Macrocycle-derived hierarchical porous organic polymers: synthesis and applications 大环衍生的多级多孔有机聚合物:合成与应用
Weiben Chen, Pei Chen, Guang Zhang, Guolong Xing, Yu Feng, (D) * 陈伟本, 陈培, 张光, 邢国龙, 于峰, (D) *Ying-Wei Yang and Long Chen (D) *ac Ying-Wei Yang 和 Long Chen (D) *ac
Abstract 抽象
Porous organic polymers (POPs), as a new category of advanced porous materials, have received broad research interests owing to the advantages of light-weight, robust scaffolds, high specific surface areas and good functional tailorability. According to the long-range ordering of polymer skeletons, POPs can be either crystalline or amorphous. Macrocycles with inherent cavities can serve as receptors for recognizing or capturing specific guest molecules through host-guest interactions. Incorporating macrocycles in POP skeletons affords win-win merits, e.g. hierarchical porosity and novel physicochemical properties. In this review, we focus on the recent progress associated with new architectures of macrocycle-based POPs. Herein, these macrocycles are divided into two subclasses: non-planar (crown ether, calixarene, pillararene, cyclodextrin, cyclotricatechylene, etc.) and planar (arylene-ethynylene macrocycles). We summarize the synthetic methods of each macrocyclic POP in terms of the functions of versatile building blocks. Subsequently, we discuss the performance of macrocyclic POPs in environmental remediation, gas adsorption, heterogeneous catalysis, fluorescence sensing and ionic conduction. Although considerable examples are reported, the development of macrocyclic POPs is still in its infancy. Finally, we propose the underlying challenges and opportunities of macrocycle-based POPs. 多孔有机聚合物(POPs)作为一类新型的先进多孔材料,因其具有轻质、坚固的支架、高比表面积和良好的功能定制性等优点而受到广泛的研究关注。根据聚合物骨架的长程排序,持久性有机污染物可以是结晶的或无定形的。具有固有空腔的大环可以作为受体,通过主客体相互作用来识别或捕获特定的客体分子。在POP骨架中加入大循环提供了双赢的优点,例如分层孔隙率和新颖的物理化学性质。在这篇综述中,我们重点关注了与基于大循环的持久性有机污染物新结构相关的近期进展。本文中,这些大环分为两个亚类:非平面(冠醚、杯芳烃、柱芳烃、环糊精、环三叶烯等)和平面(芳基-乙炔大环)。我们根据多功能砌块的功能总结了每种大环POP的合成方法。随后,讨论了大环POPs在环境修复、气体吸附、非均相催化、荧光传感和离子传导等方面的性能。尽管报告了相当多的例子,但大环持久性有机污染物的发展仍处于起步阶段。最后,我们提出了基于宏观周期的持久性有机污染物的潜在挑战和机遇。
1. Introduction 1. 引言
Porous organic polymers (POPs) are an emerging class of multi-dimensional porous materials constructed from various 多孔有机聚合物(POPs)是一类新兴的多维多孔材料,由各种
Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China. E-mail: long.chen@tju.edu.cn Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China. E-mail: fengyu211@iccas.ac.cn 天津大学化学系, 天津市分子光电科学重点实验室, 天津300072E-mail: long.chen@tju.edu.cn 中国科学院化学研究所, 北京分子科学国家实验室, 中科院分子识别与功能重点实验室, 北京 100190E-mail: fengyu211@iccas.ac.cn
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China 吉林大学化学学院, 中国 长春130012市前金大街2699号
Weiben Chen 陈伟本
Weiben Chen received his BSc degree in applied chemistry from Tianjin Chengjian University, China in 2015. He is currently a PhD candidate under the supervision of Prof. Long Chen at Tianjin University. His research focuses on the design and synthesis of functional porous organic polymers for photocatalysis. 陈伟本于2015年获得天津城建大学应用化学学士学位。他目前在天津大学攻读博士学位,师从陈龙教授。他的研究重点是用于光催化的功能性多孔有机聚合物的设计和合成。
Yu Feng 于峰
Yu Feng received his PhD in organic chemistry from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2010 under the supervision of Prof. Qing-Hua Fan. He is now an Associate Professor in the CAS Key Laboratory of Molecular Recognition and Function at the same Institute. His current research interests include asymmetric catalysis, synthesis and selfassembly of chiral macrocyclic molecules, and functional covalent organic frameworks. 于峰于2010年在中国科学院化学研究所(ICCAS)获得有机化学博士学位,师从范庆华华教授。他现在是同一研究所中科院分子识别与功能重点实验室的副教授。他目前的研究兴趣包括不对称催化、手性大环分子的合成和自组装以及功能共价有机框架。
adsorption/separation, environmental remediation, heterogeneous catalysis, sensing, and optoelectronics, among others. 吸附/分离、环境修复、多相催化、传感和光电子学等。
The successful marriage between supramolecular chemistry and porous materials can offer great opportunities for the creation of new advanced materials with unique characteristics. Over the past several decades, macrocycles, such as crown ether (CE), cyclodextrin (CD), calix arene , resorcinarene (RA) and pillar arene , have been playing significant roles in supramolecular chemistry and materials science due to their intrinsic cavities capable of selectively accommodating guest molecules or ions. Although the intrinsic cavities of macrocycles make them promising host materials in a variety of applications, such as molecular recognition and separation, drug delivery, and enzyme mimetic catalysis, certain drawbacks such as low porosity and weak chemical stability restrain to some extent further improvements in their performance for specific applications. Recently, the scope of macrocyclic chemistry has expanded from discrete cavitands to rigid hierarchically porous organic frameworks which bear several advantages including but not limited to the following: (1) the preparation of macrocycle-based POPs opens up a promising approach to expand the structural diversities of POPs and generates hierarchically porous structures with high porosities; (2) the unique molecular recognition properties of macrocyclic moieties impart the resulting macrocycle-based POPs with specific functions via host-guest chemistry and non-covalent interactions; (3) the stimuli-responsive properties of macrocyclebased host-guest systems could mediate macrocyclic POPs to serve as fascinating and smart stimuli-responsive materials; (4) the crystalline macrocyclic COFs could facilitate the understanding of the structure-property relationship and the development of high-performance functional materials. Hence, the integration of supramolecular macrocycles into POPs could tailor specific functions of POPs, afford intriguing guest-responsive properties, and provide new possibilities for task-specific applications. 超分子化学与多孔材料之间的成功结合可以为创造具有独特特性的新型先进材料提供巨大的机会。在过去的几十年中,冠醚 (CE)、环糊精 (CD)、杯 芳烃 、间苯二苯二醇 (RA) 和柱 芳烃 等大环化合物因其能够选择性地容纳客体分子或离子的本征腔体而在超分子化学和材料科学中发挥着重要作用。尽管大环的本征空腔使它们在分子识别和分离、药物递送和酶模拟催化等各种应用中成为有前途的宿主材料, 但某些缺点(如低孔隙率和弱化学稳定性)在一定程度上限制了它们在特定应用中的性能进一步提高。 近年来,大环化学的研究范围已从离散空洞扩展到刚性多级多孔有机框架,具有以下优点 :(1)制备基于大环的持久性有机污染物为扩大持久性有机污染物的结构多样性开辟了一种有前途的途径,并生成了具有高孔隙率的多级多孔结构;(2)大环基团独特的分子识别特性通过主客体化学和非共价相互作用赋予所得的基于大环的持久性有机污染物具有特定功能;(3)基于大循环的主客体系统的刺激响应特性可以介导大环POPs,成为吸引人且智能的刺激响应材料;(4)结晶大环COFs有助于理解其结构-性能关系,促进高性能功能材料的发展。因此,将超分子大环集成到持久性有机污染物中可以定制持久性有机污染物的特定功能,提供有趣的客体响应特性,并为特定任务的应用提供新的可能性。
So far, several interesting reviews on POPs and their diverse applications have been documented. However, very few comprehensive overviews are focused on macrocycle-based POPs. 迄今为止,已经记录了几篇关于持久性有机污染物及其各种应用的有趣综述。 然而,很少有全面的概述侧重于基于宏观周期的持久性有机污染物。
Long Chen 陈龙
Long Chen received his PhD in 2009 at the Institute for Molecular Science (IMS, Japan). He then joined Max Planck Institute for Polymer Research (MPIP, Germany) as an Alexander von Humboldt research fellow. In March 2012, he was appointed a project leader of the department of synthetic chemistry at MPIP. In September 2014, he moved to Tianjin University as a full professor. He officially joined Jinlin University as a full professor in August 2021. His current research focuses on the design and synthesis of 2D conjugated porous polymers for catalysis and energy-related applications. 陈龙于2009年在日本IMS分子科学研究所获得博士学位。随后,他加入了马克斯·普朗克聚合物研究所(MPIP),担任亚历山大·冯·洪堡研究员。2012年3月,他被任命为MPIP合成化学系的项目负责人。2014年9月,他调任天津大学正教授。他于2021年8月正式加入吉林大学,担任正教授。他目前的研究重点是设计和合成用于催化和能源相关应用的二维共轭多孔聚合物。
This review article will specifically highlight the macrocyclecontaining POPs and their synthetic strategies as well as promising applications. To clearly introduce the recent advances of macrocycle-based POPs, we classify the reported macrocyclic POPs based on the planarity of macrocycle building blocks (Fig. 1). Most of them are the nonplanar ones, which include conventional macrocycles (CE, CD, CA, RA and PA) as well as other types (e.g. cyclotricatechylene); they usually form amorphous POPs. On the other hand, planar macrocycles mainly include arylene-ethynylene macrocycles, porphyrin and phthalocyanine. Nevertheless, porphyrin- and porphyrinoid (phthalocyanine or corrole)-based POPs will not be discussed here because some recent and excellent reviews are available in the literature for readers' perusal. Furthermore, we emphasize the main applications of macrocycle-containing POPs, i.e. environmental remediation, gas adsorption/separation, heterogeneous catalysis, fluorescent sensors, and ionic conduction (Fig. 1). At the end, future prospects and remaining challenges of macrocycle-based POPs concerning technological synthesis and future practical applications are proposed, which might inspire further research in this specific field. 本文将重点介绍含有持久性有机污染物的大环化合物及其合成策略,以及前景广阔的应用前景。为了清晰介绍基于大循环的持久性有机污染物的最新进展,我们根据大循环结构单元的平面性对已报道的全能有机污染物进行了分类(图1)。它们中的大多数是非平面的,包括传统的大环(CE、CD、CA、RA 和 PA)以及其他类型的(例如环三叶草);它们通常形成无定形持久性有机污染物。另一方面,平面大环主要包括亚芳基-乙炔大环、卟啉和酞菁。然而,这里将不讨论基于卟啉和卟啉类(酞菁或科罗尔)的持久性有机污染物,因为文献中有一些最近的优秀评论供读者阅读。 此外,我们强调了含大环POPs的主要应用,即环境修复、气体吸附/分离、非均相催化、荧光传感器和离子传导(图1)。最后,提出了基于大循环的持久性有机污染物在技术合成和未来实际应用方面的未来前景和仍然存在的挑战,以期为该领域的进一步研究提供启示。
2.1 CE-based POPs prepared by Friedel-Crafts reaction 2.1 通过Friedel-Crafts反应制备的CE基持久性有机污染物
CEs represent the first explored macrocyclic hosts and their oxygen-rich binding sites and tuneable cyclic cavities can complex with various metal ions or organic cationic species. Hence, CE-functionalized materials have been intensively investigated in supramolecular chemistry. Liu and co-workers reported a triptycene and crown ether based POP (POP-TCE-15 in Fig. 2), which was prepared by a simple Friedel-Crafts alkylation reaction of triptycene, crown ether and formaldehyde dimethyl acetal (FDA). Powder X-ray diffraction (PXRD) analysis revealed that POP-TCE-15 was amorphous in nature. However, POP-TCE-15 showed a high surface area of , good hydrophobicity and excellent chemical stability in both acidic and basic solutions. CEs是最早被探索的大环宿主,其富氧结合位点和可调的环状腔可以与各种金属离子或有机阳离子物种络合。 因此,CE功能化材料在超分子化学中得到了深入研究。 Liu及其同事 报道了一种基于三苯和冠醚的POP(FIG.2中的POP-TCE-15),它是通过简单的三倍碳烯、冠醚和甲醛二甲基缩醛(FDA)的Friedel-Crafts烷基化反应制备的。粉末X射线衍射(PXRD)分析表明,POP-TCE-15本质上是无定形的。然而,POP-TCE-15在酸性和碱性溶液中都表现出高比表面积、 良好的疏水性和优异的化学稳定性。
2.2 Amorphous CD-based POPs 2.2 基于CD的无定形持久性有机污染物
CDs are cone-shaped cyclic oligosaccharides and obtained from the enzymatic degradation of natural materials (e.g. corn starch). The main types of CDs are three naturally occurring ones, i.e., -, - and -CDs, which contain six, seven or eight repeating glucopyranose units, respectively, linked by -glycosidic bonds. The hydrophilic external surfaces render CDs easily soluble in aqueous systems but the hydrophobic internal cavities can accommodate various small organic molecules, metal ions or organometallic compounds such as ferrocene. The 2-, 3-, 6-hydroxyl groups of CDs can be facilely and selectively modified to introduce other functionalities. Traditional CD-based polymers synthesized from CDs and epichlorohydrin (EPI) (Fig. 3) usually exhibit low specific surface areas Additionally, the environmentally hazardous EPI is potentially carcinogenic. Hence, exploring novel crosslinkers and synthetic strategies to improve the porosity of CD是锥形环状低聚糖,由天然材料(如玉米淀粉)的酶降解获得。CD的主要类型是三种天然存在的CDs,即 -、 -和 -CD,它们分别包含六个、七个或八个重复的吡喃葡萄糖单元,通过 -糖苷键连接。亲水性的外表面使CDs易于溶于水性体系中,但疏水性内腔可以容纳各种有机小分子、金属离子或有机金属化合物,如二茂铁。 CD的2-、3-、6-羟基可以方便且选择性地修饰以引入其他官能团。由CD和环氧氯丙烷(EPI)合成的传统CD基聚合物(图3)通常表现出低比表面积 ,此外,对环境有害的EPI具有潜在的致癌性。因此,探索新的交联剂和合成策略来提高
Fig. 1 Structures of supramolecular macrocycles and main applications of macrocycle-based POPs discussed in this review. 图1 本文探讨的超分子大环结构及基于大环的POPs的主要应用。
CD-based polymers is highly desired. The following section will mainly summarize the recent advances in the synthetic strategies and novel crosslinkers for preparing highly porous CD-based POPs. CD基聚合物是非常受欢迎的。以下部分将主要总结近年来在制备高孔CD基持久性有机污染物的合成策略和新型交联剂方面的进展。
2.2.1 CD-based HCPs prepared by Friedel-Crafts reaction. HCPs can be synthesized by Friedel-Crafts alkylation reaction of benzyl units, which feature high surface areas and good thermal stability. On the basis of this concept, Dai and co-workers reported a hyper-crosslinked -CD porous polymer ( BnCD-HCPP) by Friedel-Crafts alkylation. Firstly, the fully benzylated ( BnCD) was prepared by a reaction of benzyl bromide with -CD in dry DMF using NaH as the base. Then the resulting BnCD was hyper-crosslinked using FDA as a crosslinker and anhydrous as the Lewis acid catalyst to afford HCPP (Fig. 3a). Compared to EPI-based CD-polymers, HCPP exhibited a higher BET surface area due to inefficient packing among rigid and contorted benzene rings and the inherent cavity of -CD. Additionally, the excellent thermal stability of BnCD-HCPP conferred exceptional performance in adsorbing aromatic pollutants. Subsequently, as shown in Fig. 3b, 2.2.1 通过Friedel-Crafts反应制备的基于CD的HCP。HCPs可以通过苄基单元的Friedel-Crafts烷基化反应合成,具有高表面积和良好的热稳定性。 基于这一概念,Dai及其同事 通过Friedel-Crafts烷基化报道了一种超交联 -CD多孔聚合物( BnCD-HCPP)。首先,以NaH为碱,通过溴化苄与 -CD在干燥的DMF中反应制备了全苄基化 ( BnCD)。然后,使用FDA作为交联剂,使用无水 路易斯酸催化剂将所得 BnCD超交联,以获得 HCPP(图3a)。与EPI基CD聚合物相比, 由于刚性和扭曲的苯环之间的填充效率低下以及-CD固有的 空腔,HCPP表现出更高的BET表面积 。此外,BnCD-HCPP优异的热稳定性 使其在吸附芳香族污染物方面具有卓越的性能。随后,如图3b所示,
Dai and co-workers further synthesized four CD-based HCPPs from -CD and -CD by a similar Friedel-Crafts alkylation reaction. Interestingly, despite structural differences, all the four CD-based HCPs exhibited excellent thermal stability. Compared to ) and HCPP ( ), the BET surface areas of BnCD-HCPP ( 989 ) and BnCD-HCPP ( ) were higher owing to more benzene rings participating in hyper-crosslinking. Additionally, a series of BnCD-based HCPs by Friedel-Crafts alkylation of BnCD with other crosslinkers (DCX and BCMBP, Fig. 3c) were developed, which again showcased high BET surface areas, excellent thermal and chemical stability, and enhanced uptake of hydrophilic pollutants. Dai 及其同事通过类似的 Friedel-Crafts 烷基化反应从 -CD 和 -CD 进一步合成了四种基于 CD 的 HCPP。 有趣的是,尽管存在结构差异,但所有四种基于CD的HCP都表现出优异的热稳定性。与 )和HCPP( )相比 ,BnCD-HCPP(989 )和 BnCD-HCPP( )的BET表面积 更高,这是由于有更多的苯环参与超交联。此外,通过Friedel-Crafts将BnCD与其他交联剂(DCX和BCMBP,图3c)烷基化,开发了一系列基于BnCD的HCP,这些HCPs再次展示了高BET表面积,优异的热稳定性和化学稳定性,并增强了对亲水性污染物的吸收。
2.2.2 CD-based POPs prepared by nucleophilic aromatic substitution. Except Friedel-Crafts alkylation for the synthesis of CD based polymers, nucleophilic aromatic substitution (SNAr) reaction is another widely utilized approach to knit different CDs with rigid fluorinated aromatic cross-linkers. Dichtel and co-workers made a breakthrough in developing -CD containing polymers (TFN-CDP) with high specific surface areas. The TFN-CDP were prepared by a SNAr reaction between the hydroxyl groups of -CD and rigid aromatic tetrafluoroterephthalonitrile (TFN, Fig. 4a). Importantly, the mesoporous TFN-CDP adsorbed a variety of organic micropollutants more rapidly than those of activated carbons and the non-porous -CD polymer. 2.2.2 通过亲核芳香族取代制备的基于CD的持久性有机污染物。除了用于合成 CD 基聚合物的 Friedel-Crafts 烷基化反应外,亲核芳香族取代 (SNAr) 反应是另一种广泛使用的方法,用于将不同的 CD 与刚性氟化芳香族交联剂编织在一起。Dichtel及其同事 在开发 具有高比表面积的含CD聚合物(TFN-CDP)方面取得了突破。TFN-CDP是通过 -CD的羟基和刚性芳香族四氟对苯二甲腈之间的SNAr反应制备的(TFN,图4a)。重要的是,介孔TFN-CDP比活性炭和无孔 -CD聚合物吸附多种有机微污染物的速度更快。
Although CD-based polymers showed good adsorption properties, the yields of the SNAr reaction were surprisingly low (18%), and the TFN : -CD ratio of the isolated polymer (ca. 6:1) did not match with the monomer feed ratio (3:1). Dichtel and co-workers 尽管CD基聚合物表现出良好的吸附性能,但SNAr反应的产率低得惊人(18%),且分离聚合物的TFN: -CD比(约6:1)与单体进料比(3:1)不匹配。迪克特尔和同事们
Fig. 3 CD-based POPs prepared by Friedel-Crafts reactions. (a) Left, synthesis of the polymer with high-surface-areas. Right, schematic representation of the BnCD-HCPP structure. Adapted with permission from ref. 19. Copyright 2016 The Royal Society of Chemistry. (b) Synthesis of hyper-crosslinked CD-based HCPPs. (c) Some representative crosslinkers in the synthesis of CD-based POPs. 图3 Friedel-Crafts反应制备的基于CD的POPs。(a) 左图, 合成具有高比表面积的 聚合物。右图为BnCD-HCPP结构的 示意图。经参考文献 19 许可改编。版权所有 2016 英国皇家化学学会。(b) 超交联的基于CD的HCPPs的合成。 (c) 基于CD的持久性有机污染物合成中的一些代表联剂。
further demonstrated that a fluorine atom in TFN was substituted by a hydroxyl group by studying a model reaction between TFN and -butanol. Therefore, phenolation and etherification are competing processes, and the level of phenolate incorporation can be controlled by varying the rate of base addition, monomer concentrations and the solvent (Fig. 4a). The results indicated that polymers with higher concentrations of negatively charged phenolic groups exhibited a higher binding capacity for heavy metal ions and a higher affinity for cationic micropollutants. This study paves the way for controllable synthesis of TFN-CDP in high yields. 通过研究TFN与 丁醇之间的模型反应,进一步证明了TFN中的氟原子被羟基取代。因此,酚化和醚化是相互竞争的过程,可以通过改变碱添加率、单体浓度和溶剂来控制酚酸酯的掺入水平(图4a)。结果表明, 带负电荷的酚基浓度较高的聚合物对重金属离子的结合能力较高, 对阳离子微污染物的亲和力较高.该研究为TFN-CDP的高产量可控合成铺平了道路。
Unfortunately, TFN-CDP with negatively charged phenolic moieties showed poor affinity for anionic per- and polyfluorinated alkyl substances (PFASs). To address this issue, Dichtel and co-workers developed a new -CD crosslinked polymer network (DFB-CDP) via a SNAr reaction between -CD and the crosslinker (decafluorobiphenyl, DFB) with a higher fluorine content (Fig. 4b). Compared to TFN-CDP and activated carbon, DFB-CDP exhibited a higher affinity toward perfluorooctanoic acid (PFOA). This is because increasing fluorine content can decrease phenolate concentrations and increase the affinity. The low affinity of DFB-CDP towards anionic polyfluorinated alkyl substances except the one with a alkyl chain is probably due to the size dependent hydrophobically driven binding mechanism of -CD. The same group further reported a new strategy to improve the affinity for anionic PFASs by introducing a cationic functionality into a TFN-CDP. The new cationic CDP were prepared by nitrile reduction of TFN-CDP into benzyl amine, which can form the cationic ammonium groups in neutral water (Fig. 4c). The combination of -CD and protonated amino groups showed a wider spectrum of PFAS remediation with different alkyl chains. 不幸的是,具有负电荷的酚类部分的TFN-CDP对阴离子全氟烷基和多氟烷基物质(PFASs)的亲和力较差。为了解决这个问题,Dichtel及其同事 通过-CD与氟含量更高的交联剂(decafluorobiphenyl,DFB)之间的 SNAr反应开发了一种新的 -CD交联聚合物网络(DFB-CDP)(图4b)。与TFN-CDP和活性炭相比,DFB-CDP对全氟辛酸(PFOA)表现出更高的亲和力。这是因为增加氟含量可以降低酚酸盐浓度并增加亲和力。DFB-CDP对阴离子多氟烷基物质的亲和力低,除了具有 烷基链的物质外,这可能是由于 -CD的尺寸依赖性疏水驱动的结合机制。该小组进一步报告了一种新的策略,通过在TFN-CDP中引入阳离子官能团来提高对阴离子PFAS的亲和力。 通过将TFN-CDP的腈还原为苯胺来制备新的阳离子CDP,苄胺可以在中性水中形成阳离子铵基(图4c)。 -CD和质子化氨基的组合显示出对不同烷基链的PFAS修复的广谱。
-CD can be utilized to remove special organic pollutants (e.g. dibutyl phthalate (DBP)) since it shows better guest affinity as compared with other CD analogues in this case. Jana and co-workers developed an -CD-based molecularly imprinted polymer (MIP). Firstly, DBP formed a complex with -CD (Fig. 5a), which could govern the mutual orientation of during the following polymerization process. Thereafter, the synthesis of the MIP involves a SNAr crosslinking reaction between TFN and the complex (Fig. 5a). The pristine -CD MIP containing imprints of DBP in its polymeric network can selectively encapsulate DBP. With the optimal molar ratio of , TFN, and DBP at , the maximum binding capacity of was achieved with a high imprinting factor of 2.6. -CD 可用于去除特殊的有机污染物(例如邻苯二甲酸二丁酯 (DBP)),因为在这种情况下,与其他 CD 类似物相比,它显示出更好的客体亲和力。 Jana及其同事 开发了一种 基于CD的分子印迹聚合物(MIP)。首先,DBP与 -CD形成配合物(图5a),该配合物可以控制后续聚合过程中的 互取向。此后,MIP的合成涉及TFN和复合物之间的SNAr交联反应(图5a)。在其聚合物网络中含有DBP印记的原始 -CD MIP可以选择性地包封DBP。当最佳摩尔比为 、TFN和DBP时 ,在2.6的高印迹因子下,实现了最大 结合载量。
In addition to direct introduction of CDs into polymer backbones, post-modification of POPs by CDs via SNAr reactions represents another efficient method. For example, Zhu and co-workers reported a fully fluorinated porous aromatic framework (PAF-63). As shown in Fig. 5b, PAF-63 further reacted with -, -, and -CDs in and DMF to produce -, -, and -CD modified PAF-63, respectively. Compared to PAF-63 ( ), CD-modified PAF-63 was nonporous, suggesting that flexible CD molecules occupied the channels of PAF-63, whereas the CD-PAF-63 can be used to protect the ortho-site of the aryl substrates in halogenation to selectively prepare the para-substituted compounds. Moreover, the selectivity can be obviously increased with the decreased size of the substrates. 除了将CDs直接引入聚合物主链中外,CDs通过SNAr反应对POPs进行后修饰是另一种有效的方法。例如,Zhu及其同事 报告了一种全氟化多孔芳香族框架(PAF-63)。如图5b所示,PAF-63进一步与 DMF中的 -、 -和 -CDs反应,分别产生 -、 -和 -CD修饰的PAF-63。与PAF-63( )相比,CD修饰的PAF-63是无孔的,表明柔韧的CD分子占据了PAF-63的通道,而CD-PAF-63可用于在卤化反应中保护芳基底物的直位位点,以选择性地制备对位取代化合物。此外,随着底物尺寸的减小,选择性可以明显增加。
c)
Fig. -CD polymer networks derived from nucleophilic aromatic substitution reactions. (a) Top, synthesis of the high-surface-area porous TFN-CDP from and TFN. Down, schematic of the TFN-CDP structure. Adapted with permission from ref. 25. Copyright 2018 The Royal Society of Chemistry. (b) Synthesis of the DFB-CDP from and DFB. (c) Post-polymerization reduction of TFN-CDP yields amine functionalized TFN-CDP (reduced TFNCDP). Reproduced with permission from ref. 27. Copyright 2019 Wiley-VCH. 无花果。 -源自亲核芳香族取代反应的CD聚合物网络。(a)上图,高比表面积多孔TFN-CDP的合成方法 和TFN。向下,TFN-CDP结构示意图。经参考文献 25 许可改编。版权所有 2018 英国皇家化学学会。(b) 德国足协和德国足协的德国产氧合作委员会 综合报告。(c) TFN-CDP的聚合后还原产生胺官能化的TFN-CDP(还原TFNCDP)。经参考文献27许可转载。版权所有 2019 Wiley-VCH。
The above-mentioned CD-POPs were usually synthesized in the organic phase, which might again cause secondary environmental pollution due to the use of organic solvents. Recently, Xie and co-workers reported an eco-friendly strategy to prepare a new ultra-microporous and macroporous -CD-based polymer (T-E-CDP) in aqueous solutions by simultaneously crosslinking -CD with both flexible EPI and rigid TFN crosslinkers (Fig. 5c). Owing to the permanent porosity and abundant adsorption sites, T-E-CDP could effectively remove organic pollutants from water without being affected by the ionic strength and pH values, indicating great potential for water treatment. Furthermore, Xie and co-workers introduced 2,3-epoxypropyltrimethylammonium chloride (ETA) to the T-E-CDP by a similar preparation process. The quaternary amino-functionalized -CDP can simultaneously and rapidly remove natural organic substances, organic micropollutants and detrimental microorganisms from water. 上述CD-POPs通常是在有机相中合成的,由于有机溶剂的使用,可能再次造成二次环境污染。最近,Xie及其同事 报告了一种环保策略,通过同时与柔性EPI和刚性TFN交联剂交联 -CD,在水溶液中制备一种新的超微孔和大孔 -CD基聚合物(T-E-CDP)(图5c)。由于T-E-CDP具有永久的孔隙率和丰富的吸附位点,可以有效地去除水中的有机污染物,而不受离子强度和pH值的影响,具有很大的水处理潜力。此外,Xie及其同事通过类似的制备过程 将2,3-环氧丙基三甲基氯化铵(ETA)引入T-E-CDP。季氨基官能化 -CDP可以同时快速地去除水中的天然有机物质、有机微污染物和有害微生物。
Fig. 5 CD-based porous polymers derived from nucleophilic aromatic substitution reactions. (a) Synthesis of the imprinted polymer MIP via the polymerization of -cyclodextrin upon host-guest complexation with DBP, followed by the removal of DBP after polymerization. Adapted with permission from ref. 28. Copyright 2020 American Chemical Society. (b) Scheme of the preparation and the possible fragments of CD-PAFs. Adapted with permission from ref. 29. Copyright 2017 American Chemical Society. (c) Synthesis of T-E-CDP in the aqueous phase. 图5 由亲核芳香族取代反应衍生的CD基多孔聚合物。(a) 通过 环糊精与DBP在主客体络合时聚合合成印迹聚合物MIP,然后在聚合后去除DBP。经参考文献 28 许可改编。版权所有 2020 美国化学学会。(b) CD-PAF的编制计划和可能的片段。经参考文献 29 许可改编。版权所有 2017 美国化学学会。(c) 在水相中合成T-E-CDP。
Other nucleophilic substitution reactions similar to the SNAr reaction have also been applied to prepare CD-based POPs. As shown in Fig. 6a, Liu and co-workers reported the preparation of macrocycle-containing polymer networks (TPECD) via the nucleophilic substitution of tetrakis(4-(bromomethyl)-phenyl)ethene (TPEBr) and -CD. In the presence of an aggregation-induced emission (AIE) luminogen, i.e., tetraphenylethene (TPE), and partially hydrophilic -CDs, macrocycle-based POPs showcased prominent solid-state fluorescence and good water dispersibility. Moreover, the fluorescence of two -CD-based POPs could be conveniently tuned from blue-green to red-orange via efficient fluorescence resonance energy transfer from TPE moieties to the encapsulated fluorophores in aqueous solutions. Yang and 其他类似于SNAr反应的亲核取代反应也已应用于制备基于CD的持久性有机污染物。如图6a所示,Liu及其同事 报告了通过亲核取代四(4-(溴甲基)-苯基)乙烯(TPEBr)和 -CD制备含大环聚合物网络(TPECD)的方法。在存在聚集诱导发射(AIE)发光剂(即四苯乙烯(TPE)和部分亲水性 -CDs的情况下,基于大环的POPs表现出突出的固态荧光和良好的水分散性。此外,通过高效的荧光共振能量转移,两种 基于CD的POPs的荧光可以方便地从蓝绿色调谐到红橙色,从而在水溶液中实现从TPE基团到包封荧光团的能量转移。杨和
a)
Fig. 6 CD-based porous polymers derived from nucleophilic substitution reaction. (a) Synthetic routes to the TPECD polymer. (b) Synthetic routes to -CDP-N and -CDP-C. 图6 由亲核取代反应衍生的CD基多孔聚合物。(a) TPECD聚合物的合成路线。(b) 通往 -CDP-N和 -CDP-C的合成路线。
co-workers further used BCMBP (Fig. 3c) for nucleophilic substitution to prepare BCMBP-based -CD polymers, which showed rapid and efficient removal of micropollutants from wastewater. 同事们 进一步使用BCMBP(图3c)进行亲核取代,制备了基于 BCMBP的-CD聚合物,该聚合物显示出快速有效地去除废水中的微污染物。
Ding and co-workers successfully prepared two -CD-based polymer networks ( -CDP-N and -CDP-C) by simple nucleophilic substitution of the -CD with 2,4,6-tris(4-(bromomethyl)phenyl)-triazine and -tris( -bromomethylphenyl)benzene, respectively (Fig. 6 b ). Because -CD can serve as the support for metal catalysts, these two -CD based polymers were loaded with Au nanoparticles (NPs) through in situ reduction of to generate -CDP-N and -CDP-C. Transmission electron microscopy (TEM) suggested that Au NPs were well distributed in -CDP materials. Additionally, the average sizes of Au NPs in -CDP-N were smaller than that of Au@ -CDP-C ( ), which was probably attributed to a synergistic role of the hydroxyl groups and N atoms of triazines in -CDP-N, resulting in higher catalytic activities. Ding及其同事 分别用2,4,6-三(4-(溴甲基)苯基) -三嗪和 -三( -溴甲基苯基)苯简单地亲核取代 -CD,成功制备了两个 基于-CD的聚合物网络( -CDP-N和 -CDP-C)(图6 b)。由于 -CD可以作为金属催化剂的载体,因此在这两种 -CD基聚合物中通过原位还原法负载了Au纳米颗粒(NPs), 生成 了-CDP-N和 -CDP-C。透射电子显微镜(TEM)表明,Au NPs在-CDP材料中 分布均匀。此外,-CDP-N中Au NPs的平均粒径 小于Au@ -CDP-C( ),这可能是由于-CDP-N中 三嗪的羟基和N原子的协同作用,导致催化活性更高。
2.2.3 Ester-crosslinked CD-based POPs. In 2016, Peinemann and co-workers reported an ester-crosslinked CD-based polymer by the polymerization of -CD with terephthaloyl chloride (Fig. 7a). The authors optimized the preparation conditions to obtain continuous -CD films on top of a commercial polyacrylonitrile porous support (Fig. 7b). The presence of hydrophobic cavities and hydrophilic ester linkages in the -CD films results in high permeation for both polar and nonpolar solvents. Considering the diverse sizes of the three CDs and different internal and external polarities, Chung and co-workers designed three freestanding molecular-sieving nanofilms derived from highly estercrosslinked networks through an interfacial reaction between the hydroxyl groups of CDs ( -, -, and -CDs) and highly reactive acyl chloride groups of trimesoyl chloride using NaOH as the catalyst (Fig. 7c). The precise molecular sieving architectures with two kinds of channels similar to Janus pathways are constructed: the hydrophobic inner cavities of CDs provide a transport channel for apolar molecules, while the hydrophilic outer spaces between CDs 2.2.3 酯交联的CD基持久性有机污染物。2016 年,Peinemann 及其同事 报道了 -CD 与对苯二甲酰氯聚合的酯交联 CD 基聚合物(图 7a)。作者优化了制备条件,以在商业聚丙烯腈多孔载体顶部获得连续 的CD薄膜(图7b)。 -CD膜中存在疏水腔和亲水酯键,导致极性和非极性溶剂的高渗透性。考虑到三种CD的不同尺寸和不同的内部和外部极性,Chung及其同事 设计了三种独立的分子筛分纳米膜,这些纳米膜来自高度酯交联网络,通过CDs的羟基( -、 -和 -CDs)与使用NaOH作为催化剂的三苯磺酰氯的高反应性酰氯基团之间的界面反应(图7c)。构建了具有两种类似Janus通路的通道的精确分子筛分结构:CDs的疏水内腔为非极性分子提供转运通道,而CDs之间的亲水性外腔则为CDs提供了转运通道
c)
Fig. 7 (a) Interfacial polymerization of films on top of PAN porous supports. (b) SEM image of a film. Adapted with permission from ref. 35. Copyright 2016 Wiley-VCH. (c) Synthetic routes to the freestanding CD/TMC molecular sieving membranes. 图7 (a) PAN多孔载体顶部薄膜的 界面聚合。(b) 薄膜的SEM图像。经参考文献 35 许可改编。版权所有 2016 Wiley-VCH。(c) 独立式CD/TMC分子筛分膜的合成路线。
facilitate the transport of polar molecules. Additionally, the intrinsic inner cavities of -, -, and -CDs can precisely adjust the pore size and thickness of the selective layer. 促进极性分子的运输。此外, -、 - 和-CDs的固有内腔可以精确调节选择层的孔径和厚度。
2.2.4 Imide-crosslinked CD-based POPs. Wooley and co-workers reported a kind of imide-crosslinked CD-based POPs (CDPI, Fig. 8a), which were prepared by per-aminated -CD-NH 2 with pyromellitic dianhydride in the presence of polar aprotic solvents containing acetic acid. The CDPI showed a Langmuir surface area of originating from hierarchical porosity. A wide distribution of mesopores was attributed to the stacking of the pyromellitic dianhydride in the imide-crosslinked network. Scanning electron microscopy (SEM) indicated that large macroporous voids were generated in the gel framework. CDPI was stable in water and strongly acidic and alkaline aqueous solutions. Furthermore, a liquid filtration membrane ( thick) was fabricated with a porous polyimide framework, which showed rapid separation of hydrophilic dyes in aqueous solution and toluene molecules in the vapor phase. 2.2.4 酰亚胺交联的基于CD的持久性有机污染物。Wooley及其同事 报道了一种基于酰亚胺交联的基于CD的POPs(CDPI,图8a),该POPs是通过在含有乙酸的极性非质子溶剂存在下,用均苯四甲酸二酐制备的全胺化 -CD-NH 2。CDPI显示Langmuir表面积 起源于多级孔隙度。介孔的广泛分布归因于酰亚胺交联网络中均苯四甜酸二酐的 堆积。扫描电子显微镜(SEM)表明,凝胶骨架中产生了大面积的孔隙。CDPI在水、强酸性和强碱性水溶液中稳定。此外,用多孔聚酰亚胺骨架制备了液体过滤膜( 厚),该膜显示出水溶液中的亲水性染料和气相中的甲苯分子的快速分离。
2.2.5 CD-based POPs prepared from isocyanates. In the above-mentioned synthesis, acid or base catalysts are necessary. In contrast, Zhang and co-workers recently reported a series of 2.2.5 由异氰酸酯制备的基于CD的持久性有机污染物。在上述合成中,酸或碱催化剂是必需的。相比之下,张及其同事 最近报告了一系列
Fig. 8 Synthetic strategies for CD-based POPs: (a) polyimide-linked porous polymer CDPI. (b) Urea-linked aerogels CD-TTI200 and CD-HDI200 via in situ catalyst-free cross-linking of CDs with soft and rigid isocyanates. The cartoon picture is the porous structure of the CD aerogels (middle) and the photo images are the CD-TTI200 aerogel (murrey) and the CD-HDI200 aerogel (white). Adapted with permission from ref. 38. Copyright 2017 The Royal Society of Chemistry. 图8 CD基POPs的合成策略:(a)聚酰亚胺连接的多孔聚合物CDPI。(b) 尿素连接气凝胶CD-TTI200和CD-HDI200,通过无原位催化剂交联CDs与软质和刚性异氰酸酯。卡通图片是CD气凝胶的多孔结构(中),照片图像是CD-TTI200气凝胶(murrey)和CD-HDI200气凝胶(白色)。经参考文献 38 许可改编。版权所有 2017 英国皇家化学学会。
robust CD-based aerogels synthesized by in situ catalyst-free crosslinking of CDs with a soft isocyanate (hexamethylene diisocyanate, HDI) and a rigid isocyanate (triphenylmethane-triisocyanate, TTI, Fig. 8b). The CD-based aerogels exhibited high BET surface areas ( ) owing to their hierarchically porous structures. In addition, the aerogels with a high Young's modulus ( 166 MP ) can be compressed up to without any observable cracking. The outstanding mechanical properties are beneficial for the applications of the CD-based aerogels in gas and liquid chromatography. Chang and co-workers also reported a 3D polymer monolith synthesized by a catalyst-free polyaddition reaction of -CD with 1,4 -phenylene diisocyanate. The porous monolith could efficiently adsorb aromatic pollutants due to the hierarchical porosity and amphiphilicity. Furthermore, the materials embedded with can be used for photocatalytic degradation of aromatic pollutants. 通过无催化剂将CD与软异氰酸酯(六亚甲基二异氰酸酯,HDI)和硬质异氰酸酯(三苯基甲烷 -三异氰酸酯,TTI,图8b)原位交联合成的坚固的CD基气凝胶。CD基气凝胶由于其多级多孔结构而表现出较高的BET表面积( )。此外,具有高杨氏模量(166 MP)的气凝胶可以被压缩到 没有任何可观察到的开裂。优异的机械性能有利于CD基气凝胶在气相色谱和液相色谱中的应用。Chang及其同事 还报道了一种3D聚合物单石,该聚合物单石是通过-CD与1,4-亚苯基二异氰酸酯的 无催化剂加聚反应合成的。由于多孔孔隙率和两亲性,多孔整体能够有效地吸附芳香族污染物。此外,嵌入其中 的材料可用于芳香族污染物的光催化降解。
CAs are a sort of well-known bowl-shaped cyclic oligomers with hydrophobic cavities constructed through methylene bridges at the meta-positions of phenol. This interesting hydrophobic cavity could serve as a powerful receptor for various guest molecules in supramolecular chemistry. By geometrical arrangement of the phenyl subunits, CAs, especially the calix[4]arene derivatives, can form four stable conformers with cone, partial cone, 1,2alternate, or 1,3 -alternate conformations. The polar phenol units or non-polar rims (aromatic rings) and the methylene bridges in CA can be easily modified to afford multifunctional supramolecular derivatives. Moreover, the structural rigidity of CA is propitious to be incorporated into the extended, porous reticulated architecture by robust covalent bonds. Compared to the discrete CA, the CA-based POPs displayed high surface areas and could selectively encapsulate various guests. CAs是一种众所周知的碗状环状低聚物,具有疏水腔,通过苯酚的亚甲基桥构建。这种有趣的疏水腔可以作为超分子化学中各种客体分子的强大受体。通过苯基亚基的几何排列,CAs,特别是杯[4]芳烃衍生物,可以形成四个稳定的构象,具有锥体、部分锥体、1,2交替或1,3-交替构象。 CA中的极性苯酚单元或非极性边缘(芳香环)和亚甲基桥可以很容易地进行修饰,以获得多功能的超分子衍生物。此外,CA的结构刚度有利于通过坚固的共价键结合到扩展的多孔网状结构中。与离散CA相比,基于CA的POPs表现出较高的表面积,能够选择性地封装各种来宾。
2.3.1 CA-based POPs prepared by Sonogashira-Hagihara 2.3.1 Sonogashira-Hagihara编制的基于CA的持久性有机污染物
reaction. CA only existed as side-chain pendants in conventional CA-contained polymers. The first CA-based reticulated polymer (CalP) with CA in the polymer backbone was reported by Trabolsi and co-workers in The CalP was prepared by hyper-crosslinking tetrabromo-calix[4]arene (1) with 1,4-diethynylbenzene via Sonogashira-Hagihara coupling.
Notably, the optimal concentrations of the monomers were crucial to produce a highly porous polymer in good yield. The obtained reticular structure exhibited excellent chemical and thermal stability under harsh conditions. The inherent cavity of CA and abundant intermolecular spaces endowed CalP with a high surface area of and a large pore volume of , which enhanced the adsorption and removal of organic micropollutants. 值得注意的是,单体的最佳浓度对于生产高收率的高度多孔聚合物至关重要。所获得的网状结构在恶劣条件下表现出优异的化学稳定性和热稳定性。CA固有的空腔和丰富的分子间空间赋予了CalP高比表面积 和大孔体积, 增强了对有机微污染物的吸附和去除。
Introducing -electron rich alkyne units into the macrocyclic POPs can enhance both the rigidity and conjugation of the polymer skeleton, and results in high surface areas and improved adsorption capabilities. For example, Trabolsi and co-workers 在大环POPs中引入 富电子炔烃单元可以增强聚合物骨架的刚性和共轭性,从而产生高表面积和提高吸附能力。例如,Trabolsi 和同事
further extended the family of CA-based POPs (CalPn, ) by reacting 1 with three different acetylene-functionalized linkers (2, 3, and 4, Fig. 9a) via Sonogashira-Hagihara coupling. The IR and NMR spectra confirmed the successful formation of porous covalent calix[4]arene-based polymers. CalP4 showed a higher specific surface area ( than CalP2 and CalP3 ( ) due to more acetylene groups within CalP4. Incorporating lithiated phenols in calix[4]arenes can further enhance the adsorption performance of POPs via electrostatic interactions; in this respect, the lithiated polymers (CalP2-Li, CalP3-Li, and CalP4-Li) were synthesized by a reaction between the CA-based POPs and -butyl lithium (Fig. 9a). The disappearance of phenolic -OH stretching bands in FT-IR spectra and the chemical shifts ranging from 0.038 to 0.087 ppm in MAS NMR spectra confirmed the successful lithiation. The BET surface areas of CalP2-Li, CalP3-Li, and CalP4-Li were calculated to be 274,308 , and , respectively. These values are smaller than those of the corresponding non-lithiated analogues, probably due to partial filling or collapse of the pores during lithiation. 通过Sonogashira-Hagihara偶联反应1与三种不同的乙炔功能化连接子(2、3和4,图9a)反应,进一步扩展了基于CA的POPs(CalPn, )家族。红外和核磁共振光谱证实了多孔共价杯[4]芳烃基聚合物的成功形成。CalP4的比表面积 高于CalP2 和CalP3( ),这是由于CalP4内的乙炔基团较多。在杯[4]芳烃中掺入锂化酚可以通过静电相互作用进一步增强POPs的吸附性能;在这方面,锂化聚合物(CalP2-Li、CalP3-Li和CalP4-Li)是通过CA基POPs与 -丁基锂之间的反应合成的(图9a)。 FT-IR光谱中酚醛-OH拉伸带的消失和MAS NMR光谱中 0.038至0.087 ppm的化学位移证实了成功的锂化。计算出CalP2-Li、CalP3-Li和CalP4-Li的BET表面积分别为274,308和 ,为274,308。这些值小于相应的非锂化类似物的值,可能是由于锂化过程中孔隙的部分填充或塌陷。
Incorporating CA into 2D polymers is challenging due to the nonplanar and flexible CA rings. Trabolsi and co-workers reported a template-free method to prepare 2D CA-based porous organic nanosheets (CX4-NS) from 1 and 4,4'-diethynyl-1,1'-biphenyl 由于 CA 环是非平面的和柔韧的,因此将 CA 掺入 2D 聚合物具有挑战性。Trabolsi及其同事 报告了一种无模板的方法,用于从1和4,4'-二乙炔基-1,1'-联苯制备基于2D CA的多孔有机纳米片(CX4-NS)
(5, Fig. 9b). The obtained CX4-NS was a 2D flexible CA-containing network with weak interlayer attractions which facilitated layer exfoliation. Consequently, the bulk CX4-NS was exfoliated into fewlayered nanosheets ( 3.52 nm ) in ethanol. The SEM, TEM and AFM images confirmed the thin sheet-like structures. The calculated results showed that the 1,2-alternate conformation of calix[4]arene could produce a two-dimensional pattern with the lowest energy. (5,图 9b)。得到的CX4-NS是一个二维灵活的含CA网络,具有较弱的层间吸引力,有利于层剥离。因此,块状CX4-NS在乙醇中被剥离成少层纳米片(3.52nm)。SEM、TEM和AFM图像证实了薄片状结构。计算结果表明, 杯[4]芳烃的1,2-交替构象可以产生能量最低的二维图案。
The hydroxyl groups in CA can be facilely modified with other functions. Trabolsi and co-workers rationally selected a thioether-crown-incorporating calix[4]arene derivative which further crosslinked with tetraacetylene pyrene (4) via SonogashiraHagihara reaction to produce the thioether-crown-rich CA-based mesoporous polymer S-CX4P (Fig. 10a). Despite the existence of large steric thioether-crown units, S-CX4P exhibits a high BET specific surface area of . Except for calix[4]arene, a series of other CA-based POPs (CX4P, CX6P and CX8P) were reported by the same group. The porosities of these materials were correlated with the cavity sizes of CAs. The specific surface areas of CX4P, CX6P and CX8P were 759, 725 and , respectively. Interestingly, these three CA-based POPs exhibited outstanding adsorption capacities for paraquat. CA中的羟基可以很容易地用其他功能进行修饰。Trabolsi及其同事 合理地选择了一种硫醚冠掺入杯[4]芳烃衍生物,该衍生物通过SonogashiraHagihara反应进一步与四乙炔芘(4)交联,产生富含硫醚冠的CA基介孔聚合物S-CX4P(图10a)。尽管存在较大的空间硫醚冠单元,但S-CX4P表现出高的BET比表面积。 除杯[4]芳烃外,同一组报告了一系列其他基于CA的持久性有机污染物(CX4P、CX6P和CX8P)。 这些材料的孔隙率与CAs的空腔尺寸相关。CX4P、CX6P和CX8P的比表面积分别为759、725和 ,分别为759、725和。有趣的是,这三种基于CA的持久性有机污染物对百草枯表现出出色的吸附能力。
Fluorine-rich linkers would enhance the interactions between the adsorbent and PFOA. Trabolsi and co-workers recently developed two fluorine-rich calix[4]arene-based POPs 富氟连接子将增强吸附剂与PFOA之间的相互作用。Trabolsi及其同事 最近开发了两种富含氟的杯[4]芳烃基持久性有机污染物
Fig. 9 Sonogashira-Hagihara cross-coupling approaches to the synthesis of CA-based POPs. (a) Synthetic routes to the polycalix[4]arene networks, CalPn, and their lithiated analogues, CalPn-Li . (b) Schematic view of the network structure of CalP4. Adapted with permission from ref. 42 . Copyright 2018 American Chemical Society. (c) Synthetic route to porous calix[4]arene nanosheets (CX4-NS) under solvothermal conditions. Adapted with permission from ref. 44. Copyright 2017 American Chemical Society. 图9 Sonogashira-Hagihara交叉偶联合成CA基POPs的方法。(a) 多口[4]芳烃网络(CalPn)及其锂化类似物CalPn-Li的合成路线 。(b) CalP4网络结构示意图。经参考文献 42 许可改编。版权所有 2018 美国化学学会。(c) 溶剂热条件下多孔杯[4]芳烃纳米片(CX4-NS)的合成路线。经参考文献 44 许可改编。版权所有 2017 美国化学学会。
Fig. 10 The Sonogashira-Hagihara cross-coupling approaches for synthesis of CA-based POPs. (a) Thioether-crown-rich calix[4]arene porous covalent polymer S-CX4P. Adapted with permission from ref. 45. Copyright 2019 American Chemical Society. (b) Non-fluorinated and fluorine-rich porous calix[n]arene polymers, CX4-P, CX4-BP, FCX4-P and FCX4-BP. 图10 园林-萩原交叉偶联方法合成基于CA的持久性有机污染物。(a) 富含硫醚冠的杯[4]芳烃多孔共价聚合物S-CX4P。经参考文献 45 许可改编。版权所有 2019 美国化学学会。(b) 非氟化和富氟多孔杯[n]芳烃聚合物、CX4-P、CX4-BP、FCX4-P和FCX4-BP。
(FCX4-P and FCX4-BP) via Sonogashira-Hagihara reactions between 1 and the fluorinated linkers 6 and 7, respectively (Fig. 10b). Non-fluorinated CA-based POPs (CX4-P and CX4-BP) were also synthesized by the same method starting from 1 and the nonfluorinated linkers (1,4-diethynylbenzene and 4,4'diethynyl-1,1'-biphenyl). The BET surface areas of fluorinated FCX4-P and FCX4-BP were slightly lower than those of non-fluorinated CX4-P and CX4-BP ( ) probably due to the channel occupied by fluorine atoms. Nevertheless, FCX4-P and FCX4-BP could more efficiently remove PFOA than the non-fluorinated POPs, which revealed that the F F-C interactions between the fluorinated linkers and PFOA were essential for the excellent performance. (FCX4-P 和 FCX4-BP) 分别通过 1 和氟化连接子 6 和 7 之间的 Sonogashira-Hagihara 反应(图 10b)。非氟化CA基持久性有机污染物(CX4-P和CX4-BP)也采用相同的方法合成,从1开始,非氟化连接剂(1,4-二乙炔基苯和4,4'二乙炔基-1,1'-联苯)也合成。氟化FCX4-P 和FCX4-BP 的BET表面积略低于非氟化CX4-P 和CX4-BP( ),可能是由于氟原子占据通道所致。然而,FCX4-P和FCX4-BP比非氟化POPs能更有效地去除PFOA,这表明氟化连接子与PFOA之间的F F-C相互作用对于PFOA的优异性能至关重要。
2.3.2 CA-based POPs prepared from a diazo-coupling reaction. Instead of using noble metal catalyzed Sonogashira-Hagihara cross-coupling, Trabolsi and co-workers further reported two redox active POPs via diazo coupling between a nitro derivative of calix[4]arene ( TNC4A) and two different viologen diamines (Fig. 11a). The resulted and were amorphous and showcased modest BET surface areas of 17.9 and , respectively. and could be reduced to stable radical cationic polymers due to the viologens, as proved by electron paramagnetic resonance (EPR) spectra. Moreover, the SEM and TEM images suggested that the morphologies of and were nanosheets owing to the partial cone structure of calix[4]arene. Besides, both 2.3.2 由重氮偶联反应制备的基于CA的持久性有机污染物。Trabolsi及其同事 没有使用贵金属催化的Sonogashira-Hagihara交叉偶联,而是通过杯[4]芳烃的硝基衍生物( TNC4A)和两种不同的紫精二胺之间的重氮偶联进一步报道了两种氧化还原活性POPs(图11a)。结果 和 是无定形的,并分别显示出 17.9 和 17.9 的 适度 BET 表面积。 并且 由于紫精的存在,可以还原为稳定的自由基阳离子聚合物,电子顺磁共振(EPR)光谱证明了这一点。此外,SEM和TEM图像表明,由于杯[4]芳烃的部分锥形结构, and 的形貌是纳米片。 此外,两者
Fig. 11 Alternative synthetic strategies for calixarene-based POPs. (a) Synthesis of and via diazo coupling. (b) Synthesis of pTC-SC4A films via interfacial polymerization with esterification. 图11 杯芳烃基持久性有机污染物的替代合成策略。(a) 重氮偶联的合成 和 通过重氮偶联。(b) 通过界面聚合和酯化合成pTC-SC4A薄膜。
cationic polymers showcased excellent chemical and thermal stability, and could effectively remove anionic azo-based dyes from water in a wide pH range of 2-10. 阳离子聚合物表现出优异的化学稳定性和热稳定性,在2-10的宽pH范围内可以有效地去除水中的阴离子偶氮基染料。
2.3.3 CA-based POPs prepared from interfacial polymerization. 2.3.3 通过界面聚合法制备的CA基持久性有机污染物。
It is widely accepted that the pore sizes of porous materials significantly affect their performances on mass transport. To develop efficient porous materials with hierarchical pore distribution, Liu and co-workers reported two mesoporous polymer films through interfacial polymerization on the surfaces of commercial porous membranes by a reaction between terephthaloyl chloride and pillar[5]arene or sulfonatocalix[4]arene (SC4A), respectively (Fig. 11b). The polymer films displayed two types of pores, one from the polymer network and the other from the cavity. Thanks to the ultrahigh permeability and strong host-guest interaction, both polymers could effectively remove cationic dyes by simple vacuum filtration.
2.3.4 CA-based POPs prepared from nucleophilic aromatic substitution. Nucleophilic aromatic substitution can be also employed in the synthesis of CA-based POPs. Zhang and coworkers reported four CalCOPs via nucleophilic aromatic substitution between amino calix[4]arene with different alkyl chains and triazine derivatives (Fig. 12a). The BET surface areas of CalCOP1, CalCOP2, CalCOP3 and CalCOP4 were 280, 31.5, 18.4 , and , respectively, which were reduced with increasing the lengths of alkyl chains from ethyl to butyl. Zhang and co-workers also reported a series of amino-bridged covalent organic polycalix[4]arenes (CaCOPs) prepared via nucleophilic aromatic substitution of a modified calix[4]arene intermediate with different aromatic diamines. The BET surface areas increased from CaCOP1 to CaCOP2 to CaCOP3 ( ) with increasing the number of benzene rings and extending the conjugated networks. Although the surface areas were quite low, these electron-rich networks exhibited excellent iodine adsorption capacity. Yuan and co-workers reported a new cationic CA-based POP (CalCOP-1) by nucleophilic aromatic substitution of calix[4]arene with imidazolium units (Fig. 12b). The morphological characterization indicated that CalCOP-1 2.3.4 由亲核芳香族取代制备的基于CA的持久性有机污染物。亲核芳香族取代也可用于合成基于CA的持久性有机污染物。Zhang及其同事 通过具有不同烷基链的氨基杯[4]芳烃和三嗪衍生物之间的亲核芳香族取代报告了四种CalCOPs(图12a)。CalCOP1、CalCOP2、CalCOP3和CalCOP4的BET表面积分别为280、31.5、18.4和 ,随着烷基链长度从乙基到丁基的增大而减小。Zhang及其同事 还报道了一系列氨基桥接共价有机多杯[4]芳烃(CaCOPs),该化合物是通过用不同芳香族二胺取代修饰的杯[4]芳烃中间体制备的。随着苯环数量的增加和共轭网络的扩展,BET表面积从CaCOP1 到CaCOP2 再到CaCOP3( )增加。尽管表面积相当小,但这些富电子网络表现出优异的碘吸附能力。Yuan及其同事 通过用咪唑单元亲核取代杯[4]芳烃取代了新的阳离子CA基POP(CalCOP-1)(图12b)。形态学特征表明,CalCOP-1
Fig. 12 Synthesis of CA-based POPs by nucleophilic substitution. (a) Synthetic route to triazine-based covalent organic polycalix[4]arenes, CalCOPs. (b) Synthetic route to the cationic calix[4]arene polymer CalCOP-1. (c) Synthetic routes to TPE-SC4A polymers. 图12 通过亲核取代合成基于CA的POPs。(a) 三嗪基共价有机多蒲[4]芳烃的合成路线,CalCOPs。(b)阳离子杯[4]芳烃聚合物CalCOP-1的合成路线。(c) TPE-SC4A聚合物的合成路线。
was composed of nanospheres. The BET surface area of CalCOP-1 was low ( ), while it could adsorb with moderate adsorption capacity up to at 273 K . Liu and co-workers also reported CA-based POPs (TPE-SC4A) via the nucleophilic substitution of TPEBr and SC4A (Fig. 12c). TPE-SC4A similar to TPECD (Fig. 6a) exhibited efficient fluorescence resonance energy transfer due to the presence of TPE. 由纳米球组成。CalCOP-1的BET表面积较低( ),但在273 K 时, 其吸附容量适中。Liu及其同事 还通过TPEBr和SC4A的亲核取代报道了基于CA的POPs(TPE-SC4A)(图12c)。由于TPE(图6a)的存在,TPE-SC4A与TPECD相似,表现出有效的荧光共振能量转移。
RAs is another kind of commonly used architecture in supramolecular chemistry, similar to CAs. They are also typical bowlshaped macrocycles with eight phenolic groups in their upper rims, allowing functionalization and preparation of various supramolecular hosts. In addition, these hydrophobic -rich cavitands enable the encapsulation of various guest compounds. However, only a few examples of calix[4]resorcinarene-based POPs were reported. The early calix 4 resorcinarene-containing POPs were prepared using Bakelite type chemistry through condensation of calix[4]resorcinarenes with formaldehyde. The phenolic hydroxyl groups were further functionalized by incorporating -propyl sulfamic acid as the catalyst. However, the surface areas of these polymers after treatment with sulfamic acid were relatively low RAs是超分子化学中另一种常用的结构,与CAs相似。它们也是典型的碗形大环,在其上缘具有八个酚基,允许功能化和制备各种超分子宿主。此外,这些疏水性 丰富的空腔体能够封装各种客体化合物。然而,只报道了杯[4]间苯二酚为基础的持久性有机污染物的几个例子。 早期杯4 含间苯二苯二酚的持久性有机污染物是采用电木型化学法,通过杯[4]间苯二酚醛缩合制备的。 通过掺入 -丙基氨基磺酸作为催化剂,进一步实现了酚羟基的功能化。然而,用氨基磺酸处理后这些聚合物的表面积相对较小
2.4.1 RA-based POPs prepared from diazo-coupling reactions. Yuan and co-workers reported a series of calix[4]resorcinarenebased POPs (CalPOF-1, CalPOF-2 and CalPOF-3) by diazo coupling reactions of 4,4'-biphenyldiamine and C-alkyl calix[4]resorcinarenes (RsCns; stands for the number of carbon atoms of the alkyl chain, Fig. 13a) under mild conditions. Interestingly, tailoring the lengths of the alkyl chains on the methylene groups of RA could tune the porosity of the resulted polymers. The BET surface areas of CalPOF-1 (303 , CalPOF-2 and CalPOF-3 ( ) decreased with increasing alkyl chain length from methyl through ethyl to propyl, respectively. 2.4.1 由重氮偶联反应制备的基于RA的持久性有机污染物。Yuan及其同事 通过4,4'-联苯二胺和C-烷基杯[4]间苯二酚(RsCns; 代表烷基链的碳原子数,图13a)在温和的条件下。有趣的是,调整RA亚甲基上烷基链的长度可以调节所得聚合物的孔隙率。CalPOF-1(303 、CalPOF-2 和CalPOF-3( )的BET表面积分别随着烷基链长度的增加而减小。
2.4.2 RA-based POPs prepared by nucleophilic aromatic substitution. Dichtel and co-workers reported another strategy to afford two cavitand-containing polymers (CP-TFIN and CP-TFN, Fig. 13b) via nucleophilic aromatic substitution between fluorinated aromatic monomers (TFIN and TFN) and the phenolic groups of calix[4]resorcinarenes (Fig. 13b). The polymerization efficiencies for diarylether formation were optimized by regulating the reaction temperature and monomer concentrations. The surface areas of CP-TFIN and CP-TFN reached values up to 1190 and 2.4.2 通过亲核芳香族取代法制备的RA基持久性有机污染物。Dichtel及其同事 报告了另一种策略,即通过氟化芳香族单体(TFIN和TFN)与杯[4]间苯二酚醛之间的亲核芳香族取代(图13b)获得两种含空腔的聚合物(CP-TFIN和CP-TFN,图13b)。通过调节反应温度和单体浓度,优化了二芳基醚形成的聚合效率。CP-TFIN 和 CP-TFN 的表面积达到 1190 和
Fig. 13 Alternative synthetic strategies for RA-based POPs. (a) Synthesis of azo-bridged calix[4]resorcinarene-based porous organic frameworks, CalPOFs, via the diazo-coupling reaction. (b) Synthetic schemes of CP-TFIN and CP-TFN by nucleophilic aromatic substitution. 图13 基于RA的持久性有机污染物的替代合成策略。(a) 通过重氮偶联反应合成偶氮桥接杯[4]间苯二酚基多孔有机框架(CalPOFs)。(b) 通过亲核芳香族取代合成CP-TFIN和CP-TFN的方案。 , respectively. The combustion analysis and MAS NMR spectroscopy demonstrated that CP-TFIN and CP-TFN consisted of fully fused and partially fused cavitands, which were beneficial for host-guest interactions. Furthermore, compared to activated carbon and a commercial resin (Ambersorb 560), CP-TFIN showed a higher affinity toward toxic halomethanes and 1,4-dioxane. 分别。燃烧分析和 MAS NMR波谱表明,CP-TFIN和CP-TFN由全融合和部分融合的空腔体组成,有利于主客体的互动。此外,与活性炭和商业树脂(Ambersorb 560)相比,CP-TFIN对有毒卤甲烷和1,4-二氧六环表现出更高的亲和力。
2.4.3 RA-based POPs prepared by Sonogashira-Hagihara coupling reaction. Patra and co-workers reported three calix[4]resorcinarene-based hierarchical POPs (RN4-Az-OH, RN4-F and synthesized by three different methods, i.e., diazo-coupling reaction, nucleophilic aromatic substitution and Sonogashira coupling reaction, based on the different functional groups in the macrocycles and the specific aromatic linkers (Fig. 14). The length and functionality of the linker governed the physicochemical properties of the RN4-based POPs. All the POPs featured excellent chemical stability in many organic solvents and aqueous solutions. The SEM images showed that both RN4-Az-OH and RN4-OH displayed sphere-shaped morphology, but RN4-F contained large aggregated particles. Interestingly, RN4-Az-OH was hydrophilic, whereas both RN4-OH and RN4-F were hydrophobic due to the alkyne- and fluorine-rich linkers. The BET specific surface areas were also different. Compared to RN4-Az-OH ( ) and RN4-OH ( ), RN4-F showed a much higher surface area ( ) owing to the smaller length and more crosslinkable sites of the F-rich linker. These results demonstrated that selecting appropriate crosslinkers and functional groups could facilitate the understanding of the 2.4.3 园林-萩原偶联反应制备的RA基持久性有机污染物。Patra及其同事 报道了三种杯[4]基于间苯二酚的多级制POPs(RN4-Az-OH,RN4-F),并通过 三种不同的方法合成,即重氮偶联反应,亲核芳香族取代和Sonogashira偶联反应,基于大环中的不同官能团和特定的芳香族连接剂(图14)。接头的长度和功能性决定了基于RN4的持久性有机污染物的物理化学性质。所有持久性有机污染物在许多有机溶剂和水溶液中都具有优异的化学稳定性。SEM图像显示,RN4-Az-OH和RN4-OH均呈球形形貌,但RN4-F含有较大的聚集颗粒。有趣的是,RN4-Az-OH是亲水性的,而RN4-OH和RN4-F都是疏水的,这是由于富含炔烃和氟的连接子。BET比表面积也不同。与RN4-Az-OH( )和RN4-OH ( )相比 ,RN4-F的表面积( )要大得多,这是由于富F接头的长度更小,交联位点更多。这些结果表明,选择合适的交联剂和官能团可以促进对交联剂和官能团的理解。
Fig. 14 Synthetic strategies of C-phenylresorcin[4]arene-based POPs. RN4-Az-OH: diazo coupling reaction, RN4-OH: Sonogashira-Hagihara cross-coupling reaction, and RN4-F: aromatic nucleophilic substitution reaction. Adapted with permission from ref. 56. Copyright 2017 American Chemical Society. structure-property relationship and promote the development of task-specific porous materials. 图14 C-苯基间苯二酚[4]芳烃基POPs的合成策略。RN4-Az-OH:重氮偶联反应,RN4-OH:园桥-萩原交叉偶联反应,RN4-F:芳香族亲核取代反应。经参考文献 56 许可改编。版权所有 2017 美国化学学会。结构-性能关系,促进了特定任务型多孔材料的发展。
PAs, similar to calixarenes, are constructed by methylene bridges with hydroquinone units in the para-positions, as first reported by Ogoshi and co-workers in They feature symmetric pillarshaped structures and -electron rich cavities, which endow them with extensive adsorption properties for cationic and neutral guests. Moreover, PAs are facilely prepared in different solvents to yield pillar[5]arene (PA[5]), pillar[6]arene (PA[6]), or other PA homologs, with linear oligomers as side products. The alkoxy groups in PAs can be easily deprotected and further modified with various functional groups. PAs与杯芳烃类似,是由亚甲基桥与对位中的对苯二酚单元构建的,正如Ogoshi及其同事首次报道的那样 它们具有对称的柱状结构和 富电子腔,这使它们对阳离子和中性客人具有广泛的吸附性能。此外,PAs在不同的溶剂中易于制备,以产生柱[5]芳烃(PA[5])、柱[6]芳烃(PA[6])或其他PA同系物,并带有线性低聚物作为副产物。PAs中的烷氧基可以很容易地被去保护,并进一步用各种官能团修饰。
2.5.1 PA-based POPs prepared by Sonogashira-Hagihara coupling reaction. -based conjugated microporous polymers (P5-CMPs) were first reported by Coskun and co-workers (Fig. 15a). P5-CMPs were prepared by Sonogashira coupling reaction between triflate functionalized and 1,4-diethynylbenzene (P5-CMP-1) or 4,4'-diethynyl-1,1'-biphenyl (P5-CMP-2). P5-CMP-1 and P5-CMP-2 showed BET surface areas of 400 and , respectively. P5-CMPs were obtained as grey powders and were completely insoluble in common organic solvents, indicating the formation of crosslinked networks. In addition, P5-CMPs also showed high stabilities in strong acids and bases. Besides the fully functionalized P5-CMPs, Yang and co-workers reported partially functionalized PA[5]-based CMPs (P[5]-TPE-CMP and P[5]-TET-CMP, Fig. 15b), which were synthesized from di-triflate functionalized PA[5] and AIE-active TPE or 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine via Sonogashira coupling. P[5]-TPE-CMP was a greenish-black powder with excellent stability against diluted acidic and basic solutions, and was absolutely insoluble in common organic solvents. However, both P[5]-TPE-CMP - and TET-CMP ) exhibited small specific surface areas. 2.5.1 园下石-萩原偶联反应制备的PA基持久性有机污染物。 基于共轭微孔聚合物(P5-CMPs)首次由Coskun及其同事报道 (图15a)。采用三氟甲磺酸官能化 和1,4-二乙炔基苯(P5-CMP-1)或4,4'-二乙炔基-1,1'-联苯(P5-CMP-2)的Sonogashira偶联反应制备了P5-CMPs。P5-CMP-1和P5-CMP-2的BET表面积分别为400和 4。P5-CMPs为灰色粉末,完全不溶于普通有机溶剂,表明形成了交联网络。此外,P5-CMPs在强酸和强碱中也表现出较高的稳定性。除了完全功能化的P5-CMPs外,Yang及其同事 还报告了部分功能化的PA[5]-TPE-CMP和P[5]-TET-CMP,图15b),它们是由二三氟甲磺酸官能化PA[5]和AIE活性TPE或2,4,6-三(4-乙炔基苯基)-1,3,5-三嗪通过Sonogashira偶联合成的。P[5]-TPE-CMP是一种绿黑色粉末,对稀酸性和碱性溶液具有出色的稳定性,绝对不溶于普通有机溶剂。然而,P[5]-TPE-CMP - 和 TET-CMP ) 都表现出较小的比表面积。
In addition to the traditional PA, Yang and co-workers prepared two novel PA[6] analogues, [2]biphenyl-extended (BpP6) and leaning tower[6]arenes (LT6). The hydroxyl groups of LT6 and BpP6 can further react with trifluoromethanesulfonic anhydride to afford triflate functionalized derivatives (LT6-OTf and BpP6-OTf). Furthermore, the authors synthesized four CMPs (CMP-n, ) by Sonogashira coupling between LT6-OTf or BpP6-OTf and 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl (Fig. 15c). All four CMPs were amorphous in nature with similar layered structures. The BET surface areas of CMP-1, CMP-2 and CMP-4 were 16.1, 20.2, and , respectively, which were relatively lower than that of CMP-3 ). This was likely attributed to the interpenetration and tilted cavities of biphenyl linkers leading to micropores in CMP-1, CMP-2 and CMP-4. Owing to the presence of the acetylene linkage and proper cavity size of LT6 and BpP6, the four CMPs exhibited excellent chemical and thermal stability as well as outstanding affinity. 除了传统的PA外,Yang及其同事 还制备了两种新型PA[6]类似物,[2]联苯延伸 (BpP6)和斜塔[6]芳烃(LT6)。LT6 和 BpP6 的羟基可以进一步与三氟甲磺酸酐反应,得到三氟甲磺酸官能化衍生物(LT6-OTf 和 BpP6-OTf)。此外,作者通过LT6-OTf或BpP6-OTf与1,4-二乙炔基苯或4,4'-二乙炔基联苯之间的Sonogashira偶联合成了四种CMP(CMP-n, )(图15c)。4种中医师均为无定形,具有相似的层状结构。CMP-1、CMP-2和CMP-4的BET表面积分别为16.1、20.2和 ,均相对低于CMP-3 。这可能归因于联苯接头的互渗透和倾斜腔导致 CMP-1、CMP-2 和 CMP-4 中的微孔。由于LT6和BpP6存在乙炔键和适当的腔体尺寸,四种CMPs表现出优异的化学稳定性和热稳定性以及出色的 亲和力。
2.5.2 PA-based POPs prepared by nucleophilic substitution reaction. Besides Sonogashira coupling, Huang and co-workers synthesized a PA-based chiral 3D polymer (TADP5) by a nucleophilic 2.5.2 通过亲核取代反应制备PA基POPs。除了Sonogashira偶联外,Huang及其同事 还通过亲核试剂合成了基于PA的手性3D聚合物(TADP5)
a)
P5-CMPs P5-CMPs(五级中医)
c)
Fig. 15 Sonogashira-Hagihara cross-coupling approaches to the synthesis of pillararene-based POPs. (a) Synthetic routes to the pillar[5]arene-based conjugated microporous polymers P5-CMPs. (b) Synthesis of the luminescent conjugated macrocycle polymer P[5]-TPE-CMP. (c) Synthetic routes to catcher-type CMPs (CMP- ). 图15 园林-萩原交叉偶联合成柱芳烃基持久性有机污染物的方法。(a) 柱[5]芳烃基共轭微孔聚合物P5-CMPs的合成路线。 (b)发光共轭大环聚合物P[5]-TPE-CMPs的合成。(c) 捕集型中医的合成路线(CMP- )。
substitution reaction between the -tetraaryl-1,3-dioxolane4,5-dimethanol derivative (TADDOL-OH) and per-(2-bromoethyl)pillar[5]arene (DBEP5). TADP5 was further modified with excessive to obtain the active catalyst TADP5Ti (Fig. 16a). After Ti-loading, the morphology of TADP5Ti was similar to that of TADP5, indicating the structural stability. The chiral catalytic sites were well distributed over the frameworks due to the rigid architecture and numerous substituents, and TADP5Ti could efficiently convert aryl aldehydes into chiral secondary alcohols with high ee values in a wide substrate scope. Ma and co-workers also reported two PA[n]-based POPs (P-PAP[5] and P-PAP[6]) through nucleophilic substitution between TFN and or (Fig. 16b). The BET specific surface areas of these new materials were 529 and for P-PAP[5] and P-PAP[6], respectively, with micropores of 5 Å size, which suggested that they might be potential adsorbents. -四芳基-1,3-二氧戊环4,5-二甲醇衍生物(TADDOL-OH)与每(2-溴乙基)柱[5]芳烃(DBEP5)之间的取代反应。TADP5进一步进行过量 改性,得到活性催化剂TADP5Ti(图16a)。Ti负载后,TADP5Ti的形貌与TADP5相似,表明其结构稳定性。由于结构刚性,取代基众多,手性催化位点在骨架上分布较好,TADP5Ti可以在较宽的底物范围内高效地将芳基醛转化为高ee值的手性仲醇。马及其同事 还报道了两种基于PA[n]的POPs(P-PAP[5]和P-PAP[6]),通过TFN和 OR 之间的亲核取代(图16b)。这些新材料的BET比表面积分别为529个, P-PAP[5]和P-PAP[6]的微孔尺寸为5 Å,这表明它们可能是潜在的吸附剂。
The functionalization on the lateral periphery of is challenging. Liu and co-workers reported a novel and facile method to render laterally functionalized methylene bridges of dimethoxypillar[5]arene by means of -bromosuccinimide to generate the bromo-PA[5] (BDMP5, Fig. 16c). The resulting BDMP5 further served as a building block to cross-link with alkyl diamines with different lengths to produce polymer nanocapsules or 2D polymer films. When the chain length of alkyl diamines is longer, for example, hexane-1,6-diamine, cystamine dihydrochloride and 1,4-diaminobutane, the polymerization could more easily form uniform nanocapsules. However, when employing ethane-1,2-diamine as a crosslinker only 2D polymer films were formed probably due to the high bending rigidity of and short linkers. Furthermore, the hydrophilicity of nanocapsules could be improved by decorating with 2-(2-(2-(2bromoethoxy)ethoxy)ethoxy)-ethan-1-ol. The decorated nanocapsules have promising potential in drug encapsulation and release. 其 外侧边缘的功能化具有挑战性。Liu及其同事 报道了一种新颖而简单的方法,通过 -溴代琥珀酰亚胺生成溴-PA[5],从而呈现二甲氧基柱[5]芳烃的侧向官能化亚甲基桥[5](BDMP5,图16c)。所得的BDMP5进一步作为构建单元,与不同长度的烷基二胺交联,以产生聚合物纳米胶囊或2D聚合物薄膜。当烷基二胺的链长较长时,例如己烷-1,6-二胺、胱胺二盐酸盐和1,4-二氨基丁烷,聚合反应更容易形成均匀的纳米胶囊。然而,当使用乙烷-1,2-二胺作为交联剂时,仅形成2D聚合物膜,这可能是由于连接剂的高弯曲刚度 和短连接剂。此外,用2-(2-(2-(2溴乙氧基)乙氧基)乙氧基)-乙-1-醇装饰可以提高纳米胶囊的亲水性。修饰的纳米胶囊在药物包封和释放方面具有广阔的应用前景。
2.5.3 PA-based POPs prepared by Friedel-Crafts reaction. Ma and co-workers further reported a PA[5]-based POP (PPA) via the Friedel-Crafts reaction between and -xylylene dichloride. Due to the easy functionalization of PA[5], fully quinone-functionalized PPQ (Fig. 17a) was obtained via the oxidation of methoxy groups on , and it served as the host for Pd loading to produce Pd-PPQ. The BET surface area of PPA was , while the surface area of PPQ ( ) decreased after oxidation. Upon Pd-loading, the surface area further reduced to due to the partial occupancy of the porous structure by Pd NPs. The average size of Pd-clusters was about 0.75 nm as observed from the TEM image. The uniform size of Pd NPs was beneficial to catalysis. 2.5.3 Friedel-Crafts反应法制备的PA基持久性有机污染物。马及其同事 进一步报道了通过Friedel-Crafts反应与 二甲苯二氯之间的 基于PA[5]的POP(PPA)。由于PA[5]易于官能团化,通过氧化甲氧基获得 完全醌官能化的PPQ(图17a),并作为Pd负载产生Pd-PPQ的宿主。氧化后PPA的BET表面积为 ,而PPQ( )的表面积减小。在Pd负载时,表面积进一步减小,这是 由于Pd NPs部分占据了多孔结构。从TEM图像中观察到的Pd簇的平均尺寸约为0.75 nm。Pd NPs尺寸均匀有利于催化。
2.5.4 PA-based POPs prepared by amidation reactions. Huang and co-workers firstly synthesized carboxyl-functional , 2.5.4 酰胺化反应制备的PA基持久性有机污染物。Huang及其同事 首次合成了羧基官能团 ,
Fig. 16 Nucleophilic substitution approaches to the synthesis of pillararenebased POPs. (a) Synthesis of chiral 3D polymer networks TADP5 and TADP5Ti. (b) Synthetic procedures of porous pillar[n]arene polymers P-PAP[n]s. (c) The mechanism of covalent self-assembling into polymer nanocapsules and 2D polymer films from BDMP5. Adapted with permission from ref. 63. Copyright 2017 The Royal Society of Chemistry. 图16 基于柱芳烃的持久性有机污染物合成的亲核取代方法。(a) 手性3D聚合物网络TADP5和TADP5Ti的合成。(b) 多孔柱[n]芳烃聚合物P-PAP[n]s的合成程序。 (c) BDMP5共价自组装成聚合物纳米胶囊和二维聚合物薄膜的机理。经参考文献 63 许可改编。版权所有 2017 英国皇家化学学会。
which subsequently reacted with -phenylenediamine (PPD) to prepare the 3D polymer network P5-P. P5-P was further in situ functionalized with hydrophilic 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDC) groups to promote its hydrophilicity (Fig. 17b). Although the surface area ) of the modified P5-P was negligible, the SEM and TEM results suggested that the 3D polymer network had large voids ranging from several hundred nanometres to several micrometres, which was beneficial to water flow through P5-P and enhanced its contact with micropollutants. Therefore, it could remove a wide range of micropollutants from water. 随后与 苯二胺(PPD)反应制备3D聚合物网络P5-P。P5-P进一步用亲水性1-(3-二甲氨基丙基)-3乙基碳二亚胺盐酸盐(EDC)基团原位官能化,以促进其亲水性(图17b)。虽然改性后的P5-P的表面积 可以忽略不计,但SEM和TEM结果表明,3D聚合物网络具有从几百纳米到几微米的大孔隙,这有利于水流过P5-P,并增强了其与微污染物的接触。因此,它可以去除水中的各种微污染物。
2.5.5 PA-based POPs prepared by electrophilic aromatic substitution. Electrophilic aromatic substitution has also been applied to construct PA-based POPs as heterogeneous catalysts. Yang and co-workers explored a novel and facile approach to prepare PA-based CMP NPs (DMP[5]-TPP-CMP NPs) by electrophilic aromatic substitution between pyrrole and dibenzaldehydefunctionalized , Fig. 18a). Pyrrole could directly react with aldehyde groups to generate porphyrin. Given the abundant methoxy groups in PA rings and the strong coordination ability of porphyrin, DMP[5]-TPP-CMP could be well deposited on palladium NPs to prepare Pd@CMP. Both DMP[5]-TPP-CMP NPs 2.5.5 通过亲电芳烃取代制备PA基POPs。亲电芳烃取代也被应用于构建基于PA的POPs作为非均相催化剂。Yang及其同事 探索了一种新颖而简单的方法,通过吡咯和二苯甲醛官能团化的 亲电芳香族取代来制备基于PA的CMP NPs(DMP[5]-TPP-CMP NPs,图18a)。吡咯可直接与醛基反应生成卟啉。鉴于PA环中丰富的甲氧基和卟啉的较强配位能力,DMP[5]-TPP-CMP可以很好地沉积在钯NPs上以制备Pd@CMP。DMP[5]-TPP-CMP NPs均
Fig. 17 Alternative synthetic strategies for PA-based POPs. (a) Synthetic route to the pillar[5]arene-based porous polymer PPA by Friedel-Crafts reaction, pillar[5]quinone-based , and the Pd-loaded heterogeneous catalyst Pd-PPQ (quinone acted as a loading ligand). Adapted with permission from ref. 64. Copyright 2017 Wiley-VCH. (b) The 3D network polymer P5-P derived from amidation reactions. 图17 基于PA的持久性有机污染物的替代合成策略。(a)通过Friedel-Crafts反应合成柱[5]芳烃基多孔聚合物PPA、柱[5]醌基 和Pd负载的非均相催化剂Pd-PPQ(醌作为负载配体)。经参考文献 64 许可改编。版权所有 2017 Wiley-VCH。(b)由酰胺化反应衍生的3D网络聚合物P5-P。
and Pd@CMP were black powders and showed outstanding thermal stability. Additionally, Pd@CMP exhibited remarkable catalytic activity in nitrophenol reduction reactions. Furthermore, Ning and co-workers also employed with melamine to synthesize PA-containing POPs (PAN-FPP5, Fig. 18b). The BET surface area of PAN-FPP5 is . The total pore volume and micropore volume of PAN-FPP5 were 0.84 and , respectively. The proportion of the micropore volume in the total pore volume of PAN-FPP5 was , which exhibited advantages for the adsorption of small gas molecules. Pd@CMP为黑色粉末,表现出优异的热稳定性。此外,Pd@CMP硝基苯酚还原反应中表现出显著的催化活性。此外,Ning及其同事 还利用 三聚氰胺合成了含PA的POPs(PAN-FPP5,图18b)。PAN-FPP5 的 BET 表面积为 。PAN-FPP5的总孔体积和微孔体积分别为0.84和 0。PAN-FPP5的微孔体积占总孔体积的比例为 ,对小气体分子的吸附表现出优势。
2.5.6 PA-based POPs prepared by mechanochemical synthesis. 2.5.6 机械化学合成法制备的PA基持久性有机污染物。
Recently, Dai and co-workers developed a mechanochemical approach for preparing MHP-P5Q by ball milling of triptycene hexamine (THA) with pillar[5]quinone (P5Q, Fig. 19). The BET surface area was calculated to be for MHP-P5Q with three micropore distributions of , and 1.30 nm . Remarkably, the pore size at 0.76 nm was consistent with the cavity size of ), indicating that the robust framework with PA[5] was successfully prepared. Mechanochemical synthesis is a rapid and environmentally friendly approach, which opens a new pathway toward large-scale industrial production.
2.6 Other amorphous macrocycle-based hierarchical POPs 2.6 其他基于非晶态大环的分层持久性有机污染物
In addition to the above-summarized conventional supramolecular macrocycles, some special macrocycles such as the cyclotricatechylene (CTC)-based macrocycle and TPE-based oxacalixarene macrocycle (TOM) have also been used as building blocks for the construction of POPs. The corresponding macrocycle-based POPs were synthesized by nucleophilic aromatic substitution, 除上述常规的超分子大环外,一些特殊的大环,如环三叶草烯(CTC)基大环和TPE基氧杂环芳烃(TOM)也被用作构建持久性有机污染物的砌块。通过亲核芳香取代法合成了相应的基于大环的持久性有机污染物,
2.6.1 CTC-based POPs prepared by different crosslinking reactions. CTC is a rigid pyramidal macrocyclic molecule, with a bowl-shaped shallow cavity. CTC-based derivatives such as cyclotriveratrylene (CTV), CTV-Br and CTV-alkyne were reported as building blocks for preparation of CTC-based POPs. McKeown and co-workers synthesized CTC-network-PIM via the nucleophilic aromatic substitution between CTV and TFN (Fig. 20a). The CTC-based PIMs exhibited a high BET surface area and excellent adsorption capacity for . 2.6.1 通过不同交联反应制备的基于CTC的持久性有机污染物。CTC是一种坚硬的锥体大环分子,具有碗状的浅腔。据报道,基于四氯化碳的衍生物,如环曲林(CTV)、CTV-溴 和CTV-炔烃,是制备基于四氯化碳的持久性有机污染物的组成部分。McKeown及其同事 通过CTV和TFN之间的亲核芳香族取代合成了CTC-network-PIM(图20a)。基于CTC的PIMs表现出较高的BET表面积 和优异的吸 附能力。
Zheng and co-workers further explored CTC-based POPs (CTV-CMP-1, CTV-CMP-2, Click-POPs-1 and Click-POPs-2 ). Among them, CTV-CMP-1 was obtained via Suzuki coupling reaction between CTV-Br and benzene-1,4-diboronic acid (BDBA, Fig. 20b). CTV-Br could also react with 1,4-diethynylbenzene through Sonogashira-Hagihara coupling to afford CTV-CMP-2 (Fig. 20b). Click-POPs-1 and Click-POPs-2 were facilely prepared by click reactions between the CTV-alkyne and azide-1 or azide-2 (Fig. 20c), respectively. However, these methods are expensive and unsafe due to the use of precious metals and azides, which require further improvement. Zheng及其同事 进一步探索了基于CTC的POPs(CTV-CMP-1,CTV-CMP-2,Click-POPs-1 和Click-POPs-2 )。其中,CTV-CMP-1是通过CTV-Br 与苯-1,4-二硼酸的Suzuki偶联反应获得的(BDBA,图20b)。CTV-Br 还可以通过Sonogashira-Hagihara偶联与1,4-二乙炔基苯反应,得到CTV-CMP-2(图20b)。Click-POPs-1和Click-POPs-2分别通过CTV-炔烃与叠氮化物-1或叠氮化物-2之间的点击反应制备(图20c)。然而,由于使用了贵金属和叠氮化物,这些方法既昂贵又不安全,需要进一步改进。
2.6.2 TOM-based POPs prepared by Yamamoto-type Ullmann cross-coupling. Zhang and co-workers synthesized a TOM via a SNAr reaction between the TPE phenolic compound and tetrachloropyridine. Subsequently, the authors polymerized the TOM through Yamamoto-type Ullmann cross-coupling to afford pTOM with blue-greenish fluorescence (Fig. 21). Compared to the 2.6.2 山本型Ullmann交叉偶联制备的基于TOM的持久性有机污染物。Zhang及其同事通过TPE酚类化合物和四氯吡啶之间的SNAr反应 合成了TOM。随后,作者通过Yamamoto型Ullmann交叉偶联聚合了TOM,使pTOM具有蓝绿色荧光(图21)。与
PAN-FPP5 PAN-FPP5型
Fig. 18 Alternative synthetic strategies for PA-based POPs. (a) Synthetic routes to DMP[5]-TPP-CMP by electrophilic aromatic substitution. (b) Synthetic routes to the nitrogen-rich microporous polymer PAN-FPP5 through Schiff base chemistry. 图18 PA基POPs的替代合成策略。(a) 通过亲电芳烃取代合成DMP[5]-TPP-CMP的路线。(b) 通过希夫碱化学合成富氮微孔聚合物PAN-FPP5的路线。
Fig. 19 Schematic representation of the synthesis of MHP-P5Q using P5Q and THA via mechanochemistry. Adapted with permission from ref. 68. Copyright 2020 Nature publishing group. 图19 利用P5Q和THA通过机械化学合成MHP-P5Q的示意图。经参考文献 68 许可改编。版权所有 2020 Nature publishing Group。
nonporous packing frameworks of TOM, pTOM showed higher BET surface area ( ) and capture capacity ( at ). Interestingly, the fluorescent pTOM can realize white-light emission by accommodating the tris(bipyridine)ruthenium luminophore via effective Förster resonance energy transfer. TOM的无孔堆积框架,pTOM表现出更高的BET表面积( )和 捕获能力( at )。有趣的是,荧光pTOM可以通过有效的Förster共振能量转移容纳三(联吡啶)钌发光团来实现白光发射。
COFs represent an emerging class of crystalline POPs which can be predesigned and constructed by precise reticulation of functional organic building blocks into extended 2D or 3D lattices via robust covalent linkages. Compared to the amorphous macrocycle-based POPs, incorporating macrocyclic compounds into the ordered frameworks is beneficial to unveil the structure-property relationship between the macrocycle building blocks and the corresponding COFs. Moreover, the preparation and the post-modification of macrocycle-based COFs is more convenient and avoids the use of noble metal catalysts. Additionally, the specific surface areas of macrocyclebased COFs are usually higher than those of the amorphous counterparts. However, most supramolecular macrocycles are nonplanar and flexible, which are difficult to prepare long range ordered frameworks. Therefore, only a few examples of crystalline COFs containing macrocycles have been reported. This section will summarize the representative macrocyclic COFs including CE-, CD-, CA- and the unconventional CTCand arylene-ethynylene macrocycle (AEM)-based COFs. COFs代表了一类新兴的结晶持久性有机污染物,可以通过强大的共价键将功能性有机结构单元精确网状化成扩展的2D或3D晶格来预先设计和构建。 与基于无定形的大环有机污染物相比,将大环化合物纳入有序框架有利于揭示大环结构单元与相应COFs之间的结构-性质关系。此外,基于大环的COFs的制备和后改性更加方便,避免了贵金属催化剂的使用。此外,基于大环的COFs的比表面积通常高于无定形COFs的比表面积。然而,大多数超分子大环是非平面的和灵活的,难以制备长程有序框架。因此,只有少数含有大环的结晶COFs被报道。本节将总结具有代表性的大环COFs,包括CE-、CD-、CA-和非常规CTCs以及基于芳基-乙炔大环(AEM)的COFs。
3.1 CE-based hierarchical COFs 3.1 基于 CE 的分层 COF
3.1.1 Imine-linked CE-based COFs. Three crystalline CE-based COFs (CE-COFs) were firstly developed by Zhao and co-workers starting from three CE-based -terphenyl-4, -diamine monomers (CE-TBPA, Fig. 22a) and 1,3,5-triformylbenzene under solvothermal conditions. The crystalline structures of the corresponding COFs (12C4-COF, 15C5-COF, and 18C6-COF) were determined by PXRD 3.1.1 与亚胺相连的基于 CE 的 COF。Zhao及其同事 首先在溶剂热条件下从三种CE基 -三联苯-4, -二胺单体(CE-TBPA,图22a)和1,3,5-三甲酰基苯开始,开发了三种结晶CE基COFs(CE-COFs)。通过PXRD测定了相应COFs(12C4-COF、15C5-COF和18C6-COF)的晶体结构
Fig. 20 Alternative synthetic strategies for CTC-based POPs. (a) Synthetic route to CTC-network-PIM by using the benzodioxane-forming reaction. (b) Synthesis of CTV-CMP-1 and CTV-CMP-2 by a palladium-catalyzed C-C coupling reaction. (c) Synthesis of Click-POP-1 and Click-POP-2 via click reactions. 图20 基于CTC的持久性有机污染物的替代合成策略。(a) 利用苯并二恶烷形成反应合成CTC-network-PIM。(b) 通过钯催化的C-C偶联反应合成CTV-CMP-1和CTV-CMP-2。(c) 通过点击反应合成Click-POP-1和Click-POP-2。
analysis. The BET surface areas of 12C4-COF, 15C5-COF and 18C6COF were 210,59 , and , respectively. Interestingly, these CE-COFs exhibited excellent performance as phase-transfer catalysts (PTCs) in various nucleophilic substitution reactions such as esterification, etherification and cyanation. 分析。12C4-COF、15C5-COF和18C6COF的BET表面积分别为210、59和 。有趣的是,这些CE-COFs作为相转移催化剂(PTCs)在酯化、醚化和氰化等各种亲核取代反应中表现出优异的性能。
To improve the porosity and crystallinity of CE-based COFs, Liu and co-workers prepared two CE-based aldehydes 为了提高CE基COFs的孔隙率和结晶度,Liu及其同事 制备了两种CE基醛
Fig. 21 Synthesis of the fluorescent macrocycle-based POP pTOM by Ullmann cross-coupling reaction. Adapted with permission from ref. 72 . Copyright 2018, American Chemical Society. 图21 Ullmann交叉偶联反应合成基于荧光大环的POP pTOM。经参考文献 72 许可改编。版权所有 2018,美国化学学会。
and ), which were subsequently condensed with -(pyrene-1,3,6,8-tetrayl)tetraaniline (Py) to afford two new CE-based COFs (Py-B18C6-COF and Py-B24C8-COF) via Schiff base reactions under solvothermal conditions (Fig. 22b). The BET surface areas of Py-B18C6-COF and Py-B24C8-COF were 1356 and , respectively. Additionally, these two CE-based COFs exhibited good crystallinity and excellent stability under harsh conditions. Notably, these two CE-based COFs can selectively capture alkali metal ions ( and ) owing to the intrinsic ion binding affinity of the corresponding CEs. 和 ),随后在溶剂热条件下通过 希夫碱反应与-(芘-1,3,6,8-四基)四苯胺(Py)缩合,得到两种新的基于CE的COF(Py-B18C6-COF和Py-B24C8-COF)(图22b)。Py-B18C6-COF和Py-B24C8-COF的BET表面积分别为1356 和。此外,这两种基于CE的COFs在恶劣条件下表现出良好的结晶度和优异的稳定性。值得注意的是,由于相应CEs的内在离子结合亲和力,这两种基于CE的COFs可以选择性地捕获碱金属离子( 和 )。
3.1.2 Olefin-linked CE-based COFs. It is very challenging to prepare olefin-linked COFs due to the irreversible linkage. Cui and co-workers prepared a chiral building block of tetrabenzaldehyde-based dibinaphthyl-22-crown-6 (BINOL ). The authors used the -C to react with -(1,4-phenylene)diacetonitrile or -(biphenyl-4,4'-diyl)diacetonitrile to prepare two chiral olefin-linked CE-based COFs (CCOF17 and CCOF18) through Knoevenagel condensation (Fig. 22c). The BET surface areas of these two -CCOFs were low owing to the distorted frameworks containing flexible CE. 3.1.2 烯烃连接的CE基COF。由于烯烃连接的COFs具有不可逆 的键合性,因此制备烯烃连接的COFs非常具有挑战性。Cui及其同事 制备了基于四苯甲醛的二苯甲酰基-22-冠-6(BINOL )的手性结构单元。作者使用 -C与 -(1,4-亚苯基)二乙腈或 -(联苯-4,4'-二基)二乙腈反应,通过Knoevenagel缩合制备两种手性烯烃连接的CE基COF(CCOF17和CCOF18)(图22c)。由于包含柔性CE的扭曲框架,这两个 CCOF的BET表面积较低。
Furthermore, the bonds of the CCOFs were reduced into single bonds. The reduced CCOFs could maintain high crystallinity and porosity as well as high chemical stability under harsh conditions. These results confirmed the crystal-tocrystal transformation and open a new pathway for designing and preparing COFs with new linkages. 此外,CCOF的 债券被简化为 单一债券。还原的CCOFs在恶劣条件下能保持高结晶度和孔隙率,以及高化学稳定性。这些结果证实了晶晶间转化,为设计和制备具有新键的COFs开辟了新的途径。
c)
Fig. 22 Alternative synthetic strategies for CE-based COFs. (a) The construction of imine-linked CE-COFs by the "bottom-up" strategy. (b) Scheme of the synthesis of Py-B18C6-COF and Py-B24C8-COF via Schiff base reaction. (c) Synthesis of the olefin-linked chiral COFs (CCOF17 and CCOF18) by Knoevenagel polycondensation reaction and the reduced chiral COFs (CCOF17-R and CCOF18-R). Adapted with permission from ref. 78. Copyright 2021, American Chemical Society. 图22 基于CE的COFs的替代合成策略。(a) 通过“自下而上”战略构建与胺挂钩的CE-COF。(b) 通过席夫碱反应合成Py-B18C6-COF和Py-B24C8-COF的方案。(c) 通过Knoevenagel缩聚反应和还原手性COFs(CCOF17-R和CCOF18-R)合成烯烃连接的手性COFs(CCOF17和CCOF18)。经参考文献 78 许可改编。版权所有 2021,美国化学学会。
3.1.3 Acylhydrazone-linked pseudorotaxane-based COFs. the strong interlayer interactions is still highly challenging. Loh To prepare single- or few-layer sheets of COFs by weakening and co-workers prepared CE-based building blocks bearing 3.1.3 酰腙连接的假轮烷基COFs。强烈的层间相互作用仍然具有很高的挑战性。Loh 通过弱化制备单层或多层 COF 板,并与同事 制备了基于 CE 的砌块轴承
Fig. 23 Synthesis of macrocycle- and pseudorotaxane-based COFs via Schiff base reactions. Adapted with permission from ref. 79 . Copyright 2020 Nature Publishing Group. 图23 通过希夫碱反应合成基于大环和假轮烷的COFs。经参考文献 79 许可改编。版权所有 2020 Nature Publishing Group。
either ditopic hydrazides (CyHz0) or tetratopic hydrazides , Fig. 23). As shown in Fig. 23, these CE-based building units (CyHz0 and CyHz 1 ) directly reacted with 2,4,6-triformylphenol (Sa) to afford the and acylhydrazone 2D COFs. Both the experimental and simulated PXRD analyses confirmed the two acylhydrazone CE-based 2D COFs stacked in antiparallel conformations due to the strong interlayer dipole interactions. To suppress the non-covalent interaction, the authors utilized CE moieties as hosts for encapsulating viologens to form pseudorotaxanes. Viologens with pyridinium cations were added in situ during the COF synthesis and served as interfering agents to weaken the strong interlayer interactions by steric hindrance and electrostatic repulsion to increase the interlayer distance and finally realize the self-exfoliation of the acylhydrazone 2D COFs. Owing to the existence of viologens, the pseudorotaxane RCOF-1 was well dispersed in solvents and can be readily exfoliated. 二位酰肼(CyHz0)或四位酰肼 ,图23)。如图 23 所示,这些基于 CE 的建筑单元(CyHz0 和 CyHz 1)直接与 2,4,6-三甲酰基苯酚 (Sa) 反应得到 和 酰基腙 2D COFs。实验和模拟的PXRD分析都证实了由于层间偶极子相互作用强,基于CE酰腙CE的2D COFs以反平行构象堆叠。为了抑制非共价相互作用,作者利用CE部分作为主体,将紫精封装成假轮烷。在COF合成过程中,原位添加含有吡啶阳离子的紫罗生素,作为干扰剂,通过空间位阻和静电排斥削弱强层间相互作用,增加层间距离,最终实现酰腙2D COFs的自剥离。由于紫精的存在,假轮烷RCOF-1在溶剂中分散良好,可以很容易地剥离。
3.2 Crystalline CD-based COFs 3.2 基于 CD 的晶体 COF
3.2.1 Spiroborate-linked CD-based COFs. Wang and co-workers reported the first 3D anionic -CD-based COFs with different counterions connected via spiroborate linkages. 3.2.1 螺硼酸盐连接的基于 CD 的 COFs。Wang及其同事 报告了第一个基于3D阴离子 -CD的COFs,这些COFs具有不同的反离子通过螺硼酸盐键连接。
The authors first employed -CD to react with and LiOH ( as the counterion) under microwave-assisted solvothermal conditions to afford a 3D anionic CD-COF-Li in a good yield (Fig. 24a). CD-COF-Li showed high crystallinity and BET surface area of . Furthermore, CD-COF-DMA and CD-COF-PPZ were obtained by changing the proton acceptor to dimethylamine (DMA) or piperazine (PPZ). The BET surface areas of CD-COF-DMA and CD-COF-PZZ were 934 and , respectively. The high porosities of -CD-based COFs mainly stemmed from frameworks by spiroborate linkages. Based on the PXRD analysis and simulation, these three CD-COFs belonged to a rra topology. The exploitation of 3D anionic -CD-based COFs enriched the diversity of crystalline COFs with "soft" struts and open a new pathway for developing host-guest chemistry. 作者首先在微波辅助溶剂热条件下采用 -CD与 LiOH( 作为反离子)反应,以获得良好的产率的3D阴离子CD-COF-Li(图24a)。CD-COF-Li表现出高结晶度和BET比表面积。 此外,通过将质子受体改为二甲胺(DMA)或哌嗪(PPZ)来获得CD-COF-DMA和CD-COF-PPZ。CD-COF-DMA和CD-COF-PZZ的BET表面积分别为934和 9。 -CD基COFs的高孔隙率主要源于螺旋硼酸盐键的框架。通过PXRD分析和仿真,这3个CD-COF都属于RRA拓扑结构。利用3D阴离子 -CD基COFs的开发,丰富了具有“软”支柱的结晶COFs的多样性,为发展主客体化学开辟了新的途径。
3.2.2 Imine-linked CD-based COFs. Feng and co-workers reported a -CD COF with imine linkage through Schiff base condensation between heptakis(6-amino-6-deoxy)- -CD (Am7CD) and terephthaldehyde (TPA). Interestingly, the crystalline -CD COF was obtained by polymerizing Am7CD and TPA in the presence of acetic acid as the catalyst in water and ethanol at room temperature (Fig. 24b). In contrast, when using ammonia 3.2.2 基于胺连接的 CD COF。Feng及其同事 报道了 七(6-氨基-6-脱氧)- CD(Am7CD)和对苯二甲醛(TPA)之间通过Schiff碱缩合具有亚胺键的-CD COF。有趣的是,在室温下,在乙酸作为催化剂的水和乙醇存在下,通过聚合Am7CD和TPA来获得结晶 -CD COF(图24b)。相反,当使用氨时
Fig. 24 Alternative synthetic strategies for CD-based COFs. (a) Boronatelinked first 3D anionic COF, CD-COFs. Adapted with permission from ref. 80. Copyright 2017 Wiley-VCH. (b) Imine-linked COF 图24 基于CD的COFs的替代合成策略。(a) 硼酸盐连接的第一3D阴离子COF,CD-COFs。经参考文献 80 许可改编。版权所有 2017 Wiley-VCH。(b) 亚胺连接的COF(B) 亚胺连接 的COF(B)
as the catalyst, the polycondensation was much faster and the resulted precipitate was an amorphous polymer ( -CD NCP). Interestingly, the morphology of the crystalline -CD COF was a cubic structure, while the -CD NCP adopted a spherical morphology, indicating that the selection of catalysts largely affects the crystallite shape and morphology of the COF. The BET surface area of the crystalline -CD was higher than that of the amorphous -CD NCP, suggesting that the ordered framework might improve adsorption performance. 作为催化剂,缩聚速度要快得多,所得沉淀物为无定形聚合物( -CD NCP)。有趣的是,结晶 -CD COF的形貌为立方体结构,而 -CD NCP则采用球形形貌,表明催化剂的选择在很大程度上影响了COF的微晶形状和形貌。结晶 -CD 的BET表面积高于无定形 -CD NCP,表明有序框架可能提高吸附性能。
The synthesis of crystalline calix[4]arene-based COFs is still challenging due to the flexible conformation of bowl-shaped CA. Trabolsi and co-workers very recently reported the first examples of CA-based COFs prepared through Schiff base condensation between tetrakis( -formyl)calix[4]arene (CX4-CHO) and benzidine (BD) (Fig. 25). Interestingly, two different CA-based COFs (CX4BD-1 and CX4-BD-2) with different morphologies and topologies were selectively obtained by different synthetic methods from the same monomers. CX4-BD-1 adopting a crystalline biaxial interpenetrated topology was prepared at the chloroform-water interface (Fig. 25) and exhibited a dimeric capsule-like morphology. In contrast, CX4-BD-2 prepared under highly diluted conditions in the presence of chloroform and methanol displayed unique noninterpenetrated 2D stacking modes. Owing to interlayer voids and surface potential charge, both COFs showcased excellent adsorption capacities for cationic dyes such as methylene blue and rhodamine B in aqueous solutions. 由于碗状CA具有灵活的构象,结晶杯[4]芳烃基COFs的合成仍然具有挑战性。 Trabolsi及其同事最近报道了通过四( -甲酰基)杯[4]芳烃(CX4-CHO)和联苯胺(BD)之间的希夫碱缩合制备的基于CA的COFs的第一个例子(图25)。 有趣的是,通过不同的合成方法从相同的单体中选择性地获得了两种具有不同形貌和拓扑结构的基于CA的COF(CX4BD-1和CX4-BD-2)。在氯仿-水界面处制备了CX4-BD-1,采用结晶双轴互穿拓扑结构(图25),表现出二聚体荚膜状形貌。相比之下,在氯仿和甲醇存在下,在高稀释条件下制备的CX4-BD-2表现出独特的非互穿二维堆叠模式。由于层间空隙和表面电位电荷的存在,两种COFs在水溶液中对阳离子染料(如亚甲蓝和罗丹明B)都表现出优异的吸附能力。
3.4 Crystalline CTC-based COFs 3.4 基于结晶CTC的COFs
3.4.1 Borate-linked CTC-based COFs. Besides the development of CTC-based amorphous polymers, Zheng and co-workers further reported CTC-based crystalline COFs (CTC-COFs). CTCCOF-1 was synthesized under solvothermal conditions by co-condensation of CTC and BDBA at for 4 days (Fig. 26a). 3.4.1 与硼酸盐相连的基于四氯化碳的COF。除了开发基于CTC的无定形聚合物外,Zheng及其同事 还报告了基于CTC的结晶COFs(CTC-COFs)。CTCCOF-1 是在溶剂热条件下通过CTC和BDBA 共缩合4天合成的(图26a)。
Fig. 25 Synthesis of the calix[4]arene-based COFs from and benzidine (BD) using different approaches: interfacial synthesis and infinite dilution conditions. Adapted with permission from ref. 82. Copyright 2021 American Chemical Society 图25 使用界面合成和无限稀释条件(BD)的不同方法合成杯[4]芳烃基COFs 。经参考文献 82 许可改编。版权所有 2021 美国化学学会
Similarly, another two CTC-COF analogues (CTC-COF-2 and CTC-COF-3) with larger pore sizes were synthesized by the same group using CTC and biphenyldiboronic acid (BPDA) or pyrenediboronic acid (PDBA) as monomers. The BET surface areas are 541 and for CTC-COF-2 and CTC-COF-3, respectively. It is worth noting that the experimental PXRD results indicate an eclipsed packing structure irrespective of the nonplanar conformation of the CTC macrocycle. The wavy structure makes CTC-COFs exhibit small pore size distribution and improved gas uptake capacity. 同样,同一组使用CTC和联苯二硼酸(BPDA)或芘二硼酸(PDBA)作为单体合成了另外两种孔径较大的CTC-COF类似物(CTC-COF-2和CTC-COF-3)。 BET 表面积分别为 541 和 CTC-COF-2 和 CTC-COF-3。值得注意的是,实验PXRD结果表明,无论CTC大环的非平面构象如何,都存在黯然失色的堆积结构。波浪形结构使CTC-COFs表现出较小的孔径分布和更高的气体吸收能力。
3.4.2 Imine-linked CTC-based COFs. Imine-linked COFs are less susceptible to moisture than the boronate-linked counterparts. Zheng and co-workers reported two imine-linked CTCbased COFs (CTV-COF-1 and CTV-COF-2) synthesized from triformylcyclotrianisylene (f-CTV) and aromatic amines under solvothermal conditions (Fig. 26b). Both highly crystalline CTVCOFs adopted eclipsed stacking modes despite the bowl-shape of f-CTV. The BET surface areas of CTV-COF-1 (1245 m and CTV-COF-2 (1170 m ) were higher than those of the boronate CTC-COFs. Moreover, both CTV-COFs possessed high hydrolytic stability under water. However, the solubility of f-CTV was poor, and synthetic steps for f-CTV were complicated with a low overall yield (3%), which impeded the large-scale synthesis of CTV-based imine COFs. Thus, Zheng and co-workers further developed an amino-substituted cyclotrianisylene (aCTV) which subsequently reacted with four aromatic aldehydes to produce aCTV-based COFs, (aCTVCOF1 to aCTV-COF4, Fig. 26c). All four aCTV-COFs possessed high crystallinities and large BET surface areas from 636 to . The methoxy groups in aCTV-COF3 and the hydroxyl groups in aCTV-COF4 exerted significant influences on their physicochemical properties. For example, aCTV-COF3 and aCTV-COF4 exhibited better 3.4.2 基于亚胺连接的CTC化合物。与硼酸盐连接的对应物相比,亚胺连接的 COF 不易受潮。Zheng及其同事 报告了在溶剂热条件下由三甲酰基环三茴香烯(f-CTV)和芳香胺合成的两种基于亚胺连接的CTC基COF(CTV-COF-1和CTV-COF-2)(图26b)。尽管f-CTV呈碗状,但两种高结晶CTVCOF均采用日食堆叠模式。CTV-COF-1(1245 m )和CTV-COF-2(1170 m )的BET表面积均高于硼酸盐CTC-COFs。此外,两种CTV-COFs在水下都具有较高的水解稳定性。然而,f-CTV的溶解度较差,且f-CTV的合成步骤复杂,总产率低(3%),阻碍了基于CTV的亚胺COFs的大规模合成。因此,Zheng及其同事 进一步开发了一种氨基取代的环三苯甲醚(aCTV),随后与四种芳香醛反应产生基于aCTV的COF(aCTVCOF1至aCTV-COF4,图26c)。四种aCTV-COF均具有高结晶度和大BET表面积(从636到 636)。aCTV-COF3中的甲氧基和aCTV-COF4中的羟基对其理化性质有显著影响。例如,aCTV-COF3和aCTV-COF4表现更好
Fig. 26 Alternative synthetic strategies for CTC-based COFs. (a) Synthetic routes of boronate-linked CTC-COFs. (b) Synthetic routes of CTV-COF-1 and CTV-COF-2 via Schiff base reaction. (c) Synthetic routes of aCTV-COF- ( via Schiff base reaction. 图26 基于CTC的COFs的替代合成策略。(a) 硼酸盐连接的CTC-COFs的合成路线。(b) 通过席夫碱反应合成CTV-COF-1和CTV-COF-2的路线。(c) aCTV-COF- ( 通过希夫碱反应的合成路线。
hydrolytic stability than the non-substituted aCTV-COF1 and aCTV-COF2. 水解稳定性比未取代的aCTV-COF1和aCTV-COF2高。
3.5 Planar macrocycle-based COFs 3.5 基于平面大循环的COFs
3.5.1 Boronate ester-linked planar macrocycle-based COFs. Besides the non-planar macrocycle, planar macrocycle-based COFs were also reported. Jiang and co-workers synthesized a -symmetric 9,10-hydroxyphenanthrene cyclotrimer (HPTC) which consisted of six hydroxyl units (Fig. 27a). Three starshaped 2D HPCT-based COFs (Star-COF 1, Star-COF-2, and StarCOF-3) were prepared by polycondensation of HPTC with three diboronic acids (BDBA, PDBA, and BPDA) under solvothermal conditions. These three planar macrocycle-based COFs exhibited high BET surface areas (582, 1538, and for Star-COF-1, Star-COF-2, and Star-COF-3, respectively). Moreover, the Star-COFs adopted AA-stacking modes with periodically aligned -columns and oriented mesoporous 1D channels, which conferred enormous potentials in optoelectronics. 3.5.1 硼酸酯连接的平面大环基COFs。除非平面大周期外,还报道了基于平面大周期的COFs。江及其同事 合成了一种 对称的9,10-羟基菲环三聚体(HPTC),它由六个羟基单元组成(图27a)。采用HPTC与三种二硼酸(BDBA、PDBA和BPDA)在溶剂热条件下缩聚制备了3种基于HPCT的星形二维HPCT化合物(Star-COF 1、Star-COF-2和StarCOF-3)。这3个平面大环基COFs表现出较高的BET表面积(分别为582、1538,Star-COF-1 、Star-COF-2和Star-COF-3)。此外,Star-COFs采用了AA堆叠模式,具有周期性排列 的柱和定向的介孔一维通道,在光电子学中具有巨大的潜力。
AEMs are also a kind of planar and rigid macrocycles. Zhang and co-workers proposed a "macrocycle-to-framework" strategy and synthesized two AEM-based building blocks (AEM-1 and AEM-2) through acyclic diyne metathesis macrocyclization with a multidentate triphenolsilane-based carbyne complex as the catalyst. Subsequently, AEM-COF-1 and AEM-COF-2 were prepared under solvothermal or microwave conditions by reacting AEM-1 and AEM-2 with BDBA (Fig. 27b and c). The BET surface areas of AEM-COF-1 and AEM-COF-2 were 1445 and , respectively. The strong interactions between rigid arylene-ethynylene backbones mediated AEM-COFs to exhibit eclipsed packing and ordered open channels. AEMs也是一种平面和刚性大循环。Zhang及其同事 提出了一种“宏观循环到框架”策略,并通过非环二炔复分解大环化合成了两个基于AEM的构建单元(AEM-1和AEM-2),并以多齿三酚硅烷基 碳烯复合物为催化剂。随后,通过在溶剂热或微波条件下通过AEM-1和AEM-2与BDBA反应制备AEM-COF-1和AEM-COF-2(图27b和c)。AEM-COF-1和AEM-COF-2的BET表面积分别为1445 和,为1。刚性亚芳基-乙炔主链之间的强 相互作用介导了AEM-COFs,使其表现出黯然失色的堆积和有序的开放通道。
The "macrocycle-to-framework" strategy was further utilized by McGrier and co-workers. They reported two -symmetric -conjugated dehydrobenzoannulenes (DBA[12] and DBA[18]). The crystalline DBA-COF 1 and DBA-COF 2 were further synthesized by polycondensation of DBA[12] and DBA[18] with BDBA (Fig. 27b and d). Interestingly, owing to the coplanar arrangement of DBA[12], DBA-COF 1 exhibited strong fluorescence even in the solid state. Furthermore, McGrier and co-workers prepared a crystalline multiple-component macrocycle-based COF, Py-MVDBA-COF (Fig. 27e). The Py-MV-DBA-COF was obtained by boronate ester reaction among DBA[12], DBA[18] and PDBA under solvothermal conditions. Meanwhile, the authors also synthesized homogeneous DBA-vertex-based COFs, Py-DBA-COF 1 and Py-DBACOF 2 (Fig. 27b and d). Py-DBA-COF 1 exhibited ball-shaped and needle-shaped morphologies, while Py-DBA-COF 2 and Py-MVDBA-COF featured cauliflower-like crystallites. McGrier及其同事进一步采用了“宏观周期到框架”的策略。 他们报告了两种 对称 共轭的脱氢苯甲环烯(DBA[12]和DBA[18])。通过DBA[12]和DBA[18]与BDBA的缩聚反应进一步合成了结晶DBA-COF 1和DBA-COF 2(图27b和d)。有趣的是,由于DBA的共面排列[12],DBA-COF 1即使在固态下也表现出强烈的荧光。此外,McGrier及其同事 制备了一种基于晶体多组分大环的COF,Py-MVDBA-COF(图27e)。Py-MV-DBA-COF,由DBA[12]、DBA[18]和PDBA在溶剂热条件下进行硼酸酯反应得到。同时,作者还合成了基于均次DBA-顶点的COFs、Py-DBA-COF 1和Py-DBACOF 2(图27b和d)。Py-DBA-COF 1 表现出球形和针状形貌,而 Py-DBA-COF 2 和 Py-MVDBA-COF 表现出花椰菜状微晶。
Incorporating metals into the vertices of DBA-based COFs can greatly enhance the binding performance for gas storage. As shown in Fig. 27f, McGrier and co-workers constructed a 3D DBACOF (DBA-3D-COF 1) by a boronate ester reaction between DBA[12] and tetra(4-dihydroxyborylphenyl)methane (TBPM). Subsequently, DBA-3D-COF 1 was reacted with to afford the metalated Ni-DBA-3D-COF. Surprisingly, the BET surface area of DBA-3D-COF 1 was up to with a very low density . Moreover, Ni-DBA-3D-COF still maintained a high BET surface area of . Compared to the DBA-3D-COF 1, the gas uptake capacity of metalated Ni-DBA-3D-COF for ethane and ethylene was slightly increased probably due to the open sites. 在基于DBA的COFs的顶点中掺入金属,可以大大提高储气库的结合性能。如图27f所示,McGrier及其同事通过DBA[12]和四(4-二羟基硼酰苯基)甲烷(TBPM)之间的硼酸酯反应 构建了3D DBACOF (DBA-3D-COF 1)。随后,与 DBA-3D-COF 1反应得到金属化的Ni-DBA-3D-COF。令人惊讶的是,DBA-3D-COF 1 的 BET 表面积达到了 非常低的密度 。此外,Ni-DBA-3D-COF仍然保持了较高的 BET表面积。与DBA-3D-COF 1相比,金属化Ni-DBA-3D-COF对乙烷和乙烯的吸气能力略有增加,可能是由于场地开放 所致。
3.5.2 Azine-linked planar DBA-based COFs. Azine can serve as a linkage to prepare macrocycle-based COFs owing to better 3.5.2 基于Azine连接的平面DBA。由于更好的 Azine 可以作为制备基于大循环的 COF 的纽带
Fig. 27 Boronate ester-linked planar macrocycle-based COFs. (a) Chemical structures of star-shaped 2D COFs. (b-d) Chemical structures of AEMCOF-1 (or DBA-COF 1), AEM-COF-2, DBA-COF 2, Py-DBA-COF 1 and Py-DBA-COF 2. (e) Chemical structures of Py-MV-DBA-COF with small and large triangular vertices. (f) Synthesis of DBA-3D-COF and Ni-DBA-3D-COF. 图27 硼酸酯连接的平面大环基COFs。(a) 星形二维COFs的化学结构。(b-d)AEMCOF-1(或 DBA-COF 1)、AEM-COF-2、DBA-COF 2、Py-DBA-COF 1 和 Py-DBA-COF 2 的化学结构。(e) 具有小三角形顶点和大三角形顶点的Py-MV-DBA-COF的化学结构。(f) DBA-3D-COF和Ni-DBA-3D-COF的合成。
robustness compared to the boronate ester linkage. McGrier and co-workers synthesized an azine-linked 2D DBA-based COF (DBA-COF 5) by a Schiff base reaction between DBA[12]CHO and hydrazine under solvothermal conditions (Fig. 28). 与硼酸酯键相比的稳健性。McGrier及其同事 在溶剂热条件下通过DBA[12]CHO和肼之间的希夫碱反应合成了基于嘌呤连接的2D DBA的COF (DBA-COF 5)(图28)。
DBA-COF 5 was further reacted with to produce a dark green crystalline Ni-DBA-2D-COF in dry toluene. It is worth noting that the colour of DBA-COF 5 changed from bright yellow to dark green for the Ni-DBA-2D-COF owing to the charge DBA-COF 5进一步与 干燥甲苯反应,生成深绿色结晶Ni-DBA-2D-COF。值得注意的是,由于充电,Ni-DBA-2D-COF的DBA-COF 5颜色从亮黄色变为深绿色
Fig. 28 Synthesis of DBA-COF 5 using DBA[12]-CHO and hydrazine monomers followed by metalation with to produce 2D-COF 图28 利用DBA[12]-CHO和肼单体合成DBA-COF 5,然后用金属化反应 生产 2D-COF
transfer effect upon Ni doping. Additionally, the BET surface area ( ) of the Ni-DBA-2D-COF was slightly reduced compared to DBA-COF . Moreover, the Ni-DBA2D-COF maintained high crystallinity, indicating that DBA-COF 5 featured excellent stability. Ni 兴奋剂的转移效应。此外,与DBA-COF 相比,Ni-DBA-2D-COF的BET表面积( )略有减少。此外,Ni-DBA2D-COF保持了较高的结晶度,表明DBA-COF 5具有优异的稳定性。
3.5.3 Spiroborate-linked planar macrocycle-based COFs. In addition to the -symmetric macrocycles, Zhang and co-workers used the -symmetric square-shaped AEM as the building block to condense with trimethyl borate in the presence of dimethyl amine or LiOH as counterions to generate spiroborate-linked ionic COFs, ICOF-1 and ICOF-2 (Fig. 29). ICOF-2 exhibited higher crystallinity than ICOF-1 probably due to the low solubility of LiOH during the reaction. The BET surface area of ICOF-1 ) was also lower than that of ICOF-2 . The results suggest that the size and solubility of different bases as counterions can exert a significant influence on both the crystallinity and porosity of the resulting ICOFs. Importantly, the spiroborate-linked COFs remained nearly intact after immersing in water or a basic solution for two days, indicating excellent resistance to hydrolysis. Additionally, the same groups replaced the metal ions with to produce the porous coordination polymers Ti-PCP (Fig. 29). The PXRD analysis of Ti-PCP still exhibited multiple peaks indicating a certain structural order. More importantly, Ti-PCP possessed a high surface area ( ) and outstanding thermal stability. Owing to the presence of titanium, Ti-PCP could 3.5.3 螺硼酸盐连接的基于平面大环的COFs。除了 对称大环外,Zhang及其同事 还使用 对称方形AEM作为构建单元,在二甲基胺或LiOH存在下作为反离子与硼酸三甲酯凝聚,以产生螺硼酸酯连接的离子COFs,ICOF-1和ICOF-2(图29)。ICOF-2 表现出比 ICOF-1 更高的结晶度,这可能是由于反应过程中 LiOH 的溶解度低。ICOF-1 )的BET表面积也低于ICOF-2 。结果表明,作为反离子的不同碱基的大小和溶解度对所得ICOFs的结晶度和孔隙率都有显著影响。重要的是,与螺硼酸酯相连的COFs在浸入水或碱性溶液中两天后几乎保持完好无损,表明其优异的耐水解性。此外,相同的基团用 多孔配位聚合物Ti-PCP取代了金属离子(图29)。Ti-PCP的PXRD分析仍然显示出多个峰,表明存在一定的结构顺序。更重要的是,Ti-PCP具有高表面积( )和出色的热稳定性。由于钛的存在,Ti-PCP可以
Fig. 29 Synthesis of ionic COFs ICOF-1 and ICOF-2 and porous coordination polymers Ti-PCP via the transesterification reaction. 图29 通过酯交换反应合成离子COFs ICOF-1和ICOF-2以及多孔配位聚合物Ti-PCP。
capture and serve as a catalyst for the synthesis of organic carbonates from epoxides and 捕获 并作为催化剂从环氧化物合成有机碳酸盐,以及
4. Applications 4. 应用
Incorporating macrocycles into organic porous materials may create two kinds of porosity: one is from the extended porous frameworks knitted by covalent bonds; the other is the intrinsic cavities from the macrocycles. The hierarchical macrocyclebased POPs not only bridge the traditional porous materials with supramolecular chemistry, but also enhance the hostguest interactions. The following section mainly summarizes the application potentials of macrocycle-based POPs in environmental remediation, gas adsorption/separation, fluorescence sensing, heterogeneous catalysis, and ionic conduction. 将大环掺入有机多孔材料中可能会产生两种孔隙率:一种是由共价键编织的延伸多孔框架产生的;另一个是来自大循环的内在空腔。基于多级大环的POPs不仅将传统的多孔材料与超分子化学联系起来,而且增强了主客体之间的相互作用。以下部分主要总结了基于大环的持久性有机污染物在环境修复、气体吸附/分离、荧光传感、多相催化和离子传导方面的应用潜力。
4.1 Environmental remediation 4.1 环境整治
With the development of human civilization and industry, our ecological environment has been severely polluted by heavy metal ions, organic micropollutants, radioactive elements and so on. Therefore, how to efficiently remove these pollutants is an urgent topic. At present, adsorption and separation of pollutants by means of porous materials has been widely studied due to the advantages of low cost, convenient operation and high efficiency. Traditional porous materials, e.g. molecular sieves and activated carbon, are not easy to modify, which hinders further improvement of their adsorption and separation performance. Even though MOFs as pollutant removers have been investigated, they display poor chemical stabilities and the toxic metals generated after structural decomposition of MOFs 随着人类文明和工业的发展,我们的生态环境受到重金属离子、有机微污染物、放射性元素等的严重污染。因此,如何有效地去除这些污染物是一个迫在眉睫的课题。目前,利用多孔材料吸附分离污染物因其成本低、操作方便、效率高等优点,得到了广泛的研究。传统的多孔材料, 如分子筛和活性炭,不易改性,这阻碍了其吸附和分离性能的进一步提高。尽管已经研究了MOFs作为污染物去除剂的研究,但它们的化学稳定性较差 ,并且MOFs在结构分解后会产生有毒金属。
bispheol A 双酚 A
ibuprofen 布洛芬
dioxane 二氧六环
bispheol S 双酚 S
2-naphthol 2-萘酚
PFOA 全氟辛烷磺酸
acridine orange 吖啶橙
1-naphthyl amine 1-萘胺
PFOS 全氟辛烷磺酸
Chart 1 Structures of some micropollutants discussed in this review. 图1 本文讨论的一些微污染物的结构。
render the secondary contamination. Hence POPs are promising candidates that are different from the conventional counterparts. Macrocycle-based POPs exhibited unique and excellent performance in environmental remediation due to their hierarchical porosities, host-guest interactions, facile structure-and-function tuneability and high chemical stabilities. 造成二次污染。因此,持久性有机污染物是有别于传统持久性有机污染物的有前途的候选有机污染物。基于大循环的持久性有机污染物因其层次孔隙率、主客交互性、结构和功能可调性简单、化学稳定性高等特点,在环境修复方面表现出独特而优异的性能。
4.1.1 Organic micropollutants. Organic micropollutants (Chart 1) in waters are difficult to be degraded and seriously damage the ecosystem and endanger human life and health. For example, bisphenol A (BPA) as a common component in epoxy-resin-based plastics was regarded as an endocrine disruptor. BPA is used as a model pollutant to evaluate the pollutant-removal performance of macrocycle-based POPs. Dichtel and co-workers reported porous TFN-CDP (Fig. 4a) with high surface areas ( ), which could remove of BPA after reaching equilibrium in 10 s . However, the conventional EPI-CDP only removed of BPA under the same conditions and reached the adsorption equilibrium after 1 h . The nonporous NP-CDP also required 30 min to reach the equilibrium. What's more, the BPA adsorption rate constant ( ) of TFN-CDP was , which outperformed the widely utilized activated carbon. The maximum adsorption capacity of TFN-CDP at equilibrium was , which was higher than that of the EPICDP (84 mg g ). As shown in Table 1, the BET surface areas of CD-POPs seem to have no correlation with their maximum adsorption capacity. However, BnCD-DCX with a BET surface area of exhibited the highest maximum adsorption capacity ( ) among other reported CD-POPs. These results suggest that suitable porosity is one of the indispensable factors to improve the adsorption performance. In addition to 4.1.1 有机微污染物。水域中的有机微污染物(图1)难以降解,严重破坏生态系统,危害人类生命健康。 例如,双酚A(BPA)作为环氧树脂基塑料中的常见成分被认为是内分泌干扰物。采用双酚A作为模型污染物,评价基于大循环的持久性有机污染物的污染物去除性能。Dichtel及其同事 报告了具有高表面积( ) 的多孔TFN-CDP(图4a ),可以在10 s内达到平衡后去除 BPA。然而,传统的EPI-CDP仅在相同条件下去除 了BPA,并在1 h后达到吸附平衡。无孔NP-CDP也需要30 min才能达到平衡。此外,TFN-CDP的BPA吸附速率常数( )优于 广泛使用的活性炭。TFN-CDP在平衡状态下的最大吸附量 高于 EPICDP(84 mg g )。如表1所示,CD-POPs的BET表面积与其最大吸附容量似乎没有相关性。然而,BET表面积为 的BnCD-DCX 在其它已报道的CD-POPs中表现出最高的最大吸附容量( )。 这些结果表明,适宜的孔隙率是提高吸附性能不可或缺的因素之一。除了
Table 1 The BPA removal performance of representative macrocyclebased POPs in this review 表1 本综述中代表性大环型持久性有机污染物的BPA去除性能
基于大循环的持久性有机污染物
Macrocycle-
based POPs
BET 表面积
BET surface
area
Ref. 裁判。
CD
BnCD-DCX BNCD-DCX型
1209
-
278
21
CD
TFN-CDP
263
1.5
88
24
CD
T-E-CDP
0.31
1.99
128
30
CD
-CDP
8.8
-
103
31
CD
CD-TTI200
233
-
37.5
38
CD
-CD COF -CD COF(CD COF)
108.2
6.8
20
81
CA
CalP4 CalP4的
759
2.12
403
41
PA
P5-P
7.69
0.16
14.2
65
CDs, other macrocyclic POPs were also investigated as adsorbing materials for BPA. For example, the CA-POPs (CalP4, Fig. 9a) showed outstanding adsorption performance toward BPA (403 mg , Table 1), which might have originated from the rigid cavity of CA and the high -electron density from alkyne and pyrene moieties. CDs和其他大环POPs也被研究作为BPA的吸附材料。例如,CA-POPs (CalP4,图9a)对BPA(403 mg ,表1)表现出出色的吸附性能,BPA可能源于CA的刚性腔以及 炔烃和芘部分的高电子密度。
PFASs, such as PFOA and perfluorooctanesulfonic acid (PFOS), are refractory organic contaminants from the production of polytetrafluoroethylene and film forming foam (Chart 1). The health advisory level of PFOA and PFOS set by the U.S. Environmental Protection Agency is Selection of a suitable adsorbent is the key for removing PFASs. The fluorinated DFB-CDP (Fig. 4b) can fast absorb over of the total PFOA after 13.5 h and the PFOA concentration was decreased from to . Although the BET surface area of DFB-CDP was low , the was and the kinetic performance was , which was higher than that of granular activated carbon. Furthermore, the same group aimed to improve the affinity for all anionic PFASs. TFN-CDP was reduced to the primary amines, which can form the cationic amino groups in water and rapidly eliminate of 10 anionic PFASs at environmentally relevant concentrations after 30 min (Fig. 4c). PFOA和全氟辛烷磺酸(PFOS)等PFAS是聚四氟乙烯和成膜泡沫生产过程中的难降解有机污染物(图1)。美国环境保护署设定的PFOA和PFOS的健康建议水平是 :选择合适的吸附剂是去除PFASs的关键。氟化DFB-CDP (图4b)在13.5小时后能快速吸收总 PFOA,PFOA浓度从 降低 到。虽然DFB-CDP的BET表面积较低 ,但 其动力学 性能较 为,高于颗粒活性炭。此外,同一研究小组 旨在提高对所有阴离子PFAS的亲和力。将TFN-CDP还原为伯胺,伯胺可在水中形成阳离子氨基,并在30 min后迅速消除 环境相关浓度下的10种阴离子PFAS(图4c)。
Organic dyes as a typical class of organic micropollutants are also difficult to be decomposed by nature and are toxic and carcinogenic to human beings. According to the charge states, organic dyes can be classified into anionic dyes, for example, methyl blue (MeB), methyl orange (MO), Congo red (CR), etc., and cationic dyes, e.g. methylene blue (MB), rhodamine B (RhB), etc., as well as the neutral dyes (Chart 2 and Fig. 30d). According to the charge states and sizes of the dye molecules, reasonable design and preparation of porous materials for selective adsorption and separation of dye molecules have been developed. As summarized in Table 2, the CE-based POPs (POPTCE-15) can effectively adsorb cationic dyes. The values for MB and RhB are 787.4 and , respectively, while the value of POP-TCE-15 for MO is only . The abundant O atoms from CE can contribute excellent adsorption capacity for cationic dyes deriving from the electrostatic interaction between the electron lone pairs on the O atoms of benzo15-crown-5 and the positively charged dyes. The CA-based POPs also showed high capture performance. For example, CalP1 displayed highly efficient and fast adsorption for both 有机染料作为一类典型的有机微污染物,也难以被自然界分解,对人类具有毒性和致癌性。根据电荷状态,有机染料可分为阴离子染料,例如甲基蓝(MeB)、甲基橙(MO)、刚果红(CR)等,以及阳离子染料,例如亚甲蓝(MB)、罗丹明B(RhB)等,以及中性染料(图2和图30d)。根据染料分子的电荷状态和大小,合理设计和制备用于染料分子选择性吸附和分离的多孔材料,已经发展出。如表2所示,CE基POPs(POPTCE-15) 可以有效吸附阳离子染料。MB 和 RhB 的值分别为 787.4 和 ,而 MO 的 POP-TCE-15 值仅 为 。CE中丰富的O原子对苯并15-冠-5的O原子与带正电的染料之间的静电相互作用为阳离子染料提供了优异的吸附能力。基于CA的持久性有机污染物也表现出较高的捕获性能。例如,CalP1对两者都 表现出高效和快速的吸附作用
Fig. 30 (a) The rejection of dyes with different molecular weights through CD/TMC/Matrimid nanofilm composite membranes. Inset: Photographs of the feed and filtrate solutions. (b) Photographs of the feed and filtrate of the mixed dye solution. (c) Schematic diagram of the molecular sieving mechanism through CD/TMC nanofilms. (d) The molecular structures of the dyes MO, IC, RBB, BBR and RhB. Adapted with permission from ref. 36 . Copyright 2018 Wiley-VCH 图30 (a) 不同分子量的染料通过CD/TMC/Matrimid纳米膜复合膜的截留效果。插图:进料和滤液溶液的照片。(b) 混合染料溶液的进料和滤液的照片。(c) 通过CD/TMC纳米薄膜进行分子筛分机理的示意图。(d) 染料MO、IC、RBB、BBR和RhB的分子结构。 经参考文献36许可改编。版权所有 2018 Wiley-VCH
Table 2 The organic dye removal performance of representative macrocycle-based POPs covered in this review 表2 本综述所涵盖的代表性大环型持久性有机污染物的有机染料去除性能
基于大循环的持久性有机污染物
Macrocycle-
based POPs
BET 表面积
BET surface
area
Contaminant 污染物
Ref. 裁判。
CE
POP-TCE-15
848.27
787.4
MB
18
CE
POP-TCE-15
848.27
421.9
RhB RhB型
18
CE
POP-TCE-15
848.27
64.8
MO
18
CD
CD-TTI200
233
86.7
RhB RhB型
38
CD
CD-TTI200
233
29.5
MO
38
CA
CalP 钙
596
625
MB
41
CA
CalP 钙
596
484
RhB RhB型
41
CA
CalP 钙
596
673
CR
41
CA
COP1
17.9
928
CR
48
PA
P5-P
7.69
909
MO
65
CA
CX4-BD-1
-
35
MB
82
CA
CX4-BD-1
-
25
RhB RhB型
82
CA
CX4-BD-2
-
37
MB
82
CA
CX4-BD-2
-
40
RhB RhB型
82
anionic and cationic dyes and , Table 2), benefiting from the -conjugated network, host-guest interaction of CA, and the large porosity. 阴离子 和阳离子染料 , 表2),受益于 -共轭网络、CA的主客体相互作用和大孔隙率。
In addition to selective adsorption, selective separation of organic dyes using macrocycle-based POP membranes has also been explored. For example, Chung and co-workers prepared a series of freestanding CD-based POP (CD/TMC) membranes by the reactions between TMC and -, or -CDs, respectively (Fig. 7b). Fig. 30a suggests that the rejections of dyes through these three CD/TMC membranes increased with the increasing molecular weights of dyes, namely, Rose Bengal ( ) > Brilliant Blue Remazol Brilliant Blue 626) Indigo carmine . 除了选择性吸附外,还探索了使用基于大环的POP膜选择性分离有机染料。例如,Chung及其同事分别通过TMC和 -或 -CDs之间的反应 制备了一系列独立的基于CD的POP(CD/TMC)膜(图7b)。图30a表明,随着染料分子量的增加,染料通过这三种CD/TMC膜的截留率增加,即孟加拉玫瑰( )>亮蓝 Remazol Brilliant Blue 626) 靛蓝胭脂红 。
The molecular weight cutoff follows the trend of Matrimid (320 Da) -CD/TMC/Matrimid (400 Da) -CD/ TMC/Matrimid (550 Da), which is consistent with the cavity size ( -CD -CD -CD). When a mixed solution of MO (orange) and RBB (blue) was passed through the -CD/TMC membrane, the yellow solution only containing MO ) without RBB was obtained, which was confirmed by the UV absorption spectra. The reason was that the short diameter (4.8 ) of MO was smaller than those of the inner cavities ) and the outer spaces ) of -CD/TMC membranes, which selectively transported MO through the pore channels (Fig. 30b and c). 截留分子量遵循 Matrimid(320 Da) -CD/TMC/Matrimid(400 Da)-CD/ TMC/Matrimid(550 Da) 的趋势,与空腔尺寸( -CD -CD -CD)一致。当MO(橙色)和RBB(蓝色)的混合溶液通过-CD/TMC膜时 ,得到的只含有MO )而不含RBB 的黄色溶液,通过紫外吸收光谱证实了这一点。原因是MO的短直径(4.8 )小于 -CD/TMC膜的内腔和外腔 )的短径(4.8 ),选择性地通过孔隙通道运输MO(图30b和c)。
4.1.2 Heavy metal ions. Mercury and lead ions are the most common toxic heavy metal ions existing in the wastes, and are easily accumulated in the human body and cause cancer. TFN-CDP (Fig. 4a) containing the negatively charged phenolation can effectively remove ions. But the value of TFN-CDP was only due to the low surface area. To improve the uptake capacity of the -CD-based POPs, Kong and co-workers synthesized a -CD polymer with a higher surface area ( ) by a reaction between -CD and TFN. This polymer showed a higher uptake capacity ( ) of ions. Additionally, the -CD polymer could remove other heavy metals like and ions ). The adsorption mechanism investigated by Dichtel et al. and He et al. both suggested that the hydroxyl groups, especially negatively charged phenolates, were the key sites for binding of metal ions. 4.1.2 重金属离子。汞和铅离子是废物中最常见的有毒重金属离子,容易在人体内积累并致癌。含有带负电荷的苯化反应的TFN-CDP (图4a)可以有效去除 离子。但TFN-CDP 的价值仅仅 是由于表面积小。为了提高基于 CD的持久性有机污染物的吸收能力,Kong及其同事通过-CD和TFN之间的 反应 合成了一种 具有更高表面积( )的-CD聚合物。这种聚合物显示出 更高的离子吸收能力( )。此外, -CD 聚合物可以去除其他重金属,如 和 离子 )。Dichtel等和He等研究的吸附机理均表明,羟基,尤其是带负电荷的酚酸酯,是金属离子结合的关键位点。
For the removal of highly toxic , sulphur-containing porous materials are usually considered. Generally, the sulphur atoms can bind with mercury ions to generate insoluble chelates to 为了去除剧毒 、含硫的多孔材料,通常考虑使用含硫的多孔材料。通常,硫原子可以与汞离子结合,生成不溶性螯合物,从而
Fig. 31 Illustration of the structure of S-CX4P and the reversible process of adsorbing . Adapted with permission from ref. 45. Copyright 2019 American Chemical Society. 图31 S-CX4P的结构和可逆吸附过程的示意图 。经参考文献 45 许可改编。版权所有 2019 美国化学学会。
achieve efficient removal of . A thioether-crown-functionalized CA-based POP (S-CX4P, Fig. 10a) was applied for highly efficient and fast uptake of The superior uptake capacity of reached and the fastest initial adsorption rate was . Notably, even interfered by other competitive ions , and at high concentrations, S-CX4P can still effectively remove from an initial high concentration ( 5 ppm ) to a quite low level ( 2 ppb ) within 5 min . The authors attributed the superior performance to the high specific surface area ( ) and the host-guest interactions between sulphur atoms in the thioether-crown moieties and (Fig. 31). 实现 的高效去除 .采用硫醚冠功能化CA基POP技术(S-CX4P,图10a)高效快速吸收 ,吸收能力 超高,初始吸附速率最快。 值得注意的是,即使在其他竞争性离子 的干扰 下,在高浓度下,S-CX4P仍然可以在5分钟内有效地从最初的高浓度(5 ppm)去除 到相当低的水平(2 ppb)。作者将卓越的性能归因于高比表面积( )和硫醚-冠基团中硫原子之间的主客体相互作用 (图31)。
4.1.3 Adsorption of iodine. Iodine allotropes, i.e., and , are typical radioactive elements with half-lives of up to millions of years, both of which are mainly generated from nuclear fuel. Once the radioactive iodine is released, it will cause serious damage to the ecological environment, water and organisms. Therefore, effective disposal and permanent storage of iodine are extremely important for sustainable development of nuclear energy and ecological protection. It is demonstrated that porous materials could effectively adsorb iodine under simulated real conditions. Host-guest interactions within macrocycles and -conjugated porous skeletons including alkyne, diazo and triazine units are beneficial to improve the adsorption of iodine molecules. The alkyne-linked CA-based POPs (CalP2-CalP4, Fig. 9a) exhibited a good iodine adsorption capacity of 88-220 wt%. To further improve the performance, the phenolic hydroxyl groups of calix[4]arenes were lithiated to afford CalP2-Li and CalP4-Li, respectively. Among them, CalP4-Li displayed the highest iodine adsorption capacity of (Table 3). This is because CalP4-Li possesses the most aromatic rings and alkynes per repeat unit as well as highest BET surfaces area ( ), which provides abundant lithium sites for iondipole interactions. 4.1.3 吸附碘。碘同素异形体,即 和 ,是典型的放射性元素,半衰期可达数百万年,两者主要由核燃料产生。放射性碘一旦释放出来,将对生态环境、水质和生物造成严重破坏。因此,碘的有效处置和永久贮存对于核能的可持续发展和生态保护极为重要。结果表明,在模拟真实条件下,多孔材料可以有效地吸附碘。大环内主客体相互作用和 共轭多孔骨架(包括炔烃、重氮和三嗪单元)有利于提高碘分子的吸附。炔烃连接的CA基POPs (CalP2-CalP4,图9a)表现出良好的碘吸附能力,为88-220 wt%。为了进一步提高性能,将杯[4]芳烃的酚羟基锂化,分别得到CalP2-Li和CalP4-Li。其中,CalP4-Li的碘吸附能力最高 (表3)。这是因为CalP4-Li具有每个重复单元最多的芳环和炔烃以及最高的BET表面面积( ),这为离子偶极子相互作用提供了丰富的锂位点。
Diazo-linked RA-based POPs (CalPOF-1 to CalPOF-3, Fig. 13a) could also effectively absorb (Table 3). Among them, CalPOF-1 exhibited the highest uptake capacity ( ). The excellent performance on environment remediation originated from the permanent porosities and abundant sorption sites including macrocyclic -rich cavities, azo groups and phenolic units in the skeleton. Iodomethane is another radioactive and highly toxic methylation reagent. PA-based POPs 重氮连接的基于RA的持久性有机污染物(CalPOF-1至CalPOF-3,图13a)也可以有效吸收 (表3)。 其中,CalPOF-1的吸收能力最高( )。环境修复的优异性能源于骨骼中存在的永久孔隙和丰富的吸附位点,包括富含大环 的空腔、偶氮 基团和酚类单元。碘甲烷是另一种放射性和剧毒的甲基化试剂。基于PA的持久性有机污染物
Table 3 The removal performance of representative macrocycle-based POPs in this review 表3 本综述中代表性大环型持久性有机污染物 的去除性能
基于大循环的持久性有机污染物
Macrocycle-
based POPs
BET 表面积
BET surface
area
Ref. 裁判。
CA
CalP2
596
88
42
CA
CalP2-Li 钙P2-Li
274
108
42
CA
CalP3 CalP3的
630
196
42
CA
CalP3-Li 钙P3-Li
308
248
42
CA
CalP4 CalP4的
759
220
42
CA
CalP4-Li 钙P4-Li
445
312
42
CA
CX4-NS
468
114
43
CA
CalCOP1
280
232
50
CA
CaCOP1
10.86
240
51
CA
CaCOP2
20.16
281
51
CA
CaCOP3
81.09
310
51
RA
CalPOF-1 钙POF-1
303
477
54
RA
CalPOF-2 钙POF-2
154
406
54
RA
CalPOF-3 钙POF-3
91
353
54
PA
CMP-1
16.1
151
60
PA
CMP-2
20.2
177
60
PA
CMP-3
284.6
131
60
PA
CMP-4
9.5
208
60
PA
PAN-FPP5
788.0
222.5
67
(MHP-P5Q, Fig. 19) showed high adsorption capacity (80.3 wt%) and long-term storage of . While the uptake capacities of the pristine P5Q (27.6 wt%) and the analogous polymer MHP without P5Q were much lower (62.2 wt%). This is because MHP-P5Q provides multiple ways to interact with the guest molecules including host-guest interactions, the halogen bond ) and chemical adsorption. (MHP-P5Q,图 19) 表现出高吸附容量 (80.3 wt%) 和长期储存 。而原始P5Q(27.6 wt%)和不含P5Q的类似聚合物MHP的吸收能力要低得多(62.2 wt%)。这是因为 MHP-P5Q 提供了多种与客体分子相互作用的方式,包括主客体相互作用、卤素键 和化学吸附。
Recently, four catcher-type CMPs (CMP- designed by Yang and co-workers (Fig. 15c) were applied in adsorption under ambient pressure at . Among these four CMPs, CMP-4 with suitable pore size and numerous aromatic rings exhibited the largest capacity of iodine adsorption (208 wt%, Fig. 32a and b). Moreover, adsorption experiments were also conducted in aqueous iodine solutions. As shown in Fig. 32c, the yellow solution gradually became colourless upon addition of CMP-4 and a high removal efficiency of was realized. 最近,Yang及其同事设计的四种捕集式CMP(CMP- (图15c)在环境压力下的 吸附中得到应用。在这4种中药中,孔径适宜、芳环多的CMP-4的碘吸附能力最大(208 wt%,图32a和b)。此外,还在碘水溶液中进行了吸附实验。如图32c所示,加入CMP-4后,黄色溶液逐渐变为无色,实现了高去除效率 。
4.2 Gas adsorption and separation 4.2 气体吸附与分离
4.2.1 adsorption. Macrocycle-based POPs have large specific surface areas and tuneable pore sizes and pore environment, which show unique advantages in gas adsorption and separation (Tables 4 and 5). As a kind of clean energy with a high energy density, hydrogen is of great importance to ameliorate the critical global problems, i.e., the shortage of energy resources and environmental pollutions triggered by excessive combustion of fossil fuels. In this respect, safe and efficient storage of hydrogen is a thorny technological challenge to be solved, in which effective adsorption of hydrogen represents one of the most important issues. Among the developed strategies, macrocycle-based POPs have been demonstrated as promising platforms for adsorption of hydrogen. The efficiency of adsorption of hydrogen is mostly determined by the specific surface area, pore size distribution, and functionality of macrocycle-based POPs as well as the external pressure and temperature. For example, the CTC-network-PIM (Fig. 20a) with a high BET surface area and an 4.2.1 吸附。基于大环的持久性有机污染物具有较大的比表面积、可调节的孔径和孔隙环境,在气体吸附和分离方面表现出独特的优势(表4和表5)。作为一种高能量密度的清洁能源,氢气对于缓解全球性重大问题,即化石燃料过度燃烧引发的能源短缺和环境污染具有重要意义。在这方面,安全高效的氢气储存是一个需要解决的棘手技术挑战,其中氢气的有效吸附是最重要的问题之一。在已开发的策略中,基于大环的持久性有机污染物已被证明是有前途的氢吸附平台。 氢气的吸附效率主要由基于大环的持久性有机污染物的比表面积、孔径分布和功能性以及外部压力和温度决定。例如,CTC-network-PIM(图20a)具有高BET表面积 和
Fig. 32 (a) The adsorption maximum of iodine in CMP-1, CMP-2, CMP-3 and CMP-4 at 348 K . (b) Illustration of CMP-4 for efficient adsorption of . (c) lodine adsorption efficiency determined by time-dependent UV-Vis absorption spectroscopy of the solution ( 1 mM ) upon addition of CMP-4. Inset: Photographs of iodine solutions; adapted with permission from ref. 60. Copyright 2021 Wiley-VCH. 图32 (a) 348 K时碘在CMP-1、CMP-2、CMP-3和CMP-4中的最大吸附量。(b) CMP-4 有效吸附 的示意图。(c) 通过时间依赖性紫外-可见吸收光谱法测定 溶液(1mM)在加入CMP-4时的lodine吸附效率。插图:碘溶液的照片;经参考文献 60 许可改编。版权所有 2021 Wiley-VCH。
Table 4 The adsorption performance of representative macrocyclebased POPs in this review 表4 本综述中代表性大环型POPs的 吸附性能
Macrocycle 大循环
基于大循环的持久性有机污染物
Macrocycle-
based POPs
BET 表面积
BET surface
area
孔径
Pore size
吸收
uptake
Ref. 裁判。
CTC
CTC-network-PIM CTC-网络-PIM
830
0.6
69
CTC
CTV-CMP-1
314
0.7
70
CTC
CTV-CMP-2
218
0.7
70
CTC
Click-POP-1 点击-POP-1
342
1.27
71
CTC
Click-POP-1 点击-POP-1
317
1.35
72
CTC
CTC-COF
1710
2.26
83
CTC
CTV-COF-1
1245
1.48
84
CTC
CTV-COF-2
1170
2.16
84
CTC
aCTV-COF1
1132
1.7
85
CTC
aCTV-COF2
1428
2.2
85
CTC
aCTV-COF3
698
14
85
CTC
aCTV-COF4
636
14
85
Temperature: 77 K ; external pressure. bar. bar. bar. bar. bar. bar. bar. bar. 温度: 77 K ;外部压力。 酒吧。 酒吧。 酒吧。 酒吧。 酒吧。 酒吧。 酒吧。 酒吧。
ultramicroporous pore size (ca. 0.6 nm ) achieved a maximum uptake for of at 1 bar and at 10 bar at 77 K (Table 4). 超微孔孔径(约0.6 nm)在1 bar 和10 bar时分别在77 K时达到 最大 吸收(表4)。
Zheng and co-workers reported a series of amorphous CTC-based POPs (Fig. 20b and c) and crystalline CTC-based COFs (Fig. 26a-c), which also exhibited excellent adsorption properties. As summarized in Table 4, compared to the amorphous CTC-based POPs (CTV-CMP-1, CTV-CMP-2, Click-POP-1, and ClickPOP-1), the crystalline CTC-based COFs with higher BET specific surface areas exhibited better adsorption performance (Table 4). Even though the specific surface areas of aCTV-COF3 and Zheng及其同事报告了一系列基于CTC的无定形POPs(图20b和c)和结晶CTC基COFs(图26a-c),它们也表现出优异的 吸附性能。如表4所示,与无定形CTC基POPs(CTV-CMP-1、CTV-CMP-2、Click-POP-1和ClickPOP-1)相比, 具有较高BET比表面积的结晶CTC基COFs 表现出更好的 吸附性能(表4)。即使 aCTV-COF3 和
aCTV-COF4 are relatively small, the uptake capacities of aCTV-COF3 (1.1 wt%) and aCTV-COF4 (1.0 wt%) are higher than those of other aCTV-COFs (aCTV-COF1 and aCTV-COF2). This is ascribed to the microporosity and interactions of with the methoxy and hydroxyl groups in aCTV-COF3 and aCTV-COF4. aCTV-COF4相对较小,aCTV-COF3(1.1 wt%)和aCTV-COF4(1.0 wt%)的摄取能力高于其他aCTV-COFs(aCTV-COF1和aCTV-COF2)。这归因于 aCTV-COF3 和 aCTV-COF4 中微孔隙率以及与甲氧基和羟基的相互作用 。
4.2.2 adsorption. Carbon dioxide represents the most notorious greenhouse gas. The massive emission of has significantly triggered the global warming, melting of glaciers and rise of sea level, which pose a great threat to the survival of terrestrial organisms. Therefore, efficiently capturing is very important. Unlike other gases, is a quadrupole molecule. Enhancing the interaction of macrocycle-based POPs with is beneficial to improve the adsorption performance. 4.2.2 吸附。二氧化碳 是最臭名昭著的温室气体。海水的大量 排放严重引发了全球气候变暖、冰川融化和海平面上升,对陆生生物的生存构成了极大的威胁。 因此,高效捕获 非常重要。与其他气体不同, 它是一种四极分子。 增强基于大环的POPs与 POPs的相互作用,有利于提高POPs的吸附性能。
Owing to the effective affinity of hydroxyl groups to , Dai and co-workers reported four - and -CD-based HCPs (Fig. 3b). Among them, the and with free hydroxyl groups exhibited higher selectivity of than the fully benzylated BnCD-HCPPs (Table 5). But BnCD-HCPPs showed higher adsorption capacities than the BnCD6OH-HCPPs with free hydroxyl groups. More benzene rings led to the formation of more micropores and resulted in higher BET surface areas, thus enhancing the adsorption capability. 由于羟基对 的有效亲和力,Dai 及其同事 报告了四种 基于 CD 和 CD 的 HCP(图 3b)。其中, 与完全苄基化的BnCD-HCPPs相比,and 与游离羟基表现出更高的选择性 (表5)。但BnCD-HCPPs的 吸附能力高于游离羟基的BnCD6OH-HCPPs。更多的苯环导致形成更多的微孔,导致更高的BET表面积,从而增强了 吸附能力。
A PA-based POP (PAN-FPP5, Fig. 18b) exhibited the highest adsorption capability ( at 273 K and at 298 K ) and the highest selectivity of (55.6) (Table 5). This could be associated with the "macrocycle effect" of PA. Additionally, MHP-P5Q (Fig. 19) could not only capture , but also exhibit outstanding adsorption capability ( at 273 K and at 298 K , Table 5). This was attributed to the hierarchical microporosity of the and 1.30 nm and the affluent -philic surface sites, including unreacted sites and nitric sites in MHP-P5Q. 基于PA的POP(PAN-FPP5,图18b) 表现出最高的 吸附能力( 在273 K和 298 K时)和最高的选择性 (55.6)(表5)。这可能与PA的“大循环效应”有关。此外,MHP-P5Q(图19)不仅可以捕获 ,而且表现出出色的 吸附能力( 在273 K和 298 K下,表5)。这归因于 和 1.30 nm 的 多级微孔率 和丰富的 亲亲表面位点,包括 MHP-P5Q 中的未反应 位点和硝酸位点。
4.2.3 Propane/methane separation. Propane as a hazardous but highly value-added hydrocarbon is usually obtained by selective separation from natural gases; efficient separation of propane is of great importance to protect the environment and increase the utilization efficiency of natural gas. Coskun and co-workers reported two alkyne-linked P5-based CMPs (P5-CMP-1 and P5-CMP-2, Fig. 15a) for propane/methane separation. The size of micropores ( ) of P5-CMPs matched well with the kinetic diameter of propane ( ). Among them, P5-CMP-1 showed the highest methane and propane uptake capacities of 0.177 and , respectively, at 298 K . The selectivity toward the propane/methane mixture (10:90) was calculated by using the ideal adsorbed solution theory (IAST). The selectivities of P5-CMP-1 and P5-CMP-2 were determined to be 180 and 189 , respectively, at 298 K and 1 bar. The high affinity of P5-CMPs for propane is attributed to the strong supramolecular host-guest interactions and multiple interactions from the "macrocyclic effect" of P5 in contact with matched propane. 4.2.3 丙烷/甲烷分离。丙烷作为一种危险但高附加值的碳氢化合物,通常是通过从天然气中选择性分离获得的;丙烷的高效分离对于保护环境、提高天然气利用效率具有重要意义。Coskun及其同事 报告了两种炔烃连接的基于P5的CMP(P5-CMP-1和P5-CMP-2,图15a)用于丙烷/甲烷分离。P5-CMPs的微孔尺寸( )与丙烷的动力学直径( )匹配良好 。其中,P5-CMP-1在298 K时对甲烷和丙烷的吸收量最高,分别为0.177 和。使用理想吸附溶液理论(IAST)计算了对丙烷/甲烷混合物的选择性(10:90)。P5-CMP-1 和 P5-CMP-2 在 298 K 和 1 bar 时的选择性分别为 180 和 189。P5-CMPs对丙烷的高亲和力归因于P5与匹配丙烷接触的强超分子主客体相互作用以及P5与匹配丙烷接触的“大环效应”的多重 相互作用。
4.3 Fluorescent sensors 4.3 荧光传感器
Introducing macrocycles into fluorescent POPs is an efficient approach to constructing fluorescence sensors for the detection of specific metal ions or chiral molecules. Cui and co-workers 在荧光持久性有机污染物中引入大环是构建荧光传感器以检测特定金属离子或手性分子的有效方法。崔和同事们
Table 5 The adsorption performance of representative macrocycle-based POPs in this review 表5 本综述中代表性大环型POPs的 吸附性能
{
BET surface
area
} {BET表面积 }
Pore size (nm) 孔径 (nm)
Ref 裁判
CD
BnCD-HCPP BNCD-HCPP型
989
-
2.38
1.38
35
38
20
CD
1225
-
2.45
1.41
26
18
20
CD
880
-
2.01
1.17
47
30
20
RA
HRN4
156
2.8
6.1
-
-
-
56
PA
PAN-FPP5
788.0
12.5
9.9
-
55.6
67
PA
MHP-P5Q
296
11.56
9.18
-
-
68
reported two chiral olefin-linked CE-based COFs (CCOF17 and CCOF18, Fig. 22c) which exhibited strong fluorescence with quantum yields ( ) of and , respectively. Higher quantum yields could be achieved by further reducing the bonds of CCOF17 and CCOF18 to single bonds to afford the corresponding CCOF17-R and CCOF18-R ( : and for CCOF17-R and CCOF18-R, respectively). This is because the -conjugated structures of -CCOFs were destroyed to hinder the non-radiative energy transfer pathway. These four fluorescent chiral COFs were employed to recognize chiral amino alcohols including phenylglycinol (PGL), phenylalaninol (PAL) and tryptophanol (TPL), through fluorescence enhancement or quenching mechanisms (Fig. 33). The enantioselectivity 报道了两种手性烯烃连接的CE基COF(CCOF17和CCOF18,图22c),它们表现出强烈的荧光,量子产率为( )和 。通过将CCOF17和CCOF18 的键进一步还原为 单键,以获得相应的CCOF17-R和CCOF18-R(分别为CCOF17-R 和 CCOF18-R), 可以获得更高的量子产率。这是因为-CCOFs的 共轭结构被破坏,阻碍了非辐射能量转移途径。这四种荧光手性COFs用于通过荧光增强或淬灭机制识别手性氨基醇,包括苯甘氨醇(PGL)、苯丙氨醇(PAL)和色氨酸(TPL)(图33)。对映体选择性
Fig. 33 (a) Operating principle of the CCOF sensor. (b) Fluorescence emission spectra of -CCOF 17 with increasing concentration of phenylglycinol in solution. (c) Benesi-Hildebrand plots of the fluorescence emissions of -CCOF 17 enhanced by - and L-phenylglycinol. (d) The comparative EFs/QRs of the and -CCOFs for three amino alcohols. (e) Structures of the examined amino alcohols and BINOL . Adapted with permission from ref. 78. Copyright 2021 American Chemical Society. factor or quenching ratio was used to evaluate the sensitivity toward these amino alcohols. The results suggested that the values of CCOF17 and CCOF 18 were higher than those of CCOF17-R and CCOF 18-R (Fig. 33d), indicating that the olefinlinked CCOFs were more sensitive to chiral amino alcohols. This could be ascribed to the reduced structures with a discrete -conjugated system, which suppressed the transmission and expression of chiral information in the 2D CCOF systems. 图33 (a) CCOF传感器的工作原理。(b) 溶液中 苯甘氨醇浓度增加时-CCOF 17的荧光发射光谱 。(c) -和L-苯甘氨醇增强的 -CCOF 17荧光发射的Benesi-Hildebrand图。(d) 三种氨基醇的 EFs/ QRs和-CCOFs的比较。(e) 所检查氨基醇和 BINOL 的结构。经参考文献 78 许可改编。版权所有 2021 美国化学学会。因子 或淬灭比 用于评估对这些氨基醇的敏感性。结果表明,CCOF17和CCOF 18 的值高于CCOF17-R和CCOF 18-R(图33d),表明烯烃连接的CCOFs对手性氨基醇更敏感。这可以归因于具有离散 共轭系统的简化结构,该结构抑制了2D CCOF系统中手性信息的传递和表达。
Yang and co-workers reported another two fluorescent PA-based CMPs (P[5]-TPE-CMP and P[5]-TET-CMP, Fig. 15b). Owing to the AIE feature of TPE, P[5]-TPE-CMP showed distinct two-photon fluorescence, while the P[5]-TET-CMP without AIEgens exhibited no fluorescence. The fluorescence quantum yield of P[5]-TPE-CMP was . Interestingly, the strong fluorescent P[5]-TPE-CMP was sensitive to metal ions. When P [5]-TPE-CMP was suspended in the solutions of different ions, only made remarkable fluorescence quenching ( ). The mechanistic study suggested that the good affinity of the methoxy group and the size matching effect of toward are the main reasons for fluorescence quenching. Furthermore, the fluorescence of P[5]-TPE-CMP was quenched by in the presence of 4 -amino azobenzene. These results indicate that P [5]TPE-CMP can serve as a potential fluorescence sensor for and amide-based organics with high selectivity and fast response. Yang及其同事 报告了另外两种基于荧光PA的CMP(P[5]-TPE-CMP和P[5]-TET-CMP,图15b)。由于TPE具有AIE特性,P[5]-TPE-CMP表现出明显的双光子荧光,而不含AIEgens的P[5]-TET-CMP则没有表现出荧光。P[5]-TPE-CMP的荧光量子产率为 。有趣的是,强荧光P[5]-TPE-CMP对金属离子敏感。当P[5]-TPE-CMP悬浮于不同离子的溶液中时,仅 进行了显著的荧光猝灭( )。机理研究表明,甲氧基良好的亲和力和 朝向 的尺寸匹配效果是导致荧光猝灭的主要原因。此外,P[5]-TPE-CMP的荧光在4-氨基偶氮苯存在下被猝 灭。这些结果表明,P [5]TPE-CMP可以作为酰胺基有机物的潜在荧光传感器 ,具有高选择性和快速响应。
4.4 Ionic conduction 4.4 离子传导
Ion transport in nanopores is critical for energy storage and conversion. For example, efficient proton and lithium-ion conductors are the key materials for fuel cells and lithium-ion batteries. Zhang and co-workers demonstrated that the chemically stable spiroborate-linked arylene-ethynylene-based ICOF2 containing can serve as a solid-state electrolyte (Fig. 29). The electrochemical tests showed that ICOF-2 had an ionic conductivity of and an average transference number of at room temperature. 纳米孔中的离子传输对于能量储存和转换至关重要。例如,高效质子和锂离子导体是燃料电池和锂离子电池的关键材料。 Zhang及其同事证明,化学 稳定的螺硼酸连接芳基-乙炔基ICOF2可以用作固态电解质(图29)。 电化学测试表明,ICOF-2在室温下的离子电导率为 ,平均 转移数为 。
Recently, Wang and co-workers reported the first 3D ionic -CD-based COF (CD-COF-Li, Fig. 24a) which also showed a prominent conductivity of (Fig. 34). The ionic conductivity tests based on pellet samples indicated that CD-COF-Li exhibited an ionic conductivity of . The rapid transport of might be the synergistic result of the anionic feature of the spiroborate linkage, the flexible and dynamic nature of CD as 最近,Wang及其同事 报道了第一个基于3D离子 -CD的COF(CD-COF-Li,图24a),该COF也显示出突出的 电导率(图34)。基于颗粒样品的离子电导率测试表明,CD-COF-Li的离子电导率为 。的 快速运输可能是螺旋体键的阴离子特性的协同结果,CD的灵活性和动态性作为
Fig. 34 Li ion conductivity tests. (a) Arrhenius plot of the CD-COFLi LiPF6-EC-DMC ionic conductivity. (b) Schematic representation of Li ion transport in the channels of CD-COF-Li. Adapted with permission from ref. 80. Copyright 2017 Wiley-VCH. 图34 锂离子电导率测试。(a) CD-COFLi LiPF6-EC-DMC离子电导率的阿伦尼乌斯图。(b) CD-COF-Li通道中锂离子输运的示意图。经参考文献 80 许可改编。版权所有 2017 Wiley-VCH。
well as the high capability for entrapping the electrolytes in the confined channels (Fig. 34b). The preparation of high-performance ionic COFs provides a new approach for the development of solid electrolytes. 以及将电解质捕获在狭窄通道中的高能力(图 34b)。高性能离子COFs的制备为固体电解质的发展提供了新的途径。
4.5 Heterogeneous catalysis 4.5 多相催化
4.5.1 Metal-free heterogeneous catalysts. Macrocycles, such as CA and RA, have external polarity due to the hydroxyl groups, which can function as catalytic sites for fixation. For example, Yuan and co-workers reported the cationic CalCOP-1 (Fig. 12b) with CA and imidazolium moieties, which exhibited excellent catalytic activities for converting epoxides into cyclic carbonates without solvents at atmospheric pressure. This is because the cationic POPs have abundant hydrogen binding sites from the hydroxyl groups of phenol segments and nucleophilic bromide anions. This pioneering work provides a new way for designing ionic CA-based POPs as green heterogeneous catalysts for fixation. RA-based POPs (RN4-Az-OH, Fig. 14) also exhibited outstanding catalytic performance with a high conversion yield ( ) for transformation of into cyclic carbonates. This excellent performance is associated with a large number of -philic functionalities including diazo and phenolic -OH groups. 4.5.1 无金属非均相催化剂。大环,如 CA 和 RA,由于羟基而具有外部极性,羟基可以作为 固定的催化位点。例如,Yuan及其同事 报道了具有CA和咪唑部分的阳离子CalCOP-1(图12b),其在大气压下无需溶剂即可将环氧化物转化为环状碳酸盐,表现出优异的催化活性。这是因为阳离子持久性有机污染物具有丰富的氢结合位点,这些位点来自苯酚链段的羟基和亲核溴化物阴离子。这项开创性的工作为设计离子钙基POPs作为绿色非均相 固定催化剂提供了一种新途径。RA基POPs(RN4-Az-OH,图14) 也表现出优异的催化性能,具有高转化率( ),可用于转化为 环状碳酸盐。这种优异的性能与大量的亲 亲官能团有关,包括重氮和酚醛-OH基团。
4.5.2 Metal-loaded heterogeneous catalysts. The hydrophobic inner cavity of macrocycles can load metal ions with catalytic activities, such as Pd, Ni and Au (Fig. 35). For example, the reported CD-based HCP (BnCD-HCPP, Fig. 3a) can support Au NPs to generate the Au@BnCD-HCPP catalyst composite. The catalytic activity of Au@BnCD-HCPP was assessed by the reduction of 4-nitrophenol into 4-aminophenol. Notably, the colourless 4-nitrophenol turned into yellowish 4-nitrophenolic ions after adding . When was added, the catalytic reaction rapidly completed within 3 min . The yellow mixture became colourless with the production of 4-aminophenol. The rapid reaction is attributed to the outstanding affinity of the BnCD-HCPP for 4-nitrophenol, the facilely diffused pores as well as high surface area ( ) of BnCD-HCPP. 4.5.2 金属负载非均相催化剂。大环的疏水内腔可以负载具有催化活性的金属离子,如Pd、Ni和Au(图35)。例如,报道的基于CD的HCP(BnCD-HCPP,图3a) 可以支持Au NPs生成Au@BnCD-HCPP催化剂复合材料。通过将4-硝基苯酚还原为4-氨基苯酚来评估Au@BnCD-HCPP的催化活性。值得注意的是,无色的4-硝基苯酚在加入 后变成了淡黄色的4-硝基苯酚离子。加入 时,催化反应在3 min内迅速完成。黄色混合物随着4-氨基苯酚的产生而变得无色。这种快速反应归因于BnCD-HCPP对4-硝基苯酚的出色亲和力、易于扩散的孔隙以及BnCD-HCPP的高表面积( )。
Pd-loaded macrocycle-based POPs can be used as heterogeneous catalysts for Suzuki-Miyaura coupling reaction. Quinone can efficiently coordinate with Pd NPs to generate the Pd-catalyst. Ma and co-workers reported quinone-containing PA-based POPs (PPQ, Fig. 17a) as solid support for efficient loading of Pd NPs. The catalytic activity of the obtained Pd-PPQ was evaluated by the Suzuki-coupling reaction between 4-bromotoluene and phenylboronic acid (Fig. 35c). The results suggested that the turnover frequency (TOF) of Pd-PPQ was 97 times larger than that of the commercial Pd/C under the same reaction conditions, probably due to the highly dispersed Pd NPs in Pd-PPQ. Yang and co-workers also designed a Pd-loaded CMP (Fig. 18a and Fig. 35a) with PA and porphyrin as the catalyst for SuzukiMiyaura coupling and nitrophenol reduction reaction (Fig. 35c and d). The confinement and the sufficient anchoring sites of dual macrocycles (PA and porphyrin) exerted significant effects on controlling nucleation and seed growth of Pd NPs with a narrow size distribution. Pd负载大环基POPs可作为Suzuki-Miyaura偶联反应的非均相催化剂。醌可以有效地与Pd NPs配位生成Pd催化剂。马及其同事 报告了含醌的基于PA的POPs(PPQ,图17a)是有效负载Pd NPs的坚实支持。通过4-溴甲苯和苯硼酸之间的Suzuki偶联反应评估了所得Pd-PPQ的催化活性(图35c)。结果表明,在相同反应条件下,Pd-PPQ的周转频率(TOF)是商业Pd/C的97倍,这可能是由于Pd-PPQ中Pd NPs高度分散所致。 Yang及其同事 还设计了一种负载Pd的CMP(图18a和图35a),以PA和卟啉为催化剂,用于SuzukiMiyaura偶联和硝基苯酚还原反应(图35c和d)。双大环(PA和卟啉)的封闭和充足的锚定位点对控制粒径分布较窄的Pd NPs的成核和种子生长具有显著效果。
Planar arylene-ethynylene based macrocycles, such as triangular-shaped dehydrobenzoannulene (DBA), can be used as ligands for complexation with . McGrier and co-workers 基于平面亚芳基-乙炔的大环,如三角形脱氢苯甲环(DBA),可用作与 络合的配体。McGrier和同事们
Fig. 35 (a) Schematic representation of the metal-immobilized conjugated macrocycle-based polymer, Pd@DMP[5]-TPP-CMP. Adapted with permission from ref. 66, Copyright 2019 Wiley-VCH. (b) Schematic representation of the covalent organic framework Ni-DBA-2D-COF and (c-e) the corresponding catalytic reactions. 图35 (a) 金属固定共轭大环基聚合物Pd@DMP[5]-TPP-CMP的示意图。经参考文献 66 许可改编,版权所有 2019 Wiley-VCH。(b) 共价有机框架Ni-DBA-2D-COF和(c-e)相应催化反应的示意图。
reported the outstanding catalytic activity of the metalated Ni-DBA2D-COF (Fig. 35b) for reductively cleaving the aryl C-S bonds of various aryl thioethers in the presence of dimethylethylsilane as the reducing agent (Fig. 35e). The desulfurization of organosulfur compounds using Ni-doped DBA-COF as a catalyst is a rare example, indicating the unique advantages of metalated DBA-COFs as supporting platforms for metal species in catalytic transformations. 报道了金属化Ni-DBA2D-COF(图35b)在二甲基乙基硅烷作为还原剂存在下还原裂解各种芳基硫醚的芳基C-S键的出色催化活性(图35e)。使用Ni掺杂DBA-COF作为催化剂对有机硫化合物进行脱硫是一个罕见的例子,表明金属化DBA-COFs作为金属物种在催化转化中的支撑平台具有独特的优势。
5. Conclusion and perspectives 5. 结论和观点
In this review article, we have summarized the main strategies for constructing supramolecular macrocycle-based POPs, which include Friedel-Crafts reaction, nucleophilic substitution, Schiff base condensation, Sonogashira-Hagihara coupling, diazo coupling, and mechanochemical synthesis. Subsequently, the applications of these macrocycle-based POPs are discussed and classified into environmental remediation, gas adsorption and separation, heterogeneous catalysis, etc. A comparative analysis of the data suggests that the excellent performances of macrocyclederived POPs in heterogeneous catalysis and chemical adsorption are attributed to the unique host-guest interactions offered by supramolecular macrocycles. In addition, post-modified macrocycle-based POPs (e.g. lithiation of hydroxyl groups within macrocycles) exhibited a much more improved performance compared to the pristine materials. Macrocycle-based POPs can be further processed into membranes for separating polar and non-polar organic compounds, demonstrating good mechanical strength. Although the introduction of macrocycles into POPs sometimes leads to decreased surface areas, their gas adsorption selectivity and affinity are surprisingly improved. Compared to the traditional POPs, macrocycle-based POPs at least feature several advantages: (1) a better accommodating ability for guest molecules; (2) multifunctional POPs can be further obtained via facile post-modification of the macrocycles; (3) the obtained macrocycle-based POPs have good structural stability due to the highly cross-linked structures resistant to strong acids/bases and high temperatures. 本文总结了构建基于超分子大环的POPs的主要策略,包括Friedel-Crafts反应、亲核取代、Schiff碱缩合、Sonogashira-Hagihara偶联、重氮偶联和机械化学合成。随后,对这些基于大循环的持久性有机污染物的应用进行了讨论,并将其分为环境修复、气体吸附与分离、非均相催化等。对数据的比较分析表明,大环衍生的POPs在多相催化和化学吸附中的优异性能归因于超分子大环提供的独特主客体相互作用。此外,与原始材料相比,基于后改性大环的持久性有机污染物(例如,在大环内锂化羟基)表现出更大的性能改善。基于大环的持久性有机污染物可以进一步加工成用于分离极性和非极性有机化合物的膜,显示出良好的机械强度。尽管在持久性有机污染物中引入大环化合物有时会导致表面积减小,但其气体吸附选择性和亲和力却出人意料地提高了。与传统的持久性有机污染物相比,基于大环的持久性有机污染物至少具有几个优点:(1)对客体分子具有更好的容纳能力;(2)多功能持久性有机污染物可以通过简单的后修饰大环化合物来进一步获得;(3)所得到的基于大环的持久性有机污染物具有高度交联结构、耐强酸/强碱和高温性能,具有良好的结构稳定性。
Despite the various advantages of macrocycle-based POPs, many challenges still remain. Firstly, besides the traditional macrocycles (CDs, CEs, CAs, PAs, etc.), it is intriguing to develop new macrocycles to expand the diversity of macrocycle-based POPs. Recently, some novel macrocycles, such as cyanostars, triazolophane and cyclotetrabenzil, have been developed. Among them, cyanostars and triazolophane have received increasing attention due to the facile synthesis with high yields and their potential applications in environmental and industrial sequestration. However, covalently linked cyanostar- or triazolophane-based POPs have not yet been documented. Interestingly, the very recently reported cyclotetrabenzil-based POPs exhibited high affinity and featured an excellent selectivity at 273 K . However, the harsh synthetic conditions for cyclotetrabenzil-based POPs might limit their practical applications. Therefore, more efforts should be devoted to developing novel and high-performance macrocycle-based POPs via green and efficient methods. 尽管基于大循环的持久性有机污染物具有各种优点,但仍然存在许多挑战。首先,除了传统的宏观周期(CD、CEs、CAs、PAs等)外,开发新的宏观周期以扩大基于宏观周期的POPs的多样性是具有吸引力的。近年来,一些新型的大环化合物,如蓝星、 三唑并 和环四苯齐 等被开发出来。其中,蓝星和三唑烷因其合成简单、产量高、在环境和工业封存方面具有潜在应用潜力而受到越来越多的关注。然而,共价连接的基于氰星或三唑并的持久性有机污染物尚未被记录在案。有趣的是,最近报道的基于环四苯齐的持久性有机污染物表现出 高 亲和力, 并在273 K时具有出色的 选择性。然而,基于环四苯齐的持久性有机污染物的苛刻合成条件可能会限制其实际应用。因此,应加大力度,通过绿色高效的方法开发新型、高性能的大循环持久性有机污染物。
Secondly, although many amorphous macrocycle-based POPs have been reported, examples of crystalline macrocycle-based COFs are still rare. In addition, the advantages of macrocycles can be better utilized for other applications if they can be successfully introduced into COFs. In fact, the construction of macrocycle-based COFs is challenging due to several aspects: (1) in general, the construction of 2D-COFs needs planar monomers, but many macrocycles possess 3D configurations; for instance, CA and their derivatives exhibit cone, partial cone, 1,2-alternate, and 1,3-alternate stable conformations, which, on the other hand, could be used to build 3D COFs after tackling the challenges of synthesis, separation and purification of each conformer of CA; (2) some macrocycles, such as cucurbiturils and PA, cannot be easily functionalized to synthesise COFs. (3) Many macrocycles with complex structures have been used for COF synthesis, but always afford poor crystallinities or amorphous materials. Anyway, new reactions for COF synthesis are continually developed, and the obstacles to expand these macrocycle-based COFs might be eventually solved in the future. 其次,尽管已经报道了许多基于非晶态大环的持久性有机污染物,但基于结晶大环的持久性有机污染物的例子仍然很少见。此外,如果能够成功地将宏周期的优势引入到COFs中,则可以更好地将其用于其他应用。事实上,基于大环的COFs的构建具有挑战性,主要体现在以下几个方面:(1)一般来说,2D-COFs的构建需要平面单体,但许多大环具有3D构型;例如,CA及其衍生物表现出锥体、部分锥体、1,2-交替和1,3交替的稳定构象,另一方面,在应对CA各构象物的合成、分离和纯化挑战后,可用于构建3D COFs;(2)一些大环化合物,如葫芦脲和PA等,不易功能化合成COFs。(3)许多结构复杂的大环已被用于COF合成,但总是提供结晶度差或无定形的材料。无论如何,用于COF合成的新反应在不断发展,扩展这些基于大环的COFs的障碍可能最终在未来得到解决。
Thirdly, macrocycle-based POPs have already been demonstrated with great application potential. For instance, CD-based POPs have been systematically studied for adsorption of organic micropollutants in waste waters, which sets an example for the practical applications of other macrocycle-based POPs in water purification. However, in terms of gas adsorption and separation, it is necessary to consider how to enhance the specific surface areas of macrocycle-based POPs; the efficiency of heterogeneous catalysis can also be improved after addressing this issue. Although COF-based materials exhibit many promising applications in gas adsorption and separation, environmental remediation, heterogeneous catalysis, photoelectric devices, sensing, energy storage and conversion, macrocycle-based COFs are still in their infancy. As highlighted in a very recent perspective article, promising and diverse industrial applications (like batteries, molecular separation, and heterogeneous catalysis) could be expected when COFs are integrated with other stateof-the-art polymeric, metallic and carbonaceous materials (e.g. graphene and metal oxides) to afford new-generation hybrid materials. The current challenges also indicate that many new research topics in this field could be evoked in the near future. 第三,基于大循环的持久性有机污染物已经被证明具有巨大的应用潜力。例如,系统研究了基于CD的持久性有机污染物对废水中有机微污染物的吸附,为其他基于大环的持久性有机污染物在水净化中的实际应用树立了范例。然而,在气体吸附和分离方面,有必要考虑如何提高基于大环的POPs的比表面积;解决了这个问题后,也可以提高多相催化的效率。尽管基于COF的材料在气体吸附与分离、环境修复、多相催化、光电器件、传感、能量存储与转换等方面表现出许多前景广阔的应用前景,但基于大循环的COFs仍处于起步阶段。正如在最近的一篇观点文章中强调的那样, 当COFs与其他最先进的聚合物、金属和碳质材料(如石墨烯和金属氧化物)集成以提供新一代混合材料时,可以预期有前途和多样化的工业应用(如电池、分子分离和多相催化)。目前的挑战还表明,在不久的将来,该领域的许多新研究课题可能会被唤起。
In summary, we provided a comprehensive overview of the synthetic strategies and applications of macrocycle-derived hierarchical POPs. This review emphasizes the merits of the marriage between macrocycles and POPs, which not only inherit the features of the intrinsic cavity and unique hostguest interactions from the macrocyclic building blocks, but also can form hierarchical porous structures, and thus improve both the porosity and the performance in specific applications. Macrocyclic POPs will be further developed along with emerging synthetic chemistry, characterization technologies and material engineering. We envision that the current challenges in macrocyclic porous materials can be properly addressed and more innovative and high-performance macrocycle-based POPs could be developed in the near future. We hope that the current review would provide some valuable references and insights into the 综上所述,本文对大循环衍生的多级POPs的合成策略和应用进行了全面综述。本文重点介绍了大环与POPs联姻的优点,既继承了大环砌块的本征空特性和独特的宿主体相互作用,又能形成多级结构,从而在特定应用中提高孔隙率和性能。大环持久性有机污染物将与新兴的合成化学、表征技术和材料工程一起进一步发展。 我们设想,目前在大环多孔材料方面的挑战可以得到妥善解决,并且在不久的将来可以开发出更具创新性和高性能的基于大环的持久性有机污染物。我们希望本次审查能为《公约》提供一些有价值的参考和见解。
design and synthesis of new macrocyclic POPs to accelerate the progress of this emerging field. 设计和合成新的大环持久性有机污染物,以加快这一新兴领域的进展。
This work was supported by the National Key Research and Development Program of China (2017YFA0207500) and the National Natural Science Foundation of China (51973153). Y. F. greatly acknowledge the financial support from the Youth Innovation Promotion Association, Chinese Academy of Sciences (2013024). 这项工作得到了国家重点研发计划(2017YFA0207500)和国家自然科学基金(51973153)的支持。Y. F. 非常感谢中国科学院青年创新促进会(2013024)的资助。
Notes and references 注释和参考资料
1 Q. Sun, B. Aguila, Y. Song and S. Ma, Acc. Chem. Res., 2020, 53, 812-821. 1 Q. Sun, B. Aguila, Y. Song and S. 马, Acc. Chem. Res., 2020, 53, 812-821.
2 Y. Zhang and S. N. Riduan, Chem. Soc. Rev., 2012, 41, 2083-2094. 2 Y. Zhang and S. N. Riduan, Chem. Soc. Rev., 2012, 41, 2083-2094.
3 L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H. Li, M. Smith, S. Yuan, Z. Perry and H.-C. Zhou, Adv. Mater., 2017, 29, 1700229. 3 邹玲、孙彦、车淑、杨旭、王旭、博世、王琦、李旭、M.史密斯、袁淑娴、Z.佩里、H.C.周, 材料研究, 2017, 29, 1700229.
4 Q. Sun, Z. Dai, X. Meng and F.-S. Xiao, Chem. Soc. Rev., 2015, 44, 6018-6034. 4 Q. Sun, Z. Dai, X. Meng 和 F.-S.肖, 化学学报, 2015, 44, 6018-6034.
5 J.-S. M. Lee and A. I. Cooper, Chem. Rev., 2020, 120, 2171-2214. 5 J.-S.M. Lee 和 A. I. Cooper,化学修订版,2020,120,2171-2214。
6 Y. Tian and G. Zhu, Chem. Rev., 2020, 120, 8934-8986. 6 田燕、朱国,化学导报, 2020, 120, 8934-8986.
7 T.-X. Wang, H.-P. Liang, D. A. Anito, X. Ding and B.-H. Han, J. Mater. Chem. A, 2020, 8, 7003-7034. 7 T.-X.王惠涛Liang, D. A. Anito, X. Ding 和 B.-H.韩, J. Mater.化学。答, 2020, 8, 7003-7034.
8 D. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler and F. Huang, Chem. Rev., 2020, 120, 6070-6123. 8 D. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler and F. Huang, Chem. Rev., 2020, 120, 6070-6123.
9 X. Ji, H. Wang, H. Wang, T. Zhao, Z. A. Page, N. M. Khashab and J. L. Sessler, Angew. Chem., Int. Ed., 2020, 59, 23402-23412. 9 X. Ji, H. Wang, H. Wang, T. Zhao, Z. A. Page, N. M. Khashab 和 J. L. Sessler, Angew.化学, 国际编辑, 2020, 59, 23402-23412.
10 M. J. Klemes, L. P. Skala, M. Ateia, B. Trang, D. E. Helbling and W. R. Dichtel, Acc. Chem. Res., 2020, 53, 2314-2324. 10 M. J. Klemes, L. P. Skala, M. Ateia, B. Trang, D. E. Helbling 和 W. R. Dichtel, Acc. Chem. Res., 2020, 53, 2314-2324.
11 A. Giri, A. Sahoo, T. K. Dutta and A. Patra, ACS Omega, 2020, 5, 28413-28424. 11 A. Giri、A. Sahoo、TK Dutta 和 A. Patra,ACS Omega,2020 年,5,28413-28424。
12 R. Zadmard, F. Hokmabadi, M. R. Jalali and A. Akbarzadeh, RSC Adv., 2020, 10, 32690-32722. 12 R. Zadmard、F. Hokmabadi、MR Jalali 和 A. Akbarzadeh,RSC Adv.,2020 年,10,32690-32722。
13 T. Skorjanc, D. Shetty and A. Trabolsi, Chem, 2021, 7, 882-918. 13 T. Skorjanc、D. Shetty 和 A. Trabolsi,化学,2021,7,882-918。
14 S. Kumar, M. Y. Wani, C. T. Arranja, J. d. A. e Silva, B. Avula and A. J. F. N. Sobral, J. Mater. Chem. A, 2015, 3, 19615-19637. 14 S. Kumar, M. Y. Wani, C. T. Arranja, J. D.AE Silva、B. Avula 和 A. J. F. N. Sobral,J. Mater。化学。A, 2015, 3, 19615-19637.
15 K. Wang, D. Qi, Y. Li, T. Wang, H. Liu and J. Jiang, Coord. Chem. Rev., 2019, 378, 188-206. 15 K. Wang, D. Qi, Y. Li, T. Wang, H. Liu and J. 江, Coord.化学导报, 2019, 378, 188-206.
16 M. Chen, H. Li, C. Liu, J. Liu, Y. Feng, A. G. H. Wee and B. Zhang, Coord. Chem. Rev., 2021, 435, 213778. 16 M. Chen, H. Li, C. Liu, J. Liu, Y. Feng, A. G. H. Wee 和 B. Zhang, 协调.化学导报, 2021, 435, 213778.
18 T. Xu, Y. He, Y. Qin, C. Zhao, C. Peng, J. Hu and H. Liu, RSC Adv., 2018, 8, 4963-4968. 18 徐婷婷, 何彦, 秦彦, 赵婷婷, 彭彦, 胡军娟, 刘海华, RSC Adv., 2018, 8, 4963-4968.
19 H. Li, B. Meng, S.-H. Chai, H. Liu and S. Dai, Chem. Sci., 2016, 7, 905-909. 19 H. Li, B. Meng, S.-H.Chai, H. Liu and S. Dai, 化学科学, 2016, 7, 905-909.
20 B. Meng, H. Li, S. M. Mahurin, H. Liu and S. Dai, RSC Adv., 2016, 6, 110307-110311. 20 B. Meng, H. Li, S. M. Mahurin, H. Liu, S. Dai, RSC Adv., 2016, 6, 110307-110311.
21 X. Li, M. Zhou, J. Jia, J. Ma and Q. Jia, Sep. Purif. Technol., 2018, 195, 130-137. 21 X. Li, M. 周, J. Jia, J. 马, Q. Jia, Sep. Purif.技术, 2018, 195, 130-137.
22 D. Wang, G. Chen, X. Li and Q. Jia, Sep. Purif. Technol., 2019, 227, 115720. 22 D. Wang, G. Chen, X. Li and Q. Jia, Sep. Purif.技术, 2019, 227, 115720.
23 Y. Tu, G. Xu, L. Jiang, X. Hu, J. Xu, X. Xie and A. Li, Chem. Eng. J., 2020, 382, 123015. 23 Y. Tu, G. Xu, L. 江, X. 胡, J. Xu, X. Xie and A. Li, 化学工程学报, 2020, 382, 123015.
24 A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling and W. R. Dichtel, Nature, 2016, 529, 190-194. 24 A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling 和 W. R. Dichtel, 自然, 2016, 529, 190-194.
25 M. J. Klemes, Y. Ling, M. Chiapasco, A. Alsbaiee, D. E. Helbling and W. R. Dichtel, Chem. Sci., 2018, 9, 8883-8889. 25 M. J. Klemes, Y. Ling, M. Chiapasco, A. Alsbaiee, D. E. Helbling 和 W. R. Dichtel, 化学科学, 2018, 9, 8883-8889.
26 L. Xiao, Y. Ling, A. Alsbaiee, C. Li, D. E. Helbling and W. R. Dichtel, J. Am. Chem. Soc., 2017, 139, 7689-7692. 26 L. Xiao, Y. Ling, A. Alsbaiee, C. Li, D. E. Helbling 和 W. R. Dichtel, J. Am. Chem. Soc., 2017, 139, 7689-7692.
27 M. J. Klemes, Y. Ling, C. Ching, C. Wu, L. Xiao, D. E. Helbling and W. R. Dichtel, Angew. Chem., Int. Ed., 2019, 58, 12049-12053. 27 M. J. Klemes, Y. Ling, C. Ching, C. Wu, L. Xiao, D. E. Helbling 和 W. R. Dichtel, Angew.化学, 国际编辑, 2019, 58, 12049-12053.
28 J. Dolai, H. Ali and N. R. Jana, ACS Appl. Polym. Mater., 2020, 2, 691-698. 28 J. Dolai, H. Ali 和 N. R. Jana, ACS Appl. Polym.材料学部, 2020, 2, 691-698.
29 Y. Yang, X. Zou, P. Cui, Y. Zhou, S. Zhao, L. Wang, Y. Yuan and G. Zhu, ACS Appl. Mater. Interfaces, 2017, 9, 30958-30963. 29 Y. Yang, X. Zou, P. Cui, Y. Zhou 周, S. Zhao, L. Wang, Y. Yuan and G. Zhu, ACS Appl. Mater.接口, 2017, 9, 30958-30963.
30 G. Xu, X. Xie, L. Qin, X. Hu, D. Zhang, J. Xu, D. Li, X. Ji, Y. Huang, Y. Tu, L. Jiang and D. Wei, Green Chem., 2019, 21, 6062-6072. 30 徐建, 谢旭, 秦林, 胡斌, 张东, 徐杰, 李哲, 吉, 黄彦, 涂玉, 江林, 魏, 绿色化学, 2019, 21, 6062-6072.
31 X. Hu, G. Xu, H. Zhang, M. Li, Y. Tu, X. Xie, Y. Zhu, L. Jiang, X. Zhu, X. Ji, Y. Li and A. Li, ACS Appl. Mater. Interfaces, 2020, 12, 12165-12175. 31 胡旭、徐国、张旭、李敏、涂彦、谢旭、朱彦、江、朱旭、吉旭、李彦、李阿,ACS Appl. Mater.接口, 2020, 12, 12165-12175.
32 Q. Zhao and Y. Liu, Chem. Commun., 2018, 54, 6068-6071. 32 赵清、刘彦, 化学通讯, 2018, 54, 6068-6071.
33 C. Yang, H. Huang, T. Ji, K. Zhang, L. Yuan, C. Zhou, K. Tang, J. Yi and X. Chen, Polym. Int., 2019, 68, 805-811. 33 C. Yang, H. Huang, T. Ji, K. Zhang, L. Yuan, C. 周, K. Tang, J. Yi and X. Chen, Polym.国际, 2019, 68, 805-811.
34 Y. Zhang, B. Hu, X.-M. Cao, L. Luo, Y. Xiong, Z.-P. Wang, X. Hong and S.-Y. Ding, Nano Res., 2021, 14, 1018-1025. 34 张彦, B. 胡, X.-M.曹, 罗林, 熊彦, Z.-P.Wang, X. Hong 和 S.-Y.丁, 纳米研究, 2021, 14, 1018-1025.
35 L. F. Villalobos, T. Huang and K.-V. Peinemann, Adv. Mater., . 35 L. F. Villalobos, T. Huang 和 K.-V.Peinemann, Adv. Mater., .
36 J. Liu, D. Hua, Y. Zhang, S. Japip and T.-S. Chung, Adv. Mater., 2018, 30, 1705933. 36 J. Liu, D. 华, Y. Zhang, S. Japip 和 T.-S.钟材料研究, 2018, 30, 1705933.
37 E. E. Leonhardt, M. A. B. Meador and K. L. Wooley, Chem. Mater., 2018, 30, 6226-6230. 37 E. E. Leonhardt, M. A. B. Meador 和 K. L. Wooley, 化学材料, 2018, 30, 6226-6230.
38 J. Wang, X. Wang and X. Zhang, J. Mater. Chem. A, 2017, 5, 4308-4313. 38 J. Wang, X. Wang 和 X. Zhang, J. Mater.化学。答, 2017, 5, 4308-4313.
39 D. Kim, H. Kim and J. Y. Chang, Small, 2020, 16, 1907555. 39 D. Kim、H. Kim 和 J. Y. Chang,Small,2020,16,1907555。
40 Y. Zhou, K. Jie, R. Zhao and F. Huang, Adv. Mater., 2020, 32, 1904824 . 40 Y. 周, K. Jie, R. Zhao, F. Huang, Adv. Mater., 2020, 32, 1904824 .
41 D. Shetty, I. Jahovic, J. Raya, F. Ravaux, M. Jouiad, J.-C. Olsen and A. Trabolsi, J. Mater. Chem. A, 2017, 5, 62-66. 41 D.谢蒂,I.贾霍维奇,J.拉亚,F.拉沃,M.朱亚德,J.-C.奥尔森和 A. Trabolsi,J. Mater。化学。答, 2017, 5, 62-66.
42 D. Shetty, I. Jahovic, J. Raya, Z. Asfari, J.-C. Olsen and A. Trabolsi, ACS Appl. Mater. Interfaces, 2018, 10, 2976-2981. 42 D.谢蒂,I.贾霍维奇,J.拉亚,Z.阿斯法里,J.-C.Olsen 和 A. Trabolsi,ACS 应用材料。接口, 2018, 10, 2976-2981.
43 D. Shetty, J. Raya, D. S. Han, Z. Asfari, J.-C. Olsen and A. Trabolsi, Chem. Mater., 2017, 29, 8968-8972. 43 D.谢蒂,J.拉亚,D.S.韩,Z.阿斯法里,J.-C.Olsen and A. Trabolsi, 化学材料, 2017, 29, 8968-8972.
44 D. Shetty, T. Skorjanc, J. Raya, S. K. Sharma, I. Jahovic, K. Polychronopoulou, Z. Asfari, D. S. Han, S. Dewage, J.-C. Olsen, R. Jagannathan, S. Kirmizialtin and A. Trabolsi, ACS Appl. Mater. Interfaces, 2018, 10, 17359-17365. 44 D.Shetty、T.Skorjanc、J.Raya、S.K.Sharma、I.Jahovic、K.Polychronopoulou、Z.Asfari、D.S.Han、S.Dewage、J.-C.Olsen, R. Jagannathan, S. Kirmizialtin 和 A. Trabolsi, ACS Appl. Mater.接口, 2018, 10, 17359-17365.
45 D. Shetty, S. Boutros, A. Eskhan, A. M. De Lena, T. Skorjanc, Z. Asfari, H. Traboulsi, J. Mazher, J. Raya, F. Banat and A. Trabolsi, ACS Appl. Mater. Interfaces, 2019, 11, 12898-12903. 45 D. Shetty, S. Boutros, A. Eskhan, A. M. De Lena, T. Skorjanc, Z. Asfari, H. Traboulsi, J. Mazher, J. Raya, F. Banat 和 A. Trabolsi, ACS Appl. Mater.接口, 2019, 11, 12898-12903.
46 D. Shetty, S. Boutros, T. Skorjanc, B. Garai, Z. Asfari, J. Raya and A. Trabolsi, J. Mater. Chem. A, 2020, 8, 13942-13945. 46 D.Shetty、S.Boutros、T.Skorjanc、B.Garai、Z.Asfari、J.Raya和A.Trabolsi,J.Mater。化学。答, 2020, 8, 13942-13945.
47 D. Shetty, I. Jahović, T. Skorjanc, T. S. Erkal, L. Ali, J. Raya, Z. Asfari, M. A. Olson, S. Kirmizialtin, A. O. Yazaydin and A. Trabolsi, ACS Appl. Mater. Interfaces, 2020, 12, 43160-43166. 47 D. Shetty, I. Jahović, T. Skorjanc, T. S. Erkal, L. Ali, J. Raya, Z. Asfari, M. A. Olson, S. Kirmizialtin, A. O. Yazaydin 和 A. Trabolsi, ACS Appl. Mater.接口, 2020, 12, 43160-43166.
48 T. Skorjanc, D. Shetty, S. K. Sharma, J. Raya, H. Traboulsi, D. S. Han, J. Lalla, R. Newlon, R. Jagannathan, S. Kirmizialtin, J.-C. Olsen and A. Trabolsi, Chem. - Eur. J., 2018, 24, 8648-8655. 49 Q. Zhao and Y. Liu, Chem. Commun., 2018, 54, 7362-7365. 48 T.Skorjanc, D.Shetty, S.K.夏尔马, J.拉亚, H.特拉布尔西, D.S.韩, J.拉拉, R.纽伦, R.贾甘纳坦, S.基尔米齐亚尔廷, J.-C.Olsen 和 A. Trabolsi, Chem. - Eur. J., 2018, 24, 8648-8655.49 赵清、刘彦, 化学通讯, 2018, 54, 7362-7365.
50 Z. Zhang, L. Li, D. An, H. Li and X. Zhang, J. Mater. Sci., 2020, 55, 1854-1864. 50 Z. Zhang, L. Li, D. An, H. Li 和 X. Zhang, J. Mater.科学, 2020, 55, 1854-1864.
51 D. An, L. Li, Z. Zhang, A. M. Asiri, K. A. Alamry and X. Zhang, Mater. Chem. Phys., 2020, 239, 122328. 51 D. An, L. Li, Z. Zhang, A. M. Asiri, K. A. Alamry 和 X. Zhang, Mater.化学物理, 2020, 239, 122328.
52 Y. Zhang, K. Su, Z. Hong, Z. Han and D. Yuan, Ind. Eng. Chem. Res., 2020, 59, 7247-7254. 52 张彦, 苏凯, 洪, 韩志, 袁东, 工业工程化学研究, 2020, 59, 7247-7254.
53 A. Mouradzadegun, S. Elahi and F. Abadast, RSC Adv., . 53 A. Mouradzadegun, S. Elahi 和 F. Abadast, RSC Adv., .
54 K. Su, W. Wang, B. Li and D. Yuan, ACS Sustainable Chem. Eng., 2018, 6, 17402-17409. 54 K. Su, W. Wang, B. Li, and D. Yuan, ACS Sustainable Chem. Eng., 2018, 6, 17402-17409.
55 L. P. Skala, A. Yang, M. J. Klemes, L. Xiao and W. R. Dichtel, J. Am. Chem. Soc., 2019, 141, 13315-13319. 55 L. P. Skala, A. Yang, M. J. Klemes, L. Xiao 和 W. R. Dichtel, J. Am. Chem. Soc., 2019, 141, 13315-13319.
56 A. Giri, M. D. W. Hussain, B. Sk and A. Patra, Chem. Mater., 2019, 31, 8440-8450 56 A. Giri, M. D. W. Hussain, B. Sk 和 A. Patra, 化学材料, 2019, 31, 8440-8450
57 T. Ogoshi, S. Kanai, S. Fujinami, T.-A. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023. 57 T. Ogoshi, S. Kanai, S. Fujinami, T.-A.Yamagishi 和 Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.
58 S. N. Talapaneni, D. Kim, G. Barin, O. Buyukcakir, S. H. Je and A. Coskun, Chem. Mater., 2016, 28, 4460-4466. 58 S. N. Talapaneni, D. Kim, G. Barin, O. Buyukcakir, S. H. Je 和 A. Coskun, 化学材料, 2016, 28, 4460-4466.
59 X. Li, Z. Li and Y.-W. Yang, Adv. Mater., 2018, 30, 1800177. 59 X. Li, Z. Li 和 Y.-W.杨材料研究, 2018, 30, 1800177.
60 D. Dai, J. Yang, Y.-C. Zou, J.-R. Wu, L.-L. Tan, Y. Wang, B. Li, T. Lu, B. Wang and Y.-W. Yang, Angew. Chem., Int. Ed., 2021, 60, 8967-8975. 60 戴东, J. 杨, Y.-C.邹,J.-R.吴, L.-L.Tan, Y. Wang, B. Li, T. Lu, B. Wang 和 Y.-W.杨安圭.化学, 国际编辑, 2021, 60, 8967-8975.
61 H. Zhu, B. Shi, L. Gao, Y. Liu, P.-R. Liu, L. Shangguan, Z. Mao and F. Huang, Polym. Chem., 2017, 8, 7108-7112. 61 H. Zhu, B. Shi, L. Gao, Y. Liu, P.-R.Liu, L. Shangguan, Z. 毛和 F. Huang, Polym.化学, 2017, 8, 7108-7112.
62 S. Lan, S. Zhan, J. Ding, J. Ma and D. Ma, J. Mater. Chem. A, 2017, 5, 2514-2518. 62 兰旭, 詹淑娟, 丁军, 马哲和马马, 马婷.化学。答, 2017, 5, 2514-2518.
63 S. Fu, G. An, H. Sun, Q. Luo, C. Hou, J. Xu, Z. Dong and J. Liu, Chem. Commun., 2017, 53, 9024-9027. 63 傅旭, 安建, 孙海, 罗奇, 侯琦, 徐军, 董志, 刘军, 化工通讯, 2017, 53, 9024-9027.
64 S. Lan, X. Yang, K. Shi, R. Fan and D. Ma, ChemCatChem, 2019, 11, 2864-2869. 64 兰旭, 杨旭, 石克, 樊瑞, 马, 化学CatChem, 2019, 11, 2864-2869.
65 B. Shi, H. Guan, L. Shangguan, H. Wang, D. Xia, X. Kong and F. Huang, J. Mater. Chem. A, 2017, 5, 24217-24222. 65 B. Shi, H. Guan, L. Shangguan, H. Wang, D. Xia, X. Kong and F. Huang, J. Mater.化学。A, 2017, 5, 24217-24222.
66 Z. Li, X. Li and Y.-W. Yang, Small, 2019, 15, 1805509. 66 Z. Li, X. Li 和 Y.-W.杨小, 2019, 15, 1805509.
67 S. Zhang, X. Li, W. Gong, T. Sun, Z. Wang and G. Ning, Ind. Eng. Chem. Res., 2020, 59, 3269-3278. 67 张旭, 李旭, 龚伟, 孙婷婷, 王志, 宁国荣, 工业工程化学研究, 2020, 59, 3269-3278.
68 K. Jie, Y. Zhou, Q. Sun, B. Li, R. Zhao, D.-E. Jiang, W. Guo, H. Chen, Z. Yang, F. Huang and S. Dai, Nat. Commun., 2020, 11, 1086. 68 K. Jie, Y. 周, Q. Sun, B. Li, R. Zhao, D.-E.江, 郭文, 陈海, 杨, 黄峰, 戴淑娟, 国家通讯社, 2020, 11, 1086.
69 N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi and A. Walton, Angew. Chem., Int. Ed., 2006, 45, 1804-1807. 69 N.B.McKeown、B.Gahnem、K.J.Msayib、P.M.M.Budd、C.E.Tattershall、K.Mahmood、S.Tan、D.Book、H.W.Langmi和A.Walton,Angew。化学, 国际编辑, 2006, 45, 1804-1807.
70 X. Han, L. Li, Z. Huang, J. Liu and Q. Zheng, Chin. J. Chem., 2013, 31, 617-623. 70 X. Han, L. Li, Z. Huang, J. Liu 和 Q. Zheng, Chin.化学学报, 2013, 31, 617-623.
71 J. Song, Z. Huang and Q. Zheng, Chin. J. Chem., 2013, 31, . 71 J. Song, Z. Huang 和 Q. Zheng, Chin.化学学报, 2013, 31, .
72 Z. Wang, S. Yan, H.-C. Cui, G. Cheng, H. Ma, Q.-M. Zhang, Q.-P. Zhang, J.-M. Liu, B. Tan and C. Zhang, Macromolecules, 2018, 51, 7863-7871. 72 Z. Wang, S. Yan, H.-C.崔, 程建, 马, Q.-M.张Q.-P.张, J.-M.Liu, B. Tan and C. Zhang, 高分子, 2018, 51, 7863-7871.
73 R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang and D. Jiang, Chem. Soc. Rev., 2021, 50, 120-242. 73 R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, and D. 江, 化学学报, 2021, 50, 120-242.
74 M. Martínez-Abadía and A. Mateo-Alonso, Adv. Mater., 2020, 32, 2002366. 74 马丁内斯-阿巴迪亚和马特奥-阿隆索,材料研究,2020,32,2002366。
75 Y. Li, W. Chen, G. Xing, D. Jiang and L. Chen, Chem. Soc. Rev., 2020, 49, 2852-2868. 75 Y. Li, W. Chen, G. Xing, D. 江, L. Chen, 化学学会, 2020, 49, 2852-2868.
76 J.-C. Shen, W.-L. Jiang, W.-D. Guo, Q.-Y. Qi, D.-L. Ma, X. Lou, M. Shen, B. Hu, H.-B. Yang and X. Zhao, Chem. Commun., 2020, 56, 595-598. 76 J.-C.沈,W.-L.江, W.-D.郭清涛齐,D.-L.马, X. Lou, M. Shen, B. 胡, H.-B.杨旭, 赵旭, 化学通讯, 2020, 56, 595-598.
77 S. An, Q. Xu, Z. Ni, J. Hu, C. Peng, L. Zhai, Y. Guo and H. Liu, Angew. Chem., Int. Ed., 2021, 60, 9959-9963. 77 安珊, 徐庆, 倪志, 胡建华, 彭建华, 翟龙, 郭彦, 刘安圭.化学, 国际教育, 2021, 60, 9959-9963.
78 C. Yuan, S. Fu, K. Yang, B. Hou, Y. Liu, J. Jiang and Y. Cui, J. Am. Chem. Soc., 2021, 143, 369-381. 78 袁春, 傅旭, 杨克, 侯斌, 刘彦, 江军, 崔妍, 美国化学学报, 2021, 143, 369-381.
79 X. Li, H.-S. Xu, K. Leng, S. W. Chee, X. Zhao, N. Jain, H. Xu, J. Qiao, Q. Gao, I.-H. Park, S. Y. Quek, U. Mirsaidov and K. P. Loh, Nat. Chem., 2020, 12, 1115-1122. 79 李旭, H.-S.Xu, K. Leng, S. W. Chee, X. Zhao, N. Jain, H. Xu, J. Qiao, Q. Gao, I.-H.Park, S. Y. Quek, U. Mirsaidov 和 K. P. Loh, 国家化学, 2020, 12, 1115-1122.
80 Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J. Zhou, X. Ma, X. Feng and B. Wang, Angew. Chem., Int. Ed., 2017, 56, 16313-16317. 80 张彦, 段军, 马, 李平, 李淑, 李海周, 马晓波, 冯斌, 王安圭.化学, 国际编辑, 2017, 56, 16313-16317.
82 B. Garai, D. Shetty, T. Skorjanc, F. Gándara, N. Naleem, S. Varghese, S. K. Sharma, M. Baias, R. Jagannathan, 82 B.加莱、D.谢蒂、T.斯科扬克、F.甘达拉、N.纳利姆、S.瓦尔盖塞、S.K.夏尔马、M.拜亚斯、R.贾甘纳坦、
M. A. Olson, S. Kirmizialtin and A. Trabolsi, J. Am. Chem. Soc., 2021, 143, 3407-3415. MA Olson、S. Kirmizialtin 和 A. Trabolsi,J. Am. Chem. Soc.,2021, 143, 3407-3415。
83 J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang and Q.-Y. Zheng, J. Mater. Chem., 2012, 22, 5369-5373. 83 J.-T.于, 陈, J. 孙, Z.-T.黄和Q.-Y.郑, J. Mater.化学, 2012, 22, 5369-5373.
84 J. Zhen, S. Ding, W. Wang, J. Liu, J. Sun, Z. Huang and Q. Zheng, Chin. J. Chem., 2016, 34, 783-787. 84 J. Zhen, S. Ding, W. Wang, J. Liu, J. Sun, Z. Huang 和 Q. Zheng, Chin.化学学报, 2016, 34, 783-787.
85 J. Zhen, S. Ding, J. Liu, Z. Huang, W. Wang and Q. Zheng, CrystEngComm, 2016, 18, 1039-1045. 85 J. Zhen, S. Ding, J. Liu, Z. Huang, W. Wang and Q. Zheng, CrystEngComm, 2016, 18, 1039-1045.
86 J.-R. Song, J. Sun, J. Liu, Z.-T. Huang and Q.-Y. Zheng, Chem. Commun., 2014, 50, 788-791. 86 J.-R.Song, J. Sun, J. Liu, Z.-T.黄和Q.-Y.郑, 化工, 2014, 50, 788-791.
87 X. Feng, Y. Dong and D. Jiang, CrystEngComm, 2013, 15, 1508-1511. 87 冯旭, 董英, 江博士, CrystEngComm, 2013, 15, 1508-1511.
88 H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin and W. Zhang, Chem. Sci., 2015, 6, 4049-4053. 88 H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin and W. Zhang, 化学科学, 2015, 6, 4049-4053.
89 L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec and P. L. McGrier, Chem. Mater., 2015, 27, 6169-6172. 89 L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec 和 P. L. McGrier, 化学材料, 2015, 27, 6169-6172.
90 J. W. Crowe, L. A. Baldwin and P. L. McGrier, J. Am. Chem. Soc., 2016, 138, 10120-10123. 90 J.W.克劳,L.A.鲍德温和P.L.麦格里尔,J.Am。化学学报, 2016, 138, 10120-10123.
91 L. A. Baldwin, J. W. Crowe, D. A. Pyles and P. L. McGrier, J. Am. Chem. Soc., 2016, 138, 15134-15137. 91 L.A.鲍德温、J.W.克劳、D.A.派尔斯和P.L.麦格里尔,J.Am.化学学报, 2016, 138, 15134-15137.
92 W. K. Haug, E. R. Wolfson, B. T. Morman, C. M. Thomas and P. L. McGrier, J. Am. Chem. Soc., 2020, 142, 5521-5525. 92 W. K. Haug, E. R. Wolfson, BT Morman, CM Thomas和PL McGrier, J. Am. Chem. Soc., 2020, 142, 5521-5525.
93 Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H. Lee and W. Zhang, Angew. Chem., Int. Ed., 2016, 55, 1737-1741. 93 Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H.Lee 和 W. Zhang,Angew。化学, 国际教育, 2016, 55, 1737-1741.
94 Y. Du, H. Yang, S. Wan, Y. Jin and W. Zhang, J. Mater. Chem. A, 2017, 5, 9163-9168. 94 Y. Du, H. Yang, S. Wan, Y. Jin 和 W. Zhang, J. Mater.化学。答, 2017, 5, 9163-9168.
95 L. Kovalova, D. R. U. Knappe, K. Lehnberg, C. Kazner and J. Hollender, Environ. Sci. Pollut. Res., 2013, 20, 3607-3615. 95 L.科瓦洛娃、D.R.U.Knappe、K.Lehnberg、C.Kazner和J.Hollender,Environ。科学污染。研究, 2013, 20, 3607-3615.
96 I. Roy and J. F. Stoddart, Acc. Chem. Res., 2021, 54, 1440-1453. 96 I. Roy 和 J. F. Stoddart,Acc. Chem. Res.,2021,54,1440-1453。
97 A. R. Lado Ribeiro, N. F. F. Moreira, G. Li Puma and A. M. T. Silva, Chem. Eng. J., 2019, 363, 155-173. 97 A. R. Lado Ribeiro, N. F. F. Moreira, G. Li Puma 和 A. M. T. Silva, 化学工程杂志, 2019, 363, 155-173.
98 J. He, Y. Li, C. Wang, K. Zhang, D. Lin, L. Kong and J. Liu, Appl. Surf. Sci., 2017, 426, 29-39. 98 J. He, Y. Li, C. Wang, K. Zhang, D. Lin, L. Kong and J. Liu, 应用冲浪.科学, 2017, 426, 29-39.
99 K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang and D. Jiang, Chem. Rev., 2020, 120, 8814-8933. 99 耿凯, 何婷婷, 刘婷婷, S. Dalapati, 谭坤婷, 李彦, 涛涛, 龚彦, 江琴, 江 D. , 化学导版 , 2020, 120, 8814-8933.
100 S. Lee, C.-H. Chen and A. H. Flood, Nat. Chem., 2013, 5, . 100 S.李,C.-H.Chen and A. H. Flood, 国家化学, 2013, 5, .
101 R. E. Fadler, A. Al Ouahabi, B. Qiao, V. Carta, N. F. König, X. Gao, W. Zhao, Y. Zhang, J.-F. Lutz and A. H. Flood, J. Org. Chem., 2021, 86, 4532-4546. 101 R. E. Fadler, A. Al Ouahabi, B. Qiao, V. Carta, N. F. König, X. Gao, W. Zhao, Y. Zhang, J.-F.Lutz 和 AH Flood,组织化学杂志,2021,86,4532-4546。
102 Y. Li and A. H. Flood, Angew. Chem., Int. Ed., 2008, 47, 2649-2652. 102 Y. Li 和 A. H. Flood, Angew.化学, 国际教育, 2008, 47, 2649-2652.
103 M. Gauthier-Jaques and P. Theato, ACS Macro Lett., 2020, 9, . 103 M. Gauthier-Jaques 和 P. Theato,ACS Macro Lett.,2020 年,9 页。
104 T. Ashirov, M. Alrayyani, K.-S. Song, O. Š. Miljanić and A. Coskun, Org. Mater., 2021, 3, 346-352. 104 T.阿什罗夫,M.阿拉亚尼,K.-S.宋, O. Š.Miljanić 和 A. Coskun, 组织材料, 2021, 3, 346-352.
105 S. Mallakpour, E. Azadi and C. M. Hussain, New J. Chem., 2021, 45, 7014-7046. 105 S. Mallakpour、E. Azadi 和 CM Hussain,新化学杂志,2021 年,45,7014-7046。
106 X. Wang, P. She and Q. Zhang, Smart Mater., 2021, DOI: 10.1002/smm2.1057. 106 X. 王, P.She and Q. Zhang, Smart Mater., 2021, DOI: 10.1002/smm2.1057.
107 H. Qi, B. Liang and U. Kaiser, Smart Mater., 2021, 2, 131-138. 107 齐海, 梁斌, U. Kaiser, Smart Mater., 2021, 2, 131-138.