这是用户在 2024-11-20 15:48 为 https://ieeexplore-ieee-org.accproxy.lib.szu.edu.cn/document/8053768/references#references 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
























高速硅光子发射器的电子-光子协同优化 |IEEE期刊和杂志 |IEEE Xplore --- Electronic–Photonic Co-Optimization of High-Speed Silicon Photonic Transmitters | IEEE Journals & Magazine | IEEE Xplore

Electronic–Photonic Co-Optimization of High-Speed Silicon Photonic Transmitters
高速硅光子发射器的电子-光子协同优化

Publisher: IEEE
出版商: IEEE

Abstract:

System-level driven electronic-photonic codesign is the key to improving the bandwidth density and energy efficiency for high-speed silicon photonic links. In many data-c...View more

Abstract:

System-level driven electronic-photonic codesign is the key to improving the bandwidth density and energy efficiency for high-speed silicon photonic links. In many data-communication scenarios, optical link power is dominated by its transmitter side including the laser source. In this paper, we propose a comprehensive co-optimization framework for high-speed silicon photonic transmitters utilizing compact models and a detailed optical simulation framework. Given technology and link constraints, microring and Mach-Zehnder transmitter designs are optimized and compared based on a unified optical phase shifter model. NRZ and PAM4 modulation schemes are analyzed and compared for microring-based transmitters at 50 Gb/s. Multistage and traveling wave Mach-Zehnder transmitters are optimized and discussed as well. The results show that, for a 50 Gb/s NRZ optical link, an optimized microring transmitter could save more than 60% of the total laser and driver power compared to an optimized Mach-Zehnder transmitter under equivalent photonic technology constraints. For a given datarate and receiver sensitivity, design tradeoffs of silicon photonic processes, devices, and architecture choices are discussed in depth. In addition, this paper introduces a new Simulink toolbox for transient optical simulation. Combined with the proposed optimization engine, it provides an electrooptical co-optimization approach toward truly energy-efficient high-speed silicon photonic links.
Published in: Journal of Lightwave Technology ( Volume: 35, Issue: 21, 01 November 2017)
Page(s): 4766 - 4780
Date of Publication: 29 September 2017

ISSN Information:

Publisher: IEEE

Funding Agency:

References is not available for this document.

SECTION I. 第一部分

Introduction 介绍

Silicon photonics holds great promise in replacing conventional optical interconnects and electrical interconnects in today's data centers as the bandwidth-length product demand keeps growing. Optical links based on silicon photonics are one of the most promising candidates for meeting the demands of next-generation 400 G inter-rack interconnects and 100 G intra-rack interconnects in data centers. To meet such demands, optical transceivers with datarates at or higher than 50 Gb/s are of the most interest in both wavelength-division mutiplexed (WDM) and parallel single-mode (PSM) systems. Recent years have seen great effort and rapid progress in the development and commercialization of silicon photonic technologies ranging from platforms, devices, circuits to large-scale systems [1]–​ [9]. Moreover, silicon photonic modulators and optical transceivers beyond 50 Gb/s have recently been demonstrated in various photonic platforms [10]–​[15]. At these high data-rates it is critical to consider holistically the design of the photonic and circuit components from the perspective of link energy-efficiency and bandwidth density.
随着带宽长度产品需求的不断增长,硅光子学在取代当今数据中心的传统光学互连和电气互连方面具有很大的前景。基于硅光子学的光链路是满足数据中心下一代 400 G 机架间互连和 100 G 机架内互连需求的最有前途的候选者之一。为了满足这些需求,数据速率等于或高于 50 Gb/s 的光收发器在波分多工 (WDM) 和并行单模 (PSM) 系统中最受关注。近年来,从平台、设备、电路到大型系统,硅光子技术的开发和商业化都付出了巨大的努力和快速的进展 [1] [9]。此外,最近在各种光子平台上展示了超过 50 Gb/s 的硅光子调制器和光收发器 [10][15]。在这些高数据速率下,从链路能效和带宽密度的角度全面考虑光子和电路组件的设计至关重要。

In state-of-the-art 50 Gb/s NRZ optical link based on Mach-Zehnder modulator (MZM), the driver and laser together consume more than 10 pJ/b energy dominating the total link energy, compared to 1.4–3 pJ/b consumed by the receiver [10], [11]. In contrast to MZMs, microring modulators (MRM) can consume less than 100 fJ/b driver energy due to their compact sizes. The thermal tuning overhead for microrings can be as low as a few milliwatts per channel [21] , which has negligible impact on the overall energy efficiency of the transmitter. Microring modulators have great potential for dense WDM systems due to their inherent wavelength selectivity. They have also shown promising high-speed operations for single-wavelength 50 Gb/s links [12], [18]. However, full optical links at such high datarate using microring modulators are yet to be demonstrated, which is in part due to unoptimized device designs and the inherent trade-offs between optical modulation amplitude (OMA) and optical bandwidth for microrings [19] . For both types of modulators, there are different architecture choices and also trade-offs between laser power and transmitter power. Additionally, they are both subject to the same technology constraints from the silicon photonic platforms and link specifications. As a result, it is critical yet challenging to co-optimize photonics alongside circuits. To date, there is still debate on which modulator architecture could be a better design choice for 50 Gb/s optical channels in WDM and PSM systems.
在基于马赫-曾德尔调制器 (MZM) 的最先进的 50 Gb/s NRZ 光链路中,驱动器和激光器总共消耗超过 10 pJ/b 的能量,在总链路能量中占主导地位,而接收器消耗的能量为 1.4-3 pJ/b[10][11]。与 MZM 相比,微环调制器 (MRM) 由于尺寸紧凑,其功耗可以低于 100 fJ/b 的驱动器能量。微环的热调谐开销可以低至每通道几毫瓦 [21] ,这对发射器的整体能效的影响可以忽略不计。由于其固有的波长选择性,微环调制器在密集 WDM 系统中具有很大的潜力。它们还显示出单波长 50 Gb/s 链路的高速操作前景广阔 [12][18]。然而,使用微环调制器以如此高的数据速率实现的全光链路还有待证明,这部分是由于未优化的器件设计以及微环的光调制幅度 (OMA) 和光带宽之间的固有权衡 [19] 。对于这两种类型的调制器,都有不同的架构选择,并且还需要在激光功率和发射器功率之间进行权衡。此外,它们都受到硅光子平台和链路规范的相同技术约束。因此,将光子学与电路协同优化至关重要,但又具有挑战性。迄今为止,对于WDM和PSM系统中50 Gb/s光通道来说,哪种调制器架构是更好的设计选择,仍然存在争议。

This paper is intended to answer the questions above and provide new insights and intuition into high-speed silicon photonic transmitters. The paper focuses on a comparison between microring and Mach-Zehnder modulators given the same technology constraints at 50 Gb/s. We begin with an overview of the optimization framework in Section II and introduction of a compact model for phase shifters in Section III. The phase shifter model is verified with experimental data and later sets the foundation for microring and Mach-Zehnder modulator modeling. In Section IV, the optimization of the microring-based transmitter is carried out for 50 Gb/s optical links to obtain the best energy efficiency. A new Simulink toolbox is introduced to capture dynamic behaviors of MRMs. This general-purpose toolbox can be used for simulating other optical systems as well. In addition, an MRM-based PAM4 transmitter is analyzed as a potential way to mitigate optical bandwidth constraints. In Section V, a co-optimization of the Mach-Zehnder transmitter is carried out for both multi-stage (MS) and traveling-wave (TW) drivers. Finally, a comparison between optimized MRM-based TX and optimized MZM-based TX given the same technology constraints is discussed in Section VI. Section VII concludes the paper.
本文旨在回答上述问题,并为高速硅光子发射器提供新的见解和直觉。本文重点介绍了在 50 Gb/s 的相同技术限制下,微环调制器和 Mach-Zehnder 调制器之间的比较。我们首先在第二节 中概述了优化框架,并在第三节 中介绍了移相器的紧凑模型。移相器模型用实验数据进行了验证,随后为微环和 Mach-Zehnder 调制器建模奠定了基础。在第四节 中,对基于微环的发射机进行了 50 Gb/s 光链路的优化,以获得最佳的能源效率。引入了一个新的 Simulink 工具箱来捕获 MRM 的动态行为。这个通用工具箱也可用于模拟其他光学系统。此外,还分析了基于 MRM 的 PAM4 发射机作为缓解光带宽限制的潜在方法。在第 V 部分中 ,对多级 (MS) 和行波 (TW) 驱动器进行了 Mach-Zehnder 发射器的协同优化。最后,在相同技术约束 下,讨论了基于 MRM 的优化 TX 和基于 MZM 的优化 TX 之间的比较。第七节 是本文的结论。

SECTION II. 第二部分

Overview of Co-Optimization Framework
协同优化框架概述

The objectives of the proposed framework are to lay the foundation for silicon photonic device and link co-design and to be readily applicable to a multitude of silicon photonic platforms. This framework is called “co-optimization” as it optimizes photonic device parameters such as doping levels and geometries alongside CMOS circuits and architectural choices. The optimization goal is to minimize the overall energy-per-bit (E/b) of the transmitter macro (laser plus driver) under both technology and link design constraints. The detailed constraints, as well as the overview of optimization framework, are shown in Fig. 1.
所提出的框架的目标是为硅光子器件和链路协同设计奠定基础,并易于适用于多种硅光子平台。该框架被称为“协同优化”,因为它优化了光子器件参数,例如掺杂水平和几何形状,以及 CMOS 电路和架构选择。优化目标是在技术和链路设计约束下,最大限度地降低发射器宏(激光加驱动器)的每比特总能量 (E/b)。详细的约束以及优化框架的概述如图 1 所示 

Fig. 1. - The flowchart of the co-optimization framework for silicon photonic transmitters. The denotations here are
 used in derivations in the paper.
Fig. 1.  图 1.

The flowchart of the co-optimization framework for silicon photonic transmitters. The denotations here are used in derivations in the paper.
硅光子发射器的协优化框架流程图。这里的指称用于论文的推导中。

Challenges for designing a comprehensive, yet general, co-optimization framework stem mainly from three important criteria. First, the framework needs to be specific enough to capture the intricacies of technology-dependent photonic device physics, without necessarily overburdening the optimizer. Second, the model needs to be generic enough to characterize the common waveguide and junction designs across many silicon photonic platforms. Third, it needs to consider key link constraints and provide a link-level picture that includes the transmitter, receiver and laser. Previous literature on link-level analysis and modeling of silicon photonic transmitters [21]–​[23] often treats the optical devices as black boxes and do not consider doping and device design parameters altogether. For example, the critical trade-off between phase shift and optical loss under process constraints is often neglected. Other literature focusing on photonic device modeling [23]–​[27] often relies on analytical expressions of optical mode distribution in the waveguide and can be too complex and cumbersome for link-level analysis. To overcome these issues, we model the silicon photonic modulators based on a simple yet accurate compact model for phase shifters. The paper focuses on depletion-mode pn-junction-based phase shifters, as they are widely used for high-speed modulators on different silicon photonic platforms [1]–​[8]. This compact model incorporates waveguide geometry, mode confinement factor, and PN junction doping, all with some reasonable approximations. The compact model fits well with experimental results in various silicon photonic platforms.
设计一个全面而通用的协同优化框架的挑战主要来自三个重要标准。首先,框架需要足够具体,以捕捉与技术相关的光子器件物理学的复杂性,而不必使优化器负担过重。其次,该模型需要足够通用,以表征许多硅光子平台上的常见波导和结设计。第三,它需要考虑关键链路约束,并提供包括发射器、接收器和激光器在内的链路级图片。以前关于硅光子发射器链路级分析和建模的文献 [21][23] 经常将光学器件视为黑匣子,完全不考虑掺杂和器件设计参数。例如,在工艺约束下,相移和光损耗之间的关键权衡经常被忽视。其他专注于光子器件建模的文献 [23][27] 通常依赖于波导中光模式分布的解析表达式,对于链路级分析来说可能过于复杂和繁琐。为了克服这些问题,我们基于一个简单而准确的紧凑型移相器模型对硅光子调制器进行建模。本文重点介绍基于耗尽型 pn 结的移相器,因为它们广泛用于不同硅光子平台上的高速调制器 [1][8]。这个紧凑的模型结合了波导几何结构、模式约束因子和 PN 结掺杂,所有这些都具有一些合理的近似值。紧凑的模型非常适合各种硅光子平台中的实验结果。

As shown in Fig. 1, the co-optimization engine uses both technology and link constraints. The technology constraints are related to the photonic processes and includes parameters for waveguides, junctions, couplers and lasers. The link constraints are determined by the overall link budget and specific transceiver circuits. The engine optimizes microring and Mach-Zehnder transmitters separately based on the same phase shifter model with the goal of minimizing total E/b for laser and electronic driver combined. An optical simulation toolbox is developed in Simulink to verify the large-signal time-domain performance of the co-optimized transmitters. The optimizer is implemented in Matlab and can be integrated seamlessly with Simulink. Although this paper focuses on the transmitter side, the simulation toolbox can be applied to full optical links as well along with other communication toolboxes. This Simulink optical simulation toolbox is available online [35].
如图 1 所示 ,协同优化引擎同时使用技术和链接约束。技术约束与光子过程有关,包括波导、结、耦合器和激光器的参数。链路约束由总链路预算和特定的收发器电路决定。该引擎基于相同的移相器模型分别优化了 Microring 和 Mach-Zehnder 发射器,目的是最大限度地减少激光器和电子驱动器的总 E/b。在 Simulink 中开发了一个光学仿真工具箱,用于验证协同优化发射机的大信号时域性能。优化器在 Matlab 中实现,可以与 Simulink 无缝集成。虽然本文侧重于发射机侧,但仿真工具箱也可以与其他通信工具箱一起应用于全光链路。此 Simulink 光学仿真工具箱可在线获取 [35]。

SECTION III. 第三部分。

PN-Junction-Based Optical Phase Shifter
基于 PN 结的光学移相器

A. Compact Model of Optical Phase Shifter
A. 光学移相器的紧凑模型

The common building block for both MRM's and MZM's is the high-speed optical phase shifter. More specifically, this phase shift allows the constructive or destructive interference of light exiting the transmit waveguide, thereby creating a modulated output optical signal.
MRM 和 MZM 的通用构建模块是高速光学移相器。更具体地说,这种相移允许从发射波导射出的光产生相长或相消干涉,从而产生调制输出光信号。

Due to the lack of Pockels effect, silicon photonic phase shifters rely on the carrier plasma dispersion effect. High-speed phase modulation is achieved with depletion-mode PN junctions. Within PN junctions, the number of excess electrons and holes strongly dictate the refractive index and absorption coefficient. Combined with the applied voltage across the junction, these factors affect the maximum phase shift as well as the loss. Device parameters for phase shifters include intrinsic index and absorption, junction geometries and doping concentrations. The foundries often provide a wide range of doping concentrations by default and can potentially tune the doping levels for customers. Therefore, doping level is considered a key parameter in our optimization framework. There are three main types of junction designs as shown in Fig. 2 In this section, we propose a simplified phase shifter model that is applicable to most junction shapes.
由于缺乏普克尔斯效应,硅光子移相器依赖于载流子等离子体色散效应。高速相位调制是通过耗尽型 PN 结实现的。在 PN 结中,过剩电子和空穴的数量在很大程度上决定了折射率和吸收系数。结合结两端施加的电压,这些因素会影响最大相移和损耗。移相器的器件参数包括本征指数和吸收、结几何形状和掺杂浓度。默认情况下,代工厂通常提供广泛的掺杂浓度范围,并且可以为客户调整掺杂水平。因此,掺杂水平被认为是我们优化框架中的一个关键参数。结设计主要有三种类型,如图 2 所示。 在本节中,我们提出了一种适用于大多数结形状的简化移相器模型。

Fig. 2. - Mach-Zehnder and microring modulators based on different PN junction phase shifters. Three common types of
 phase shifters are listed with top view or cross-section view. The corresponding feature lengths (
$L_j$) for these PN junctions are listed as well.
Fig. 2.  图 2.

Mach-Zehnder and microring modulators based on different PN junction phase shifters. Three common types of phase shifters are listed with top view or cross-section view. The corresponding feature lengths (Lj) for these PN junctions are listed as well.
基于不同 PN 结移相器的 Mach-Zehnder 和微环调制器。三种常见的类型 移相器以 Top View 或 Cross section View 列出。还列出了这些 PN 结点的相应特征长度 ( Lj )。

The carrier plasma dispersion effect in crystalline silicon was first shown in [30]. The wavelength-dependent expressions for the material properties were commonly used with fitting parameters. According to the models in [28], both index and absorption vary as wavelength λ (m). The changes in refractive index n(λ) and absorption α(λ) are given by:
晶体硅中的载流子等离子体色散效应首次显示在 [30] 中。材料属性的波长相关表达式通常用于拟合 参数。根据 [28] 中的模型,指数和吸收率都不同 作为波长 λ (m)。的变化 折光率 n(λ) 和吸收率 α(λ) 由下式给出:

Δn(λ)Δα(λ)=Aλ2ΔNBλ2ΔP0.8=Cλ2ΔN+Dλ2ΔP (cm1),(1)(2)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where ΔN and ΔP are changes in electron and hole concentrations (cm3). The fitting parameters are A=3.64×1010, B=3.51×106, C=3.52×106 and D=2.4×106. Throughout the paper, power absorption coefficient is denoted by α, and field absorption coefficient is denoted by αf, where α=2αf. The effective refractive index and absorption coefficient for an intrinsic silicon waveguide are denoted by neff,i and αi respectively. The impacts of junction doping and external bias voltages can be derived in two steps. As the first step, a doped silicon waveguide without depletion region is assumed. For simplicity, the waveguide is assumed to be split evenly between uniform n-doping and uniform p-doping. The intermediate effective index neff,d and absorption αd for a doped waveguide can be thereby approximated as
其中 ΔN ΔP 是电子和空穴的变化 浓度 (cm 3 )。配件 参数是 A=3.64×1010, B=3.51×106, C=3.52×106 D=2.4×106. 在整篇论文中,功率吸收系数用 α 表示,场吸收系数用 表示 αf ,其中 α=2αf .有效折射率和 本征硅波导的吸收系数表示为 neff,i αi 分别。结掺杂和外部偏置电压的影响可以分两步得出。 第一步,假设掺杂硅波导没有耗尽区。为简单起见,波导是 假设在均匀 n 掺杂和均匀 p 掺杂之间平均分配。中间有效指数 neff,d 和吸收 αd 因为掺杂波导可以因此 近似为
neff,dαdneff,iγ(Aλ2ND+Bλ2N0.8A)/2αi+γ(Cλ2ND+Dλ2NA)/2.(3)(4)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where ND and NA are impurity densities for n-doping and p-doping respectively. γ represents the mode confinement factor for the waveguide (0 < γ < 1). When optical mode is more confined in the waveguide, γ increases and thus doping has a larger impact on optical properties.
其中 ND NA 是 n 掺杂的杂质密度,以及 p 兴奋剂。 γ 表示 波导的模式限制因子 (0 < γ < 1)。当光模式更多地局限在波导中时, γ 增加,因此掺杂具有更大的 对光学特性的影响。

In reality, depletion region always exists in the PN junction of a depletion-mode phase shifter. As the second step, we assume that bias voltage V is applied on the junction (V = 0 when there is no external bias). The voltage-dependent effective refractive index and absorption coefficient are derived as
实际上,耗尽区始终存在于耗尽型移相器的 PN 结中。作为第二步, 我们假设偏置电压 V 施加在 结点(没有外部偏置时 V = 0)。电压依赖性有效折光率和吸收 系数的

neff(V)α(V)neff,d+γLj(Aλ2NDxn(V)+Bλ2N0.8Axp(V))αdγLj(Cλ2NDxn(V)+Dλ2NAxp(V))(5)(6)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where xn(V) and xp(V) are depletion widths on the n-doping and p-doping side of the PN junction. They are calculated by the set of equations below:
其中 xn(V) xp(V) 是 n 掺杂的耗尽宽度 和 PN 结的 p 掺杂侧。它们由以下一组方程计算:
xn(V)xp(V)Vbi=2ϵNA(VbiV)qND(NA+ND)=2ϵND(VbiV)qNA(NA+ND)=kBTqlnNANDn2i.(7)(8)(9)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.

Lj is defined as a feature length for PN junction. It is determined by the waveguide geometries and junction shapes. For different junction shapes, different feature lengths Lj are listed in Fig. 2. Intuitively, reducing Lj would improve phase modulation efficiency as the depletion region takes up a larger portion within the waveguide. For lateral and vertical junctions, feature length Lj are correlated with the confinement factor γ. For interleaved junctions, they are independent parameters. In general, reducing Lj/γ improves the overlap between the confined optical mode and depletion region and thereby improves phase modulation efficiency (5).
Lj 定义为 PN 的特征长度 结。它由波导几何形状和结形状决定。对于不同的连接形状,不同的 特征长度 Lj 列在  图 2.直观地说,减少 Lj 将提高相位调制效率,因为耗尽区占用的面积更大 部分。对于横向和垂直交界处,特征长度 Lj 与约束因子 γ 相关。对于交错交汇点,它们是独立的 参数。一般来说,减少 Lj/γ 改善受限光模式和耗尽区之间的重叠,从而改善相位调制 效率 (5)。

This model assumes that the perturbations in effective refractive index and absorption coefficient vary linearly as depletion width. This is an accurate assumption for interleaved junctions, and is a simplified first-order approximation for other junction designs with typical waveguide geometries. For lateral and vertical junctions, the model assumes uniform distribution of optical power in the waveguide.
该模型假设有效折射率和吸收系数的扰动随耗尽宽度线性变化。这是交错结的准确假设,对于具有典型波导几何形状的其他结设计,这是一个简化的一阶近似。对于横向和垂直结点,该模型假设光功率在波导中的分布均匀。

B. Model Verification on Different Platforms
B. 在不同平台上进行模型验证

Next the phase shifter model is applied to various silicon photonic platforms developed by multiple foundries. The model is verified against measurement data. Modulation efficiency VπLπ is generally used for characterizing phase shifter performance, which is defined as the product of the required voltage swing (Vπ) and phase shifter length (Lπ) for π phase shift. For a voltage swing from 0 to V, the product is given by
接下来,移相器模型应用于多家代工厂开发的各种硅光子平台。这 根据测量数据验证模型。调制效率 VπLπ 通常用于表征移相器性能,其定义为 相移所需的电压摆幅 ( Vπ ) 和移相器长度 ( Lπ π 的乘积。对于 电压摆幅从 0 到 V ,乘积为 由

VπLπ=λV2(neff(V)neff(0))(10)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The relationship between VπLπ and doping levels for different Lj/γ is plotted in Fig. 3. The reported data points from multiple silicon photonic processes are marked in the same figure. All the measurement data are taken at around 1550 nm for consistency. This figure shows the distribution of doping levels in today's silicon photonic platforms and their corresponding VπLπ. In addition, it can be used to estimate the waveguide and junction defined factor Lj/γ for these platforms.
图 3 中绘制了不同 Lj/γ 掺杂水平之间的关系 VπLπ 。报告的数据点来自 多个硅光子工艺在同一图中标记。所有测量数据均在 1550 左右采集 nm 保持一致性。该图显示了当今硅光子平台中掺杂水平的分布,并且 他们对应的 VπLπ .另外 它可用于估计波导和结定义因子 Lj/γ 对于这些平台。

Fig. 3. - Modulation efficiency $V\pi L\pi$
 vs. junction doping level. Dashed lines are predicted $V\pi L\pi$
 at −1 V reverse bias when $L_j/\gamma$
 equals 200 nm, 400 nm, 600 nm and 800 nm. Reported data on various silicon photonic platforms 
[1]–[7]
 are marked here. Average concentration of n-type and p-type doping is used.
Fig. 3.  图 3.

Modulation efficiency VπLπ vs. junction doping level. Dashed lines are predicted VπLπ at −1 V reverse bias when Lj/γ equals 200 nm, 400 nm, 600 nm and 800 nm. Reported data on various silicon photonic platforms [1]–​[7] are marked here. Average concentration of n-type and p-type doping is used.
调制效率 VπLπ 与液络部掺杂水平。当等于 200 nm、400 nm、600 nm 和 800 nm 时 Lj/γ ,在 −1 V 反向偏压处预测 VπLπ 虚线。各种硅光子平台的报告数据 [1][7] 在此处标记。使用 n 型和 p 型掺杂的平均浓度。

More details about these waveguides and phase shifters are summarized in Table I. Only phase shifters based on lateral and interleaved junctions are included here due to insufficient measurement data for vertical junctions. Based on our proposed compact models, the mode confinement γ can be directly calculated from the measured VπLπ. It is clear from the calculated results that γ decreases as the dimensions of the waveguide cross section shrinks because the optical mode is less confined. The typical value for γ is between 0.60 to 0.85. In our optimization framework, γ is assumed to be fixed and considered as a technology constraint. In Fig. 4, the voltage-dependency of VπLπ predicted by the model are compared with the reported measurement data from three different silicon photonic platforms [4], [5], [7]. Among them, two use lateral junctions and one uses interleaved junction. Note that for these three phase shifters, Lj and γ are the same as their corresponding values listed in the table. The predicted modulation efficiencies matches well with measurement data.
表 I 总结了有关这些波导和移相器的更多详细信息。此处仅包含基于横向和交错结的移相器,因为 垂直交界处的测量数据不足。基于我们提出的紧凑模型,模态限制 γ 可以直接从 测量的 VπLπ 。从 计算结果 γ ,递减为 波导横截面的尺寸缩小,因为光学模式的限制较小。的典型值 γ 介于 0.60 到 0.85 之间。在我们的 optimization 框架, γ 假定 固定并被视为技术约束。在图 4 中, 预测的 VπLπ 电压依赖性 将模型与来自三个不同硅光子平台的报告测量数据进行比较 [4][5]其中,2 个使用横向连接,1 个使用交错连接。 请注意,对于这三个移相器, Lj γ 他们的 表中列出了相应的值。预测的调制效率与测量数据非常匹配。

Fig. 4. - Modulation efficiency $V\pi L\pi$
 vs. reversed bias voltage for phase shifters on three different platforms [4],
 [5], [7]. Detailed information are
 included in Table I. Note that [5]
 refers to the interleaved phase shifter on that platform.
Fig. 4.  图 4.

Modulation efficiency VπLπ vs. reversed bias voltage for phase shifters on three different platforms [4], [5], [7]. Detailed information are included in Table I. Note that [5] refers to the interleaved phase shifter on that platform.
调制效率 VπLπ 与三个不同平台上移相器的反向偏置电压 [4][5][7]。详细信息包括 包含在表 I 中。请注意, [5] 指的是该平台上的交错移相器。

TABLE I Modeled Phase Shifters on Various Si Photonic Platforms
表 I 在各种 Si 光子平台上建模移相器
Table I- Modeled Phase Shifters on Various Si Photonic Platforms

For higher doping levels, modulation efficiency of the phase shifter improves at the cost of larger optical losses. This inherent trade-off is critical for doping optimization for MRM and MZM devices. The optical losses of the phase shifters, as calculated from 6, match well with measured waveguide losses from various platforms in Fig. 5. Overall, the proposed model considers junction design and mode confinement, captures the fundamental device trade-off between loss and phase shift, and fits accurately the voltage dependency on these optical properties. Although the model can be extended to include more physics details for specific designs such as junction asymmetry or actual mode profiles, it is efficient and accurate enough for this paper's system-level optimization.
对于更高的掺杂水平,移相器的调制效率会提高,但代价是光损耗更大。这种固有的权衡对于 MRM 和 MZM 器件的掺杂优化至关重要。移相器的光损耗(从 6 开始计算)与图 5 中各种平台测得的波导损耗非常匹配。总体而言,所提出的模型考虑了结设计和模式限制,捕捉了损耗和相移之间的基本器件权衡,并准确拟合了电压对这些光学特性的依赖性。尽管该模型可以扩展为包含特定设计的更多物理细节,例如结不对称或实际模式剖面,但它对于本文的系统级优化来说足够高效和准确。

Fig. 5. - Reported waveguide loss vs. predicted waveguide loss. The references for each date points are labeled in
 the figure [1]–
[7].
Fig. 5.  图 5.

Reported waveguide loss vs. predicted waveguide loss. The references for each date points are labeled in the figure [1]–​ [7].
报告的波导损耗与预测的波导损耗。每个日期点的参考文献在图 [1] [7] 中标记。

SECTION IV. 第四部分。

Optimization of Microring-Based Transmitter
基于微环的发射机的优化

A. Static Model of Microring Modulator
A. 微环调制器的静态模型

A microring modulator (MRM) typically consists of a silicon microring and three waveguide ports – input, output and drop ports, as shown in Fig. 6. The microring has a very small footprint compared to other modulators, with diameters as small as 10 μm. This enables very low power modulation at sub−100 fJ/b driver energy due to its small device capacitance [8]. The microring itself is a pn-junction-based phase shifter that is driven by voltage drivers. The optical power at the output port of the ring changes as the round-trip phase is modulated by the driver. High-speed operation has been demonstrated with depletion-mode phase shifters [12], [18] .
微环调制器 (MRM) 通常由一个硅微环和三个波导端口组成 – 输入、 output 和 drop 端口,如图 6 所示 。微环有一个非常小的 与其他调制器相比,占地面积小至 10 μm .由于驱动器能量低于 100 fJ/b,因此可以在低于 100 fJ/b 的驱动器能量下实现非常低的功率调制 到其小器件电容 [8]。微环本身是一个 基于 PN 结的移相器,由电压驱动器驱动。环输出端口的光功率 随着驱动器调制 round-trip phase 而变化。高速运行已被证明 耗尽型移相器 [12][18]

Fig. 6. - Micrograph of microring modulator in zero-change 45 nm SOI process [8]
. Model diagram of a microring modulator with drop port, where coupler and propagation coefficients for electric
 fields are labeled.
Fig. 6.  图 6.

Micrograph of microring modulator in zero-change 45 nm SOI process [8] . Model diagram of a microring modulator with drop port, where coupler and propagation coefficients for electric fields are labeled.
零变化 45 nm SOI 工艺中微环调制器的显微照片 [8] 。带有丢口的微环调制器的模型图,其中标记了电场的耦合器和传播系数。

Microring modulators can be sensitive to temperature variations. For any practical system, the microring resonance needs to be adaptively locked to the laser wavelength through a thermal tuning feedback loop. Robust and efficient thermal tuning for microring modulators has been demonstrated with a running processor on the same chip [8]. As the sensing part of feedback loop, a drop port waveguide is coupled to the microring to provide a port for monitoring the optical power level inside the cavity (see Fig. 6). The feedback loop can be closed with an embedded heater inside the microring for tuning the temperature. More details about thermal tuning feedback designs and algorithms are shown in [21].
微环调制器对温度变化很敏感。对于任何实际系统,都需要通过热调谐反馈回路将微环谐振自适应地锁定到激光波长。微环调制器的稳健和高效的热调谐已经通过在同一芯片上运行的处理器上得到证明 [8]。作为反馈回路的传感部分,一个落口波导耦合到微环上,以提供一个端口来监测腔内的光功率水平(见图 6)。反馈回路可以用微环内的嵌入式加热器来关闭,以调节温度。有关热调谐反馈设计和算法的更多详细信息,请参见 [21]。

To optimize the modulator performance, we begin with the introduction of the static model of MRM's which relies on the phase shifter model in Section III. The static model of the microring is derived based on the transfer matrix method (TMM), where the coupling between input/drop waveguides and the ring is represented by transfer matrices [31]. As shown in Fig. 6, the key device parameters for a microring include effective index neff, group index ng, round-trip length Lrt, input coupler field transmission t1 and drop coupler field transmission t2. Assuming a lossless coupler, we have |ki|2+|ti|2=1,(i=1,2), where k1 and k2 are cross-coupling coefficients. These coupler coefficients depend on the gap between the waveguide and microring cavity and can be determined through FDTD simulation. According to the TMM, the optical power at the output port Pt and drop port Pd can be derived as follows:
为了优化调制器性能,我们首先引入 MRM 的静态模型,该模型依赖于 关于第三节 中的移相器模型。静态模型的 微环是基于传递矩阵法 (TMM) 推导的,其中输入/压降波导和 该环由传递矩阵 [31] 表示。如  图 6,微环的关键器件参数包括有效指数 neff 、 组索引 ng 、 往返长度 Lrt 、 输入耦合器场传输 t1 和 丢弃耦合器场传输 t2 。假设有一个无损耦合器,我们有 |ki|2+|ti|2=1,(i=1,2) ,其中 k1 k2 是交叉耦合系数。这些耦合器系数取决于 波导和微环腔,可以通过 FDTD 仿真来确定。根据 TMM 的说法,光功率 在 Output Port Pt 和 Drop Port Pd 可以按如下方式派生:

PtPd=t1t2eαfLrt+iθ1t1t2eαfLrt+iθ2=k1k2e(αfLrt+iθ)/21t1t2eαfLrt+iθ2(11)(12)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where αf is the field absorption coefficient and θ is round-trip phase shift in the ring: θ=2πLrtneff/λ. Note that αf and neff are functions of bias voltage V and are dependent on doping and phase shifter designs, which are given by the phase shifter compact model in Section III. As a result, Pt and Pd are functions of bias voltage V as well.
其中 αf 是 场吸收系数和 θ 是环中的往返相移: θ=2πLrtneff/λ 。请注意, αf neff 是偏置电压 V 的函数,并且取决于掺杂和移相器设计,这些设计由移相器 compact 给出 模型。 因此, Pt Pd 也是偏置电压 V 的函数。

Assuming the bias voltage for 0 and 1 levels are V0 and V1 respectively, the normalized optical modulation amplitude (OMA) with Pin=1 is given by
假设 0 和 1 电平的偏置电压分别为 V0 和 , V1 则 归一化光调制幅度 (OMA) Pin=1 由下式给出

OMA=P1P0=Pt(V1)Pt(V0).(13)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
Throughout the paper, OMA will be used to refer to the normalized optical modulation amplitude (or modulation depth). The power transmission spectra of a typical microring modulator is shown in Fig. 7. At two different biases, the transfer functions of the microring have the same Lorentzian shape but different resonance wavelengths. The corresponding OMA can be calculated. The optimal laser wavelength that maximizes OMA is shown in the figure with optical powers for bit 1 and bit 0 labeled by P1 and P0 respectively. In the optimization framework, the laser wavelength is considered an optimization parameter in order to maximize OMA. In reality, the optimal laser detuning is in fact achieved by tuning the resonance wavelength of the microring with respect to the relatively stable laser wavelength. A robust data-independent tuning scheme with this function has been demonstrated [21]. The resonance wavelength of the ring needs to be larger than the laser wavelength to achieve thermal stability under self-heating.
在整篇论文中,OMA 将用于指代归一化光调制 振幅(或调制深度)。典型微环调制器的功率传输频谱如下所示  图 7.在两种不同的偏置下,微环的传递函数 具有相同的洛伦兹形状,但共振波长不同。可以计算相应的 OMA。这 使 OMA 最大化的最佳激光波长如图所示,位 1 和位 0 的光功率由 P1 P0 分别。在优化框架中,激光器 wavelength 被视为优化参数,以便最大化 OMA。实际上,最佳的激光失谐是 实际上是通过调整微环相对于相对稳定的激光器的谐振波长来实现的 波长。已经证明了具有此功能的健壮的数据独立优化方案 [21]. 磁环的谐振波长需要大于激光 波长,以实现自热下的热稳定性。

Fig. 7. - Modeled power transmission spectra of microring modulator under two different bias voltages. Optimal laser
 wavelength to maximize OMA is labeled. For phase shifter model, we assumed that 
$N_A=N_D= \text{10}^{18}$ cm
$^{-3}$, $L_j=
 \text{500}$ nm and $\gamma = 0.75$
. The Q factor of this microring modulator is 7700. FSR of this microring is around 20 nm.
Fig. 7.  图 7.

Modeled power transmission spectra of microring modulator under two different bias voltages. Optimal laser wavelength to maximize OMA is labeled. For phase shifter model, we assumed that NA=ND=1018 cm3, Lj=500 nm and γ=0.75. The Q factor of this microring modulator is 7700. FSR of this microring is around 20 nm.
模拟了微环调制器在两种不同偏置电压下的电力传输频谱。最佳激光 波长以最大化 OMA 进行标记。对于移相器模型,我们假设 NA=ND=1018 cm 3 Lj=500 nm 和 γ=0.75 .该微环调制器的 Q 因子为 7700。该微环的 FSR 约为 20 nm。

The round-trip length of the microring, Lrt, is assumed to be 30 μm. The size of the microring is chosen such that it provides a reasonably wide free spectral range (FSR) to enable WDM applications while also having a reasonably small bending loss. With a radius of around 5 μm, the round-trip bending loss of an intrinsic silicon microring is only about 0.04 dB, which corresponds to 13 dB/cm for αi in 6. This includes scattering loss, radiative loss, and mode mismatch loss in the intrinsic microring. Optical properties of a typical silicon waveguide at 1550 nm are used in the analysis, where group index ng=3.89 and wavelength-dependent effective index neff(λ)=2.570.85(λ1.55) [28]. These values for neff , ng and Lrt are used throughout the paper unless stated otherwise.
假设微环 Lrt 的往返长度为 30 μ m。 选择微环的大小,使其提供相当宽的自由光谱范围 (FSR) 以实现 WDM 应用,同时还具有相当小的弯曲损失。半径约为 5 μ m,本征硅的往返弯曲损耗 微环仅为 0.04 dB 左右,相当于 in 6 αi 13 dB/cm。这包括散射 本征微环中的 loss、radiative loss 和 mode mismatch loss。典型硅的光学特性 分析中使用 1550 nm 处的波导,其中群指数 ng=3.89 和波长依赖性有效指数 neff(λ)=2.570.85(λ1.55) [28]. 除非另有说明,否则 neff ng Lrt 的这些值在整篇论文中使用。

B. Transient Simulation in Simulink
B. Simulink 中的瞬态仿真

The fundamental trade-off between OMA and optical bandwidth is the most critical challenge for high-speed modulation of microring modulators. Modeling dynamic behaviors of microrings accurately is the key for designing optical transmitters, especially at very high datarate such as 50 Gb/s. According to coupled mode theory (CMT), the electrical-to-optical modulation bandwidth of microrings should be inversely proportional to the photon lifetime τp inside the cavity [19], [20]. In addition, analytic small-signal model has revealed that the small-signal bandwidth depends not only on the photon lifetime but also the detuning of the laser (frequency offset between laser and microring resonance) [27] . However, the more accurate modulation bandwidth for microring modulators has to be estimated through large-signal transient simulations.
OMA 和光带宽之间的基本权衡是高速调制面临的最关键挑战 微环调制器。准确模拟微环的动力学行为是设计光学的关键 发射器,尤其是在非常高的数据速率(如 50 Gb/s)下。根据耦合模态理论 (CMT), 微环的电-光调制带宽应与光子寿命成反比 τp 型腔内部 [19][20]。此外,分析 小信号模型表明,小信号带宽不仅取决于光子寿命,还取决于 激光失谐(激光和微环谐振之间的频率偏移)[27] 。然而,微环调制器的更精确的调制带宽必须通过以下方式估算 大信号瞬态仿真。

The photon lifetime τp can be calculated from τp=Q/ω0. ω0 is the resonance frequency, and Q factor is defined as the time averaged stored energy per optical cycle divided by the total power loss. The stored energy in the ring is given by PcLrt/vg with the group velocity vg and the power flow in the cavity Pc [20]. In our case, the total power loss in the cavity stems from the input port coupling, drop port coupling and round-trip loss. Therefore, the Q factor is derived as
光子寿命 τp 可以是 从 计算得出。 τp=Q/ω0 ω0 是谐振频率,Q 因子定义为每个光周期的平均存储能量时间除以总功率损耗。存储的 环中的能量由下式给出 PcLrt/vg 具有群速度和 vg 功率 型腔 Pc 中的流动 [20]。在我们的例子中,腔体中的总功率损耗源于输入 端口耦合、drop port 耦合和往返损耗。因此,Q 因子推导出为

Q=ω0PcLrt/vgPc(|k1|2+|k2|2+1eαLrt)ω0ngLrtc(|k1|2+|k2|2+αLrt)(14)(15)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
with the speed of light c and group index ng. The round-trip loss is assumed to be small in the approximation above. Now the photon lifetime τp in the microring cavity is given by
with the speed of light c 和 group index ng .这 在上面的近似值中,假设往返损耗很小。现在,微环腔中的光子寿命 τp 由下式给出
τp=Qω0=ngLrtc(|k1|2+|k2|2+αLrt)(16)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The optical bandwidth or the corresponding full-width-at-half-maximum (FWHM) bandwidth can be calculated as
光带宽或相应的半峰全宽 (FWHM) 带宽可以是 计算公式为
foptical=12πτp(17)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The actual modulation bandwidth f3dB of the MRM is proportional to the optical bandwidth foptical [19]. Large-signal simulation is needed to estimate the ratio more accurately given the optimized microring design and laser detuning.
MRM 的实际调制带宽 f3dB 与光带宽 foptical 成正比 [19]。 需要大信号仿真,以便在给定优化的微环设计和激光器的情况下更准确地估计比率 失 谐。

An open-source Simulink toolbox is developed for simulating silicon photonic devices and systems [35]. The toolbox contains a library of the basic optical elements such as lasers, waveguides, phase shifters and couplers. Complex photonic devices are constructed with these basic building blocks. The basic theory behind Simulink simulation is the same as the previous Verilog-A co-simulation framework [29]. One of the major differences is that the new toolbox adopts the proposed phase shifter model in Section III, which allows more physical details to be included. The Simulink toolbox works seamlessly with the co-optimization framework developed in MATLAB.
开发了一个开源的 Simulink 工具箱,用于仿真硅光子器件和系统 [35]。该工具箱包含一个基本光学元件库,例如激光器、波导、移相器和耦合器。复杂的光子器件就是用这些基本构建块构建的。Simulink 仿真背后的基本理论与之前的 Verilog-A 协同仿真框架相同 [29]。主要区别之一是新工具箱采用了第三节 中提出的移相器模型,该模型允许包含更多的物理细节。Simulink 工具箱可与 MATLAB 中开发的协同优化框架无缝协作。

The Simulink schematic of a microring-based optical link is shown in Fig. 8 . It consists of two 2 × 2 couplers for input and drop ports and two phase shifters with half the round-trip length. The phase shifter blocks compute the phase shift and optical loss using the proposed compact model. Within the phase shifter block, a built-in delay function is used to generate the propagation delay of the optical signal in the waveguide.
基于微环的光链路的 Simulink 原理图如图 8 所示 。它由两个用于输入和分支端口的 2 × 2 耦合器以及两个往返长度一半的移相器组成。移相器模块使用所提出的紧凑模型计算相移和光损耗。在移相器模块中,使用内置的延迟函数来生成光信号在波导中的传播延迟。

Fig. 8. - Schematic of MRM-based optical link in Simulink and the close-ups of microring modulator (MRM) block and
 the phase shifter (PS) block.
Fig. 8.  图 8.

Schematic of MRM-based optical link in Simulink and the close-ups of microring modulator (MRM) block and the phase shifter (PS) block.
Simulink 中基于 MRM 的光链路原理图以及微环调制器 (MRM) 模块和移相器 (PS) 模块的特写。

As an example, the microring modulator in Fig. 7 is simulated using this work's Simulink toolbox. A 25 Gb/s eye diagram is shown in Fig. 9. In this transient simulation, the driver signal swings between 0.5 V and −1.5 V with ideal, sharp transitions. Therefore, the eye diagram is solely governed by the optical dynamic behavior of the microring modulator. It is interesting that the rising transition of the eye is faster than the falling transition and even causes a slight overshoot. This is consistent with the small-signal analysis [27] where larger laser detuning corresponds to larger small-signal bandwidth. The asymmetry in the eye diagram should be balanced by adjusting driver strength for pulling up and pulling down.
例如,图 7 中的微环调制器是使用这项工作的 Simulink 工具箱进行仿真的。25 Gb/s 眼图如图 9 所示。在此瞬态仿真中,驾驶员信号在 0.5 V 和 −1.5 V 之间摆动,具有理想的急剧转换。因此,眼图完全由微环调制器的光学动力学行为控制。有趣的是,眼睛的上升过渡比下降过渡更快,甚至会导致轻微的过冲。这与小信号分析[27]一致,在小信号分析中,较大的激光失谐对应于较大的小信号带宽。应通过调整发球杆的上拉和下拉力度来平衡眼图中的不对称性。

Fig. 9. - Simulated eye diagram at 25 Gb/s. Device parameters are the same as the microring in 
Fig. 7 with optical bandwidth of around 25 GHz. Laser detuning is set to
 optimize OMA. A first-order low-pass filter approximation with 3 dB bandwidth of 20 GHz is represented with red dashed
 line.
Fig. 9.  图 9.

Simulated eye diagram at 25 Gb/s. Device parameters are the same as the microring in Fig. 7 with optical bandwidth of around 25 GHz. Laser detuning is set to optimize OMA. A first-order low-pass filter approximation with 3 dB bandwidth of 20 GHz is represented with red dashed line.
25 Gb/s 时的模拟眼图。器件参数与图 7 中的微环相同,光带宽约为 25 GHz。设置激光失谐以优化 OMA。3 dB 带宽为 20 GHz 的一阶低通滤波器近似值用红色虚线表示。

In our optimization engine, the modulation bandwidth is assumed to be limited by the slower falling edge. A first-order low-pass filter with a 3 dB bandwidth f3dB is used in Simulink to approximate the modulation bandwidth. The simulation results show f3dB0.8foptical for the microring in Fig. 9. In our optimization, f3dB is chosen to be at least 0.8/Tb to ensure ISI-free modulation at a datarate of 1/Tb according to the eye diagram. Therefore, the optical bandwidth constraint for a microring modulator in the optimization can be simply given by
在我们的 optimization engine 中,假设 modulation bandwidth 受到较慢的 Falling edge 的限制。一个 Simulink 中使用带宽为 3 dB f3dB 的一阶低通滤波器来近似调制带宽。仿真结果表明 f3dB0.8foptical 对于 图 9 中的微环。在我们的优化中, f3dB 选择至少 0.8/Tb 是为了确保以 1/Tb 根据眼图。因此 优化中微环调制器的光带宽约束可以简单地给出:

foptical1Tb.(18)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
For a 50 Gb/s MRM, the optical bandwidth constraint is thereby set to 50 GHz with the actual electrical-to-optical modulation bandwidth being around 40 GHz. Transient simulations will be used to further verify the dynamic performance for 50 Gb/s optimized microring transmitters.
因此,对于 50 Gb/s MRM,光带宽约束设置为 50 GHz,实际 电光调制带宽约为 40 GHz。瞬态仿真将用于进一步验证 50 Gb/s 优化微环发射机的动态性能。

C. Optimization of Microring Modulator Design
C. 微环调制器设计的优化

For a typical MRM-based transmitter, laser power dominates the total power consumption of the transmitter macro as the driver power is usually much lower. Therefore, minimizing the overall E/b for the transmitter (driver plus laser) is equivalent to maximizing the normalized OMA of the microring modulator.
对于典型的基于 MRM 的发射器,激光功率在发射器宏的总功耗中占主导地位,因为驱动器功率通常要低得多。因此,最小化发射器(驱动器加激光器)的总 E/b 相当于最大化微环调制器的归一化 OMA。

For analysis purposes, we choose to use a typical feature length Lj (500 nm) and a typical mode confinement factor γ (0.75) for phase shifters in this paper. These numbers are within the range of parameters on the typical silicon photonic platforms summarized in Table I . The other fixed parameters for our MRM analysis include round-trip length of the ring and waveguide intrinsic loss, which are set to be 30 μm and 13 dB/cm [28] respectively. These preset constraints largely depend on the photonic platform and targeted link application. However, the insights and trends discovered through the framework are useful over a wide range of technology and link constraints.
出于分析目的,我们在本文中选择使用典型的特征长度 Lj (500 nm) 和典型的模式限制因子 γ (0.75) 作为移相器。这些数字在 表 I 中总结的典型硅光子平台上的参数。我们 MRM 分析的其他固定参数包括环的往返长度和波导本征 损失,设置为 30 μ m 和 13 dB/cm [28]。这些预设约束在很大程度上取决于 光子平台和目标链接应用程序。但是,通过该框架发现的见解和趋势是 在各种技术和链接约束中都很有用。

For each doping level for the PN junction (NA and ND), the optimizer would find the optimal coupling coefficients at input and drop ports (t1 and t2) and the optimal laser detuning Δλ for thermal locking, with the goal being to maximize the normalized OMA. For simplicity, symmetric pn doping is assumed with NA=ND. The driver swing is assumed to be from 0.5 V to −1.5 V. The optimization is subject to the following constraints:
对于 PN 结 ( NA ND ) 的每个掺杂水平,优化器 将在输入端口和丢弃端口( t1 t2 )处找到最佳耦合系数,而 最佳激光失谐 Δλ 热锁定,目标是最大化标准化 OMA。为简单起见,假设对称 pn 掺杂 与 NA=ND .假设驾驶员摆动 从 0.5 V 到 −1.5 V。优化受以下约束的约束:

  1. Optical bandwidth requirement:
    光带宽要求:

    fopticalfmin.(19)
    View SourceRight-click on figure for MathML and additional features.
    查看源 Right-click on figure for MathML and additional features.

  2. Extinction ratio (ER) requirement:
    消光比 (ER) 要求:

    ER=Pt(V1)Pt(V0)ERmin(20)
    View SourceRight-click on figure for MathML and additional features.
    查看源 Right-click on figure for MathML and additional features.

  3. Enough average drop port power for thermal tuning:
    足够的平均 drop port 功率用于热调谐:

    Pd(V1)+Pd(V0)2Pd,min.(21)
    View SourceRight-click on figure for MathML and additional features.
    查看源 Right-click on figure for MathML and additional features.

The extinction ratio requirement ERmin is set to 3.5 dB according to 100G PSM4 and CWDM4 technical specifications [36] , [37]. Drop port power Pd,min is set to be 0.01Pin in order to achieve accurate power monitoring and thermal tuning based on the required drop port current in [8]. Optimizations are carried out for different doping levels for the PN junction. The optimal OMAs are shown in Fig. 10 for three targeted NRZ datarates (25, 35, 50 Gb/s). The corresponding optical bandwidths (25, 35, 50 GHz) are used in the optimization engine based on the large-signal transient simulation in this paper.
消光比要求 ERmin 根据 100G PSM4 和 CWDM4 技术规范 [36] [37] 设置为 3.5 dB。Drop port 电源 Pd,min 设置为 0.01 Pin ,以便根据所需的 丢弃 [8] 中的端口电流。针对不同的掺杂进行优化 PN 交界处的水平。最佳 OMA 如图 10 所示 三种目标 NRZ 数据速率(25、35、50 Gb/s)。相应的光带宽(25、35、50 GHz)用于 基于本文大信号瞬态仿真的优化引擎。

Fig. 10. - Optimized OMA for $f_{optical}$ 25
 GHz, 35 GHz and 50 GHz versus doping levels in the PN junction. Bias conditions are 
$V_0 = \text{0.5}\ {\text{V}}$ and 
$V_1 = -\text{1.5}\ \text{V}$. Technology constraints: PN
 junction feature length $L_j=\text{500}$ nm and
 optical mode confinement factor $\gamma = 0.75$
. $L_{rt}$= 30 
$\mu \text{m}$, intrinsic loss 13 dB/cm 
[28]. Symmetric pn-junctions are assumed for simplicity.
Fig. 10.  图 10.

Optimized OMA for foptical 25 GHz, 35 GHz and 50 GHz versus doping levels in the PN junction. Bias conditions are V0=0.5 V and V1=1.5 V. Technology constraints: PN junction feature length Lj=500 nm and optical mode confinement factor γ=0.75 . Lrt= 30 μm, intrinsic loss 13 dB/cm [28]. Symmetric pn-junctions are assumed for simplicity.
针对 foptical 25 优化的 OMA GHz、35 GHz 和 50 GHz 与 PN 结中的掺杂水平的关系。偏置条件为 V0=0.5 V V1=1.5 V 。技术限制:PN 结特征长度 Lj=500 nm 和 光学模式限制因子 γ=0.75 . Lrt = 30 μm ,固有损耗 13 dB/cm [28]. 为简单起见,假设对称 pn 结。

According to Fig. 10, an optimal doping level exists for each bandwidth requirement. Intuitively, increasing doping could improve the modulation efficiency of the phase shifter and could improve OMA. However, as we increase doping levels, the excessive optical loss in the ring might eventually lower the Q factor and degrade the OMA. Therefore, it is critical to find the optimal doping levels. It is important that the optimal doping level increases as the required optical bandwidth increases. The optimal doping for achieving 50 GHz optical bandwidth is around 3.8×1018 cm3. This doping level is in fact close to that used in the 56 Gb/s microring modulator reported so far [12].
根据图 10,每个带宽都存在最佳掺杂水平 要求。直观地说,增加掺杂可以提高移相器的调制效率,并且可以 改善 OMA。然而,随着掺杂水平的增加,戒指中过多的光损耗最终可能会降低 Q 因子并降低 OMA 的 OMA。因此,找到最佳掺杂水平至关重要。重要的是, 最佳掺杂水平随着所需光带宽的增加而增加。实现 50 GHz 的最佳掺杂 光带宽约为 3.8×1018 cm 3 .这个掺杂水平 实际上,它与迄今为止报道的 56 Gb/s 微环调制器中使用的值接近 [12]。

The corresponding device parameters given by the optimization engine are shown in Fig. 11, including Q factor, extinction ratio (ER), insertion loss (IL), coupler coefficients ( t1 and t2) and the microring coupling factor (β). Here we define microring coupling factor β as β=t1eαfL/t2 to represent the coupling status of microrings. When β<1, the microring is over coupled; when β=1, it is critically coupled; when β>1, the microring is under coupled. These parameters can be used as a design reference or provide in-depth insights for microring design.
优化 引擎给出的相应器件参数如图 11 所示,包括 Q 因子、消光比 (ER)、插入损耗 (IL)、耦合器系数 ( t1 t2 ) 和微环耦合因子 ( β )。在这里,我们定义了微环耦合因子 β as β=t1eαfL/t2 表示耦合 微环的状态。当 β<1 时, 微环过耦合;when β=1 , it 是临界耦合的;当 β>1 , MicroRing 耦合不足。这些参数可以用作设计参考或提供深入的见解 微环设计。

Fig. 11. - Key characteristics of the optimal microring designs for different doping levels with the design points
 corresponding to maximum OMAs labeled. The optimization constraints corresponds to the curves in the 
Fig. 10. Three operation regions (A-C) are labeled for 25 GHz operation as
 an example. A is coupling-limited region, C is loss-limited region and B is the optimal region. Note that 
$t_1$ and 
$t_2$ are transmission coefficients at the couplers. Stronger
 coupling means smaller $t_1$ and 
$t_2$.
Fig. 11.  图 11.

Key characteristics of the optimal microring designs for different doping levels with the design points corresponding to maximum OMAs labeled. The optimization constraints corresponds to the curves in the Fig. 10. Three operation regions (A-C) are labeled for 25 GHz operation as an example. A is coupling-limited region, C is loss-limited region and B is the optimal region. Note that t1 and t2 are transmission coefficients at the couplers. Stronger coupling means smaller t1 and t2.
不同掺杂水平的最佳微环设计的关键特性以及设计要点 对应于标记的最大 OMA。优化约束对应于  图 10.对于 25 GHz 操作,三个操作区域 (A-C) 标记为 一个例子。A 是耦合受限区域,C 是损耗受限区域,B 是最优区域。请注意, t1 t2 是耦合器处的传输系数。强 联轴器意味着更小 t1 t2

For Fig. 11(a)–​(f), we define three different doping regions to get more insights into the microring optimization. The 25 GHz microring is used as an example. Region A is the coupling-limited region where doping levels are relatively low. Q factor is effectively controlled by the coupler designs assuming fixed ring circumference and negligible round trip ring loss. Drop port coupling should be used to match the input port coupling. By doing so, the microring can be brought closer to critical coupling (β=1) to improve OMA. Region C is the loss-limited region where doping levels are relatively high. The Q factor drops below the targeted value as it is dictated by the excessive doping loss. Interestingly, t1 has to decrease to prevent the microring from getting too under coupled and breaking the ER constraint. All the microrings eventually get limited by the ER constraint as doping increases.
对于图 11(a)(f),我们 定义三个不同的掺杂区域,以更深入地了解微环优化。25 GHz 微环是 用作示例。区域 A 是掺杂水平相对较低的耦合限制区域。Q 因子为 由耦合器设计有效控制,假设环圆周固定且往返环损耗可忽略不计。 应使用 Drop port 耦合来匹配 input port 耦合。通过这样做,可以使微环更近 到临界耦合 () β=1 ) 改进 奥马。C 区是兴奋剂水平相对较高的损失限制区域。Q 因子降至 目标值,因为它是由过度的兴奋剂损失决定的。有趣的是, t1 必须减小以防止微环变得太过分 下耦合并打破 ER 约束。所有微环最终都以掺杂的形式受到 ER 约束的限制 增加。

The optimal design with the maximum OMA is achieved in region B, where doping levels are between the regions A and C. For the optimal designs, input coupling is well balanced with the optical loss inside the cavity resulting in minimum drop port coupling. The microrings are slightly under-coupled. In this region, input coupling decreases as doping increase in order to maintain constant Q factor. If the available doping levels are not in region B, different optimization strategies are needed according to the analysis above.
在区域 B 中实现了具有最大 OMA 的最优设计,其中掺杂水平介于区域 A 和 C 之间。对于最佳设计,输入耦合与腔内的光损耗保持良好平衡,从而实现最小的丢端口耦合。微环略微欠耦合。在这个区域,输入耦合随着掺杂的增加而降低,以保持恒定的 Q 因子。如果可用的掺杂水平不在 B 区,则根据上述分析需要不同的优化策略。

D. Microring-Based NRZ Transmitter Design
D. 基于微环的 NRZ 发射器设计

The driver circuit is modeled as shown in Fig. 12. It consists of a high-speed serializer, pre-drivers and a final driver stage. The final stage driver can be a simple inverter driving one electrode of the modulator in single-end fashion with voltage swing of VDD. Alternatively, the final stage can be a high-swing driver or a pull-push driver, which can be implemented using stacked transistors and level shifters. The typical swing for a high-speed high-swing driver is 2VDD and VDD is 1V for standard CMOS processes.
驱动器电路的建模如图 12 所示 。它由一个 高速串行器、预驱动器和最终驱动器级。最后阶段驱动器可以是简单的逆变器驱动 单端调制器的一个电极,电压摆幅 VDD 。或者,最后一级可以是高摆幅驱动器或推拉式驱动器 驱动器,可以使用堆叠晶体管和电平转换器来实现。高速的典型摆动 高摆幅驱动器为 2 VDD VDD 对于 标准 CMOS 为 1V 过程。

Fig. 12. - Transmitter circuits for ring modulator. $C_w$
 is the wire and packaging parasitic capacitance, and $C_m$
 is the modulator junction capacitance.
Fig. 12.  图 12.

Transmitter circuits for ring modulator. Cw is the wire and packaging parasitic capacitance, and Cm is the modulator junction capacitance.
环形调制器的发射器电路。 Cw 是导线和封装的寄生电容,是 Cm 调制器结电容。

In our optimization, we assume the voltage swing VA to be either 1 V or 2 V. With Vb applied on the cathode, the voltage bias on the PN junction swings between Vb to VAVb . In order to maintain depletion mode, the maximum forward VAVb should be smaller than the built-in voltage Vbi, which is between 0.7 V to 1.1 V for the typical doping range from 1016 to 1019 cm3. For simplicity, we always set VAVb=0.5 V for all doping levels in the optimization engine. This is consistent with experimental settings for microrings on various platforms [8], [13]. Microring performance might degrade due to the effect of free carrier absorption if the forward-bias voltage is further increased. Under these conditions, the E/b for the driver circuits is given by
在我们的优化中,我们假设电压摆幅 VA 为 1 V 或 2 V。施加在阴极上后 Vb ,PN 结上的电压偏置在 到 之间 Vb VAVb 摆动。为了保持耗尽模式,最大正向 VAVb 应小于内置电压 Vbi ,介于 0.7 V 至 1.1 V 之间,用于 典型的掺杂范围从 1016 1019 厘米 3 .为简单起见,我们始终 VAVb=0.5 V 在 优化引擎。这与各种平台上微环的实验设置一致 [8][13]。Microring 性能可能 如果正向偏置电压进一步增加,则由于自由载流子吸收的影响而降低。在这些 conditions 中,驱动电路的 E/b 由下式给出

Edr=14ηdVAVAVbVb(Cm(V)+Cw)dV.(22)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where driver efficiency ηd is assumed to be 20% considering reasonable fan-out for pre-driver stages at 50 Gb/s.
其中,考虑到 50 Gb/s 的预驱动器级的合理扇出,假设驱动器效率 ηd 为 20%。

The capacitance density of the PN junction is given by
PN 结的电容密度由下式给出

Cj(V)=qϵNAND2(VbiV)(NA+ND).(23)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.

The modulator capacitance depends on the type of the PN junctions. For lateral junctions, CmCj(V)LH; for interleaved junctions, CmCj(V)L2WH/P; for vertical junctions, CmCj(V)LW. H, P and W are defined in Fig. 2 and L is the total length of the PN junction. In the case of microrings, L=Lrt. With the typical device parameters, Cm ranges from 15 to 25 fF.
调制器电容取决于 PN 结的类型。对于横向连接处, CmCj(V)LH ;对于交错交汇点, CmCj(V)L2WH/P ;用于立式 交汇点、 CmCj(V)LW . H W P 图 2 和 L 中定义的是 PN 结的总长度。在 微环的情况, L=Lrt .使用 典型设备参数, Cm 范围 15 到 25 fF。

The total wiring capacitance Cw ranges from 5 fF to 40 fF depending on the packaging type. For 3D integration using copper pillars, the total wiring capacitance would be around 20 fF [11]. For 3D integration with through-oxide-vias (TOVs) or monolithic integration, the wiring parasitics can be reduced to 5–10 fF [8], [9]. In our analysis, we assumed Cw to be 20 fF. The energy consumption for modulator driver circuits can be calculated based on the equations above.
总接线电容 Cw 范围 从 5 fF 到 40 fF,具体取决于包装类型。对于使用铜柱的 3D 集成,总布线 电容约为 20 fF [11]。对于 3D 集成 通过氧化物通孔 (TOV) 或单片集成,布线寄生效应可降至 5–10 fF [8][9]。在我们的分析中,我们假设 Cw 设置为 20 fF。能源消耗 调制器驱动器电路可以根据上述公式计算。

Even so, laser power dominates the total power for MRM transmitters. For a typical silicon photonic link in Fig. 13, the optical power gets attenuated by three fiber-to-chip optical couplers and the transmitter before it reaches the receiver-side photodetector. The minimal OMA required at the receiver input to reach a certain BER target is defined as the receiver sensitivity, denoted by PRX in this paper. The total E/b consumed by the laser source is derived as
即便如此,激光功率仍占 MRM 变送器总功率的主导地位。对于典型的硅光子链路  图 13,光功率被三个光纤到芯片的光学器件衰减 耦合器和发射器到达接收器侧光电探测器之前。所需的最低 OMA 接收器到达某个 BER 目标的输入定义为接收器灵敏度,在本文中用 表示 PRX 。激光器消耗的总 E/b source 的派生为

Elaser=PRXηmηwα3cOMAmodfb(24)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where ηw is the wall-plug efficiency of the laser module, αc is optical coupler loss coefficient, fb is the bit rate and ηm accounts for additional margin in the link budget. OMAmod is the normalized OMA for the modulator. An optical receiver using 14 nm FinFET has achieved −10 dBm optical sensitivity at 50 Gb/s reaching 1012 BER [10]. We use the measurement data from this paper as a reference for receiver sensitivity throughout the paper such that the link constraints could reflect the state-of-the-art CMOS technology.
其中 ηw 是 激光模块的电光转换效率是 αc 光耦合器损耗系数, fb 是比特率和 ηm 考虑链接预算中的额外保证金。 OMAmod 是调制器的归一化 OMA。使用 14 nm FinFET 的光接收器具有 在 50 Gb/s 达到 1012 BER 时实现了 -10 dBm 的光灵敏度 [10]。我们使用来自此的测量数据 论文作为整篇论文中接收器灵敏度的参考,以便链路约束可以反映 最先进的 CMOS 技术。

Fig. 13. - Diagram of a full optical link with external laser source.
Fig. 13.  图 13.

Diagram of a full optical link with external laser source.
带有外部激光源的完整光链路图。

The total E/b for MRM-based transmitter is the sum of the driver circuit and laser power:
基于 MRM 的发射器的总 E/b 是驱动电路和激光功率之和:

Etot=Edr+Elaser.(25)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
Typical numbers for parameters used in 23 are listed in Table II. Based on the results in Fig. 10, the energy-per-bit Etot for the optimized 50 Gb/s MRM-based transmitters can be calculated. The relationship between optimized Etot (laser plus driver power) and doping levels are shown in Fig. 14.
23 中使用的参数的典型数字 列于表 II 中。根据  图 10, 每比特能量 Etot 对于优化的 50 Gb/s MRM,可以计算基于 MRM 的发射机。这 优化 Etot (激光 加上驱动器功率)和掺杂水平如图 14 所示 

Fig. 14. - Model-estimated total E/b for microring driver + laser for microring-based NRZ transmitter at 50 Gb/s.
 Two different driver swings are considered (1 V and 2 V). The microring is optimized for each doping levels, which
 corresponds to the designs in Figs. 10 and 
11.
Fig. 14.  图 14.

Model-estimated total E/b for microring driver + laser for microring-based NRZ transmitter at 50 Gb/s. Two different driver swings are considered (1 V and 2 V). The microring is optimized for each doping levels, which corresponds to the designs in Figs. 10 and 11.
微环驱动器 + 基于微环的 NRZ 发射器的激光器在 50 Gb/s 时的模型估计总 E/b。考虑了两种不同的驱动器摆幅(1 V 和 2 V)。微环针对每个掺杂水平进行了优化,这与图 10 和图 11 中的设计相对应。

TABLE II Parameters for 50 Gb/s Silicon Photonic Link Budgeting
表 II 50 Gb/s 硅光子链路预算的参数
Table II- Parameters for 50 Gb/s Silicon Photonic Link Budgeting

The results show that higher driver swing improves the overall energy efficiency for MRM transmitters as laser power dominates and higher swing improves OMA. The total transmitter power is not sensitive to the increased driver power due to higher swing. Therefore it makes sense to always choose high swing drivers if driver bandwidth allows. In addition, it is also critical to co-optimize the modulator design to maximize OMA as discussed before. The 50 Gb/s MRM-based NRZ transmitter with the optimized microring device and 2 V driver voltage swing consumes 1.7 pJ/b in total – 1.5 pJ/b by laser and only 0.2 pJ/b by driver circuits. More results and the optimal dopings can be found in Table III. Note that the above analysis is done assuming 3D hybrid integration between circuits and photonics. Switching to monolithic integration would yield even lower driver power and thus further improve the energy efficiency of the transmitter and be even further dominated by laser power.
结果表明,由于激光功率占主导地位,较高的驱动器摆幅可以提高 MRM 发射器的整体能效,而较高的摆幅会改善 OMA。由于较大的摆幅,发射器总功率对增加的驱动器功率不敏感。因此,如果驱动器带宽允许,始终选择高摆幅驱动器是有意义的。此外,如前所述,协同优化调制器设计以最大化 OMA 也很重要。基于 MRM 的 50 Gb/s NRZ 发射器具有优化的微环器件和 2 V 驱动器电压摆幅,总共消耗 1.7 pJ/b,激光消耗 1.5 pJ/b,驱动电路仅消耗 0.2 pJ/b。更多结果和最佳掺杂可在表 III 中找到。请注意,上述分析是假设电路和光子学之间的 3D 混合集成完成的。切换到单片集成将产生更低的驱动器功率,从而进一步提高发射器的能效,并进一步以激光功率为主。

TABLE III 50 Gb/s Microring TX Optimal Doping and Power (pJ/b)
表 III 50 Gb/s 微环 TX 最佳掺杂和功率 (pJ/b)
Table III- 50 Gb/s Microring TX Optimal Doping and Power (pJ/b)

E. Microring-Based PAM4 Transmitter Design
E. 基于微环的 PAM4 发射机设计

As shown in Fig. 10, the microring modulator can achieve higher OMA at the cost of optical bandwidth. In other words, reducing bandwidth requirement means improving OMA and lowering laser power for MRM-based optical links. One potential way to relax the bandwidth constraint while maintaining the same datarate is to use PAM4 instead of conventional NRZ modulation, where the front-end bandwidth is halved in a PAM4 modulation scheme to attain the same bit rate. There has been analysis comparing the energy efficiency of microring-based PAM4 transmitters with NRZ transmitters [32]. In this paper, we use the proposed optimization framework to optimize microring designs for NRZ and PAM4 separately. The optimized microring-based PAM4 transmitter is then compared to the optimized NRZ transmitter at 50 Gb/s under the same process constraints. Transient simulations are also used to verify the transmitter performances. Note that practical design constraints outside the scope of this work would need to be taken into consideration as well to validate the benefits of PAM4 versus NRZ. This paper is intended to give a first-pass, fundamental comparison between the two schemes.
如图 10 所示 ,微环调制器可以以光带宽为代价实现更高的 OMA。换句话说,降低带宽要求意味着提高基于 MRM 的光链路的 OMA 和降低激光功率。在保持相同数据速率的同时放宽带宽限制的一种潜在方法是使用 PAM4 而不是传统的 NRZ 调制,其中前端带宽在 PAM4 调制方案中减半以获得相同的比特率。已经有分析比较了基于微环的 PAM4 发射器和 NRZ 发射器的能效 [32]。在本文中,我们使用提出的优化框架分别优化 NRZ 和 PAM4 的微环设计。然后在相同的过程约束下,将优化的基于微环的 PAM4 变送器与优化的 NRZ 变送器以 50 Gb/s 的速度进行比较。瞬态仿真还用于验证发射机的性能。请注意,还需要考虑这项工作范围之外的实际设计约束,以验证 PAM4 与 NRZ 的优势。本文旨在对这两种方案进行初步的基本比较。

There are multiple ways to generate the PAM4 optical signal with silicon microring modulators. For the first approach, an electrical DAC is used to drive the microring modulator [33], [34]. This architecture is shown in Fig. 15(a). Due to nonlinearity of the electrical-to-optical response of microrings, a lookup table is required in order to pre-distort the drive signal and achieve symmetric PAM4 eyes. The second approach uses an optical DAC to generate the PAM4 signals instead of using an electrical DAC [18]. As shown in Fig. 15(b), the microring is segmented into 2N uniform segments to form an N-bit optical DAC. In this topology, the PAM4 data needs to be thermometer-coded, and each slice of driver connects to one segment in the microring. The segmentation can be directly implemented in microrings with interleaved PN junction [18]. For the third approach, the microring is segmented into only two segments – one LSB and one MSB with binary weights [33]. Each of two segments is driven by one driver and serializer as in Fig. 15(c).
使用硅微环调制器有多种方法可以生成 PAM4 光信号。对于第一个 方法中,使用电 DAC 驱动微环调制器 [33][34]. 这种架构如图 15(a) 所示 。由于微环的电-光响应的非线性,查找表为 需要,以便对驱动信号进行预失真并实现对称的 PAM4 眼图。第二种方法使用光学 DAC 生成 PAM4 信号,而不是使用电 DAC [18]。如 如图 15(b) 所示 ,微环被分割成 2N 均匀的段,形成 N 位光学 DAC。在这个 拓扑,PAM4 数据需要进行温度计编码,并且驱动程序的每个切片都连接到 微环。分割可以直接在具有交错 PN 结的微环中实现 [18]. 对于第三种方法,微环仅分为两个 segments – 一个 LSB 和一个具有二进制权重的 MSB [33]。两个 segments 由一个驱动程序和串行器驱动,如图 15(c) 所示 

Fig. 15. - Microring-based PAM4 Transmitters: (a) electrical DAC driver (b) optical DAC based on segmented microring
 (c) microring with two segments.
Fig. 15.  图 15.

Microring-based PAM4 Transmitters: (a) electrical DAC driver (b) optical DAC based on segmented microring (c) microring with two segments.
基于微环的 PAM4 发射器:(a) 电 DAC 驱动器 (b) 基于分段微环的光 DAC (c) 具有两个段的微环。

Linearity is the key criterion for choosing microring-based PAM4 architectures, which can be evaluated with the static model in Section IV. The optical responses of a 4-bit electrical DAC and a 4-bit optical DAC are compared in Fig. 16(a). For the comparison, the total voltage swing of the electrical DAC equals that of the driver for each small segment in the optical DAC. The same optimized microring modulators are used with 25 GHz optical bandwidth and 50 Gb/s targeted datarate. For such microrings, the optical response of the optical DAC is more linear compared to that of the electrical DAC. It also shows that the third architecture using two segments should offer sufficient linearity for generating the balanced PAM4 signals at 50 Gb/s.
线性度是选择基于微环的 PAM4 架构的关键标准,可以使用第 IV 节 中的静态模型进行评估。图 16(a) 比较了 4 位电 DAC 和 4 位光 DAC 的光响应。为了进行比较,电气 DAC 的总电压摆幅等于光 DAC 中每个小段的驱动器的总电压摆幅。相同的优化微环调制器用于 25 GHz 光带宽和 50 Gb/s 目标数据速率。对于此类微环,与电 DAC 相比,光 DAC 的光响应更加线性。它还表明,使用两个段的第三种架构应该提供足够的线性度来生成 50 Gb/s 的平衡 PAM4 信号。

Fig. 16. - (a) Linearity comparison between 5-bit electrical DAC and 5-bit optical DAC for MRM-based transmitter. (b)
 Transmission spectra for a microring with two binary weighted segments. The microring here has an optical bandwidth of
 25 GHz.
Fig. 16.  图 16.

(a) Linearity comparison between 5-bit electrical DAC and 5-bit optical DAC for MRM-based transmitter. (b) Transmission spectra for a microring with two binary weighted segments. The microring here has an optical bandwidth of 25 GHz.
(a) 基于 MRM 的发射器的 5 位电 DAC 和 5 位光 DAC 之间的线性度比较。(b) 具有两个二进制加权段的微环的透射光谱。这里的微环具有 25 GHz 的光带宽。

The second and third architectures should be chosen depending on whether programmability is required to handle process variations. Despite of the architecture difference, they are both based on the same operation principles. The common transfer functions are shown in Fig. 16 as different portion of the ring is reverse biased by the corresponding driver. The microring design and laser detuning are optimized for 50 Gb/s PAM4, and the four optical levels show very good linearity.
应根据是否需要可编程性来处理流程变化来选择第二种和第三种体系结构。尽管架构不同,但它们都基于相同的操作原则。常见的传递函数如图 1 所示。16 时,环的不同部分由相应的驱动器反向偏置。微环设计和激光失谐针对 50 Gb/s PAM4 进行了优化,四个光学电平显示出非常好的线性度。

For 50 Gb/s PAM4, the optimization engine optimizes the OMA of a microring modulator with 25 GHz optical bandwidth, as shown in Fig. 10. A 25 Gb/s NRZ receiver could achieve a sensitivity of −14 dBm according to [10]. In our analysis, the required total eye height for 50 Gb/s PAM4 receiver is approximated as 3x single eye height for 25 Gb/s NRZ receiver, neglecting any other circuit overhead. Therefore the new receiver sensitivity PRX becomes −9.2 dBm, and the new laser power Elaser can be calculated according to 23 . For the new driver power Edr, the wiring parasitics are now doubled for two-segment microrings as packaging capacitance doubles and still dominates Cw. The new expression for Edr should be
对于 50 Gb/s PAM4,优化引擎优化了具有 25 GHz 光带宽的微环调制器的 OMA, 如图 10 所示 。25 Gb/s NRZ 接收器可实现灵敏度 根据 [10] 为 −14 dBm。在我们的分析中,所需的全眼 50 Gb/s PAM4 接收器的高度近似为 25 Gb/s NRZ 接收器单眼高度的 3 倍,忽略任何 other circuit 开销。因此,新的接收器灵敏度 PRX 变为 −9.2 dBm,新的激光功率 Elaser 可以按照 23 计算。对于新的驱动程序电源 Edr , 现在,随着封装电容翻倍并且仍然占主导地位,两段式微环的布线寄生效应增加了一倍 Cw 。的新表达式 Edr 应为

Edr=1214ηdVAVAVbVb(Cm(V)+2Cw)dV(26)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.

Now the total energy Etot for driver and laser for microring-based PAM4 transmitter at 50 Gb/s can be calculated. The optimization results at two different bias voltages (1 V and 2 V) are shown in Fig. 17 assuming the same bias condition for Vb as the NRZ case. The optimal doping level and the best E/b for microring-based NRZ and PAM4 transmitters are compared in Table III. The required Q for PAM4 microring modulator are doubled as optical bandwidth requirement is halved. Therefore the optimal doping for PAM4 microring is less than that for NRZ microring. From Table III, the optimal doping level for PAM4 microrings is only half of the optimal doping in the NRZ case. Given the same technology and link constraints, microring-based PAM4 modulator can save nearly 20% total TX power compared to the NRZ modulator.
现在是车手的总能量 Etot 和 可以计算基于微环的 PAM4 发射机的 50 Gb/s 激光。优化结果为两个不同的 偏置电压(1 V 和 2 V)如图 17 所示 ,假设具有相同的偏置 条件为 Vb NRZ 案例。这 比较了基于微环的 NRZ 和 PAM4 发射机的最佳掺杂水平和最佳 E/b 表 III.PAM4 微环调制器所需的 Q 值翻倍为 光带宽要求减半。因此,PAM4 微环的最佳掺杂小于 NRZ 的最佳掺杂 微环。从表 III 中可以看出 PAM4 的最佳掺杂水平 在 NRZ 情况下,微环只是最佳掺杂的一半。在相同的技术和链接约束下, 与 NRZ 调制器相比,基于微环的 PAM4 调制器可以节省近 20% 的总 TX 功率。

Fig. 17. - Model estimated total E/b for microring driver+laser for microring-based PAM4 transmitter at 50 Gb/s. Two
 different driver swings are considered (1 V and 2 V). The microring is optimized for each doping levels, which
 corresponds to the designs in Figs. 10 and 
11.
Fig. 17.  图 17.

Model estimated total E/b for microring driver+laser for microring-based PAM4 transmitter at 50 Gb/s. Two different driver swings are considered (1 V and 2 V). The microring is optimized for each doping levels, which corresponds to the designs in Figs. 10 and 11.
模型估计了基于微环的 PAM4 发射器在 50 Gb/s 下微环驱动器 + 激光器的总 E/b。考虑了两种不同的驱动器摆幅(1 V 和 2 V)。微环针对每个掺杂水平进行了优化,这与图 10 和图 11 中的设计相对应。

Transient simulations are carried out in order to verify the performance of 50 Gb/s microring NRZ and PAM4 transmitters. The device parameters for modulators in Simulink framework are set by the output of the optimization engine. The driver swings are assumed to be the same. The simulated eye diagrams are shown in Fig. 18. The modulators are optimized under the same technology and link constraints by the engine. The eye heights for PAM4 and NRZ in these two eye diagrams can be compared directly as the optical power is normalized. Total OMA height for PAM4 microring is increased by about 50% from NRZ microring. Detailed full link optimization including receiver circuits will be required to compare the full link power. For driver and laser portion, the potential power saving for PAM4 is around 20% at 50 Gb/s. Another observation is that microring PAM4 eye diagram is not balanced due to the asymmetry of the rise and fall time. Therefore, it is even more critical for PAM4 drivers to adjust pull-up and pull-down strengths compared with NRZ drivers. By doing so, the four signal levels in the optical PAM4 eye diagram can be well balanced.
进行瞬态仿真是为了验证 50 Gb/s 微环 NRZ 和 PAM4 发射机的性能。Simulink 框架中调制器的器件参数由优化引擎的输出设置。假定驱动程序摆动相同。模拟的眼图如图 18 所示 。调制器在相同的技术和 link constraints 下由引擎进行优化。当光功率归一化时,可以直接比较这两个眼图中 PAM4 和 NRZ 的眼高。PAM4 微环的总 OMA 高度比 NRZ 微环增加约 50%。需要详细的全链路优化,包括接收器电路,以比较全链路功率。对于驱动器和激光器部分,PAM4 在 50 Gb/s 时的潜在功耗节省约为 20%。另一个观察结果是,由于上升和下降时间的不对称,微环 PAM4 眼图不平衡。因此,与 NRZ 驱动器相比,PAM4 驱动器调整上拉和下拉强度更为重要。通过这样做,光学 PAM4 眼图中的四个信号电平可以很好地平衡。

Fig. 18. - Transient simulation of the 50 Gb/s MRM-based NRZ transmitter and PAM4 transmitter. The microrings are
 optimized in each case with the same process and link constraints. The optical power for y-axis is normalized to the
 input power for microrings.
Fig. 18.  图 18.

Transient simulation of the 50 Gb/s MRM-based NRZ transmitter and PAM4 transmitter. The microrings are optimized in each case with the same process and link constraints. The optical power for y-axis is normalized to the input power for microrings.
基于 50 Gb/s MRM 的 NRZ 发射机和 PAM4 发射机的瞬态模拟。在每种情况下,微环都使用相同的工艺和链接约束进行优化。y 轴的光功率归一化为微环的输入功率。

SECTION V. 第五部分

Optimization of Mach-Zehnder Transmitter
Mach-Zehnder 发射器的优化

A. Overview of Mach-Zehnder Modulator
A. Mach-Zehnder 调制器概述

Mach-Zehnder modulators (MZM) have traditionally been used for optical communication due to its simple interferometric structure. A MZM consists of two balanced arms with embedded phase shifters. The output light intensity is modulated as a result of optical interference when phase shifts are introduced in the arms. On silicon photonic platforms, the phase shifters are normally made of PN junctions. The same set of technology constraints need to be applied. There are two major challenges for designing an energy efficient MZM. First, there is a trade-off between phase modulation efficiency and propagation loss for phase shifters. This would cause high insertion loss and low OMA for the MZM. Second, the device capacitance is much larger than microrings and the driver power could dominate the total power consumption. As a result, co-optimization of electrical driver and optical modulator is essential for designing low power MZM transmitters.
马赫-曾德尔调制器 (MZM) 由于其简单的干涉结构,传统上用于光通信。MZM 由两个带有嵌入式移相器的平衡臂组成。当镜臂中引入相移时,由于光干扰,输出光强度会受到调制。在硅光子平台上,移相器通常由 PN 结制成。需要应用相同的技术约束。设计节能型 MZM 面临两大挑战。首先,移相器的相位调制效率和传播损耗之间需要权衡。这将导致 MZM 的高插入损耗和低 OMA。其次,器件电容远大于微环,驱动器功率可能主导总功耗。因此,电气驱动器和光调制器的协同优化对于设计低功耗 MZM 发射器至关重要。

There are two basic architectures for MZM transmitter, one based on multi-stage drivers and one based on traveling-wave drivers, as shown in Fig. 19. For multi-stage MZM (MS-MZM), the arms are segmented into multiple segments which are modulated individually by distributed voltage drivers. Delay units are inserted between these electrical drivers to match with the propagation velocity of optical signal inside the waveguide. For traveling-wave MZM (TW-MZM), the transmission lines are used as the electrodes. Delay matching is also required between optical waveguide and electrical transmission line. Traveling-wave drivers are typically more energy efficient than multi-stage drivers at high datarates [24] . Because the power of TW driver is independent of the device capacitance of MZM and gets amortized at high datarates. However TW-MZM may suffer from limited OMA due to lower voltage swing and high transmission line loss. Therefore, electronic-photonic co-optimization is needed to compare the overall energy efficiency of these two architectures,
MZM 发射器有两种基本架构,一种基于多级驱动器,一种基于行波驱动器,如图 19 所示 。对于多级 MZM (MS-MZM),臂被分割成多个段,这些段由分布式电压驱动器单独调制。在这些电气驱动器之间插入延迟单元,以匹配波导内光信号的传播速度。对于行波 MZM (TW-MZM),传输线用作电极。光波导和输电线路之间还需要延迟匹配。在高数据速率下,行波驱动器通常比多级驱动器更节能 [24] 。因为 TW 驱动器的功率与 MZM 的器件电容无关,并且在高数据速率下得到摊销。然而,由于较低的电压摆幅和高传输线损耗,TW-MZM 可能会受到有限的 OMA 影响。因此,需要电子光子协同优化来比较这两种架构的整体能效,

Fig. 19. - (a) Architecture of Multi-stage Mach-Zehnder Modulator (MS-MZM) (b) Architecture of Traveling wave
 Mach-Zehnder Modulator (TW-MZM).
Fig. 19.  图 19.

(a) Architecture of Multi-stage Mach-Zehnder Modulator (MS-MZM) (b) Architecture of Traveling wave Mach-Zehnder Modulator (TW-MZM).
(a) 多级马赫-曾德尔调制器 (MS-MZM) 的结构;(b) 行波马赫-曾德尔调制器 (TW-MZM) 的结构。

The normalized transmitted power of both MZMs can be approximated as the following [24]:
两种MZM的归一化发射功率可以近似地表示如下[24]

Pt=eαLsin2(Δϕ2)(27)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where α is the optical absorption coefficient, L is the length of each arm, and Δϕ is the phase difference between the two paths. Since the two arms of MZM are driven differentially, Δϕ equals ϕ0+Δϕmod for bit “1” or ϕ0Δϕmod bit “0”. ϕ0 is the static phase offset for adjusting OMA and ER. Δϕmod is the modulation phase shift introduced on each arm by the voltage drivers, which will be derived depending on the architecture choice. The same compact model for optical phase that is used for microring modulator will be reused for MS-MZM and TW-MZM in the proceeding sections.
其中 α 是 光吸收系数,L 是每个臂的长度, Δϕ 是两条路径之间的相位差。由于 MZM 的两个臂是驱动的 差分 - Δϕ 等于 ϕ0+Δϕmod 对于位 “1” 或 ϕ0Δϕmod 位 “0”。 ϕ0 是用于调整 OMA 和 ER 的静态相位偏移。 Δϕmod 是电压驱动器在每个臂上引入的调制相移,它将是 派生,具体取决于架构选择。用于微环的光学相位的相同紧凑模型 在后续部分中,调制器将重新用于 MS-MZM 和 TW-MZM。

B. Multi-Stage Mach-Zehnder Transmitter
B. 多级马赫-曾德尔发射机

Since the same voltage swing is applied to each segment of the arm, the total modulation phase shift for one arm now becomes
由于对臂的每个部分施加相同的电压摆幅,因此现在一个臂的总调制相移 成为

Δϕmod=(2πL/λ)(neff(V1)neff(V0))(28)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where V1 and V0 correspond to bias voltages for generating bit “1” and bit “0”. The effective index neff and optical loss α are governed by the phase shifter model. They are both functions of doping levels for the PN junction based phase shifter. In the optimization engine for MS-MZM, the power levels for bit 1 and bit 0 are calculated as
其中 V1 V0 对应于用于生成 位 “1” 和位 “0”。有效指数 neff 和光损耗 α 由 Phase Shifter 模型控制。它们都是 基于 PN 结的移相器。在 MS-MZM 的优化引擎中,位 1 和位 0 的功率电平为 计算公式为
Pt1Pt0=eαLsin2(ϕ0+Δϕmod2)=eαLsin2(ϕ0Δϕmod2)(29)(30)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The normalized OMA and ER are given by
归一化的 OMA 和 ER 由下式给出
OMAER=Pt1Pt0=Pt1/Pt0(31)(32)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The E/b for the laser Elaser can be calculated according to 23 similar to microring-based optical links. For the 50 Gb/s MZM link, the receiver sensitivity, couplers losses, link margin and laser wall-plug efficiency are assumed to be same as the 50 Gb/s microring-based NRZ link.
激光器 Elaser 的 E/b 可以根据 23 计算,类似于 基于微环的光链路。对于 50 Gb/s MZM 链路,接收器灵敏度、耦合器损耗、链路裕量和 假设激光电光转换效率与基于 50 Gb/s 的微环 NRZ 链路相同。

MS-MZM drivers are generally very power hungry. The total E/b for the modulator drivers is calculated as follows:
MS-MZM 驱动程序通常非常耗电。调制器驱动器的总 E/b 计算如下:

Edr,MS=14ηdVdd0Vdd(Cm(V)+CwL)dV.(33)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where driver efficiency ηd is set to 20%. Cw is set to 0.3 fF/μm assuming that the parasitic capacitance for the electrodes is 0.2 fF/μm and the amortized pad capacitance is 0.1 fF/μ m [24]. Modulator capacitance Cm can be calculated the same way as microring modulators. The optimization engine for MZM assumes the same junction feature length Lj (500 nm) and mode confinement factor γ (0.75) for the waveguides as MRM. The intrinsic loss for the straight waveguide is set to 3 dB/cm [28]. We assume that the MZM drivers can be sufficiently sized to meet the bandwidth requirement for the target data rate regardless of doping levels and bias conditions.
其中,驾驶员效率 ηd 设置为 20%。 Cw 是 设置为 0.3 fF/ μ m,假设 电极的寄生电容为 0.2 fF/ μ m,摊销焊盘电容为 0.1 fF/ μ m [24]。调制器电容 Cm 的计算方法与微环调制器相同。 MZM 的优化引擎假定相同的交汇点要素长度 Lj (500 nm) 和模式限制因子 γ (0.75) 作为 MRM。直波导的固有损耗为 设置为 3 dB/cm [28]。我们假设 MZM 驱动程序的大小足够大 满足目标数据速率的带宽要求,而不管掺杂水平和偏置条件如何。

The objective of the MZM optimization engine is to minimize total transmitter energy-per-bit E/b, including both laser wall-plug energy and TX driver energy. When the arms are driven differentially as in Fig. 19(a), the total transmitter energy for MS-MZM is given by
MZM 优化引擎的目标是最小化每比特发射机总能量 E/b,包括两者 激光电光转换能量和 TX 驱动器能量。当机械臂以差速方式驱动时,如  图 19(a),MS-MZM 的总发射机能量由下式给出

ETX,MS=Elaser+2Edr,MS(34)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.

For each doping level in the PN junction (NA and ND), the optimization engine finds the optimal arm length L and static phase offset ϕ0 to minimize the total E/b for the transmitter ETX,MS. It is subject to the same ER constraint (3.5 dB) and the same receiver sensitivity (−10 dBm at 50 Gb/s) as MRM-based photonic links.
对于 PN 结 ( NA ND ) 中的每个掺杂能级,优化 发动机找到最佳臂长 L 和静态相位偏移 ϕ0 ,以最小化发射器的总 E/b ETX,MS 。它受相同的 ER 约束 (3.5 dB) 和相同的接收器 灵敏度(50 Gb/s 时为 −10 dBm),作为基于 MRM 的光子链路。

Co-optimization is carried out for MS-MZMs with two different driver voltages (1 V and 2 V) across the typical doping range. The total transmitter E/b, the laser power and the optimal arm length Lopt found by the optimization engine are shown in Fig. 20. Optimal doping levels exist for each voltage swing. Initially increasing the doping levels could improve the modulation efficiency and effectively improve the transmitter OMA. When doping levels are relatively high, the increased insertion loss starts to play the dominating role and leads to higher laser power consumption. Another key observation is that the MS-MZM transmitter with 1 V driver are in fact more energy efficient than the transmitter with 2 V driver. Because the driver power dominates, the total power consumption for MS-MZM under the current technology and link constraints. The optimized MS-MZM transmitter consumes 4.9 pJ/b at 50 Gb/s. More details about the optimization results can be found in Table IV .
对具有两种不同驱动器电压(1 V 和 2 V)的 MS-MZM 进行协同优化,典型值 掺杂范围。优化引擎找到的总发射器 E/b、激光功率和最佳臂长 Lopt 图 20.每个电压摆幅都存在最佳掺杂水平。最初 提高掺杂水平可以提高调制效率,有效提高发射机 OMA。什么时候 掺杂水平相对较高,增加的插入损耗开始起主导作用并导致更高的 激光功耗。另一个关键观察结果是,带有 1 V 驱动器的 MS-MZM 发射器实际上更多 比具有 2 V 驱动器的发射器更节能。由于驱动器功率占主导地位,因此总功耗 对于当前技术和链路约束下的 MS-MZM。优化的 MS-MZM 发射机在 50 时消耗 4.9 pJ/b Gb/秒。有关优化结果的更多详细信息,请参见 表 IV

Fig. 20. - Optimization results for multi-stage MZM transmitters at 50 Gb/s with two peak-to-peak voltage swings (1 V
 and 2 V). (a) the total transmitter E/b, (b) laser E/b, (c) the optimal arm length 
$L_{opt}$.
Fig. 20.  图 20.

Optimization results for multi-stage MZM transmitters at 50 Gb/s with two peak-to-peak voltage swings (1 V and 2 V). (a) the total transmitter E/b, (b) laser E/b, (c) the optimal arm length Lopt.
多级 MZM 发射器的优化结果,速率为 50 Gb/s,具有两个峰峰值电压摆幅 (1 V) 和 2 V)。(a) 总发射机 E/b,(b) 激光器 E/b,(c) 最佳臂长 Lopt

TABLE IV 50 Gb/s MZM Optimal Design Parameters and Power (pJ/b)
表 IV 50 Gb/s MZM 最优设计参数和功耗 (pJ/b)
Table IV- 50 Gb/s MZM Optimal Design Parameters and Power (pJ/b)

C. Traveling-Wave Mach Zehnder Transmitter
C. 行波马赫曾德尔发射机

The driver for traveling-wave MZM could potentially be more energy efficient at high datarates. The output signal of the driver propagates along the on-chip electrode as shown in Fig. 19(b). In the optimized design, the RF and optical group velocities are matched. Any mismatch in them degrades the OMA and thus increases the total optimal transmitter energy. In our optimization engine, such velocity matching condition is assumed to be satisfied for first-order system analysis. The impact of mismatch can simulated in time domain through the proposed Simulink toolbox for specific designs [35].
行波 MZM 的驱动器在高数据速率下可能更节能。驱动器的输出信号沿片上电极传播,如图 19(b) 所示 。在优化后的设计中,RF 和光群速度匹配。它们中的任何不匹配都会降低 OMA,从而增加总最佳发射机能量。在我们的优化引擎中,假设一阶系统分析满足这种速度匹配条件。失配的影响可以通过针对特定设计的 Simulink 工具箱在时域中进行仿真 [35]。

The final stage of the driver can be a CML driver with load resistance RL. The differential peak-to-peak output swing of the driver is denoted as VTW and the attenuation coefficient of electrical signal on transmission is denoted as αt. In the optimization engine for TW-MZM, αt is set based on the frequency-dependent measurement results in [24]. For 50 Gb/s modulation, αt corresponds to 2.5 dB/mm. Note that the effect of waveguide dopings on αt is neglected. As the voltage bias attenuates along the transmission lines, the effective modulation phase shift for TW-MZM can be derived as
驱动器的最后阶段可以是具有负载电阻的 CML 驱动器 RL 。驱动器的差分峰峰值输出摆幅表示为 VTW 衰减系数 传输时的电信号表示为 αt 。在 TW-MZM 的优化引擎中, αt 根据 [24]. 对于 50 Gb/s 调制, αt 相当于 2.5 dB/mm。请注意,波导掺杂对 αt 被忽视了。作为电压偏置 沿传输线衰减,TW-MZM 的有效调制相移可推导出为

ΔϕmodV(z)=2πλL0[neff(V(z))neff(V(z))]dz=VTW2eαtz(35)(36)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
where the effective index neff depends on the location z on the waveguide and the driver voltage VTW. Based on the modified Δϕmod, the normalized OMA and ER for TW-MZM can thereby be calculated. Given the same link constraints as MS-MZM, the required laser energy-per-bit for TW-MZM Elaser can be calculated as well.
其中,有效指数 neff 取决于波导上的位置 z 和驱动器电压 VTW 。因此,基于修改 Δϕmod 后的 ,可以计算 TW-MZM 的归一化 OMA 和 ER。给定与 MS-MZM,也可以计算 TW-MZM Elaser 所需的每比特激光能量。

When a CML driver is used for the final stage with supply voltage VDD and single-end swing VTW/2 , the driver energy-per-bit for TW-MZM can be calculated as
当 CML 驱动器用于电源电压 VDD 和单端摆幅 VTW/2 ,TW-MZM 的驱动器每比特能量可计算为

Edr,TW=1ηdfbVTW2(Z0/2)VDD=VTWVDDηdZ0fb(37)
View SourceRight-click on figure for MathML and additional features.
查看源 Right-click on figure for MathML and additional features.
The effective load impedance of the parallel transmission lines is Z0/2, and Z0 is assumed to be 60 Ω according to the typical transmission line design in [24]. The driver efficiency ηd is assumed to be 20% which accounts for power loss on load resistance RL and any power consumed by the pre-drivers.
并联传输线的有效负载阻抗为 Z0/2 Ω 根据 [24] 中的典型传输线设计 Z0 ,假设为 60。 假设驾驶员效率 ηd 为 为 20%,这考虑了负载电阻 RL 的功率损耗和预驱动器消耗的任何功率。

Under the same technology and link constraints, the optimization engine minimizes the total E/b for TW-MZM transmitter by finding the optimal arm length for different doping levels. For 50 Gb/s TW-MZM transmitter, co-optimizations are carried out for three different VTW across the typical doping range as shown in Fig. 21. The optimization results show that laser power would dominate the total transmitter power and increase dramatically when doping levels are relatively low. From the optimization results, the optimal E/b for TW-MZM transmitter is achieved when the differential peak-to-peak voltage swing is around 0.8 V. Similar to MS-MZM, the optimal arm length of TW-MZM also decreases as the doping levels increase.
在相同的技术和链路约束下,优化引擎使 TW-MZM 的总 E/b 最小 通过找到不同掺杂水平的最佳臂长来发射机。对于 50 Gb/s TW-MZM 发射器, 对典型掺杂范围内的三种不同 VTW 进行协同优化,如图 21 所示 。这 优化结果表明,激光功率将主导发射机总功率,并在 兴奋剂水平相对较低。从优化结果可以看出,TW-MZM 发射机实现了最优的 E/b 当差分峰峰值电压摆幅约为 0.8 V 时。与 MS-MZM 类似,TW-MZM 的最佳臂长 也随着掺杂水平的增加而降低。

Fig. 21. - Optimization results for traveling-wave MZM transmitters at 50 Gb/s with three differential peak-to-peak
 voltage swings $V_{TW}$ (0.6, 0.8, 1.0 V). (a)
 the total transmitter E/b, (b) laser E/b, (c) optimal arm length L.
Fig. 21.  图 21.

Optimization results for traveling-wave MZM transmitters at 50 Gb/s with three differential peak-to-peak voltage swings VTW (0.6, 0.8, 1.0 V). (a) the total transmitter E/b, (b) laser E/b, (c) optimal arm length L.
具有三个差分峰峰值的 50 Gb/s 行波 MZM 发射机的优化结果 电压摆动 VTW (0.6、0.8、1.0 V)。(一) 总发射器 E/b,(b) 激光 E/b,(c) 最佳臂长 L。

The optimal doping levels for MS-MZM and TW-MZM as well as their corresponding laser and driver power are listed in Table IV. At 50 Gb/s, the optimized TW-MZM tends to consume more laser power, whereas MS-MZM consumes more driver power. Overall, the optimized TW-MZM transmitter consumes around 5.1 pJ/b energy, slightly higher than the 4.7 pJ/b consumed by the optimized MS-MZM transmitter. For both transmitter architectures, optimizing doping levels is crucial for achieving the best energy efficiency.
表 IV 列出了 MS-MZM 和 TW-MZM 的最佳掺杂水平及其相应的激光器和驱动器功率。在 50 Gb/s 时,优化的 TW-MZM 往往消耗更多的激光功率,而 MS-MZM 消耗更多的驱动器功率。总体而言,优化的 TW-MZM 发射机消耗的能量约为 5.1 pJ/b,略高于优化的 MS-MZM 发射机消耗的 4.7 pJ/b。对于这两种变送器架构,优化掺杂水平对于实现最佳能效至关重要。

SECTION VI. 第六部分。

Comparisons 比较

The optimization framework allows us to compare the energy efficiency of MRM and MZM optical transmitters including laser and driver power. PAM4 modulation is discussed as a potential way to mitigate the inherent optical bandwidth constraint for microrings. For Mach-Zehnder modulators, we have focused on NRZ modulation and analyzed both multi-stage and traveling-wave MZ-modulators. All the transmitters are optimized under the same technology and link constraints. The impact of doping levels for transmitter designs has been addressed in depth using the optimization framework.
优化框架使我们能够比较 MRM 和 MZM 光发射机的能效,包括激光器和驱动器功率。PAM4 调制被讨论为减轻微环固有光带宽限制的一种潜在方法。对于 Mach-Zehnder 调制器,我们专注于 NRZ 调制,并分析了多级和行波 MZ 调制器。所有发射机都在相同的技术和链路约束下进行了优化。使用优化框架,已经深入解决了掺杂水平对发射机设计的影响。

For microring modulators, thermal tuning is essential for keeping the resonant frequency of microring locked to the laser frequency. Microring's thermal tuning can be done via an embedded microheater and a feedback mechanism. The heaters have been implemented in silicon or polysilicon to be more efficient and robust to electromigration. In a recent work [21], the thermal tuner for microrings achieves a 524 GHz ( >50C temperature) tuning range at 3.8 μW/GHz consuming 2 mW in the heater driver and 0.74 mW in tuner logic. In order to estimate the thermal tuner power, ring's resonance has to be adjusted for the entire commercial temperature range (COM) in data-centers (0–70 C) leading to 3.5 mW. Therefore, the thermal tuning power for microrings are almost negligible compared to other link components at 50 Gb/s.
对于微环调制器,热调谐对于保持微环的谐振频率锁定在 激光频率。Microring 的热调谐可以通过嵌入式微加热器和反馈机制来完成。这 加热器已在硅或多晶硅中实现,以提高效率和抗电迁移能力。在 最近的工作 [21],用于 MicroRings 的 Thermal Tuner 达到 524 GHz( >50 C 温度) 3.8 μ W/GHz 的调谐范围,功耗 2 mW 在加热器驱动器中,在 Tuner Logic 中为 0.74 mW。为了估计热调谐器功率,振铃的谐振 必须针对数据中心的整个商用温度范围 (COM) 进行调整 (0–70 C),最高可达 3.5 mW。因此,热调整 与 50 Gb/s 的其他链路组件相比,微环的功率几乎可以忽略不计。

For the analysis above, we have set the link margin to 3 dB and assumed 3 dB coupler loss, 10% laser wall-plug efficiency and −10 dBm receiver sensitivity for NRZ at 50 Gb/s. In practice, any deviation from these link constraints can be considered by adjusting the link margin. Now we consider three different link margins (0 dB, 3 dB and 6 dB) and show how the energy efficiency comparison would change between the different transmitter architectures at 50 Gb/s. The new energy breakdowns are shown in Fig. 22 with different link margins. For Mach-Zehnder modulators, the optimized multi-stage MZM transmitter can be more energy efficient than traveling-wave MZM transmitter when higher link margin is used. Because the MS-MZM uses significantly less laser power. If a smaller link margin or further relaxed link constraints are used, traveling-wave MZM may become more energy efficient. In this case, the driver energy takes up larger portion of total energy budget and the optimized traveling-wave MZM transmitter benefits from its relatively low driver E/b.
对于上述分析,我们将链路裕量设置为 3 dB,并假设 50 Gb/s 时 NRZ 的耦合器损耗为 3 dB,激光电光转换效率为 10%,接收器灵敏度为 −10 dBm。在实践中,可以通过调整链路边距来考虑与这些链路约束的任何偏差。现在我们考虑三种不同的链路余量(0 dB、3 dB 和 6 dB),并展示 50 Gb/s 时不同发射机架构之间的能效比较如何变化。新能源 细分如图 22 所示,具有不同的链路裕量。对于马赫-曾德尔调制器,当使用更高的链路裕量时,优化的多级 MZM 发射器可能比行波 MZM 发射器更节能。因为 MS-MZM 使用的激光功率要少得多。如果使用较小的链路余量或进一步放宽的链路约束,行波 MZM 可能会变得更加节能。在这种情况下,驱动器能量占据总能量预算的较大部分,而优化的行波 MZM 发射器受益于其相对较低的驱动器 E/b。

Fig. 22. - Detailed energy breakdown and energy efficiency comparison between optimized (A) NRZ-MRM, (B) PAM4-MRM, (C)
 MS-MZM and (D) TW-MZM transmitters at 50 Gb/s. Three different link margins are considered: 0 dB, 3 dB and 6 dB.
Fig. 22.  图 22.

Detailed energy breakdown and energy efficiency comparison between optimized (A) NRZ-MRM, (B) PAM4-MRM, (C) MS-MZM and (D) TW-MZM transmitters at 50 Gb/s. Three different link margins are considered: 0 dB, 3 dB and 6 dB.
优化的 (A) NRZ-MRM、(B) PAM4-MRM、(C) MS-MZM 和 (D) TW-MZM 发射机在 50 Gb/s 下的详细能量细分和能效比较。考虑了三种不同的链路余量:0 dB、3 dB 和 6 dB。

For 50 Gb/s NRZ optical links with a typical 3 dB link margin, MRM transmitters could save more than 60% of the total power compared to MZM transmitters when both are optimized through co-optimization framework. For microring modulators, switching to PAM4 modulation could further save around 20% total transmitter power from NRZ modulation. For all the cases here, we assumed a fixed receiver sensitivity, a fixed datarate and the same technology constraints from the same silicon photonic platform.
对于链路裕量通常为 3 dB 的 50 Gb/s NRZ 光链路,当两者通过协同优化框架进行优化时,与 MZM 发射机相比,MRM 发射机可以节省 60% 以上的总功率。对于微环调制器,切换到 PAM4 调制可以进一步从 NRZ 调制中节省约 20% 的总发射机功率。对于这里的所有情况,我们假设来自同一硅光子平台的固定接收器灵敏度、固定数据速率和相同的技术约束。

As the datarate increases, the sensitivity of the high-speed optical receivers would drop mainly due to the bandwidth limitations of the circuit blocks as shown in Fig. 23. In our optimization framework, we set the receiver sensitivity based on the measurement results of the 65 Gb/s receiver design in 14 nm FinFet [10]. In addition to receiver sensitivity, the optical bandwidth of microrings and the transmission line loss also vary as the targeted datarate varies. The minimum E/b for transmitters using the optimized NRZ-MRM, MS-MZM and TW-MZM are obtained for 32–60 Gb/s, as shown in Fig. 23. Only NRZ links are considered limited to the available receiver sensitivity data. It is clear that the optimized microring modulator always consumes much less power than the optimized Mach-Zehnder modulator for the datarates of interest. This is generally due to the compact size of microrings. The optimizations at different datarate are also done under the same technology and link constraints.
随着数据速率的增加,高速光接收器的灵敏度会下降,主要是由于电路模块的带宽限制,如图 23 所示 。在我们的优化框架中,我们根据 14 nm FinFet 中 65 Gb/s 接收器设计的测量结果来设置接收器灵敏度 [10]。除了接收器灵敏度外,微环的光带宽和传输线损耗也会随着目标数据速率的变化而变化。使用优化的 NRZ-MRM、MS-MZM 和 TW-MZM 的发射机的最小 E/b 为 32–60 Gb/s,如图 23 所示 。只有 NRZ 链路被认为仅限于可用的接收机灵敏度数据。很明显,对于感兴趣的数据速率,优化的微环调制器消耗的功率总是比优化的 Mach-Zehnder 调制器少得多。这通常是由于微环的紧凑尺寸。不同数据速率的优化也是在相同的技术和链路约束下完成的。

Fig. 23. - Energy efficiency comparison between optimized NRZ-MRM, MS-MZM and TW-MZM transmitters at different
 datarates. The gray line shows the receiver sensitivity vs datarate according to measurement in 
[10].
Fig. 23.  图 23.

Energy efficiency comparison between optimized NRZ-MRM, MS-MZM and TW-MZM transmitters at different datarates. The gray line shows the receiver sensitivity vs datarate according to measurement in [10].
优化后的 NRZ-MRM、MS-MZM 和 TW-MZM 变送器在不同数据速率下的能效比较。灰线表示根据 [10] 中的测量结果,接收器灵敏度与数据速率的关系。

SECTION VII. 第七部分。

Conclusion 结论

This paper proposes a co-optimization framework for designing high-speed silicon photonic transmitters. The new framework integrates a simple but accurate compact model for optical phase shifters, analytical models for photonic modulators and a new Simulink simulation toolbox. It allows us to explore the design trade-offs in depth for microring and Mach-Zehnder optical transmitters and compare their performances given the same set of technology and link constraints. Our results show that silicon photonic links, especially microring-based links, have great potential to provide energy-efficient optical solutions for next-generation inter-rack and intra-rack links.
本文提出了一个用于设计高速硅光子发射器的协优化框架。新框架集成了简单而准确的光学移相器紧凑模型、光子调制器分析模型和新的 Simulink 仿真工具箱。它使我们能够深入探索微环和 Mach-Zehnder 光发射机的设计权衡,并比较它们在相同技术和链路约束下的性能。我们的结果表明,硅光子链路,尤其是基于微环的链路,具有为下一代机架间和机架内链路提供节能光学解决方案的巨大潜力。

Although the paper does not go into circuit implementation details, it provides a useful co-optimization and verification framework for designing high-speed silicon photonic transmitters in the context of a practical optical link. This framework can be applicable to most of today's silicon photonic platforms that rely on PN junction based phase shifters. It can be extended to include receiver designs and thermal tuning designs, and assist the co-optimization of the next-generation silicon photonic interconnects.
虽然本文没有深入探讨电路实现细节,但它为在实际光链路环境中设计高速硅光子发射器提供了一个有用的协同优化和验证框架。该框架适用于当今大多数依赖基于 PN 结的移相器的硅光子平台。它可以扩展为包括接收器设计和热调谐设计,并协助下一代硅光子互连的协同优化。

References & Cited By 参考文献 & 引用者
Select All 全选
1.
H. Xu et al., "High speed silicon Mach–Zehnder modulator based on interleaved PN junctions", Opt. Express, vol. 20, no. 14, pp. 15093-15099, 2012.
H. Xu 等人,“基于交错 PN 结的高速硅马赫-曾德尔调制器”,Opt. Express,第 20 卷,第 14 期,第 15093-15099 页,2012 年。
2.
D. J. Thomson et al., "50-Gb/s silicon optical modulator", IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 234-236, Feb. 2012.
D. J. Thomson 等人,“50-Gb/s 硅光调制器”,IEEE Photon. Technol. Lett.,第 24 卷,第 4 期,第 234-236 页,2012 年 2 月。
3.
D. M. Gill et al., "Demonstration of error free operation up to 32 Gb/s from a CMOS integrated monolithic nano-photonic transmitter", IEEE Photon. Technol. Lett., vol. 28, no. 13, pp. 1410-1413, Jul. 2016.
D. M. Gill 等人,“CMOS 集成单片纳米光子发射器高达 32 Gb/s 的无差错操作演示”,IEEE Photon. Technol. Lett.,第 28 卷,第 13 期,第 1410-1413 页,2016 年 7 月。
4.
T. Baehr-Jones et al., "Ultralow drive voltage silicon traveling-wave modulator", Opt. Express, vol. 20, no. 11, pp. 12014-12020, 2012.
T. Baehr-Jones 等人,“超低驱动电压硅行波调制器”,Opt. Express,第 20 卷,第 11 期,第 12014-12020 页,2012 年。
5.
Hui Yu, "Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators", Opt. Express, vol. 19, no. 12, pp. 11507-11516, 2011.
Hui Yu,“基于高速载流子耗尽的硅调制器的横向和叉指掺杂模式之间的性能权衡”,Opt. Express,第 19 卷,第 12 期,第 11507-11516 页,2011 年。
6.
G. Li et al., "Ring resonator modulators in silicon for interchip photonic links", IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 95-113, Nov. 2013.
G. Li 等人,“用于片间光子链路的硅中环形谐振器调制器”,IEEE J. Sel. 主题量子电子,第 19 卷,第 6 期,第 95-113 页,2013 年 11 月。
7.
N. Qi et al., "A 25 Gb/s 520 mW 6.4 Vpp silicon-photonic Mach–Zehnder modulator with distributed driver in CMOS", Proc. Opt. Fiber Commun. Conf. Exhib., pp. 1-3, 2015.
N. Qi 等人,“CMOS 中具有分布式驱动器的 25 Gb/s 520 mW 6.4 Vpp 硅光子马赫-曾德尔调制器”,Proc. Opt. Fiber Commun. Conf. Exhib.,第 1-3 页,2015 年。
8.
C. Sun et al., "Single-chip microprocessor that communicates directly using light", Nature, vol. 528, no. 7583, pp. 534-538, Dec. 2015.
C. Sun 等人,“使用光直接通信的单芯片微处理器”,《自然》,第 528 卷,第 7583 期,第 534-538 页,2015 年 12 月。
9.
K. T. Settaluri et al., "Demonstration of an optical chip-to-chip link in a 3D integrated electronic-photonic platform", Proc. Eur. Solid-State Circuits Conf., pp. 156-159, 2015.
K. T. Settaluri 等人,“在 3D 集成电子光子平台中演示光学芯片到芯片链接”,Proc. Eur. Solid-State Circuits Conf.,第 156-159 页,2015 年。
10.
A. Cevrero et al., "A 65 Gb/s 1.4 pJ/b NRZ optical receiver data-path in 14  nm CMOS FinFet", Proc. IEEE Int. Solid-State Circuits Conf., pp. 482-483, 2017.
A. Cevrero 等人,“14 nm CMOS FinFet 中的 65 Gb/s 1.4 pJ/b NRZ 光接收器数据路径”,IEEE 国际固态电路会议论文集,第 482-483 页,2017 年。
11.
G. Denoyer et al., "Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber", J. Lightw. Technol., vol. 33, no. 6, pp. 1247-1254, Mar. 2015.
G. Denoyer 等人,“用于单模光纤上 50 Gb/s NRZ 传输的混合硅光子电路和收发器”,J. Lightw. Technol.,第 33 卷,第 6 期,第 1247-1254 页,2015 年 3 月。
12.
M. Pantouvaki et al., "50 Gb/s silicon photonics platform for short-reach optical interconnects", Proc. Opt. Fiber Commun. Conf., pp. 1-3, 2016.
M. Pantouvaki 等人,“用于短距离光互连的 50 Gb/s 硅光子学平台”,Proc. Opt. Fiber Commun. Conf.,第 1-3 页,2016 年。
13.
M. Rakowski et al., "A 50 Gb/s 610 fJ/bit hybrid CMOS-Si photonics ring-based NRZ-OOK transmitter", Proc. Opt. Fiber Commun. Conf. Exhib., 2016.
M. Rakowski 等人,“50 Gb/s 610 fJ/bit 混合 CMOS-Si 光子学环型 NRZ-OOK 发射机”,Proc. Opt. Fiber Commun. Conf. Exhib.,2016 年。
14.
C. Xiong, D. Gill, J. Proesel, J. Orcutt, W. Haensch and W. M. Green, "A monolithic 56 Gb/s CMOS integrated nanophotonic PAM-4 transmitter", Proc. Opt. Interconnects Conf., pp. 16-17, 2015.
C. Xiong、D. Gill、J. Proesel、J. Orcutt、W. Haensch 和 W. M. Green,“单片 56 Gb/s CMOS 集成纳米光子 PAM-4 发射器”,Proc. Opt. Interconnects Conf.,第 16-17 页,2015 年。
15.
X. Tu et al., "50-Gb/s silicon optical modulator with traveling-wave electrodes", Opt. Express, vol. 21, no. 10, pp. 12776-12782, May 2013.
X. Tu 等人,“带行波电极的 50-Gb/s 硅光调制器”,Opt. Express,第 21 卷,第 10 期,第 12776-12782 页,2013 年 5 月。
16.
M. Streshinsky et al., "Low power 50 Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nm", Opt. Express, vol. 21, no. 25, pp. 30350-30357, Dec. 2013.
M. Streshinsky 等人,“1300 nm 附近的低功耗 50 Gb/s 硅行波马赫-曾德尔调制器”,Opt. Express,第 21 卷,第 25 期,第 30350-30357 页,2013 年 12 月。
17.
X. Zheng et al., "Efficient WDM laser sources towards terabyte/s silicon photonic interconnects", J. Lightw. Technol., vol. 31, no. 24, pp. 4142-4154, Dec. 2013.
X. Zheng 等人,“面向 TB 级硅光子互连的高效 WDM 激光源”,J. Lightw. Technol.,第 31 卷,第 24 期,第 4142-4154 页,2013 年 12 月。
18.
S. Moazeni et al., "A 40 Gb/s PAM-4 transmitter based on a ring resonator optical DAC in 45 nm SOI CMOS", Proc. IEEE Int. Solid-State Circuits Conf.-, pp. 486-487, 2017.
S. Moazeni 等人,“基于 45 nm SOI CMOS 中环形谐振器光学 DAC 的 40 Gb/s PAM-4 发射器”,IEEE 国际固态电路会议论文集,第 486-487 页,2017 年。
19.
I.-L. Gheorma and R. M. Osgood, "Fundamental limitations of optical resonator based high-speed EO modulators", IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 795-797, Jun. 2002.
I.-L. Gheorma 和 R. M. Osgood,“基于光学谐振器的高速 EO 调制器的基本限制”,IEEE Photon. Technol. Lett.,第 14 卷,第 6 期,第 795-797 页,2002 年 6 月。
20.
B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, "Microring resonator channel dropping filters", J. Lightw. Technol., vol. 15, no. 6, pp. 998-1005, Jun. 1997.
B. E. Little, S. T. Chu, H. A. Haus, J. Foresi 和 J.-P.Laine,“Microring 谐振器通道丢弃滤波器”,J. Lightw. Technol.,第 15 卷,第 6 期,第 998-1005 页,1997 年 6 月。
21.
C. Sun et al., "A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning", IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 893-907, Apr. 2016.
C. Sun 等人,“具有基于比特统计的谐振微环热调谐的 45 nm CMOS-SOI 单片光子学平台”,IEEE J. Solid-State Circuits,第 51 卷,第 4 期,第 893-907 页,2016 年 4 月。
22.
M. Georgas, J. Leu, B. Moss, C. Sun and V. Stojanovi, "Addressing link-level design tradeoffs for integrated photonic interconnects", Proc. IEEE Custom Integr. Circuits Conf., pp. 1-8, 2011.
M. Georgas、J. Leu、B. Moss、C. Sun 和 V. Stojanovi,“解决集成光子互连的链路级设计权衡”,IEEE Custom Integr. 论文集。电路会议,第 1-8 页,2011 年。
23.
C. Sun et al., "DSENT a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling", Proc. IEEE/ACM Int. Symp. Netw. Chip, pp. 201-210, 2012.
C. Sun et al., “DSENT a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling”, Proc. IEEE/ACM Int. Symp. Netw.Chip,第 201-210 页,2012 年。
24.
E. Temporiti et al., "Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures", IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3178-3191, Dec. 2016.
E. Temporiti 等人,“深入了解基于硅光子学马赫-曾德尔的光发射机架构”,IEEE J. 固态电路,第 51 卷,第 12 期,第 3178-3191 页,2016 年 12 月。
25.
H. Bahrami et al., "Time-domain large-signal modeling of traveling-wave modulators on SOI", J. Lightw. Technol., vol. 34, no. 11, pp. 2812-2823, Jun. 2016.
H. Bahrami 等人,“SOI 上行波调制器的时域大信号建模”,J. Lightw. Technol.,第 34 卷,第 11 期,第 2812-2823 页,2016 年 6 月。
26.
G. Rasigade, D. Marris-Morini, M. Ziebell, E. Cassan and L. Vivien, "Analytical model for depletion-based silicon modulator simulation", Opt. Express, vol. 19, no. 5, pp. 3919-3924, 2011.
G. Rasigade、D. Marris-Morini、M. Ziebell、E. Cassan 和 L. Vivien,“基于耗尽型的硅调制器仿真的分析模型”,Opt. Express,第 19 卷,第 5 期,第 3919-3924 页,2011 年。
27.
Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho and W.-Y. Choi, "Small-signal frequency responses for Si micro-ring modulators", Proc. Opt. Interconnects Conf., pp. 47-48, 2014.
Y. Ban, J.-M.李,BMYu, S.-H.Cho 和 W.-Y.Choi,“Si 微环调制器的小信号频率响应”,Proc. Opt. Interconnects Conf.,第 47-48 页,2014 年。
28.
L. Chrostowski and M. Hochberg, "Modulators" in Silicon Photonics Design: From Devices to Systems, Cambridge, U.K.:Cambridge Univ. Press, 2015.
L. Chrostowski 和 M. Hochberg,硅光子学设计中的“调制器”:从器件到系统,英国剑桥:剑桥大学出版社,2015 年。
29.
C. Sorace-Agaskar, J. Leu, M. R. Watts and V. Stojanovic, "Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA", Opt. Express, vol. 23, no. 21, pp. 27180-27203, Oct. 2015.
C. Sorace-Agaskar、J. Leu、M. R. Watts 和 V. Stojanovic,“使用 VerilogA 进行集成 CMOS 光子电路的电光协同仿真”,Opt. Express,第 23 卷,第 21 期,第 27180-27203 页,2015 年 10 月。
30.
R. Soref and B. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123-129, Jan. 1987.
R. Soref 和 B. Bennett,“硅中的电光效应”,IEEE J. 量子电子,第 23 卷,第 1 期,第 123-129 页,1987 年 1 月。
31.
D. G. Rabus, Integrated Ring Resonators, New York, NY, USA:Springer-Verlag, 2007.
D. G. Rabus,《集成环形谐振器》,美国纽约州纽约:Springer-Verlag,2007 年。
32.
B. Wang, K. Yu, H. Li, P. Y. Chiang and S. Palermo, "Energy efficiency comparisons of NRZ and PAM4 modulation for ring-resonator-based silicon photonic links", Proc. IEEE 58th Int. Midwest Symp. Circuits Syst., pp. 1-4, 2015.
B. Wang、K. Yu、H. Li、P. Y. Chiang 和 S. Palermo,“基于环形谐振器的硅光子链路的 NRZ 和 PAM4 调制的能效比较”,IEEE 第 58 届国际中西部电路系统论文集,第 1-4 页,2015 年。
33.
S. Palermo et al., "PAM4 silicon photonic microring resonator-based transceiver circuits", IEEE Int. Conf. Group IV Photon., pp. 153-154, Oct. 2015.
S. Palermo 等人,“基于 PAM4 硅光子微环谐振器的收发器电路”,IEEE 国际会议 IV 组光子,第 153-154 页,2015 年 10 月。
34.
R. Dub-Demers, C. S. Park, S. LaRochelle and W. Shi, "60 Gb/s PAM-4 operation with a silicon microring modulator", Proc. IEEE Int. Conf. Group IV Photon., pp. 153-154, Oct. 2015.
R. Dub-Demers、C. S. Park、S. LaRochelle 和 W. Shi,“使用硅微环调制器的 60 Gb/s PAM-4 操作”,IEEE 国际会议 IV 组光子论文集,第 153-154 页,2015 年 10 月。
35.
[online] Available: https://github.com/isgcal/SiPh_Simulink.
[在线]可用:https://github.com/isgcal/SiPh_Simulink。
36.
[online] Available: http://www.psm4.org.
[在线]可用:http://www.psm4.org。
37.
[online] Available: http://www.cwdm4-msa.org.
[在线]可用:http://www.cwdm4-msa.org。

References

References is not available for this document.