这是用户在 2024-3-20 20:33 为 https://pubs.acs.org/doi/full/10.1021/acsami.8b04695# 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes
使用棉纤维与聚吡咯和碳纳米管的多功能可穿戴电子纺织品
My Activity
 我的活动出版物
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT
返回问题上一页研究文章下一页

Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes
使用棉纤维与聚吡咯和碳纳米管的多功能可穿戴电子纺织品

  • Ravi M. A. P. Lima
    拉维 M. A. P. 利马
    Ravi M. A. P. Lima
    Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
  • Jose Jarib Alcaraz-Espinoza
    何塞·贾里布·阿尔卡拉斯-埃斯皮诺萨
    Jose Jarib Alcaraz-Espinoza
    Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
  • Fernando A. G. da Silva Jr.
    小费尔南多·达席尔瓦
    Fernando A. G. da Silva, Jr.
    Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
  • , and  
  • Helinando P. de Oliveira*
    赫利南多·德·奥利维拉*
    Helinando P. de Oliveira 赫利南多·德·奥利维拉
    Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
    圣弗朗西斯科谷联邦大学材料科学研究所,48920-310,巴西巴伊亚州华泽罗
    *E-mail: helinando.oliveira@univasf.edu.br. Phone: +55(74)21027644.
    *电子邮件:helinando.oliveira@univasf.edu.br。电话: +55(74)21027644.
    More by Helinando P. de Oliveira
    更多Helinando P. de Oliveira的产品
Cite this: ACS Appl. Mater. Interfaces 2018, 10, 16, 13783–13795
引用: ACS Appl. Mater.接口2018, 10, 16, 13783–13795
Publication Date (Web):April 5, 2018
发表日期 :2018年4月5日
https://doi.org/10.1021/acsami.8b04695
Copyright © 2018 American Chemical Society
版权所有 © 2018 美国化学学会
  • Subscribed

Article Views 文章浏览量

3654

Altmetric

-

Citations 引文

LEARN ABOUT THESE METRICS
了解这些指标
PDF (11 MB)  PDF格式 (11 MB)OpenURL ZHENGZHOU UNIV
SUBJECTS: 科目:

Abstract 抽象

Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g–1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.
基于聚吡咯在碳纳米管/棉纤维上的界面聚合的多功能可穿戴电子纺织品具有简单、低成本材料的优势,具有杀菌、良好的电化学性能和电加热性能。掺杂聚吡咯/CNT复合材料的高导电性使纺织品的温度达到70 °C左右,磁场为5 V/cm,作为超级电容器原型的电极具有优异的电化学性能,电容达到30 F g –1 ,对金黄色葡萄球菌具有很强的杀菌活性。这些特性的结合可以在智能设备中探索,用于身体不同部位的热和微生物处理,并在纺织品上储存能量。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Introduction 介绍

ARTICLE SECTIONS
Jump To
 文章部分J月到

The electronic wearable technology has created a revolution in our daily life, making possible to use portable devices for monitoring sport activities, communication, or healthcare. (1−3) Nonetheless, the current devices are rigid structures that are not always comfortable for the user: as ideal electronic wearable device would be as comfortable and adjustable as the used clothes. On the basis of that premise, an important trend in the last years has been the development of new materials on commercial fabrics or yarns. (4,5) Pioneer works in that area have shown that is possible to modify such textiles by incorporating electroactive nanomaterials that later are used for tailoring textile supercapacitors, (6−8) batteries, (9,10) Joule heaters, (5) among others. (11−15)
电子可穿戴技术在我们的日常生活中掀起了一场革命,使得使用便携式设备监控体育活动、通信或医疗保健成为可能。(1−3)尽管如此,目前的设备是刚性结构,对用户来说并不总是舒适的:理想的电子可穿戴设备将与旧衣服一样舒适和可调节。在此前提下,过去几年的一个重要趋势是在商业织物或纱线上开发新材料。(4,5)该领域的先驱工作表明,可以通过结合电活性纳米材料来修改这种纺织品,这些纳米材料后来用于定制纺织超级电容器,(6-8)电池,(9,10)焦耳加热器,(5)等。(11−15)
Recent works have shown electronic textile devices based on modified cotton fabrics and yarns trough dip-coating, in situ chemical process, screen-printing, and carbonization. (5,16) The most used materials include carbon nanotubes (CNTs), graphene (Gr), metal oxides, metallic nanoparticles, and intrinsic conducting polymers (ICPs), integrated as composites or alone. In that set of materials, ICPs stand out because of their electronic properties, electrochemical activity, stability, mechanical response, lightweight, flexibility, and low cost. (17,18) One of the most attractive aspects of ICPs is their versatile nature, as they can be applied in a plethora of powerful applications as batteries, supercapacitors, antibacterial agents, sensors, anticorrosion inks, pollutants adsorbents, thermoelectric, among others. (19,20)
最近的工作展示了基于改性棉织物和纱线的电子纺织装置,通过浸渍涂层、原位化学工艺、丝网印刷和碳化。(5,16) 最常用的材料包括碳纳米管 (CNT)、石墨烯 (Gr)、金属氧化物、金属纳米颗粒和本征导电聚合物 (ICP),它们作为复合材料或单独集成。在这组材料中,ICP 因其电子特性、电化学活性、稳定性、机械响应、轻量化、柔韧性和低成本而脱颖而出。(17,18) ICP 最吸引人的方面之一是它们的多功能性,因为它们可以应用于电池、超级电容器、抗菌剂、传感器、防腐油墨、污染物吸附剂、热电等众多强大的应用。(19,20)
Particular interest is focused on polypyrrole (PPy), as this ICP presents a combination of high electrical conductivity, environmental stability, redox properties, high availability and low cost of monomers and oxidants. Among other characteristics, PPy can be synthesized trough several polymerization methodologies as chemical, electrochemical polymerization, vapor deposition and interfacial polymerization, producing each method a material with particular characteristics. Compared with polyaniline (PAn) or poly-3,4-ethylenedioxythiophene (PEDOT), PPy possess a higher degree of flexibility (21) and greater mass density (22,23) that is reflected in a higher performance with a small volume. Nonetheless, PPy suffers from poor solubility and agglomeration issues when nanostructured, so it is interesting to develop methodologies for depositing high conductive PPy directly on flexible substrates that can simplify the process and reduce costs.
聚吡咯 (PPy) 特别值得关注,因为该 ICP 结合了高导电性、环境稳定性、氧化还原特性、高可用性和低成本的单体和氧化剂。除其他特性外,PPy可以通过化学、电化学聚合、气相沉积和界面聚合等几种聚合方法合成,每种方法都具有特定特性的材料。与聚苯胺 (PAn) 或聚-3,4-乙烯二氧噻吩 (PEDOT) 相比,PPy 具有更高的柔韧性 (21) 和更高的质量密度 (22,23),这反映在体积小的情况下具有更高的性能。尽管如此,PPy在纳米结构下存在溶解度差和团聚问题,因此开发将高导电性PPy直接沉积在柔性基板上的方法很有趣,可以简化工艺并降低成本。
A special application of textiles modified with ICPs that recently has gained relevance is the wearable Joule heaters, as this technology is important for athletic rehabilitation, heat therapy, and joint pain relief. (24,25) The optimization in the integration of ICPs on textiles is an interesting alternative to the use of conventional metal wires (such as copper or silver-based materials) that presents some drawbacks as heavy weight, rigidity, low degree of flexibility, harsh chemical reactions, oxidation, and inappropriate integration with textiles (uncomfortable for contact with skin). One of the major challenges to produce an appropriate PPy textile for Joule heaters relies on a good electrical conductivity. With this aim, the most of polymerization techniques in combination with the available textiles fails because of the diameter of fibers and surface area. Recently, new polymerization techniques such as vapor chemical deposition have shown a great potential for PEDOT, nonetheless, this procedure requires multiple steps to attain a desirable conductivity. In that regard, another approach such as interfacial polymerization (IP) seem attractive and scarcely explored for this application. One of the advantages of IP is the possibility of developing a controlled micromorphology of PPy and high doping level, in contrast to the dense growth of PPy prepared by in situ polymerization, introducing some drawbacks, such as low ion accessibility, that results in low electrical conductivity and electrochemical performance.
最近获得相关性的用 ICP 改性的纺织品的一个特殊应用是可穿戴焦耳加热器,因为该技术对于运动康复、热疗和关节疼痛缓解非常重要。(24,25) 在纺织品上集成 ICP 的优化是使用传统金属线(如铜或银基材料)的一种有趣的替代方案,传统金属线存在一些缺点,如重量重、刚性、柔韧性低、化学反应剧烈、氧化以及与纺织品的不适当结合(与皮肤接触不舒服)。为焦耳加热器生产合适的 PPy 纺织品的主要挑战之一是良好的导电性。为了达到这个目的,由于纤维的直径和表面积,大多数聚合技术与现有纺织品相结合都会失败。最近,新的聚合技术(如气相化学沉积)显示出PEDOT的巨大潜力,但是,该过程需要多个步骤才能获得理想的电导率。在这方面,另一种方法,如界面聚合(IP)似乎很有吸引力,但几乎没有探索过这种应用。IP 的优点之一是可以开发 PPy 的受控微观形态和高掺杂水平,与原位聚合制备的 PPy 的密集生长形成鲜明对比,引入了一些缺点,例如低离子可及性,导致低电导率和电化学性能。
Qi et al. produced a free-standing PPy trough the IP methodology with an outstanding conductivity because of the morphology and high doped levels which is an attractive alternative to bulk polymerization methods. (26) Peshoria and Narula (27) reported enhanced pseudocapacitive behavior for polypyrrole prepared via IP, while de Oliveira et al. compared the electrochemical behavior of supercapacitors prepared by different methods, confirming the best performance for IP-based devices. (28)
Qi等人通过IP方法生产了一种独立的PPy,由于其形态和高掺杂水平,具有出色的导电性,是本体聚合方法的有吸引力的替代品。(26) Peshoria 和 Narula (27) 报道了通过 IP 制备的聚吡咯的增强赝电容行为,而 de Oliveira 等人比较了通过不同方法制备的超级电容器的电化学行为,证实了基于 IP 的器件的最佳性能。(28)
In addition to the polymerization method, another relevant aspect that has shown potential for enhancing the conductivity of ICPs is the interaction of them with carbon nanotubes (CNTs). These carbon nanomaterials offer high inherent electrical and thermal conductivity, flexibility, and mechanical stability. The effect of the inclusion of CNTs in ICPs could act as a doping agent (if functionalized it favors the electron transfer process). Some examples of this synergy effect can be found in the application of ICP-CNTs composites for supercapacitors with improved electrochemical capabilities (because of the association of pseudo capacitance of conducting polymers and electrical double layer capacitance of carbon derivatives). (28−30)
除了聚合方法外,另一个显示出提高ICP电导率潜力的相关方面是它们与碳纳米管(CNTs)的相互作用。这些碳纳米材料具有很高的固有导电性和导热性、柔韧性和机械稳定性。在ICP中加入碳纳米管的效果可以起到掺杂剂的作用(如果功能化,它有利于电子转移过程)。这种协同效应的一些例子可以在ICP-CNTs复合材料应用于具有改进电化学能力的超级电容器中(由于导电聚合物的伪电容和碳衍生物的双电层电容的关联)。(28−30)
For all the above, in this research we have produced a new flexible, wearable and multifunctional material based on an electrical conductive cotton yarn with CNT incorporated through a dip and dry coating in combination with the IP of PPy. The produced material was analyzed from SEM and Raman spectroscopy, while electrical and electrochemical behavior were previously explored for the development of prototypes of integrated Joule heater and supercapacitor. As a third application that is almost not explored in wearable electronics, we studied the bactericidal activity of the produced yarns based on previous expertise of our group about bactericidal activity of PPy. (31,32)
综上所述,在这项研究中,我们生产了一种新的柔性、耐磨和多功能材料,这种材料基于导电棉纱,通过浸渍和干涂结合PPy的IP掺入CNT。通过SEM和拉曼光谱对所生产的材料进行了分析,同时探索了电学和电化学行为,以开发集成焦耳加热器和超级电容器的原型。作为在可穿戴电子产品中几乎没有探索的第三种应用,我们根据我们小组先前关于PPy杀菌活性的专业知识,研究了所生产纱线的杀菌活性。(31,32)

Materials and Methods 材料与方法

ARTICLE SECTIONS
Jump To
 文章部分J月到

Materials 材料

Multiwalled carbon nanotubes (MWCNTs), pyrrole, ethanol, anhydrous ferric chloride, triton X-100, sodium dodecyl sulfate (SDS), dodecyl benzene sodium sulfonate (SDBS), and camphorsulfonic acid (CSA) were purchased from Sigma-Aldrich and used as received. Acetone (Vetec, Brazil), hydrochloric acid (Química Moderna, Brazil) and hexane (Synth, Brazil) were also used as received. Pyrrole was distilled twice under reduced pressure twice before each experiment. All solutions were made using deionized water.
多壁碳纳米管 (MWCNT)、吡咯、乙醇、无水氯化铁、Triton X-100、十二烷基硫酸钠 (SDS)、十二烷基苯磺酸钠 (SDBS) 和樟脑磺酸 (CSA) 购自 Sigma-Aldrich 并按原样使用。丙酮(Vetec,巴西)、盐酸(Química Moderna,巴西)和己烷(Synth,巴西)也按原样使用。吡咯在每次实验前两次减压蒸馏两次。所有溶液均使用去离子水制成。

Treatment of Cotton Yarn for CNT and Polypyrrole Coating
棉纱处理用于碳纳米管和聚吡咯涂层

Cotton threads with 0.5 mm diameter and 12 cm of length were previously treated and cleaned as follows: the samples were immersed in Triton X-100 aqueous solution and rinsed with deionized water to remove residues and dried in an oven at 90 °C. Then, the samples were immersed in alcohol for 10 min and dried in an oven at 90 °C for 5 min for complete solvent elimination. Then, the material was immersed in acetone under sonication for 5 min and dried at 90 °C for 5 min. The overall process is repeated three times.
直径为0.5mm,长度为12cm的棉线先前进行如下处理和清洁:将样品浸入Triton X-100水溶液中,并用去离子水冲洗以去除残留物,并在90°C的烘箱中干燥。 然后,将样品浸入酒精中10分钟,并在90°C的烘箱中干燥5分钟以完全消除溶剂。然后,将材料浸入丙酮中超声处理5分钟,并在90°C下干燥5分钟。整个过程重复三次。

Chemical Functionalization of Carbon Nanotubes
碳纳米管的化学功能化

Hydrophilic functional groups, such as carboxylic acid and hydroxyl, were incorporated into MWCNTs, as follows: 250 mL of an acidic solution of H2SO4/HNO3 (3:1) received 2 g of MWCNTs that was kept under stirring for 5 h at 130 °C under reflux to avoid solvent evaporation. After this, the solution was cooled to room temperature. (33,34) The resulting material was filtered and rinsed several times with Milli-Q water to neutralize the pH. The powder was dried in an oven at 60 °C for 24 h.
将羧酸和羟基等亲水官能团掺入MWCNTs中,具体如下:250 mL的H 2 SO 4 / HNO 3 (3:1)酸性溶液接受2 g MWCNTs,在130°C下回流搅拌5小时,以避免溶剂蒸发。之后,将溶液冷却至室温。(33,34) 将所得材料过滤并用Milli-Q水冲洗数次以中和pH值。将粉末在60°C的烘箱中干燥24小时。

CNT-Coating Cotton Yarn Procedure (CNT Samples)
CNT涂层棉纱程序(CNT样品)

The mother solution of carbon nanotubes was prepared as follows: 100 mg of functionalized carbon nanotubes (34) and 100 mg of SDBS were dispersed in 100 mL of Milli-Q water and kept under sonication until the complete dispersion of carbon nanotubes in solution (negligible amount of CNT aggregates in solution). The pretreated cotton yarn was immersed into the resulting solution and kept under sonication for 15 min. The solvent removal was established in an oven (100 °C). This process was repeated four times and resulted in a good covering degree of CNT on textiles.
碳纳米管母溶液的制备方法如下:将100 mg功能化碳纳米管(34)和100 mg SDBS分散在100 mL的Milli-Q水中,并保持超声处理,直至碳纳米管在溶液中完全分散(溶液中CNT聚集体的量可以忽略不计)。将预处理的棉纱浸入所得溶液中并保持超声处理15分钟。在烘箱(100°C)中建立溶剂去除。这个过程重复了四次,使碳纳米管在纺织品上的覆盖程度良好。

Chemical Polymerization of Polypyrrole on Cotton Yarn (PPy Sample)
聚吡咯在棉纱上的化学聚合(PPy样品)

Two different solutions were prepared: pretreated cotton yarn and 17.5 μL of pyrrole were immersed in 12.5 mL of Milli-Q water for 40 min under stirring in an orbital shaker, for impregnation of pyrrole on the fibers. A second solution was prepared from dispersion of 0.0406 g of FeCl3 in 12.5 mL of aqueous solution of HCl (1 M). The solution was magnetically stirred for 30 min. Then, the FeCl3 aqueous solution was dropwise into the PPy solution. The mixture was continuously stirred for 24 h, allowing the polymerization of PPy on fibers. The resulting textiles were washed in alcohol and water to remove unattached grains and residual monomers. The samples were dried under ambient conditions.
制备两种不同的溶液:将预处理的棉纱和17.5 μL吡咯浸入12.5 mL Milli-Q水中,在轨道振荡器中搅拌40分钟,用于在纤维上浸渍吡咯。将 0.0406 g FeCl 分散 3 在 12.5 mL HCl 水溶液 (1 M) 中制备第二种溶液。将溶液磁力搅拌30分钟。然后,将FeCl 3 水溶液滴加到PPy溶液中。将混合物连续搅拌24小时,使PPy在纤维上聚合。所得纺织品在酒精和水中洗涤,以去除未附着的颗粒和残留的单体。样品在室温条件下干燥。

Chemical Polymerization of Polypyrrole on CNT-Coated Cotton Yarn (CNT-PPy Sample)
聚吡咯在CNT涂层棉纱上的化学聚合(CNT-PPy样品)

The CNT-PPy samples were prepared according the combination of two previously described methods: after the impregnation of fibers with CNT, the material is applied as template for standard chemical polymerization of PPy.
CNT-PPy样品是根据前面描述的两种方法的组合制备的:在用CNT浸渍纤维后,将该材料作为模板应用于PPy的标准化学聚合。

Interfacial Polymerization of Doped PPy on Cotton Yarn (I-PPy Sample) and on CNT-Coated Cotton Yarn (CNT-I-PPy Sample)
掺杂PPy在棉纱(I-PPy样品)和CNT涂层棉纱(CNT-I-PPy样品)上的界面聚合

The CNT-coated cotton yarn was coated with doped polypyrrole as follows: an “oil phase” solution was prepared with the inclusion of 50 μL of pyrrole in 3 mL of hexane. After dispersion, the solution (under rest) was kept at 3 °C. The second solution “water phase” was prepared with the inclusion of 0.251 g of camphorsulfonic acid in 3 mL of water and 0.175 g of ferric chloride, corresponding to 8 g/L of monomer concentration. The solution is kept under intense stirring for 40 min at 70 °C until the complete dispersion of components. Pretreated fibers were immersed in water phase solution and kept at 3 °C. The oil phase was slowly dropwise in water phase, allowing the formation of a two-phase system, an adequate environment for interfacial polymerization of polypyrrole that takes place at 3 °C for 12 h. The resulting samples were washed with deionized water for removal of monomers and nonattached aggregates. The removal of water from fibers was established in an oven at 60 °C for 1 h.
CNT涂层棉纱涂覆掺杂聚吡咯,如下所示:制备“油相”溶液,在3 mL己烷中加入50 μL吡咯。分散后,将溶液(静置)保持在3°C。 在3 mL水中加入0.251 g樟脑磺酸和0.175 g氯化铁,相当于8 g/L的单体浓度,制备了第二溶液“水相”。将溶液在70°C下保持强烈搅拌40分钟,直至组分完全分散。将预处理后的纤维浸入水相溶液中并保持在3°C。 油相在水相中缓慢滴落,从而形成两相体系,这是聚吡咯界面聚合的适当环境,在3°C下进行12小时。所得样品用去离子水洗涤,以去除单体和未连接的聚集体。在60°C的烘箱中建立纤维中除去水分1小时。

Anionic Laundering Procedure
阴离子洗涤程序

To evaluate the adhesion degree of additives on textiles, it was performed the repetition of laundering procedure in which an aqueous solution of anionic surfactant–sodium dodecyl sulfate (20 mM) was applied for fibers washing. The samples were immersed in solution, and mechanically stirred for 5 min. In the following step, each sample was immersed in 50 mL of deionized water and then stirred for 5 min and dried to eliminate residues of surfactant. The current–voltage curves were performed in the interval of −1 to 1 V after each laundering process, which were repeated five times.
为了评估添加剂对纺织品的附着力,进行了重复的洗涤程序,其中使用阴离子表面活性剂十二烷基硫酸钠(20 mM)的水溶液进行纤维洗涤。将样品浸入溶液中,机械搅拌5分钟。在下一步中,将每个样品浸入50 mL去离子水中,然后搅拌5分钟并干燥以消除表面活性剂的残留物。在每次洗涤过程后,电流-电压曲线在−1至1 V的间隔内进行,重复5次。

Characterization Techniques
表征技术

SEM images were acquired in a scanning electron microscopy (Vega 3XM Tescan at accelerating voltage of 5 kV) with deposition of a thin layer of gold on fibers surface. Raman spectra were performed in a Raman spectrometer (LabRAM Aramis–Horiba Jobin Yvon) in the range of 500–2000 cm–1 with excitation at 532 nm from a He–Ne laser. Current–voltage curves were acquired using a DC Power Supply HY3003-3 (Polyterm) and a multimeter ET-2402A (Minipa). Electrical assays were carried out in a 2-point configuration in which samples were fixed between two metal tips disposed at 1 cm of distance and connected with a power source and an ammeter. A voltmeter was disposed in parallel with metal tips, allowing that IV curves could be acquired simultaneously.
在扫描电子显微镜(Vega 3XM Tescan,加速电压为5 kV)中获取SEM图像,并在纤维表面沉积一层薄薄的金。拉曼光谱在拉曼光谱仪(LabRAM Aramis-Horiba Jobin Yvon)中进行,范围为500-2000 cm –1 ,氦氖激光激发波长为532 nm。使用直流电源 HY3003-3 (Polyterm) 和万用表 ET-2402A (Minipa) 获取电流-电压曲线。电测定以 2 点配置进行,其中样品固定在两个金属尖端之间,以 1 cm 的距离设置,并与电源和电流表连接。电压表与金属尖端并联设置,可以同时采集I-V曲线。
The temperature on fiber was acquired from a thermal camera model E6 (Flir) disposed at fixed distance of 30 cm from experimental apparatus (power source and sample) under continuous capture. The room temperature was kept fixed during experiment with the previous calibration of thermal camera to avoid fluctuations in measured data.
光纤上的温度是从E6型热像仪(Flir)获取的,该热像仪在距离实验设备(电源和样品)30厘米的固定距离处连续捕获。在实验过程中,室温保持固定,以避免测量数据的波动。
Electrochemical characterization was carried out at room temperature in an Autolab PGSTAT 302N (Metrohm, Switzerland) using a three-electrode system with reference electrode of Ag/AgCl (saturated KCl), counter electrode of platinum wire and working electrode of 3 mm of fibers (pristine and coated ones) immersed in an electrolyte–phosphoric acid (85%) in water (1:10).
在室温下,Autolab PGSTAT 302N(瑞士瑞士万通)使用三电极系统进行电化学表征,该系统具有Ag/AgCl(饱和KCl)参比电极,铂丝对电极和3 mm纤维(原始和涂层纤维)的工作电极浸入电解质-磷酸(85%)水中(1:10)。

Bactericidal Assays 杀菌检测

Gram positive Staphylococcus aureus (S. aureus ATCC 25923) were kept in agar at 4 °C before assays. The serial dilution procedure was performed from a mother solution and the turbidity in solution was controlled to reach a value of 0.5 in the McFarland scale. Aliquots of 1000 μL from mother solution were removed (108 CFU) and added to 9 mL of saline solution, for the first cycle of dilution. Successive dilutions were performed to reach the 104 CFU value. These solutions received 7 cm of samples (CNT, PPy, CNT-PPy, I-PPy, and CNT-I-PPy) that remained in contact with solution for 4 h. After the treatment, 100 μL of solution from each tube were inoculated in Petri dish containing the nutritive media for growth of viable bacteria at 37 °C for 24 h. (35−37) The counting obtained from the plate count agar technique determined the number of remaining viable bacteria given in colony forming unities (CFU), characterizing the adequate quantification of bactericidal activity of composites in comparison with control experiments.
革兰氏阳性金黄色葡萄球菌(金黄色葡萄球菌ATCC 25923)在测定前保持在4°C的琼脂中。从母溶液中进行连续稀释程序,并控制溶液中的浊度以达到麦克法兰标度的0.5值。从母溶液中取出 1000 μL 的等分试样 (10 8 CFU) 并加入到 9 mL 盐水溶液中,进行第一个稀释周期。进行连续稀释以达到 10 4 CFU 值。这些溶液接收了7cm的样品(CNT,PPy,CNT-PPy,I-PPy和CNT-I-PPy),这些样品与溶液接触4小时。处理后,将每个试管中的100μL溶液接种在含有营养培养基的培养皿中,以在37°C下生长活细菌24小时。 (35-37)从平板计数琼脂技术获得的计数确定了菌落形成统一体(CFU)中剩余活菌的数量,与对照实验相比,表征了复合材料杀菌活性的充分定量。
The agar-disk diffusion test was performed as follows: aliquots of 10 μL were collected from mother solution and inoculated into Agar Muller–Hinton. Small rings (length of 7 cm) of coated cotton yarns (CNT, PPy, CNT-PPy, I-PPy, and CNT-I-PPy samples) were disposed on Petri dishes and incubated at 37 °C for 24 h.
琼脂盘扩散试验如下:从母液中收集10μL的等分试样,并接种到琼脂Muller-Hinton中。将涂层棉纱(CNT,PPy,CNT-PPy,I-PPy和CNT-I-PPy样品)的小环(长度为7cm)置于培养皿上,并在37°C下孵育24小时。

Fabrication of Symmetrical Supercapacitors
对称超级电容器的制造

The feasibility of using the PPy/CNT-coated cotton fibers as supercapacitors electrodes was evaluated from production of metal-free structures composed by symmetric assembly of parallel electrodes (15 mm-length) separated by a thin layer of poly(vinyl alcohol)/phosphoric acid (85%) in water (1:10)–PVA/H3PO4 layer, providing a prototype of flexible supercapacitor that was tested at different current densities and scan rate for determination of energy and power density.
通过生产由平行电极(15 mm长)对称组装组成的无金属结构,评估了使用PPy/CNT涂层棉纤维作为超级电容器电极的可行性,该电极由一层薄薄的聚乙烯醇/磷酸(85%)在水(1:10)–PVA/H 3 PO 4 层中隔开,提供了柔性超级电容器的原型,该原型在不同的电流密度和扫描速率下进行了测试,以确定能量和功率密度。
The schematic view of preparation process is summarized in Figure 1 as follows: the step of CNT incorporation is followed by interfacial polymerization of CSA-doped polypyrrole. The resulting samples are applied as Joule heaters, bactericidal agents, and electrodes for supercapacitors. The configuration of supercapacitor, previously described, is composed by two parallel fibers embedded in a thin layer of PVA/H3PO4 layer with separation of electrodes in order of 500 μm.
制备过程示意图总结如下:CNT掺入步骤之后是CSA掺杂聚吡咯的界面聚合。所得样品用作焦耳加热器、杀菌剂和超级电容器的电极。如前所述,超级电容器的配置由嵌入 PVA/H 3 PO 4 层薄层中的两条平行光纤组成,电极分离量级为 500 μm。

Figure 1 图1

Figure 1. Schematic view of preparation steps of wearable devices (interfacial polymerization) and corresponding application as heating component, bactericidal agent, and supercapacitor.
图 1.可穿戴器件(界面聚合)的制备步骤示意图以及作为加热组件、杀菌剂和超级电容器的相应应用。

Results and Discussion 结果与讨论

ARTICLE SECTIONS
Jump To
 文章部分J月到

Morphology Analysis 形态学分析

We selected a commercial cotton yarn as a template for the deposition of electroactive components in order to obtain an electrical multifunctional material in combination with the excellent properties of textiles. Nonetheless, we focused on a thread and not on a fabric because a thread simplifies its incorporation in common clothes by sewing it in strategic points.
我们选择了一种商品棉纱作为电活性成分沉积的模板,以获得一种结合纺织品优异性能的多功能电材料。尽管如此,我们还是专注于线而不是面料,因为线通过缝制在战略点上来简化其与普通衣服的结合。
First, the morphology of the cotton yarns was investigated by scanning electron microscopy. As one can observe in Figure 2a, the cotton yarn possesses an average diameter of 500 μm (see the inset) and it is composed of multiple individual cotton fibrils with a ribbon structure and an average diameter of (13 ± 3) μm. In the next step, the incorporation of MWCNTs by a dip and dry method assisted by ultrasonic bath was achieved without disrupting the micromorphology of the yarn as observed in the Figure 2b. The only substantial change experimented by the yarn occurred at the surface of the cotton fibrils, as the MWCNTs formed a continuous interconnected network along the cotton fibrils producing an increase in the surface roughness. The reason for the adsorption of MWCNTs resides in the pretreatment of MWCNTs in acid solution (oxidant agents), which conferred several functional groups, (38) such as carboxylic, hydroxyl and epoxy capable of interacting by hydrogen bond with the hydroxyl groups from the poly-d-glucose chains of cotton microfibrils. (39)
首先,通过扫描电镜研究了棉纱的形貌;如图2a所示,棉纱的平均直径为500μm(见插图),由多个具有带状结构的独立棉纤维组成,平均直径为(13±3)μm。在下一步中,通过超声波浴辅助的浸渍和干燥方法掺入MWCNTs,而不会破坏纱线的微观形貌,如图2b所示。纱线实验的唯一实质性变化发生在棉原纤维的表面,因为MWCNTs沿着棉原纤维形成了一个连续的互连网络,导致表面粗糙度增加。MWCNTs吸附的原因在于MWCNTs在酸溶液(氧化剂)中的预处理,酸溶液(氧化剂)赋予了几个官能团,如羧基、羟基和环氧树脂,它们能够通过氢键与棉微纤维的聚-d-葡萄糖链中的羟基相互作用。(39)

Figure 2 图2

Figure 2. SEM images of (a) textile, (b) CNT, (c) PPy, (d) CNT-PPy, (e) I-PPy, and (f) CNT-I-PPy.
图2.(a) 纺织品、(b) CNT、(c) PPy、(d) CNT-PPy、(e) I-PPy 和 (f) CNT-I-PPy 的 SEM 图像。

After the inclusion of MWCNTs in the cotton yarns, we polymerized PPy in them by two different methodologies, an in situ chemical polymerization and an interfacial chemical synthesis. In Figure 2c, it is presented the cotton yarn modified with PPy by the in situ polymerization method, where is possible to observe a homogeneous deposition along the cotton fibrils with the presence of small clusters. On the other hand, the in situ polymerization of PPy on the yarns previously modified with MWCNTs (Figure 2d) presented a denser PPy coating when compared with the PPy on pristine cotton yarns. To understand that, it is necessary to consider two facts, first the surface enhancement of the yarns product of the MWCNTs inclusion and their chemical activity. As we discussed above, the MWCNTs offer the possibility of forming hydrogen bonds, in this case with Py but in addition, they can interact with Py via π–π stacking due to the nature aromaticity of the MWCNTs. Furthermore, as the polymerization of Py involves the release of electrons, it is possible that PPy oligomers and MWCNTs form a charge transfer complex during the polymerization which also favors the PPy deposition.
在棉纱中加入MWCNTs后,我们通过两种不同的方法聚合了其中的PPy,即原位化学聚合和界面化学合成。在图2c中,展示了通过原位聚合方法用PPy改性的棉纱,其中可以观察到沿棉原纤维的均匀沉积,并存在小团簇。另一方面,与原始棉纱上的PPy相比,先前用MWCNT改性的纱线上的PPy原位聚合(图2d)呈现出更致密的PPy涂层。要理解这一点,有必要考虑两个事实,首先,MWCNTs夹杂物对纱线产品的表面增强及其化学活性。正如我们上面所讨论的,MWCNT提供了形成氢键的可能性,在这种情况下是Py,但此外,由于MWCNTs的天然芳香性,它们可以通过π-π堆叠与Py相互作用。此外,由于Py的聚合涉及电子的释放,因此PPy低聚物和MWCNTs可能在聚合过程中形成电荷转移络合物,这也有利于PPy的沉积。
It is presented in Figure 2e the resulting cotton yarn from the interfacial polymerization method; the fibrils exhibited a rougher surface than in previous cases. The cotton fibrils presented a coating conformed of small particles, which corresponds to the typical morphology exhibited by PPy. The yarns modified with MWCNTs (Figure 2f) presented the same morphology as in the previous case but a dense coating due to the described effect of MWCNTs in the PPy polymerization. The resulting increase in the amount of PPy as the change in morphology can be ascribed to the interfacial polymerization method in both cases. In that regard, contrary to the bulk polymerization, the formation of PPy occurs at the interface between water–hexane and not at the bulk. In particular, in our system, the cotton yarn acted as part of the aqueous phase, due to its hydrophilicity, absorbing by capillarity the major part of the FeCl3-camphor sulfonic aqueous solution. Thus, when the organic phase, containing the Py, is added an interface is created with the cotton yarn, occurring the PPy polymerization at the fibrils. Moreover, when compared with the in situ polymerization this process produced a scarce or null amount of PPy at the water interface, being more punctual and consequently increasing the effective mass of PPy at the yarns.
图2e示出了由界面聚合法得到的棉纱;原纤维的表面比以前的病例更粗糙。棉原纤维呈现出由小颗粒组成的涂层,这与PPy表现出的典型形态相对应。用MWCNTs改性的纱线(图2f)呈现出与前一种情况相同的形态,但由于所述的MWCNTs在PPy聚合中的作用,具有致密的涂层。在这两种情况下,随着形态的变化,PPy量的增加都可以归因于界面聚合方法。在这方面,与本体聚合相反,PPy的形成发生在水-己烷之间的界面上,而不是在本体上。特别是,在我们的体系中,棉纱作为水相的一部分,由于其亲水性,通过毛细作用吸收FeCl 3 -樟脑磺酸水溶液的主要部分。因此,当添加含有 Py 的有机相时,与棉纱形成界面,在原纤维处发生 PPy 聚合。此外,与原位聚合相比,该过程在水界面处产生的PPy很少或为零,更准时,从而增加了纱线处PPy的有效质量。

Raman Analysis 拉曼分析

Once the morphology has been revealed by SEM, we have to corroborate the inclusion of MWCNTs in the yarn, the synthesis of PPy and its structural changes associated with the methodologies employed. As a tool for this task, we employed Raman spectroscopy, as this technique is nondestructive and provides the vibrational fingerprint of materials which allows to identify and characterize them. It is presented in Figure 3 the Raman spectra of all samples. The corresponding spectrum for the cotton yarn modified with the MWCNTs (Figure 3a) exhibits three bands at 1335, 1572, and 1590 cm–1 which corresponds to the band D, G, and D′ of the MWCNTs, respectively. The D band is related to the structural disorder from the amorphous carbon, while the G band corresponds to the tangential in plane stretching vibrations of the C–C bonds within the graphene sheets. (40) In the case of the MWCNTs, as they were functionalized the D′ band appeared indicating a disorder degree, structural defects, or intercalation of chemical species between the graphitic walls. (38) We normalized the spectra in relation to the D band and calculated the ratio ID/IG, as this parameter is used to evaluate the disorder density of the tube walls, (41) revealing a value of 1.7 which corroborates that the MWCNTs possess a considerable amount of defects because of the functionalization treatment. Thus, through this analysis, we confirmed the successful inclusion of the MWCNT in the cotton yarn and revealed the characteristics of them.
一旦通过SEM揭示了形态,我们就必须证实纱线中含有MWCNTs,PPy的合成及其与所采用方法相关的结构变化。作为这项任务的工具,我们采用了拉曼光谱,因为这种技术是无损的,并提供材料的振动指纹,从而可以识别和表征它们。图3显示了所有样品的拉曼光谱。用MWCNTs改性的棉纱的相应光谱(图3a)在1335、1572和1590 cm –1 处表现出三个条带,分别对应于MWCNTs的D、G和D′条带。D波段与无定形碳的结构无序有关,而G波段对应于石墨烯片内C-C键的切向平面拉伸振动。(40) 在MWCNTs的情况下,当它们被功能化时,出现了D′带,表明石墨壁之间的无序程度、结构缺陷或化学物质的嵌入。(38) 我们对与 D 波段相关的光谱进行了归一化,并计算了 ID/IG 比值,因为该参数用于评估管壁的无序密度,(41) 揭示了 1.7 的值,这证实了 MWCNT 由于功能化处理而具有相当多的缺陷。因此,通过这种分析,我们证实了MWCNT在棉纱中的成功加入,并揭示了它们的特性。

Figure 3 图3

Figure 3. Raman spectrum of samples: (a) CNT, (b) PPy, (c) CNT-PPy, (d) I-PPy, and (e) CNT-I-PPy.
图3.样品拉曼光谱:(a) CNT、(b) PPy、(c) CNT-PPy、(d) I-PPy 和 (e) CNT-I-PPy。

Curves b–e at Figure 3 correspond to the cotton yarns with PPy. In all of them, it is possible to identify the Raman fingerprint of PPy with subtle modifications due to the different synthesis and conditions of the employed procedure. All the spectra presents bands at 919 (ring deformation associated with dication (bipolaron)), 960 (ring in plane deformation associated with cation (polaron), 1032 (symmetrical C–H in plane bending associated with bipolaron and N–H in plane deformation associated with radical cation), 1050 (associated with neutral species, absent in PPy), 1240 (antisymmetric in plane bending), 1321 (C–C in ring and CC inter-ring stretching), 1364 (antisymmetric in ring C–N stretching), 1395 (C–C and C–N stretching absent in PPy), 1480 (skeletal band; C═C and C–N stretching), and 1564 cm–1 (corresponding to in ring and C–C inter ring stretching; this band is an overlap from bands arising from polaron and bipolaron). It is possible to observe that the spectra for both PPy-CNT and CNT-I-PPy present a small displacement to lower wavenumber due to a π–π interaction between the benzene rings from the CNTs and the aromatic ring of pyrrole. (42,43) To identify the main differences of the samples, the ratio from two pairs of bands (917/959 and 1561/1472) was compared for each synthesis. The ratio of intensity from bands at 917/959 is related to bipolaron and polaron, respectively, and indicates the degree of doping (34) while the ratio from 1561/1472 indicates the relative conjugation length. (33,43) The ratio of conjugation (1561/1472) for PPy, CNT-PPy, I-PPy, and CNT-I-PPy revealed values of 2.9, 3.3, 3.2, and 3.3, respectively. The above relation indicated that the conjugation length was maximum for the samples incorporating MWCNTs and the minimum for PPy. Considering the degree of doping the ratio bipolaron/polaron revealed values of 0.85, 0.9, 0.9, and 1.11 for PPy, CNT-PPy, I-PPy, and CNT-I-PPy, respectively. From that information, we can conclude that the PPy sample presented the most disordered structure and a low amount of charge carriers (bipolarons), while the sample I-PPy presented more equilibrated characteristics with a high amount of bipolarons and a considerable level of conjugation comparable to those with MWCNTs.
图 3 中的曲线 b–e 对应于 PPy 的棉纱。在所有这些中,由于所采用程序的不同合成和条件不同,可以通过细微的修改来识别PPy的拉曼指纹图谱。所有光谱在以下位置呈现条带:919(与切割相关的环变形(双极化子))、960(与阳离子相关的平面变形环(极化子)、1032(与双极化子相关的平面弯曲中的对称 C-H 和与自由基阳离子相关的平面变形中的 N-H)、1050(与中性物质相关,在 PPy 中不存在)、1240(平面弯曲中的不对称)、1321(环中的 C-C 和 CC 环间拉伸), 1364(环 C-N 拉伸中的不对称)、1395(PPy 中不存在 C-C 和 C-N 拉伸)、1480(骨骼带;C═C 和 C-N 拉伸)和 1564 cm –1 (对应于环内和 C-C 环间拉伸;该带是极化子和双极化子产生的带的重叠)。可以观察到,由于来自CNT的苯环与吡咯芳香环之间的π-π相互作用,PPy-CNT和CNT-I-PPy的光谱都呈现出较小的波数位移。(42,43) 为了确定样品的主要差异,比较了每次合成的两对条带(917/959 和 1561/1472)的比率。917/959 条带的强度比分别与双极化元和极化子有关,并表示掺杂程度 (34),而 1561/1472 的比值表示相对共轭长度。(33,43) PPy、CNT-PPy、I-PPy 和 CNT-I-PPy 的共轭比 (1561/1472) 分别显示值为 2.9、3.3、3.2 和 3.3。 上述关系表明,掺入MWCNTs的样品的共轭长度最大,PPy的共轭长度最小。考虑到掺杂程度,双极化子/极化子的比率显示PPy、CNT-PPy、I-PPy和CNT-I-PPy的值分别为0.85、0.9、0.9和1.11。从这些信息中,我们可以得出结论,PPy样品呈现出最无序的结构和少量的电荷载流子(双极化子),而样品I-PPy表现出更多的平衡特性,具有大量的双极化子和相当水平的共轭,与MWCNTs相当。

Electrical Characterization and Application of Composites as Electrical Heaters
复合材料作为电加热器的电学特性及应用

The electrical conductivity of the modified yarns is essential for the proposed application. In Figure 4, it is presented the resulting IV curves where all the samples presented a linear correlation between applied voltage and current, indicating an ohmic behavior. The slope increased in the order PPy, CNT, CNT-PPy, I-PPy, and CNT-I-PPy yarns, which revealed conductivity levels summarized in Table 1. The lower value of conductivity is observed for samples prepared by standard method: in situ polymerization of PPy. The electrical conductivity of the samples composed with PPy are related to molecular or structural and macroscopic characteristics. Particularly, PPy cotton yarns exhibited the lowest degree of conjugation and doping (as showed by Raman) that associated with a low compactness of the PPy coating (as observed by the SEM images) contributed to restrict the current transport, generating a poor electrical conductor. Before considering the electrical characteristics of samples composed of MWCNT and PPy, it is necessary to explain the conductivity of the MWCNT. In these yarns, the MWCNTs (adsorbed in each cycle) create electrical paths until reach the percolation threshold. The MWCNTs yarns presented a higher conductivity than the PPy yarns but not as high as that presented by cotton yarns with the previously reported single wall carbon nanotubes (SWCNTs). (39) MWCNTs are larger, rigid, and less electrical conductive (2,44) than SWCNTs which impedes a more dispersed network in the cotton fibrils, consequently a higher electrical resistance. Nonetheless, MWCNTs are cheaper than SWCNT and present an adequate conductivity.
改性纱线的导电性对于拟议的应用至关重要。在图4中,给出了得到的I-V曲线,其中所有样本都呈现出施加的电压和电流之间的线性相关性,表明了欧姆行为。斜率按PPy、CNT、CNT-PPy、I-PPy和CNT-I-PPy纱线的顺序增加,显示出表1中总结的电导率水平。对于通过标准方法制备的样品,观察到较低的电导率值:PPy的原位聚合。由PPy组成的样品的电导率与分子或结构和宏观特性有关。特别是,PPy棉纱表现出最低程度的共轭和掺杂(如Raman所示),这与PPy涂层的低致密性(如SEM图像所观察到的)有关,有助于限制电流传输,产生不良的电导体。在考虑由MWCNT和PPy组成的样品的电特性之前,有必要解释MWCNT的电导率。在这些纱线中,MWCNT(在每个循环中吸附)创建电路径,直到达到渗滤阈值。MWCNTs纱线的导电性高于PPy纱线,但不如先前报道的单壁碳纳米管(SWCNTs)棉纱线的导电性高。(39) MWCNT 比 SWCNT 更大、更坚硬且导电性更低 (2,44),这阻碍了棉原纤维中更分散的网络,因此电阻更高。尽管如此,MWCNT比SWCNT便宜,并且具有足够的电导率。
Table 1. Comparison of Conductivity of PPy/CNT-Based Samples with Those of Other Reported Samples in the Literature
表 1.基于PPy/CNT的样品的电导率与文献中其他报道样品的电导率比较
material 材料conductivity (S cm–1)
电导率 (S cm –1
ref
PPy0.69 × 10–3this work 这项工作
CNT0.15this work 这项工作
CNT-PPy 碳纳米管-PPy1.17this work 这项工作
I-PPy I-PPy型1.18this work 这项工作
CNT-I-PPy 碳纳米管-I-PPy10.44this work 这项工作
PPy + CuO PPy + 铜10.00 (45)
PPy + lignosulfonate PPy + 木质素磺酸盐3.03 (56)
PPy + CTAB5.85 (63)
PPy(Fecl3 + AQSA)
PPy(铁氧烷+ 3 AQSA)
1.5 × 10–3 (64)

Figure 4 图4

Figure 4. Current–voltage curves of samples: textile, CNT, PPy, CNT-PPy, I-PPy, and CNT-I-PPy.
图4.样品的电流-电压曲线:纺织品、CNT、PPy、CNT-PPy、I-PPy 和 CNT-I-PPy。

The CNT-PPy yarns presented a considerable enhancement in their electrical conductivity. The effect of MWCNTs on the polymerization improved the conjugation of PPy (as observed by Raman spectrum) and a denser coating as showed in SEM images. The nanotubes in this case acted as an additive that facilitates the charge-transfer process, compensating the defects of PPy. The I-PPy yarn presented an outstanding electrical conductivity comparable to the CNT-PPy, which is a clear consequence of the interfacial polymerization process. As discussed before, the I-PPy displayed a high degree of conjugation and doping, product of syntheses conditions as dopant, reaction time and temperature. Qi et al. (26) described that the reason of high conductivity resides in the selection of an appropriate solvent for Py, low monomer concentration and the use of a sulfonic acid (in our case CSA). In this system, the CSA seems to be a key component as this acted as a surfactant at the interface because of its amphiphilic nature that allows an easy incorporation as Py slowly diffuses and polymerized, gradually incorporating more CSA, and consequently increasing the doping level.
CNT-PPy纱线的导电性得到了显著提高。MWCNTs对聚合作用的影响改善了PPy的共轭(如拉曼光谱所观察到的)和更致密的涂层,如SEM图像所示。在这种情况下,纳米管充当了促进电荷转移过程的添加剂,补偿了PPy的缺陷。I-PPy纱线具有与CNT-PPy相当的出色导电性,这是界面聚合过程的明显结果。如前所述,I-PPy表现出高度的共轭和掺杂,是掺杂剂、反应时间和温度等合成条件的产物。Qi等人(26)描述了高电导率的原因在于为Py选择合适的溶剂,低单体浓度和磺酸(在我们的例子中为CSA)。在这个系统中,CSA似乎是一个关键成分,因为它在界面上充当表面活性剂,因为它具有两亲性,当Py缓慢扩散和聚合时,可以很容易地掺入,逐渐掺入更多的CSA,从而增加掺杂水平。
Finally, as expected the interfacial polymerization of doped polypyrrole on the cotton yarn templates covered by carbon nanotubes results in the most conductive structure (10 x the conductivity level of I-PPy) characterizing a promising candidate for efficient application as electrical heaters, because of mutual doping effects of CSA/CNT and rich morphology provided by interfacial polymerization.
最后,正如预期的那样,由于CSA/CNT的相互掺杂效应和界面聚合提供的丰富形貌,掺杂聚吡咯在碳纳米管覆盖的棉纱模板上的界面聚合产生了最强的导电性结构(I-PPy电导率水平的10倍),这是作为电加热器有效应用的有希望的候选者。
It is worth mentioning that different strategies have been made to produce highly conductive fabrics. The comparison with data reported in the literature (summarized in Table 1) reveals that low conductivity of PPy on cotton fabrics (0.69 mS cm–1) represents an important point to be addressed. Xu et al. (45) explored the in situ polymerization of polypyrrole using CuO nanoparticles as templates reaching conductivity of 10 S cm–1. In our case, the best conductivity was observed for CNT-I-PPy (10.44 S cm–1), characterizing a promising and competitive system for application in electronic devices.
值得一提的是,已经制定了不同的策略来生产高导电性织物。与文献中报道的数据(总结在表1中)的比较表明,棉织物上PPy的低电导率(0.69 mS cm –1 )是一个需要解决的重要问题。Xu等(45)探索了使用CuO纳米颗粒作为模板的聚吡咯原位聚合,电导率达到10 S cm –1 。在我们的案例中,观察到 CNT-I-PPy (10.44 S cm –1 ) 的最佳电导率,表征了一种在电子设备中应用的有前途且具有竞争力的系统。
Before actual applications, it is necessary to explore the retention of the electrical properties upon the most diverse mechanical efforts. The durability of the CNT-I-PPy under the repeated action application of a minimum/maximum voltage (5 V) is shown in Figure 5a, which reveals that maximum and minimum in temperature values are regularly reached, indicating that negligible process of degradation is observed for successive and extreme condition of operation. In addition, we twisted, bent, and rolled the CNT-I-PPy yarns for several cycles and measured their electrical properties. In Figure 5b, it is observed that the initial electrical response of the CNT-I-PPy (normal state) remains even after it was bent and twisted. The same response is observed after constant cycles of mechanical efforts (400 cycles of bending, Figure 5c) with only a slight variation in the resistance of samples, confirming robustness. In addition to this response, the attachment of MWCNTs and PPy on cotton yarn surface represents another important aspect for its successive use of wearable devices. To verify the reuse capability of textiles, we performed assays in which the CNT-I-PPy yarns were electrical characterized after cycles of anionic laundering. The results in Figure 5d confirm that not important changes occurred, only a slight decrease in conductivity after the first washing cycle, indicating the possible removal of residues from fibers. Despite this initial observation, the following washing steps are accomplished by a negligible variation in the electrical response of fibers, confirming that electrical activity of fibers is maintained after successive washing procedures.
在实际应用之前,有必要探索在最多样化的机械努力下保持电气性能。CNT-I-PPy在最小/最大电压(5 V)的重复作用下的耐久性如图5a所示,该图显示,温度值经常达到最大和最小值,表明在连续和极端的操作条件下观察到的退化过程可以忽略不计。此外,我们还对CNT-I-PPy纱线进行了几次加捻、弯曲和轧制,并测量了它们的电性能。在图5b中,观察到CNT-I-PPy(正常状态)的初始电响应即使在弯曲和扭曲后仍保持不变。在恒定的机械作用循环(400 次弯曲循环,图 5c)后观察到相同的响应,样品的电阻仅略有变化,证实了稳健性。除了这种反应之外,MWCNTs和PPy在棉纱表面的附着是其连续使用可穿戴设备的另一个重要方面。为了验证纺织品的再利用能力,我们进行了分析,其中CNT-I-PPy纱线在阴离子洗涤循环后进行了电表征。图5d中的结果证实,没有发生重大变化,只是在第一次洗涤循环后电导率略有下降,表明可能去除纤维中的残留物。尽管有这种初步观察,但以下洗涤步骤是通过纤维电响应的可忽略不计的变化来完成的,这证实了纤维的电活性在连续的洗涤程序后得以保持。

Figure 5 图5

Figure 5. (a) Temperature of CNT-I-PPy sample as function of successive on–off voltage (5 V) cycles. (b) IV curve of CNT-I-PPy sample under specific mechanical deformations. (c) Response of resistance after continuous bending processes, and (d) the electrical response of CNT-I-PPy sample after complete laundering cycles.
图5.(a) CNT-I-PPy样品的温度与连续开关电压(5 V)周期的函数关系。(b) CNT-I-PPy试样在特定力学变形作用下的I–V曲线。(c) 连续弯曲过程后的电阻响应,以及 (d) CNT-I-PPy 样品在完成洗涤循环后的电响应。

Once assessed the characteristics of the produced yarns, we characterized them as a Joule heater. An important parameter is the dissipative power (P), as this is related to the heat generated by the energy loses of a charge moving across a resistor. The P is directly proportional to the voltage (V) and current (I) – P = VI. Then, it is possible to infer that the degree of conductivity of sample presents a direct correspondence with the maximum temperature achievable in each yarn produced.
一旦评估了所生产纱线的特性,我们就将其描述为焦耳加热器。一个重要的参数是耗散功率 (P),因为这与通过电阻器移动的电荷的能量损失产生的热量有关。P 与电压 (V) 和电流 (I) 成正比 – P = VI。然后,可以推断样品的导电率与生产的每根纱线中可达到的最高温度直接对应。
As expected, the lower variation in temperature is observed for the samples with higher resistance (PPy and MWCNT): see Figure 6a. The influence of doping level and additives (provided by the interfacial polymerization and MWCNT) affects the maximum achieved value of temperature for a corresponding value of voltage. The sample CNT-I-PPy reaches 75 °C with a field in the order of 5 V/cm, characterizing a strong advantage for this sample. The comparison of the slopes in the curves of temperature versus power density (Figure 6b) confirms that it would be required a higher electrical field for all other samples to reach a temperature in the order of 75 °C. The lowest value of slope is observed for sample CNT-I-PPy that requires a low power to achieve a high excursion in temperature variation, as required for Joule heaters.
正如预期的那样,对于电阻较高的样品(PPy和MWCNT),观察到较低的温度变化:见图6a。掺杂水平和添加剂(由界面聚合和MWCNT提供)的影响影响相应电压值的最大温度实现值。样品CNT-I-PPy达到75°C,磁场约为5 V/cm,具有强大的优势。温度与功率密度曲线中的斜率比较(图6b)证实,所有其他样品需要更高的电场才能达到75°C的温度。 对于样品CNT-I-PPy,观察到的斜率最低值,该样品需要低功率才能实现温度变化的高偏移,这是焦耳加热器的要求。

Figure 6 图6

Figure 6. (a) Influence of voltage and composition of fiber on temperature of different composites, (b) dependence of temperature with power density for different composites, (c) dependence of temperature of fiber CNT-I-PPy as function of voltage and time of external excitation (on and off conditions), and (d) projection of the results on the XZ axis-dependence of temperature with time.
图6.(a)不同复合材料的电压和成分对温度的影响,(b)不同复合材料的温度与功率密度的依赖性,(c)纤维CNT-I-PPy温度对电压和外部激励时间(开和关条件)的依赖性,以及(d)结果对XZ轴的预测-温度随时间的变化。

The time-dependent response of temperature on CNT-I-PPy as a function of transition of voltage from 0 V to a fixed value on sample is shown in Figure 6c, while the corresponding projection in the XZ-axis can be seen in Figure 6d. The higher voltage is associated with higher variation in temperature and consequently the characteristic time required to reach the equilibrium temperature. On the basis of our results, it is possible to identify the characteristic time (required time to reach 63% of complete variation in temperature) of 16 s at applied voltage of 3.5 V to achieve 75 °C, confirming that CNT-I-PPy represents a promising candidate for application as Joule heating component.
CNT-I-PPy上温度随电压从0 V到样品固定值的转换而产生的瞬态响应如图6c所示,而XZ轴上的相应投影如图6d所示。较高的电压与较高的温度变化有关,因此达到平衡温度所需的特性时间也越大。根据我们的结果,可以确定在3.5 V施加电压下达到75 °C的16 s的特征时间(达到温度完全变化的63%所需的时间),证实了CNT-I-PPy代表了作为焦耳热组件的有前途的候选者。
To have a better idea of the significance of our results, we have to consider for example the work of Kaynak and Hakansson (46) that reported the use of polypyrrole-coated PET-lycra fabrics. The samples were chemically synthesized and doped with antraquinone-2-sulfonic acid (AQSA) and reached 40.55 °C, at an applied voltage of 24 V for 5 min. In the corresponding system reported by Maity et al., (47) it was observed a maximum temperature of 42.4 °C on PPy-based fabrics at an applied voltage of 5 V for 5 min. The incorporation of PPy/PVA-co-PE on PET substrate (48) returned samples with a good conductivity (1 S cm–1) and temperature of 80 °C with a characteristic growth time constant of 41.3 s.
为了更好地了解我们结果的重要性,我们必须考虑Kaynak和Hakansson(46)的工作,他们报告了使用聚吡咯涂层的PET-莱卡织物。将样品化学合成并掺杂安曲醌-2-磺酸(AQSA),在24 V的施加电压下达到40.55 °C,持续5 min。在Maity等人报道的相应系统中,(47)观察到PPy基织物在5 V的施加电压下最高温度为42.4°C,持续5分钟。在PET基材(48)上掺入PPy/PVA-co-PE返回的样品具有良好的电导率(1 S cm –1 ),温度为80 °C,特征生长时间常数为41.3 s。
To evaluate the effective action of fibers as a component of wearable device, we introduced the CNT-I-PPy cotton yarn sample on the index finger of a cotton knitted hand glove (see Figure 7a). The terminals of the sewing fiber were connected to a DC voltage source (12 V). The thermal images (shown in Figures 7b and 7c) reveal the activity of electrical heater on specific region (index finger): in the absence of external excitation (V = 0 V), the temperature on hand surface is homogeneously distributed with value in order of 34 °C. The response of the electrical heater (connected to DC source of 12 V) is observed from the increase in the temperature on index finger (as depicted by the thermal image) that reaches values in order of 43 °C while other fingers and hand remain in the previous temperature. This experiment has showed the simplicity of incorporate the produced yarns for some important applications in wearable devices that refers to the controlled variation of temperature in specific regions of body.
为了评估纤维作为可穿戴设备组件的有效作用,我们在棉针织手套的食指上引入了CNT-I-PPy棉纱样品(见图7a)。缝纫纤维的端子连接到直流电压源(12 V)。热图像(如图7b和7c所示)揭示了电加热器在特定区域(食指)上的活动:在没有外部激励(V = 0 V)的情况下,手表面的温度均匀分布,其值约为34°C。 电加热器(连接到 12 V 直流电源)的响应是从食指(如热图像所示)的温度升高中观察到的,该温度达到 43 °C 的值,而其他手指和手保持在以前的温度。该实验表明,将生产的纱线用于可穿戴设备中的一些重要应用是简单的,这些应用是指身体特定区域的温度受控变化。

Figure 7 图7

Figure 7. (a) Scheme of disposition of device on index finger of cotton knitted hand gloves, (b) temperature of glove under control condition, and (c) temperature of glove under external excitation of 12 V on index finger.
图7.(a) 棉针织手套食指上的装置布置方案,(b) 控制条件下手套的温度,以及 (c) 食指在12 V外部激励下手套的温度。

Supercapacitors Assays 超级电容器检测

It is desirable that conductive textiles possess multiple capabilities, allowing their implementation for several tasks in wearable electronics. One of the most important is the energy storage, as devices for this task could harvest the generated energy by the motion of user and supply the required energy for incorporated sensors, heaters or displays. (49) Among, the most important energy storage devices supercapacitors stand out because of their high durability, power densities and fast charge–discharge process. A particular and interesting combination of materials for supercapacitors are the conducting polymers and carbon allotropes (carbon nanotubes and graphene) that has been currently applied in the development of electrodes for supercapacitors. (28,29,50−56) Predominantly, CNT-PPy composites introduce an enriching synergy derived from the properties of both components: the fast diffusion rate of charges (polymeric chains properties) and surface limited processes of CNT, associating the pseudocapacitance of PPy with electrical double layer capacitance (EDLC) of carbon allotropes.
导电纺织品具有多种功能,允许它们在可穿戴电子产品中实现多项任务。其中最重要的是储能,因为用于此任务的设备可以通过用户的运动收集产生的能量,并为内置的传感器、加热器或显示器提供所需的能量。(49) 其中,最重要的储能设备超级电容器因其高耐久性、功率密度和快速充放电过程而脱颖而出。超级电容器材料的一个特殊而有趣的组合是导电聚合物和碳同素异形体(碳纳米管和石墨烯),目前已应用于超级电容器电极的开发。(28,29,50−56) CNT-PPy复合材料主要引入了一种丰富的协同作用,这些协同作用源自两种组分的特性:CNT的电荷快速扩散速率(聚合物链特性)和表面限制过程,将PPy的赝电容与碳同素异形体的双电层电容(EDLC)相关联。
To evaluate the influence of composition of the proposed conductive yarns as electrodes for supercapacitors, we first studied their electrochemical properties in a three-electrode configuration in an acidic solution (H3PO4, 1 M). The cyclic voltammetry curves of electrodes at a fixed scan rate of 50 mVs–1 are showed in Figure 8a. The area enclosed by these curves is proportional to the specific capacitance of the samples: a higher area in curves reveal a better electrochemical performance for the resulting materials.
为了评估所提出的导电纱线作为超级电容器电极的成分的影响,我们首先研究了它们在酸性溶液(H 3 PO 4 , 1 M)中三电极配置中的电化学性能。在50 mVs –1 的固定扫描速率下,电极的循环伏安曲线如图8a所示。这些曲线所包围的面积与样品的比电容成正比:曲线中的面积越大,所得材料的电化学性能越好。

Figure 8 图8

Figure 8. (a) Comparison of cyclic voltammograms for different samples disposed on textiles at scan rate of 50 mVs–1. (b) Calculated linear capacitance from CV curves. (c) Cyclic voltammograms of CNT-I-PPy sample at different scan rate, and (d) calculated linear capacitance for sample CNT-I-PPy as function of scan rate.
图8.(a) 比较在50毫伏的扫描速率下处理在纺织品上的不同样品的循环伏安图 –1 。(b) 根据CV曲线计算的线性电容。(c)不同扫描速率下CNT-I-PPy样品的循环伏安图,以及(d)计算样品CNT-I-PPy的线性电容随扫描速率的变化。

As expected, poor electrical properties (high resistance) of CNT and PPy samples returned negligible area in voltammograms, characterizing the disadvantages of isolated components as electrodes for supercapacitors. However, as previously observed, the interaction of PPy and CNT returns improved electrical properties. In correspondence, the electrochemical response is improved and an increase in the area on voltammogram confirms the promising conditions for application of materials as electrodes.
正如预期的那样,CNT和PPy样品的电性能差(高电阻)在伏安图中返回的面积可以忽略不计,这表征了隔离组件作为超级电容器电极的缺点。然而,如前所述,PPy和CNT的相互作用返回了改进的电性能。相应地,电化学响应得到改善,伏安图上面积的增加证实了材料作为电极应用的有希望的条件。
The optimization in the electrochemical performance was observed for samples prepared by interfacial polymerization. As we can see, a strong increase in the areal capacitance value is observed for the I-PPy samples while the interaction of doped PPy with the MWCNT reinforces the performance observed by pristine I-PPy. The quantification of these processes (corresponding linear capacitance) is shown in Figure 8b. These values of linear capacitance of samples were obtained according eq 1 (57)
观察到通过界面聚合制备的样品的电化学性能优化。正如我们所看到的,I-PPy样品的面电容值显著增加,而掺杂的PPy与MWCNT的相互作用加强了原始I-PPy观察到的性能。这些过程的量化(相应的线性电容)如图8b所示。样品的线性电容值是根据方程1(57)获得的
(1)
where i is the current of the voltammogram, s is the scan rate (mV.s–1), l is the length of electrode (cm), and ΔV is the potential window.
其中是伏安图的电流,s是扫描速率(mV.s –1 ),是电极的长度(cm),ΔV是电位窗口。
The best performance was observed for sample CNT-I-PPy (45 mF cm–1), which is 2× higher than the corresponding capacitance of I-PPy and 12× the capacitance of CNT-PPy sample, revealing the importance of interfacial polymerization of PPy on electrochemical performance of the resulting material.
样品CNT-I-PPy(45 mF cm –1 )的性能最好,比I-PPy的电容高2×比CNT-PPy样品的电容高12×揭示了PPy界面聚合对所得材料电化学性能的重要性。
Because of the superior performance of CNT-I-PPy sample, it was performed a more complete scan rate in voltammograms (from 5 to 200 mV s–1)—see Figure 8c—to calculate the specific capacitance. The results in Figure 8d confirm that resulting capacitance reaches a competitive value for application as cotton-based wearable supercapacitor.
由于CNT-I-PPy样品的卓越性能,在伏安图(从5到200 mV s –1 )中执行了更完整的扫描速率(见图8c),以计算比电容。图8d中的结果证实,所得电容在作为棉基可穿戴超级电容器应用方面具有竞争力。
On the basis of these findings, we constructed symmetric supercapacitors considering CNT-I-PPy samples and an acidic polymeric electrolyte (PVA–H3PO4) according to the scheme shown in Figure 1. Galvanostatic charge–discharge curves were evaluated at different current densities, as shown in Figure 9a. Nonideal straight line is observed in all curves, in response of faradaic mechanism because of the redox reactions in conducting layer.
基于这些发现,我们根据图1所示的方案构建了考虑CNT-I-PPy样品和酸性聚合物电解质(PVA-H 3 PO 4 )的对称超级电容器。在不同的电流密度下评估了恒电流充放电曲线,如图9a所示。由于导电层中的氧化还原反应,在所有曲线中都观察到非理想直线,这是法拉第机理的响应。

Figure 9 图9

Figure 9. Electrochemical characterization curves for CNT-I-PPy supercapacitor: (a) GCD curves at different current density, (b) comparison of CV curves at different scan rates, (c) calculated specific capacitance at different current density, (d) Ragone plot, (e) capacitance retention at 1.5 mA, and (f) Nyquist plots for as-prepared supercapacitor and after 2000 cycles of use.
图 9.CNT-I-PPy超级电容器的电化学表征曲线:(a)不同电流密度下的GCD曲线,(b)不同扫描速率下的CV曲线比较,(c)计算的不同电流密度下的比电容,(d)Ragone图,(e)1.5 mA下的电容保持率,以及(f)制备的超级电容器和2000次使用周期后的奈奎斯特图。

Cyclic voltammograms shown in Figure 9b reveal that at low scan rate the curves are square shaped while distortions are observed at increasing scan rate. It is because of the increase of voltage drop at high sweep rate in consequence of variable counterion migration in small pore channel of polymer structure. As a consequence, the electrical potential in the bulk of electrodes is not constant, leading to a variable charging/discharging current and dispersion of the resulting capacitance, a typical characteristic of faradaic-dominant behavior systems.
图9b所示的循环伏安图显示,在低扫描速率下,曲线呈方形,而在扫描速率增加时观察到畸变。这是由于聚合物结构的小孔通道中可变的反离子迁移导致高扫描速率下电压降的增加。因此,大部分电极中的电势不是恒定的,导致可变的充电/放电电流和由此产生的电容的分散,这是法拉第主导行为系统的典型特征。
The specific capacitance value was determined from the galvanostatic charge–discharge according to eq 2 (57−59)
根据方程2(57−59)根据恒电流充放电确定比电容值
(2)
where V is the potential (V) from the IR drop to zero, I is the applied current of discharge (in A), m is the active mass of electrode (CNT-I-PPy layer), and Darea (in V s) is the area under the discharge curve.
其中 V 是从 IR 降到零的电位 (V),I 是施加的放电电流(以 A 为单位),m 是电极(CNT-I-PPy 层)的有源质量,D area (以 V s 为单位)是放电曲线下的面积。
As expected, the curve in Figure 9c confirms that specific capacitance varies inversely with the charging current, reaching a maximum value in order of 30 F g–1.
正如预期的那样,图9c中的曲线证实了比电容与充电电流成反比,达到最大值,约为30 F g –1
The Ragone plot for corresponding sample was obtained from calculus of energy and power density, as follows: The energy density was calculated from data of Figure 9a and it is estimated by eq 3
通过能量和功率密度的微积分得到相应样品的Ragone图,如下所示:能量密度由图9a的数据计算,并由方程3估计
(3)
where E is the energy density (W h g–1), V is the potential, and Csp is the specific capacitance of material.
其中E是能量密度(W,hg –1 ),V是电位,C sp 是材料的比电容。
The power density (eq 4) was calculated as
功率密度(方程4)计算如下
(4)
where Δt is the discharge time.
其中 Δt 是放电时间。
The maximum value of energy and power density (Figure 9d) are 2.63 and 11.33 mW g–1, respectively.
能量和功率密度的最大值(图9d)分别为2.63和11.33 mW g –1
In terms of cyclability, the device was cycled under a current of 1.5 mA. The capacitive retention is displayed in Figure 9e. As shown, the capacitive retention tends to be increased in the first 500 cycles because of the self-activation process in which new pathways are created for current circulation at interfaces. (60) Successive cycles of charge–discharge provoke the reduction in the capacitive retention to values in order of 80% after 2000 cycles of use, characterizing an important advantage in comparison with polymer-based supercapacitors.
在可循环性方面,该器件在 1.5 mA 的电流下循环。电容保持如图9e所示。如图所示,电容保持率在前 500 个周期中趋于增加,因为在自激活过程中,为界面处的电流循环创造了新的路径。(60) 连续的充放电循环使电容保持率在使用2000次循环后降低到80%左右,这是与聚合物基超级电容器相比的重要优势。
Electrical impedance spectroscopy (EIS) measurements were carried out to evaluate the influence of reuses on electrochemical behavior of the electrode–electrolyte interface of supercapacitor. For this, we compared the response of the same sample in Nyquist plot before the use and after 2000 cycles of use.
通过电阻抗谱(EIS)测量,评价重复使用对超级电容器电极-电解质界面电化学行为的影响。为此,我们比较了奈奎斯特图中相同样本在使用前和使用2000个周期后的响应。
Both responses are characterized in Nyquist plots (Figure 9f) by depressed semicircles superposed by a linear branch at low frequency region related to the confined diffusion process in the electrolyte. The most appropriate equivalent circuit (shown in the inset of Figure 9f) was used to fit the impedance curves: R0 represents the electrolyte resistance, while the constant phase element (Y0) characterizes the double layer capacitance, the charge transfer resistance is represented by R1 and the Warburg element (Y1) represents diffusive processes.
在奈奎斯特图(图9f)中,这两种响应的特征是凹陷的半圆叠加在与电解质中受限扩散过程相关的低频区域的线性分支上。最合适的等效电路(如图9f插图所示)用于拟合阻抗曲线:R 0 表示电解质电阻,而恒相元件(Y 0 )表示双电层电容,电荷转移电阻由R表示 1 ,Warburg元件(Y 1 )表示扩散过程。
The line in each curve represents the best fitting curves obtained with corresponding parameters shown in Table 2. The electrolyte resistance and charge transfer resistance for as-prepared samples were lower than those of the cycled samples, characterizing the degradation after successive reuses, due to the elevation in voltage drop and degradation of conducting paths for charge circulation/accumulation. The reduction in admittances Y0 and Y1 in association with reduction of parameter n confirms the nonuniform distribution of current along changeable sites. These results confirm that reduction in capacitive retention is a consequence of progressive structural modification at electrode/electrolyte interface of supercapacitor.
每条曲线中的线表示使用表2所示的相应参数获得的最佳拟合曲线。制备样品的电解质电阻和电荷转移电阻低于循环样品,这是由于电压降升高和电荷循环/积累的导电路径退化所致,表现了连续重复使用后的退化。导纳 Y 0 和 Y 1 的减小与参数 n 的减小相关,证实了电流沿可变位点的不均匀分布。这些结果证实了电容保持率的降低是超级电容器电极/电解质界面逐渐结构改变的结果。
Table 2. Fitted Parameters from Equivalent Circuit (Inset of Figure 9f) Describing the Aging Behavior of PPy-I-CNT
表 2.描述PPy-I-CNT老化行为的等效电路拟合参数(图9f插图)
number of cycles 循环次数R0 (Ω) R 0 (Ω)R1 (Ω) R 1 (Ω)Y0 (mMho) Y 0 (毫兆米)nY1 (mMho) Y 1 (毫兆米)
069.828.27.40.45516.3
200012371.84.90.35211.7

Antibacterial Activity 抗菌活性

As wearable electronic textiles are in direct contact with the skin and experiment several changes in temperature, humidity and contact, they are prone to attach bacteria and favor diseases or bad odors. In that regard, most of the antibacterial additives imply the use of metal particles which is not a favorable condition because of the possible leaching and subsequent contamination of the environment. Recently, we have proposed the use of PPy as a metal free antibacterial agent whose bactericidal activity is attributed to the positive charges along the backbone chains (polaron and bipolaron), that attract bacteria, provoking the death by disrupting the cell wall. (11,14,61,62) Thus, the doping level, the type of counterion and morphology (32) are directly related to the antibacterial effect of the resulting material. So, it is expected a strong activity of the highly doped samples produced by the interfacial polymerization on the bactericidal activity.
由于可穿戴电子纺织品与皮肤直接接触,并尝试温度、湿度和接触的多种变化,因此它们容易附着细菌并有利于疾病或难闻的气味。在这方面,大多数抗菌添加剂意味着使用金属颗粒,这不是一个有利条件,因为可能浸出并随后污染环境。最近,我们提议使用PPy作为无金属抗菌剂,其杀菌活性归因于沿主链(极化子和双极化子)的正电荷,这些电荷吸引细菌,通过破坏细胞壁引发死亡。(11,14,61,62)因此,掺杂水平、反离子类型和形貌(32)与所得材料的抗菌效果直接相关。因此,预计通过界面聚合产生的高掺杂样品具有很强的杀菌活性。
The results from the diffusion halo experiments (shown in Figure 10a) revealed a negligible halo, as observed for samples prepared with CNT, while more pronounced ones are observed for CNT-PPy samples, indicating the diffusion of some species (Cl) that contribute to its bactericidal activity in association with positively charged species on polymeric chains.
扩散晕实验的结果(如图10a所示)显示,在用CNT制备的样品中观察到的晕可以忽略不计,而在CNT-PPy样品中观察到更明显的晕,表明某些物质(Cl )的扩散有助于其杀菌活性与聚合物链上带正电的物质有关。

Figure 10 图10

Figure 10. (a) Inhibition halo images of samples against S. aureus and (b) remaining CFU of S. aureus after treatment with different composites.
图 10.(a) 样品对金黄色葡萄球菌的抑制晕图像和 (b) 用不同复合材料处理后金黄色葡萄球菌剩余的 CFU。

The remaining colony-forming unit (CFU) because of the action of different composites is expressed in Figure 10b. As expected, the control experiment–absence of bactericidal agent returned an uncountable number of colonies. The incorporation of modified cotton yarns inhibits the bacterial growth in the following order (CFU number): CNT > PPy > CNT-PPy > CNT-I-PPy > I-PPy.
由于不同复合材料的作用而产生的剩余菌落形成单元(CFU)如图10b所示。正如预期的那样,对照实验 - 没有杀菌剂返回了无数的菌落。改性棉纱的掺入按以下顺序(CFU编号)抑制细菌生长:CNT > PPy > CNT-PPy > CNT-I-PPy > I-PPy。
The most important result was observed for the sample I-PPy that reached a 100% bacterial (Staphylococcus aureus) reduction, revealing that doping level observed in the interfacial polymerization produced a promising system for antibacterial activity. These results are in concordance with the observations of Varesano et al, that reported the production and application of PPy-coated cotton fabrics (by in situ chemical polymerization) against S. aureus. The authors observed that doped PPy (with dicyclohexyl sulfosuccinate sodium salt) reaches a complete inhibition of S. aureus (bacterial reduction of 100% in samples with concentration of monomers above 2 g L–1). (14)
对样品I-PPy观察到最重要的结果,该样品的细菌(金黄色葡萄球菌)减少了100%,这表明在界面聚合中观察到的掺杂水平产生了一个有前途的抗菌活性系统。这些结果与Varesano等人的观察结果一致,他们报道了针对金黄色葡萄球菌的PPy涂层棉织物(通过原位化学聚合)的生产和应用。作者观察到,掺杂的PPy(含磺基琥珀酸二环己酯钠盐)可以完全抑制金黄色葡萄球菌(在单体浓度高于2g L –1 的样品中细菌减少100%)。(14)
We attribute the effectivity of I-PPy to a low rate polymerization that allowed the gradual incorporation of CSA, affecting the doping level. In addition, the granular structure of I-PPy offered a higher available surface area for bacteria adhesion and killing, which confers negligible CFU for I-PPy samples, at monomer concentration (8 g L–1) above the critical value observed in the literature.
我们将I-PPy的有效性归因于低速率聚合,该聚合允许CSA逐渐掺入,从而影响掺杂水平。此外,I-PPy的颗粒结构为细菌的粘附和杀伤提供了更高的可用表面积,这使得I-PPy样品的CFU可以忽略不计,单体浓度(8 g L –1 )高于文献中观察到的临界值。
The combination of these results (and respective applications) corroborates that CNT-I-PPy composite represents a promising system that associates effective electrical heating with energy storage properties and good bactericidal activity.
这些结果(以及各自的应用)的结合证实了CNT-I-PPy复合材料代表了一种很有前途的系统,它将有效的电加热与储能特性和良好的杀菌活性联系起来。

Conclusion 结论

ARTICLE SECTIONS
Jump To
 文章部分J月到

A new multifunctional conducting yarn was produced on commercial cotton yarn by the combination of MWCNTs and the subsequent interfacial polymerization of PPy. The CNT-I-PPy demonstrated a high conductivity and excellent retention of their conducting properties even after diverse mechanical efforts and laundering. The outstanding characteristics of the CNT-I-PPy, allowed their use as a joule heater that can be easily incorporated in strategic parts of the clothes for electronic wearable devices. In comparison with some of the reported joule heaters based on PPy, our system was more efficient, that is, it required less potential to achieve a higher temperature (75 °C). Because of the pseudocapacitance/electrical double layer capacitance (PPy and MWCNT properties) and high electrical conductivity, we studied the performance of the components as electrodes and fabricated a supercapacitor device that showed a capacitance, energy density and power of 30 F g–1, 2.63 mW h g–1, and 11.33 mW g–1, respectively. Finally, as part of the electronic textiles, we demonstrate the antibacterial capability of PPy-MWCNT against bacteria S. aureus. For all of the above, this composite is positioned as a multifunctional platform that can play a key role in tailoring new electronic devices for smart textronics, sensors, and devices for healthcare.
通过MWCNTs的结合和PPy的界面聚合,在商品棉纱上生产了一种新的多功能导电纱线。CNT-I-PPy表现出高导电性和出色的导电性能,即使在经过各种机械努力和洗涤后也能保持良好的导电性能。CNT-I-PPy的出色特性使其能够用作焦耳加热器,可以很容易地将其整合到电子可穿戴设备衣服的战略部件中。与一些基于PPy的焦耳加热器相比,我们的系统效率更高,也就是说,它需要更少的电位来达到更高的温度(75°C)。由于赝电容/电双电层电容(PPy和MWCNT特性)和高电导率,我们研究了组件作为电极的性能,并制备了一种超级电容器器件,其电容、能量密度和功率分别为30 F g –1 、2.63 mW h g –1 和11.33 mW g –1 。最后,作为电子纺织品的一部分,我们证明了PPy-MWCNT对金黄色葡萄球菌的抗菌能力。综上所述,该复合材料被定位为一个多功能平台,可以在为智能文本学、传感器和医疗保健设备定制新电子设备方面发挥关键作用。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 文章部分J月到

  • Corresponding Author 通讯作者
    • Helinando P. de Oliveira - Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, BrazilOrcidhttp://orcid.org/0000-0002-7565-5576 Email: helinando.oliveira@univasf.edu.br
      Helinando P. de Oliveira - 圣弗朗西斯科谷联邦大学材料科学研究所,48920-310,巴西巴伊亚州华泽罗; Orcid http://orcid.org/0000-0002-7565-5576;电子邮件: helinando.oliveira@univasf.edu.br
  • Authors 作者
    • Ravi M. A. P. Lima - Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
    • Jose Jarib Alcaraz-Espinoza - Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, BrazilOrcidhttp://orcid.org/0000-0002-9103-3304
    • Fernando A. G. da Silva - Institute of Materials Science, Federal University of São Francisco Valley, 48920-310, Juazeiro, Bahia, Brazil
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was partially supported by the Brazilian agencies FINEP (project 04.13.0042.00), CAPES, FAPESB, FACEPE (project APQ-0980-1.05/14), and CNPq (project 301238/2013-8). J.J.A.-E. would like to thank CNPq and FACEPE for a postdoctoral fellowship (DCR-0019-1.05/16).

This article references 64 other publications.

  1. 1
    Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26 (31), 53105336,  DOI: 10.1002/adma.201400633
  2. 2
    Shim, B. S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N. A. Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Lett. 2008, 8 (12), 41514157,  DOI: 10.1021/nl801495p
  3. 3
    Kim, B. J.; Kim, D. H.; Lee, Y.-Y.; Shin, H.-W.; Han, G. S.; Hong, J. S.; Mahmood, K.; Ahn, T. K.; Joo, Y.-C.; Hong, K. S. Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 2015, 8 (3), 916921,  DOI: 10.1039/C4EE02441A
  4. 4
    Mijares, J. L.; Agaliotis, E.; Bernal, C. R.; Mollo, M. Self-reinforced polypropylene composites based on low-cost commercial woven and non-woven fabrics. Polym. Adv. Technol. 2018, 29 (1), 111120,  DOI: 10.1002/pat.4093
  5. 5
    Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. V. Review on the antimicrobial properties of carbon nanostructures. Materials 2017, 10 (9), 1066,  DOI: 10.3390/ma10091066
  6. 6
    Shen, C.; Xie, Y.; Zhu, B.; Sanghadasa, M.; Tang, Y.; Lin, L. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Sci. Rep. 2017, 7 (1), 14324,  DOI: 10.1038/s41598-017-14854-3
  7. 7
    Ye, X.; Zhou, Q.; Jia, C.; Tang, Z.; Wan, Z.; Wu, X. A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim. Acta 2016, 206, 155164,  DOI: 10.1016/j.electacta.2016.04.100
  8. 8
    Zhou, Q.; Ye, X.; Wan, Z.; Jia, C. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. J. Power Sources 2015, 296, 186196,  DOI: 10.1016/j.jpowsour.2015.07.012
  9. 9
    Amini, D.; Oliaei, E.; Rajabi-Hamane, M.; Mahdavi, H. Polyvinylidene fluoride nanofiber coated polypropylene nonwoven fabric as a membrane for lithium-ion batteries. Fibers Polym. 2017, 18 (8), 15611567,  DOI: 10.1007/s12221-017-7256-y
  10. 10
    Tian, Y.; Gao, H.; Wang, J.; Jin, X.; Wang, H. Preparation of hydroentangled CMC composite nonwoven fabrics as high performance separator for nickel metal hydride battery. Electrochim. Acta 2015, 177, 321326,  DOI: 10.1016/j.electacta.2015.03.165
  11. 11
    Trung, V. Q. Layers of Inhibitor Anion–Doped Polypyrrole for Corrosion Protection of Mild Steel. In Materials Science—Advanced Topics; InTech, 2013.
  12. 12
    Hussein, M. A.; Al-Juaid, S. S.; Abu-Zied, B. M.; Hermas, A. Electrodeposition and corrosion protection performance of polypyrrole composites on aluminum. Int. J. Electrochem. Sci. 2016, 11, 39383951,  DOI: 10.20964/11049
  13. 13
    Varesano, A.; Vineis, C.; Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Mazzuchetti, G. Antibacterial Efficacy of Polypyrrole in Textile Applications. Fibers Polym. 2013, 14 (1), 3642,  DOI: 10.1007/s12221-013-0036-4
  14. 14
    Varesano, A.; Vineis, C.; Tonetti, C.; Mazzuchetti, G.; Bobba, V. Antibacterial property on Gram-positive bacteria of polypyrrole-coated fabrics. J. Appl. Polym. Sci. 2015, 132 (12), 41670,  DOI: 10.1002/app.41670
  15. 15
    Teixeira-Dias, B.; del Valle, L. J.; Aradilla, D.; Estrany, F.; Alemán, C. A conducting polymer/protein composite with bactericidal and electroactive properties. Macromol. Mater. Eng. 2012, 297 (5), 427436,  DOI: 10.1002/mame.201100172
  16. 16
    Jumaa, T.; Chasib, M.; Hamid, M. K.; Al-Haddad, R. Effect of the electric field on the antibacterial activity of Au nanoparticles on some Gram-positive and Gram-negative bacteria. Nanosci. Nanotechnol. Res. 2014, 2 (1), 17
  17. 17
    Lu, X.; Zhang, W.; Wang, C.; Wen, T.-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 2011, 36 (5), 671712,  DOI: 10.1016/j.progpolymsci.2010.07.010
  18. 18
    Wolfart, F.; Hryniewicz, B. M.; Góes, M. S.; Corrêa, C. M.; Torresi, R.; Minadeo, M. A.; Córdoba de Torresi, S. I.; Oliveira, R. D.; Marchesi, L. F.; Vidotti, M. Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J. Solid State Electrochem. 2017, 21, 24892515,  DOI: 10.1007/s10008-017-3556-9
  19. 19
    Nautiyal, A.; Qiao, M.; Cook, J. E.; Zhang, X.; Huang, T.-S. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci. 2018, 427, 922930,  DOI: 10.1016/j.apsusc.2017.08.093
  20. 20
    Shahadat, M.; Khan, M. Z.; Rupani, P. F.; Embrandiri, A.; Sultana, S.; Ahammad, S. Z.; Wazed Ali, S.; Sreekrishnan, T. A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv. Colloid Interface Sci. 2017, 249, 216,  DOI: 10.1016/j.cis.2017.08.006
  21. 21
    Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3 (1), 226,  DOI: 10.1002/ese3.50
  22. 22
    Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274290,  DOI: 10.1016/j.nanoen.2014.05.022
  23. 23
    Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422438,  DOI: 10.1016/j.nanoen.2016.02.047
  24. 24
    Yeon, C.; Kim, G.; Lim, J.; Yun, S. Highly conductive PEDOT: PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv. 2017, 7 (10), 58885897,  DOI: 10.1039/C6RA24749K
  25. 25
    Cui, J.; Yao, S.; Huang, Q.; Adams, J. G.; Zhu, Y. Controlling the self-folding of a polymer sheet using a local heater: the effect of the polymer–heater interface. Soft Matter 2017, 13 (21), 38633870,  DOI: 10.1039/C7SM00568G
  26. 26
    Qi, G. J.; Huang, L. Y.; Wang, H. L. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. Chem. Commun. 2012, 48 (66), 82468248,  DOI: 10.1039/c2cc33889k
  27. 27
    Peshoria, S.; Narula, A. K. Study and explanation about the morphological, electrochemical and structural properties of differently synthesized polypyrrole. J. Mater. Sci.: Mater. Electron. 2017, 28 (24), 1834818356,  DOI: 10.1007/s10854-017-7781-x
  28. 28
    de Oliveira, H. P.; Sydlik, S. A.; Swager, T. M. Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites. J. Phys. Chem. C 2013, 117 (20), 1027010276,  DOI: 10.1021/jp400344u
  29. 29
    Alcaraz-Espinoza, J. J.; de Melo, C. P.; de Oliveira, H. P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2 (6), 28662877,  DOI: 10.1021/acsomega.7b00329
  30. 30
    de Oliveira, A. H. P.; de Oliveira, H. P. Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J. Power Sources 2014, 268, 4549,  DOI: 10.1016/j.jpowsour.2014.06.027
  31. 31
    da Silva, F. A.; Alcaraz-Espinoza, J. J.; da Costa, M. M.; de Oliveira, H. P. Synthesis and characterization of highly conductive polypyrrole-coated electrospun fibers as antibacterial agents. Composites, Part B 2017, 129, 143,  DOI: 10.1016/j.compositesb.2017.07.080
  32. 32
    da Silva, F. A. G., Jr.; Queiroz, J. C.; Macedo, E. R.; Fernandes, A. W. C.; Freire, N. B.; da Costa, M. M.; de Oliveira, H. P. Antibacterial behavior of polypyrrole: The influence of morphology and additives incorporation. Mater. Sci. Eng., C 2016, 62, 317322,  DOI: 10.1016/j.msec.2016.01.067
  33. 33
    Demoustier-Champagne, S.; Stavaux, P.-Y. Effect of Electrolyte Concentration and Nature on the Morphology and the Electrical Properties of Electropolymerized Polypyrrole Nanotubules. Chem. Mater. 1999, 11 (3), 829834,  DOI: 10.1021/cm9807541
  34. 34
    Gupta, S. Template-free synthesis of conducting-polymer polypyrrole micro/nanostructures using electrochemistry. Appl. Phys. Lett. 2006, 88 (6), 063108,  DOI: 10.1063/1.2168688
  35. 35
    Maria da Conceição, A.; Peixoto, R. d. M.; Krewer, C. d. C.; da Silva Almeida, J. R. G.; Vargas, A. C.; da Costa, M. M. Antimicrobial activity of caatinga biome ethanolic plant extracts against gram negative and positive bacteria. Revista Brasileira de Ciência Veterinária 2011, 18, 6266,  DOI: 10.4322/rbcv.2014.122
  36. 36
    de Oliveira, H. P.; Cavalcanti, L. S.; Cavalcanti, N. B.; de S Nascimento, I.; Pascholati, S. F.; Gusmão, L. F.; Macêdo, A. G. C.; da Costa, M. M. Antimicrobial activity of silver nanoparticles synthesized by the fungus Curvularia inaequalis. African Journal of Biotechnology 2013, 12 (20), 29172923
  37. 37
    Bush, L. W.; Benson, L. M.; White, J. H. Pig Skin As Test Substrate for Evaluating Topical Antimicrobial Activity. Journal of Clinical Microbiology 1986, 24 (3), 343348
  38. 38
    Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 2007, 38 (6), 728736,  DOI: 10.1002/jrs.1686
  39. 39
    Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10 (2), 708714,  DOI: 10.1021/nl903949m
  40. 40
    Bokobza, L.; Zhang, J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. eXPRESS Polym. Lett. 2012, 6, 601608,  DOI: 10.3144/expresspolymlett.2012.63
  41. 41
    Jorio, A.; Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Achete, C. A.; Capaz, R. B. Measuring disorder in graphene with the G and D bands. Phys. Status Solidi B 2010, 247 (11–12), 29802982,  DOI: 10.1002/pssb.201000247
  42. 42
    Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 2010, 48 (12), 13291335,  DOI: 10.1002/polb.22031
  43. 43
    Dauginet-De Pra, L.; Demoustier-Champagne, S. Investigation of the electronic structure and spectroelectrochemical properties of conductive polymer nanotube arrays. Polymer 2005, 46 (5), 15831594,  DOI: 10.1016/j.polymer.2004.12.016
  44. 44
    Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Adv. Funct. Mater. 2014, 24 (24), 36613682,  DOI: 10.1002/adfm.201303716
  45. 45
    Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Gu, S.; Liu, R.; Wang, X.; Liu, L.; Xu, W. Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 2015, 22 (2), 13551363,  DOI: 10.1007/s10570-015-0546-x
  46. 46
    Kaynak, A.; Håkansson, E. Generating heat from conducting polypyrrole-coated PET fabrics. Adv. Polym. Technol. 2005, 24 (3), 194207,  DOI: 10.1002/adv.20040
  47. 47
    Maity, S.; Chatterjee, A.; Singh, B.; Pal Singh, A. Polypyrrole based electro-conductive textiles for heat generation. J. Text. Inst. 2014, 105 (8), 887893,  DOI: 10.1080/00405000.2013.861149
  48. 48
    Wang, Y.; Jiang, H.; Tao, Y.; Mei, T.; Liu, Q.; Liu, K.; Li, M.; Wang, W.; Wang, D. Polypyrrole/poly (vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements. Composites, Part A 2016, 81, 234242,  DOI: 10.1016/j.compositesa.2015.11.011
  49. 49
    Guo, H.; Yeh, M.-H.; Lai, Y.-C.; Zi, Y.; Wu, C.; Wen, Z.; Hu, C.; Wang, Z. L. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano 2016, 10 (11), 1058010588,  DOI: 10.1021/acsnano.6b06621
  50. 50
    de Oliveira, H. P. Synthesis and Dielectric Characterization of Multi-walled Carbon Nanotubes/Polypyrrole/Titanium Dioxide Composites. Fullerenes, Nanotubes, Carbon Nanostruct. 2015, 23 (4), 339345,  DOI: 10.1080/1536383X.2013.866946
  51. 51
    Zhong, J.; Gao, S.; Xue, G. B.; Wang, B. Study on Enhancement Mechanism of Conductivity Induced by Graphene Oxide for Polypyrrole Nanocomposites. Macromolecules 2015, 48 (5), 15921597,  DOI: 10.1021/ma502449k
  52. 52
    Tao, J.; Liu, N.; Ma, W.; Ding, L.; Li, L.; Su, J.; Gao, Y. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2–carbon fiber hybrid structure. Sci. Rep. 2013,  DOI: 10.1038/srep02286
  53. 53
    Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. Rational synthesis of MnO 2/conducting polypyrrole@ carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J. Mater. Chem. 2012, 22 (33), 1694316949,  DOI: 10.1039/c2jm33364c
  54. 54
    Wang, J.-G.; Wei, B.; Kang, F. Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO 2 and their application in supercapacitors. RSC Adv. 2014, 4 (1), 199202,  DOI: 10.1039/C3RA45824E
  55. 55
    Peng, C.; Zhang, S.; Jewell, D.; Chen, G. Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18 (7), 777788,  DOI: 10.1016/j.pnsc.2008.03.002
  56. 56
    Zhu, L.; Wu, L.; Sun, Y.; Li, M.; Xu, J.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes. RSC Adv. 2014, 4 (12), 62616266,  DOI: 10.1039/c3ra47224h
  57. 57
    Raj, C. J.; Kim, B. C.; Cho, W.-J.; Lee, W.-g.; Jung, S.-D.; Kim, Y. H.; Park, S. Y.; Yu, K. H. Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl. Mater. Interfaces 2015, 7 (24), 1340513414,  DOI: 10.1021/acsami.5b02070
  58. 58
    Ramachandran, R.; Zhao, C.; Luo, D.; Wang, K.; Wang, F. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochim. Acta 2018, 267, 170,  DOI: 10.1016/j.electacta.2018.02.074
  59. 59
    Gupta, R. K.; Candler, J.; Palchoudhury, S.; Ramasamy, K.; Gupta, B. K. Flexible and high performance supercapacitors based on NiCo 2 O 4 for wide temperature range applications. Sci. Rep. 2015, 5, 15265,  DOI: 10.1038/srep15265
  60. 60
    Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 2011, 4 (8), 29152921,  DOI: 10.1039/c1ee01338f
  61. 61
    El Jaouhari, A.; El Asbahani, A.; Bouabdallaoui, M.; Aouzal, Z.; Filotás, D.; Bazzaoui, E.; Nagy, L.; Nagy, G.; Bazzaoui, M.; Albourine, A.; Hartmann, D. Corrosion resistance and antibacterial activity of electrosynthesized polypyrrole. Synth. Met. 2017, 226, 1524,  DOI: 10.1016/j.synthmet.2017.01.008
  62. 62
    Varesano, A.; Aluigi, A.; Florio, L.; Fabris, R. Multifunctional cotton fabrics. Synth. Met. 2009, 159 (11), 10821089,  DOI: 10.1016/j.synthmet.2009.01.036
  63. 63
    Lu, M.; Xie, R.; Liu, Z.; Zhao, Z.; Xu, H.; Mao, Z. Enhancement in electrical conductive property of polypyrrole-coated cotton fabrics using cationic surfactant. J. Appl. Polym. Sci. 2016, 133 (32), 43601,  DOI: 10.1002/app.43601
  64. 64
    Cetiner, S. Dielectric and morphological studies of nanostructured polypyrrole-coated cotton fabrics. Text. Res. J. 2014, 84 (14), 14631475,  DOI: 10.1177/0040517514523180

Cited By

ARTICLE SECTIONS
Jump To
Citation Statements
  • Supporting
    Supporting5
  • Mentioning
    Mentioning101
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 144 publications.

  1. Yichun Ding, Jinxing Jiang, Yingsi Wu, Yaokang Zhang, Junhua Zhou, Yufei Zhang, Qiyao Huang, Zijian Zheng. Porous Conductive Textiles for Wearable Electronics. Chemical Reviews 2024, 124 (4) , 1535-1648. https://doi.org/10.1021/acs.chemrev.3c00507
  2. Farial I. Farha, Xiaoxiao Wei, Huan Ma, Hasib U. Ahmaad, Wei Chen, Fujun Xu. Flexible, Quickly Responsive, and Highly Efficient Carbon Nanotube/Thermoplastic Polyurethane Composite Yarn for Multifunctional Wearable Devices. ACS Applied Polymer Materials 2024, 6 (2) , 1255-1267. https://doi.org/10.1021/acsapm.3c02217
  3. Sanqing Huang, Dejin Bi, Yanfei Xia, Huijuan Lin. Facile Construction of Three-Dimensional Architectures of a Nanostructured Polypyrrole on Carbon Nanotube Fibers and Their Effect on Supercapacitor Performance. ACS Applied Energy Materials 2023, 6 (2) , 856-864. https://doi.org/10.1021/acsaem.2c03167
  4. Md. Milon Hossain, Mostakima M. Lubna, Philip D. Bradford. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles. ACS Applied Materials & Interfaces 2023, 15 (2) , 3365-3376. https://doi.org/10.1021/acsami.2c19826
  5. Elizaveta S. Permyakova, Marya V. Tregubenko, Liubov Yu. Antipina, Andrey M. Kovalskii, Andrei T. Matveev, Anton S. Konopatsky, Anton M. Manakhov, Pavel V. Slukin, Sergei G. Ignatov, Dmitry V. Shtansky. Antibacterial, UV-Protective, Hydrophobic, Washable, and Heat-Resistant BN-Based Nanoparticle-Coated Textile Fabrics: Experimental and Theoretical Insight. ACS Applied Bio Materials 2022, 5 (12) , 5595-5607. https://doi.org/10.1021/acsabm.2c00651
  6. Jason D. Orlando, Ravi M. A. P. Lima, Li Li, Stefanie A. Sydlik, Helinando P. de Oliveira. Electrochemical Performance of N-Doped Carbon-Based Electrodes for Supercapacitors. ACS Applied Electronic Materials 2022, 4 (10) , 5040-5054. https://doi.org/10.1021/acsaelm.2c01059
  7. Shuting Liang, Jie Li, Fengjiao Li, Liang Hu, Wei Chen, Chao Yang. Flexible Tactile Sensing Microfibers Based On Liquid Metals. ACS Omega 2022, 7 (15) , 12891-12899. https://doi.org/10.1021/acsomega.2c00098
  8. Iuri C. M. Candido, Giovanni da S. Oliveira, Giovanni G. Viana, Fernando A. G. da Silva, Jr., Mateus M. da Costa, Helinando P. de Oliveira. Wearable Triboelectric Nanogenerators Based on Chemical Modification of Conventional Textiles for Application in Electrically Driven Antibacterial Devices. ACS Applied Electronic Materials 2022, 4 (1) , 334-344. https://doi.org/10.1021/acsaelm.1c01028
  9. Xingzhi Liu, Liping Cui, Kai Yu, Jinghua Lv, Yuhang Liu, Yajie Ma, Baibin Zhou. Cu/Ag Complex Modified Keggin-Type Coordination Polymers for Improved Electrochemical Capacitance, Dual-Function Electrocatalysis, and Sensing Performance. Inorganic Chemistry 2021, 60 (18) , 14072-14082. https://doi.org/10.1021/acs.inorgchem.1c01397
  10. Tingting Xu, Shudong Zhang, Shuai Han, Yi Qin, Cui Liu, Min Xi, Xinling Yu, Nian Li, Zhenyang Wang. Fast Solar-to-Thermal Conversion/Storage Nanofibers for Thermoregulation, Stain-Resistant, and Breathable Fabrics. Industrial & Engineering Chemistry Research 2021, 60 (16) , 5869-5878. https://doi.org/10.1021/acs.iecr.1c00278
  11. Aisha Rehman, Shadi Houshyar, Xin Wang. Nanodiamond-Based Fibrous Composites: A Review of Fabrication Methods, Properties, and Applications. ACS Applied Nano Materials 2021, 4 (3) , 2317-2332. https://doi.org/10.1021/acsanm.1c00470
  12. Yimeng Ni, Jianying Huang, Shuhui Li, Xiaoqin Wang, Lexin Liu, Mengyao Wang, Zhong Chen, Xiao Li, Yuekun Lai. Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection. ACS Applied Materials & Interfaces 2021, 13 (3) , 4740-4749. https://doi.org/10.1021/acsami.0c19704
  13. Abbas Ahmed, Md Milon Hossain, Bapan Adak, Samrat Mukhopadhyay. Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials 2020, 32 (24) , 10296-10320. https://doi.org/10.1021/acs.chemmater.0c03392
  14. Sozan Darabi, Michael Hummel, Sami Rantasalo, Marja Rissanen, Ingrid Öberg Månsson, Haike Hilke, Byungil Hwang, Mikael Skrifvars, Mahiar M. Hamedi, Herbert Sixta, Anja Lund, Christian Müller. Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Applied Materials & Interfaces 2020, 12 (50) , 56403-56412. https://doi.org/10.1021/acsami.0c15399
  15. Guangming Cai, Baowei Hao, Lei Luo, Zhongming Deng, Ruquan Zhang, Jianhua Ran, Xiaoning Tang, Deshan Cheng, Shuguang Bi, Xin Wang, Kun Dai. Highly Stretchable Sheath–Core Yarns for Multifunctional Wearable Electronics. ACS Applied Materials & Interfaces 2020, 12 (26) , 29717-29727. https://doi.org/10.1021/acsami.0c08840
  16. Guilherme L. Pozzoli, Leandro Merces, Emre Yassitepe, Vitória B. de Morais, Davi H. S. de Camargo, Carlos C. Bof Bufon. Charge Transport and Gradient Doping in Nanostructured Polypyrrole Films for Applications in Photocurrent Generation. ACS Applied Nano Materials 2020, 3 (3) , 3060-3070. https://doi.org/10.1021/acsanm.0c00523
  17. Weiwei Li, Ruosong Chen, Wenzhi Qi, Li Cai, Yilin Sun, Mengxing Sun, Chuang Li, Xiaokuo Yang, Lan Xiang, Dan Xie, Tianling Ren. Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO2 E-Textile Gas Sensor. ACS Sensors 2019, 4 (10) , 2809-2818. https://doi.org/10.1021/acssensors.9b01509
  18. Yunhua Zhang, Zhen Shang, Mengxia Shen, Susmita Paul Chowdhury, Anna Ignaszak, Shuhui Sun, Yonghao Ni. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11175-11185. https://doi.org/10.1021/acssuschemeng.9b00321
  19. Shuxi Gao, Kai Xu, Xuefeng Gui, Longfeng Sun, Lingli Liu. Synthesis of Soluble Silsesquioxane–Polythiophene Hybrid Copolymers with a Controlled Morphology. ACS Applied Polymer Materials 2019, 1 (3) , 437-451. https://doi.org/10.1021/acsapm.8b00149
  20. Junjie Pan, Mengyun Yang, Lei Luo, Anchang Xu, Bin Tang, Deshan Cheng, Guangming Cai, Xin Wang. Stretchable and Highly Sensitive Braided Composite Yarn@Polydopamine@Polypyrrole for Wearable Applications. ACS Applied Materials & Interfaces 2019, 11 (7) , 7338-7348. https://doi.org/10.1021/acsami.8b18823
  21. Subin Kaladi Chondath, Rasha Rahman Poolakkandy, Roshima Kottayintavida, Aswani Thekkangil, Nishanth Karimbintherikkal Gopalan, Suchithra Tharamel Vasu, Sujith Athiyanathil, Mini Mol Menamparambath. Water–Chloroform Interface Assisted Microstructure Tuning of Polypyrrole–Silver Sheets. ACS Applied Materials & Interfaces 2019, 11 (1) , 1723-1731. https://doi.org/10.1021/acsami.8b18943
  22. Guangming Cai, Mengyun Yang, Junjie Pan, Deshan Cheng, Zhigang Xia, Xin Wang, Bin Tang. Large-Scale Production of Highly Stretchable CNT/Cotton/Spandex Composite Yarn for Wearable Applications. ACS Applied Materials & Interfaces 2018, 10 (38) , 32726-32735. https://doi.org/10.1021/acsami.8b11885
  23. Xinyue Liu, Jianxing Wang, Guowei Yang. In Situ Growth of the Ni3V2O8@PANI Composite Electrode for Flexible and Transparent Symmetric Supercapacitors. ACS Applied Materials & Interfaces 2018, 10 (24) , 20688-20695. https://doi.org/10.1021/acsami.8b04609
  24. Yuito Horita, Taiki Fukase, Hibiki Kisaka, Sho Kuromatsu, Yusuke Sato, Kazuyuki Endo, Takeshi Watanabe, Ryosuke Suga, Shinji Koh. Fabrication of highly conductive polyester fabrics using single-wall carbon nanotubes inks for EMI shielding. Japanese Journal of Applied Physics 2024, 63 (4) , 04SP01. https://doi.org/10.35848/1347-4065/ad2bbf
  25. K. Muthumalai, N. Gokila, Yuvaraj Haldorai, Ramasamy Thangavelu Rajendra Kumar. Advanced Wearable Sensing Technologies for Sustainable Precision Agriculture – a Review on Chemical Sensors. Advanced Sensor Research 2024, 3 (3) https://doi.org/10.1002/adsr.202300107
  26. Woojae Chang, Euiju Yong, Yoon Jang Chung, Yongmin Ko, Jinhan Cho. Emerging Challenges in Textile Energy Electrodes: Interfacial Engineering for High‐Performance Next‐Generation Flexible Energy Storage Devices. Small Structures 2024, 5 (2) https://doi.org/10.1002/sstr.202300330
  27. Zhiying Gao, Chuang Wang, Yanjuan Dong, Juming Yao, Qingling Mi, Dan Ge, Lu Yang, Hou-Yong Yu. Freeze polymerization to modulate transverse-longitudinal polypyrrole growth on robust cellulose composite fibers for multi-scenario signal monitoring. Chemical Engineering Journal 2024, 427 , 149785. https://doi.org/10.1016/j.cej.2024.149785
  28. Wei Heng, Li Weihua, Kareem Bachagha. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Carbohydrate Polymers 2023, 321 , 121306. https://doi.org/10.1016/j.carbpol.2023.121306
  29. Yuanlong Ding, Haohao Dong, Jun Cao, Zhao Zhang, Ruihao Chen, Ying Wang, Hong Li, Jun Yan, Yongping Liao. A polyester/spandex blend fabrics-based e-textile for strain sensor, joule heater and energy storage applications. Composites Part A: Applied Science and Manufacturing 2023, 175 , 107779. https://doi.org/10.1016/j.compositesa.2023.107779
  30. Shuai Chen, Feng Wu, Haolin Wang, Shuang Gao, Jiafu Chen, Zhimin Chen, Jianwei Fu. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes. Electrochimica Acta 2023, 467 , 143032. https://doi.org/10.1016/j.electacta.2023.143032
  31. Pratikhya Badanayak, Jyoti V. Vastrad. Investigation of the physico-mechanical and moisture management properties of chemically treated cotton fabrics. Polymer Bulletin 2023, 80 (10) , 11091-11106. https://doi.org/10.1007/s00289-022-04589-1
  32. BingLin Bie, WeiLin Xu, YongGang Lv. Liquid metal-based textiles for smart clothes. Science China Technological Sciences 2023, 66 (6) , 1511-1529. https://doi.org/10.1007/s11431-022-2266-3
  33. Ikra Iftekhar Shuvo, Justine Decaens, Patricia I Dolez. Characterization method of the Joule heating efficiency of electric textiles and influence of boundary conditions. Flexible and Printed Electronics 2023, 8 (2) , 025010. https://doi.org/10.1088/2058-8585/accf6a
  34. Ravi Moreno Araujo Pinheiro Lima, Glaydson Simões dos Reis, Ulla Lassi, Eder Claudio Lima, Guilherme Luiz Dotto, Helinando Pequeno de Oliveira. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C 2023, 9 (2) , 59. https://doi.org/10.3390/c9020059
  35. Zhengjun Qu, Lihui Huang, Mengmeng Guo, Ting Sun, Xiaoshen Xu, Zhenhui Gao. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. Science of The Total Environment 2023, 876 , 162840. https://doi.org/10.1016/j.scitotenv.2023.162840
  36. Weiye Zhang, Beibei Wang, Yao Pang, Hongwu Guo, Yi Liu. Structure and interface engineering on polypyrrole-deposited conductive paper originating from nature wood enables high performance flexible all-solid-state supercapacitors. Industrial Crops and Products 2023, 194 , 116314. https://doi.org/10.1016/j.indcrop.2023.116314
  37. K. C. Seetha Lakshmi, Balaraman Vedhanarayanan. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries 2023, 9 (4) , 202. https://doi.org/10.3390/batteries9040202
  38. Weili Teng, Qinqin Zhou, Guanlin Lv, Peng Hu, Yucheng Du, Hongyi Li, Yuxiang Hu, Wenxin Liu, Jinshu Wang. Hierarchical Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Reduced graphene oxide/Polypyrrole hybrid electrode with excellent rate capability and cycling stability for fiber-shaped supercapacitor. Journal of Colloid and Interface Science 2023, 636 , 245-254. https://doi.org/10.1016/j.jcis.2023.01.019
  39. Hassaan A. Butt, German V. Rogozhkin, Andrei Starkov, Dmitry V. Krasnikov, Albert G. Nasibulin. Multifunctional Carbon Nanotube Reinforced Polymer/Fiber Composites: Fiber-Based Integration and Properties. 2023https://doi.org/10.5772/intechopen.108810
  40. Fatin Nadiah Mat Jais, Muslihah Mokeramin, Mohd Nazrul Roslan, Juliana Abdul Halip, Wan Amizah Wan Jusoh. Bamboo Fiber for Textile Applications. 2023, 275-290. https://doi.org/10.1007/978-981-19-9327-5_14
  41. Adarsh Sivan Pillai, Achu Chandran, Surendran Kuzhichalil Peethambharan. Joule heating fabrics. 2023, 387-421. https://doi.org/10.1016/B978-0-323-91188-7.00005-4
  42. Sibel Kaplan, Nazife Korkmaz Memiş. Extreme cold protective textiles. 2023, 303-354. https://doi.org/10.1016/B978-0-323-91188-7.00008-X
  43. Zhi-Xing Wang, Pei-Yao Du, Wen-Jing Li, Jin-Hao Meng, Li-Hua Zhao, Shen-Li Jia, Li-Chuan Jia. Highly rapid-response electrical heaters based on polymer-infiltrated carbon nanotube networks for battery thermal management at subzero temperatures. Composites Science and Technology 2023, 231 , 109796. https://doi.org/10.1016/j.compscitech.2022.109796
  44. Atharv Suresh Khurd, Balasubramanian Kandasubramanian. A systematic review of cellulosic material for green electronics devices. Carbohydrate Polymer Technologies and Applications 2022, 4 , 100234. https://doi.org/10.1016/j.carpta.2022.100234
  45. Elisângela Gomes De Lima Oliveira, Simone Araújo Vieira, Fernando Antônio Gomes Da Silva, Mateus Matiuzzi Da Costa, Anderson S. L. Gomes, Helinando P. De Oliveira. Synergistic Antibacterial Activity of Green Gold Nanoparticles and Tannin-Based Derivatives. BioChem 2022, 2 (4) , 269-279. https://doi.org/10.3390/biochem2040019
  46. Ankita Yadav, Harish Kumar, Rajni Kumari, Rahul Sharma. Progress in the development of metal nanoparticles encapsulated with Polypyrrole plastic nanocomposites: Antibacterial and photocatalytic properties. Materials Science and Engineering: B 2022, 286 , 116085. https://doi.org/10.1016/j.mseb.2022.116085
  47. Md Rashedul Islam, Shaila Afroj, Kostya S. Novoselov, Nazmul Karim. Smart Electronic Textile‐Based Wearable Supercapacitors. Advanced Science 2022, 9 (31) https://doi.org/10.1002/advs.202203856
  48. Piyanut Pinyou, Vincent Blay, Jirawan Monkrathok, Pattanaphong Janphuang, Kantapat Chansaenpak, Jaruwan Pansalee, Sireerat Lisnund. A facile method for generating polypyrrole microcapsules and their application in electrochemical sensing. Microchimica Acta 2022, 189 (11) https://doi.org/10.1007/s00604-022-05512-1
  49. Lu Hao, Demei Yu. Progress of conductive polypyrrole nanocomposites. Synthetic Metals 2022, 290 , 117138. https://doi.org/10.1016/j.synthmet.2022.117138
  50. Alenka Ojstršek, Laura Jug, Olivija Plohl. A Review of Electro Conductive Textiles Utilizing the Dip-Coating Technique: Their Functionality, Durability and Sustainability. Polymers 2022, 14 (21) , 4713. https://doi.org/10.3390/polym14214713
  51. Qi Zhang, Dong Liu, Wei Pan, Haiyan Pei, Kunlun Wang, Shengang Xu, Yingliang Liu, Shaokui Cao. Flexible stretchable electrothermally/photothermally dual-driven heaters from nano-embedded hierarchical CuxS-Coated PET fabrics for all-weather wearable thermal management. Journal of Colloid and Interface Science 2022, 624 , 564-578. https://doi.org/10.1016/j.jcis.2022.05.159
  52. Xinxin Du, Kewei Zhang. Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy 2022, 101 , 107600. https://doi.org/10.1016/j.nanoen.2022.107600
  53. Dan Wang, Zhuohang Li, Kai Qi, Yubing Qiu, Xingpeng Guo. Insights on the capacitance degradation of polypyrrole nanowires during prolonged cycling. Polymer Degradation and Stability 2022, 202 , 110034. https://doi.org/10.1016/j.polymdegradstab.2022.110034
  54. Ankita Hazarika, Biplab K. Deka, Dong Chan Kim, Anand P. Jaiswal, Jaewoo Seo, Young-Bin Park, Jisoo Kim, Hyung Wook Park. Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy 2022, 98 , 107323. https://doi.org/10.1016/j.nanoen.2022.107323
  55. Milena Lima Guimarães, Fernando Antonio Gomes da Silva, Mateus Matiuzzi da Costa, Helinando Pequeno de Oliveira. Coating of conducting polymer-silver nanoparticles for antibacterial protection of Nile tilapia skin xenografts. Synthetic Metals 2022, 287 , 117055. https://doi.org/10.1016/j.synthmet.2022.117055
  56. Giovanni da Silva Oliveira, Iuri Custodio Montes Candido, Helinando Pequeno de Oliveira. Metal-free triboelectric nanogenerators for application in wearable electronics. Materials Advances 2022, 3 (11) , 4460-4470. https://doi.org/10.1039/D2MA00195K
  57. Haisu Ni, Shu Fang, Tanyu Wang, Yitao Liu, Hao Liu, Li Liu, Rui Wang. Flexible carbonized cotton/thermoplastic polyurethane composites with outstanding electric heating and pressure sensing performance. Textile Research Journal 2022, 92 (11-12) , 1760-1770. https://doi.org/10.1177/00405175211069888
  58. Haihan Zhou, Yuqin Liu, Mengyao Ren, Hua-Jin Zhai. Mechanically exfoliated graphite paper with layered microstructures for enhancing flexible electrochemical energy storage. Inorganic Chemistry Frontiers 2022, 9 (9) , 1920-1930. https://doi.org/10.1039/D1QI01601F
  59. Xiaoya Liu, Xingyuan Du, Lei Li, Yanxia Cao, Yanyu Yang, Wanjie Wang, Jianfeng Wang. Multifunctional AgNW@MXene decorated polymeric textile for highly-efficient electro-/photothermal conversion and triboelectric nanogenerator. Composites Part A: Applied Science and Manufacturing 2022, 156 , 106883. https://doi.org/10.1016/j.compositesa.2022.106883
  60. Dilini Srinika Wijerathne Gunasekara, Xin Niu, Waqar Lqbal, Yin He, Hao Liu. Pyrrole Coating with In Situ Polymerization for Piezoresistive Sensor Development - A Review. Macromolecular Research 2022, 30 (3) , 153-162. https://doi.org/10.1007/s13233-022-0022-z
  61. Min-Yeong Kim, Honghyun Park, Ju-Yeong Lee, Da Jung Park, Joo-Yul Lee, Nosang Vincent Myung, Kyu Hwan Lee. Hierarchically palladium nanoparticles embedded polyethyleneimine–reduced graphene oxide aerogel (RGA–PEI–Pd) porous electrodes for electrochemical detection of bisphenol a and H2O2. Chemical Engineering Journal 2022, 431 , 134250. https://doi.org/10.1016/j.cej.2021.134250
  62. Shan He, Yang Zhang, Jingrong Gao, Anindya Nag, Abdul Rahaman. Integration of Different Graphene Nanostructures with PDMS to Form Wearable Sensors. Nanomaterials 2022, 12 (6) , 950. https://doi.org/10.3390/nano12060950
  63. Md Luthfar Rahman Liman, M. Tauhidul Islam. Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. Journal of Materials Chemistry A 2022, 10 (6) , 2697-2735. https://doi.org/10.1039/D1TA09384C
  64. Subin Kaladi Chondath, Jishnu Sai Gopinath, Rasha Rahman Poolakkandy, Pattiyil Parameswaran, Mini Mol Menamparambath. Investigations on the Interfacial Tension Induced Self‐Assembly in Tuning the 2D Morphology of Polypyrrole at Water/Chloroform Interface. Macromolecular Materials and Engineering 2022, 307 (2) https://doi.org/10.1002/mame.202100705
  65. Fernando Antonio Gomes da Silva, Karoline E. Eckhart, Mateus Matiuzzi da Costa, Stefanie A. Sydlik, Helinando Pequeno de Oliveira. Inhibition of biofilm formation induced by functional graphenic materials impregnated in Nile tilapia (Oreochromis niloticus) skin. Applied Surface Science 2022, 576 , 151768. https://doi.org/10.1016/j.apsusc.2021.151768
  66. Md Luthfar Rahman Liman, M. Tauhidul Islam, Md Milon Hossain. Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications. Advanced Electronic Materials 2022, 8 (1) https://doi.org/10.1002/aelm.202100578
  67. Anindya Nag, Subhas Chandra Mukhopadhyay, Joyanta Kumar Roy. Impact of Nanotechnology on the Quality of the Flexible Sensors. 2022, 53-75. https://doi.org/10.1007/978-3-030-99600-0_3
  68. José Jarib Alcaraz-Espinoza, Helinando Pequeno de Oliveira. Flexible and Wearable Supercapacitors: Constitutive Aspects and Future Perspectives. 2022, 351-360. https://doi.org/10.1016/B978-0-12-819723-3.00011-1
  69. Elwathig A.M. Hassan, Mutasim Abdalla Ahmed, Shu Zhu, Omer Kamal Alebeid. Fibre-based wearable electronic technology for personal protective clothing. 2022, 511-547. https://doi.org/10.1016/B978-0-323-90477-3.00019-5
  70. Zhenqian Lu, Danyang Li, Zishun Yuan. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction. Journal of Engineered Fibers and Fabrics 2022, 17 , 155892502210818. https://doi.org/10.1177/15589250221081856
  71. Sidra Saleemi, Mohamed Amine Aouraghe, Xiaoxiao Wei, Wei Liu, Li Liu, M. Irfan Siyal, Jihyun Bae, Fujun Xu. Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications. Nanomaterials 2022, 12 (2) , 208. https://doi.org/10.3390/nano12020208
  72. Ikra Iftekhar Shuvo, Justine Decaens, Dominic Lachapelle, Patricia I. Dolez. Smart Textiles Testing: A Roadmap to Standardized Test Methods for Safety and Quality-Control. 2021https://doi.org/10.5772/intechopen.96500
  73. Du Tian, Huan Cheng, Qi Li, Chao Song, Dian Wu, Xinyu Zhao, Shiqi Hu, Shaoyun Chen, Chenglong Hu. The ordered polyaniline nanowires wrapped on the polypyrrole nanotubes as electrode materials for electrochemical energy storage. Electrochimica Acta 2021, 398 , 139328. https://doi.org/10.1016/j.electacta.2021.139328
  74. Binguo Liu, Qi Zhang, Yuanhui Huang, Dong Liu, Wei Pan, Yunchao Mu, Xiaozhe Cheng, Yajie Qin. Bifunctional flexible fabrics with excellent Joule heating and electromagnetic interference shielding performance based on copper sulfide/glass fiber composites. Nanoscale 2021, 13 (44) , 18558-18569. https://doi.org/10.1039/D1NR03550A
  75. Ravi Moreno Araújo Pinheiro Lima, Helinando Pequeno de Oliveira. All‐gel‐state supercapacitors of polypyrrole reinforced with graphene nanoplatelets. Journal of Applied Polymer Science 2021, 138 (41) https://doi.org/10.1002/app.51216
  76. Fanxin Zeng, Xian Xu, Yueying Shen, Yeping Liu, Xueshi Shan, Zongyi Qin. Hot–dog structured protective nanocoating for multifunctional cotton fabrics through spray–assisted layer–by–layer assembly. Cellulose 2021, 28 (16) , 10637-10654. https://doi.org/10.1007/s10570-021-04168-z
  77. Jiaxin Wang, Jinmei He, Lili Ma, Yali Yao, Xuedan Zhu, Lei Peng, Xiangrong Liu, Kanshe Li, Mengnan Qu. A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chemical Engineering Journal 2021, 423 , 130200. https://doi.org/10.1016/j.cej.2021.130200
  78. Wei Xiao, Jing Huang, Wenjie Zhou, Qinglin Jiang, Ying Deng, Yanhua Zhang, Liangliang Tian. Surface Modification of Commercial Cotton Yarn as Electrode for Construction of Flexible Fiber-Shaped Supercapacitor. Coatings 2021, 11 (9) , 1086. https://doi.org/10.3390/coatings11091086
  79. Ehsan Nazarzadeh Zare, Tarun Agarwal, Atefeh Zarepour, Filippo Pinelli, Ali Zarrabi, Filippo Rossi, Milad Ashrafizadeh, Aziz Maleki, Mohammad-Ali Shahbazi, Tapas Kumar Maiti, Rajender S. Varma, Franklin R Tay, Michael R Hamblin, Virgilio Mattoli, Pooyan Makvandi. Electroconductive multi-functional polypyrrole composites for biomedical applications. Applied Materials Today 2021, 24 , 101117. https://doi.org/10.1016/j.apmt.2021.101117
  80. Sung Min Lee, In Hyeok Oh, Inho Nam, Suk Tai Chang. Solution‐based deposition of nano‐embossed metal electrodes on cotton fabrics for wearable heaters and supercapacitors. International Journal of Energy Research 2021, 45 (10) , 15438-15451. https://doi.org/10.1002/er.6814
  81. Dilini S. W. Gunasekara, Yin He, Hao Liu, Li Liu. Smart Wearable, Highly Sensitive Pressure Sensor with MWNTs/PPy Aerogel Composite. Fibers and Polymers 2021, 22 (8) , 2102-2111. https://doi.org/10.1007/s12221-021-0787-2
  82. Shu-Qiang Zhao, Pei-Xiao Zheng, Hong-Lian Cong, Ai-Lan Wan. Facile fabrication of flexible strain sensors with AgNPs-decorated CNTs based on nylon/PU fabrics through polydopamine templates. Applied Surface Science 2021, 558 , 149931. https://doi.org/10.1016/j.apsusc.2021.149931
  83. Fujun Xu, Mohamed Amine Aouraghe, Xing Xie, Liangang Zheng, Kun Zhang, Kun Kelvin Fu. Highly stretchable, fast thermal response carbon nanotube composite heater. Composites Part A: Applied Science and Manufacturing 2021, 147 , 106471. https://doi.org/10.1016/j.compositesa.2021.106471
  84. Ankita Hazarika, Biplab K. Deka, Jaewoo Seo, Hoon Eui Jeong, Young-Bin Park, Hyung Wook Park. Porous spongy FexCo1−xP nanostructure and MXene infused self-powered flexible textile based personal thermoregulatory device. Nano Energy 2021, 86 , 106042. https://doi.org/10.1016/j.nanoen.2021.106042
  85. Jia-hua Liu, Xiao-ying Xu, Chen Liu, Da-Zhu Chen. Thermal effect on the pseudocapacitive behavior of high-performance flexible supercapacitors based on polypyrrole-decorated carbon cloth electrodes. New Journal of Chemistry 2021, 45 (28) , 12435-12447. https://doi.org/10.1039/D1NJ01513C
  86. Megha Chitranshi, Daniel Chen, Mark Schulz. Heat treatment of carbon nanotube hybrid material for textile applications. Journal of Textile Engineering & Fashion Technology 2021, 7 (4) , 121-125. https://doi.org/10.15406/jteft.2021.07.00278
  87. Sen Yang, Vijaya Chalivendra, Yong Kim. Electro-fracture Studies of Natural Fiber Composites. Journal of Natural Fibers 2021, 18 (7) , 1044-1053. https://doi.org/10.1080/15440478.2019.1685425
  88. Md Omar Faruk, Abbas Ahmed, Mohammad Abdul Jalil, M. Tauhidul Islam, Al Mojnun Shamim, Bapan Adak, Md Milon Hossain, Samrat Mukhopadhyay. Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Applied Materials Today 2021, 23 , 101025. https://doi.org/10.1016/j.apmt.2021.101025
  89. Li Jingcheng, Vundrala Sumedha Reddy, Wanasinghe A. D. M. Jayathilaka, Amutha Chinnappan, Seeram Ramakrishna, Rituparna Ghosh. Intelligent Polymers, Fibers and Applications. Polymers 2021, 13 (9) , 1427. https://doi.org/10.3390/polym13091427
  90. Karoline E. Eckhart, Anne M. Arnold, Francesca A. Starvaggi, Stefanie A. Sydlik. Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomaterials Science 2021, 9 (7) , 2467-2479. https://doi.org/10.1039/D0BM01471K
  91. Maryam Bayat, Hossein Izadan, Sara Santiago, Francesc Estrany, Mohammad Dinari, Dariush Semnani, Carlos Alemán, Gonzalo Guirado. Study on the electrochromic properties of polypyrrole layers doped with different dye molecules. Journal of Electroanalytical Chemistry 2021, 886 , 115113. https://doi.org/10.1016/j.jelechem.2021.115113
  92. Helinando Pequeno de Oliveira. Wearable Nanogenerators: Working Principle and Self-Powered Biosensors Applications. Electrochem 2021, 2 (1) , 118-134. https://doi.org/10.3390/electrochem2010010
  93. Guido Ehrmann, Andrea Ehrmann. Electronic Textiles. Encyclopedia 2021, 1 (1) , 115-130. https://doi.org/10.3390/encyclopedia1010013
  94. Fernando Gisbert Roca, Abel García‐Bernabé, Vicente Compañ Moreno, Cristina Martínez‐Ramos, Manuel Monleón Pradas. Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromolecular Materials and Engineering 2021, 306 (2) https://doi.org/10.1002/mame.202000584
  95. M. M. Atta, M. I. A. Abdel Maksoud, O. I. Sallam, A. S. Awed. Gamma irradiation synthesis of wearable supercapacitor based on reduced graphene oxide/cotton yarn electrode. Journal of Materials Science: Materials in Electronics 2021, 32 (3) , 3688-3698. https://doi.org/10.1007/s10854-020-05114-8
  96. Xianhong Zheng, Wenqi Nie, Qiaole Hu, Xuewei Wang, Zongqian Wang, Lihua Zou, Xinghua Hong, Haiwei Yang, Jiakun Shen, Changlong Li. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Materials & Design 2021, 200 , 109442. https://doi.org/10.1016/j.matdes.2020.109442
  97. Hanadi Katouah, Nashwa M. El-Metwaly. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. Reactive and Functional Polymers 2021, 159 , 104810. https://doi.org/10.1016/j.reactfunctpolym.2021.104810
  98. Xianhong Zheng, Jiakun Shen, Qiaole Hu, Wenqi Nie, Zongqian Wang, Lihua Zou, Changlong Li. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 2021, 13 (3) , 1832-1841. https://doi.org/10.1039/D0NR07433K
  99. Baowei Hao, Zhongmin Deng, Shuguang Bi, Jianhua Ran, Deshan Cheng, Lei Luo, Guangming Cai, Xin Wang, Xiaoning Tang. In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics 2021, 27 (1) , 279-288. https://doi.org/10.1007/s11581-020-03784-2
  100. Ruyi Xie, Di Liu, Lili Wu, Lei Fang, Kuanjun Fang. Fabrication and Infrared Thermograms of Heating Fabrics Woven by Cnts Coated Yarns. SSRN Electronic Journal 2021, 5 https://doi.org/10.2139/ssrn.3996080
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect