这是用户在 2024-3-19 11:36 为 https://pubs.acs.org/doi/full/10.1021/acsaem.3c01585# 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Probing Changes in the Local Structure of Active Bimetallic Mn/Ru Oxides during Oxygen Evolution
探究氧演化过程中活性双金属锰/钌氧化物局部结构的变化
My Activity
 我的活动出版物
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVArticleNEXT
返回发行页上一页下一页

Probing Changes in the Local Structure of Active Bimetallic Mn/Ru Oxides during Oxygen Evolution
探究氧演化过程中活性双金属锰/钌氧化物局部结构的变化

  • Michelle P. Browne* 米歇尔-布朗*
    Michelle P. Browne
    School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
    Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
    *Email: michelle.browne@helmholtz-berlin.de
  • Carlota Domínguez 卡洛塔-多明格斯
    Carlota Domínguez
    School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
  • Can Kaplan 卡普兰
    Can Kaplan
    Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
    More by Can Kaplan
  • Michael E. G. Lyons 迈克尔-里昂
    Michael E. G. Lyons
    School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
  • Emiliano Fonda 埃米利亚诺-方达
    Emiliano Fonda
    SAMBA Beamline, SOLEIL Synchrotron, L′Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
  • , and  
  • Paula E. Colavita*
    Paula E. Colavita
    School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
    *Email: colavitp@tcd.ie
Cite this: ACS Appl. Energy Mater. 2023, 6, 16, 8607–8615
引用此文:ACS Appl. Energy Mater.2023, 6, 16, 8607-8615
Publication Date (Web):August 16, 2023
出版日期 :2023 年 8 月 16 日
https://doi.org/10.1021/acsaem.3c01585

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under
版权 © 2023 作者。美国化学学会出版。本出版物的版权归

CC-BY 4.0.  CC-BY 4.0。
  • Open Access

Article Views 文章观点

1217

Altmetric

3

Citations 引文

LEARN ABOUT THESE METRICS
了解这些指标
PDF (3 MB)
Supporting Info (1)» 辅助信息 (1)"
SUBJECTS: 主题:

Abstract 摘要

Identifying the active site of catalysts for the oxygen evolution reaction (OER) is critical for the design of electrode materials that will outperform the current, expensive state-of-the-art catalyst, RuO2. Previous work shows that mixed Mn/Ru oxides show comparable performances in the OER, while reducing reliance on this expensive and scarce Pt-group metal. Herein, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) are performed on mixed Mn/Ru oxide materials for the OER to understand structural and chemical changes at both metal sites during oxygen evolution. The results show that the Mn-content affects both the oxidation state and local coordination environment of Ru sites. Operando XAS experiments suggest that the presence of MnOx might be essential to achieve high activity likely by facilitating changes in the O-coordination sphere of Ru centers.
确定氧进化反应(OER)催化剂的活性位点,对于设计性能优于目前昂贵的最先进催化剂 RuO 2 的电极材料至关重要。.以前的研究表明,Mn/Ru 混合氧化物在氧进化反应中的性能相当,同时减少了对昂贵而稀缺的铂族金属的依赖。在此,我们对用于 OER 的混合 Mn/Ru 氧化物材料进行了 X 射线光电子能谱分析和 X 射线吸收光谱分析,以了解氧演化过程中两种金属位点的结构和化学变化。结果表明,锰含量会影响 Ru 位点的氧化态和局部配位环境。Operando XAS 实验表明,MnO x 的存在可能是实现高活性的关键,因为它可以促进 Ru 中心 O 配位层的变化。

This publication is licensed under
本出版物根据

CC-BY 4.0.  CC-BY 4.0。
  • cc licence
  • by licence

1. Introduction 1.导言

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Electrolytic water splitting is an attractive process for producing clean hydrogen gas from renewable sources. Hydrogen gas can be used as an energy carrier to be stored or utilized in a fuel cell to generate electricity on demand, which is the basis of the future hydrogen economy concept. (1,2) Unfortunately, electrolytic water splitting is still in the research and development stage as the catalysts currently used are expensive and scarce, thus preventing cost-competitive generation of green hydrogen at scale. (3) The reaction of interest in the overall electrolytic water splitting process is the reaction that takes place at the cathode, the hydrogen evolution reaction (HER), as this is the electrode where H2 is produced. (4,5) However, the bottleneck of the water splitting process is the reaction that takes place at the anode, the oxygen evolution reaction (OER), that yields O2 as a product. (6−10) The optimum electrocatalysts for the OER are IrO2 and RuO2, both of which are Pt-group metals (PGMs) which are expensive and scarce. (11,12) Large-scale utilization of water splitting will therefore require the development of new electrocatalysts with similar activity to the aforementioned PGMs but that are less costly and more earth abundant. (13) The development and design of new, sustainable, and active materials as catalysts for the OER is therefore an important step toward enabling electrolytic water splitting.
电解水分裂是利用可再生资源生产清洁氢气的一种极具吸引力的工艺。氢气可作为能源载体储存起来,或在燃料电池中按需发电,这正是未来氢经济概念的基础。(1,2) 遗憾的是,电解水分裂仍处于研发阶段,因为目前使用的催化剂昂贵且稀缺,因此无法大规模生产出具有成本竞争力的绿色氢气。(3) 在整个电解水分离过程中,人们感兴趣的反应是发生在阴极的反应,即氢进化反应(HER),因为这是产生 H 2 的电极。(4,5)然而,水分离过程的瓶颈是发生在阳极的反应,即氧进化反应(OER),其产物为 O 2 。(6-10) 氧进化反应的最佳电催化剂是 IrO {{2} 和 RuO 2 。}这两种催化剂都属于铂族金属(PGM),价格昂贵且稀缺。(11,12)因此,要大规模利用水分离技术,就必须开发出与上述 PGM 具有类似活性,但成本更低且地球资源更丰富的新型电催化剂。(13)因此,开发和设计新型、可持续和活性材料作为 OER 催化剂是实现电解水分离的重要一步。
In recent years, various reports have emerged on the high activity of mixed Mn/Ru-based oxide catalysts for the OER. (14−17) For example, Pascuzzi et al. have reported on the effect caused by the addition of various amounts of Mn to RuO2-TiO2 on the OER when compared to pure RuO2-TiO2. In the study by Pascuzzi et al., a catalyst containing 44% Mn was the optimum OER catalyst which was reportedly due to a higher electrochemical surface compared to the pure RuO2-TiO2 area due to the insertion of the Mn into the Ru lattice. (14) Additionally, through first-principles calculations, Lin et al. showed that the excellent performance of a Ru/MnO2 OER catalyst was due to a reduced energy barrier mechanism only involving *O and *OH species as intermediates. (18)
近年来,有关 Mn/Ru 基混合氧化物催化剂在 OER 中的高活性的报道层出不穷。(14-17) 例如,Pascuzzi 等人报告了在 RuO 2 -TiO 2 中添加不同数量的 Mn 对 OER 的影响。-TiO 2与纯 RuO 2 -TiO 2 相比对 OER 的影响。-TiO 2 对 OER 的影响。.在 Pascuzzi 等人的研究中,Mn 含量为 44% 的催化剂是最佳的 OER 催化剂,据报道,这是因为与纯 RuO 2 -TiO {{5} 相比,该催化剂的电化学表面更高。-TiO 2 面积更高,这是由于锰插入了 Ru 晶格。(14) 此外,Lin 等人通过第一原理计算发现,Ru/MnO 2 OER 催化剂的优异性能是由于锰在 Ru 晶格中的插入减少了催化剂的表面积。OER 催化剂的优异性能归功于能量势垒降低机制,该机制只涉及 *O 和 *OH 物种作为中间产物。(18)
Furthermore, we have previously reported on a range of highly active OER catalysts based on mixed Mn/Ru oxides fabricated from thermal decomposition of precursor salts at the annealing temperature of 350 °C. (15) These catalysts displayed excellent OER activity despite containing significantly lower Ru concentrations in the oxide catalyst matrix than pure RuO2. Ex situ XRD and FTIR measurements revealed that Mn centers in these high-performing materials possessed a mixed Mn2+/Mn3+ oxidation state, while Ru was in the +4 oxidation state in the as-synthesized material. However, the oxidation states and local structures of the metal centers during or after the OER were not investigated, despite these changes being important for an understanding of the active sites in these mixed Mn/Ru oxides and for future design and optimization of alternative sustainable mixed oxide electrocatalysts.
此外,我们以前还报道过一系列基于 Mn/Ru 混合氧化物的高活性 OER 催化剂,这些氧化物是在 350 °C 退火温度下对前驱盐进行热分解而制成的。(15) 尽管氧化物催化剂基体中的 Ru 含量明显低于纯 RuO 2 ,但这些催化剂仍显示出卓越的 OER 活性。.原位 XRD 和 FTIR 测量显示,这些高性能材料中的锰中心具有混合 Mn 2+ /Mn 3+ 氧化反应。/Mn 3+ 氧化态,而 Ru 在合成材料中处于 +4 氧化态。然而,尽管这些变化对于了解这些锰/钌混合氧化物中的活性位点以及未来设计和优化替代性可持续混合氧化物电催化剂非常重要,但在 OER 期间或之后金属中心的氧化态和局部结构并未得到研究。
During the last decade, ex situ and in operando X-ray absorption spectroscopy (XAS) has been successfully used as a tool for investigating the active sites of various metal oxides as OER catalysts, including pure Mn oxide and Ru oxides. (19−24) XAS is particularly useful due to its sensitivity to the local structure of metal centers including those embedded in amorphous or disordered phases that might play important roles in determining OER activity, but that are not amenable to XRD characterization. For example, Jaramillo and co-workers have extensively employed XAS for the characterization of MnOx catalysts to investigate various parameters affecting their OER activity, such as applied potential, porosity, and the role of the support. (19,20,25) Lian et al. have also characterized porous solvothermally prepared MnOx materials under various annealing temperatures by XAS. (21) The authors concluded that the annealing temperature plays an important role in determining the local structure and the Mn oxidation states of the prepared MnOx catalysts, which in turn relates to activity trends in the OER. Additionally, XAS has been extensively utilized to determine the structure–activity relationships for pure and mixed RuO2 heterovalent substituted materials based on Fe, Ni, Co, Zn, and Ir. These studies revealed the active site of RuO2-based materials to be the two penta-coordinated transition metal cations in the rutile structure with a bonding distance from the central Ru atoms of 3 Å. (22,26,27) The change in the RuO2 local structure resulting from the heterovalent substitutions alters the OER performance of the mixed material compared to the pure RuO2.
在过去十年中,原位和操作中 X 射线吸收光谱 (XAS) 已被成功用作一种工具,用于研究作为 OER 催化剂的各种金属氧化物(包括纯氧化锰和 Ru 氧化物)的活性位点。(19-24) XAS 特别有用,因为它对金属中心的局部结构非常敏感,包括嵌入无定形或无序相中的金属中心。例如,Jaramillo 及其合作者广泛采用 XAS 表征 MnO x 催化剂,以研究影响其 OER 活性的各种参数,如应用电位、孔隙率和支撑物的作用。(19,20,25) Lian 等人也用 XAS 表征了不同退火温度下多孔溶热制备的 MnO x 材料。 (21) 作者得出结论:退火温度在决定制备的 MnO x 催化剂的局部结构和锰氧化态方面起着重要作用,而这又与 OER 的活性趋势有关。此外,XAS 还被广泛用于确定纯 RuO {{3} 和基于 Fe、Ni、Co、Zn 和 Ir 的混合 RuO {{3} 异价取代材料的结构-活性关系。这些研究揭示了基于 RuO 2 的材料的活性位点是两个楔形基团。-(22,26,27) 与纯 RuO 2 相比,异价取代导致的 RuO 2 局部结构变化改变了混合材料的 OER 性能。.
Notably, to the best of our knowledge, there have been no in situ/operando studies that investigate the local structure in OER active mixed Mn/Ru oxide materials despite these being excellent candidates for the fabrication of low-cost OER electrocatalysts. In this study, we aim to address this gap and characterize the local chemistry and structure of thermally prepared mixed and pure Mn/Ru oxides ex situ and in operando via XAS experiments to establish changes in the oxides before and after the OER. This will enable a new understanding of the origins of activity and develop design principles for novel mixed-oxide low-cost catalysts.
值得注意的是,据我们所知,尽管混合锰/钌氧化物材料是制造低成本 OER 电催化剂的绝佳候选材料,但目前还没有对 OER 活性混合氧化物材料的局部结构进行原位/操作研究。在本研究中,我们旨在填补这一空白,并通过 XAS 实验对热制备的混合和纯 Mn/Ru 氧化物的局部化学和结构进行原位和运算表征,以确定氧化还原前后氧化物的变化。这将有助于对活性的起源有一个新的认识,并为新型混合氧化物低成本催化剂制定设计原则。

2. Experimental Methods 2.实验方法

ARTICLE SECTIONS
Jump To
 条款章节跳转到

2.1. Electrode Fabrication
2.1.电极制造

Pure and mixed Mn/Ru oxide electrocatalysts were prepared on Ti-coated Si wafers; a 150 nm thick Ti layer over a 50 nm Au layer was deposited onto the clean wafers using a Temescal FC-2000 electron beam evaporation system. Ti was chosen as a conductive support because it does not display OER activity over the potential window investigated. (15) Five 0.2 M precursor solutions were made by dissolving (CH3COO)2Mn·4H2O and RuCl3·xH2O in butanol in different ratios; solutions were prepared in separate 10 mL conical flasks and then were evaporated on a hot plate until minimal solvent remained, thus forming the precursor pastes used to prepare the working electrodes. A coat of the relevant metal paste was applied to Ti/Si substrates which covered an area of 1 cm2, followed by drying in an oven at 90 °C for 10 min, and this process was repeated once. The resulting electrode was annealed in air for 9 h at 350 °C to ensure the decomposition of the precursor materials. This yielded Ti-supported oxide film electrodes of thickness 0.24 ± 0.6 μm, as estimated by profilometry. Samples are indicated by the % molar content of Mn in the mixed Mn/Ru precursor slurries; e.g., Mn 100 indicates a sample prepared from the 100% Mn precursor and treated at 350 °C in air.
使用 Temescal FC-2000 电子束蒸发系统在清洁的硅晶片上沉积了 50 纳米金层上 150 纳米厚的钛层,制备了纯 Mn/Ru 混合氧化物电催化剂。之所以选择钛作为导电支持物,是因为在所研究的电位窗口内,钛不会显示出 OER 活性。(15) 通过溶解 (CH 3 COO) 2 Mn-4H 2 Mn-4H 2 Mn-4H 2 Mn-4H 2 Mn-4H 2Mn-4H 2O 和 RuCl 3 -xH 2 O 在丁醇中以不同比例混合;溶液分别在 10 mL 锥形烧瓶中配制,然后在热板上蒸发,直到溶剂残留量降至最低,从而形成用于配制工作电极的前体浆料。在钛/硅基底上涂上一层相关的金属浆料,覆盖面积为 1 cm 2 。然后在 90 °C 的烘箱中干燥 10 分钟,此过程重复一次。生成的电极在 350 °C 的温度下空气中退火 9 小时,以确保前驱体材料的分解。根据轮廓仪的估算,这样得到的钛支撑氧化膜电极厚度为 0.24 ± 0.6 μm。样品以 Mn/Ru 混合前驱体浆中 Mn 的摩尔含量百分比表示;例如,Mn 100 表示由 100% Mn 前驱体制备并在 350 °C 空气中处理的样品。

2.2. Characterization Methods
2.2.表征方法

X-ray photoelectron spectroscopy (XPS) measurements reported were taken using a VG Scientific ESCALab MKII system using an Al Kα X-ray source (1486.7 eV). The pass energy was set at 200 and 20 eV for the survey and high-resolution scans, respectively. The binding energy was calibrated to the TiO2 peak (458.5 eV) associated with the passive layer on the Si/Ti wafer support. (28) Fits were carried out using commercial software (CasaXPS) after Shirley background subtraction and using mixed Gaussian–Lorentzian (30%) line shapes. Area uncertainties were estimated using Monte Carlo error analysis on Poisson adjusted spectra.
报告中的 X 射线光电子能谱 (XPS) 测量是使用 VG Scientific ESCALab MKII 系统,利用 Al Kα X 射线源(1486.7 eV)进行的。调查扫描和高分辨率扫描的通过能量分别设置为 200 和 20 eV。结合能被校准为与硅/钛晶片支架上被动层相关的 TiO 2 峰值(458.5 eV)。(28) 在扣除雪莉背景并使用混合高斯-洛伦兹(30%)线形后,使用商业软件(CasaXPS)进行拟合。使用 Monte Carlo 误差分析对泊松调整光谱进行了面积不确定性估算。
X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements were undertaken at the SAMBA beamline at SOLEIL synchrotron, France. (29) Reference samples of MnO, Mn3O4, α-Mn2O3, β-MnO2, and RuO2 (Sigma) were prepared as pellets using graphite powder and 5 wt % of the relevant Mn or Ru compound. Reference samples were probed in transmittance mode, while working electrodes prepared via thermal decomposition were probed in fluorescence mode at 45° unless otherwise noted. Spectra were collected at the Mn and Ru K-edges, and energy calibration was carried out using Mn (6540.0 eV) and Ru (22117.0 eV) metal foils as references.
在法国 SOLEIL 同步加速器的 SAMBA 光束线进行了 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 测量。(29) MnO、Mn 3 的参考样品O 4 、α-锰 2 O 3 , β-MnO 2 , 和 RuO 2 。和 RuO 2 (Sigma)。(Sigma) 的石墨粉和 5 wt % 的相关 Mn 或 Ru 化合物制备成颗粒。参考样品以透射模式进行探测,而通过热分解制备的工作电极则以荧光模式在 45° 下进行探测,除非另有说明。在 Mn 和 Ru K 边收集光谱,并以 Mn(6540.0 eV)和 Ru(22117.0 eV)金属箔为基准进行能量校准。
Ex situ XAS spectra of oxide electrocatalysts were initially obtained from the as-prepared samples at the Mn K-edge. Ex situ electrochemical experiments were carried out in a three-electrode cell using 1 M NaOH as the electrolyte, a Pt wire as the counter electrode, and Hg/HgO as the reference electrode. Cyclic voltammetry was carried out at a scan rate of 40 mV/s. Chronopotentiometry was conducted at a current density of 10 mA cm–2. The samples were subsequently characterized again ex situ in the Mn K-edge. For the EXAFS analysis in the Mn K-edge region, data were processed to obtain the oscillatory χ(k) function by removing the background above the edge and was fit using the standard procedure. Briefly, the energy in electron volts (eV) was converted to k-space over the region from 3 to 10.5 Ǻ with a Hanning apodization window with sills of amplitude dk = 1. The data were then k1-weighted and Fourier-transformed to produce a pseudo-radial distribution function around Mn.
氧化物电催化剂的原位 XAS 光谱最初是从制备好的样品的锰 K 边缘获得的。以 1 M NaOH 为电解液、铂丝为对电极、Hg/HgO 为参比电极的三电极电池中进行了原位外电化学实验。循环伏安法以 40 mV/s 的扫描速率进行。在 10 mA cm –2 的电流密度下进行了计时电位测定。.随后在锰 K 边再次对样品进行了原位表征。对于锰 K 边区的 EXAFS 分析,通过去除边缘上方的背景,并使用标准程序进行拟合,处理数据以获得振荡的 χ(k) 函数。简而言之,使用振幅为 dk = 1 的汉宁光栅化窗口,将 3 至 10.5 Ǻ 区域的电子伏特 (eV) 能量转换为 k 空间。然后对数据进行 k {{1}-对数据进行加权和傅里叶变换,以生成 Mn 周围的伪径向分布函数。
In situ and operando experiments at the Ru K-edge were carried out using a custom-built two-electrode cell (Figure S1) equipped with the Pt counter electrode that allowed for probing of the oxide through the Si/Ti substrate during OER activity in 1 M NaOH. Data analysis was performed using Athena and Artemis software packages. The edge position was determined from XANES as the energy at half the normalized edge absorbance. Calculation of scattering paths was carried out using FEFF v.8.4 and self-consistent potentials. (31) EXAFS data were extracted as described by Newville et al. (29,30) Fourier transforms (FT) were performed between k = 3 and 11 Å–1 with a Hanning apodization window with sills of amplitude dk = 1. The EXAFS signal was weighted by k1 and fitted in r-space according to the procedure described by Newville. (30)
Ru K 边的原位和操作实验是使用定制的双电极池(图 S1)进行的,该池配备了铂对电极,可在 1 M NaOH 中进行 OER 活动时通过 Si/Ti 基底探测氧化物。数据分析使用 Athena 和 Artemis 软件包进行。根据 XANES 确定的边缘位置为归一化边缘吸光度一半时的能量。使用 FEFF v.8.4 和自洽电位计算散射路径。(31) EXAFS 数据按照 Newville 等人(29,30)的方法提取。傅立叶变换(FT)在 k = 3 和 11 Å –1 之间进行,使用振幅为 dk = 1 的汉宁光栅化窗口。EXAFS 信号按 k {{1} 加权,并按照 Newville 所描述的程序在 r 空间中进行拟合。(30)

3. Results and Discussion
3.结果与讨论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

In order to investigate the structural properties of the pure and mixed Mn/Ru oxide materials under OER conditions, the materials in this study were prepared by thermally annealing precursor salt materials at 350 °C in a tubular furnace. The materials were prepared similarly to our previous paper; however, due to the nature of the in situ/operando investigations in this current study, a flat Si/Ti support was used instead of a wire encapsulated in glass. (15)
为了研究纯 Mn/Ru 氧化物材料和混合 Mn/Ru 氧化物材料在 OER 条件下的结构特性,本研究中的材料是在管式炉中以 350 °C 的温度对前驱盐材料进行热退火制备的。材料的制备方法与我们之前的论文类似;不过,由于本研究中原位/操作研究的性质,我们使用了平面硅/钛支架,而不是封装在玻璃中的金属丝。(15)
Typical cyclic voltammogram (CV) curves for the pure and mixed Mn/Ru oxide materials on the Si/Ti supports in 1 M NaOH can be observed in Figure 1a. From the CV curves, it is evident that the Mn 100 material is the least active material for the OER, while the Mn 50 material exhibits the highest OER current densities amongst all materials tested (Mn 100, Mn 90, Mn 50, Mn 10, and Mn 0) in this study. Furthermore, a plot of the CV curves after normalization by the respective capacitive contributions (see Figure S2) shows comparable or higher activity for Mn 50 and Mn 10 materials relative to the thermally prepared RuO2. This indicates that the improved OER current densities of mixed oxides are not likely to be due to differences in electrochemical specific surface area alone but rather to changes in intrinsic activity.
图 1a 显示了硅/钛衬底上的纯氧化锰/氧化钌和混合氧化锰/氧化钌材料在 1 M NaOH 溶液中的典型循环伏安图 (CV) 曲线。从 CV 曲线可以看出,Mn 100 材料是 OER 活性最低的材料,而在本研究测试的所有材料(Mn 100、Mn 90、Mn 50、Mn 10 和 Mn 0)中,Mn 50 材料的 OER 电流密度最高。此外,根据各自的电容贡献归一化后的 CV 曲线图(见图 S2)显示,相对于热制备的 RuO 2 材料,Mn 50 和 Mn 10 材料的活性相当或更高。.这表明,混合氧化物的 OER 电流密度的提高可能不仅仅是由于电化学比表面积的差异,而是由于内在活性的变化。

Figure 1 图 1

Figure 1. Electrochemical overview for the Mn 100, Mn 90, Mn 50, Mn 10, and Mn 0 materials on Si/Ti wafers in 1 M NaOH. (a) Cyclic voltammograms at a scan rate of 40 mV s–1 and (b) chronopotentiometry at a current density of 10 mA cm–2.
图 1.硅/钛晶片上的 Mn 100、Mn 90、Mn 50、Mn 10 和 Mn 0 材料在 1 M NaOH 溶液中的电化学概况。 (a) 扫描速率为 40 mV s {{0} 的循环伏安图;(b) 电流密度为 10 mA cm {{1} 的时变电位计。}.

Chronopotentiometry measurements in the OER region (at a current density of 10 mA cm–2), shown in Figure 1b, were also conducted to evaluate the activity of the OER for the pure and mixed Mn/Ru oxides under more steady-state conditions, i.e., less influence of the capacitance current compared to the CV curves; all chronopotentiometry is shown as measured, in the absence of ohmic drop correction. For the chronopotentiometry measurements, the trend across Mn/Ru materials was consistent with OER activity from CV curves. Plots obtained after applying ohmic drop correction are also shown in the Supporting Information and indicate that the OER overpotentials of the mixed oxides are all either better than or comparable to that of the thermally prepared RuO2, (15) as shown in Figure S3. Of further note is that all the mixed Mn/Ru materials are significantly better OER catalysts compared to the Mn 100 material.
图 1b 还显示了在 OER 区域(电流密度为 10 mA cm –2 时)进行的计时电位测量,以评估纯 Mn/Ru 混合氧化物在更稳态条件下的 OER 活性,即与 CV 曲线相比,电容电流的影响较小;所有计时电位测量均按测量值显示,未进行欧姆降校正。对于计时电位测量,锰/钌材料的趋势与 CV 曲线的 OER 活动一致。应用欧姆滴校正后得到的曲线图也显示在 "辅助信息 "中,并表明混合氧化物的 OER 过电位都优于或与热制备的 RuO 2 的过电位相当,如图 15 所示。,(15) 如图 S3 所示。更值得注意的是,与 Mn 100 材料相比,所有 Mn/Ru 混合材料的 OER 催化剂性能都明显更好。
The OER results in Figure 1 are extremely interesting as a state-of-the-art material (RuO2) which is diluted with 50% of an inexpensive material (Mn oxide) displays better OER activity than the RuO2 itself. Hence, catalyzing the OER with the Mn 50 rather than the RuO2 drives down the cost associated with this reaction. Furthermore, the structural design of the mixed Mn/Ru oxide materials is of particular interest as the information gained could be used to synthesize better and less expensive OER catalysts when compared to the state-of-the-art.
图 1 中的 OER 结果非常有趣,因为最先进的材料(RuO 2 )在稀释了 50%的廉价材料(氧化锰)后,显示出比 RuO 2 本身更好的 OER 活性。因此,用 Mn 50 而不是 RuO 2 催化 OER 可以降低与该反应相关的成本。此外,Mn/Ru 混合氧化物材料的结构设计也特别令人感兴趣,因为与最先进的催化剂相比,所获得的信息可用于合成更好、更便宜的 OER 催化剂。
To understand the structure and oxidation state of the metal centers at the surface and in the bulk of the pure and mixed Mn/Ru oxides, XPS and XAS measurements were carried out. Figure 2a shows survey scans of the materials synthesized with increasing proportions of Mn precursors; the survey of the material synthesized in the absence of Mn (Mn 0) is shown in Supporting Information Figure S4. All surveys show peaks associated with Ti 2p (ca. 458 eV) (28,31) arising from the electrode substrate. C 1s peaks at ca. 285 eV result from residual carbon, while O 1s at ca. 532 eV arises from oxide formation. Mn-containing materials show Mn 2p doublets in the range of 635–660 eV, (32−35) while Mn 0 and mixed Mn/Ru oxides exhibit Ru 3d (ca. 282 eV) and Ru 3p (ca. 464 eV) peaks (36) that partially overlap with C 1s and Ti 2p contributions, respectively.
为了了解纯 Mn/Ru 混合氧化物表面和主体金属中心的结构和氧化态,我们进行了 XPS 和 XAS 测量。图 2a 显示了在锰前驱体比例不断增加的情况下合成的材料的测量扫描图;在不含锰(锰 0)的情况下合成的材料的测量扫描图见佐证资料图 S4。所有扫描结果都显示了与电极基底产生的 Ti 2p(约 458 eV)(28,31)相关的峰值。约 285 eV 的 C 1s 峰来自残碳,而约 532 eV 的 O 1s 峰来自氧化物。532 eV 的 O 1s 峰来自氧化物的形成。含锰材料显示出 635-660 eV 范围内的 Mn 2p 双重峰 (32-35),而 Mn 0 和 Mn/Ru 混合氧化物则显示出 Ru 3d(约 282 eV)和 Ru 3p(约 464 eV)峰 (36),分别与 C 1s 和 Ti 2p 峰部分重叠。

Figure 2 图 2

Figure 2. XPS analysis. (a) Survey spectra of the Mn 100–10 materials. (b) High-resolution Mn 2p core level for the Mn 100–10 materials. High-resolution Mn 2p spectra and best fits of Mn/Ru mixed oxides on Si/Ti wafers of (c) Mn 100, (d) Mn 90, (e) Mn 50, and (f) Mn 10.
图 2.XPS 分析。(a) Mn 100-10 材料的勘测光谱。(b) Mn 100-10 材料的高分辨率 Mn 2p 核电平。(c) Mn 100、(d) Mn 90、(e) Mn 50 和 (f) Mn 10 硅/钛晶片上的 Mn/Ru 混合氧化物的高分辨率 Mn 2p 光谱和最佳拟合。

High-resolution spectra of the Mn 2p doublet of Mn/Ru oxides are shown in Figure 2b. Spectra display the characteristic broad doublet peaks of mixed valence manganese oxides. (32,34) The binding energy of 2p3/2 maxima remains in the range of 640.7–642.2 eV for all oxides. This value suggests that the main contributions to the Mn 2p spectra arise from Mn centers with an oxidation state in the range of II–IV. Fittings of the Mn 2p doublets were carried out and are shown in Figure 2c–f; the results are summarized in Table 1. Best fits were obtained using three main contributions associated with Mn(IV) in MnO2 (642.0–642.6 eV), Mn(III) in Mn2O3 (641.3–641.9 eV), and Mn(II) in MnO (640.2–640.8 eV). (32) Fits of the 2p1/2 peak shown in the figures were constrained in order to satisfy the 2:4 area ratio relative to the 2p3/2 and an energy split of 11.5 eV. (33,35) A fourth peak at 644.5–646 eV, corresponding to the satellite peak of Mn(II), was also required to satisfactorily fit all spectra, (32,33) further supporting the presence of Mn(II) centers in the materials. Fit results indicate that all materials display a mixed oxidation state; however, unambiguous determination of an average oxidation state from Mn 2p fits is challenging due to the peaks being broad and the energy shifts being relatively small. (32)
图 2b 显示了锰/钌氧化物的锰 2p 双特的高分辨率光谱。光谱显示了混价锰氧化物特有的宽双特峰。(32,34) 所有氧化物的 2p 3/2 最大值的结合能都保持在 640.7-642.2 eV 的范围内。该值表明,锰 2p 光谱的主要贡献来自氧化态在 II-IV 范围内的锰中心。对 Mn 2p 双重谱进行了拟合,结果见图 2c-f;表 1 对拟合结果进行了总结。使用与 MnO 2 中 Mn(IV)相关的三个主要贡献(642.0-642.6)获得了最佳拟合结果。(642.0-642.6 eV)、锰 2 中的锰(III)O 3 (32) 图中所示的 2p 1/2 峰的拟合受到了限制,以满足相对于 2p 3/2 的 2:4 面积比和 11.5 eV 的能量分割。(33,35) 在 644.5-646 eV 处的第四个峰与 Mn(II)的卫星峰相对应,也需要对所有光谱进行满意的拟合,(32,33) 进一步证明材料中存在 Mn(II)中心。拟合结果表明,所有材料都显示出混合氧化态;然而,由于峰宽且能移相对较小,从 Mn 2p 拟合中明确确定平均氧化态具有挑战性(32)。
Table 1. Summary of XPS Results Obtained from Fits of the Mn 2p3/2 Spectruma
表 1.根据锰 2p 3/2a 拟合得到的 XPS 结果摘要光谱 {{1}
 MnO2 氧化锰 {{0}Mn2O3 2 O 3 MnOsatellite 卫星
 eV% area 面积百分比eV% area 面积百分比eV% area 面积百分比eV% area 面积百分比
Mn 100 锰 100642.655 (1)%641.916 (2)%640.826 (2)%645.52.6 (1.0)%
Mn 90 锰 90642.653 (1)%641.928 (4)%640.816 (3)%644.63 (2)%
Mn 50 锰 50642.041 (1)%641.321 (1)%640.236 (1)%644.52.4 (0.4)%
Mn 10 锰 10642.037 (10)%641.319 (9)%640.240 (8)%645.64 (3)%
a

Fit uncertainties are shown in parentheses.


a 括号内为拟合不确定度。

3.1. XAS Characterization at the Mn K-Edge
3.1.锰 K 边缘的 XAS 表征

XAS was used to investigate the local structure around Mn centers before and after OER activity. Normalized XANES spectra at the Mn K-edge of the as-prepared Mn/Ru mixed oxide materials are shown in Figure 3a; the XANES spectra of reference oxides MnO, Mn3O4, Mn2O3, and MnO2 are also shown for comparison; the oxidation states vs XANES edge position of the Mn oxide references can be seen in Table S1.
XAS 用于研究 OER 活性前后锰中心周围的局部结构。图 3a 显示了制备的锰/钌混合氧化物材料在锰 K 边的归一化 XANES 光谱;图 3b 显示了参考氧化物 MnO、Mn 3 O 4 的 XANES 光谱。O 4Mn 2 O 3 O 3 和 MnO 2 的 XANES 边沿位置见表 S1。

Figure 3 图 3

Figure 3. (a) XANES spectra of the as-prepared samples and reference Mn oxide materials. (b) Estimated Mn oxidation state based on the absorption edge position and interpolation of values for references MnO, Mn3O4, Mn2O3, and MnO2 before OER analysis. (c) XANES spectra of all electrocatalysts after OER tests and reference Mn oxide pristine materials. (d) Estimated Mn oxidation state based on the absorption edge position and interpolation of values for references MnO, Mn3O4, Mn2O3, and MnO2 after OER analysis.
图 3. (a) 制备的样品和参考氧化锰材料的 XANES 光谱。(b) 根据吸收边位置和参考氧化锰、Mn 3 O 4 的内插值估算的锰氧化态。O 4Mn 2 O 3 O 3 和 MnO 2 在 OER 分析之前的值。(c) 所有电催化剂在 OER 测试后的 XANES 光谱以及参考氧化锰原始材料的 XANES 光谱。(d) 根据参考氧化锰、Mn 3 O 4 和 MnO 2 的吸收边位置和插值估计的锰氧化态。O 4、Mn 2 O 3 O 3 和 MnO 2 经过 OER 分析后的值。

Figure 3b shows the estimated oxidation states obtained from a linear interpolation of the known oxidation states of the reference oxides. (21,37) The edge position of the mixed Mn/Ru oxides suggests that the Mn oxidation state decreases with increasing Mn-content in the mixed oxide catalyst. Visible shoulders at ca. 6552 and 6555 eV are initially present in the mixed catalysts; such shoulders are normally observed for Mn oxides with a low oxidation state such as MnO, (20,37,38) in agreement with the presence of a satellite in the Mn 2p spectra in Figure 2.
图 3b 显示了根据已知参考氧化物氧化态的线性插值估算出的氧化态。(21,37) 混合锰/钌氧化物的边缘位置表明,锰的氧化态随着混合氧化物催化剂中锰含量的增加而降低。在大约在混合催化剂中,最初会出现 6552 和 6555 eV 处的可见肩;通常在氧化态较低的锰氧化物(如氧化锰)中会观察到这种肩 (20,37,38),这与图 2 中 Mn 2p 光谱中卫星的存在是一致的。
Initial oxidation states of mixed Mn/Ru oxides range from 2.8 to 3.6 following the sequence Mn 90, Mn 100, Mn 50, and Mn 10, as indicated in Figure 2b. The observed Mn valence in the pure Mn catalyst (Mn 100) closely matches the Mn valence of 3.0 observed in Mn2O3 and Mn3O4, indicating a higher contribution of Mn3+ than Mn2+. The XANES spectrum of Mn 90 exhibits a strong similarity to that of the Mn3O4 reference. The most active OER catalysts (Mn 10 and Mn 50) show edge positions suggestive of oxidation states >3.0 but <4.0, and their XANES spectra show similarities to that of MnO2, indicating the possible formation of birnessite, which has 20–40% Mn3+ centers in MnO2, with an average oxidation state of 3.6–3.8. (19) It has been explicitly shown in the literature that an oxidation state above 3.0 but lower than 4.0 is optimal for catalysis of the OER with manganese-based materials. (39) Therefore, the observed Mn oxidation states for the best performing mixed catalysts are consistent with previous findings. (39,40)
如图 2b 所示,Mn/Ru 混合氧化物的初始氧化态为 2.8 至 3.6,依次为 Mn 90、Mn 100、Mn 50 和 Mn 10。在纯锰催化剂(Mn 100)中观察到的锰价与在锰 2 和锰 3 中观察到的锰价 3.0 非常接近。O 3 和 Mn 3 O 4 中观察到的 3.0 的锰价非常接近。O 4表明 Mn 3+ 的贡献率高于 Mn 2+ 。.Mn 90 的 XANES 光谱与 Mn 3 O 4 的 XANES 光谱非常相似。O 4 参考。活性最高的 OER 催化剂(Mn 10 和 Mn 50)的边缘位置表明氧化态>3.0 但<4.0,它们的 XANES 光谱与 MnO 2 相似,表明可能会形成双氧化态。它们的 XANES 光谱显示与 MnO 2 相似,表明可能形成了桦烷石,MnO 3+ 中有 20-40% 的 Mn 3+ 中心,平均氧化态为 MnO 2 。19)有文献明确指出,氧化态高于 3.0 但低于 4.0 是锰基材料催化 OER 的最佳氧化态。(39)因此,在性能最佳的混合催化剂中观察到的锰氧化态与之前的研究结果一致。(39,40)
A significant upshift in the edge position was observed after the OER under galvanostatic conditions (Figure 3c), accompanied by a general suppression of shoulder contributions at ca. 6552 and 6555 eV. This suggests a significant change in the oxide local structure after the OER and a decrease in the proportion of Mn centers with a low oxidation state. A particularly significant change in the average oxidation state is observed for Mn 50, which appears nearly indistinguishable from Mn 10, as shown in Figure 3d and Table 2. It is important to note that the best OER material, Mn 50, exhibits an oxidation state of 3.7 after the OER, the optimum previously reported range of the best performing Mn oxides. (39)
在电静电条件下,观察到 OER 后边缘位置明显上移(图 3c),同时约 6552 和 6555 eV 处的肩部贡献被普遍抑制。6552 和 6555 eV。这表明氧化还原反应后氧化物的局部结构发生了重大变化,低氧化态的锰中心比例下降。如图 3d 和表 2 所示,Mn 50 的平均氧化态变化尤其明显,与 Mn 10 几乎没有区别。值得注意的是,最佳 OER 材料 Mn 50 在 OER 之后的氧化态为 3.7,这是之前报告的性能最佳的锰氧化物的最佳范围。(39)
Table 2. Mn-Edge Position and Estimated Oxidation State before and after OER Experiments
表 2.OER 实验前后的锰边位置和估计氧化态
material 材料before OER 开放教育之前after OER 开放式教育之后Δ oxidation state (after–before)
Δ 氧化状态(后-前)
edge position (eV) 边缘位置 (eV)Mn oxidation state 锰的氧化态edge position (eV) 边缘位置 (eV)Mn oxidation state 锰的氧化态
Mn 100 锰 1006551.23.16551.73.20.1
Mn 90 锰 906549.92.86551.03.10.3
Mn 50 锰 506552.33.46554.03.70.3
Mn 10 锰 106553.83.66554.23.70.1
The EXAFS spectra of Mn 10–100 samples (Figure S7) reveal further insights on the structure of these materials and the changes in the local structure after galvanostatic experiments in the OER potential region. Figure 4a shows the Fourier transform filtered k1-weighted EXAFS spectra (|FT(k1 χ(k)|) in real space of Mn/Ru mixed oxides prepared on Ti-coated Si wafers, while Figure 4b shows |FT(k1 χ(k)| in real space of reference Mn oxide compounds. Mn 100 exhibits peaks at various radial distances that could correspond to shells of MnO2 and Mn3O4. Significant scattering maxima at an upper distance of 1.3 Å are consistent with main peaks in MnO2; however, features at 2.3 and 3 Å can be found in either MnO2 or Mn3O4 references and are attributed to the first Mn–O–Mn coordination shell. (41,42) The best fit of the first coordination shell (Figure S8, Table S2) yielded Mn–O distances of 1.89 Å, which are diagnostic for the presence of Mn4+ centers. (43) However, a low apparent coordination number, well below 6, was also observed for the first shell indicating multiplicity in the oxidation state, site occupancy (layer, interlayer, edges), and/or type of ligand (−O, −OH, H2O), as previously reported for nanocrystalline phyllomanganates. (42,44−46) Fit results are therefore consistent with Mn 100 being disordered and possessing an average oxidation state of 3.2, as a high proportion of Mn3+ or possibly Mn2+ sites in this material would be expected to shift Mn–O paths to R-values of 2 Å or larger. (42,43,46)
Mn 10-100 样品的 EXAFS 光谱(图 S7)进一步揭示了这些材料的结构以及在 OER 电位区进行电静电实验后局部结构的变化。图 4a 显示了傅立叶变换滤波 k 1 -weighted EXAFS 光谱。-加权的 EXAFS 图谱(|FT(k 1 χ(k)|),而图 4b 则显示了在钛涂层硅晶片上制备的 Mn/Ru 混合氧化物在实空间中的 |FT(k 1 χ(k)|的实际空间。Mn 100 在不同径向距离上显示出峰值,这些峰值可能与 MnO 2 和 Mn 3 的壳相对应。O 4 .上方 1.3 Å 处的散射最大值与 MnO 2 的主峰一致;然而,在 MnO 2 或 Mn 3 O 4 中可以发现 2.3 Å 和 3 Å 处的特征。O 4 参考文献中都可以找到 2.3 Å 和 3 Å 的特征,这些特征归因于第一个 Mn-O-Mn 配位层。(41,42)第一配位层的最佳拟合(图 S8,表 S2)得出的 Mn-O 间距为 1.89 Å,这表明存在 Mn 4+ 中心。(43)然而,第一层外壳的表观配位数也很低,远低于 6,这表明氧化态、位点占有(层、层间、边缘)和/或配体类型(-O、-OH、H 2 O)具有多重性,这与之前有关纳米晶植物锰酸盐的报道如出一辙。(42,44-46)因此,合适的结果与锰 100 的无序性和平均氧化态为 3.2 相一致,因为在这种材料中,锰 3+ 或可能的锰 2+ 位点的高比例会使锰-O 路径的 R 值达到或超过 2 Å。(42,43,46)

Figure 4 图 4

Figure 4. EXAFS collected at the Mn K-edge on (a) as-prepared catalysts Mn/Ru oxides studied and (b) references MnO, Mn3O4, Mn2O3, and MnO2. Fourier transforms shown are not phase corrected; curves are stacked to facilitate comparison.
图 4.在 (a) 所研究的 Mn/Ru 氧化物和 (b) 参考 MnO、Mn 3 O 4 的 Mn K 边收集的 EXAFS。O 4Mn 2 O 3 O 3 和 MnO 2 。.所示傅立叶变换未进行相位校正;为便于比较,将曲线叠加。

The spectra of Mn/Ru mixed oxides show broad peaks at ca. 1.3 Å associated with the first Mn–O coordination sphere. (41) The peak at 2.3 Å present in all mixed oxides could be attributed to either MnO2 or Mn3O4; however, the feature at 3.1 Å, which is prominent in Mn 50 and Mn 10, clearly indicates the presence of Mn3O4-type oxides. Finally, the most prominent peak in the MnO reference spectrum at 2.7 Å, attributed to the Mn–O–Mn coordination shell, (41) appears to be absent from all mixed oxide spectra. Best fits of the first coordination shell (Figure S8, Table S2) indicate that the peak at 1.3 Å results from relatively short Mn–O distances (1.85–1.89 Å) characteristic of Mn4+ centers. It is interesting to note that in the case of Mn 90, the coordination number is low and close to 3 as for Mn 100, in accordance with XANES results yielding a low oxidation state and consequently a high proportion of longer Mn–O distances. In contrast, Mn 10 and Mn 50 have coordination numbers closer to 4 at 1.89 Å, in agreement with their higher estimated oxidation states. (43) In summary, Mn oxide electrocatalysts display disordered structures that are consistent with the presence of mixed oxidation states; the most active Mn 50 and Mn 10 materials display a disordered local structure and mixed valences with a greater contribution from Mn4+ centers compared to pure Mn 100 materials.
锰/钌混合氧化物的光谱在约 1.3 Å 处显示出与第一个 Mn-O 配位层相关的宽峰。1.3 Å 处的宽峰与第一个 Mn-O 配位层有关。(41) 在所有混合氧化物中出现的 2.3 Å 处的峰可归因于 MnO 2 或 Mn 3 O 4 。O4;然而,在 Mn 50 和 Mn 10 中突出显示的 3.1 Å 处的特征则清楚地表明了 Mn 3 O 4 的存在。O 4-型氧化物。最后,MnO 参考光谱中 2.7 Å 处最突出的峰归因于 Mn-O-Mn 配位层 (41),但在所有混合氧化物光谱中似乎都不存在。第一配位层的最佳拟合(图 S8,表 S2)表明,1.3 Å 处的峰值来自 Mn 4+ 中心特有的相对较短的 Mn-O 距离(1.85-1.89 Å)。值得注意的是,在锰 90 的情况中,配位数较低,与锰 100 一样接近 3,这与 XANES 的结果一致,即氧化态较低,因此较长 Mn-O 间距的比例较高。相反,锰 10 和锰 50 的配位数接近 4,为 1.89 Å,这与它们较高的估计氧化态一致。(43) 总之,氧化锰电催化剂显示出与混合氧化态一致的无序结构;与纯锰 100 材料相比,最活跃的锰 50 和锰 10 材料显示出无序的局部结构和混合价,其中锰 4+ 中心的贡献更大。
The effect of OER activity on the Mn environment of the oxides was investigated using EXAFS analysis, and the results are shown in Figure 5; EXAFS spectra and best fits of the first coordination shell are reported in Table S3 and Figure S8. Figure 5a–d shows a comparison of the |FT(k1 χ(k)| in real space before and after OER galvanostatic experiments for Mn 100, Mn 90, Mn 50, and Mn 10 samples, respectively. The results indicate significant changes, particularly in the peaks corresponding to the first coordination shell for all mixed oxides. In the case of Mn 90, the first peak in the |FT(k1 χ(k)| shifts its mean position by ca. 0.2 Å. The |FT(k1 χ(k)| of Mn 50 shows a large increase in amplitude (Figure 5c) so that the coordination sphere after the OER qualitatively resembles that of the MnO2 reference material (Figure 4b). This is also suggested by the change in the coordination number for the shortest Mn–O distance (Tables S2 and S3), which increases to a value close to 6 while its R-value remains constant, thus suggesting that after the OER, Mn 50 has a higher proportion of Mn4+ centers. This is consistent with the increase in the estimated average oxidation state observed in Figure 3d and supports the conclusion that OER activity results in changes in the local structure of Mn in mixed oxide materials and in particular an increase in the average oxidation state.
利用 EXAFS 分析研究了 OER 活性对氧化物中锰环境的影响,结果如图 5 所示;表 S3 和图 S8 中报告了 EXAFS 光谱和第一配位层的最佳拟合。图 5a-d 显示了|FT(k 1 χ(k)|在实际空间中的对比,分别是锰 100、锰 90、锰 50 和锰 10 样品在 OER 电致静电实验前后的对比。结果表明,所有混合氧化物都发生了重大变化,尤其是与第一配位层相对应的峰值。就锰 90 而言,|FT(k 1 χ(k 1 |shχ(k)| 的第一个峰的平均位置移动了约 0.2 Å。Mn 50 的 |FT(k 1 χ(k)|振幅大幅增加(图 5c),因此 OER 后的配位层与 MnO 2 参考材料的配位层非常相似(图 4b)。最短 Mn-O 距离的配位数的变化也说明了这一点(表 S2 和 S3),该配位数增加到接近 6 的值,而其 R 值保持不变,这表明在 OER 之后,Mn 50 的 Mn 4+ 中心比例增加。这与图 3d 中观察到的估计平均氧化态的增加是一致的,并支持这样的结论,即 OER 活动会导致混合氧化物材料中 Mn 的局部结构发生变化,特别是平均氧化态的增加。

Figure 5 图 5

Figure 5. EXAFS Mn edge of the Mn 100–Mn 10 materials before and after the OER at 10 mA cm–2 on Si/Ti substrates: (a) Mn 100, (b) Mn 90, (c) Mn 50, and (d) Mn 10. Fourier transforms shown are not phase corrected.
图 5.在硅/钛基底上以 10 mA cm –2 的电流进行 OER 前后,Mn 100-Mn 10 材料的 EXAFS Mn 边沿:(a) Mn 100,(b) Mn 90,(c) Mn 50 和 (d) Mn 10。所示傅立叶变换未进行相位校正。

3.2. XAS Characterization at the Ru K-Edge
3.2.Ru K 边缘的 XAS 表征

Further XAS measurements were performed at the Ru K-edge on the thermally prepared pure Ru oxide (Mn 0), mixed Mn/Ru oxide materials, and a RuO2 reference to gain insight into OER activity in these materials. Figure 6a shows the XANES spectra of Mn 0–90 obtained while immersed in the NaOH electrolyte solution at open circuit potential (OCP); the XANES of a commercially sourced RuO2 is also shown for comparison. The Ru edge position shows a spread of ca. 1.5 eV (Table S4) as expected from the relatively large width of the Ru core hole. (47) Edge positions are at ca. 22129 eV: this is below the values of ca. 22,132 and 22,134 eV for Ru5+ and Ru6+, respectively, determined by Tarascon and co-workers, (48) and close to the edge position measured for our RuO2 reference, thus suggesting likely oxidation states of +4 for all mixed oxides.
对热制备的纯氧化钌(Mn 0)、锰/氧化钌混合材料和 RuO 2 参考材料的 Ru K 边沿进行了进一步的 XAS 测量,以深入了解这些材料的 OER 活性。图 6a 显示了 Mn 0-90 在开路电位 (OCP) 下浸入 NaOH 电解质溶液时获得的 XANES 图谱;图中还显示了市售 RuO 2 的 XANES 图谱,以供比较。由于 Ru 核心空穴的宽度相对较大,因此 Ru 边缘位置出现了约 1.5 eV 的偏差(表 S4)。(47) 边缘位置约为 22129 eV:低于塔拉斯康研究所测定的 Ru 5+ 和 Ru 6+ 分别约为 22 132 和 22 134 eV 的值。和 Ru 6+ 的边缘位置分别低于 Tarascon 和合作者测定的约 22,132 和 22,134 eV 的值 (48),并且接近我们为 RuO 2 参考测量的边缘位置,因此表明所有混合氧化物的氧化态可能都是 +4。

Figure 6 图 6

Figure 6. Ru K-edge. (a) Comparison of XANES for Mn 0–90 in NaOH and RuO2 reference. (b) Comparison of XANES for the Mn 0 ex situ in NaOH at OCP and at 1, 10, and 20 mA cm–2. (c) Comparison of XANES for the Mn 10 in NaOH at OCP and at 10 mA cm–2. (d) Comparison of XANES for the Mn 50 in NaOH and at 10 and 20 mA cm–2.
图 6.Ru K 边。(a) NaOH 中 0-90 号锰的 XANES 与 RuO 2 参照物的比较。(b) NaOH 中 0 号锰在 OCP 和 1、10 和 20 mA cm {{1} 下的 XANES 比较。}(c) 在 OCP 和 10 mA cm {{2} 条件下,NaOH 中 10 号锰的 XANES 比较。}(d) 在 NaOH 中以及在 10 和 20 mA cm {{3} 条件下锰 50 的 XANES 比较。}.

In order to gain an understanding of the oxidation state during the OER, operando XANES measurements of the Mn 0 catalyst were conducted by applying currents of 1, 10, and 20 mA cm–2 (Figure 6b). No shift in the edge position or changes in the spectral profile were evident with increasing current in the OER region. Similarly, no changes in the edge position were detected for the Mn 10 or Mn 50 during OER activity at 10 mA cm–2 current outputs, as shown in Figure 6c,d. These results do not suggest significant changes in the oxidation state for the majority of probed Ru centers in either Mn 0 or mixed oxides during the OER.
为了了解 OER 过程中的氧化态,通过施加 1、10 和 20 mA cm {{0} 的电流对 Mn 0 催化剂进行了操作性 XANES 测量(图 6b)。(图 6b)。在 OER 区域,随着电流的增加,边缘位置没有发生明显的移动,光谱曲线也没有发生变化。同样,如图 6c、d 所示,在 10 mA cm {{1} 电流输出下的 OER 活动中,也没有检测到 Mn 10 或 Mn 50 的边缘位置发生变化。这些结果表明,在 OER 期间,Mn 0 或混合氧化物中的大多数探针 Ru 中心的氧化态没有发生重大变化。
In situ EXAFS analysis was undertaken at the Ru K-edge to further examine the pure and mixed Mn/Ru oxides for any changes in the local structure that could be linked to the OER performance (Figure S9). The structure of the Mn 0 (Ru 100) sample was investigated by comparing it to the reference RuO2 (Figure 7); the local structure of the Mn 0 catalyst appears to involve RuO6 coordination in the first shell, as is the case in rutile, but differs from that of crystalline RuO2 based on deviations in peaks at longer R-values (ca. 3.2 Å) associated with Ru–Ru distances. Octahedral coordination was supported also by a fit of the first shell (Figure S10, Table S5), which yielded an average Ru–O1 distance of 1.96 Å in good agreement with the literature. (49) Upon applying OER currents of 10 and 20 mA cm–2, limited changes can be observed in the Fourier transform of the first coordination sphere; best fits suggest that Ru centers maintain average RuO6 coordination with ligands at ca. 1.96 Å during O2 evolution. The Ru–Ru contributions approach the position and height of the reference RuO2 material.
对 Ru K 边进行了原位 EXAFS 分析,以进一步检查纯氧化物和混合 Mn/Ru 氧化物的局部结构是否发生了变化,这些变化可能与 OER 性能有关(图 S9)。通过与参考 RuO 2 进行比较,研究了 Mn 0 (Ru 100) 样品的结构(图 7)。(图 7);与金红石一样,Mn 0 催化剂的局部结构似乎涉及 RuO 6 在第一层外壳中的配位,但与结晶 RuO 2 的结构不同,这是因为与 Ru-Ru 距离相关的较长 R 值(约 3.2 Å)处的峰存在偏差。八面体配位也得到了第一壳拟合的支持(图 S10,表 S5),拟合得到的平均 Ru-O 1 间距为 1.96 Å,与文献数据十分吻合。(49) 当施加 10 mA cm {{4} 和 20 mA cm {{4} 的 OER 电流时,可以观察到 Ru-O 1 间距的有限变化。(49) 在施加 10 mA cm {{4} 和 20 mA cm {{4} 的 OER 电流时,可以观察到第一配位层的傅立叶变换发生了有限的变化;最佳拟合结果表明,Ru 中心与配体的平均 RuO 6 配位距离约为 1.96 Å。在 O 2 演化过程中,Ru 中心与配体的平均配位保持在约 1.96 Å。Ru-Ru 的贡献接近于参考 RuO 2 材料的位置和高度。

Figure 7 图 7

Figure 7. EXAFS at the Ru K-edge. Comparison of the Mn 0 (Ru 100) in NaOH at OCP and at OER currents of 10 and 20 mA cm–2; the RuO2 reference is also shown for comparison. Fourier transforms shown are not phase corrected.
图 7.Ru K 边的 EXAFS。NaOH 中的 Mn 0(Ru 100)在 OCP 和 OER 电流为 10 mA cm –2 和 20 mA cm –2 时的对比;同时还显示了 RuO 2 参考对比。所示傅立叶变换未进行相位校正。

The Mn 0 EXAFS Ru-edge curve was compared to that of the mixed Mn 10 and Mn 50 Mn/Ru oxides; Figure 8a shows this comparison for the samples immersed in 1.0 M NaOH. The structure of Mn 10 shows the main features of the RuO2 structure in Mn 0 samples, with the first coordination shell corresponding to Ru–O and contributions at 3.2–3.6 Å arising from the Ru–Ru distances. In the case of Mn 50, the main coordination spheres are still evident from the spectrum, but changes in the degree of order relative to the Mn 0 structure are readily apparent. Fits of the first coordination shell indicate that octahedral coordination is maintained for both Mn 10 and 50; however, the average Ru–O distances are slightly larger in these mixed oxides when compared to Mn 0 samples (Figure S10, Table S5), likely due to local disorder. Also, in the case of Mn 50, large deviations are particularly evident for peaks positioned at >2 Å. This is partly due to the presence of Ru metal (50) that was detected in our Mn 50 sample by XRD in our previous work (15) and that is consistent with the analysis from linear combination fits of the XANES spectrum (Figure S11 and Table S6). For Mn 90 samples, the EXAFS signal was weaker (data not shown) due to this being the sample with the lowest Ru %-content, which prevented a detailed analysis of its structure.
将 Mn 0 的 EXAFS Ru 边缘曲线与 Mn 10 和 Mn 50 混合锰/钌氧化物的 Ru 边缘曲线进行了比较;图 8a 显示了浸泡在 1.0 M NaOH 中的样品的比较结果。锰 10 的结构显示了锰 0 样品中 RuO 2 结构的主要特征,第一配位层与 Ru-O 相对应,3.2-3.6 Å 处的贡献来自 Ru-Ru 间距。在 Mn 50 的情况下,主要配位层仍然可以从光谱中看出,但相对于 Mn 0 结构,其有序度的变化非常明显。第一配位层的拟合结果表明,锰 10 和锰 50 都保持了八面体配位;然而,与锰 0 样品相比,这些混合氧化物中的平均 Ru-O 距离略大(图 S10,表 S5),这可能是由于局部无序造成的。这部分是由于在我们之前的工作(15)中通过 XRD 在 Mn 50 样品中检测到了金属 Ru (50),这与 XANES 光谱的线性组合拟合分析一致(图 S11 和表 S6)。锰 90 样品的 EXAFS 信号较弱(数据未显示),这是因为该样品的 Ru 含量最低,因此无法对其结构进行详细分析。

Figure 8 图 8

Figure 8. EXAFS at the Ru K-edge. (a) Comparison of spectra obtained at the Ru K-edge for the Mn 0–50 electrodes in NaOH solution at OCP. The mixed Mn/Ru electrodes in NaOH solution and at 10 and 20 mA cm–2, where applicable, for (b) Mn 10 and (c) Mn 50. Fourier transforms shown are not phase corrected.
图 8.Ru K 边的 EXAFS。(a) 在 OCP 的 NaOH 溶液中,Mn 0-50 电极在 Ru K 边获得的光谱对比。NaOH 溶液中的 Mn/Ru 混合电极在 10 mA 和 20 mA cm –2 下的光谱。(b) Mn 10 和 (c) Mn 50。所示傅立叶变换未进行相位校正。

The EXAFS spectra of the mixed Mn/Ru catalysts were recorded during the OER at a current of 10 mA cm–2 (Figure 8) and also at 20 mA cm–2 for Mn 50 (Figure S9). In the case of Mn 10 (Figure 8b), the changes are comparable to those observed for Mn 0 samples, i.e., the radial distances of peaks at 1.9, 3.2, and 3.6 Å are not altered during the OER, while the changes in the intensity of the peaks suggest a limited reorganization of the first O-coordination and Ru–Ru shells. For highly active Mn 50 samples (Figure 8c), the EXAFS signal is significantly different under O2 evolution compared to the sample in NaOH and indicates significant structural rearrangement around Ru centers. During the OER at 10 mA cm–2, the Ru metal peak is extremely evident in the Fourier transform, and from linear combination fits using RuO2 and Ru metal foil references (Figure S11 and Table S5), it was calculated that Ru metal is still present in the Mn 50 sample during the OER. It is interesting to note that the largest changes in the local structure are observed for Mn 50, i.e., the sample with the largest Mn-content that could be successfully characterized in operando. This is likely due to the majority of the Ru-edge signal arising from highly active Ru centers, for which local rearrangements become more evident and less obscured by the presence of a rutile-like RuO2 phase (as in Mn 0). Notably, best fits of the first shell indicate an increase in the average Ru–O coordination number, which becomes more pronounced at increasing current density (Figure S10, Table S5). Despite the large uncertainties associated with the number of first-neighbors, the general trend suggests significant coordination flexibility in the highly active Mn/Ru 50:50 oxide and the formation of high-coordinated Ru species during oxygen evolution. This might possibly involve an increase in the oxidation state given the limited change in the first Ru–O distance.
在 10 mA cm {{0} 电流下的 OER 期间记录了混合锰/钌催化剂的 EXAFS 光谱(图 8),锰 50 在 20 mA cm {{1} 电流下也记录了 EXAFS 光谱(图 S9)。(图 8)和 20 mA cm {{1} 下 Mn 50 的 EXAFS 光谱(图 S9)。就锰 10 而言(图 8b),其变化与锰 0 样品观察到的变化相当,即在 OER 期间,1.9、3.2 和 3.6 Å 处的峰的径向距离没有发生变化,而峰强度的变化则表明第一 O 配位层和 Ru-Ru 壳发生了有限的重组。对于高活性的 Mn 50 样品(图 8c),与在 NaOH 中的样品相比,在 O 2 演化过程中的 EXAFS 信号有明显的不同,这表明 Ru 中心周围发生了显著的结构重排。在 10 mA cm {{3} 的 OER 期间,Ru 金属峰非常明显。}根据 RuO {{4} 和 Ru 金属箔参考的线性组合拟合(图 S11 和表 S5),可以计算出在 OER 期间 Mn 50 样品中仍然存在金属 Ru。值得注意的是,局部结构的最大变化出现在 Mn 50 样品中,即 Mn 含量最大、可成功进行操作表征的样品。这可能是由于大部分 Ru 边沿信号来自高活性 Ru 中心,对于这些 Ru 中心,局部重排变得更加明显,较少被金红石型 RuO 2 相(如 Mn 0)的存在所掩盖。值得注意的是,第一层外壳的最佳拟合结果表明,平均 Ru-O 配位数增加,这在电流密度增加时变得更加明显(图 S10,表 S5)。尽管与第一邻域数相关的不确定性很大,但总体趋势表明,高活性的 Mn/Ru 50:50 氧化物具有显著的配位灵活性,并且在氧演化过程中形成了高配位的 Ru 物种。鉴于第一 Ru-O 间距的变化有限,这可能涉及氧化态的增加。
Adaptive ligand spheres with N > 6 are recognized to be critical for the design of high-turnover homogeneous OER catalysts; (51) it is therefore intriguing that our observations suggest an expansion of the O-coordination sphere under reaction conditions also in the case of these mixed oxide electrocatalysts. Ligand sphere expansion is likely accompanied by stabilization of oxidation states greater than +4, as previously highlighted in the organometallic literature; (51) however, it is difficult to confirm whether this indeed occurs during the OER in Mn 50, given the limited changes observed in the Ru-edge XANES.
N>6的自适应配体球被认为是设计高翻转均相氧化还原催化剂的关键;(51)因此,我们的观察结果表明,在这些混合氧化物电催化剂的反应条件下,O配体球也会发生扩展,这一点很耐人寻味。正如之前有机金属文献中强调的那样,配体球的扩展可能伴随着大于 +4 的氧化态的稳定;(51)然而,鉴于在 Ru 边 XANES 中观察到的变化有限,很难确认这是否确实发生在 Mn 50 的 OER 过程中。

4. Conclusions 4.结论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

In agreement with previous studies in the literature, the CV and chronopotentiometry measurements in this study show that mixed Mn/Ru oxides show great potential to replace the more expensive RuO2 catalysts for the OER. In particular, the less expensive Mn 50 and Mn 10 show good OER activity that is competitive with that of the pure RuO2 catalyst.
与之前的文献研究一致,本研究中的 CV 和时变测量结果表明,Mn/Ru 混合氧化物显示出巨大的潜力,可以取代较昂贵的 RuO {{0} 催化剂用于 OER。特别是价格较低的 Mn 50 和 Mn 10 显示出良好的 OER 活性,与纯 RuO 2 催化剂相比具有竞争力。
In a bid to understand why these oxides can outperform pure RuO2 catalysts, ex situ and in situ XAS was employed to determine the oxidation state and coordination shells of both types of metal centers in the mixed oxides as a function of metal composition. XANES analysis of the Mn K-edge reveals that the average Mn oxidation state in the as-prepared materials decreases with increasing amounts of Mn in the mixed Mn/Ru oxides, i.e., the Mn 10 exhibits the highest oxidation state, while Ru K-edge positions suggest the presence of Ru centers with an oxidation state of +4. From the EXAFS measurements, the first Mn–O ligand sphere indicates the presence of Mn4+ centers in all mixed oxides but in a decreasing proportion with decreasing Ru-content. Importantly, a high degree of structural disorder was observed in Mn 50; the Mn local structure in this oxide in fact undergoes significant changes after the OER, which suggests an increase in the concentration of Mn4+ centers relative to the pristine samples.
为了了解这些氧化物的性能优于纯 RuO 2 催化剂的原因,我们采用了原位和原位 XAS 方法来确定混合氧化物中两种金属中心的氧化态和配位壳与金属成分的函数关系。对 Mn K-edge 的 XANES 分析表明,随着 Mn/Ru 混合氧化物中 Mn 含量的增加,制备材料中 Mn 的平均氧化态降低,即 Mn 10 的氧化态最高,而 Ru K-edge 位置表明存在氧化态为 +4 的 Ru 中心。从 EXAFS 测量结果来看,第一个 Mn-O 配体球表明在所有混合氧化物中都存在 Mn 4+ 中心,但其比例随着 Ru 含量的降低而降低。重要的是,在 Mn 50 中观察到了高度的结构紊乱;事实上,在 OER 之后,这种氧化物中的 Mn 局部结构发生了显著变化,这表明相对于原始样品,Mn 4+ 中心的浓度有所增加。
A study of the Ru centers was also carried out under operando conditions to monitor changes in the local structure during oxygen evolution. The operando EXAFS analysis at the Ru edge indicates that Mn 50, in particular, undergoes changes in the local structure during the OER at high currents. Best fits are suggestive of perturbations in the first coordination shell through expansion of the ligand sphere. We hypothesize that this is likely to stabilize Ru at higher oxidation states; however, XANES spectra do not show significant changes that might be expected to accompany this.
还在操作条件下对 Ru 中心进行了研究,以监测氧演化过程中局部结构的变化。对 Ru 边缘进行的操作性 EXAFS 分析表明,在高电流的氧演化过程中,Mn 50 的局部结构尤其会发生变化。最佳拟合结果表明,通过配体球的扩展,第一配位层发生了扰动。我们推测这可能会使 Ru 稳定在较高的氧化态;然而,XANES 图谱并没有显示出可能与之相伴的显著变化。
Based on our results, it is interesting to speculate on the role of the MnOx phase in imparting high OER activity in binary or mixed Mn/Ru oxides. Based on the EXAFS/XANES results, it appears that significant structural changes during the OER are taking place at Ru and Mn centers. The role of the MnOx phase might be two-fold: first, we note that the mixing with RuOx affects the average oxidation state of Mn centers, and it is therefore possible that this tuning effect is partly responsible for activity enhancements in, e.g., Mn 10 or Mn 50 materials. Second, the local structure around Ru centers in mixed oxides appears to be highly disordered and for the best performing mixed oxides undergoes changes during oxygen evolution, with the MnOx content possibly imparting greater coordination flexibility around the active Ru sites.
根据我们的研究结果,我们可以推测 MnO x 相在二元或 Mn/Ru 混合氧化物中赋予高 OER 活性的作用。根据 EXAFS/XANES 结果,在 OER 过程中,Ru 和 Mn 中心的结构似乎发生了重大变化。MnO x 相的作用可能有两个方面:首先,我们注意到与 RuO x 的混合会影响 Mn 中心的平均氧化态,因此这种调谐效应可能是 Mn 10 或 Mn 50 等材料活性增强的部分原因。其次,混合氧化物中 Ru 中心周围的局部结构似乎是高度无序的,对于性能最好的混合氧化物来说,在氧演化过程中会发生变化,MnO x 的含量可能会使活性 Ru 位点周围的配位更加灵活。
This study contributes important insights on how to tailor the MnOx content in mixed oxide electrocatalysts for the OER. In particular, the lower cost and the improved OER performance of the Mn 50 and Mn 10 materials compared to the pure RuO2 make these catalysts an attractive and cost-competitive choice for water splitting applications.
这项研究为如何调整混合氧化物电催化剂中的 MnO x 含量以实现 OER 提供了重要见解。特别是,与纯 RuO 2 相比,Mn 50 和 Mn 10 材料的成本更低,OER 性能更好,因此这些催化剂在水分离应用中具有吸引力和成本竞争力。

Data Availability 数据可用性

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The data related to the findings of this work are available from the corresponding authors, subject to reasonable request.
本研究成果的相关数据可向相应作者索取,但需提出合理要求。

Supporting Information 辅助信息

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.3c01585.
辅助信息可从 https://pubs.acs.org/doi/10.1021/acsaem.3c01585 免费获取。

  • Additional chronoamperometry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction, EXAFS spectra, best fits and parameters for the first coordination shell, and fit results of the XANES spectrum of Mn 50 (PDF)
    附加的计时器、循环伏安法、X 射线光电子能谱、X 射线衍射、EXAFS 光谱、第一配位层的最佳拟合和参数,以及 Mn 50 的 XANES 光谱的拟合结果 ( PDF)

Probing Changes in the Local Structure of Active Bimetallic Mn/Ru Oxides during Oxygen Evolution
探究氧演化过程中活性双金属锰/钌氧化物局部结构的变化

4 views  观点

0 shares  股份

0 downloads  下载

S
1
Supporting Information  辅助信息
Probing changes in local structure of active bimetallic Mn/Ru oxides during
探究活性双金属锰/钌氧化物在氧化过程中局部结构的变化
oxygen evolution  氧进化
Michelle P. Browne 米歇尔-布朗
,
ab
*
Carlota Domínguez 卡洛塔-多明格斯
,
a
Can Kaplan 卡普兰
,
b
Michael E.
G. Lyons
,
a
Emiliano Fonda 埃米利亚诺-方达
c
and Paula E.  和 Paula E.
Colavita 科拉维塔
a
*
a
School of  学校
Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin
都柏林三一学院化学、CRANN 和 AMBER 研究中心,都柏林学院绿地
D02 PN40
, Ireland. 爱尔兰
b
Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices,
亥姆霍兹青年研究员小组电催化:从合成到设备、
Helmholtz 赫尔姆霍兹
-
Zentrum Berlin  柏林中心
für Materialien und Energie, 14109 Berlin,
für Materialien und Energie, 14109 Berlin、
Germany. 德国。
c
SAMBA 萨姆巴
B
eamline,  eamline、
SOLEIL 索莱尔
S
ynchrotron
,
L′Orme des Merisiers, Saint
圣梅里希耶之夜
-
Aubin, BP48, 91192  奥宾,BP48,91192
Gif
-
sur
-
Yvette,  伊薇特
France 法国
.
Email corresponding authors:
colavitp@tcd.ie
;
michelle.browne@helmholtz
-
berlin.de
Keywords:
X
-
Ray Absorption Spectroscopy, Oxygen Evolution Reaction, operando, mixed oxides
,
water splitting
Figure S
1
.
Schematic of the in
-
house XAS electrochem cell
S
2
Figure S2.
CVs
normalised by capacitive
contributions obtained from charge integration over the potential
window outside the faradaic region
.
1
The figure shows
that mixed Mn/Ru oxides
display
similar or better
performance than the RuO
2
(Mn 0)
.
Figure S3.
Chronoamperometry
after correction
by 90% iR drop
.
The data indicates
that
independently of
iR correction,
mixed Mn/Ru oxides
show
similar or better
overpotentials
than
thermally deposited
RuO
2
(Mn 0)
.

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子版辅助信息文件无需订阅 ACS Web Editions 即可获得。此类文件可按文章下载,供研究使用(如果相关文章链接了公共使用许可,则该许可可能允许其他用途)。如需其他用途,可通过 RightsLink 许可系统向 ACS 申请许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 条款章节跳转到

  • Corresponding Authors 通讯作者
    • Michelle P. Browne - School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, IrelandHelmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany Email: michelle.browne@helmholtz-berlin.de
      Michelle P. Browne - School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland; Helmholtz Young Investigator Group Electrocatalysis:合成到设备,柏林亥姆霍兹材料与能源研究中心,德国柏林 14109;电子邮件:michelle.browne@helmholtz-berlin.de
    • Paula E. Colavita - School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, IrelandOrcidhttps://orcid.org/0000-0003-1008-2874 Email: colavitp@tcd.ie
  • Authors
    • Carlota Domínguez - School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
    • Can Kaplan - Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
    • Michael E. G. Lyons - School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
    • Emiliano Fonda - SAMBA Beamline, SOLEIL Synchrotron, L′Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, FranceOrcidhttps://orcid.org/0000-0001-6584-4587
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

M.P.B. would like to acknowledge the Helmholtz Association’s Initiative and Networking Fund (Helmholtz Young Investigator Group VH-NG-1719). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 748968 (EDGE-FREEMAB). The results of this publication reflect only the authors’ view and the Commission is not responsible for any use that may be made of the information it contains. This publication has also emanated from research conducted with the financial support of Science Foundation Ireland under Grants No. 13/CDA/2213 and SFI/10/IN.1/I2969. The authors acknowledge SOLEIL for provision of synchrotron radiation facilities through Grant No. 20150740. The authors are grateful to Dr. H. Nolan for assistance with thickness determinations. For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.

This article references 51 other publications.

  1. 1
    Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307326,  DOI: 10.1016/j.pecs.2009.11.002
  2. 2
    Rao, R. R.; Kolb, M. J.; Halck, N. B.; Pedersen, A. F.; Mehta, A.; You, H.; Stoerzinger, K. A.; Feng, Z.; Hansen, H. A.; Zhou, H.; Giordano, L.; Rossmeisl, J.; Vegge, T.; Chorkendorff, I.; Stephens, I. E. L.; Shao-Horn, Y. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 2017, 10, 26262637,  DOI: 10.1039/C7EE02307C
  3. 3
    Demirbas, A. Future hydrogen economy and policy. Energy Sources, Part B 2017, 12, 172181,  DOI: 10.1080/15567249.2014.950394
  4. 4
    Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4, 39573971,  DOI: 10.1021/cs500923c
  5. 5
    Shi, X.; Fields, M.; Park, J.; McEnaney, J. M.; Yan, H.; Zhang, Y.; Tsai, C.; Jaramillo, T. F.; Sinclair, R.; Nørskov, J. K.; Zheng, X. Rapid flame doping of Co to WS2 for efficient hydrogen evolution. Energy Environ. Sci. 2018, 11, 22702277,  DOI: 10.1039/C8EE01111G
  6. 6
    Lyons, M. E. G.; Doyle, R. L.; Browne, M. P.; Godwin, I. J.; Rovetta, A. A. S. Recent developments in electrochemical water oxidation. Curr. Opin. Electrochem. 2017, 1, 4045,  DOI: 10.1016/j.coelec.2016.12.005
  7. 7
    Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J.-P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A.; Mayrhofer, K. J. J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170180,  DOI: 10.1016/j.cattod.2015.08.014
  8. 8
    Sayeed, M. A.; Herd, T.; O’Mullane, A. P. Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 991999,  DOI: 10.1039/C5TA09125J
  9. 9
    Pei, Y.; Yang, Y.; Zhang, F.; Dong, P.; Baines, R.; Ge, Y.; Chu, H.; Ajayan, P. M.; Shen, J.; Ye, M. Controlled Electrodeposition Synthesis of Co–Ni–P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 3188731896,  DOI: 10.1021/acsami.7b09282
  10. 10
    Escudero-Escribano, M.; Pedersen, A. F.; Paoli, E. A.; Frydendal, R.; Friebel, D.; Malacrida, P.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution. J. Phys. Chem. B 2018, 122, 947955,  DOI: 10.1021/acs.jpcb.7b07047
  11. 11
    Browne, M. P.; O’Rourke, C.; Mills, A. A mechanical, high surface area and solvent-free ‘powder-to-electrode’ fabrication method for screening OER catalysts. Electrochem. Commun. 2017, 85, 15,  DOI: 10.1016/j.elecom.2017.10.011
  12. 12
    Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. J. Phys. Chem. Lett. 2014, 5, 16361641,  DOI: 10.1021/jz500610u
  13. 13
    Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angew. Chem., Int. Ed. 2016, 55, 62906294,  DOI: 10.1002/anie.201600525
  14. 14
    Etzi Coller Pascuzzi, M.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M. Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media. Appl. Catal., B 2020, 261, 118225  DOI: 10.1016/j.apcatb.2019.118225
  15. 15
    Browne, M. P.; Nolan, H.; Duesberg, G. S.; Colavita, P. E.; Lyons, M. E. G. Low-Overpotential High-Activity Mixed Manganese and Ruthenium Oxide Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catal. 2016, 6, 24082415,  DOI: 10.1021/acscatal.5b02069
  16. 16
    Browne, M. P.; Nolan, H.; Twamley, B.; Duesberg, G. S.; Colavita, P. E.; Lyons, M. E. G. Thermally Prepared Mn2O3/RuO2/Ru Thin Films as Highly Active Catalysts for the Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem 2016, 3, 18471855,  DOI: 10.1002/celc.201600370
  17. 17
    Wu, Y.; Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z.; Yang, J. Bimetallic Doped RuO2 with Manganese and Iron as Electrocatalysts for Favorable Oxygen Evolution Reaction Performance. ACS Omega 2020, 5, 73427347,  DOI: 10.1021/acsomega.9b04237
  18. 18
    Lin, C.; Li, J.-L.; Li, X.; Yang, S.; Luo, W.; Zhang, Y.; Kim, S.-H.; Kim, D.-H.; Shinde, S. S.; Li, Y.-F.; Liu, Z.-P.; Jiang, Z.; Lee, J.-H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 10121023,  DOI: 10.1038/s41929-021-00703-0
  19. 19
    Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 2013, 135, 85258534,  DOI: 10.1021/ja3104632
  20. 20
    Frydendal, R.; Seitz, L. C.; Sokaras, D.; Weng, T.-C.; Nordlund, D.; Chorkendorff, I.; Stephens, I. E. L.; Jaramillo, T. F. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochim. Acta 2017, 230, 2228,  DOI: 10.1016/j.electacta.2017.01.085
  21. 21
    Lian, S.; Browne, M. P.; Domínguez, C.; Stamatin, S. N.; Nolan, H.; Duesberg, G. S.; Lyons, M. E. G.; Fonda, E.; Colavita, P. E. Template-free synthesis of mesoporous manganese oxides with catalytic activity in the oxygen evolution reaction. Sustainable Energy Fuels 2017, 1, 780788,  DOI: 10.1039/C7SE00086C
  22. 22
    Petrykin, V.; Bastl, Z.; Franc, J.; Macounova, K.; Makarova, M.; Mukerjee, S.; Ramaswamy, N.; Spirovova, I.; Krtil, P. Local Structure of Nanocrystalline Ru1–xNixO2–δ Dioxide and Its Implications for Electrocatalytic Behavior─An XPS and XAS Study. J. Phys. Chem. C 2009, 113, 2165721666,  DOI: 10.1021/jp904935e
  23. 23
    Seitz, L. C.; Nordlund, D.; Gallo, A.; Jaramillo, T. F. Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochim. Acta 2016, 193, 240245,  DOI: 10.1016/j.electacta.2016.01.200
  24. 24
    Abbott, D. F.; Lebedev, D.; Waltar, K.; Povia, M.; Nachtegaal, M.; Fabbri, E.; Copéret, C.; Schmidt, T. J. Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chem. Mater. 2016, 28, 65916604,  DOI: 10.1021/acs.chemmater.6b02625
  25. 25
    Gorlin, Y.; Chung, C.-J.; Benck, J. D.; Nordlund, D.; Seitz, L.; Weng, T.-C.; Sokaras, D.; Clemens, B. M.; Jaramillo, T. F. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation. J. Am. Chem. Soc. 2014, 136, 49204926,  DOI: 10.1021/ja407581w
  26. 26
    Petrykin, V.; Macounová, K.; Okube, M.; Mukerjee, S.; Krtil, P. Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal. Today 2013, 202, 6369,  DOI: 10.1016/j.cattod.2012.03.075
  27. 27
    Petrykin, V.; Macounova, K.; Shlyakhtin, O. A.; Krtil, P. Tailoring the Selectivity for Electrocatalytic Oxygen Evolution on Ruthenium Oxides by Zinc Substitution. Angew. Chem., Int. Ed. 2010, 49, 48134815,  DOI: 10.1002/anie.200907128
  28. 28
    Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887898,  DOI: 10.1016/j.apsusc.2010.07.086
  29. 29
    Newville, M. EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 2001, 8, 96100,  DOI: 10.1107/S0909049500016290
  30. 30
    Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322324,  DOI: 10.1107/S0909049500016964
  31. 31
    Diebold, U.; Madey, T. E. TiO2 by XPS. Surf. Sci. Spectra 1996, 4, 227231,  DOI: 10.1116/1.1247794
  32. 32
    Di Castro, V.; Polzonetti, G. XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 1989, 48, 117123,  DOI: 10.1016/0368-2048(89)80009-X
  33. 33
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 27172730,  DOI: 10.1016/j.apsusc.2010.10.051
  34. 34
    Wöllner, A.; Lange, F.; Schmelz, H.; Knözinger, H. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl. Catal., A 1993, 94, 181203,  DOI: 10.1016/0926-860X(93)85007-C
  35. 35
    Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G. Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4. J. Phys. Chem. B 2004, 108, 1854718551,  DOI: 10.1021/jp0479522
  36. 36
    Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 10721079,  DOI: 10.1002/sia.5852
  37. 37
    Jiao, F.; Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 2010, 46, 29202922,  DOI: 10.1039/B921820C
  38. 38
    Farges, F. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys. Rev. B 2005, 71, 155109  DOI: 10.1103/PhysRevB.71.155109
  39. 39
    Ramírez, A.; Hillebrand, P.; Stellmach, D.; May, M. M.; Bogdanoff, P.; Fiechter, S. Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water. J. Phys. Chem. C 2014, 118, 1407314081,  DOI: 10.1021/jp500939d
  40. 40
    Mattelaer, F.; Bosserez, T.; Rongé, J.; Martens, J. A.; Dendooven, J.; Detavernier, C. Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealing. RSC Adv. 2016, 6, 9833798343,  DOI: 10.1039/C6RA19188F
  41. 41
    Liu, F.; Shan, W.; Lian, Z.; Xie, L.; Yang, W.; He, H. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catal. Sci. Technol. 2013, 3, 26992707,  DOI: 10.1039/C3CY00326D
  42. 42
    Wiechen, M.; Zaharieva, I.; Dau, H.; Kurz, P. Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem. Sci. 2012, 3, 23302339,  DOI: 10.1039/C2SC20226C
  43. 43
    Zahoransky, T.; Wegorzewski, A. V.; Huong, W.; Mikutta, C. X-ray absorption spectroscopy study of Mn reference compounds for Mn speciation in terrestrial surface environments. Am. Mineral. 2023, 108, 847864,  DOI: 10.2138/am-2022-8236
  44. 44
    Grangeon, S.; Lanson, B.; Miyata, N.; Tani, Y.; Manceau, A. Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am. Mineral. 2010, 95, 16081616,  DOI: 10.2138/am.2010.3516
  45. 45
    Zhang, A.; Zhao, R.; Hu, L.; Yang, R.; Yao, S.; Wang, S.; Yang, Z.; Yan, Y.-M. Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412  DOI: 10.1002/aenm.202101412
  46. 46
    Gaillot, A.-C.; Flot, D.; Drits, V. A.; Manceau, A.; Burghammer, M.; Lanson, B. Structure of Synthetic K-rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. I. Two-Layer Polytype from 800 °C Experiment. Chem. Mater. 2003, 15, 46664678,  DOI: 10.1021/cm021733g
  47. 47
    Krause, M. O.; Oliver, J. H. Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 1979, 8, 329338,  DOI: 10.1063/1.555595
  48. 48
    Otoyama, M.; Jacquet, Q.; Iadecola, A.; Saubanère, M.; Rousse, G.; Tarascon, J.-M. Synthesis and Electrochemical Activity of Some Na(Li)-Rich Ruthenium Oxides with the Feasibility to Stabilize Ru6+. Adv. Energy Mater. 2019, 9, 1803674  DOI: 10.1002/aenm.201803674
  49. 49
    McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.; Swider, K. E.; Rolison, D. R. Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage. J. Phys. Chem. B 1999, 103, 48254832,  DOI: 10.1021/jp990096n
  50. 50
    Qiu, J.-Z.; Hu, J.; Lan, J.; Wang, L.-F.; Fu, G.; Xiao, R.; Ge, B.; Jiang, J. Pure Siliceous Zeolite-Supported Ru Single-Atom Active Sites for Ammonia Synthesis. Chem. Mater. 2019, 31, 94139421,  DOI: 10.1021/acs.chemmater.9b03099
  51. 51
    Matheu, R.; Ertem, M. Z.; Gimbert-Suriñach, C.; Sala, X.; Llobet, A. Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chem. Rev. 2019, 119, 34533471,  DOI: 10.1021/acs.chemrev.8b00537

Cited By

ARTICLE SECTIONS
Jump To
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning1
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 1 publications.

  1. Wenqing Ren, Kaixin Wang, Dan Lu, Chenxi Xu. High-Stability RuO2/MoO3 Electrocatalyst for the Oxygen Evolution Reaction in Proton-Exchange-Membrane Water Electrolysis. ACS Applied Energy Materials 2023, 6 (24) , 12573-12578. https://doi.org/10.1021/acsaem.3c02795
  • Abstract 摘要

    Figure 1 图 1

    Figure 1. Electrochemical overview for the Mn 100, Mn 90, Mn 50, Mn 10, and Mn 0 materials on Si/Ti wafers in 1 M NaOH. (a) Cyclic voltammograms at a scan rate of 40 mV s–1 and (b) chronopotentiometry at a current density of 10 mA cm–2.
    图 1.硅/钛晶片上的 Mn 100、Mn 90、Mn 50、Mn 10 和 Mn 0 材料在 1 M NaOH 溶液中的电化学概况。 (a) 扫描速率为 40 mV s {{0} 的循环伏安图;(b) 电流密度为 10 mA cm {{1} 的时变电位计。}.

    Figure 2 图 2

    Figure 2. XPS analysis. (a) Survey spectra of the Mn 100–10 materials. (b) High-resolution Mn 2p core level for the Mn 100–10 materials. High-resolution Mn 2p spectra and best fits of Mn/Ru mixed oxides on Si/Ti wafers of (c) Mn 100, (d) Mn 90, (e) Mn 50, and (f) Mn 10.
    图 2.XPS 分析。(a) Mn 100-10 材料的勘测光谱。(b) Mn 100-10 材料的高分辨率 Mn 2p 核电平。(c) Mn 100、(d) Mn 90、(e) Mn 50 和 (f) Mn 10 硅/钛晶片上的 Mn/Ru 混合氧化物的高分辨率 Mn 2p 光谱和最佳拟合。

    Figure 3 图 3

    Figure 3. (a) XANES spectra of the as-prepared samples and reference Mn oxide materials. (b) Estimated Mn oxidation state based on the absorption edge position and interpolation of values for references MnO, Mn3O4, Mn2O3, and MnO2 before OER analysis. (c) XANES spectra of all electrocatalysts after OER tests and reference Mn oxide pristine materials. (d) Estimated Mn oxidation state based on the absorption edge position and interpolation of values for references MnO, Mn3O4, Mn2O3, and MnO2 after OER analysis.
    图 3. (a) 制备的样品和参考氧化锰材料的 XANES 光谱。(b) 根据吸收边位置和参考氧化锰、Mn 3 O 4 的内插值估算的锰氧化态。O 4Mn 2 O 3 O 3 和 MnO 2 在 OER 分析之前的值。(c) 所有电催化剂在 OER 测试后的 XANES 光谱以及参考氧化锰原始材料的 XANES 光谱。(d) 根据参考氧化锰、Mn 3 O 4 和 MnO 2 的吸收边位置和插值估计的锰氧化态。O 4、Mn 2 O 3 O 3 和 MnO 2 经过 OER 分析后的值。

    Figure 4 图 4

    Figure 4. EXAFS collected at the Mn K-edge on (a) as-prepared catalysts Mn/Ru oxides studied and (b) references MnO, Mn3O4, Mn2O3, and MnO2. Fourier transforms shown are not phase corrected; curves are stacked to facilitate comparison.
    图 4.在 (a) 所研究的 Mn/Ru 氧化物和 (b) 参考 MnO、Mn 3 O 4 的 Mn K 边收集的 EXAFS。O 4Mn 2 O 3 O 3 和 MnO 2 。.所示傅立叶变换未进行相位校正;为便于比较,将曲线叠加。

    Figure 5 图 5

    Figure 5. EXAFS Mn edge of the Mn 100–Mn 10 materials before and after the OER at 10 mA cm–2 on Si/Ti substrates: (a) Mn 100, (b) Mn 90, (c) Mn 50, and (d) Mn 10. Fourier transforms shown are not phase corrected.
    图 5.在硅/钛基底上以 10 mA cm –2 的电流进行 OER 前后,Mn 100-Mn 10 材料的 EXAFS Mn 边沿:(a) Mn 100,(b) Mn 90,(c) Mn 50 和 (d) Mn 10。所示傅立叶变换未进行相位校正。

    Figure 6 图 6

    Figure 6. Ru K-edge. (a) Comparison of XANES for Mn 0–90 in NaOH and RuO2 reference. (b) Comparison of XANES for the Mn 0 ex situ in NaOH at OCP and at 1, 10, and 20 mA cm–2. (c) Comparison of XANES for the Mn 10 in NaOH at OCP and at 10 mA cm–2. (d) Comparison of XANES for the Mn 50 in NaOH and at 10 and 20 mA cm–2.
    图 6.Ru K 边。(a) NaOH 中 0-90 号锰的 XANES 与 RuO 2 参照物的比较。(b) NaOH 中 0 号锰在 OCP 和 1、10 和 20 mA cm {{1} 下的 XANES 比较。}(c) 在 OCP 和 10 mA cm {{2} 条件下,NaOH 中 10 号锰的 XANES 比较。}(d) 在 NaOH 中以及在 10 和 20 mA cm {{3} 条件下锰 50 的 XANES 比较。}.

    Figure 7 图 7

    Figure 7. EXAFS at the Ru K-edge. Comparison of the Mn 0 (Ru 100) in NaOH at OCP and at OER currents of 10 and 20 mA cm–2; the RuO2 reference is also shown for comparison. Fourier transforms shown are not phase corrected.
    图 7.Ru K 边的 EXAFS。NaOH 中的 Mn 0(Ru 100)在 OCP 和 OER 电流为 10 mA cm –2 和 20 mA cm –2 时的对比;同时还显示了 RuO 2 参考对比。所示傅立叶变换未进行相位校正。

    Figure 8 图 8

    Figure 8. EXAFS at the Ru K-edge. (a) Comparison of spectra obtained at the Ru K-edge for the Mn 0–50 electrodes in NaOH solution at OCP. The mixed Mn/Ru electrodes in NaOH solution and at 10 and 20 mA cm–2, where applicable, for (b) Mn 10 and (c) Mn 50. Fourier transforms shown are not phase corrected.
    图 8.Ru K 边的 EXAFS。(a) 在 OCP 的 NaOH 溶液中,Mn 0-50 电极在 Ru K 边获得的光谱对比。NaOH 溶液中的 Mn/Ru 混合电极在 10 mA 和 20 mA cm –2 下的光谱。(b) Mn 10 和 (c) Mn 50。所示傅立叶变换未进行相位校正。

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 51 other publications.

    1. 1
      Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307326,  DOI: 10.1016/j.pecs.2009.11.002
    2. 2
      Rao, R. R.; Kolb, M. J.; Halck, N. B.; Pedersen, A. F.; Mehta, A.; You, H.; Stoerzinger, K. A.; Feng, Z.; Hansen, H. A.; Zhou, H.; Giordano, L.; Rossmeisl, J.; Vegge, T.; Chorkendorff, I.; Stephens, I. E. L.; Shao-Horn, Y. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 2017, 10, 26262637,  DOI: 10.1039/C7EE02307C
    3. 3
      Demirbas, A. Future hydrogen economy and policy. Energy Sources, Part B 2017, 12, 172181,  DOI: 10.1080/15567249.2014.950394
    4. 4
      Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4, 39573971,  DOI: 10.1021/cs500923c
    5. 5
      Shi, X.; Fields, M.; Park, J.; McEnaney, J. M.; Yan, H.; Zhang, Y.; Tsai, C.; Jaramillo, T. F.; Sinclair, R.; Nørskov, J. K.; Zheng, X. Rapid flame doping of Co to WS2 for efficient hydrogen evolution. Energy Environ. Sci. 2018, 11, 22702277,  DOI: 10.1039/C8EE01111G
    6. 6
      Lyons, M. E. G.; Doyle, R. L.; Browne, M. P.; Godwin, I. J.; Rovetta, A. A. S. Recent developments in electrochemical water oxidation. Curr. Opin. Electrochem. 2017, 1, 4045,  DOI: 10.1016/j.coelec.2016.12.005
    7. 7
      Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J.-P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A.; Mayrhofer, K. J. J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170180,  DOI: 10.1016/j.cattod.2015.08.014
    8. 8
      Sayeed, M. A.; Herd, T.; O’Mullane, A. P. Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 991999,  DOI: 10.1039/C5TA09125J
    9. 9
      Pei, Y.; Yang, Y.; Zhang, F.; Dong, P.; Baines, R.; Ge, Y.; Chu, H.; Ajayan, P. M.; Shen, J.; Ye, M. Controlled Electrodeposition Synthesis of Co–Ni–P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 3188731896,  DOI: 10.1021/acsami.7b09282
    10. 10
      Escudero-Escribano, M.; Pedersen, A. F.; Paoli, E. A.; Frydendal, R.; Friebel, D.; Malacrida, P.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution. J. Phys. Chem. B 2018, 122, 947955,  DOI: 10.1021/acs.jpcb.7b07047
    11. 11
      Browne, M. P.; O’Rourke, C.; Mills, A. A mechanical, high surface area and solvent-free ‘powder-to-electrode’ fabrication method for screening OER catalysts. Electrochem. Commun. 2017, 85, 15,  DOI: 10.1016/j.elecom.2017.10.011
    12. 12
      Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. J. Phys. Chem. Lett. 2014, 5, 16361641,  DOI: 10.1021/jz500610u
    13. 13
      Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angew. Chem., Int. Ed. 2016, 55, 62906294,  DOI: 10.1002/anie.201600525
    14. 14
      Etzi Coller Pascuzzi, M.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M. Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media. Appl. Catal., B 2020, 261, 118225  DOI: 10.1016/j.apcatb.2019.118225
    15. 15
      Browne, M. P.; Nolan, H.; Duesberg, G. S.; Colavita, P. E.; Lyons, M. E. G. Low-Overpotential High-Activity Mixed Manganese and Ruthenium Oxide Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catal. 2016, 6, 24082415,  DOI: 10.1021/acscatal.5b02069
    16. 16
      Browne, M. P.; Nolan, H.; Twamley, B.; Duesberg, G. S.; Colavita, P. E.; Lyons, M. E. G. Thermally Prepared Mn2O3/RuO2/Ru Thin Films as Highly Active Catalysts for the Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem 2016, 3, 18471855,  DOI: 10.1002/celc.201600370
    17. 17
      Wu, Y.; Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z.; Yang, J. Bimetallic Doped RuO2 with Manganese and Iron as Electrocatalysts for Favorable Oxygen Evolution Reaction Performance. ACS Omega 2020, 5, 73427347,  DOI: 10.1021/acsomega.9b04237
    18. 18
      Lin, C.; Li, J.-L.; Li, X.; Yang, S.; Luo, W.; Zhang, Y.; Kim, S.-H.; Kim, D.-H.; Shinde, S. S.; Li, Y.-F.; Liu, Z.-P.; Jiang, Z.; Lee, J.-H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 10121023,  DOI: 10.1038/s41929-021-00703-0
    19. 19
      Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 2013, 135, 85258534,  DOI: 10.1021/ja3104632
    20. 20
      Frydendal, R.; Seitz, L. C.; Sokaras, D.; Weng, T.-C.; Nordlund, D.; Chorkendorff, I.; Stephens, I. E. L.; Jaramillo, T. F. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochim. Acta 2017, 230, 2228,  DOI: 10.1016/j.electacta.2017.01.085
    21. 21
      Lian, S.; Browne, M. P.; Domínguez, C.; Stamatin, S. N.; Nolan, H.; Duesberg, G. S.; Lyons, M. E. G.; Fonda, E.; Colavita, P. E. Template-free synthesis of mesoporous manganese oxides with catalytic activity in the oxygen evolution reaction. Sustainable Energy Fuels 2017, 1, 780788,  DOI: 10.1039/C7SE00086C
    22. 22
      Petrykin, V.; Bastl, Z.; Franc, J.; Macounova, K.; Makarova, M.; Mukerjee, S.; Ramaswamy, N.; Spirovova, I.; Krtil, P. Local Structure of Nanocrystalline Ru1–xNixO2–δ Dioxide and Its Implications for Electrocatalytic Behavior─An XPS and XAS Study. J. Phys. Chem. C 2009, 113, 2165721666,  DOI: 10.1021/jp904935e
    23. 23
      Seitz, L. C.; Nordlund, D.; Gallo, A.; Jaramillo, T. F. Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochim. Acta 2016, 193, 240245,  DOI: 10.1016/j.electacta.2016.01.200
    24. 24
      Abbott, D. F.; Lebedev, D.; Waltar, K.; Povia, M.; Nachtegaal, M.; Fabbri, E.; Copéret, C.; Schmidt, T. J. Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chem. Mater. 2016, 28, 65916604,  DOI: 10.1021/acs.chemmater.6b02625
    25. 25
      Gorlin, Y.; Chung, C.-J.; Benck, J. D.; Nordlund, D.; Seitz, L.; Weng, T.-C.; Sokaras, D.; Clemens, B. M.; Jaramillo, T. F. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation. J. Am. Chem. Soc. 2014, 136, 49204926,  DOI: 10.1021/ja407581w
    26. 26
      Petrykin, V.; Macounová, K.; Okube, M.; Mukerjee, S.; Krtil, P. Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal. Today 2013, 202, 6369,  DOI: 10.1016/j.cattod.2012.03.075
    27. 27
      Petrykin, V.; Macounova, K.; Shlyakhtin, O. A.; Krtil, P. Tailoring the Selectivity for Electrocatalytic Oxygen Evolution on Ruthenium Oxides by Zinc Substitution. Angew. Chem., Int. Ed. 2010, 49, 48134815,  DOI: 10.1002/anie.200907128
    28. 28
      Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887898,  DOI: 10.1016/j.apsusc.2010.07.086
    29. 29
      Newville, M. EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 2001, 8, 96100,  DOI: 10.1107/S0909049500016290
    30. 30
      Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322324,  DOI: 10.1107/S0909049500016964
    31. 31
      Diebold, U.; Madey, T. E. TiO2 by XPS. Surf. Sci. Spectra 1996, 4, 227231,  DOI: 10.1116/1.1247794
    32. 32
      Di Castro, V.; Polzonetti, G. XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 1989, 48, 117123,  DOI: 10.1016/0368-2048(89)80009-X
    33. 33
      Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 27172730,  DOI: 10.1016/j.apsusc.2010.10.051
    34. 34
      Wöllner, A.; Lange, F.; Schmelz, H.; Knözinger, H. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl. Catal., A 1993, 94, 181203,  DOI: 10.1016/0926-860X(93)85007-C
    35. 35
      Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G. Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4. J. Phys. Chem. B 2004, 108, 1854718551,  DOI: 10.1021/jp0479522
    36. 36
      Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 10721079,  DOI: 10.1002/sia.5852
    37. 37
      Jiao, F.; Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 2010, 46, 29202922,  DOI: 10.1039/B921820C
    38. 38
      Farges, F. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys. Rev. B 2005, 71, 155109  DOI: 10.1103/PhysRevB.71.155109
    39. 39
      Ramírez, A.; Hillebrand, P.; Stellmach, D.; May, M. M.; Bogdanoff, P.; Fiechter, S. Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water. J. Phys. Chem. C 2014, 118, 1407314081,  DOI: 10.1021/jp500939d
    40. 40
      Mattelaer, F.; Bosserez, T.; Rongé, J.; Martens, J. A.; Dendooven, J.; Detavernier, C. Manganese oxide films with controlled oxidation state for water splitting devices through a combination of atomic layer deposition and post-deposition annealing. RSC Adv. 2016, 6, 9833798343,  DOI: 10.1039/C6RA19188F
    41. 41
      Liu, F.; Shan, W.; Lian, Z.; Xie, L.; Yang, W.; He, H. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catal. Sci. Technol. 2013, 3, 26992707,  DOI: 10.1039/C3CY00326D
    42. 42
      Wiechen, M.; Zaharieva, I.; Dau, H.; Kurz, P. Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion. Chem. Sci. 2012, 3, 23302339,  DOI: 10.1039/C2SC20226C
    43. 43
      Zahoransky, T.; Wegorzewski, A. V.; Huong, W.; Mikutta, C. X-ray absorption spectroscopy study of Mn reference compounds for Mn speciation in terrestrial surface environments. Am. Mineral. 2023, 108, 847864,  DOI: 10.2138/am-2022-8236
    44. 44
      Grangeon, S.; Lanson, B.; Miyata, N.; Tani, Y.; Manceau, A. Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am. Mineral. 2010, 95, 16081616,  DOI: 10.2138/am.2010.3516
    45. 45
      Zhang, A.; Zhao, R.; Hu, L.; Yang, R.; Yao, S.; Wang, S.; Yang, Z.; Yan, Y.-M. Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412  DOI: 10.1002/aenm.202101412
    46. 46
      Gaillot, A.-C.; Flot, D.; Drits, V. A.; Manceau, A.; Burghammer, M.; Lanson, B. Structure of Synthetic K-rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. I. Two-Layer Polytype from 800 °C Experiment. Chem. Mater. 2003, 15, 46664678,  DOI: 10.1021/cm021733g
    47. 47
      Krause, M. O.; Oliver, J. H. Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 1979, 8, 329338,  DOI: 10.1063/1.555595
    48. 48
      Otoyama, M.; Jacquet, Q.; Iadecola, A.; Saubanère, M.; Rousse, G.; Tarascon, J.-M. Synthesis and Electrochemical Activity of Some Na(Li)-Rich Ruthenium Oxides with the Feasibility to Stabilize Ru6+. Adv. Energy Mater. 2019, 9, 1803674  DOI: 10.1002/aenm.201803674
    49. 49
      McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.; Swider, K. E.; Rolison, D. R. Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage. J. Phys. Chem. B 1999, 103, 48254832,  DOI: 10.1021/jp990096n
    50. 50
      Qiu, J.-Z.; Hu, J.; Lan, J.; Wang, L.-F.; Fu, G.; Xiao, R.; Ge, B.; Jiang, J. Pure Siliceous Zeolite-Supported Ru Single-Atom Active Sites for Ammonia Synthesis. Chem. Mater. 2019, 31, 94139421,  DOI: 10.1021/acs.chemmater.9b03099
    51. 51
      Matheu, R.; Ertem, M. Z.; Gimbert-Suriñach, C.; Sala, X.; Llobet, A. Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chem. Rev. 2019, 119, 34533471,  DOI: 10.1021/acs.chemrev.8b00537
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.3c01585.

    • Additional chronoamperometry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction, EXAFS spectra, best fits and parameters for the first coordination shell, and fit results of the XANES spectrum of Mn 50 (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect