357-X (电子书) DOI: 10.5643/9781606503577

Cover design by Jonathan Pennell 10 9 8 7 6 5 4 3 2 1
封面设计:Jonathan Pennel 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America
在美国印刷

For Ivy Jean
给艾薇·简

Preface to the Second Edition
第二版前言

The first edition of this textbook contained a large number of typographical errors. In this, the second edition, a serious attempt has been made to correct these errors. The major difference, however, between the first and this edition is that this edition contains an additional chapter, Chapter 12, titled “Boiling and Condensation.” The material presented in this chapter is particularly important in view of the current interest in Renewal Energy Resources involving such devices as windmills and solar panels. Developments in this field require a thorough familiarity with the phenomena and mechanisms of boiling and condensation.
本教材的第一版包含大量排版错误。在这一版,即第二版中,已认真尝试纠正这些错误。然而,第一版与这一版之间的主要区别在于这一版包含了一个附加章节,第 12 章,标题为“蒸发与冷凝”。考虑到当前对可再生能源资源的兴趣,涉及风车和太阳能电池板等设备,本章所呈现的材料尤为重要。该领域的发展需要对蒸发和冷凝的现象和机制有透彻的了解。

vii

ix

xPreface
x 前言

List of Symbolsxvii
符号列表 xvii

Engineering Units and Pressure in Static Fluids1
静态流体中的工程单位和压力 1

Origins of Engineering Units1
工程单位的起源 1

Concept of Pressure5
压力的概念 5

Measurement of Pressure11
压力测量 11

Pressure in Incompressible Fluids15
不可压缩流体中的压力 15

Buoyancy21
浮力 21

Summary26
摘要 26

Problems27
问题 27

Momentum Transport and Laminar Flow of Newtonian Fluids30
牛顿流体的动量传输和层流

Introduction30
介绍 30

Newton’s Lax of Viscosity32
牛顿的粘度定律 32

Conservation of Momentum in Steady-State Flow36
稳态流动中的动量守恒 36

Fluid Flow Between Two Flat Parallel Plates40
两个平行平板之间的流体流动 40

Fluid Flow down in Inclined Plane48
倾斜平面上的流体流动 48

Fluid Flow in a Vertical Cylindrical Tube53
垂直圆柱管中的流体流动 53

Capillary Flowmeter65
毛细管流量计 65

xi

xiiContents
内容

Fluid Flow in an Annulus69
环形间隙中的流体流动 69

Mean Residence Time76
平均停留时间 76

Calculation of Viscosity from the Kinetic Theory of Gases78
气体动理论中的粘度计算 78

Viscosities of Liquid Metals90
液态金属的粘度 90

Summary96
摘要 96

Problems98
问题 98

Equations
方程式
of
Continuity
连续性
and
Conservatio
保护
n
of Momentum and Fluid Flow Pas
动量和流体流动的 Pas
t
Submerged Objects
沉没物体
102

Introduction102
介绍 102

Equation of Continuity102
连续性方程 102

Conservation of Momentum104
动量守恒 104

Navier-Stokes Equation for Fluids of Constant Density and Viscosity108
常密度和粘度流体的纳维-斯托克斯方程 108

Fluid Flow over a Horizontal Flat Plane115
水平平面上的流体流动 115

Approximate Integral Method in Obtaining Boundary Layer Thickness117
在获得边界层厚度中的近似积分法 117

Creeping Flow past a Sphere125
球体周围的爬行流动 125

Summary132
摘要 132

Problems133
问题 133

Turbelent Flow135
湍流 135

Introduction135
介绍 135

Graphical Representation of Fluid Flow139
流体流动的图形表示 139

Friction Factor and Turbulent Flow in Cylindrical Pipes141
圆管中的摩擦因子和湍流 141

Flow Over a Flat Plate153
平板上的流动 153

Flow Past a Submerged Sphere160
沉浸球体周围的流动 160

Flow Past a Submerged Cylinder163
沉浸圆柱体周围的流动 163

Flow Through Packed Beds167
流经填充床 167

Fluidized Beds175
流化床 175

Summary180
摘要 180

Problems181
问题 181

Mechanical Energy Balance and Its Application to Fluid Flow185
机械能平衡及其在流体流动中的应用 185

Introduction185
介绍 185

Bernoulli’s Equation185
伯努利方程 185

Contents
内容
xiii

Friction Loss, Ef188
摩擦损失,Ef 188

Influence of Bends, Fittings, and Changes in the
弯头、配件和变化的影响

Pipe Radius190
管道半径 190

Concept of Head203
头部概念 203

Fluid Flow in an Open Channel205
开放渠道中的流体流动 205

Drainage from a Vessel207
从容器排水 207

Emptying a Vessel by Discharge Through an Orifice209
通过孔口排放排空容器 209

Drainage of a Vessel Using a Drainage Tube213
使用排水管排放容器的排水 213

Emptying a Vessel by Drainage Through a Drainage Tube215
通过排水管排空容器 215

Bernoulli Equation for Flow of Compressible Fluids219
可压缩流体流动的伯努利方程 219

Pilot Tube221
导管管 221

Orifice Plate225
孔板 225

Summary228
摘要 228

Problems229
问题 229

Transport of Heat by Conduction235
通过导热传输热量 235

Introduction235
介绍 235

Fourier’s Law and Newton’s Law236
傅里叶定律和牛顿定律 236

Conduction238
导电 238

Conduction in Heat Sources256
热源中的传导 256

Thermal Conductivity and the Kinetic Theory of Gases267
热导率与气体动理论 267

General Heat Conduction Equation274
一般热传导方程 274

Conduction of Heat at Steady State in Two Dimensions278
二维稳态热传导 278

Summary289
摘要 289

Problems290
问题 290

Transport of Heat by Convection295
对流传热 295

Introduction295
引言 295

Heat Transfer by Forced Convection from a Horizontal Flat Plate at a Uniform Constant Temperature295
水平平板在均匀恒定温度 295 下的强制对流热传递

Heat Transfer from a Horizontal Flat Plate with Uniform Heat Flux Along the Plate315
沿板的均匀热流从水平平板的热传递 315

Heat Transfer During Fluid Flow in Cylindrical Pipes317
圆管内流体流动中的热传递 317

Energy Balance in Heat Transfer by Convection Between a Cylindrical Pipe and a Flowing Fluid322
圆柱管与流动流体之间的对流热传递中的能量平衡 322

Heat Transfer by Forced Convection from Horizontal Cylinders331
水平圆柱体的强制对流热传递 331

Heat Transfer by Forced Convection from a Sphere334
球体的强制对流热传递 334

General Energy Equation335
一般能量方程 335

Heat Transfer from a Vertical Plate by Natural Convection346
通过自然对流从垂直板的热传递 346

xivContents
内容

Heat Transfer from Cylinders by Natural Convection358
通过自然对流从圆柱体的热传递 358

Summary360
摘要 360

Problems361
问题 361

Transient Heat Flow365
瞬态热流 365

Introduction365
介绍 365

Lumped Capacitance Method; Newtonian Cooling365
集中电容法;牛顿冷却 365

Non-Newtonian Cooling in Semi-infinite Systems373
半无限系统中的非牛顿冷却 373

Non-Newtonian Cooling in a One-Dimensional Finite Systems382
一维有限系统中的非牛顿冷却 382

Non-Newtonian Cooling in a Two-Dimensional Finite Systems394
二维有限系统中的非牛顿冷却 394

Solidification of Metal Castings401
金属铸件的固化 401

Summary416
摘要 416

Problems416
问题 416

Heat Transport by Thermal Radiation421
热辐射传输 421

Introduction421
介绍 421

Intensity and Emissive Power423
强度和发射功率 423

Blackbody Radiation427
黑体辐射 427

Emissivity431
发射率 431

Absorptivity, Reflectivity, and Transmissivity436
吸收率、反射率和透射率 436

Kirchho$’s Law and the Hohlraum437
基尔霍夫定律与霍尔 raum 437

Radiation Exchange Between Surfaces439
表面之间的辐射交换 439

Radiation Exchange Between Blackbodies450
黑体之间的辐射交换 450

Radiation Exchange Between Di$use-Gray Surfaces453
扩散灰表面之间的辐射交换 453

Electric Analogy458
电类比 458

Radiation Shields460
辐射屏障 460

Reradiating Surface463
重新辐射表面 463

Heat Transfer from a Surface by Convection and Radiation466
通过对流和辐射从表面传递的热量 466

Summary471
摘要 471

Problems472
问题 472

Mass Transport by Di$usion in the Solid State476
固态中的扩散质量传输 476

Introduction476
介绍 476

Atomic Di$usion as a Random-Walk Process476
原子扩散作为随机游走过程 476

Fick’s First Law of Di$usion480
菲克第一扩散定律 480

Contents
内容
xv

One-Dimensional Non-Steady-State Di$usion in a Solid; Fick ’s Second Law of Di$usion483
一维非稳态扩散在固体中;菲克第二扩散定律 483

Infinite Di$usion Couple489
无限扩散耦合 489

One-Dimensional Di$usion in a Semi-infinite System Involving a Change of Phase491
半无限系统中涉及相变的一维扩散 491

Steady-State Di$usion Through a Composite Wall498
复合墙的稳态扩散 498

Di$usion in Substitutional Solid Solutions502
替代固溶体中的扩散 502

Darken’s Analysis502
Darken 的分析 502

Self-Di$usion Coefficient506
自扩散系数 506

Measurement of the Interdifussion Coefficient: BoltzmannMatano Analysis510
扩散系数的测量:Boltzmann–Matano 分析 510

Influence of Temperature on the Di$usion Coefficient514
温度对扩散系数的影响 514

Summary518
摘要 518

Problems520
问题 520

Mass Transport in Fluids522
流体中的质量传输 522

Introduction522
介绍 522

Mass and Molar Fluxes in a Fluid522
流体中的质量和摩尔通量 522

Equations of Di$usion with Convection in a Binary Mixture A–B524
二元混合物 A–B 中的扩散与对流方程 524

One-Dimensional Transport in a Binary Mixture of Ideal Gases527
理想气体二元混合物中的一维传输 527

Equimolar Counterdi$usion528
等摩尔反向扩散 528

One-Dimensional Steady-State Di$usion of Gas A Through Stationary Gas B529
气体 A 在静止气体 B 中的一维稳态扩散 529

Sublimation of a Sphere into a Stationary Gas536
球体在静止气体中的升华 536

Film Model538
电影模型 538

Catalytic Surface Reactions539
催化表面反应 539

Di$usion and Chemical Reaction in Stagnant Film542
静止薄膜中的扩散和化学反应 542

Mass Transfer at Large Fluxes and Large Concentrations547
大流量和高浓度下的质量传递 547

Influence of Mass Transport on Heat Transfer in Stagnant Film550
静止薄膜中质量传输对热传递的影响 550

Di$usion into a Falling Film of Liquid553
液体下落薄膜中的扩散 553

Di$usion and the Kinetic Theory of Gases560
扩散与气体的动理论 560

Mass Transfer Coefficient and Concentration Boundary Layer on a Flat Plate569
平板上的质量传递系数和浓度边界层 569

Approximate Integral Method573
近似积分法 573

Mass Transfer by Free Convection583
自由对流的质量传递 583

Simultaneous Heat and Mass Transfer: Evaporate Cooling586
同时的热量和质量传递:蒸发冷却 586

Chemical Reaction and Mass Transfer: Mixed Control589
化学反应与质量传递:混合控制 589

Dissolution of Pure Metal A in Liquid B: Mixed Control593
纯金属 A 在液体 B 中的溶解:混合控制 593

Summary596
摘要 596

Problems598
问题 598

xviContents
xvi 目录

Condensation and Boiling601
凝结与沸腾 601

Introduction601
介绍 601

Dimensionless Parameters in Boiling and Condensation602
无量纲参数在沸腾和冷凝中的应用 602

Modes of Boiling603
沸腾的模式 603

Pool Boiling Correlations606
池沸腾相关性 606

Summary612
摘要 612

Problems612
问题 612

Appendix AElementary and Derived SI Units
附录 A 基本和衍生 SI 单位

and Symbols615
和符号 615

Appendix BPrefixes and Symbols for Multiples and Submultiples of SI Units617
附录 B SI 单位的倍数和分数的前缀和符号 617

Appendix CConversion from British and U.S. Units to SI Units618
附录 C 从英制和美制单位转换为国际单位制 618

Appendix DProperties of Solid Metals620
附录 D 固体金属的性质 620

Appendix EProperties of Nonmetallic Solids623
附录 E 非金属固体的性质 623

Appendix FProperties of Gases at 1 Atm Pressure627
附录 F 1 个大气压下气体的性质 627

Appendix GProperties of Saturated Liquids635
附录 G 饱和液体的性质 635

Appendix HProperties of Liquid Metals639
附录 H 液态金属的性质 639

Recommended Readings642
推荐阅读 642

Answers to Problems643
问题 643 的答案

Index651
索引 651

xvii
十七

xviiiList of Symbols
xviii 符号列表

List of Symbolsxix
符号列表 xix

xxList of Symbols
xx 符号列表

Condensation and Boiling
凝结与沸腾

Introduction
介绍

Evaporation is a process that occurs when a liquid, maintained at a constant temperature, exerts a partial vapor pressure in the gas phase, in contact with the liquid, which is less than the saturated vapor pressure of the liquid at the same temperature. At any finite temperature, the atoms or molecules in the liquid are in constant motion, vibrating in a cage of adjacent atoms or molecules as a result of the attractive and repulsive forces on the central atom by its neighbors. The magnitude of this agitation, which is determined by the temperature of the liquid, increases with increasing temperature. Thus, the atoms in the layer of liquid in contact with the gas phase can attain increases in energy which are greater than the activation energy required for evaporation, in which case the atom is transferred from the liquid phase to the gas phase. This process, which is called evaporation, continues until, thereby, the partial pressure of the component in the gas phase reaches its saturated vapor pressure at the temperature of interest.
蒸发是一个过程,当液体在恒定温度下,施加于与液体接触的气相中的部分蒸气压小于该温度下液体的饱和蒸气压时,就会发生蒸发。在任何有限温度下,液体中的原子或分子都在不断运动,由于邻近原子或分子对中心原子的吸引和排斥力,导致它们在一个相邻原子或分子的笼子中振动。这种激动的大小由液体的温度决定,随着温度的升高而增加。因此,接触气相的液体层中的原子可以获得超过蒸发所需的活化能的能量,在这种情况下,原子从液相转移到气相。这个被称为蒸发的过程持续进行,直到气相中该组分的部分压力达到其在所关注温度下的饱和蒸气压。

When a liquid is contained in a vessel, its surface tension prevents it from completely filling the invariable imperfections that occur on the inner surface of the vessel. Thus, small pockets of air or nitrogen are trapped in these imperfections, and atoms on the liquid side of the interface, when acquiring an increase in energy greater than the activation energy for evaporation transfer into the trapped bubble. This process continues until the partial pressure of the component in the bubble reaches the saturation pressure. This partial pressure increases with increasing temperature until it reaches the total pressure of the gas in contact with the liquid, which is, by definition, the boiling temperature of the liquid. During the period during which the liquid is being heated, the partial pressure of the component in the trapped bubble increases, as a consequence of which, the volume of the bubble increases. At the boiling
当液体被容器包围时,其表面张力阻止液体完全填充容器内表面上出现的不变缺陷。因此,空气或氮气的小口袋被困在这些缺陷中,当界面液体侧的原子获得的能量增加超过蒸发转移的活化能时,就会转移到被困的气泡中。这个过程持续进行,直到气泡中成分的分压达到饱和压力。随着温度的升高,这个分压增加,直到达到与液体接触的气体的总压力,这在定义上是液体的沸点。在液体加热的过程中,被困气泡中成分的分压增加,因此气泡的体积也增加。 在沸腾时

602 Condensation and Boiling
602 凝结与沸腾

temperature of the liquid, the geometry of the bubble makes it unstable and it detaches from the imperfection and, due the difference between densities of the liquid and vapor phases, rises to the free surface of the liquid where it is ejected into the gas. The decreasing hydrostatic pressure on the rising bubble causes it to increase in volume. When the bubble detaches from the imperfection, the volume of gas in the imperfection decreases, and the growth process begins again. This process is the same as that when a bottle of soft drink, carbonated with CO2 at high pressure, is opened and poured into a drinking glass. The rapid nucleation, growth, and release of the bubbles at the surface imperfections can be seen through the glass. When the liquid is a single component, boiling occurs at a fixed temperature, and the rate of boiling increases with increasing rate of transfer of heat to the liquid.
液体的温度,气泡的几何形状使其不稳定,并且它从缺陷上脱离,由于液相和气相之间的密度差,气泡上升到液体的自由表面,在那里被喷射到气体中。上升气泡上减少的静水压力导致其体积增加。当气泡从缺陷上脱离时,缺陷中的气体体积减少,生长过程再次开始。这个过程与打开高压二氧化碳(CO 2 )碳酸饮料瓶并倒入饮用杯时的过程相同。通过玻璃可以看到表面缺陷处气泡的快速成核、增长和释放。当液体是单一组分时,沸腾发生在固定温度下,沸腾速率随着传递给液体的热量增加而增加。

Condensation occurs when an atom or molecule in the gas phase strikes the free surface of the liquid and is captured. The individual atoms or molecules in the gas phase have velocities within a spectrum of velocities, the extremes of which are determined by the temperature of the gas and the atomic or molecular weights of particles in the gas. Particles with a high enough velocity, and hence high enough kinetic energy, are captured by the liquid and this process is called condensation. Particles with less than this velocity undergo elastic collisions with the free surface and bounce back into the gas phase. When the partial pressure of the component in the gas phase equals its saturated vapor pressure, the rates of evaporation and condensation are equal and phase equilibrium occurs.
当气相中的原子或分子撞击液体的自由表面并被捕获时,就会发生凝结。气相中的单个原子或分子具有一系列速度,这些速度的极值由气体的温度和气体中粒子的原子或分子量决定。具有足够高速度(因此具有足够高动能)的粒子被液体捕获,这个过程称为凝结。速度低于这个值的粒子与自由表面发生弹性碰撞,并反弹回气相。当气相中组分的分压等于其饱和蒸气压时,蒸发和凝结的速率相等,发生相平衡。

A knowledge of the mechanisms of the transport of heat between a solid surface and the fluid with which it is contact is important in the heat treatment of ferrous alloys. Time-Temperature-Transformation (T-T-T) Diagrams for ferrous alloys show the influence of cooling rates (quenching rates) on the microstructure obtained at room temperature. In the case of plain carbon steels of the eutectoid composition, increasing the cooling rate causes microstructures to vary in the range of coarse pearlite, fine pearlite, upper bainite, lower bainite. If the cooling rate is rapid enough that the variation of temperature with time misses the nose of the T-T-T curve, austenite is retained until the Ms (martensite start) temperature is reached. At this point, with further cooling, the face-centered cubic γ phase transforms, by diffusionless shear, to the body-centered tetragonal martensite phase. This transformation continues until the temperature reaches the Mf (martensite finish) temperature. The change in molar volume accompanying this phase change gives rise to high shear stresses at the phase boundaries, which causes the martensite phase to be brittle. This brittleness is removed by tempering the alloy at a temperature high enough to allow some nucleation and precipitation of cementite from the martensite.
固体表面与其接触的流体之间热量传输机制的知识在铁合金的热处理过程中非常重要。铁合金的时间-温度-转变(T-T-T)图显示了冷却速率(淬火速率)对室温下获得的微观结构的影响。在共析成分的普通碳钢中,增加冷却速率会导致微观结构在粗珠光体、细珠光体、上贝氏体和下贝氏体的范围内变化。如果冷却速率足够快,以至于温度随时间的变化错过了 T-T-T 曲线的鼻部,奥氏体会保持直到达到 Ms(马氏体开始)温度。在这一点上,随着进一步冷却,面心立方γ相通过无扩散剪切转变为体心四方马氏体相。这一转变持续到温度达到 M f (马氏体结束)温度。伴随这一相变的摩尔体积变化在相界面产生高剪切应力,导致马氏体相变得脆弱。 这种脆性通过在足够高的温度下对合金进行回火来消除,以允许一些水泥石的成核和从马氏体中沉淀。

Dimensionless Parameters in Boiling and Condensation
无量纲参数在沸腾和冷凝中

For both the boiling and the condensation processes, the convection coefficient could depend on the difference between the surface and saturation temperatures,
对于沸腾和冷凝过程,传热系数可能依赖于表面温度和饱和温度之间的差异,

Te = Ts Tsat, the body force caused by the difference between the densities of the
T e = T s  T sat ,由密度差引起的体力

liquid and vapor phases, g ( ρ1 ρv), the latent heat of evaporation Hevap, the surface
液体和蒸气相,g ( ρ 1  ρ v ), 蒸发潜热  H evap , 表面

Modes of Boiling603
沸腾的模式 603

tension σ, a characteristic length L and the thermophysical properties of the liquid or vapor, density , molar heat capacity cp, thermal conductivity k and viscosity η; that is,
张力 σ、特征长度 L 和液体或蒸气的热物理性质,密度 、摩尔热容 c p 、热导率 k 和粘度 η;也就是说,

h = h[T, g (ρl ρv), Hevap , σ, L, ρ, cp, k, η]

Straightforward dimensionless gives the relationship
简单的无量纲给出了关系

(12.1)

hL f ρ g( ρl ρv ) L 3 ,
hL = f [ρ g(ρ - ρ v ) L 3 ,

cp T, ηcp

, g ( ρl

ρv) 2L

(12.2)

kη2

Hevapk

σ

or, defining the dimensionless groups,
或者,定义无量纲组,

Nu

f ρg( ρl ρv ) L3

Ja , Pr, Bo(12.3)

Lη 2

The Prandtl number, Pr hcp /k, was defined on p. 298 and the Nusselt number, Nu hL/k, was defined on P. 299. The Jacob number, Ja, which is the ratio of the maximum sensible energy absorbed by the liquid (or vapor) to the latent heat absorbed by the liquid (or vapor) during condensation (or boiling) is given by
普朗特数,Pr  hc p /k,在第 298 页定义,努塞尔数,Nu  hL/k,在第 299 页定义。雅各布数,Ja,是液体(或蒸气)在凝结(或蒸发)过程中吸收的最大显热与液体(或蒸气)吸收的潜热之比。

Ja

cp (Ts Tsat )

Hevap

(12.4)

and the Bond number, Bo, which is the ratio of the gravitational body force to the surface tension force, is given by
和邦德数 Bo,它是重力体力与表面张力力的比率,表示为

Bo

g ( ρf

ρv )L 2

σ

(12.5)

Modes of Boiling
沸腾的模式

The term boiling is used to describe the process of evaporation at the free surface of a liquid. The modes of boiling are shown graphically on a log-log plot of the variation of the heat flux from the solid surface to the liquid, q"s , with the excess temperature,
“沸腾”一词用于描述液体自由表面上的蒸发过程。沸腾的模式在固体表面到液体的热流量 q" s 与过剩温度的对数-对数图上以图形方式显示。

Te = Ts Tsat, where Ts is the temperature of the surface and Tsat is the temperature
T e = T s  T sat ,其中 T s 是表面的温度,T sat 是温度

at which the partial pressure of the component in the gas phase is equal to the saturated vapor pressure. Heat is transferred from solid surface to the liquid according to Newton’s Law as
在气相中该组分的分压等于饱和蒸气压时。根据牛顿定律,热量从固体表面传递到液体。

qs h (Ts

Tsat ) hTe

(12.6)

The process is characterized by the formation of bubbles of vapor, which grow and, subsequently, detach from the surface.
该过程的特点是形成蒸汽气泡,这些气泡不断增大,随后从表面脱离。

The various regimes of boiling are identified in the boiling curve, shown as Fig. 12.1, which is drawn for water at one atmosphere pressure. Eq. (12.6) shows that
沸腾的各种状态在沸腾曲线中被识别,如图 12.1 所示,该图是为在一个大气压下的水绘制的。方程(12.6)显示出

604Condensation and Boiling
604 凝结与沸腾

Free
免费

Boiling Regimes Nucleate
沸腾状态成核

Transition
过渡

Film
电影

107

convectionisolated
对流隔离

jets and columns
喷气机和柱子

106

9”max

P

105

point, 9” min
点,9” 最小

104

Te,ATe,B

Te,C

Te,

103

1

510

30

Te = Ts Tsat

120

Centigrade Degrees
摄氏度

1000

FIGURE 12.1The boiling curve for water at 1 atm.
图 12.1 1 个大气压下水的沸腾曲线。

q"s depends on both the convection coefficient, h, and the excess temperature, Te.
q" s 依赖于对流系数 h 和过剩温度 T e

The various boiling regimes are delineated by their values of Te.
各种沸腾状态由它们的 T e 值划分。

Free Convection Boiling
自由对流沸腾

Free convection boiling occurs when Te Te, A 5 centigrade degrees. In this regime, the amount of vapor in contact with the liquid phase is not enough to cause boiling at the temperature at which the liquid exerts its saturated vapor pressure. As the excess temperature is increased, the formation of bubbles eventually begins, but
自由对流沸腾发生在 T e  T e A ≈ 5 摄氏度。在这个状态下,与液相接触的蒸汽量不足以在液体施加其饱和蒸汽压力的温度下引起沸腾。随着过剩温度的增加,气泡的形成最终开始,但

Modes
模式
of
Boiling
煮沸
605

at temperatures lower than the point A, termed the onset of nucleate boiling, ONB, fluid motion is determined mainly by free convection. According to whether the flow is laminar or turbulent, h varies with Te to the 1/4 or 1/3 power, respectively, in which
在低于点 A 的温度下,称为成核沸腾的开始(ONB),流体运动主要由自然对流决定。根据流动是层流还是湍流,h 分别与ΔT 的 0 次方、1/4 次方或 1/3 次方变化。

case q"s varies with Te to the 5/4 or 4/3 power.
情况 q" s 随着 T e 变化至 5/4 或 4/3 次方。

Nucleate Boiling
成核沸腾

Nucleate boiling occurs in the range Te, A δ Te δ Te, C, where Te, C 30 centigrade degrees. Two flow regimes exist in this range. At lower temperatures in the region AB, isolated bubbles form at nucleation sites and separate from the surface, which, by causing significant mixing in the fluid adjacent to the surface, substantially increases both h and q"s . Most of the heat exchange is by direct transfer from the surface to the liquid in motion at the surface. As Τe is increased beyond Τe, B, more nucleation sites become active and the consequent increased formation of bubbles causes interference between, and coalescence of, the bubbles. In the region B C the vapor escapes in columns, which eventually merge into slugs of vapor. Motion of the liquid near the surface is inhibited by interference between the densely populated bubbles. Point P in Fig. 12.1 is a point of inflection on the boiling curve at which h has a maximum value. At this point h begins to decrease with increasing Τe, although q"s , which is the product of h and Τe continues to increase. This situation arises because, for Τe Τe, P the relative increase in Τe exceeds the relative decrease in h. At the point C, however, the further increase in Τe is balanced by the decrease in h. The maximum heat flux, qs, C" = qmax", the critical heat flux, in water at atmospheric pressure exceeds 1 MW/m2. At this point, the amount of vapor formed makes it difficult for the liquid to continuously wet the surface.
核化沸腾发生在范围 T e A δ T e δ T e C ,其中 T e C ≈ 30 摄氏度。这个范围内存在两种流动状态。在 A−B 区域的较低温度下,孤立气泡在成核点形成并从表面分离,这通过在靠近表面的流体中造成显著混合,显著增加了 h 和 q" s 。大部分热交换是通过表面与表面上运动的液体之间的直接传递进行的。当 Τ e 超过 Τ e B 时,更多的成核点变得活跃,随之而来的气泡形成增加导致气泡之间的干扰和合并。在 B — C 区域,蒸汽以柱状形式逃逸,最终合并成蒸汽块。靠近表面的液体运动受到密集气泡之间干扰的抑制。图 12.1 中的点 P 是沸腾曲线上的一个拐点,在该点 h 达到最大值。在这一点上,h 开始随着 Τ e 的增加而减少,尽管 q" s ,即 h 和 Τ e 的乘积继续增加。 这种情况出现是因为,对于 Τ e  Τ e P ,Τ e 的相对增加超过了 h 的相对减少。然而,在点 C,Τ e 的进一步增加被 h 的减少所平衡。在大气压力下,水的最大热流量 q s C " = q max ",临界热流量超过 1 MW/m2。在这一点上,形成的蒸汽量使得液体难以持续润湿表面。

Transition boiling
过渡沸腾

The region Τe,C Τe Τe, D, where Τe, D is called, transition boiling, film boiling or partial film boiling. The rate of formation of bubbles is now so rapid that a film of vapor begins to form on the surface. At any point on the surface, conditions may change from film to nucleate boiling, but the fraction of the total surface covered by the film increases with increasing Τe. Because the thermal conductivity of the vapor is much less than that of the liquid, h, and q"s , decrease with increasing Τe .
该区域 Τ e C  Τ e  Τ e D 被称为过渡沸腾、膜沸腾或部分膜沸腾。气泡的形成速率现在如此迅速,以至于在表面开始形成一层蒸汽膜。在表面的任何一点,条件可能会从膜沸腾变化为成核沸腾,但被膜覆盖的总表面比例随着 Τ e 的增加而增加。由于蒸汽的热导率远低于液体的热导率,h 和 q" s 随着 Τ e 的增加而降低。

Film Boiling
电影沸腾

Film boiling occurs in the range Τe Τe, D. At the point D on the boiling curve, referred to as the Leidenfrost point, the heat flux is a minimum, q"s , = q"min and the surface is completely covered with a film of vapor. Heat transfer from the surface to the liquid occurs by conduction through the vapor. With further increase in the surface temperature, radiation through the vapor film becomes significant and the heat flux increases with increasing Τe.
膜沸腾发生在范围 Τ e  Τ e D 。在沸腾曲线的点 D,称为莱顿弗罗斯特点,热流密度达到最小值,q" s = q" min ,表面完全被蒸汽膜覆盖。热量通过蒸汽的导热从表面传递到液体。随着表面温度的进一步升高,蒸汽膜中的辐射变得显著,热流密度随着 Τ e 的增加而增加。

The preceding discussion concerns the condition in which the heat flux, q"s , is determined by the imposed value of Τe. The behavior is significantly different if the heat flux is the independent variable. Consider starting at some point P, shown in
前面的讨论涉及热流 q" s 由施加的 ΔΤ e 值决定的情况。如果热流是自变量,则行为会显著不同。考虑从某个点 P 开始,如图所示。

606Condensation and Boiling
606 凝结与沸腾

gmax

Te,CTe,E

Te = Ts Tsat

FIGURE 12.2Onset of the boiling crisis.
图 12.2 沸腾危机的开始。

Fig. 12.2, and increasing the heat flux. The system moves, as before, up the boiling curve to the point C, but any attempt to further increase the heat flux causes the system to jump to the point E, which probably occurs at a temperature higher than the melting temperature of the solid, which, consequently, causes destruction of the solid. For this reason, point C is called the burnout point, and it is important that the value of the critical heat flux be known accurately, as it may be required that the system be operated at a heat flux which is close to the critical value, but which may not exceed the critical value. Applications involving controlling q include nuclear reactors and devices heated by resistance to the passage of an electrical current.
图 12.2,并增加热流密度。系统如前所述,沿着沸腾曲线移动到点 C,但任何进一步增加热流密度的尝试都会导致系统跳跃到点 E,这可能发生在高于固体熔化温度的温度下,因此导致固体的破坏。因此,点 C 被称为烧毁点,准确知道临界热流密度的值非常重要,因为可能需要系统在接近临界值但不超过临界值的热流密度下运行。涉及控制 q'的应用包括核反应堆和通过电流通过的电阻加热的设备。

Pool Boiling Correlations
池沸腾相关性

Nucleate Pool Boiling
成核池沸腾

Consideration of nucleate boiling involves the prediction of the number of nucleation sites and the rate at which bubbles nucleate from each site. The first relationship de-
考虑到成核沸腾,需要预测成核点的数量以及气泡从每个点成核的速率。第一个关系式 de-

rived showed the influence of nucleation sites on the heat flux, q"s
rived 显示了成核位点对热通量 q" s 的影响

qs C T a nb

(W/m2) as
(W/m2) 作为

(12.7)

where n is the number of active nucleation sites per unit area, and the exponents are approximately a = 1.2 and b = 1/3. Although the type of fluid-surface combination has a considerable influence on the values of C and n, it has been found that, for most commercial surfaces, n is proportional to T5 orT 6. Thus, from Eq. (12.7), it follows
其中 n 是单位面积内活跃成核位点的数量,指数大约为 a = 1.2 和 b = 1/3。尽管流体-表面组合的类型对 C 和 n 的值有相当大的影响,但已发现对于大多数商业表面,n 与 T 5 或 T 6 成正比。因此,从公式 (12.7) 可以得出

that q" is approximately proportional to T3. Consideration of Eq. (12.7) led to the
q" 大约与 T 3 成正比。考虑到方程 (12.7) 导致了

se

first and most useful correlation
最初和最有用的相关性

Pool Boiling Correlations607
池沸腾相关性 607

qs η Hevap [ g (ρ l ρv )/σ ]1 /2 [ Cp,l Te / Cs HevapPrn ] 3

(12.8)

where the subscripts l and v, respectively, denote the saturated liquid and vapor states. The inclusion of the surface tension, σ, follows from the large effect that the surface tension has on the formation and development of bubbles. The coefficient CS and the exponent n depend on combination of surface and liquids and representative values are listed in Table 12.1.
其中下标和 v 分别表示饱和液体和蒸气状态。表面张力σ的包含是由于表面张力对气泡的形成和发展有很大影响。系数 C S 和指数 n 依赖于表面和液体的组合,代表性值列在表 12.1 中。

TABLE 12.1 Values of Cs,f for various combinations of fluids and solids.
表 12.1 各种流体和固体组合的 Cs,f 值。

Surface–fluid combinationCs, fn
表面–流体组合 Cs, f n

Water–copper
水–铜

Scored0.00681.0
得分 0.0068 1.0

Polished Water–stainless steel
抛光水–不锈钢

0.0130

0.0130

1.0

1.0

Chemically etched
化学蚀刻

0.0130

1.0

Mechanically polished
机械抛光

0.0060

1.0

Ground and polished Water–brass
磨光的水–黄铜

Water–nickel
水–镍

0.0060

0.0060

0.0060

1.0

1.0

1.0

Water–platinum
水–铂

0.0130

1.0

The Critical Heat Flux for Nucleate Pool Boiling
核态池沸腾的临界热流量

The point C on the boiling curve is an important point and, as has been stated, while it is desirable to operate as close to this point as possible, it is imperative that the actual heat flux does not exceed the critical value. An expression for the critical heat flux has been derived as
沸腾曲线上的点 C 是一个重要的点,正如所述,虽然希望尽可能接近这个点进行操作,但实际的热通量不得超过临界值。临界热通量的表达式已被推导为

q s, max π Hevap ρv [ σg ( ρ1 ρv)/ ρ2]1/4 [(ρv ρ1 )/ ρ1 ]1/ 2

(12.9)

24v

which, as a first approximation, is independent of surface material and is only weakly dependent on geometry. Replacing the constant (π/24) = 0.131 by an experimental value of 0.149 and approximating the last term in parentheses to unity gives
作为第一近似,它与表面材料无关,仅对几何形状有弱依赖性。将常数 (π/24) = 0.131 替换为实验值 0.149,并将括号中的最后一项近似为 1,得到

qs, max

0.149 Hevapρv[ σg (ρl ρv ) /ρ 2 ]1/ 4

(12.10)

The critical heat flux depends strongly on pressure, mainly through the dependencies of surface tension and the heat of vaporization on pressure.
临界热流密度强烈依赖于压力,主要通过表面张力和蒸发热对压力的依赖性。

Minimum Heat Flux
最小热流量

The transition boiling regime is of little practical interest, as it may be obtained only by controlling the surface heater temperature. This regime can be characterized by
过渡沸腾状态在实际应用中兴趣不大,因为它只能通过控制表面加热器温度来获得。该状态可以通过

608 Condensation and Boiling
608 凝结与沸腾

periodic, unstable contact between the liquid and the heated surface. However, the upper limit of this regime is of interest because it corresponds to the formation of a stable blanket or film of vapor and to a minimum heat flux condition. If the heat flux falls below this minimum, the film collapses, causing the surface to cool and nucleate boiling to be reestablished.
液体与加热表面之间的周期性、不稳定接触。然而,这一状态的上限是值得关注的,因为它对应于稳定的蒸汽层或薄膜的形成以及最低热流条件。如果热流低于这个最低值,薄膜会崩溃,导致表面冷却并重新建立成核沸腾。

The use of stability theory allowed derivation of the following equation for the minimum heat flux, qe,D =qmin, from a large horizontal plate.
稳定性理论的使用允许从一个大型水平板推导出以下最小热流量方程,q e D =q min

gσ ( ρ ρ ) 1/ 4

q min Cρv Hevap lv

(12.11)

( ρl ρv ) 2
( ρ ρv ) 2

The constant, C, has been experimentally determined to have the value 0.09, which is accurate to approximately 50% for most fluids at moderate pressures, but is less accurate at higher pressures.
常数 C 的实验确定值为 0.09,对于大多数中等压力的流体,其准确度约为 50%,但在较高压力下准确度较低。

Film Pool Boiling
电影池沸腾

At excess temperatures greater than that of the Leidenfrost point, a continuous film of vapor covers the surface which prevents contact between the liquid and the surface. One result, obtained from condensation theory, which applies to film boiling on a cylinder or sphere of diameter D, is of the form
在超过莱登弗罗斯特点的过热温度下,一层连续的蒸汽膜覆盖在表面上,防止液体与表面接触。根据适用于直径为 D 的圆柱或球体的膜沸腾的凝结理论,得到的一个结果是以下形式

hDg (ρ1 ρv) Hev apD 3

NuD

conv
转换

kv

C[]1/ 4

vv kv ( Ts Tsat)

(12.12)

The correlation constant C is 0.62 for horizontal cylinders and 0.67 for spheres. The corrected latent heat H΄vap accounts for the sensible energy required to maintain temperatures within the vapor blanket above the saturation temperature. Although it may be approximated as
相关常数 C 对于水平圆柱体为 0.62,对于球体为 0.67。修正后的潜热H΄vap 考虑了维持蒸汽包中温度在饱和温度以上所需的显热。尽管它可以近似为

H H 0.8 c( T T )

evapevapp,vssat
蒸发 蒸发 pv s sat

it has a weak dependence on the Prandtl number of the vapor. The properties of the vapor are evaluated at the film temperature
它对蒸汽的普朗特数依赖较弱。蒸汽的性质在膜温度下进行评估。

Tf (Ts Tsat)/2
T f = (T s + T sat ) / 2

and the density of the liquid is evaluated at the saturation temperature.
液体的密度在饱和温度下进行评估。

At elevated surface temperatures (Ts less than or equal to 300°C), radiation heat transfer across the vapor film becomes significant. Since radiation increases the film thickness, it cannot be assumed that the radiative and convective processes are simply additive. Investigation of film boiling from the outer surface of horizontal tubes led to the suggestion that the total heat transfer coefficient be given by an equation of the form
在较高的表面温度(Ts 小于或等于 300°C)下,蒸汽膜中的辐射热传递变得显著。由于辐射增加了膜厚度,因此不能简单地假设辐射和对流过程是相加的。对水平管外表面膜沸腾的研究提出了总热传递系数应由以下形式的方程给出。

h 4/ 3

h 4/ 3

hh 1/ 3

(12.13)

convrad
弧度转换

If
如果 — —

Pool Boiling Correlations609
池沸腾相关性 609

hrad is less than hconv, a simpler form may be used:
h rad 小于 h conv ,可以使用更简单的形式:

h

The effective radiation coefficient
有效辐射系数 —

hconv 3 hrad
hconv + 3 hrad

4

is expressed as
表示为

(12.14)

hrad

h εσ (Ts4 T 4 )
h = εσ (T s 4 - T 4 )

(12.15)

rad

Ts Tsat

where ε is the emissivity of the solid and σ is the Stefan-Boltzmann constant.
其中 ε 是固体的发射率,σ 是斯特藩-玻尔兹曼常数。

Note that the analogy between film boiling and film condensation does not hold for small surfaces with high curvature because of the large difference between vapor and liquid film thicknesses for the two processes.
请注意,薄膜沸腾和薄膜冷凝之间的类比在高曲率的小表面上并不成立,因为这两种过程的蒸汽和液体薄膜厚度之间存在很大的差异。

EXAMPLE 12.1
示例 12.1

The bottom of a copper pan, 0.4 m in diameter, is maintained at 120 °C by an electric heater. Estimate the power required to boil water in this pan. What is the rate of evaporation? Estimate the critical heat flux.
一个直径为 0.4 米的铜锅底部通过电加热器保持在 120°C。估算在这个锅中将水煮沸所需的功率。蒸发速率是多少?估算临界热流密度。

Assumptions1. Steady state
假设 1. 稳态

1 atm.

Tsat = 100°C

Polished surface
抛光表面

Negligible losses from the heater to the surroundings
来自加热器对周围环境的可忽略损失

From Appendix G
来自附录 G

ρ l = 958 kg/m3

cpl = 4220 J/kg K

ηl = 282 106 kg/m s
η = 282  106 kg/m  s

Prl = 1.75

Other data
其他数据

From Eq. (12.8)
从公式 (12.8)

Hevap = 2260 kJ/kg

= 58.9 10–3 N/m

ρv = 0.596 kg/m3

Te = Ts Tsat = 20°C. Therefore, From Fig 12.1, nucleate boiling.
T e = T s – T sat = 20°C。因此,从图 12.1 来看,发生了成核沸腾。

qs η Hevap [ g (ρ l ρv )/σ ]1 /2 [ Cp,l Te / Cs HevapPrn ] 3

610Condensation and Boiling
610 凝结与沸腾

kg 1/2
千克  1/2

282 ×106 kg × 2260 ×103 J × 9.81

m × (958 0.596) m3 ×

mskg
毫秒 千克 

4420 J× 20
4420 J × 20

s258.9 ×10 3 kg

ms

3
3

kgK

= 1042 kW

0.013 × 2260 ×103 J ×1.70 m2
0.013 × 2260 ×10 3 J ×1.70 m2

kg
 千克 

Thus, the boiling heat transfer rate is
因此,沸腾热传递率是

q q

s A qs π D

1042 kW
1042 千瓦

m2

Under steady-state conditions,
在稳态条件下,

q m˙evap Hevap
q = m˙evap Δ Hevap

3.142
3.142

0.42

4

m2 131kW
m 2  131 千瓦

m˙

q

1.31 105 W

0.058 kg
0.058 千克

209 kg
209 千克

evap
蒸发

Hevap

2260 103 J shr
2260  10 3 焦耳·秒·小时

EXAMPLE 12.2
示例 12.2

A metal-clad heating element 6-mm in diameter and with an emissivity ε = 1 is immersed horizontally in a water bath. The surface temperature of the metal is 255°C under steady-state boiling conditions. Estimate the power dissipation per unit length of the heater.
一个直径为 6 毫米、发射率ε = 1 的金属包覆加热元件水平浸入水浴中。在稳态沸腾条件下,金属的表面温度为 255°C。估算加热器每单位长度的功率耗散。

From Appendix F
来自附录 F

ρl = 958 kg/m3

Hevap = 2260 kJ/kg ρv = 0.441 kg/m3 cp,v = 1977 J/kg.K

kv = 0.0019 W/m K

ηv = 1.212 105 kg/m s

Te = 2325 100 = 125°C

From Fig 12.1, Film Pool Boiling, Convection and radiation
从图 12.1,电影池沸腾,∴ 对流和辐射

qs qsπD hπ DTe

h 4/3

h 4/3

hh

convrad
弧度转换

k3 ρ

(ρ ρ

)g (H

0.8c
0.8c

T 1/4

Summary611
摘要 611

hconv

0.62
0.62

vvlvevapp,ve

W 3

kg

m

ηDTe

kg

J J

1/ 4

0.00193 mK
0.0019 3 mK

0.62
0.62

0.441

m3 9.81 s

2 958 0.441

m 3 (2260 kg 0.8 1977 kgK

125

1.212 105 kg 6 103 m 125
1.212 × 10⁻⁵ kg × 6 × 10 3 (m) × 125

400( W )
400( W )

m2 K

εσ (T 4 T4 )

hrad

ssat

Ts Tsat

5.67 10 8

19.12 W
19.12 W

m2 K

W

m2 K

4.984 3734

498 373

Then, from Eq. (12.13)
然后,从公式 (12.13)

h 4/3

h 4/3

hh1/3

h 4/3

4004/3

19.12

h 1/3

Trial and error gives
试错法给

Then
然后

h 400 W
h  400 瓦

m2 K

qs

400( W ) 3.184 6 103 (m) 125

m2 K

955 W

m

612 Condensation and Boiling
612 凝结与沸腾

Summary
摘要

The term boiling is used to describe the process of evaporation at the free surface of a liquid and the modes of boiling are shown graphically on a log-log plot of the variation of the heat flux, from the solid surface of the liquid, with the excess temperature. Newton’s Law gives the relationship between the heat flux and the excess temperature.
“沸腾”一词用于描述液体自由表面上的蒸发过程,沸腾的模式在热流与过剩温度变化的对数-对数图上以图形方式显示。牛顿定律给出了热流与过剩温度之间的关系。

The boiling curve shows the various regimes of boiling. With increasing excess temperature these are (i) free convection boiling, (ii) nucleate boiling, (iii) transition boiling, and (iv) film boiling. Equations have been developed to give the dependence of the surface heat flux on the values of the various properties that influence this flux. The point C on the boiling curve is the critical heat flux, and an expression has been derived for the dependence of this critical heat flux on the same properties.
沸腾曲线显示了沸腾的各种状态。随着过剩温度的增加,这些状态为 (i) 自由对流沸腾,(ii) 核化沸腾,(iii) 过渡沸腾,以及 (iv) 薄膜沸腾。已经开发出方程来给出表面热流密度对影响该热流密度的各种属性值的依赖关系。沸腾曲线上的点 C 是临界热流密度,并且已经推导出该临界热流密度对相同属性的依赖关系的表达式。

The minimum heat flux occurs at the Leidenfrost point, and an equation has been developed to give the dependence of the value of this minimum heat flux on the various properties of the system. At elevated temperatures, radiation heat transfer across the vapor film becomes significant.
最小热流发生在莱顿弗罗斯特点,并且已经开发出一个方程来给出该最小热流值对系统各种属性的依赖关系。在高温下,蒸汽膜中的辐射热传递变得显著。

Problems
问题

PROBLEM 12.1
问题 12.1

Conduct a unit analysis of Eq. (12.9).
对方程 (12.9) 进行单位分析。

PROBLEM 12.2
问题 12.2

The surface of a horizontal, 20-mm diameter cylinder is maintained at an excess temperature of 10°C in saturated water at 1 atm. Calculate the heat flux. Use the data in Appendix G and the data below:
一个直径为 20 毫米的水平圆柱体表面在 1 个大气压的饱和水中保持 10°C 的过剩温度。计算热流。使用附录 G 中的数据和以下数据:

Hevap = 2260 kJ/kg

σ = 58.9 103 kg/m s

ρv = 0.596 kg/m3

PROBLEM 12.3
问题 12.3

A long 2-mm diameter wire passes an electric current and reaches a surface temperature of 120°C when submerged in boiling water at 1 atm pressure. Calculate the boiling heat transfer coefficient.
一根直径为 2 毫米的长电线在 1 个大气压下浸没在沸水中时,电流通过并达到 120°C 的表面温度。计算沸腾换热系数。

PROBLEM 12.4
问题 12.4

Calculate the nucleate pool boiling heat transfer coefficient for water boiling at atmospheric pressure on the outer surface of a platinum-plated 10-mm diameter tube maintained 10°C above the saturation temperature.
计算在大气压下,水在一个外表面为铂涂层、直径为 10 毫米的管子上沸腾时的成核池沸腾换热系数,该管子保持在比饱和温度高 10°C。

PROBLEM 12.5
问题 12.5

Summary613
摘要 613

The bottom of a copper pan, 150 mm in diameter, is maintained at 115°C by the heating element of an electric range. Calculate
一个直径为 150 毫米的铜锅底部,由电炉的加热元件保持在 115°C。计算

the power required to boil the water in this pan.
将这个锅中的水煮沸所需的功率。

the rate of evaporation.
蒸发速率。

the ratio of the surface heat flux to the critical heat flux.
表面热流密度与临界热流密度的比率。

615

616Elementary and Derived SI Units and Symbols
616 基本和导出 SI 单位及符号

617

618

Conversion from British and U.S. Units to SI Units619
从英制和美制单位转换为国际单位制单位 619

620

623

627

635

639

642Recommended Readings
642 推荐阅读

Answers to Problems643
问题 643 的答案

644Answers to Problems
644 个问题的答案

Answers to Problems645
问题 645 的答案

646Answers to Problems
646 个问题的答案

Answers to Problems647
问题 647 的答案

648Answers to Problems
648 个问题的答案

Chapter Twelve
第十二章

12.1LHS = RHS = kg/s3
12.1 LHS= RHS = kg/s³

π

σg ( ρ ρ ) 1/ 4

( ρ ρ )1/ 2

qs,max 24 Hevap
qsmax = 24 Hevap

ρσ

evev

2ρe

W J kg

J mm31/ 4

2kg
2 千克

3 2

2 kg 1

mm ms

J N.m kg
J N.m 千克

N.m mm31/4

s.m 2

kgm3
千克每立方米

m2

s2 kg

N.m

m m kg

m m mm31/ 4

kg s2
千克 s2

kg
 千克

m3 kg2
m3 kg 2

2 2 kg

s.m

m m

kg
公斤

sms
s m s

m4 1/ 4

kg s 2
公斤 s 2

s.m 2

s2 m

s 4

kg
公斤

kg
公斤

s 3

s3

12.237.6 W/m

D = 20 mm
D = 20 毫米

ρe = 958 kg/m3

∆Te = 10°

cs = 0.013n = 1

e = 4220 J/kg · KHevap = 2260 × 103 J/kg

η = 0.282 × 10–3 kg/m.sσ = 58.9 × 10–3 kg/m.s

Pr = 1.75ρv = 0.596 kg/m3

g ρ ρ 1/2

C ρ T3

qs ηHevap
qs'' = ηΔHevap

es

een

σ
σ

Cs Hevap Pr

[0.282 10 3 2260 103] 9.81 (958 0.596) 1/ 2

4420 10 3

58.9 10 3

0.013 2260 103
0.013 × 2260 × 10 3

1.75

637.3339.30.5529

11950 W
11950 W

m2

A π 0.022

4

3.143 10 4
3.143 × 10 4

q 119500 3.143 104

37.6 W
37.6 W

Answers to Problems649
问题 649 的答案

47.8 kW/m2K

D = 2 mmTe = 20

ρl = 958 kg/m3Cs = 0.013n = 1

l = 4220 J/kg·KHevap = 2260 × 103 J/kg

η = 0.282 × 10–3 kg/m.sσ = 58.9 × 10–3 kg/m.s

Pr = 1.75ρv = 0.596 kg/m3

g(ρ ρ 1/2 Cρ Te3

qs ηHevap eσv

CsHevap Pr

[0.28 103 2260 103] 9.81 (958 0.596) 1/2

4420 203

58.9 10 30.013 2260 103 1.75
58.9  10 3 0.013  2260  10 3  1.75

637.3339.34.423

956411

h 956411

47820 W

hTe
hΔT e

20m2 K

47.8 kW
47.8 kW

m2 K

11.9 kW/m2K

ρl = 958 kg/m3∆Hevap = 2260 kJ/kg

l = 4220 J/kg·Kρv = 0.596 kg/m3

ηl = 282 × 10–6 kg/m.sσ = 58.9 × 10–3 J/m2

Pr = 1.75Cs = 0.013n = 1

g ρ ρ 1/ 2

C ρ T3

qs ηHevap

ev

ee n

σ Cs Hevap
σ Cs H evap

Pr

339.30.5529

= 119313=h10

h 11931 W 11.9 kW

m2 Km2 K

(i) 7.142 kW(ii) 11.4 kg/h(iii) 0.2
(i) 7.142 千瓦 (ii) 11.4 千克/小时 (iii) 0.2

Cu panD = 0.15 mTe = 15

ρl = 958 kg/m3Cs = 0.013n = 1

l = 4220 J/kg·K Hevap = 2260 × 103 J/kg

η = 0.282 × 10–3 kg/m.sσ = 58.9 × 10–3 kg/m.s

Pr = 1.75ρv = 0.596 kg/m3

650Answers to Problems
650 个问题的答案

gρ ρ 1/2

Cρ T3

qs ηHevap

lv

ll

σ
σ

CsHevapPr n
CsHevapPr n

[0.28 10 3 2260 103 ] 9.81 (958 0.596) 1/ 2

4420 15 3

58.9 10 30.013 2260 103 1.75

637.3339.31.861

 W

m2

403.5 Kw
403.5 千瓦

m2

q q A

A π D2 3.142 0.152

0.0177m 2
0.0177 米 2

ss

403.5 0.0177
403.5  0.0177

44

7.142 kW
7.142 千瓦

qs

m˙b Hevap

m˙ b

7.142

3.16 10 3 kg
3.16 × 10 3 kg

11.4 kg
11.4 千克

2260sh

surface heat flux 403469
表面热通量 = 403469

0.2

critical heat flux2 10 6
临界热流密度 2 10 6

Page numbers followed by f and t indicate figures and tables, respectively.
页码后跟 f 和 t 分别表示图形和表格。

A

Absolute mass flux, 523 Absolute molar flux, 530 Absolute pressure, 13 Absolute roughness, 148t Absorption of heat, 405 Absorptivity, 436–437, 436f
绝对质量流量,523 绝对摩尔流量,530 绝对压力,13 绝对粗糙度,148t 热量吸收,405 吸收率,436–437,436f

Acceleration, 8
加速度,8

Activation energy, 95, 515, 516, 518
活化能,95,515,516,518

Adiabatic barrier, 262
绝热障碍,262

Adiabatic flow, 224
绝热流动,224

Ampere, 5
安培,5

Anemometer, 332
风速计,332

Annulus, 69
环形, 69

Approximate integral method, 117, 300–
近似积分法,117,300–

306, 301f, 348–358, 349f, 354f,

355f, 357f, 573–583, 574f, 577f

for boundary layer thickness, 117124, 118f, 121f, 122f, 123f
边界层厚度,117–124,118f,121f,122f,123f

entry length at pipe entrance, 125, 125f
管道入口处的入口长度,125,125f

Archimedes’ principle, 21, 22f Atmosphere, international standard, 10 Atmospheric air, 8
阿基米德原理,21,22f 大气,国际标准,10 大气空气,8

Atmospheric pressure, 9, 11f, 12 Atomic diffusion, 476–479, 477f, 479f Average heat transfer coefficient, 299,
大气压力,9,11f,12 原子扩散,476–479,477f,479f 平均热传递系数,299,

314, 325

Avogadro’s number, 81, 267, 505
阿伏伽德罗常数,81,267,505

B

Babylonian unit of mass, 1 Barometer, 12f, 13
巴比伦质量单位,1 气压计,12f,13

Barometric formula, 9, 9f, 193, 348
气压公式,9,9f,193,348

Bell curve, 374
钟形曲线,374

Bends/fittings, influence of, 190–191, 190t
弯头/配件的影响,190–191,190t

Bernoulli’s equation, 185–188, 186f, 220
伯努利方程,185–188,186f,220

for compressible fluid flow, 219–220 example, 221
对于可压缩流体流动,219–220 示例,221

Binary diffusion couple, 511
二元扩散偶,511

651

652Index
索引

Binary mixture
二元混合物

diffusion equation in, 524–527, 525f of ideal gases, 527
理想气体中的扩散方程,524–527,525f,527

Biot number, 368, 369, 371, 385, 389
Biot 数,368,369,371,385,389

Blackbody, 427
黑体,427

Blackbody radiation, 427–430, 428f, 429t
黑体辐射,427–430,428f,429t

functions, 429t
函数,429t

Blake-Kozeny equation, 169, 170 Blasius friction equation, 144 Blasius one-seventh power law, 137,
布莱克-科泽尼方程,169,170 布拉修斯摩擦方程,144 布拉修斯七分之一幂定律,137,

138f, 145

Boltzmann-Matano analysis, 510–514, 512f, 513f, 514f
玻尔兹曼-马塔诺分析,510–514,512f,513f,514f

Boltzmann’s constant, 78, 267, 427
玻尔兹曼常数,78,267,427

Boundary conditions, 39, 120, 298,
边界条件,39,120,298,

302, 486, 556

Boundary layer, 156
边界层,156

concentration, 569
浓度,569

momentum, 115
动量,115

thermal, 295
热量,295

Boundary separation, 165 British system of units, 2 Buoyancy, 21–22, 126, 160, 347
边界分离,165 英制单位,2 浮力,21–22,126,160,347

examples, 22–26, 23f, 24f, 24t Burke-Plummer equation, 170
例子,22–26,23f,24f,24t Burke-Plummer 方程,170

C

Candela, 5
坎德拉,5

Capillary flowmeter, 65–66, 65f example of, 66–68
毛细管流量计,65–66,65f 示例,66–68

Carbon diffusion, 483 Carburization of iron, 486 Cartesian coordinates, 102, 103f,
碳扩散,483 铁的渗碳,486 笛卡尔坐标,102,103f,

127f

Casting
铸造

of aluminum, 406, 407, 411
铝,406,407,411

into cooled metal molds, 408–411, 408f, 410f, 412f
倒入冷却的金属模具中,408–411,408f,410f,412f

of copper, 406, 407, 411
铜,406,407,411

Catalytic surface reactions, 539–542, 540f, 541f
催化表面反应,539–542,540f,541f

Cavitation, 194
气穴现象,194

Celsius, Anders, 4
摄氏度,安德斯,4

Celsius (centigrade) scale, 4 Chapman-Enskog equation, 85, 270,
摄氏(华氏)温标,查普曼-恩斯科格方程,85,270,

562, 576

Chemical diffusion coefficients, 498, 504
化学扩散系数,498,504

Chemical potential, 505 Chemical reaction
化学势,505 化学反应

and mass transfer, 589–593, 591f, 592f
和传质,589–593,591f,592f

in stagnant film, 542–547, 543f, 546f
在静态薄膜中,542–547,543f,546f

Chvorinov’s rule, 404
Chvorinov 的法则,404

Circuit diagram, 460f, 461f, 464f Coefficient of thermal expansion, 4 Collision diameter, 84
电路图,460f,461f,464f 热膨胀系数,4 碰撞直径,84

Collision integral, 85 Compressible fluid flow, 219 Concentration boundary layer, 569
碰撞积分,85 可压缩流体流动,219 浓度边界层,569

Concentration gradient, 479, 503, 504,
浓度梯度,479,503,504,

523

Conduction, 235, 238–240, 239f, 240f in heat sources, 256–267, 257f resistance, 368
导热,235,238–240,239f,240f 在热源中,256–267,257f 电阻,368

for transport of heat. See Heat transport by conduction
用于热量传输。参见通过导热进行的热量传输

Conservation of energy, 186, 348 Conservation of momentum, 104–108,
能量守恒,186,348 动量守恒,104–108,

105f

Constant-pressure heat capacity, 277, 298, 302, 318, 366
定压热容,277,298,302,318,366

Continuous cooling curves, 398f Convection, 235, 236f, 237, 238f
连续冷却曲线,398f 对流,235,236f,237,238f

for heat transfer, 466–471, 468f, 469f, 471f
对于热传递,466–471,468f,469f,471f

heat transfer by, 285–289, 287f. See
热传递,285–289,287f。见

Heat transport by convection resistance, 368
对流阻力的热传输,368

Convective momentum transport, 37, 37f, 38, 49
对流动量输送,37,37f,38,49

Couette flow, 36, 37f, 341, 342, 345f, 346f
库埃特流,36,37f,341,342,345f,346f

Counterdiffusion, equimolar, 528–529
反扩散,等摩尔,528–529

Creeping flow, 125–130, 126f, 127f, 128f, 129f, 130f, 160
爬行流,125–130,126f,127f,128f,129f,130f,160

examples, 130–132
示例,130–132

Critical radius of insulation, 255 Cubit, 1
绝缘的临界半径,255 立方,1

D

D’ Arcy’s law, 167 Darken’s analysis, 502–506
D’ Arcy 定律,167 Darken 的分析,502–506

Decarburization, 491, 493f
脱碳,491,493f

Diffuse emitter, 425
扩散发射器,425

Diffuse-gray surface, 438, 453–458, 453f, 454f, 456f
扩散灰色表面,438,453–458,453f,454f,456f

Diffusion, 520. See also Mass transport by diffusion
扩散,520。另见通过扩散的质量传输

atomic, 476–479, 477f, 479f
原子, 476–479, 477f, 479f

into falling film of liquid, 553–560, 553f
进入液体薄膜,553–560,553f

flux, 479

and kinetic theory of gases, 560–565, 561f, 563t, 564t
气体的动理论,560–565,561f,563t,564t

evaporation, maximum rate of, 565–568, 567t, 568t
蒸发,最大速率,565–568,567t,568t

in semi-infinite system, one-dimensional, 491–497, 492f, 493f, 496f, 497f
在半无限系统中,一维,491–497,492f,493f,496f,497f

in solid state. See Mass transport by diffusion
在固态中。见通过扩散的质量传输

in stagnant film, 542–547, 543f, 546f steady-state, one-dimensional, 529–
在静态薄膜中,542–547,543f,546f 稳态,一维,529–

536, 531, 532f

in substitutional solid solutions, 502, 502f
在替代固体溶液中,502,502f

Diffusion coefficient, 480
扩散系数,480

of carbon, 483, 484f, 493, 494
碳,483,484f,493,494

chemical, 504
化学, 504

interdiffusion, 504
相互扩散,504

self, 506
自我,506

temperature on, 514–518, 515f, 516f, 519f
温度开启,514–518,515f,516f,519f

Diffusion couple, 489
扩散偶,489

infinite, 489–491, 490f, 491f Diffusion distance, 487
无限,489–491,490f,491f 扩散距离,487

Index653
索引 653

Diffusion equations with convection, 524–527, 525f
对流的扩散方程,524–527,525f

Digit, 1
数字,1

Dimensionless number, 177
无量纲数,177

Directional distribution, 422
方向分布,422

Directional emissivity, 431
方向发射率,431

Discharge coefficient, 209, 225 Dissolution of pure metal in liquid,
排放系数,209,225 纯金属在液体中的溶解,

593–596, 593f, 594f, 597f Drag force, 121, 129, 153, 156, 166
593–596, 593f, 594f, 597f 拖曳力, 121, 129, 153, 156, 166

Drainage
排水

from vessel, 207–209, 208f of vessel using drainage tube,
从船只,207–209,使用排水管的船只 208f,

213–215, 214f

Drainage tube
排水管

in drainage of vessel, 213–215, 214f
在血管排水中,213–215,214f

in emptying vessel, 215–217, 216t, 217f
在排空容器中,215–217,216t,217f

E

Edgar, King, 2
埃德加,国王,2

Egyptian unit of length, 1
埃及长度单位,1

Einstein-Smoluchowski equation, 488,
爱因斯坦-斯莫卢霍夫斯基方程,488,

508

Electrical resistance, 265, 266
电阻,265,266

Electric analogy, 242–243, 248, 458–460, 458f, 459f, 460f
电类比,242–243,248,458–460,458f,459f,460f

Electric current, 5
电流,5

flow, 242
流,242

Electromagnetic waves, 421, 422f Electrostatic dust precipitator, 45–48,
电磁波,421,422f 静电除尘器,45–48,

48f

Elevation head, 205
高程头,205

Emissive power, 425 Emissivity, 431–435, 433f, 434f Emptying of vessel
发射功率,425 发射率,431–435,433f,434f 容器的排空

by discharge through orifice, 209212, 211f
通过孔口排放,209–212,211f

example, 212–213
示例,212–213

by drainage through drainage tube, 215–217, 216t, 217f
通过排水管排水,215–217,216t,217f

example, 217–219
示例,217–219

654Index
索引

Ending moment, 166 Energy, concept of, 3
结束时刻,166 能量,概念,3

Energy balance, 276, 280f, 322–331,
能量平衡,276,280f,322–331,

323f, 324f, 336, 337, 385, 398,

402, 453

Energy parameters of metals, 93t Engineering units, origins of, 1–5
金属的能量参数,93t 工程单位,起源,1–5

British system of units, 2 concept of energy, 3 force measurement, 3
英制单位系统,2 能量概念,3 力的测量,3

International System of Units, 5 metric system, 2–3
国际单位制,5 公制,2–3

pressure measurement, 3
压力测量,3

temperature scales, 4–5 unit of power, 4
温度尺度,4–5 功率单位,4

Enthalpy, 297, 302, 366, 382
焓,297,302,366,382

flux, 550, 552

Entry length, 125, 125f
条目长度,125,125f

Equation of conservation of momentum, 107
动量守恒方程,107

Equation of continuity, 102–104, 103f, 111t
连续性方程,102–104,103f,111t

Equation of motion
运动方程

cylindrical coordinates, 112–113
圆柱坐标,112–113

in rectangular coordinates, 111t–112t in spherical coordinates, 114t
在矩形坐标中,111t–112t 在球坐标中,114t

Equimolar counterdiffusion, 528–529
等摩尔反向扩散,528–529

Equivalent diameter, 151
等效直径,151

Equivalent length, 190
等效长度,190

Ergun’s equation, 170–175, 175f Error function, 374–376, 374f, 375f,
Ergun 方程,170–175,175f 误差函数,374–376,374f,375f,

376t, 403, 486, 487f

Euken’s equation, 272
Euken 方程,272

Evaporation, maximum rate of, 565568, 567t, 568t
蒸发,最大速率,565–568,567t,568t

Evaporative cooling, 586–588, 587f wet bulb psychrometer, 588–589
蒸发冷却,586–588,587f 湿球心理测量仪,588–589

F

Farhenheit, Daniel, 4
法伦海特,丹尼尔,4

Fick’s first law of diffusion, 480–483, 481f, 539
菲克第一扩散定律,480–483,481f,539

Fick’s second law of diffusion, 483–489, 484f, 485, 485f, 487f, 488f
菲克第二扩散定律,483–489,484f,485,485f,487f,488f

Film boiling, 608

Film model, 538–539, 538f Film pool boiling, 605 Finger, 2
电影模型,538–539,538f 电影池沸腾,605 手指,2

Finite difference technique, 278, 279f, 382, 383f, 384, 388, 389
有限差分法,278,279f,382,383f,384,388,389

Fittings, 190–191, 190t
配件,190–191,190t

Flow coefficient, 226
流量系数,226

Flow energy, 203
流能,203

Flowmeter, capillary, 65
流量计,毛细管,65

Flow velocity, 198
流速,198

measurement, 226
测量,226

Flow work, 186
流动工作,186

Fluid flow, 30, 181
流体流动,30,181

in annulus, 69–74
在环形区域,69–74

example of, 74–76
示例,74–76

in cylindrical pipes, 317–322, 317f, 319f
在圆柱形管道中,317–322,317f,319f

down an inclined plane, 48–51, 49f, 50f
沿斜面向下,48–51,49f,50f

equations, 166
方程,166

between flat parallel plates, 40–45, 41f, 43f, 44f
在平行的平面之间,40–45,41f,43f,44f

examples, 45–48, 48f
示例,45–48,48f

in noncircular ducts, 151–153 in open channel, 205–206, 206f
在非圆形管道中,151–153 在开放通道中,205–206,206f

example, 207
示例,207

over horizontal flat plate, 115–117, 116f
在水平平板上,115–117,116f

in pipes, 228
在管道中,228

problems, 133–134
问题,133–134

in vertical cylinder tube, 53–57, 53f, 54f, 56f
在垂直圆柱管中,53–57,53f,54f,56f

example of, 57–Fluid flow equations, 64
示例,57–流体流动方程,64

Fluidized bed, 144, 175–179 Flux, types of, 423
流化床,144,175–179 通量,类型,423

Force, 33
力,33

balances, 130f
余额,130f

Forced convection, 295–, 331, 334
强制对流,295–,331,334

Form drag, 129
表面阻力,129

Fourier number, 369, 373
傅里叶数,369,373

H

Haaland’s correlation, 148
哈兰德的相关性,148

Index655
索引 655

Fourier’s
傅里叶的
law,
法律,
236–238, 237f, 238f, 300, 319

Free convection boiling, 604
自由对流沸腾,604

Free convection, mass transfer by, 583–586, 584f, 585f
自由对流,质量传递,583–586,584f,585f

Friction
摩擦

drag force, 129
拖曳力,129

turbulence-induced, 1, 139 Friction factor, 141–151, 144f, 148t,
湍流引起的,1,139 摩擦因子,141–151,144f,148t,

149f, 153, 165, 170

definition of, 141, 153, 165
定义为,141,153,165

local, 156
本地, 156

Friction loss, 188–189, 204 Friction loss factor, 190
摩擦损失,188–189,204 摩擦损失系数,190

Fully-developed hydrodynamic flow, 125
完全发育的水动力流,125

Fully-developed temperature profile, 319
完全发展的温度分布,319

G

Galileo, 3
伽利略, 3

Galileo number, 177
伽利略数,177

Gallon, 2
加仑,2

Gas law, ideal, 59
理想气体定律,59

Gauge pressure, 13, 16, 21
表压,13,16,21

Gay-Lussac, Joseph, 4
盖-吕萨克,约瑟夫,4

General energy equation, 335–341 dissipation factor, 341–346 General heat conduction equation,
一般能量方程,335–341 耗散因子,341–346 一般热传导方程,

274–277, 275f, 276f

Goldschmidt’s atomic diameter, 91, 93t
Goldschmidt 的原子直径,91,93t

Gram, 3
克,3

Grashof number, 351, 352, 353, 357,
Grashof 数,351,352,353,357,

586

mass transfer, 586
质量传递,586

Gravitation, 3
引力,3

Gravitational field, 8
引力场,8

Gravitational force, 205, 336
引力,205,336

Gravity-induced fluid flow, 197, 206f
重力引起的流体流动,197,206f

Hagen-Poiseuille equation, 57, 139, 143
哈根-波伊塞方程,57,139,143

Hand, 1
手,1

Head, concept of, 203–205
头部,概念,203–205

Heat and mass transfer, simultaneous, 586–589
热量和质量传递,同时进行,586–589

Heat balance, 302, 368 Heat conduction
热平衡,302,368 热传导

general equation, 274–277, 275f, 276f
一般方程,274–277,275f,276f

at steady state, 278–285, 279f, 280f, 281f, 283f, 284f
在稳态下,278–285,279f,280f,281f,283f,284f

Heat diffusivity, 403
热扩散率,403

Heat flow, 242, 263
热流,242,263

hollow cylinder, 244–245 hollow sphere, 246, 247f
空心圆柱,244–245 空心球,246,247f

in semi-infinite systems, 376–379 through composite cylindrical wall,
在半无限系统中,通过复合圆柱壁,376–379

252–254, 253f

through composite wall, 248–249, 248f
通过复合墙,248–249,248f

through plane slab, 243
通过平板,243

Heat flux, 254, 256f, 300, 308, 326, 552
热流, 254, 256f, 300, 308, 326, 552

Heat generation
热量产生

in plane slab, 257–263, 260f rate, 265, 266
在平面板中,257–263,260f 速率,265,266

within solid, 398–401, 399f, 401f in solid cylinder, 263–265, 264f
在固体中,398–401,399f,401f 在固体圆柱中,263–265,264f

Heat loss, 245 Heat transfer
热损失,245 热传递

by convection, 285–289, 287f
通过对流,285–289,287f

by convection/radiation, 466–471, 468f, 469f, 471f
通过对流/辐射,466–471,468f,469f,471f

Heat transfer coefficient, 237, 248,
热传递系数,237,248,

296, 306, 309f, 319, 335, 352,

372, 552, 570

Heat transport by conduction conduction, 238–240, 239f, 240f conduction in heat sources, 256–267,
导热,238–240,239f,240f 热源中的导热,256–267,

257f

electric analogy, 242–243
电气类比,242–243

656Index
索引

example, 240–242, 241f, 242f, 244,
例子,240–242,241f,242f,244,

245, 249–252, 251f, 254, 259,

273, 281, 286–289

features of, 235, 236f
特征,235,236f

Fourier’s law, 236–238, 237f, 238f heat conduction
傅里叶定律,236–238,237f,238f 热传导

general equation, 274–277, 275f, 276f
一般方程,274–277,275f,276f

at steady state, 278–285, 279f, 280f, 281f, 283f, 284f
在稳态下,278–285,279f,280f,281f,283f,284f

heat flow
热流

hollow cylinder, 244–245 hollow sphere, 246, 247f through composite cylindrical
空心圆柱,244–245 空心球,246,247f 通过复合圆柱

wall, 252–254, 253f
墙, 252–254, 253f

through composite wall, 248249, 248f
通过复合墙,248–249,248f

through plane slab, 243 heat generation
通过平板,243 热生成

in plane slab, 257–263, 260f
在平面板中,257–263,260f

in solid cylinder, 263–265, 264f heat transfer by convection, 285–
在固体圆柱体中,263–265,264f 通过对流的热传递,285–

289, 287f

Newton’s law, 236–238, 237f, 238f problems, 290–294
牛顿定律,236–238,237f,238f 问题,290–294

resistance heating of electric wires, 265–267, 265f
电线的电阻加热,265–267,265f

thermal conductivity
热导率

of gas mixtures, 273–274, 274f and kinetic theory of gases,
气体混合物,273–274,274f 和气体的动理论,

267–273, 269f, 271f, 272t

Heat transport by convection from cylinders, 358–360, 359t
圆柱体的对流热传输,358–360,359t

energy balance, 322–331, 323f, 324f examples, 307–311, 309f, 312–315,
能量平衡,322–331,323f,324f 示例,307–311,309f,312–315,

313f, 316–317, 326–331, 328f,

331–333, 331t, 344–346, 345f,

346f, 353–358, 354f, 355f, 357f

during fluid flow in cylindrical pipes, 317–322, 317f, 319f
在圆柱形管道中的流体流动,317–322,317f,319f

general energy equation, 335–341 dissipation factor, 341–346
一般能量方程,335–341 耗散因子,341–346

from horizontal cylinders, 331–333
来自水平圆柱,331–333

from horizontal flat plate approximate integral method,
从水平平板近似积分法,

300–306, 301f

turbulent boundary flow, 311–315
湍流边界流,311–315

at uniform constant temperature, 295–315, 296f, 297f, 299t,
在均匀恒定温度下,295–315,296f,297f,299t,

301f

with uniform heat flux, 315–317 problems, 361–364
均匀热流,315–317 问题,361–364

from sphere, 334–335
来自球体,334–335

from vertical plate, 346–348, 347f approximate integral method,
来自垂直板,346–348,347f 近似积分法,

348–358, 349f, 354f, 355f,

357f

Heat transport by thermal radiation. See Thermal radiation in heat transport Hemisperical emissivity, 431, 432, 438
热辐射的热传输。参见热传输中的热辐射 半球发射率,431,432,438

Hemispherical emissive power, 425 Henry’s law, 506
半球辐射功率,425 亨利定律,506

Hohlraum, 437–439, 438f

Hydraulic radius, 168
水力半径,168

Hydrodynamic flow, 323
水动力流动,323

Hydrogen diffusion, 480, 481f, 498
氢扩散,480,481f,498

Hydrometer, 24
比重计,24

I

Ideal fluid, 115 Ideal gas law, 527
理想流体,115 理想气体定律,527

Incompressible fluid flow, 186f Incompressible fluid pressure, 15–17,
不可压缩流体流动,186f 不可压缩流体压力,15–17,

16f

Inertial force, 135–136
惯性力,135–136

Infinite diffusion couple, 489–491, 490f, 491f
无限扩散偶,489–491,490f,491f

Intensity
强度

of emission, 423–425, 423f of turbulence, 137
排放,423–425,423f 湍流,137

Interdiffusion coefficient, 504, 505, 561,
相互扩散系数,504,505,561,

562, 564

measurement, 510–514, 512f, 513f, 514f
测量,510–514,512f,513f,514f

Intermediate law, 162
中级法,162

Internal energy, 336, 338 International standard atmosphere, 10 International System of Units, 5
内能,336,338 国际标准大气,10 国际单位制,5

Laplace’s equation, 277
拉普拉斯方程,277

Large span, 1
大跨度,1

Latent heat, 586
潜热,586

Index657
索引 657

Inviscid
无粘性
fluid,
流体,
115

Iron-carbon phase diagram, 491, 492f Irradiation, 426
铁碳相图,491,492f 辐照,426

Isobaric system, 505
等压系统,505

Isobaric thermal expansivity, 340, 348,
等压热膨胀系数,340,348,

583

Isotherm(s), 274, 275f
等温线,274,275f

Isothermal cavity, 437, 437f, 438, 438f
等温腔,437,437f,438,438f

Isothermal compressibility, 340
等温压缩性,340

J

Joule, James, 4
焦耳,詹姆斯,4

K Ka, 2

Kelvin, Lord, 5
凯尔文,勋爵,5

Kilogram, 5
千克,5

Kinematic viscosity, 58, 277, 315
运动粘度,58,277,315

Kinetic energy, 141, 163, 186, 187,
动能,141,163,186,187,

188, 203, 336

Kinetic theory of gases, 78, 97, 267, 560–565, 561f, 563t, 564t
气体的动理论,78,97,267,560–565,561f,563t,564t

and thermal conductivity, 267–273, 269f, 271f, 272t
和热导率,267–273,269f,271f,272t

viscosity calculation from, 78–90, 79f, 80f, 83f, 84f, 85f, 86f, 86t,
粘度计算来自,78–90,79f,80f,83f,84f,85f,86f,86t,

87t, 89f

Kiogram, 3

Kirchhoff’s law and Hohlraum, 437–439, 437f, 438f
基尔霍夫定律和霍尔朗,437–439,437f,438f

Kirkendall effect, 502, 502f Kus, 1
Kirkendall 效应,502,502f Kus,1

L

Laminar flow, 30, 31, 31f, 51, 97, 135,
层流,30,31,31f,51,97,135,

137, 138, 139, 139f, 143, 152,

169, 187, 296, 313f, 322, 323

to turbulent flow, transition from, 154f
到湍流,过渡自,154f

Langmuir equation, 566
朗缪尔方程,566

of solidification, 402, 404
固化,402,404

Leidenfrost point, 605, 608
莱登弗罗斯特点,605,608

Lennard-Jones function, 562 Lennard-Jones potential, 84, 86t, 92f Lewis number, 573, 577f
Lennard-Jones 函数,562 Lennard-Jones 势,84,86t,92f Lewis 数,573,577f

Libra, 2
天秤座, 2

Light intensity, 5
光强度,5

Local flow velocity, 136, 136f, 138f Log mean temperature difference, 325 Loss of head, 204
局部流速,136,136f,138f 对数平均温差,325 失头,204

Lumped capacitance method (Newtonian cooling), 365–373, 367f, 368f
集中电容法(牛顿冷却),365–373,367f,368f

Lumped thermal capacitance, 365
集中热容,365

M

Manometer, 13, 13f, 14, 14f, 65, 65f, 66 Mass and molar fluxes, 522–524
压力计,13,13f,14,14f,65,65f,66 质量和摩尔通量,522–524

Mass flow rate, 44, 45, 51, 57, 186,
质量流量,44,45,51,57,186,

220, 322

Mass flux, 522 Mass transfer
质量通量,522 质量传递

by free convection, 583–586, 584f, 585f
通过自由对流,583–586,584f,585f

at large fluxes/concentrations, 547550, 549f, 550f
在大流量/浓度下,547–550,549f,550f

Mass transfer coefficient, 570, 579,
质量传递系数,570,579,

580, 581

and concentration boundary layer, 569–573, 571f
和浓度边界层,569–573,571f

Mass transport by diffusion
通过扩散的质量传输

atomic diffusion, 476–479, 477f, 479f
原子扩散,476–479,477f,479f

Boltzmann-Matano analysis, 510514, 512f, 513f, 514f
玻尔兹曼-马塔诺分析,510–514,512f,513f,514f

Darken’s analysis, 502–506 diffusion in substitutional solid
Darken 的分析,502–506 替代固体中的扩散

solutions, 502, 502f
解决方案,502,502f

examples, 480–483, 481f, 486–489, 487f, 488f, 495–497, 496f,
示例,480–483,481f,486–489,487f,488f,495–497,496f,

497f, 499–501, 501f, 509–510

658Index
索引

Fick’s first law of diffusion, 480483, 481f
菲克第一扩散定律,480–483,481f

Fick’s second law of diffusion, 483489, 484f, 485f, 487f, 488f
菲克第二扩散定律,483–489,484f,485f,487f,488f

infinite diffusion couple, 489–491, 490f, 491f
无限扩散耦合,489–491,490f,491f

phase change, 491–497, 492f, 493f, 496f, 497f
相变,491–497,492f,493f,496f,497f

problems, 520–521
问题,520–521

self-diffusion coefficient, 506–510, 507f
自扩散系数,506–510,507f

steady-state diffusion, 498–501, 498f
稳态扩散,498-501,498f

temperature on diffusion coefficient, 514–518, 515f, 516f, 519f
温度对扩散系数的影响,514-518,515f,516f,519f

Mass transport in fluids approximate integral method,
流体中的质量输运近似积分法、

573–583, 574f, 577f
573-583、574f、577f

catalytic surface reactions, 539542, 540f, 541f
催化表面反应,539-542,540f,541f

diffusion and kinetic theory of gases, 560–565, 561f, 563t, 564t
气体扩散和动力学理论,560-565,561f,563t,564t

evaporation, maximum rate of, 565–568, 567t, 568t
蒸发,最大速率,565-568,567t,568t

diffusion into falling film of liquid, 553–560, 553f
扩散到下降的液膜中,553-560,553f

equations of diffusion with convection, 524–527, 525f
对流扩散方程,524-527,525f

equimolar counterdiffusion, 528–529
等摩尔反扩散,528-529

evaporative cooling, 586–588, 587f wet bulb psychrometer, 588–589
蒸发冷却, 586-588, 587f 湿球温度计, 588-589

examples, 532–536, 535f, 537,
例子,532-536,535f,537、

538f, 546–547, 559–560,
538f, 546-547, 559-560,

564–565, 566, 569, 578–580,
564-565, 566, 569, 578-580,

581, 582–583, 587–588, 589,
581, 582-583, 587-588, 589,

592–593, 592f
592-593, 592f

film model, 538–539, 538f
电影模式,538-539,538f

on heat transfer, 550–553, 551f
热传递,550-553,551f

at large fluxes, 547–550, 549f, 550f mass and molar fluxes, 522–524 mass transfer by free convection,
大通量时,547-550,549f,550f 质量和摩尔通量,522-524 自由对流的质量传递、

583–586, 584f, 585f
583-586、584f、585f

mass transfer coefficient, 569–573, 571f
传质系数,569-573,571f

mixed control, 589–593, 591f, 592f, 593–596, 593f, 594f, 597f
混合控制,589-593,591f,592f,593-596,593f,594f,597f

one-dimensional steady-state diffusion, 529–536, 531, 532f
一维稳态扩散,529-536,531,532f

one-dimensional transport, 527
一维运输,527

problems, 598–600
问题,598-600

in stagnant film, 542–547, 543f, 546f
在静态薄膜中,542–547,543f,546f

sublimation of sphere into stationary gas, 536–537, 538f
球体升华为静态气体,536–537,538f

Mass transport Stanton number, 577 Matano interface, 511
质量传输斯坦顿数,577 Matano 界面,511

Matrix inversion method, 393 Maxwell’s equation, 339 Mean free path, 80
矩阵求逆法,393 麦克斯韦方程,339 平均自由程,80

Mean residence time, 76–78, 77f, 78f Mean square distance, 477
平均滞留时间,76–78,77f,78f 平均平方距离,477

Mean temperature, 319
平均温度,319

Mechanical energy, 338, 344 Mechanical energy balance
机械能,338,344 机械能平衡

bends/fittings, influence of, 190–191, 190t
弯头/配件,影响,190–191,190t

Bernoulli’s equation, 185–188, 186f for compressible fluid flow,
伯努利方程,185–188,186f 用于可压缩流体流动,

219–220

drainage from vessel, 207–209, 208f drainage tube, use of, 213–215, 214f emptying of vessel
从容器排水,207–209,208f 排水管的使用,213–215,214f 容器的排空

by discharge, 209–212, 211f
通过排放,209–212,211f

by drainage, 215–217, 216t, 217f examples, 191–203, 197f, 207,
通过排水,215–217,216t,217f 示例,191–203,197f,207,

212–213, 217–219, 221,

223–224

fluid flow in open channel, 205206, 206f
开放渠道中的流体流动,205–206,206f

friction loss, 188–189 head, concept of, 203–205
摩擦损失,188–189 头部,概念,203–205

orifice plate, 225–228, 226f, 227f, 228f
孔板,225–228,226f,227f,228f

pitot tube, 221–223, 222f
皮托管,221–223,222f

problems, 229–234, 230f, 232f, 233f
问题,229–234,230f,232f,233f

Mercury, 12
水星,12

Mesh Biot number, 385, 386, 388, 389,
网格生物数,385,386,388,389,

397, 400

Mesh Fourier number, 385, 387, 388,
网格傅里叶数,385,387,388,

389, 392f

Metal castings, solidification of
金属铸件,凝固过程

into cooled metal molds, 408–411, 408f, 410f, 412f
倒入冷却的金属模具中,408–411,408f,410f,412f

sand casting, 401–408, 402f, 405f Meter, 5
砂铸造,401–408,402f,405f 米,5

Mina, 1
米娜,1

Minimum heat flux, 607
最小热流量,607

Mixed control, 589–593, 591f, 592f, 593–596, 593f, 594f, 597f
混合控制,589–593,591f,592f,593–596,593f,594f,597f

Mobility, 505
移动性,505

Modes of boiling, 603
沸腾的模式,603

Modified Bernoulli equation, 188 Molar flux, 522
修正的伯努利方程,188 摩尔通量,522

Molar heat capacity, 224, 272
摩尔热容,224,272

Momentum, 6
动量,6

convective, 37
对流,37

viscous, 37
粘稠,37

Momentum balance, 36, 41, 49, 55,
动量平衡,36,41,49,55,

70, 72, 118

Momentum boundary layer, 115, 116f, 118f
动量边界层,115,116f,118f

Momentum conservation, 36–40, 37f, 38f
动量守恒,36–40,37f,38f

Momentum flux, 81
动量通量,81

Momentum transport, 34
动量传输,34

Monatomic gas, 78, 267
单原子气体,78,267

Monochromatic emissivity, 431
单色发射率,431

Monochromatic intensity, 424 Monochromatic radiation emission, 422f Monton, Gabriel, 2
单色强度,424 单色辐射发射,422f Monton, Gabriel, 2

Moody diagram, 148, 149f
穆迪图,148,149f

N

Natural convection, 349f, 361 Navier-Stokes equation, 108–113,
自然对流,349f,361 纳维-斯托克斯方程,108–113,

111t–112t

application to simple flow system, 113–115, 114t
简单流动系统的应用,113–115,114t

Index659
索引 659

Nernst-Einstein equation, 506 Newton, Sir Isaac, 3
能斯特-爱因斯坦方程,506 牛顿,艾萨克·牛顿爵士,3

Newtonian cooling (lumped capacitance method), 365–373, 367f, 368f
牛顿冷却(集中电容法),365–373,367f,368f

Newtonian fluids, 33
牛顿流体,33

Newton’s law, 160, 163, 236–238,
牛顿定律,160,163,236–238,

237f, 238f, 296

of cooling, 237
冷却,237

of viscosity, 32–35, 480
粘度,32–35,480

examples, 35–36, 36f
示例,35–36,36f

Node, 278
节点,278

Non-Newtonian cooling. See Transient heat flow
非牛顿冷却。参见瞬态热流

Non-Newtonian fluids, 33
非牛顿流体,33

Non-steady-state diffusion in solid, one-dimensional, 483–489, 484f, 485f, 487f, 488f
固体中的非稳态扩散,一维,483–489,484f,485f,487f,488f

Nucleate boiling, 605 Nucleate pool boiling, 606
成核沸腾,605 成核池沸腾,606

Nusseldt number, 299, 300, 313, 315,
努塞尔数,299,300,313,315,

316, 331, 352, 355f, 357, 357f,
316, 331, 352, 355f, 357, 357f

368, 570, 571

O

Ohm’s law, 265, 458
欧姆定律,265,458

Opaque medium, 437
不透明介质,437

Orifice plate, 225–228, 226f, 227f, 228f
孔板,225–228,226f,227f,228f

P

Palm, 1
棕榈,1

Permanent gas, 4, 5
永久气体,4,5

Permeability, specific, 167
渗透率,特定,167

Permeability coefficient, 167, 169 Phase change, 491–497, 492f, 493f,
渗透系数,167,169 相变,491–497,492f,493f,

496f, 497f
496o, 497o

Phase diagram, 593, 593f Photons, 421
相图,593,593f 光子,421

Pike’s peak, 10, 11, 11f
派克峰,10,11,11f

Pipe flow, 322
管道流动,322

Pi theorem, 142
Pi 定理,142

Pitot tube, 221–223, 222f example, 223–224
皮托管,221–223,222f 示例,223–224

660Index
索引

Pitot tube coefficient, 222 Planck’s distribution, 427, 428f Porosity, 167, 168
皮托管系数,222 普朗克分布,427,428f 孔隙率,167,168

Potential energy, 83, 84, 84f, 186, 193 Power, unit of, 4
势能,83,84,84f,186,193 功,单位,4

Prandtl number, 298, 305, 331, 335,
普朗特数,298,305,331,335,

349, 356, 572, 577f

Pressure, 3
压力,3

absolute, 12
绝对,12

gauge, 12
量规,12

gradient, 181, 298
梯度,181,298

head, 205
头, 205

in static fluids
在静态流体中

concept, 5–11, 6f, 9f, 11f examples, 17–21, 18f, 19f, 20f in incompressible fluids, 15–17,
概念,5–11,6f,9f,11f 示例,17–21,18f,19f,20f 在不可压缩流体中,15–17,

16f

measurement of, 11–15, 12f, 13f, 14f
测量,11–15,12f,13f,14f

Pressure drop, 62–64, 63f, 68, 167,
压力降,62–64,63f,68,167,

189, 201, 228

calculation, 182 Psychrometer, wet bulb, 588
计算,182 湿度计,湿球,588

Q

Quanta, 421

R

Radial flux, 266 Radiation
径向通量,266 辐射

constants, 427
常量,427

emission, 422f, 423
排放,422f,423

exchange. See Thermal radiation in heat transport
交换。见热辐射与热传输

for heat transfer, 466–471, 468f, 469f, 471f
对于热传递,466–471,468f,469f,471f

heat transfer coefficient, 467, 468f shields, 460–463, 461f
热传递系数,467,468f 屏蔽,460–463,461f

Radiosity, 426–427, 453
辐射度,426–427,453

Random-walk process, 476–479, 477f, 479f
随机游走过程,476–479,477f,479f

Raoult’s law, 506
拉乌尔定律,506

Rayleigh number, 353, 355f, 358
雷 leigh 数,353,355f,358

Real packed beds, 171 Reciprocity relation, 441, 443
真实填充床,171 互惠关系,441,443

Reduced pressure, 566
降低压力,566

Reduced temperature, 91, 566
降低温度,91,566

Reduced viscosity, 91
降低的粘度,91

Reduced volume, 91, 566
减少的体积,91, 566

Reflectivity, 436–437, 436f Relative roughness, 148, 149f Reradiating surface, 463–466, 464f Resistance heating of electric wires,
反射率,436–437,436f 相对粗糙度,148,149f 重新辐射表面,463–466,464f 电线的电阻加热,

265–267, 265f

Reynolds analogy, 311
雷诺兹类比,311

Reynold’s number, 31, 51, 64, 67, 126,
雷诺数,31,51,64,67,126,

136, 138f, 139f, 140, 149f, 157f,

199, 326, 331, 332, 351, 357, 372,

588

defined, 169
定义,169

Rigorous theory of rigid-sphere molecules, 81
刚性球分子的严格理论,81

Roman unit of mass, 2 Roughness
罗马质量单位,2 粗糙度

absolute, 148, 148t
绝对,148,148t

relative, 148
相对,148

S

Sand casting, 401–408, 402f, 405f Schmidt number, 572, 576, 577f, 580
砂铸造,401–408,402f,405f 施密特数,572,576,577f,580

Second, 5
第二,5

Self-diffusion coefficient, 506–510, 507f Shape factor, 172, 444f, 445f
自扩散系数,506–510,507f 形状因子,172,444f,445f

Shear force, 141
剪切力,141

Shear stress, 33, 34, 36, 40, 43f, 44, 50,
剪切应力,33,34,36,40,43f,44,50,

50f, 72, 81, 108, 119, 121, 126f,

129, 142, 154, 159, 296, 345

Shekel, 1
谢克尔,1

Sherwood number, 570, 571, 573, 580,
舍伍德数,570,571,573,580,

581

SI (International system of units), 5 Sievert’s law, 481, 498
国际单位制(SI),5 西弗定律,481,498

Size particles, 173
粒子大小,173

Slag, 51
渣, 51

Small cubit, 1
小立方体,1

Small span, 1
小跨度,1

Solidification of metal castings. See
金属铸件的固化。见

Transient heat flow Specific area means, 171 Specific permeability, 167
瞬态热流 特定面积,171 特定渗透率,167

Spectral distribution, 422 Spectral emissive power, 425 Spectral intensity, 424
光谱分布,422 光谱发射功率,425 光谱强度,424

Spectral irradiation, 426
光谱辐照度,426

Spectral radiosity, 426
光谱辐射度,426

Spherical particles and Ergun’s equation, 170–175, 175f
球形颗粒与 Ergun 方程,170–175,175f

Spontaneous escape process, 594, 595, 596 Stagnant film
自发逃逸过程,594,595,596 静止薄膜

diffusion/chemical reaction in, 542547, 543f, 546f
扩散/化学反应,542–547,543f,546f

heat transfer in, 550–553, 551f Stagnation point, 163
热传递,550–553,551f 停滞点,163

Stanton number, 310, 311, 577
斯坦顿数,310,311,577

mass transport, 577 Steady-state diffusion
质量传输,577 稳态扩散

one-dimensional, 529–536, 531, 532f through composite wall, 498–501, 498f
一维,529–536,531,532f 通过复合墙,498–501,498f

Steady-state heat conduction, 278 Stefan-Boltzmann law, 428, 451, 456 Stefan’s apparatus, 531, 532f Stoichiometry coefficients, 545
稳态热传导,278 斯特凡-玻尔兹曼定律,428,451,456 斯特凡装置,531,532f 计量系数,545

Stoke’s law, 130, 160, 162 Stress
斯托克斯定律,130,160,162 应力

normal, 108
正常, 108

shear, 33
剪切,33

Stress tensor, 107
应力张量,107

Sublimation of sphere into stationary gas, 536–537, 538f
球体升华为静止气体,536–537,538f

Substantial derivative, 109, 110
实质导数,109,110

Summation rule, 441, 442, 443 Surface radiation resistance, 454 Surface roughness, 189
求和规则,441,442,443 表面辐射电阻,454 表面粗糙度,189

T

Temperature
温度

on diffusion coefficient, 514–518, 515f, 516f, 519f
扩散系数,514–518,515f,516f,519f

distribution, 247f, 345f, 346f
分布,247f,345f,346f

Index661
索引 661

gradient, 347f, 366, 368f, 408, 412–
梯度,347f,366,368f,408,412–

416, 412f, 415f, 553

scales, 4–5
鳞片,4–5

Thermal boundary layer, 295, 309f Thermal conductivity, 236, 237, 239f,
热边界层,295,309f 热导率,236,237,239f,

240f, 256, 298, 368, 369

of gas mixtures, 273–274, 274f
气体混合物,273–274,274f

and kinetic theory of gases, 267–273, 269f, 271f, 272t
气体的动理论,267–273,269f,271f,272t

of sand, 401
沙子,401

Thermal diffusivity, 277, 298, 318
热扩散率,277,298,318

Thermal energy, 4, 36, 269, 336, 366,
热能,4,36,269,336,366,

382, 480

Thermal expansion, 4
热膨胀,4

Thermal radiation in heat transport absorptivity/reflectivity/transmissiv-
热辐射在热传输中的吸收率/反射率/透射率

ity, 436–437, 436f
城市,436–437,436f

blackbody radiation, 427–430, 428f, 429t
黑体辐射,427–430,428f,429t

electric analogy, 458–460, 458f, 459f, 460f
电类比,458–460,458f,459f,460f

electromagnetic waves, 421, 422f emissive power, 425
电磁波,421,422f 发射功率,425

emissivity, 431–435, 433f, 434f examples, 430, 435, 443–450, 444f,
发射率,431–435,433f,434f 示例,430,435,443–450,444f,

445f, 445t, 446f, 446t, 447f,

448f, 450t, 451–452, 452f, 456–

458, 456f, 461–463, 465–466,

467–471, 468f, 469f, 471f

features of, 421
特征,421

heat transfer by convection/radiation, 466–471, 468f, 469f, 471f
对流/辐射的热传递,466–471,468f,469f,471f

intensity, 423–425, 423f
强度,423–425,423f

irradiation, 426
辐照,426

Kirchhoff’s law and Hohlraum, 437–439, 437f, 438f
基尔霍夫定律和霍尔朗,437–439,437f,438f

problems, 472–475
问题,472–475

radiation emission, 422f, 423 radiation exchange
辐射发射,422f,423 辐射交换

between blackbodies, 450–452, 450f, 452f
在黑体之间,450–452,450f,452f

between diffuse-gray surfaces, 453–458, 453f, 454f, 456f
在扩散灰色表面之间,453–458,453f,454f,456f

662Index
索引

between surfaces, 439–443, 440f, 441f, 442f, 443–450, 444f,
表面之间,439–443,440f,441f,442f,443–450,444f,

445f, 445t, 446f, 446t, 447f,

448f, 450t

radiation shields, 460–463, 461f radiosity, 426–427
辐射屏蔽,460–463,461f 辐射度,426–427

reradiating surface, 463–466, 464f Thermal resistance, 365
再辐射表面,463–466,464f 热阻,365

to heat flow, 251 Thermodynamic temperature, 5
热流,251 热力学温度,5

Thompson, Benjamin, 4
汤普森,本杰明,4

Torricelli, 11
托里切利,11

Torricelli vacuum, 12 Transient heat flow
托里切利真空,12 瞬态热流

examples, 369–373, 379–382, 380f, 382f, 386–394, 387t, 388t,
示例,369–373,379–382,380f,382f,386–394,387t,388t,

389f, 390f, 391f, 392f, 394t,

396–398, 396f, 398f, 399–401,

399f, 401f, 405–408, 411, 412f,

414–416, 415f

lumped capacitance method (Newtonian cooling), 365–373, 367f, 368f
集中电容法(牛顿冷却),365–373,367f,368f

non-Newtonian cooling, 373–379 error function, 374–376, 374f,
非牛顿冷却,373–379 误差函数,374–376,374f,

375f, 376t

heat generation within solid, 398–401, 399f, 401f
固体内的热生成,398–401,399f,401f

in one-dimensional finite systems, 382–394, 383f, 387t, 388t, 389f, 390f, 391f, 392f,
在一维有限系统中,382–394,383f,387t,388t,389f,390f,391f,392f,

394t

in semi-infinite systems, 376–379 in two-dimensional finite sys-
在半无限系统中,376–379 在二维有限系统中

tems, 394–401, 396f, 398f, 399f, 401f

problems, 416–420 solidification of metal castings
问题,416–420 金属铸件的凝固

into cooled metal molds, 408411, 408f, 410f, 412f
倒入冷却的金属模具中,408–411,408f,410f,412f

sand casting, 401–408, 402f, 405f
砂铸造,401–408,402f,405f

temperature gradients, 412–416, 412f, 415f
温度梯度,412–416,412f,415f

Transition boiling, 605
过渡沸腾,605

Transmissivity, 436–437, 436f
透过率,436–437,436f

T’ser, 1

Tube bundle theory, 167–170, 167f Turbine, efficiency of, 196 Turbulence
管束理论,167–170,167f 涡轮,效率,196 湍流

definition of, 136
定义为,136

intensity of, 137
强度,137

Turbulent boundary flow, 311–315 Turbulent flow, 30, 31, 31f, 135
湍流边界流,311–315 湍流,30,31,31f,135

concept of, 135–138, 136f, 138f, 139f
概念,135–138,136f,138f,139f

in cylindrical pipes
在圆柱形管道中

fluid flow in noncircular ducts, 151–153
非圆形管道中的流体流动,151–153

and friction factor, 141–151, 144f, 148t, 149f
和摩擦因子,141–151,144f,148t,149f

examples, 145–147, 148, 150–151,
示例,145–147,148,150–151,

157–160, 160–163, 166,

173–175, 177–179

fluid flow equations, 166 graphical representation of,
流体流动方程,166 的图形表示,

139–141, 140f

inertial force, 135–136
惯性力,135–136

over flat plate, 153–160, 157f, 159f past submerged cylinder, 163–165,
在平板上,153–160,157f,159f 经过沉没圆柱,163–165,

164f, 165f

past submerged sphere, 160–163, 161f
过去的沉没球体,160–163,161f

problems (1–16), 181–184
问题 (1–16),181–184

Reynolds number, 61, 136, 138f,
雷诺数,61,136,138f,

140, 149f, 157f

through packed beds D’Arcy’s law, 167
通过填充床的达西定律,167

fluidized beds, 175–179 spherical particles and Ergun’s
流化床,175–179 球形颗粒和 Ergun 的

equation, 170–175, 175f tube bundle theory, 167–170,
方程,170–175,175f 管束理论,167–170,

167f

turbulence, definition of, 136
湍流,定义,136

of helium, 82, 83f
氦的,82,83f

Index663
索引 663

viscous
粘稠的
force,
力,
135–136

U

Uniform heat flux, 315–317 Unit of power, 4
均匀热流,315–317 功率单位,4

V

Velocity
速度

average, 44
平均,44

gradient, 33, 34, 347f
渐变,33,34,347f

head, 205
头, 205

local mass average, 524 local molar average, 524
局部质量平均,524 局部摩尔平均,524

Vena contracta, 225

View factor, 439, 446f, 450t View resistance, 455
视角因子,439,446f,450t 视角电阻,455

Viscosity, 33, 135
粘度,33,135

calculation from kinetic theory of gases, 78–85, 79f, 80f, 83f, 84f, 85f
气体动理论的计算,78–85,79f,80f,83f,84f,85f

example of, 85–90, 86f, 86t, 87t, 89f
示例,85–90,86f,86t,87t,89f

of liquid metals, 90–94, 91f, 92f, 93t, 94f
液态金属,90–94,91f,92f,93t,94f

example of, 94–96, 94f, 96t of Ne, 82, 83f
Ne 的例子,94–96,94f,96t,82,83f

Viscous force, 135–136
粘性力,135–136

Viscous momentum transport, 37, 37f, 38, 48, 69
粘性动量传输,37,37f,38,48,69

Void fraction, 167–168
空隙率,167–168

Volume flow rate, 44, 45
体积流量,44,45

Von Kármán integral, 119, 155
冯·卡门积分,119,155

W

Water, flow of, 141 Watt, James, 4
水,流动,141 瓦特,詹姆斯,4

Wet bulb psychrometer, 588–589 Wien’s displacement law, 427 Wilke’s formula, 87, 273
湿球心理测量仪,588–589 Wien 位移定律,427 Wilke 公式,87,273

Winchester standard, 2 Wind chill factor, 295
温彻斯特标准,2 风寒指数,295

X

X-ray scattering curves, 91, 92f
X 射线散射曲线,91,92f

Check Out The Other Materials
查看其他材料
Engineerin
工程师
g Titles
标题
We
我们
Have!
有!

Diffuse Scattering and the Fundamental Properties of Materials, Rozaliya Barabash, Gene E. Ice, and Patrice E.A. Turchi, Editors
散射和材料的基本性质,Rozaliya Barabash,Gene E. Ice,和 Patrice E.A. Turchi,编辑

Bonds and Bands in Semiconductors, Second Edition, J. C. Phillips and Gerald Lucovsky
半导体中的键和带,第二版,J. C. 菲利普斯和杰拉尔德·卢科夫斯基

11 Books from our Characterization Series that include such subjects as metals and alloys, tribological materials, silicon processing, catalytic materials, and ceramics just to name a few
我们特征化系列中的 11 本书涵盖了金属和合金、摩擦材料、硅加工、催化材料和陶瓷等主题,仅举几例

Plastics Technology Handbook Volumes 1 and 2, Don Rosato, Marlene Rosato, and Nick R. Schott, Editors
塑料技术手册 – 第 1 卷和第 2 卷,唐·罗萨托,玛琳·罗萨托,尼克·R·肖特,编辑

Polymer Testing: New Instrumental Methods, Muralisrinivasan Subramanian
聚合物测试:新仪器方法,Muralisrinivasan Subramanian

Solid-State NMR: Basic Principles & Practice, David C. Apperley, Robert K. Harris, and Paul Hodgkinson
固态核磁共振:基本原理与实践,David C. Apperley,Robert K. Harris 和 Paul Hodgkinson

Announcing Digital Content Crafted by Librarians
宣布由图书馆员制作的数字内容

Momentum Press offers digital content as authoritative treatments of advanced engineering topics, by leaders in their fields. Hosted on ebrary, MP provides practitioners, researchers, faculty and students in engineering, science and industry with innovative electronic content in sensors and controls engineering, advanced energy engineering, manufacturing, and materials science. Momentum Press offers library-friendly terms:
Momentum Press 提供数字内容,作为各自领域领导者对高级工程主题的权威处理。托管在 ebrary 上,MP 为工程、科学和工业的从业者、研究人员、教师和学生提供创新的电子内容,涵盖传感器与控制工程、高级能源工程、制造和材料科学。Momentum Press 提供图书馆友好的条款:

perpetual access for a one-time fee
一次性费用的永久访问权限

no subscriptions or access fees required
无需订阅或访问费用

unlimited concurrent usage permitted
允许无限并发使用

downloadable PDFs provided
可下载的 PDF 文件提供

free MARC records included
免费包含 MARC 记录

free trials
免费试用

The Momentum Press digital library is very affordable, with no obligation to buy in future years.
Momentum Press 数字图书馆非常实惠,未来几年没有购买的义务。

For more information, please visit www.momentumpress.net/library or to set up a trial in the US, please contact Adam Chesler, adam.chesler@momentumpress.net.
有关更多信息,请访问 www.momentumpress.net/library 或在美国设置试用,请联系 Adam Chesler,adam.chesler@momentumpress.net。

AN INTRODUCTION
介绍
TO

Transport Phenomena in Materials Engineering
材料工程中的传输现象

SECOND EDITION, By David R. Gaskell
第二版,作者:大卫·R·加斯克尔

This classic text on fluid flow, heat transfer, and mass transport has been brought up to date in this second edition. The author has added a chapter on “Boiling and Conden-sation” that expands and rounds out the book’s comprehensive coverage on transport phenomena. These new topics are particularly important to current research in renewable energy resources involving technologies such as windmills and solar panels.
这本关于流体流动、热传递和质量传输的经典文本在第二版中进行了更新。作者增加了一个关于“沸腾和冷凝”的章节,扩展并完善了本书对传输现象的全面覆盖。这些新主题对于当前涉及风力发电机和太阳能电池板等技术的可再生能源资源研究尤为重要。

The book provides you and other materials science and engineering students and professionals with a clear yet thorough introduction to these important concepts. It balances the explanation of the fundamentals governing fluid flow and the transport of heat and mass with common applications of these fundamentals to specific systems existing in materials engineering. You will benefit from:
本书为您和其他材料科学与工程的学生和专业人士提供了对这些重要概念的清晰而全面的介绍。它在解释流体流动和热量及质量传输的基本原理与这些基本原理在材料工程中特定系统的常见应用之间取得了平衡。您将受益于:

The use of familiar examples such as air and water to introduce the influences of
使用熟悉的例子,如空气和水,来介绍影响因素

properties and geometry on fluid flow.
流体流动的性质和几何。

An organization with sections dealing separately with fluid flow, heat transfer, and mass transport. This sequential structure allows the development of heat transport concepts to employ analogies of heat flow with fluid flow and the development of mass transport concepts to employ analogies with heat transport.
一个组织有不同的部门分别处理流体流动、热传递和质量传输。这种顺序结构允许热传输概念的发展利用流体流动的类比,以及质量传输概念的发展利用热传输的类比。

Ample high-quality graphs and figures throughout.
整篇文章中有大量高质量的图表和图形。

Key points presented in chapter summaries.
章节摘要中呈现的要点。

End of chapter exercises and solutions to selected problems.
章节末尾的练习和选定问题的解决方案。

An all new and improved comprehensive index.
全新改进的综合索引。

ABOUT THE AUTHOR
关于作者

David
大卫
R. Gaskell was
born
出生
in
Glasgow,
格拉斯哥,
Scotland
苏格兰
and
received
收到
B.Sc.
学士学位
degrees
度数
in
metal
金属
lurgy
流感
and
technical
技术
chemistry
化学
from
the
这个
University
大学
of
Glasgow
格拉斯哥
in
1962. From
来自
1962 to
1964, he was employed as the Metallurgist with Laporte Chemical Ltd., a manufactur
1964 年,他受雇于拉波特化学有限公司,担任冶金学家。
er of
industrial
工业
chemicals,
化学品
with
two
plants
植物
in
England.
英格兰
He
obtained
获得
his
他的
Ph.D.
博士学位
from
McMas
麦克马斯特
-ter
之三
University
大学
in
1967, and
from
1967 to
1982 he
was
a professor
教授
of
metallurgy,
冶金,
material
材料
s science
科学
and
geology
地质学
at
the
这个
University
大学
of
Pennsylvania.
宾夕法尼亚。
In
1982 he
came
来了
to
Purdue,
普渡大学,
wher
哪里
e he has won five departmental teaching awards. He has taught a variety of courses dealin
他获得了五个部门教学奖。他教授了多种课程。
g with
materials
材料
properties,
属性,
structures
结构
and
processing,
处理,
and
he
is
the
这个
author
作者
of
two
texts,
文本,
one
on
the
这个
thermodynamics
热力学
of
materials,
材料,
which
哪个
is
in
its
它的
sixth
第六
edition,
版次,
and
this
这个
book
on transport
运输
phenomena
现象
in
materials
材料
engineering,
工程,
which
哪个
is
now
现在
in
its
它的
second
第二
edition.
版次。
Hi
s research interests include chemical and extraction metallurgy, thermodynamics,
研究兴趣包括化学和提取冶金、热力学,
kinetics,
动力学,
transport
运输
phenomena
现象
and
materials
材料
processing.
处理。

www.momentumpress.net