这是用户在 2024-11-26 15:34 为 https://pubs.acs.org/doi/10.1021/acs.est.3c08857 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your account to your Institution

Click the pair button to affiliate your institution with your personal account

ACS Publications. Most Trusted. Most Cited. Most Read
Highly Efficient Transformation of Tar Model Compounds into Hydrogen by a Ni–Co Alloy Nanocatalyst During Tar Steam Reforming
My Activity

Figure 1Loading Img
  • Subscribed
Physico-Chemical Treatment and Resource Recovery

Highly Efficient Transformation of Tar Model Compounds into Hydrogen by a Ni–Co Alloy Nanocatalyst During Tar Steam Reforming
Ni-Co 合金纳米催化剂在焦油蒸汽重整过程中将焦油模型化合物高效转化为氢气
Click to copy article link
点击复制文章链接
Article link copied!

  • Junjie Chen
    Junjie Chen
    State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    More by Junjie Chen
  • Yongxiao Liu
    Yongxiao Liu
    State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    More by Yongxiao Liu
  • Zhengrui Chen
    Zhengrui Chen
    State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
  • Junrong Yue*
    Junrong Yue
    State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    *E-mail: jryue@ipe.ac.cn. Tel: (86) 010 8262 9912. Fax: (86) 010 8262 9912.
    More by Junrong Yue
  • Yu Tian
    Yu Tian
    State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    More by Yu Tian
  • Chengzhi Zheng
    Chengzhi Zheng
    Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
  • Jun Zhang*
    Jun Zhang
    State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    *E-mail: hitsunyboy@126.com. Tel: (86) 451 8628 3077. Fax: (86) 451 8628 3077.
    More by Jun Zhang
Open PDFSupporting Information (1)

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2024, 58, 7, 3540–3551
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.3c08857
Published February 6, 2024
Copyright © 2024 American Chemical Society

Abstract 抽象

Click to copy section link
单击以复制部分链接
Section link copied!

Hydrogen (H2) production from coal and biomass gasification was considered a long-term and viable way to solve energy crises and global warming. Tar, generated as a hazardous byproduct, limited its large-scale applications by clogging and corroding gasification equipment. Although catalytic steam reforming technology was used to convert tar into H2, catalyst deactivation restricted its applicability. A novel nanocatalyst was first synthesized by the modified sol–gel method using activated biochar as the support, nickel (Ni) as the active component, and cobalt (Co) as the promoter for converting tar into H2. The results indicated that a high H2 yield of 263.84 g H2/kg TMCs (Tar Model Compounds) and TMC conversion of almost 100% were obtained over 6% Ni–4% Co/char, with more than 30% increase in hydrogen yield compared to traditional catalysts. Moreover, 6% Ni–4% Co/char exhibited excellent resistance to carbon deposition by removing the nucleation sites for graphite formation, forming stable Ni–Co alloy, and promoting the char gasification reaction; resistance to oxidation deactivation due to the high oxygen affinity of Co and reduction of the oxidized nickel by H2 and CO; resistance to sintering deactivation by strengthened interaction between Ni and Co, high specific surface area (920.61 m2/g), and high dispersion (7.3%) of Ni nanoparticles. This work provided a novel nanocatalyst with significant potential for long-term practical applications in the in situ conversion of tar into H2 during steam reforming.
从煤炭和生物质气化中生产氢气 (H2) 被认为是解决能源危机和全球变暖的长期可行方法。焦油作为一种有害的副产品产生,通过堵塞和腐蚀气化设备限制了其大规模应用。尽管使用催化蒸汽重整技术将焦油转化为 H2,但催化剂失活限制了其适用性。首先通过改性溶胶-凝胶法合成了一种新型纳米催化剂,以活化生物炭为载体,镍 (Ni) 为活性成分,钴 (Co) 为促进剂,将焦油转化为 H2。结果表明,在 6% Ni–4% Co/char 上,获得了 263.84 g H2/kg TMC(焦油模型化合物)的高 H2 产率和几乎 100% 的 TMC 转化率,与传统催化剂相比,氢气产率提高了 30% 以上。此外,6% Ni–4% Co/char 通过去除石墨形成的成核位点,形成稳定的 Ni-Co 合金并促进 char 气化反应,表现出优异的抗碳沉积性;由于 Co 的高氧亲和力和 H2 和 CO 还原氧化镍,抗氧化失活;通过加强 Ni 和 Co 之间的相互作用、高比表面积 (920.61 m2/g) 和 Ni 纳米颗粒的高分散性 (7.3%) 来抵抗烧结失活。这项工作提供了一种新型纳米催化剂,在蒸汽重整过程中将焦油原位转化为 H2 中具有重要的长期实际应用潜力。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Copyright © 2024 American Chemical Society
版权所有 © 2024 美国化学会

Synopsis 概要

Minimal research exists on the development of catalysts with excellent antideactivation performance for converting tar into hydrogen. This study provides reliable strategies for in situ tar conversion into hydrogen during coal and biomass gasification.
关于开发具有优异抗灭活性能的催化剂以将焦油转化为氢气的研究很少。本研究为煤和生物质气化过程中原位焦油转化为氢气提供了可靠的策略。

Introduction 介绍

Click to copy section link
单击以复制部分链接
Section link copied!

The International Energy Agency (IEA) has estimated that the world’s energy demand will rise by 30% by 2040 along with the rapid development of the global economy. (1) Addressing the energy crisis and environmental issues, such as global warming, caused by the excessive consumption of fossil fuels has become a common goal of the international community. More than 130 countries globally have proposed their own carbon neutrality goals by 2050 or 2060. (2) Hydrogen has been regarded as a potential energy vector to achieve global greenhouse gas reduction targets (3,4) due to its high gravimetric heating value of 142 MJ/kg and clean combustion product. (5) Coal and biomass energy are the main fossil fuels and the fourth largest energy resource apart from three traditional fossil fuels in the world. Moreover, a few studies have experimentally proven that hydrogen production from coal and biomass was a long-term and viable way to solve energy crises and environmental pollution. (6,7)
国际能源署 (IEA) 估计,随着全球经济的快速发展,到 2040 年,世界能源需求将增长 30%。(1) 解决因过度消耗化石燃料而引起的能源危机和全球变暖等环境问题已成为国际社会的共同目标。全球 130 多个国家/地区提出了到 2050 年或 2060 年实现碳中和的目标。(2) 氢气因其 142 MJ/kg 的高重量热值和清洁燃烧产物,一直被视为实现全球温室气体减排目标的潜在能源载体 (3,4)。(5) 煤炭和生物质能是主要的化石燃料,是除三种传统化石燃料外的世界第四大能源资源。此外,一些研究通过实验证明,从煤炭和生物质中制氢是解决能源危机和环境污染的长期可行的方法。(6,7)
Among the hydrogen production processes, gasification hydrogen production (GHP) and anaerobic hydrogen fermentation (AHF) were recognized as two economically effective approaches, providing the higher potential to become competitive on a large scale in the near future. However, GHP technology is superior to AHF technology in terms of hydrogen yield and production rate. (8,9) It is to note that the efficiency in H2 production of AHF could be easily affected by inoculants, environmental factors, and microbial community. (10,11) Previous studies indicated that the H2 yield from biomass and coal can reach 0–20 g H2/kg substrate by AHF within a few hours to days. (12,13) Compared to AHF, the H2 yield of 30–300 g H2/kg substrate can be stably obtained from biomass and coal by GHP within a few seconds to minutes. (14,15) However, there was still no significant progress in large-scale commercial applications of coal or biomass gasification. The major issue is the tar (condensing pointing <300 °C) generated as a hazardous byproduct during the process, (16) which leads to the corrosion and blocking of downstream equipment and thus causes serious impacts on the long-term operation of the gasification system. (17) In addition, aromatic compounds in tar, such as polycyclic aromatic hydrocarbons and benzene, pose environmental and toxicological risks. (18) As a consequence, the efficient removal and targeted conversion of tar into clean H2 emerge as crucial considerations for the large-scale implementation of GHP.
在制氢工艺中,气化制氢 (GHP) 和厌氧氢发酵 (AHF) 被认为是两种经济有效的方法,为在不久的将来大规模竞争提供了更大的潜力。然而,GHP 技术在氢气产量和生产率方面优于 AHF 技术。(8,9) 需要注意的是,AHF 的 H2 生产效率很容易受到接种剂、环境因素和微生物群落的影响。(10,11) 先前的研究表明,AHF 的生物质和煤的 H2 产量可以在几小时到几天内达到 0-20 g H2/kg 底物。(12,13) 与 AHF 相比,GHP 可以在几秒钟到几分钟内从生物质和煤中稳定获得 30-300 g H2/kg 底物的 H2 产量。(14,15) 然而,在煤炭或生物质气化的大规模商业应用方面仍然没有取得重大进展。主要问题是焦油(冷凝点 <300 °C) generated as a hazardous byproduct during the process, (16)),导致下游设备腐蚀和堵塞,从而对气化系统的长期运行造成严重影响。(17) 此外,焦油中的芳香族化合物,如多环芳烃和苯,会带来环境和毒理学风险。(18) 因此,有效去除焦油并有针对性地转化为清洁 H2 成为大规模实施 GHP 的关键考虑因素。
Tar catalytic reforming has been considered as a cost-effective and sustainable way for converting tar into hydrogen at a relatively low temperature (600–900 °C). (19) Natural minerals (calcined dolomites, limestones, alkali, and earth alkali metal oxides) (20,21) and nickel-based catalysts (22,23) are now being considered as the most common catalysts. Compared to natural minerals catalysts, Ni-based catalysts are more attractive due to its good catalytic performance and relatively low cost, whereas the rapid deactivation of catalysts restricted its industrial application. (22,24) In order to improve the catalytic stability of Ni-based catalysts, promoters, such as Fe, Mg, Co, and Ce, have been introduced. (25) Exemplifying this, Liang et al. prepared the 10Ni@ADM-0.1 and 10Ni1Co@ADM-0.1 catalysts for methane reforming and observed that 10Ni1Co@ADM-0.1 catalysts exhibited more stable catalytic performance and higher H2 selectivity due to the formation of Ni–Co alloy. (26) Recently, biochar, another byproduct of biomass pyrolysis, has emerged as a promising catalyst support due to its diverse physical and chemical properties. (27) Biochar itself exhibits inherent tar catalytic activity, attributed to alkaline and alkaline earth metals (AAEMs) in the biochar such as K, Mg, and Ca. (17,28) Wang et al. synthesized municipal sludge char-based catalyst (Fe–Ni/MSC) and reached a higher toluene conversion of 92.6% with a significant H2 content of 73.6% at 800 °C. (29) Despite great efforts to enhance tar catalytic reforming performance, studies on the development of catalysts with excellent antideactivation ability and a comprehensive analysis of the mechanisms underlying catalysts’ antideactivation remain limited.
焦油催化重整被认为是在相对较低的温度 (600-900 °C) 下将焦油转化为氢气的一种经济高效且可持续的方法。(19) 天然矿物(煅烧白云石、石灰石、碱和土碱金属氧化物)(20,21) 和镍基催化剂 (22,23) 现在被认为是最常见的催化剂。与天然矿物催化剂相比,镍基催化剂因其良好的催化性能和相对较低的成本而更具吸引力,而催化剂的快速失活限制了其工业应用。(22,24) 为了提高镍基催化剂的催化稳定性,已经引入了 Fe、Mg、Co 和 Ce 等促进剂。(25) 例如,Liang 等人制备了用于甲烷重整的 10Ni@ADM-0.1 和 10Ni1Co@ADM-0.1 催化剂,并观察到 10Ni1Co@ADM-0.1 催化剂由于形成 Ni-Co 合金而表现出更稳定的催化性能和更高的 H2 选择性。(26) 最近,生物炭是生物质热解的另一种副产品,由于其多样化的物理和化学性质,已成为一种很有前途的催化剂载体。(27) 生物炭本身具有固有的焦油催化活性,归因于生物炭中的碱金属和碱土金属 (AAEM),如 K、Mg 和 Ca。(17,28) Wang 等人合成了城市污泥炭基催化剂 (Fe-Ni/MSC),在 800 °C 时达到了 92.6% 的较高甲苯转化率,H2 含量为 73.6%。 (29) 尽管在提高焦油催化重整性能方面做出了巨大努力,但关于开发具有优异抗脱活能力的催化剂的研究和对催化剂抗失活机制的综合分析仍然有限。
Based on the above discussion, this paper aims to prepare a novel and low-cost nanocatalyst with excellent antideactivation ability for enhancing tar in situ conversion into green hydrogen. Various nanocatalysts were synthesized by the modified citric acid sol–gel method employing KOH-activated biochar as the support, Ni as the active component, and Fe/Co/Mg as the promoters. Toluene, naphthalene, and phenol, representing three typical light tars for alkyl aromatic tar, polycyclic aromatic hydrocarbons, and heteroatom-containing compounds, were selected as the tar model compounds for catalytic steam reforming. (28,30) The effect of reaction temperature, Co loading, and recycling times (N) on TMC conversion, H2 yield, and gas quality, such as Low Heating Value (LHV) and H2/CO, were investigated in a two-stage fixed bed reactor. Furthermore, the antideactivation mechanism of Co-modified nickel nanocatalysts as the optimal catalyst was comprehensively revealed by a series of characterization using SEM-EDS, BET, XRD, XPS, TG-DTG, and Raman. This study aims to promote the large-scale implementation of coal and biomass gasification for hydrogen production and further solve energy crises and environmental issues.
基于上述讨论,本文旨在制备一种新型、低成本、具有优异抗脱活能力的纳米催化剂,以增强焦油原位转化为绿色氢。以 KOH 活化生物炭为载体,Ni 为活性组分,Fe/Co/Mg 为促进剂,采用改性柠檬酸溶胶-凝胶法合成了各种纳米催化剂。选择甲苯、萘和苯酚作为催化蒸汽重整的焦油模型化合物,分别代表烷基芳香族焦油、多环芳烃和含杂原子化合物的 3 种典型轻质焦油。(28,30) 在两级固定床反应器中研究了反应温度、Co 负载和回收时间 (N) 对 TMC 转化率、H2 产率和气体质量(如低热值 (LHV) 和 H2/CO)的影响。此外,通过使用 SEM-EDS、BET、XRD、XPS、TG-DTG 和 Raman 的一系列表征,全面揭示了共改性镍纳米催化剂作为最佳催化剂的抗灭活机制。本研究旨在推动大规模实施煤炭和生物质气化制氢,进一步解决能源危机和环境问题。

Materials and Methods 材料和方法

Click to copy section link
单击以复制部分链接
Section link copied!

Materials 材料

Pine sawdust (PS) was chosen as a natural source of biochar, as it is one of the most representative byproducts of the wood processing industry. The main information on PS and other materials were analyzed in Text S1.
松木屑 (PS) 被选为生物炭的天然来源,因为它是木材加工业最具代表性的副产品之一。文本 S1 分析了 PS 和其他材料的主要信息。

Nanocatalysts Preparation
纳米催化剂制备

The PS was dried at 80 °C for 6 h and then calcined at 600 °C for 1 h in a tubular furnace to acquire the biochar. Biochar activated using KOH (AR) improved the surface area and porosity of biochar. (31,32) Biochar preparation and KOH activation details can be observed in Text S2. The KOH-activated biochar was designated as char. The unmodified and promoter-modified nanocatalysts were prepared by the modified citric acid sol–gel method (33) using char as the support, nickel as the active component, and Fe/Co/Mg as the promoters. The preparation process of different nanocatalysts is presented in Text S3. Based on the previous research, a mass ratio of 6% between Ni and biochar was selected as the optimal loading for nickel-based catalysts. (34) The unmodified Ni-based catalyst was designated as 6% Ni/char (6% for the Ni loading, calculated by Ni mass fraction, wt %). The promoter-modified nanocatalysts were denoted as 6% Ni–x M/char (M for Fe, Co, Mg promoter, x for the promoter contents, calculated by promoter mass fraction, wt %). The prepared catalysts were stored in a desiccator.
将 PS 在 80 °C 下干燥 6 h,然后在管式炉中在 600 °C 下煅烧 1 h,得到生物炭。使用 KOH (AR) 活化的生物炭改善了生物炭的表面积和孔隙率。(31,32) 生物炭制备和 KOH 活化细节可以在文本 S2 中观察到。KOH 活化的生物炭被指定为 char。以 char 为载体,以镍为活性组分,Fe/Co/Mg 为促进剂,采用改性柠檬酸溶胶-凝胶法 (33) 制备了未修饰和促进剂修饰的纳米催化剂。不同纳米催化剂的制备过程见文本 S3。基于以往的研究,Ni 和生物炭之间 6% 的质量比被选为镍基催化剂的最佳负载。(34) 未改性的镍基催化剂被指定为 6% Ni/char(Ni 负载为 6%,以 Ni 质量分数 wt % 计算)。促进剂修饰的纳米催化剂表示为 6% Ni-x M/char(M 代表 Fe、Co、Mg 促进剂,x 代表促进剂含量,由促进剂质量分数 wt % 计算)。将制备的催化剂储存在干燥器中。

Nanocatalysts Characterization
纳米催化剂表征

The amounts of metal concentrated in the char and the metal loading of the as-prepared nanocatalysts were measured by inductively coupled plasma optical emission spectrometer (ICP-OES, Optima 8300). The structural and textural properties of nanocatalysts were illustrated by various characterizations, such as scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET). The amount and types of coke deposited on the spent nanocatalysts were measured by Temperature-Programmed Oxidation (TPO) and Raman spectroscopy (LabRAM HR Evolution). The dispersion and chemical states of metals loaded on the nanocatalysts were performed using X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The details of characterization parameters are shown in Text S4.
通过电感耦合等离子体发射光谱仪 (ICP-OES, Optima 8300) 测量炭中浓缩的金属量和所制备的纳米催化剂的金属负载量。纳米催化剂的结构和结构特性通过各种表征来说明,例如扫描电子显微镜 (SEM) 和 Brunauer-Emmett-Teller (BET)。通过程序升温氧化 (TPO) 和拉曼光谱 (LabRAM HR Evolution) 测量沉积在废纳米催化剂上的焦炭的数量和类型。使用 X 射线衍射仪 (XRD) 和 X 射线光电子能谱 (XPS) 对负载在纳米催化剂上的金属的分散和化学状态进行测量。特征参数的详细信息显示在文本 S4 中。

Tar Catalytic Reforming System and Procedure
焦油催化重整系统及程序

As depicted in Figure S1, the experimental setup used for tar catalytic reforming is mainly composed of a continuous feeding system, a two-stage quartz fixed-bed system, a gas supplying system, and a production collection system. The upper stage of the reactor was heated to 300 °C for the vaporization zone, while the lower reactor was controlled from 500 to 800 °C for the catalytic reforming zone with 0.5 g catalyst. Additionally, toluene or the mixture of toluene, naphthalene, and phenol (5:2:1, w/w/w) used as TMCs and deionized water were simultaneously injected into the vaporization zone by two syringe pumps. Subsequently, the vapor entered the reforming zone with the N2 flow rate of 100 mL/min and the molar steam/carbon (S/C) ratio of 3, based on the results of our previous research. (34) Two types of tar-model compounds were assigned as T-TMC and M-TMC. The liquid and gas products were collected by three N-hexane washing bottles and a 10 L aluminum foil gas bag, respectively. Each experiment was maintained for 20 min and replicated at least twice under the same conditions to ensure the repeatability of the results. The specific experimental process is shown in Text S5.
如图 S1 所示,用于焦油催化重整的实验装置主要由连续进料系统、两级石英固定床系统、供气系统和生产收集系统组成。反应器上级的汽化区加热至 300 °C,而下级反应器的催化重整区用 0.5 g 催化剂控制在 500 至 800 °C 之间。此外,通过两个注射泵将甲苯或用作 TMC 和去离子水的甲苯或甲苯、萘和苯酚的混合物(5:2:1,w/w/w)同时注入汽化区。随后,根据我们之前的研究结果,蒸汽以 N2 流速为 100 mL/min 和摩尔蒸汽/碳 (S/C) 比为 3 进入重整区。(34) 两种类型的焦油模型化合物被指定为 T-TMC 和 M-TMC。液体和气体产品分别由 3 个 N-己烷洗涤瓶和 10 L 铝箔气袋收集。每个实验维持 20 分钟,并在相同条件下至少重复两次,以确保结果的可重复性。具体的实验过程如文本 S5 所示。

Evaluation of Tar Conversion into Hydrogen
焦油转化为氢气的评估

The gas products (H2, CO, CH4, and CO2) were calculated using a gas chromatograph (GC, Agilent 7890A) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD). Liquid samples were analyzed at gas chromatography–mass spectrometer (GC-MS, Agilent 7890A/7000B, USA) with an HP-5MS capillary column. The TMC conversion and intermediate products were determined by GC and GC-MS, respectively. The details of the GC and GC-MS parameters are described in Text S6. TMC conversion (Conversion, %), H2 yield (H2yield, g/kg TMCs), and LHV of gas product (LHV, MJ/Nm3) were calculated according to the following equations:
使用配备火焰离子化检测器 (FID) 和热导检测器 (TCD) 的气相色谱仪(GC,Agilent 7890A)计算气体产物(H2、CO、CH4 和 CO2)。使用气相色谱-质谱仪(GC-MS,Agilent 7890A/7000B,美国)和 HP-5MS 毛细管柱分析液体样品。分别通过 GC 和 GC-MS 测定 TMC 转化率和中间产物。GC 和 GC-MS 参数的详细信息在文本 S6 中描述。TMC 转化率(转化率,%)、H2 产率(H2产量,g/kg TMC)和气体产物的 LHV(LHV,MJ/Nm3)根据以下公式计算:
conversion=mtar,inmtar,outmtar,in100%
(1)
H2yield=massofH2obtainedmtar,in100%
(2)
LHV=4.2×(25.7×αH2+30.0×αCO+85.7×αCH4)1000
(3)
where mtar,in and mtar,out is the amount of injected and unreacted TMCs, and αH2, αCO,
其中 mtar,inmtar,out 是注入和未反应的 TMC 的量,而 αH2 αCO
and αCH4 represent the volume percent (vol %) of H2, CO, and CH4 in gas product, respectively.
αCH4 分别表示气体产物中 H2 、 CO 和 CH4 的体积百分比 (vol %)。

Results and Discussion 结果与讨论

Click to copy section link
单击以复制部分链接
Section link copied!

Loading Concentration, Morphology, and Particle Size Distributions of Active Particles Loading on Catalysts
催化剂负载活性颗粒的负载浓度、形态和粒径分布

Combining other metals with the active metal Ni is regarded as one of the most promising strategies to improve the catalytic activity and stability of nickel-based catalysts. (25) The low price and unique physicochemical properties of transition metals (Fe, Cu, Cr, Co, etc.) and AAEMs (Mg, Ca, Sr, Ba, etc.) make them an excellent alternative to replace the noble metals (Ru, Rh, Pt, etc.) as catalyst promoters. (35) Based on the previous research, a mass ratio of 6% between Ni/Fe/Co/Mg and biochar was selected as the metal loading for catalysts. (34) According to the ICP-OES (Table S3) and XRD analysis (Figure 1c), it can be noted that the metal content of all synthesized catalysts was close to the nominal loading, which was evidence that the modified citric acid sol–gel method was successful for catalyst synthesis. Controlling the morphology and distributions of these nonnoble metal catalysts is critical to improve their performance. (36,37) In addition, the diagram of active metal Ni0 size distribution of 6% Ni/char showed that the Ni0 particles size was concentrated at 15–16 nm in Figures 1f and S2c. Furthermore, Ni0 crystallite sizes of nickel-based catalysts (15.4 nm for 6% Ni/char, 12.1 nm for 6% Ni–6% Fe/char, 14.1 nm for 6% Ni–6% Co/char, and 11.87 nm for 6% Ni–6% Mg/char) also were calculated from the full width at half height of the Ni (111) diffraction peak at 2θ = 44.50° in the XRD using the Scherrer eq (Figure 1c). (38) The appearance of Ni0 might be owing to the higher reactivity of Ni2+ with char support (carbothermal reduction) (24,39) and the reduction of citric acid. (40,41) The Ni3Fe alloy (2θ = 44.22°), (24,42) Ni–Co alloy (2θ = 44.40°) (43), and NiO–MgO solid solution (2θ = 43.15°–43.26°) (38) were also obtained, as shown in Figure 1c. The results confirmed that promoter-modified nickel catalysts prepared by the modified citric acid sol–gel method were different morphologies of bimetallic nanocatalysts (alloy and solid solution), which enhanced the activity and stability of nickel catalysts. (44)
将其他金属与活性金属 Ni 结合被认为是提高镍基催化剂催化活性和稳定性的最有前途的策略之一。(25) 过渡金属(Fe、Cu、Cr、Co 等)和 AAEMs(Mg、Ca、Sr、Ba等)的低价格和独特的物理化学性质使其成为替代贵金属(Ru、Rh、Pt 等)作为催化剂促进剂的绝佳替代品。(35) 基于前人的研究,Ni/Fe/Co/Mg 与生物炭的质量比为 6% 被选为催化剂的金属负载量。(34) 根据 ICP-OES(表 S3)和 XRD 分析(图 1c),可以注意到所有合成催化剂的金属含量都接近标称负载量,这证明了改性柠檬酸溶胶-凝胶法在催化剂合成中是成功的。控制这些非贵金属催化剂的形态和分布对于提高其性能至关重要。(36,37) 此外,6% Ni/char 的活性金属 Ni0 粒度分布图显示,在图 1f 和 S2c 中,Ni0 粒度集中在 15-16 nm 处。此外,镍基催化剂的Ni 0 微晶尺寸(6% Ni/char 为 15.4 nm,6% Ni-6% Fe/char 为 12.1 nm,6% Ni-6% Co/char 为 14.1 nm,6% Ni-6% Co/char 为 14.1 nm,6% Ni-6% Mg/char 为 11.87 nm)也是根据 XRD 中 2θ = 44.50° 处 Ni (111) 衍射峰半峰的全宽计算的(图 1c)。(38) Ni0 的出现可能是由于 Ni2+ 与焦化负载(碳热还原)(24,39) 和柠檬酸的还原具有较高的反应性。 (40,41) 还获得了 Ni3Fe 合金 (2θ = 44.22°)、(24,42) Ni-Co 合金 (2θ = 44.40°) (43) 和 NiO-MgO 固溶体 (2θ = 43.15°–43.26°) (38),如图 1c 所示。结果证实,改性柠檬酸溶胶-凝胶法制备的促进子改性镍催化剂是双金属纳米催化剂(合金和固溶体)的不同形貌,增强了镍催化剂的活性和稳定性。(44)

Figure 1 图 1

Figure 1. Effect of different catalysts on (a) T-TMC conversion and H2 yield, (b) gas yield and composition at the reforming temperature of 700 °C, and (c) XRD patterns of different catalysts and SEM-EDS analysis of (d,e) char and (f) 6% Ni/char.
图 1.不同催化剂对 (a) T-TMC 转化率和 H2 产率的影响,(b) 700 °C 重整温度下气体产率和成分,以及 (c) 不同催化剂的 XRD 图谱以及 (d,e) char 和 (f) 6% Ni/char 的 SEM-EDS 分析。

Effect of Different Promoter-Modified Nickel Catalysts on T-TMC Catalytic Conversion into Hydrogen
不同促进剂改性镍催化剂对T-TMC催化制氢的影响

The effect of different promoter-modified nickel catalysts on the conversion of T-TMC into H2 at the reforming temperature of 700 °C is illustrated in Figure 1a. As observed, 90.43% of T-TMC conversion and 2.35 g/kg T-TMC of H2 yield were obtained using char as the catalyst, which is much higher than the T-TMC conversion (29.42%) in the thermal cracking reaction (Figure S3). The result was attributed to the large specific surface area (945.04 m2/g) and certain content AAEMs such as 1.09 wt % of K and 0.48 wt % of Mg (Figure 1d,e and Table S3). It has been reported that the catalytic performance of char was due to the porous structure for better absorbability and AAEMs concentrated in char. (17,18) As indicated, 6% Ni/char catalyst showed a higher T-TMC conversion of 92.51% and H2 yield of 33.00 g/kg T-TMC than char. Active Ni sites on char exhibited strong ability in cleavage of C–C, O–H, and C–H bonds, which promoted the conversion of T-TMC into H2. (28,45) In addition, the prevalence of nanoscale Ni particles (15–16 nm) was conducive to amplifying reaction efficiency and mitigating catalyst sintering deactivation by augmenting the dispersion of active sites. (46) Furthermore, 6% Ni/char nanocatalysts modified by different promoters (Fe, Co, and Mg) exhibited superior catalytic activity with T-TMC conversion and H2 yields being above 94.72% and 78.30 g/kg of T-TMC, respectively. The addition of promoters decreased the Ni crystallite sizes (15.4 nm for 6% Ni/char, 12.1 nm for 6% Ni–6% Fe/char, 14.1 nm for 6% Ni–6% Co/char, and 11.87 nm for 6% Ni–6% Mg/char), improved the dispersion of Ni, increased the BET surface area to form active sites (Table S2), also formed the Ni3Fe alloy, Ni–Co alloy, and NiO–MgO solid solution, which enhanced the catalytic activity and stability. (44) The highest T-TMC conversion of 98.56% and H2 yield of 103.43 g/kg T-TMC were obtained on the 6% Ni–6% Co/char nanocatalyst. Compared to Fe and Mg, the addition of Co not only caused an increase in the dispersion of Ni but also neutralized the acidity to developing the basic site. (47,48) In addition, Co has a high affinity for oxygen-containing species (CO2 and H2O), (43,49) which also enhanced the conversion of T-TMC into H2 by promoting the catalytic reforming reactions (eqs 510).
图 1a 说明了在 700 °C 重整温度下,不同促进剂修饰的镍催化剂对 T-TMC 转化为 H2 的影响。据观察,使用焦炭作为催化剂获得了 90.43% 的 T-TMC 转化率和 2.35 g/kg T-TMC 的 H2 产率,远高于热裂解反应中的 T-TMC 转化率 (29.42%)(图 S3)。结果归因于大比表面积 (945.04 m2/g) 和某些含量的 AAEM,例如 1.09 wt % 的 K 和 0.48 wt % 的 Mg(图 1d,e 和表 S3)。据报道,焦炭的催化性能是由于多孔结构具有更好的吸收性和焦化物中浓缩的 AAEM。(17,18) 如图所示,6% Ni/char 催化剂的 T-TMC 转化率高达 92.51%,H2 产率为 33.00 g/kg T-TMC。焦炭上的活性 Ni 位点表现出很强的 C-C 裂解能力, O-H 和 C-H 键,促进 T-TMC 转化为 H2(28,45) 此外,纳米级 Ni 颗粒 (15-16 nm) 的普遍存在有利于通过增加活性位点的分散来提高反应效率和减轻催化剂烧结失活。(46) 此外,经不同促进剂 (Fe、Co 和 Mg) 修饰的 6% Ni/char 纳米催化剂表现出优异的催化活性,T-TMC 转化率和 H2 产率分别高于 94.72% 和 78.30 g/kg T-TMC。添加促进剂降低了 Ni 微晶尺寸(6% Ni/char 为 15.4 nm,6% Ni-6% Fe/char 为 12.1 nm,6% Ni-6% Co/char 为 14.1 nm,以及 11。87 nm 对于 6% Ni–6% Mg/char),改善了 Ni 的分散性,增加了 BET 表面积以形成活性位点(表 S2),还形成了 Ni3Fe 合金、Ni-Co 合金和 NiO-MgO 固溶体,增强了催化活性和稳定性。(44) 在 6% Ni–6% Co/char 纳米催化剂上获得了最高的 T-TMC 转化率 98.56% 和 H2 产率 103.43 g/kg T-TMC。与 Fe 和 Mg 相比,Co 的添加不仅导致 Ni 的分散性增加,而且中和了酸度以形成碱性位点。(47,48) 此外,Co 对含氧物质(CO2 和 H2O)具有高亲和力,(43,49) 这也通过促进催化重整反应(方程 5-10)增强了 T-TMC 向 H2 的转化。
The effects of different promoter-modified nickel catalysts on gas yield, gas composition (H2, CO, CO2, and CH4), and gas quality (LHV and H2/CO) at 700 °C are displayed in Figures 1 and S4, respectively. The process of tar catalytic reforming can be divided into two main processes: (1) the catalytic cracking process, where tar was cracked into char, gases, and small molecules volatiles; (2) the catalytic reforming process, where volatiles, gases, and char were further reformed to promote the yield of gases like CO and H2 in the presence of steam. Obviously, the change in gas composition is mainly attributed to the series of reactions (eqs 510) involved in the catalytic reforming process. (24,25)
图 1S4 分别显示了不同促进剂改性镍催化剂对 700 °C 时气体产率、气体成分(H2、CO、CO2 和 CH4)和气体质量(LHV 和 H2/CO)的影响。焦油催化重整过程可分为两个主要过程:(1)催化裂化过程,焦油裂解成焦炭、气体和小分子挥发物;(2) 催化重整过程,其中挥发物、气体和焦炭进一步重整,以提高在蒸汽存在下 CO 和 H2 等气体的产量。显然,气体成分的变化主要归因于催化重整过程中涉及的一系列反应(方程 5-10)。(24,25)
Tar cracking reaction: 焦油裂解反应:
TarC+CxHy+gasesΔH298K=+Q
(4)
Tar dry reforming reaction:
焦油干重整反应:
CxHy+xCO22xCO+(y/2)H2ΔH298K=+Q
(5)
Tar steam reforming reaction:
焦油蒸汽重整反应:
CxHy+xH2OxCO+(x+y/2)H2ΔH298K=+Q
(6)
Methane steam reforming reaction:
甲烷蒸汽重整反应:
CH4+H2OCO+3H2ΔH298K=+206.3kJ/mol
(7)
Water–gas shift reaction:
水-气变换反应:
CO+H2OCO2+H2ΔH298K=41kJ/mol
(8)
Char self-gasification reaction”
焦炭自气化反应”
C+H2OCO+H2ΔH298K=+131.3kJ/mol
(9)
Boudouard reaction: 布杜阿尔反应:
C+CO22COΔH298K=+172kJ/mol
(10)
The addition of promoter (Fe, Co, or Mg) improved the gas quality in T-TMC catalytic reforming by increasing the content of H2 and CO, LHV, and H2/CO. The maximum gas yield of 1.77 N m3/ kg T-TMC and LHV of 11.53 MJ/Nm3 were attained on 6% Ni–6% Co/char with a high H2/CO of 2.63. The LHV of gas products obtained from T-TMC catalytic reforming over 6% Ni–6% Co/char was higher than that of water gas (10.38 MJ/Nm3), indicating that the gas product has a high energy utilization value to purify H2 production and synthesizing water gas. The high oxygen affinity of Co significantly improved the quality of gas products by promoting the catalytic reforming reactions (eqs 510), (50,51) which was consistent with the high T-TMC conversion and H2 yield of 6% Ni–6% Co/char. The effects of the reforming temperature and Co loading on T-TMC conversion into H2 were further conducted in order to obtain the optimal process parameters for hydrogen production over Co-modified nickel nanocatalysts.
添加促进剂(Fe、Co 或 Mg)通过增加 H2 和 CO、LHV 和 H2/CO 的含量,改善了 T-TMC 催化重整中的气体质量。在 1.77% Ni–6% Co/char 和 2.63 的高 H2/CO 上,实现了 11.53 NM3/kg T-TMC 的最大气体产率和 11.53 MJ/Nm3 的 LHV。T-TMC 催化重整 6% Ni–6% Co/char 以上的气体产物 LHV 高于水气 (10.38 MJ/Nm3),表明该气体产物在净化 H2 生产和合成水气方面具有很高的能源利用价值。Co 的高氧亲和力通过促进催化重整反应 (方程 5-10) (50,51) 显着提高了气体产品的质量,这与 6% Ni-6% Co/char 的高 T-TMC 转化率和 H2 产率一致。进一步研究了重整温度和 Co 负载对 T-TMC 转化为 H2 的影响,以获得通过 Co 改性镍纳米催化剂制氢的最佳工艺参数。

Effects of Catalytic Reforming Temperature and Promoter Co Loading on T-TMC Conversion into Hydrogen
催化重整温度和启动子共负载量对 T-TMC 转化为氢气的影响

The effects of catalytic reforming temperature on the conversion of T-TMC into H2 for 6% Ni–6% Co/char in the range of 500–800 °C are presented in Figure 2a. As the temperature increased from 500 to 700 °C, T-TMC conversion and H2 yield increased sharply and reached a maximum of 98.56% and 103.43 g/kg of T-TMC at 700 °C, respectively. It was worth noting that a little increase of the T-TMC conversion and decrease of the H2 yield for 6% Ni–6% Co/char were found as the temperature further increased to 800 °C. Too high temperature will not contribute to C–C and C–H bond breaking to some extent due to the sintering of active particles in the catalysts. (52) Besides, a slight decrease in H2 yield with increasing temperature was mainly because of the exothermic reaction for water–gas shift reaction (eq 6). (53)
图 2a 显示了在 500–800 °C 范围内,催化重整温度对 6% Ni–6% Co/char 将 T-TMC 转化为 H2 的影响。随着温度从 500 °C 升高到 700 °C,T-TMC 转化率和 H2 产率急剧增加,在 700 °C 时分别达到 98.56% 和 103.43 g/kg 的最高值。值得注意的是,随着温度进一步升高至 800 °C,发现 6% Ni–6% Co/char 的 T-TMC 转化率略有增加,H2 产率降低。 由于催化剂中活性颗粒的烧结,过高的温度在一定程度上不会导致 C-C 和 C-H 键断裂。(52) 此外,H2 产率随温度的升高而略有下降,主要是由于水-气变换反应的放热反应 (方程 6)。(53)

Figure 2 图 2

Figure 2. Effect of (a) catalytic reforming temperature of 6% Ni–6% Co/char and (b) promoter Co loading of the Ni–Co alloy nanocatalyst (700 °C) on T-TMC conversion and hydrogen production.
图 2.(a) 6% Ni–6% Co/char 的催化重整温度和 (b) Ni–Co 合金纳米催化剂的促进剂 Co 负载 (700 °C) 对 T-TMC 转化和制氢的影响。

As observed in Figure S5, the vol % of H2 and CO rose sharply with the increase of temperature, while the vol % of CO2 and CH4 showed a downward trend. The tar dry reforming reaction (eq 5), tar steam reforming reaction (eq 6), and char self-gasification reaction (eq 9) were promoted at higher temperatures, resulting in the production of more H2 and CO. Simultaneously, the methane steam reforming reaction (eq 7) was enhanced, resulting in a decrease in CH4 production and a further increase in CO and H2 production. In addition, the Boudouard reaction (eq 10) and the reverse reaction of the water–gas shift reaction (eq 8) led to a decrease in CO2 production and an increase in CO production. The highest gas yield of 1.77 g/kg T-TMC and gas quality with an LHV of 11.53 MJ/Nm3 and H2/CO of 2.63 were also obtained over 6% Ni–6% Co/char at 700 °C. In consideration of the limitations of high operating costs and high-temperature sintering, 700 °C was selected as the catalytic reforming temperature of 6% Ni–x% Co/char for the following investigation.
如图 S5 所示,H2 和 CO 的体积百分比随着温度的升高而急剧上升,而 CO2 和 CH4 的体积百分比呈下降趋势。焦油干重整反应 (eq 5)、焦油蒸汽重整反应 (eq 6) 和焦炭自气化反应 (eq 9) 在较高温度下得到促进,导致产生更多的 H2 和 CO。同时,甲烷蒸汽重整反应 (eq 7) 增强,导致 CH4 产生减少,CO 和 H2 产生进一步增加。此外,布杜阿尔反应(方程 10)和水-气变换反应的逆反应(方程 8)导致 CO2 产生减少,而 CO 产生增加。在 700 °C 时,最高产气量为 1.77 g/kg T-TMC,LHV 为 11.53 MJ/Nm3,H 2/CO 为 2.63,Ni–6% Co/char 含量也超过 6%。 考虑到高运营成本和高温烧结的限制,选择 700 °C 作为 6% Ni–x% Co/char 的催化重整温度进行以下研究。
Figure 2b shows that T-TMC conversion and H2 yield increased, respectively, to 99.56% and 111.46 g/kg T-TMC at 700 °C as Co loading rose from o to 4 wt %. Meanwhile, the gas yield, LHV, and H2/CO ratio reached 1.85 g/kg T-TMC, 11.60 MJ/Nm3, and 2.63 at the Co loading of 4 wt %, respectively (Figure S6). However, T-TMC conversion and H2 yield decreased as Co loading continued to go up to 6 wt %. It might be due to higher loading of Co caused the agglomeration of active sites and the blockage of the catalyst support pores. (54) The results indicated that adding the proper loading of Co could improve the tar catalytic reforming performance of nickel-based catalyst, which was attributed to the high oxygen affinity of Co, the large specific surface area (920.61 m2/g), and the high dispersion (7.3%) of Ni nanoparticles (Table S5), and the stable Ni–Co alloy (Figure 6) of 6% Co–4% Ni/char. Thus, the optimum catalytic reforming temperature and Co loading for 6% Ni–x% Co/char were 700 °C and 4 wt % in this work, respectively.
图 2b 显示,随着 Co 负载量从 o 上升到 4 wt%,在 700 °C 时,T-TMC 转化率和 H2 产率分别提高到 99.56% 和 111.46 g/kg T-TMC。同时,在 4 wt % 的 Co 负载下,气体产率、LHV 和 H2/CO 比分别达到 1.85 g/kg T-TMC、11.60 MJ/Nm3 和 2.63(图 S6)。然而,随着 Co 负载量继续上升至 6 wt %,T-TMC 转化率和 H2 产率下降。这可能是由于 Co 负载量较高导致活性位点聚集和催化剂支撑孔堵塞。(54) 结果表明,添加适当的 Co 负载可以提高镍基催化剂的焦油催化重整性能,这归因于 Co 的高氧亲和力、大比表面积 (920.61 m2/g) 和高分散性 (7.3%) 的 Ni 纳米颗粒(表 S5)和稳定的 Ni-Co 合金(图 6) 的 6% Co–4% Ni/char。因此,在本工作中,6% Ni–x% Co/char 的最佳催化重整温度和 Co 负载分别为 700 °C 和 4 wt %。
In order to comprehensively evaluate the catalytic reforming performance for converting tar into H2, 6% Ni–4% Co/char prepared in this study was compared with other biochar-supported metal catalysts reported in the literature, and the comparison results are summarized in Table 1. It can be seen that 6% Ni–4% Co/char prepared in this work achieved the highest T-TMC conversion of 99.59% and H2 yield of 111.46 g/kg T-TMC at a relatively low temperature of 700 °C. To further analyze the potential for long-term practical applications of 6% Ni–4% Co/char, the service life of the catalyst was studied using the mixture of toluene, naphthalene, and phenol (5:2:1, w/w/w) as M-TMC. Figure 3 displays that 6% Ni–4% Co/char maintained a high M-TMC conversion of more than 85.18% and H2 yield of 242.5 g/kg M-TMC at recycling times of three. Meanwhile, the high gas quality (LHV of 10.15–10.19 MJ/Nm3 and H2/CO of 3.77–3.88) was also obtained over 6% Ni–4% Co/char (Table S4). In contrast, the catalytic activity of 6% Ni/char significantly decreased after one use, which proposed that 6% Ni/char was more prone to deactivation in comparison with 6% Ni–4% Co/char. The GC-MS analysis (Figure S7) showed that almost all of the M-TMC was converted into rich-H2 gas, and a small amount of broken M-TMC rings repolymerized to form macromolecular alkanes (4,5-dimethylnonane, 3-ethyl-3-methylheptane, etc.) with low ecological toxicity over 6% Ni–4% Co/char. (50,62) The above results indicated that 6% Ni–4% Co/char as a novel alloy nanocatalyst showed a significant advantage and great potential to convert tar in situ into high-purity H2 during coal and biomass gasification.
为了全面评价焦油转化为 H2 的催化重整性能,将本研究制备的 6% Ni–4% Co/char 与文献中报道的其他生物炭负载金属催化剂进行了比较,比较结果总结于表 1 中。可以看出,在相对较低的 700 °C 温度下,本工作制备的 6% Ni–4% Co/char 实现了最高的 T-TMC 转化率 99.59% 和 H2 产率 111.46 g/kg T-TMC。 为了进一步分析 6% Ni–4% Co/char 的长期实际应用潜力,使用甲苯、萘和苯酚的混合物 (5:2:1, w/w/w) 作为 M-TMC 研究了催化剂的使用寿命。图 3 显示,在 3 次回收时间下,6% Ni–4% Co/char 保持了超过 85.18% 的高 M-TMC 转化率和 242.5 g/kg M-TMC 的 H2 产量。同时,在 6% Ni-4% Co/char 上也获得了高气体质量(LHV 为 10.15-10.19 MJ/Nm3,H 2/CO 为 3.77-3.88)(表 S4)。相比之下,6% Ni/char 的催化活性在使用一次后显着降低,这表明与 6% Ni–4% Co/char 相比,6% Ni/char 更容易失活。GC-MS 分析(图 S7)显示,几乎所有的 M-TMC 都转化为富氢H 2 气体,少量破碎的 M-TMC 环再聚合形成大分子烷烃(4,5-二甲基壬烷、3-乙基-3-甲基庚烷等),其生态毒性低于 6% Ni-4% Co/char。(50,62) 上述结果表明,6% Ni-4% Co/char 作为一种新型合金纳米催化剂,显示出显著的优势和巨大的潜力,可以将焦油原位转化为煤和生物质气化过程中的高纯度 H2
Table 1. Comparison of the Tar Conversion and H2 Yield of 6% Ni–4% Co/char Nanocatalyst Prepared in this Study with Other Reported Catalysts
表 1.本研究制备的 6% Ni–4% Co/char 纳米催化剂的焦油转化率和 H2 产率与其他已报道的催化剂的比较
catalysts 催化剂dosage (g) 剂量 (g)temperature (°C) 温度 (°C)conversion (%) 转化率 (%)H2 yield (g/kg) H2 产量 (g/kg)reference
NiFe2O4 OC
镍铁2O4 OC
0.285096.8381.25 (55)
Fe–Ni/CNF 铁-镍/CNF/70085.7653.58 (56)
SC@0.1Ni–Fe SC@0.1镍-铁3.060090.0725.34 (24)
Ni–Cu/ASC 镍-铜/ASC3.080093.2054.34 (57)
Ni–Fe char Ni–Fe 焦炭5.070093.0089.29 (45)
Ni-10%Co/AWSL5.0900/72.60 (48)
Fe10–Ni6/PG10.070099.5039.97 (58)
5Ni/ZSM-5a
5镍/ZSM-5
1.030097.3039.07 (59)
BC-FeNi0.358008078.38 (60)
Co–Cu/CS 钴铜/CS2.0700/97.12 (61)
6% Ni–4% Co/char 6% 镍 - 4% 钴/碳0.570099.59111.46present 目前
a

The synergistic effects between dielectric barrier discharge (DBD) plasma and 5Ni/ZSM-5 catalyst.


a

介电势垒放电 (DBD) 等离子体和 5Ni/ZSM-5 催化剂之间的协同效应。

Figure 3 图 3

Figure 3. Effect of recycling times of (a) 6% Ni/char and (b) 6% Ni–4% Co/char on M-TMC (weight ratios of toluene:naphthalene:phenol = 5:2:1) conversion and hydrogen yield at the reforming temperature of 700 °C.
图 3.在 700 °C 的重整温度下,(a) 6% Ni/char 和 (b) 6% Ni–4% Co/char 的回收时间对 M-TMC(甲苯:萘:苯酚的重量比 = 5:2:1)转化率和氢气产率的影响。

Anti-Carbon Deposition Deactivation of Co-Modified Nickel Catalysts
共改性镍催化剂的抗碳沉积失活

The carbon deposition on the surface of catalysts was formed through tar cracking reaction (eq 4) and the secondary polymerization of decomposition products. (63) As shown by numerous studies, carbon deposition plays an important role in nickel-based catalysts deactivation due to carbon deposition covers the active sites of catalyst and prevents the breaking of C–C and C–H bond. (64) Therefore, it is necessary to analyze the amount and types of carbon deposition on the surface of spent 6% Ni–4% Co/char through the characterizations of SEM-EDS, BET, TPO, and Raman. The fresh and spent catalysts were characterized by SEM-EDS analysis in order to ease the comparison between the morphological features of 6% Ni–4% Co/char and 6% Ni/char. The spent 6% Ni–4% Co/char catalyst exhibited similarity to the fresh catalysts after one use in Figure 4d,e, illustrating that a trace amount of carbon deposition was found and the catalytic activity was well retained. This may be due to char gasification reactions (eqs 9 and 1010) inhibiting the carbon deposition deactivation to some extent. However, when the gasification reaction rate is lower than the carbon deposition rate, the amount of carbon deposition on the surface of catalysts gradually increases. (65) For instance, the new carbon filaments (whisker carbon) covering the surface of the spent 6% Ni/char were observed in Figure 4b after one use. Moreover, the amount of deposited carbon increased gradually with the increase in the recycling times, which might be the main reason for the sharp decrease in the catalytic activity of 6% Ni/char (Figure 3a).
催化剂表面的碳沉积是通过焦油裂解反应 (eq 4) 和分解产物的二次聚合形成的。(63) 正如大量研究表明的那样,碳沉积在镍基催化剂失活中起着重要作用,因为碳沉积覆盖了催化剂的活性位点并防止 C-C 和 C-H 键断裂。(64) 因此,有必要通过 SEM-EDS、BET、TPO 和拉曼的表征来分析 6% Ni–4% Co/char 废物表面碳沉积的数量和类型。通过 SEM-EDS 分析对新鲜和废催化剂进行了表征,以简化 6% Ni–4% Co/char 和 6% Ni/char 的形态特征之间的比较。在图 4d,e 中使用一次后,用过的 6% Ni–4% Co/char 催化剂与新鲜催化剂相似,表明发现了微量的碳沉积并且催化活性得到了很好的保留。这可能是由于焦化气化反应(方程 91010)在一定程度上抑制了碳沉积失活。然而,当气化反应速率低于碳沉积速率时,催化剂表面的碳沉积量逐渐增加。(65) 例如,在使用 1 次后,图 4b 中观察到覆盖用过的 6% Ni/char 表面的新碳丝(晶须碳)。此外,随着回收时间的增加,沉积碳的数量逐渐增加,这可能是 6% Ni/char 催化活性急剧下降的主要原因(图 3a)。

Figure 4 图 4

Figure 4. SEM image and EDS pattern of (a) the fresh 6% Ni/char (N = 0); (b) the spent 6% Ni/char (N = 1); (c) the spent 6% Ni/char (N = 3); (d) the fresh 6% Ni–4% Co/char (N = 0); (e) the spent 6% Ni-4% Co/char (N = 1); (f) the spent 6% Ni–4% Co/char (N = 5). N represents the recycling times of catalysts.
图 4.(a) 新鲜的 6% Ni/char (N = 0);(b) 用过的 6% Ni/char (N = 1);(c) 用过的 6% Ni/char (N = 3);(d) 新鲜的 6% Ni–4% Co/char (N = 0);(e) 用过的 6% Ni-4% Co/char (N = 1);(f) 用过的 6% Ni–4% Co/char (N = 5)。N 表示催化剂的回收时间。

As can be seen from the EDS map scanning in Figure 4c,f, the amount of carbon deposition of the spent 6% Ni–4% Co/char and the spent 6% Ni/char were about 9.4 and 14.5 wt % after five- and three-time reuse, respectively, roughly calculated based on the content of carbon element in the fresh and spent catalysts. As shown in Table 2 and Figure S8, the reduction in the BET surface area of the spent 6% Ni/char was 3.5 times that of the spent 6% Ni–4% Co/char after one use, which was mainly ascribed to some pores of 6% Ni/char being blocked by more carbon deposition. The analysis results of carbon deposition by BET and SEM demonstrated that 6% Ni–4% Co/char exhibited an excellent ability to suppress carbon deposition.
图 4c、f 中的 EDS 图扫描中可以看出,根据新鲜和废催化剂中碳元素的含量粗略计算,6% Ni-4% Co/char 和 6% Ni/char 的废碳沉积量分别约为 9.4 和 14.5 wt %。如表 2图 S8 所示,使用一次后,用过的 6% Ni/char 的 BET 表面积减少是用过的 6% Ni–4% Co/char 的 3.5 倍,这主要是由于 6% Ni/char 的一些孔被更多的碳沉积堵塞。BET 和 SEM 的碳沉积分析结果表明,6% Ni–4% Co/char 表现出优异的抑制碳沉积能力。
Table 2. Textural Properties of the Fresh and Spent Catalysts
表 2.新鲜和废催化剂的质构特性
samples 样品recycling times 回收时间BET surface area (m2/g)
BET 表面积 (m2/g)
total pore volume (cm3/g)
总孔体积 (cm3/g)
average pore diameter (nm)
6% Ni/char 6% 镍/碳0853.290.4672.218
1577.360.3872.645
3189.300.1396.406
6% Ni–4% Co/char 6% 镍 - 4% 钴/碳0920.610.2692.180
1840.090.2563.166
5227.170.1575.723
The quantity and composition of carbon deposited on the spent nanocatalysts were further measured by TPO. The carbon deposition of the spent catalysts was equal to the difference in weight loss between the spent catalysts and fresh catalysts. (66,67) The previous studies have shown that thermal decomposition mass loss of spent catalysts at temperatures between 400 and 600 °C and between 600 and 800 °C in TG and DTG curves represent amorphous carbon and graphitic carbon deposition, respectively. (25,68) Notably, graphitic carbon is more prone to cause the catalyst deactivation than amorphous carbon because the former was difficult to be consumed by char gasifacation reactions (eqs 910). (44,69) As observed in Figure 5c,d, the weight loss rate for the spent 6% Ni–4% Co/char at 400–800 °C was identified as 2.07 wt % of amorphous carbon after one use, as well as 1.18 wt % of graphitic carbon and 6.91 wt % of amorphous carbon occurred after five times reuse. By contrary, 1.50 wt % of graphitic carbon and 2.48 wt % of amorphous carbon were formed over the spent 6% Ni/char after one use according to Figure 5a,b. Moreover, the amount of graphite whisker carbon deposition reached 15.66% after three times reuse, which proved that the amorphous carbon deposited on the surface of the catalyst gradually transformed into graphitic carbon as recycling times increased.
通过 TPO 进一步测量沉积在废纳米催化剂上的碳的数量和成分。废催化剂的碳沉积等于废催化剂和新鲜催化剂之间的重量损失差。(66,67) 以前的研究表明,在 TG 和 DTG 曲线中,在 400 至 600 °C 和 600 至 800 °C 之间,废催化剂的热分解质量损失分别代表无定形碳和石墨碳沉积。(25,68) 值得注意的是,石墨碳比无定形碳更容易导致催化剂失活,因为前者很难被焦化气化反应消耗(方程 9-10)。(44,69) 如图 5c,d 所示,在 400-800 °C 下,用过的 6% Ni-4% Co/char 的重量损失率被确定为一次使用后 2.07 wt % 的无定形碳,以及 1.18 wt % 的石墨碳和 6.91 wt% 的无定形碳在五次再利用后发生。相反,根据图 5a,b,使用一次后,在用过的 6% Ni/char 上形成了 1.50 wt % 的石墨碳和 2.48 wt % 的无定形碳。此外,石墨晶须碳沉积量经过 3 次再利用后达到 15.66%,证明沉积在催化剂表面的无定形碳随着回收次数的增加逐渐转变为石墨碳。

Figure 5 图 5

Figure 5. TG-DTG curves and Raman spectra of the corresponding fresh and spent catalysts. TG-DTG curves of (a,b) 6% Ni/char and (c,d) 6% Ni–4% Co/char; Raman spectra of (e) 6% Ni/char and (f) 6% Ni–4% Co/char.
图 5.相应的新鲜和废催化剂的 TG-DTG 曲线和拉曼光谱。(a,b) 6% Ni/char 和 (c,d) 6% Ni–4% Co/char 的 TG-DTG 曲线;(e) 6% Ni/char 和 (f) 6% Ni–4% Co/char 的拉曼光谱。

To visually display the type of carbon deposition, the fresh and spent catalysts were characterized by Raman spectroscopy. The D and G bands in Raman spectroscopy of the spent catalyst represented the presence of amorphous carbon deposition and graphitic carbon deposition, respectively. (70) According to the Tuinstra and Koening (TK) law, the integrated ratio of the D and G bands (ID/IG) varies inversely with the graphite crystallinity of carbon deposition. (64) The low graphite crystallinity was observed for the spent 6% Ni–4% Co/char (ID/IG = 1.20) after five-time reuse compared to that of the spent 6% Ni/char (ID/IG = 1.01) after three-time reuse in Figure 5e,f. Clearly, 6% Ni/char was prone to deactivation because of the serious graphitic whisker carbon deposition, while 6% Ni–4% Co/char proposed higher resistance to carbon deposition by promoting char gasification reaction (eqs 9 and 10) and suppressing the growth of graphitic whisker carbon. (71)
为了直观地显示碳沉积的类型,通过拉曼光谱对新鲜和废催化剂进行了表征。废催化剂拉曼光谱中的 D 和 G 波段分别表示无定形碳沉积和石墨碳沉积的存在。(70) 根据 Tuinstra 和 Koening (TK) 定律,D 和 G 带的积分比 (ID/IG) 与碳沉积的石墨结晶度成反比。(64)图 5e,f 中,与三次再利用后的 6% Ni/char (I D/I G = 1.20) 相比,在 5 次重复使用后观察到 6% Ni-4% Co/char (ID/IG = 1.20) 的低石墨结晶度。显然,由于严重的石墨晶须碳沉积,6% Ni/char 容易失活,而 6% Ni–4% Co/char 通过促进炭气化反应(方程 910)和抑制石墨晶须碳的生长,提出了更高的碳沉积抵抗力。(71)
As can be seen from the above characterization results, 6% Ni–4% Co/char exhibited an excellent ability to suppress carbon deposition in comparison with 6% Ni/char. On the one hand, Co has a high affinity for oxygen-containing species (CO2 and H2O), suppressing the carbon deposition of 6% Ni–4% Co/char through promoting char self-gasification reaction (eq 9) and Boudouard reaction (eq 10). On the other hand, the addition of Co was conductive to suppress carbon deposition by reducing Ni nanoparticle size (13.3 nm) since the nucleation of carbon whiskers was retarded by the smaller nickel nanoparticles. (51) The importance of the size of Ni particles on the nucleation of carbon has been confirmed by thermogravimetric experiments and in situ investigations by high-resolution transmission electron microscopy (TEM). (72,73) In addition, some research demonstrated that the formation of Ni–Co alloy can also reduce carbon deposition. (47,50) In a word, 6% Ni–4% Co/char exhibited excellent resistance to carbon deposition by removing the nucleation sites for graphite formation, forming a stable Ni–Co alloy and promoting the char gasification reaction (eqs 9 and 10).
从上述表征结果可以看出,与 6% Ni/char 相比,6% Ni–4% Co/char 表现出优异的抑制积碳能力。一方面,Co 对含氧物质(CO2 和 H2O)具有高亲和力,通过促进焦自气化反应(方程 9)和布杜阿尔反应(方程 10)抑制 6% Ni–4% Co/char 的碳沉积。另一方面,Co 的添加有助于通过减小 Ni 纳米颗粒的尺寸 (13.3 nm) 来抑制碳沉积,因为较小的镍纳米颗粒会延缓碳晶须的成核。(51) Ni 颗粒的大小对碳成核的重要性已通过热重实验和高分辨率透射电子显微镜 (TEM) 的原位研究得到证实。(72,73) 此外,一些研究表明,Ni-Co 合金的形成也可以减少碳沉积。(47,50) 总之,6% Ni–4% Co/char 通过去除石墨形成的成核位点、形成稳定的 Ni-Co 合金并促进焦化气化反应(方程 910),表现出优异的抗碳沉积能力。

Anti-oxidation and Anti-sintering Deactivation of Co-Modified Nickel Catalysts
共改性镍催化剂的抗氧化和抗烧结失活

The final deactivation processes that must be considered were oxidation and sintering of the metal particles in the nickel-based catalyst. (74) As shown in Figure 6a,b, the new peaks of carbon at 2θ = 15°∼20°, 26.23° observed on the spent catalysts were significantly different from the specific diffraction peaks of carbon (2θ = 29.49 and 44.29°) on the char (Figure 1c), which further proved the formation of carbon deposition. Besides, the diffraction peaks at 2θ = 37.25°, 43.28°, 62.86° of the spent 6% Ni/char were ascribed to crystalline phases of NiO corresponding to planes (111), (200), and (220), respectively. Regarding the spent 6% Ni–4% Co/char, the diffraction peaks were indistinctly attributed to NiO and CoO, since the similar diffraction angles of NiO and CoO hindered their separate identification. In addition, the thermal decomposition mass loss of the catalysts in Figure 5a,c at 200–400 °C was attributed to the oxidation of Ni or Co. (25) However, 6% Ni–4% Co/char still maintained higher catalytic activity after three times reuse, which revealed that most of the oxidized metal particles were determined as promoter Co instead of Ni. Moreover, the XPS analysis has confirmed that the oxidation deactivation of 6% Ni–4% Co/char was preferably oxidation of Co species compared to Ni species due to the high oxygen affinity of Co (Figure 6e,f). The active metals Ni and Co were mainly oxidated by the oxygen derived from the dissociative adsorption of the water in the steam required during tar catalytic reforming. (43,75) Moreover, the oxidation degree strengthened with the increase in the recycling times of the catalysts, as present in Figure 6a,b.
必须考虑的最终失活过程是镍基催化剂中金属颗粒的氧化和烧结。(74) 如图 6a、b 所示,在催化剂上观察到的碳在 2θ = 15°∼20°、26.23° 处的新峰与碳在炭上的比重衍射峰(2θ = 29.49 和 44.29°)显著不同(图 1c),这进一步证明了碳沉积的形成。此外,用过的 6% Ni/char 在 2θ = 37.25°、43.28°、62.86° 处的衍射峰分别归因于对应于晶面 (111)、(200) 和 (220) 的 NiO 晶相。对于消耗的 6% Ni–4% Co/char,衍射峰模糊不清地归因于 NiO 和 CoO,因为 NiO 和 CoO 的相似衍射角阻碍了它们的单独鉴定。此外,图 5a,c 中催化剂在 200–400 °C 下的热分解质量损失归因于 Ni 或 Co 的氧化。(25) 然而,6% Ni–4% Co/char 在三次重复使用后仍保持较高的催化活性,这表明大多数氧化金属颗粒被确定为促进剂 Co 而不是 Ni。此外,XPS 分析证实,由于 Co 的高氧亲和力,与 Ni 物种相比,6% Ni–4% Co/char 的氧化失活优于 Co 物种的氧化(图 6e,f)。活性金属 Ni 和 Co 主要被焦油催化重整过程中所需的蒸汽中水解离吸附产生的氧氧化。(43,75) 此外,氧化程度随着催化剂回收时间的增加而增强,如图 6a、b 所示。

Figure 6 图 6

Figure 6. XRD patterns and XPS survey spectra of the fresh and spent catalysts. XRD patterns of (a) 6% Ni/char and (b) 6% Ni–4% Co/char; XPS survey spectra of (c) high-resolution scans, (d) C 1s regions, (e) Ni 2p regions, and (f) Co 2p regions of 6% Ni–4% Co/char.
图 6.新鲜和废催化剂的 XRD 图谱和 XPS 测量光谱。(a) 6% Ni/char 和 (b) 6% Ni–4% Co/char 的 XRD 图谱;(c) 高分辨率扫描、(d) C 1s 区域、(e) Ni 2p 区域和 (f) 6% Ni–4% Co/char 的 Co 2p 区域的 XPS 测量光谱。

The pattern of fresh 6% Ni/char presents the main diffraction at 2θ = 44.50, which is marked as the (111) of Ni. With regard to the fresh 6% Ni–4% Co/char, the typical diffraction peak of Ni–Co was evident at 2θ = 44.40°. The typical diffraction peak of Ni–Co slightly shifted toward (111) of Co (2θ = 44.10°) due to the formation of Ni–Co alloy and the Ni lattice with a small amount of doped Co, which was consistent with previous reports. (76,77) In addition, the main diffraction peaks of 2θ = 44.40°, 51.85°, and 76.38° belonging to the Ni–Co alloy nanoparticles were still obtained on the spent catalysts. Based on the XRD results, the crystallite size and dispersion of Ni were calculated and summarized in Table S5 so as to evaluate the irreversible deactivation by metal sintering. The Ni particle dispersion of the spent 6% Ni–4% Co/char after five cycles (3.9%) was similar to that of the spent 6% Ni/char after one use (3.4%). The results illustrated that the intimate interaction between Ni and Co based on the formation of the Ni–Co alloy improved the Ni nanoparticle dispersion and suppressed aggregation sintering. It has also been reported that the similarity in the atom radius of Ni and Co was beneficial to the formation of Ni–Co alloy and their intimate interaction played an important role in suppressing catalyst sintering deactivation. (50)
新鲜的 6% Ni/char 图案在 2θ = 44.50 处呈现主衍射,标记为 Ni 的 (111)。对于新鲜的 6% Ni–4% Co/char,Ni–Co 的典型衍射峰在 2θ = 44.40° 处很明显。由于形成 Ni-Co 合金和含有少量掺杂 Co 的 Ni 晶格,Ni-Co 的典型衍射峰略微向 Co 的 (111) 移动 (2θ = 44.10°),这与以前的报道一致。(76,77) 此外,属于 Ni-Co 合金纳米颗粒的主要衍射峰 2θ = 44.40°、51.85° 和 76.38° 仍然在废催化剂上获得。根据 XRD 结果,计算了 Ni 的晶粒尺寸和分散性,并将其汇总在表 S5 中,以评估金属烧结的不可逆失活。5 次循环后 6% Ni–4% Co/char 的 Ni 颗粒分散性 (3.9%) 与使用 1 次后 6% Ni/char 的 Ni 颗粒分散性 (3.4%) 相似。结果表明,基于 Ni-Co 合金形成的 Ni 和 Co 之间的密切相互作用改善了 Ni 纳米颗粒的分散性并抑制了聚集烧结。据报道,Ni 和 Co 原子半径的相似性有利于 Ni-Co 合金的形成,它们的密切相互作用在抑制催化剂烧结失活方面起了重要作用。(50)
As presented in Figure 6c, Ni, Co, O, C, and K were the major components of the 6% Ni–4% Co/char, which can also be proven by the results of SEM-EDS. In addition, in order to clearly present the XPS results of Figure 6c, the local enlarged images of the XPS peaks of Ni 2p and Co 2p of 6% Ni–4% Co/char are provided in Figure S9. As recycling times increased, the carbon peak on the spent catalyst strengthened, while the peaks of other species weakened. The results indicated that the carbon deposition on the catalyst covered other species and led them not being detected due to the XPS analysis depth being less than 2 nm. The increase of carbon deposition on the surface of the catalyst can also be observed in Figure 6d. Charging effects were corrected by regulating the binding energy (BE) of C 1s to 284.6 eV. (78) In the C 1s spectrum, the carbon atoms of 6% Ni–4% Co/char mainly existed in the shape of sp2 hybridized graphitized carbon, which was favorable for improving the catalytic activity of catalyst. (79) Gai et al. and Ren et al. both found that the modified char-supported catalysts exhibited higher catalytic activity due to the outstanding graphitized and layered delocalized structures. (46,80)
如图 6c 所示,Ni、Co、O、C 和 K 是 6% Ni–4% Co/char 的主要成分,这也可以被 SEM-EDS 的结果证明。此外,为了清晰地呈现图 6c 的 XPS 结果,图 S9 提供了 6% Ni–4% Co/char 的 Ni 2p 和 Co 2p XPS 峰的局部放大图像。随着回收时间的增加,废催化剂的碳峰值增强,而其他物种的碳峰值减弱。结果表明,催化剂上的碳沉积覆盖了其他物种,由于 XPS 分析深度小于 2 nm,导致它们未被检测到。在图 6d 中也可以观察到催化剂表面碳沉积的增加。通过将 C 1s 的结合能 (BE) 调节到 284.6 eV 来校正充电效应。(78) 在 C 1s 光谱中,6% Ni–4% Co/char 的碳原子主要以 sp2 杂化石墨化碳的形式存在,有利于提高催化剂的催化活性。(79) Gai 等人和 任 等人都发现,由于出色的石墨化和层状离域结构,改性的焦负载催化剂表现出更高的催化活性。(46,80)
In the Ni 2p spectrum (Figure 6e), the peak in fresh 6% Ni–4% Co/char at 852.6 and 869.9 eV were ascribed to Ni0, (81) which showed that the metallic Ni mainly existed in the shape of Ni0. The new peaks for Ni2+ at 862.3 eV were observed on the spent 6% Ni–4% Co/char (N = 1) because of a small amount of Ni being oxidized to NiO, which corresponded to the result of XRD. (81) For the Co 2p spectrum (Figure 6f), the peaks at 778.0 and 794.2 eV were attributed to Co. (81) The −0.1 eV of Ni0(870 eV) and +0.2 eV of Co0(794.0 eV) shift corresponds to the strengthened interaction between Ni and Co due to the formation of Ni–Co alloy, which is ascribed to the difference of the electron work function between Ni and Co. (82,83) The electrons may transfer from Co to Ni, leading to the shifts of the binding energies in the Ni–Co alloy because of a lower electron work function. The electronic conditions of Ni and Co atoms were changed and their electronic properties were improved. (84) In addition, the peaks of Co at 786.4 and 802.5 eV can be ascribed to Co2+, indicating that metallic Co was easy to be oxidized instead of Ni. (85,86) The oxidation deactivation of 6% Ni–4% Co/char nanocatalyst was preferable to the oxidation of metallic Co species rather than Ni species because of the high oxygen affinity of Co, as reported by other studies. (50,51) The strengthened interaction between Ni and Co in the Ni–Co alloy, high dispersion of Ni nanoparticles, and high oxygen affinity of Co were beneficial to suppress agglomeration sintering and oxidation deactivation of active particles Ni loading on 6% Ni–4% Co/char.
在 Ni 2p 光谱中(图 6e),新鲜的 6% Ni–4% Co/char 在 852.6 和 869.9 eV 处的峰值归因于 Ni0(81),这表明金属 Ni 主要以 Ni0 的形状存在。由于少量 Ni 被氧化成 NiO,因此在用过的 6%Ni–4% Co/char (N = 1) 上观察到 Ni2+ 在 862.3 eV 处的新峰,这与 XRD 的结果相对应。(81) 对于 Co 2p 光谱(图 6f),778.0 和 794.2 eV 处的峰归因于 Co。(81) Ni0(870 eV) 的 −0.1 eV 和 Co0(794.0 eV) 的 +0.2 eV 偏移对应于由于 Ni-Co 合金的形成而加强的 Ni 和 Co 之间的相互作用,这归因于 Ni 和 Co 之间的电子功函数的差异。电子可以从 Co 转移到 Ni,由于电子功函数较低,导致 Ni-Co 合金中的结合能发生变化。Ni 和 Co 原子的电子条件发生了变化,它们的电子性质得到了改善。(84) 此外,Co 在 786.4 和 802.5 eV 的峰可归因于 Co2+,表明金属 Co 而不是 Ni 容易被氧化。(85,86) 正如其他研究报道的那样,6% Ni-4% Co/char 纳米催化剂的氧化失活优于金属 Co 物种而不是 Ni 物种的氧化,因为 Co 具有高氧亲和力。(50,51) Ni-Co 合金中 Ni 和 Co 之间的相互作用增强、Ni 纳米颗粒的高分散性和 Co 的高氧亲和力有利于抑制活性颗粒在 6% Ni–4% Co/char 负载下的团聚烧结和氧化失活。

Antideactivation Mechanisms of Co-Modified Nickel Catalysts
共改性镍催化剂的抗失活机制

Based on the above discussion, the nickel-based catalyst deactivation was mainly caused by carbon deposition, Ni crystallite sintering, and oxidation. The 6% Ni/char was quickly deactivated by the graphitic whisker carbon deposition covering the active sites, blocking the pore openings, and preventing the access of tar-model molecules to the active sites, because graphitic carbon was difficult to be consumed by char gasification reaction (eqs 9 and 10). However, 6% Ni–4% Co/char can suppress carbon deposition by removing the nucleation sites for graphite formation since the nucleation of graphitic whisker carbon was retarded by the smaller nickel nanoparticles and promoting the water–gas shift reaction (eq 8), char self-gasification reaction (eq 9), and Boudouard reaction (eq 10), since promoter Co has a high affinity for oxygen-containing species (CO2 and H2O). As for the oxidation deactivation of 6% Ni/char, the active metal Ni was mainly oxidized by oxygen derived from the dissociative adsorption of water in the steam required during tar catalytic reforming. Surprisingly, the promoter Co in 6% Ni-4% Co/char was easily oxidized instead of Ni due to the higher oxygen affinity of Co. Additionally, the oxidized nickel (Ni2+) can be reactivated in situ by reducing gas products (i.e., H2 and CO), which was attributed to H2 production. Obviously, Ni crystallite sintering was another key factor leading to the 6% Ni/char catalyst deactivation through a loss of total active sites owing to Ni nanoparticle growth and aggregation at high temperature during tar catalytic reforming. Interestingly, 6% Ni–4% Co/char inhibited the Ni sintering by the strengthened interaction between Ni and Co particles of Ni–Co alloy, high specific surface area (920.61 m2/g), and high dispersion (7.3%) of Ni nanoparticles at the same temperature.
基于以上讨论,镍基催化剂失活主要由积碳、镍微晶烧结和氧化引起。6% Ni/char 被覆盖在活性位点的石墨晶须碳沉积迅速失活,堵塞了孔隙,并阻止了焦油模型分子进入活性位点,因为石墨碳很难被焦炭气化反应消耗(方程 910)。然而,6% Ni–4% Co/char 可以通过去除石墨形成的成核位点来抑制碳沉积,因为石墨晶须碳的成核被较小的镍纳米颗粒延迟,并促进水-气变换反应(方程 8)、焦自气化反应(方程 9)和 Boudouard 反应(方程 10),因为启动子 Co 对含氧物质(CO2 和 H2 )具有高亲和力对于6% Ni/char的氧化失活,活性金属Ni主要被焦油催化重整过程中所需的蒸汽中水的解离吸附得到的氧氧化。令人惊讶的是,由于 Co 具有较高的氧亲和力,6% Ni-4% Co/char 中的促进剂 Co 很容易被氧化而不是 Ni。此外,氧化的镍 (Ni2+) 可以通过还原气体产物(即 H2 和 CO)在原位重新活化,这归因于 H2 的产生。显然,Ni 微晶烧结是导致 6% Ni/char 催化剂失活的另一个关键因素,因为在焦油催化重整过程中,由于 Ni 纳米颗粒在高温下生长和聚集而失去了总活性位点。 有趣的是,在相同温度下,6% Ni–4% Co/char 通过 Ni-Co 合金的 Ni 和 Co 颗粒之间的相互作用增强、高比表面积 (920.61 m2/g) 和高分散性 (7.3%) 抑制了 Ni 烧结。

Environmental Implications
环境影响

Click to copy section link
单击以复制部分链接
Section link copied!

Tar, generated as the hazardous byproduct, poses a serious threat to environmental equipment, human health, and the ecological environment. In this work, a novel alloy nanocatalyst was first synthesized for converting tar into H2 with a more than 30% increase in hydrogen yield (263.84 g H2/kg M-TMC) compared to traditional catalysts during catalytic reforming. The antideactivation mechanisms of the nanocatalyst were studied in depth and found that the alloy nanocatalyst exhibited excellent resistance to carbon deposition deactivation by removing the nucleation sites for graphite formation, resistance to oxidation deactivation due to high oxygen affinity of Co, as well as resistance to aggregation sintering deactivation by strengthened interaction between Ni and Co in the Ni–Co alloy. Through the utilization of the catalytic reforming process with the innovative nanocatalyst in this work, irrespective of process energy losses, an estimated 7.0 million tons of H2 can be generated from coal tar based on China’s coal tar production of 26.5 million tons in 2021, which enables the electricity generation of 1.4 × 1011 kW·h, equivalent to reducing the consumption of 17.2 million tons of standard coal (based on the calculation of 20 kW·h/1 kg H2 and 0.123 kg standard coal/1 kW·h). This work offered reliable strategies for the in situ conversion of tar into H2 during coal or biomass gasification in application and further fostering sustainable recycling for the production of clean energy.
焦油是有害的副产品,对环境设备、人类健康和生态环境构成严重威胁。在本工作中,首次合成了一种新型合金纳米催化剂,用于将焦油转化为 H2,在催化重整过程中,氢气产率比传统催化剂提高了 30% 以上 (263.84 g H2/kg M-TMC)。深入研究了纳米催化剂的抗脱活机理,发现合金纳米催化剂通过去除石墨形成的成核位点表现出优异的抗碳沉积失活能力,由于 Co 的高氧亲和力而表现出优异的抗氧化性,以及通过加强 Ni-Co 合金中 Ni 和 Co 之间的相互作用而表现出对聚集烧结失活的抵抗力。通过在这项工作中使用带有创新纳米催化剂的催化重整工艺,无论工艺能量损失如何,根据中国 2021 年煤焦油产量 2650 万吨,估计煤焦油可产生 700 万吨 H2,发电量为 1.4 × 1011 kW·h, 相当于减少 1720 万吨标准煤的消耗量(基于 20 kW·h/1 kg H2 和 0.123 kg 标准煤/1 kW·h 的计算)。这项工作为在煤或生物质气化过程中将焦油原位转化为 H2 提供了可靠的策略,并进一步促进了清洁能源生产的可持续回收。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c08857.
支持信息可在 https://pubs.acs.org/doi/10.1021/acs.est.3c08857 免费获取。

  • Additional experimental details, characterization, catalytic activity, stability results, computational methods, and additional data (PDF)
    其他实验细节、表征、催化活性、稳定性结果、计算方法和其他数据 (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Authors 通讯作者
    • Junrong Yue - State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China Email: jryue@ipe.ac.cn
      岳俊荣 - 中国科学院过程工程研究所, 多相复杂系统国家重点实验室, 北京 100190; 电子邮件:jryue@ipe.ac.cn
    • Jun Zhang - State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, ChinaOrcidhttps://orcid.org/0000-0002-5683-777X Email: hitsunyboy@126.com
      张军 - 哈尔滨工业大学环境学院,城市水资源与环境国家重点实验室,污泥安全处置与资源化国家工程研究中心,黑龙江 哈尔滨 150090; Orcid https://orcid.org/0000-0002-5683-777X 电子邮件: hitsunyboy@126.com
  • Authors 作者
    • Junjie Chen - State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
      陈俊杰 - 哈尔滨工业大学环境学院,城市水资源与环境国家重点实验室,污泥安全处置与资源化国家工程研究中心,哈尔滨 150090
    • Yongxiao Liu - State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    • Zhengrui Chen - State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    • Yu Tian - State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China
    • Chengzhi Zheng - Guangdong Yuehai Water Investment Co., Ltd, Shenzhen 518021, China
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This study was supported by the National Key R&D Program of China (2022YFC3801101), the National Natural Science Foundation of China (52170028), and the NERC-UWR R&D Program (GJS-YF-LX202207280015). The authors also appreciate the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2023DX11), and the Joint Engineering Research Center of Biomass Energy Development and Utilization (2021B005).

References

Click to copy section linkSection link copied!

This article references 86 other publications.

  1. 1
    Zhang, K.; Kim, W. J.; Park, A. A. Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential. Nat. Commun. 2020, 11 (1), 3783,  DOI: 10.1038/s41467-020-17627-1
  2. 2
    Zhao, W. China’s goal of achieving carbon neutrality before 2060: Experts explain how. Natl. Sci. Rev. 2022, 9 (8), 115,  DOI: 10.1093/nsr/nwac115
  3. 3
    Kang, Y.; Cretu, O.; Kikkawa, J.; Kimoto, K.; Nara, H.; Nugraha, A. S.; Kawamoto, H.; Eguchi, M.; Liao, T.; Sun, Z.; Asahi, T.; Yamauchi, Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 2023, 14 (1), 4182,  DOI: 10.1038/s41467-023-39157-2
  4. 4
    Wan, C.; Li, G.; Wang, J.; Xu, L.; Cheng, D.; Chen, F.; Asakura, Y.; Kang, Y.; Yamauchi, Y. Modulating Electronic Metal-Support Interactions to Boost Visible-Light-Driven Hydrolysis of Ammonia Borane: Nickel-Platinum Nanoparticles Supported on Phosphorus-Doped Titania. Angew. Chem. Int. Ed. 2023, 62 (40), e202305371  DOI: 10.1002/anie.202305371
  5. 5
    Esfahani, R. A. M.; Osmieri, L.; Specchia, S.; Yusup, S.; Tavasoli, A.; Zamaniyan, A. H2 -rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading. Chem. Eng. J. 2017, 308, 578587,  DOI: 10.3390/nano12193471
  6. 6
    Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts. Fuel 2022, 313, 123006,  DOI: 10.1016/j.fuel.2021.123006
  7. 7
    Dai, H.; Dai, H. Green hydrogen production based on the co-combustion of wood biomass and porous media. Appl. Energy 2022, 324, 119779,  DOI: 10.1016/j.apenergy.2022.119779
  8. 8
    Show, K. Y.; Lee, D. J.; Chang, J. S. Bioreactor and process design for biohydrogen production. Bioresources Technol. 2011, 102 (18), 85248533,  DOI: 10.1016/j.biortech.2011.04.055
  9. 9
    Srivastava, N.; Srivastava, M.; Malhotra, B. D.; Gupta, V. K.; Ramteke, P. W.; Silva, R. N.; Shukla, P.; Dubey, K. K.; Mishra, P. K. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol. Adv. 2019, 37 (6), 107384,  DOI: 10.1016/j.biotechadv.2019.04.006
  10. 10
    Dauptain, K.; Schneider, A.; Noguer, M.; Fontanille, P.; Escudié, R.; Carrere, H.; Trably, E. Impact of microbial inoculum storage on dark fermentative H2 production. Bioresources Technol. 2021, 319 (124234), 09608524,  DOI: 10.1016/j.biortech.2020.124234
  11. 11
    Fagbohungbe, M. O.; Komolafe, A. O.; Okere, U. V. Renewable hydrogen anaerobic fermentation technology: Problems and potentials. Renewable Sustainable Energy Rev. 2019, 114 (109340), 13640321,  DOI: 10.1016/j.rser.2019.109340
  12. 12
    Xia, D.; Yan, X.; Su, X.; Zhao, W. Analysis of the three-phase state in biological hydrogen production from coal. Int. J. Hydrogen. Energy 2020, 45 (41), 2111221122,  DOI: 10.1016/j.ijhydene.2020.05.139
  13. 13
    Sivaramakrishnan, R.; Ramprakash, B.; Ramadoss, G.; Suresh, S.; Pugazhendhi, A.; Incharoensakdi, A. High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. Bioresources Technol. 2021, 319 (124193), 09608524,  DOI: 10.1016/j.biortech.2020.124193
  14. 14
    Yin, Z.; Xu, H.; Chen, Y.; Zhao, T.; Wu, J. Experimental simulate on hydrogen production of different coals in underground coal gasification. Int. J. Hydrogen. Energy 2023, 48 (19), 69756985,  DOI: 10.1016/j.ijhydene.2022.03.205
  15. 15
    Li, J.; Zeng, K.; Zhong, D.; Flamant, G.; Nzihou, A.; White, C. E.; Yang, H.; Chen, H. Algae Pyrolysis in Molten NaOH–Na2CO3 for Hydrogen Production. Environ. Sci. Technol. 2023, 57 (16), 64856493,  DOI: 10.1021/acs.est.3c01325
  16. 16
    Liu, Y.; Paskevicius, M.; Wang, H.; Parkinson, G.; Wei, J.; Asif Akhtar, M.; Li, C.-Z. Insights into the mechanism of tar reforming using biochar as a catalyst. Fuel 2021, 296, 120672,  DOI: 10.1016/j.fuel.2021.120672
  17. 17
    Buentello-Montoya, D.; Zhang, X.; Li, J.; Ranade, V.; Marques, S.; Geron, M. Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Appl. Energy 2020, 259, 114176,  DOI: 10.1016/j.apenergy.2019.114176
  18. 18
    Guo, F.; Li, X.; Liu, Y.; Peng, K.; Guo, C.; Rao, Z. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energy Convers. Manage. 2018, 167, 8190,  DOI: 10.1016/j.enconman.2018.04.094
  19. 19
    Duman, G.; Uddin, M. A.; Yanik, J. Hydrogen production from algal biomass via steam gasification. Bioresources Technol. 2014, 166, 2430,  DOI: 10.1016/j.biortech.2014.04.096
  20. 20
    Yang, J.; Kaewpanha, M.; Karnjanakom, S.; Guan, G.; Hao, X.; Abudula, A. Steam reforming of biomass tar over calcined egg shell supported catalysts for hydrogen production. Int. J. Hydrogen. Energy 2016, 41 (16), 66996705,  DOI: 10.1016/j.ijhydene.2016.03.056
  21. 21
    Michel, R.; L̷amacz, A.; Krzton, A.; Djéga-Mariadassou, G.; Burg, P.; Courson, C.; Gruber, R. Steam reforming of α-methylnaphthalene as a model tar compound over olivine and olivine supported nickel. Fuel 2013, 109, 653660,  DOI: 10.1016/j.fuel.2013.03.017
  22. 22
    Zhang, L.; Wu, W.; Siqu, N.; Dekyi, T.; Zhang, Y. Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts. Chem. Eng. J. 2019, 361, 16171629,  DOI: 10.1016/j.cej.2018.12.115
  23. 23
    Si, X.; Lu, R.; Zhao, Z.; Yang, X.; Wang, F.; Jiang, H.; Luo, X.; Wang, A.; Feng, Z.; Xu, J.; Lu, F. Catalytic production of low-carbon footprint sustainable natural gas. Nat. Commun. 2022, 13 (1), 258,  DOI: 10.1038/s41467-021-27919-9
  24. 24
    Liang, S.; Guo, F.; Du, S.; Tian, B.; Dong, Y.; Jia, X.; Qian, L. Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel 2020, 275, 117923,  DOI: 10.1016/j.fuel.2020.117923
  25. 25
    Gao, N.; Salisu, J.; Quan, C.; Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review. Renewable Sustainable Energy Rev. 2021, 145, 111023,  DOI: 10.1016/j.rser.2021.111023
  26. 26
    Liang, D.; Wang, Y.; Chen, M.; Xie, X.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. B 2023, 322, 122088,  DOI: 10.1016/j.apcatb.2022.122088
  27. 27
    Hu, M.; Laghari, M.; Cui, B.; Xiao, B.; Zhang, B.; Guo, D. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy 2018, 145, 228237,  DOI: 10.1016/j.energy.2017.12.096
  28. 28
    Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S.; Meng, S.; Guo, Y.; Huang, Y. Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2. Chem. Eng. J. 2016, 306, 422432,  DOI: 10.1016/j.cej.2016.07.065
  29. 29
    Wang, S.; Shan, R.; Gu, J.; Zhang, J.; Yuan, H.; Chen, Y. Pyrolysis municipal sludge char supported Fe/Ni catalysts for catalytic reforming of tar model compound. Fuel 2020, 279, 118494,  DOI: 10.1016/j.fuel.2020.118494
  30. 30
    Wang, Y.; Zhang, Y.; Su, L.; Li, X.; Duan, L.; Wang, C.; Huang, T. Hazardous air pollutant formation from pyrolysis of typical Chinese casting materials. Environ. Sci. Technol. 2011, 45 (15), 65396544,  DOI: 10.1021/es200310p
  31. 31
    Guo, F.; Peng, K.; Liang, S.; Jia, X.; Jiang, X.; Qian, L. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel 2019, 258, 116204,  DOI: 10.1016/j.fuel.2019.116204
  32. 32
    Wang, S.; Shan, R.; Lu, T.; Zhang, Y.; Yuan, H.; Chen, Y. Pyrolysis char derived from waste peat for catalytic reforming of tar model compound. Appl. Energy 2020, 263, 114565,  DOI: 10.1016/j.apenergy.2020.114565
  33. 33
    Shi, C.; Zhang, P. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane. Appl. Catal. B 2015, 170–171, 4352,  DOI: 10.1016/j.apcatb.2015.01.034
  34. 34
    Zhang, J.; Chen, J.; Chen, Z.; Xiong, Q.; Di, Y.; Yin, L.; Tian, Y. A highly efficient bimetallic/biochar composite with enhanced catalytic reforming of pyrolysis tar: Performance and mechanism. Bioresour. Technol. Rep. 2022, 19, 101204,  DOI: 10.1016/j.biteb.2022.101204
  35. 35
    Liu, L.; Zhang, Z.; Das, S.; Kawi, S. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review. Appl. Catal. B 2019, 250, 250272,  DOI: 10.1016/j.apcatb.2019.03.039
  36. 36
    Kang, Y.; Tang, Y.; Zhu, L.; Jiang, B.; Xu, X.; Guselnikova, O.; Li, H.; Asahi, T.; Yamauchi, Y. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catal. 2022, 12 (23), 1477314793,  DOI: 10.1021/acscatal.2c03480
  37. 37
    Kang, Y.; Guo, Y.; Zhao, J.; Jiang, B.; Guo, J.; Tang, Y.; Li, H.; Malgras, V.; Amin, M. A.; Nara, H.; Sugahara, Y.; Yamauchi, Y.; Asahi, T. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small 2022, 18 (33), 2203411,  DOI: 10.1002/smll.202203411
  38. 38
    Santamaria, L.; Lopez, G.; Arregi, A.; Amutio, M.; Artetxe, M.; Bilbao, J.; Olazar, M. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Appl. Catal. B 2018, 229, 105113,  DOI: 10.1016/j.apcatb.2018.02.003
  39. 39
    Fang, S.; Cui, Z.; Zhu, Y.; Wang, C.; Bai, J.; Zhang, X.; Xu, Y.; Liu, Q.; Chen, L.; Zhang, Q.; Ma, L. In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to γ-valerolactone. J. Energy Chem. 2019, 37, 204214,  DOI: 10.1016/j.jechem.2019.03.021
  40. 40
    Li, Y.; Men, Y.; Liu, S.; Wang, J.; Wang, K.; Tang, Y.; An, W.; Pan, X.; Li, L. Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Appl. Catal. B 2021, 293, 120206,  DOI: 10.1016/j.apcatb.2021.120206
  41. 41
    Jin, H.; Yu, R.; Hu, C.; Ji, P.; Ma, Q.; Liu, B.; He, D.; Mu, S. Size-controlled engineering of cobalt metal catalysts through a coordination effect for oxygen electro catalysis. Appl. Catal. B 2022, 317, 121766,  DOI: 10.1016/j.apcatb.2022.121766
  42. 42
    Meng, J.; Zhao, Z.; Wang, X.; Zheng, A.; Zhang, D.; Huang, Z.; Zhao, K.; Wei, G.; Li, H. Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods. Energy Convers. Manage. 2018, 168, 6073,  DOI: 10.1016/j.enconman.2018.04.112
  43. 43
    Santamaria, L.; Lopez, G.; Arregi, A.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts. J. Ind. Eng. Chem. 2020, 91, 167181,  DOI: 10.1016/j.jiec.2020.07.050
  44. 44
    Moyer, M. M.; Karakaya, C.; Kee, R. J.; Trewyn, B. G. In-Situ Formation of Metal Carbide Catalysts. ChemCatchem 2017, 9 (16), 30903101,  DOI: 10.1002/cctc.201700304
  45. 45
    Shen, Y.; Zhao, P.; Shao, Q.; Ma, D.; Takahashi, F.; Yoshikawa, K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B 2014, 152–153, 140151,  DOI: 10.1016/j.apcatb.2014.01.032
  46. 46
    Gai, C.; Zhang, F.; Yang, T.; Liu, Z.; Jiao, W.; Peng, N.; Liu, T.; Lang, Q.; Xia, Y. Hydrochar supported bimetallic Ni–Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chem. 2018, 20 (12), 27882800,  DOI: 10.1039/C8GC00433A
  47. 47
    Nabgan, W.; Tuan Abdullah, T. A.; Mat, R.; Nabgan, B.; Gambo, Y.; Triwahyono, S. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int. J. Hydrogen. Energy 2016, 41 (48), 2292222931,  DOI: 10.1016/j.ijhydene.2016.10.055
  48. 48
    Yang, F.-L.; Cao, J.-P.; Zhao, X.-Y.; Ren, J.; Tang, W.; Huang, X.; Feng, X.-B.; Zhao, M.; Cui, X.; Wei, X.-Y. Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles. Energy Convers. Manage. 2019, 196, 12571266,  DOI: 10.1016/j.enconman.2019.06.075
  49. 49
    Wu, Y.-L.; Yang, R.-R.; Yang, G.-P.; Yan, Y.-T.; Su, X.-L.; He, X.-H.; Song, Y.-Y.; Ma, Z.-S.; Wang, Y.-Y. A new porous Co(ii)-metal–organic framework for high sorption selectivity and affinity to CO2 and efficient catalytic oxidation of benzyl alcohols to benzaldehydes. CrystEngcomm 2021, 23 (20), 37173723,  DOI: 10.1039/D1CE00250C
  50. 50
    Ashok, J.; Dewangan, N.; Das, S.; Hongmanorom, P.; Wai, M. H.; Tomishige, K.; Kawi, S. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Process. Technol. 2020, 199, 106252,  DOI: 10.1016/j.fuproc.2019.106252
  51. 51
    Aramouni, N. A. K.; Touma, J. G.; Tarboush, B. A.; Zeaiter, J.; Ahmad, M. N. Catalyst design for dry reforming of methane: Analysis review. Renewable Sustainable Energy Rev. 2018, 82, 25702585,  DOI: 10.1016/j.rser.2017.09.076
  52. 52
    Xu, J.; Holthaus, P.; Yang, N.; Jiang, S.; Heupel, A.; Schönherr, H.; Yang, B.; Krumm, W.; Jiang, X. Catalytic tar removal using TiO2/NiWO4-Ni5TiO7 films. Appl. Catal. B 2019, 249, 155162,  DOI: 10.1016/j.apcatb.2019.03.006
  53. 53
    Lee, Y.-L.; Kim, K.-J.; Hong, G.-R.; Roh, H.-S. Target-oriented water–gas shift reactions with customized reaction conditions and catalysts. Chem. Eng. J. 2023, 458, 141422,  DOI: 10.1016/j.cej.2023.141422
  54. 54
    Bimbela, F.; Ábrego, J.; Puerta, R.; García, L.; Arauzo, J. Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts. Appl. Catal. B 2017, 209, 346357,  DOI: 10.1016/j.apcatb.2017.03.009
  55. 55
    Huang, Z.; Deng, Z.; Feng, Y.; Chen, T.; Chen, D.; Zheng, A.; Wei, G.; He, F.; Zhao, Z.; Wu, J.; Li, H. Exploring the Conversion Mechanisms of Toluene as a Biomass Tar Model Compound on NiFe2O4 Oxygen Carrier. ACS Sustainable Chem. Eng. 2019, 7 (19), 1653916548,  DOI: 10.1021/acssuschemeng.9b03831
  56. 56
    Xie, Y.; Su, Y.; Wang, P.; Zhang, S.; Xiong, Y. In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts. Fuel Process. Technol. 2018, 182, 7787,  DOI: 10.1016/j.fuproc.2018.10.019
  57. 57
    Huang, S.; Xu, H.; Li, H.; Guo, Y.; Sun, Z.; Du, Y.; Li, H.; Zhang, J.; Pang, R.; Dong, Q.; Zhang, S. Preparation and characterization of char supported Ni-Cu nanoalloy catalyst for biomass tar cracking together with syngas-rich gas production. Fuel Process. Technol. 2021, 218, 106858,  DOI: 10.1016/j.fuproc.2021.106858
  58. 58
    Liu, H.; Chen, T.; Chang, D.; Chen, D.; He, H.; Frost, R. L. Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni. J. Mol. Catal A Chem. 2012, 363–364, 304310,  DOI: 10.1016/j.molcata.2012.07.005
  59. 59
    Liu, L.; Liu, Y.; Song, J.; Ahmad, S.; Liang, J.; Sun, Y. Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 2019, 377, 2433,  DOI: 10.1016/j.jhazmat.2019.05.019
  60. 60
    Kang, S.; He, M.; Yin, C.; Xu, H.; Cai, Q.; Wang, Y.; Cui, L. Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem. 2020, 22 (6), 19341943,  DOI: 10.1039/C9GC03357B
  61. 61
    Kaewpanha, M.; Karnjanakom, S.; Guan, G.; Hao, X.; Yang, J.; Abudula, A. Removal of biomass tar by steam reforming over calcined scallop shell supported Cu catalysts. J. Energy Chem. 2017, 26 (4), 660666,  DOI: 10.1016/j.jechem.2017.03.012
  62. 62
    Huang, Z.; Gao, N.; Lin, Y.; Wei, G.; Zhao, K.; Zheng, A.; Zhao, Z.; Yuan, H.; Li, H. Exploring the migration and transformation of lattice oxygen during chemical looping with NiFe2O4 oxygen carrier. Chem. Eng. J. 2022, 429, 132064,  DOI: 10.1016/j.cej.2021.132064
  63. 63
    Ren, J.; Liu, Y.-L. Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)Ox catalyst. Appl. Catal. B 2022, 300, 120743,  DOI: 10.1016/j.apcatb.2021.120743
  64. 64
    Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Batchu, R.; Buelens, L. C.; Detavernier, C.; Marin, G. B. Mechanism of carbon deposits removal from supported Ni catalysts. Appl. Catal. B 2018, 239, 502512,  DOI: 10.1016/j.apcatb.2018.08.042
  65. 65
    Shen, Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renewable Sustainable Energy Rev. 2015, 43, 281295,  DOI: 10.1016/j.rser.2014.11.061
  66. 66
    Liu, Q.; Gu, F.; Gao, J.; Li, H.; Xu, G.; Su, F. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation. J. Energy Chem. 2014, 23 (6), 761770,  DOI: 10.1016/S2095-4956(14)60210-2
  67. 67
    Fakeeha, A. H.; Khan, W. U.; Al-Fatesh, A. S.; Abasaeed, A. E. Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chin. J. Catal. 2013, 34 (4), 764768,  DOI: 10.1016/S1872-2067(12)60554-3
  68. 68
    Sun, H.; Feng, D.; Sun, S.; Wei, Q.; Zhao, Y.; Zhang, Y.; Xie, M.; Qin, Y. Effect of steam on coke deposition during the tar reforming from corn straw pyrolysis over biochar. Fuel Process. Technol. 2021, 224, 107007,  DOI: 10.1016/j.fuproc.2021.107007
  69. 69
    Pereira Lopes, R.; Astruc, D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord. Chem. Rev. 2021, 426, 213585,  DOI: 10.1016/j.ccr.2020.213585
  70. 70
    Yu, J.; Tang, L.; Pang, Y.; Zeng, G.; Wang, J.; Deng, Y.; Liu, Y.; Feng, H.; Chen, S.; Ren, X. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146159,  DOI: 10.1016/j.cej.2019.01.163
  71. 71
    Mao, Z.; Lustemberg, P. G.; Rumptz, J. R.; Ganduglia-Pirovano, M. V.; Campbell, C. T. Ni nanoparticles on CeO2 (111): energetics, electron transfer, and structure by Ni adsorption calorimetry, spectroscopies, and density functional theory. ACS Catal. 2020, 10 (9), 51015114,  DOI: 10.1021/acscatal.0c00333
  72. 72
    Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 2007, 107 (10), 39523991,  DOI: 10.1021/cr0501994
  73. 73
    Rostrup-Nielsen, J. R.; Sehested, J.; No̷rskov, J. K. Hydrogen and synthesis gas by steam-and CO2 reforming. Adv. Catal. 2002, 47, 65139,  DOI: 10.1016/S0360-0564(02)47006-X
  74. 74
    Boldrin, P.; Gallagher, J. R.; Combes, G. B.; Enache, D. I.; James, D.; Ellis, P. R.; Kelly, G.; Claridge, J. B.; Rosseinsky, M. J. Proxy-based accelerated discovery of Fischer–Tropsch catalysts. Chem. Sci. 2015, 6 (2), 935944,  DOI: 10.1039/C4SC02116A
  75. 75
    Bayram, B.; Soykal, I. I.; Deak, D. V.; Miller, J. T.; Ozkan, U. S. Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions. J. Catal. 2011, 284 (1), 7789,  DOI: 10.1016/j.jcat.2011.09.001
  76. 76
    Li, Z.; Li, M.; Ashok, J.; Kawi, S. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers. Manage. 2019, 180, 822830,  DOI: 10.1016/j.enconman.2018.11.034
  77. 77
    Zhai, Y.; Li, C.; Xu, G.; Ma, Y.; Liu, X.; Zhang, Y. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon. Green Chem. 2017, 19 (8), 18951903,  DOI: 10.1039/C7GC00149E
  78. 78
    Zhang, S.; Wang, P.; Chen, Y.; Yao, W.; Li, Z.; Tang, Y. One-Pot Synthesis of Pt Nanobowls Assembled from Ultrafine Nanoparticles for Methanol Oxidation Reaction. Nanomater (Basel) 2022, 12, 19,  DOI: 10.3390/nano12193471
  79. 79
    Huang, Y.; Cheng, M.; Xiang, Z.; Cui, Y. Facile synthesis of NiCo2S4/CNTs nanocomposites for high-performance supercapacitors. R. Soc. Open Sci. 2018, 5 (9), 180953,  DOI: 10.1098/rsos.180953
  80. 80
    Ren, J.; Cao, J.-P.; Yang, F.-L.; Zhao, X.-Y.; Tang, W.; Cui, X.; Chen, Q.; Wei, X.-Y. Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar. Energy Convers. Manage. 2019, 183, 182192,  DOI: 10.1016/j.enconman.2018.12.093
  81. 81
    Xuan, J.; Liu, Y.; Xu, L.; Xin, Y.; Xue, L.; Li, L. Properties of SS304 Modified by Nickel–Cobalt Alloy Coating with Cauliflower-Shaped Micro/Nano Structures in Simulated PEMFC Cathode Environment. Nanomater(Basel) 2022, 12 (12), 1976,  DOI: 10.3390/nano12121976
  82. 82
    Zhao, L.; Mu, X.; Liu, T.; Fang, K. Bimetallic Ni–Co catalysts supported on Mn–Al oxide for selective catalytic CO hydrogenation to higher alcohols. Catal. Sci. Technol. 2018, 8 (8), 20662076,  DOI: 10.1039/C7CY02555F
  83. 83
    Law, Y. T.; Dintzer, T.; Zafeiratos, S. Surface oxidation of NiCo alloy: A comparative X-ray photoelectron spectroscopy study in a wide pressure range. Appl. Surf. Sci. 2011, 258 (4), 14801487,  DOI: 10.1016/j.apsusc.2011.09.111
  84. 84
    Tang, W.; Cao, J.; Wang, Z.; He, Z.; Liu, T.; Wang, Z.; Yang, F.; Ren, J.; Zhao, X.; Feng, X.; Bai, H. Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature. Energy Convers. Manage. 2021, 244, 114454,  DOI: 10.1016/j.enconman.2021.114454
  85. 85
    Wang, Y.; Wang, H.; Li, S.; Sun, S. Waste PET Plastic-Derived CoNi-Based Metal-Organic Framework as an Anode for Lithium-Ion Batteries. ACS Omega 2022, 7 (39), 3518035190,  DOI: 10.1021/acsomega.2c04264
  86. 86
    Li, Z.; Wang, J.; Tian, K.; Zhou, C.; Pei, Y.; Zhang, J.; Zang, L. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production. ACS Omega 2022, 7 (45), 4159441605,  DOI: 10.1021/acsomega.2c05580

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2024, 58, 7, 3540–3551
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.3c08857
Published February 6, 2024
Copyright © 2024 American Chemical Society

Article Views

1700

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Effect of different catalysts on (a) T-TMC conversion and H2 yield, (b) gas yield and composition at the reforming temperature of 700 °C, and (c) XRD patterns of different catalysts and SEM-EDS analysis of (d,e) char and (f) 6% Ni/char.

    Figure 2

    Figure 2. Effect of (a) catalytic reforming temperature of 6% Ni–6% Co/char and (b) promoter Co loading of the Ni–Co alloy nanocatalyst (700 °C) on T-TMC conversion and hydrogen production.

    Figure 3

    Figure 3. Effect of recycling times of (a) 6% Ni/char and (b) 6% Ni–4% Co/char on M-TMC (weight ratios of toluene:naphthalene:phenol = 5:2:1) conversion and hydrogen yield at the reforming temperature of 700 °C.

    Figure 4

    Figure 4. SEM image and EDS pattern of (a) the fresh 6% Ni/char (N = 0); (b) the spent 6% Ni/char (N = 1); (c) the spent 6% Ni/char (N = 3); (d) the fresh 6% Ni–4% Co/char (N = 0); (e) the spent 6% Ni-4% Co/char (N = 1); (f) the spent 6% Ni–4% Co/char (N = 5). N represents the recycling times of catalysts.

    Figure 5

    Figure 5. TG-DTG curves and Raman spectra of the corresponding fresh and spent catalysts. TG-DTG curves of (a,b) 6% Ni/char and (c,d) 6% Ni–4% Co/char; Raman spectra of (e) 6% Ni/char and (f) 6% Ni–4% Co/char.

    Figure 6

    Figure 6. XRD patterns and XPS survey spectra of the fresh and spent catalysts. XRD patterns of (a) 6% Ni/char and (b) 6% Ni–4% Co/char; XPS survey spectra of (c) high-resolution scans, (d) C 1s regions, (e) Ni 2p regions, and (f) Co 2p regions of 6% Ni–4% Co/char.

  • References


    This article references 86 other publications.

    1. 1
      Zhang, K.; Kim, W. J.; Park, A. A. Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential. Nat. Commun. 2020, 11 (1), 3783,  DOI: 10.1038/s41467-020-17627-1
    2. 2
      Zhao, W. China’s goal of achieving carbon neutrality before 2060: Experts explain how. Natl. Sci. Rev. 2022, 9 (8), 115,  DOI: 10.1093/nsr/nwac115
    3. 3
      Kang, Y.; Cretu, O.; Kikkawa, J.; Kimoto, K.; Nara, H.; Nugraha, A. S.; Kawamoto, H.; Eguchi, M.; Liao, T.; Sun, Z.; Asahi, T.; Yamauchi, Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 2023, 14 (1), 4182,  DOI: 10.1038/s41467-023-39157-2
    4. 4
      Wan, C.; Li, G.; Wang, J.; Xu, L.; Cheng, D.; Chen, F.; Asakura, Y.; Kang, Y.; Yamauchi, Y. Modulating Electronic Metal-Support Interactions to Boost Visible-Light-Driven Hydrolysis of Ammonia Borane: Nickel-Platinum Nanoparticles Supported on Phosphorus-Doped Titania. Angew. Chem. Int. Ed. 2023, 62 (40), e202305371  DOI: 10.1002/anie.202305371
    5. 5
      Esfahani, R. A. M.; Osmieri, L.; Specchia, S.; Yusup, S.; Tavasoli, A.; Zamaniyan, A. H2 -rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading. Chem. Eng. J. 2017, 308, 578587,  DOI: 10.3390/nano12193471
    6. 6
      Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts. Fuel 2022, 313, 123006,  DOI: 10.1016/j.fuel.2021.123006
    7. 7
      Dai, H.; Dai, H. Green hydrogen production based on the co-combustion of wood biomass and porous media. Appl. Energy 2022, 324, 119779,  DOI: 10.1016/j.apenergy.2022.119779
    8. 8
      Show, K. Y.; Lee, D. J.; Chang, J. S. Bioreactor and process design for biohydrogen production. Bioresources Technol. 2011, 102 (18), 85248533,  DOI: 10.1016/j.biortech.2011.04.055
    9. 9
      Srivastava, N.; Srivastava, M.; Malhotra, B. D.; Gupta, V. K.; Ramteke, P. W.; Silva, R. N.; Shukla, P.; Dubey, K. K.; Mishra, P. K. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol. Adv. 2019, 37 (6), 107384,  DOI: 10.1016/j.biotechadv.2019.04.006
    10. 10
      Dauptain, K.; Schneider, A.; Noguer, M.; Fontanille, P.; Escudié, R.; Carrere, H.; Trably, E. Impact of microbial inoculum storage on dark fermentative H2 production. Bioresources Technol. 2021, 319 (124234), 09608524,  DOI: 10.1016/j.biortech.2020.124234
    11. 11
      Fagbohungbe, M. O.; Komolafe, A. O.; Okere, U. V. Renewable hydrogen anaerobic fermentation technology: Problems and potentials. Renewable Sustainable Energy Rev. 2019, 114 (109340), 13640321,  DOI: 10.1016/j.rser.2019.109340
    12. 12
      Xia, D.; Yan, X.; Su, X.; Zhao, W. Analysis of the three-phase state in biological hydrogen production from coal. Int. J. Hydrogen. Energy 2020, 45 (41), 2111221122,  DOI: 10.1016/j.ijhydene.2020.05.139
    13. 13
      Sivaramakrishnan, R.; Ramprakash, B.; Ramadoss, G.; Suresh, S.; Pugazhendhi, A.; Incharoensakdi, A. High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. Bioresources Technol. 2021, 319 (124193), 09608524,  DOI: 10.1016/j.biortech.2020.124193
    14. 14
      Yin, Z.; Xu, H.; Chen, Y.; Zhao, T.; Wu, J. Experimental simulate on hydrogen production of different coals in underground coal gasification. Int. J. Hydrogen. Energy 2023, 48 (19), 69756985,  DOI: 10.1016/j.ijhydene.2022.03.205
    15. 15
      Li, J.; Zeng, K.; Zhong, D.; Flamant, G.; Nzihou, A.; White, C. E.; Yang, H.; Chen, H. Algae Pyrolysis in Molten NaOH–Na2CO3 for Hydrogen Production. Environ. Sci. Technol. 2023, 57 (16), 64856493,  DOI: 10.1021/acs.est.3c01325
    16. 16
      Liu, Y.; Paskevicius, M.; Wang, H.; Parkinson, G.; Wei, J.; Asif Akhtar, M.; Li, C.-Z. Insights into the mechanism of tar reforming using biochar as a catalyst. Fuel 2021, 296, 120672,  DOI: 10.1016/j.fuel.2021.120672
    17. 17
      Buentello-Montoya, D.; Zhang, X.; Li, J.; Ranade, V.; Marques, S.; Geron, M. Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Appl. Energy 2020, 259, 114176,  DOI: 10.1016/j.apenergy.2019.114176
    18. 18
      Guo, F.; Li, X.; Liu, Y.; Peng, K.; Guo, C.; Rao, Z. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts. Energy Convers. Manage. 2018, 167, 8190,  DOI: 10.1016/j.enconman.2018.04.094
    19. 19
      Duman, G.; Uddin, M. A.; Yanik, J. Hydrogen production from algal biomass via steam gasification. Bioresources Technol. 2014, 166, 2430,  DOI: 10.1016/j.biortech.2014.04.096
    20. 20
      Yang, J.; Kaewpanha, M.; Karnjanakom, S.; Guan, G.; Hao, X.; Abudula, A. Steam reforming of biomass tar over calcined egg shell supported catalysts for hydrogen production. Int. J. Hydrogen. Energy 2016, 41 (16), 66996705,  DOI: 10.1016/j.ijhydene.2016.03.056
    21. 21
      Michel, R.; L̷amacz, A.; Krzton, A.; Djéga-Mariadassou, G.; Burg, P.; Courson, C.; Gruber, R. Steam reforming of α-methylnaphthalene as a model tar compound over olivine and olivine supported nickel. Fuel 2013, 109, 653660,  DOI: 10.1016/j.fuel.2013.03.017
    22. 22
      Zhang, L.; Wu, W.; Siqu, N.; Dekyi, T.; Zhang, Y. Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts. Chem. Eng. J. 2019, 361, 16171629,  DOI: 10.1016/j.cej.2018.12.115
    23. 23
      Si, X.; Lu, R.; Zhao, Z.; Yang, X.; Wang, F.; Jiang, H.; Luo, X.; Wang, A.; Feng, Z.; Xu, J.; Lu, F. Catalytic production of low-carbon footprint sustainable natural gas. Nat. Commun. 2022, 13 (1), 258,  DOI: 10.1038/s41467-021-27919-9
    24. 24
      Liang, S.; Guo, F.; Du, S.; Tian, B.; Dong, Y.; Jia, X.; Qian, L. Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel 2020, 275, 117923,  DOI: 10.1016/j.fuel.2020.117923
    25. 25
      Gao, N.; Salisu, J.; Quan, C.; Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review. Renewable Sustainable Energy Rev. 2021, 145, 111023,  DOI: 10.1016/j.rser.2021.111023
    26. 26
      Liang, D.; Wang, Y.; Chen, M.; Xie, X.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. B 2023, 322, 122088,  DOI: 10.1016/j.apcatb.2022.122088
    27. 27
      Hu, M.; Laghari, M.; Cui, B.; Xiao, B.; Zhang, B.; Guo, D. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy 2018, 145, 228237,  DOI: 10.1016/j.energy.2017.12.096
    28. 28
      Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S.; Meng, S.; Guo, Y.; Huang, Y. Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2. Chem. Eng. J. 2016, 306, 422432,  DOI: 10.1016/j.cej.2016.07.065
    29. 29
      Wang, S.; Shan, R.; Gu, J.; Zhang, J.; Yuan, H.; Chen, Y. Pyrolysis municipal sludge char supported Fe/Ni catalysts for catalytic reforming of tar model compound. Fuel 2020, 279, 118494,  DOI: 10.1016/j.fuel.2020.118494
    30. 30
      Wang, Y.; Zhang, Y.; Su, L.; Li, X.; Duan, L.; Wang, C.; Huang, T. Hazardous air pollutant formation from pyrolysis of typical Chinese casting materials. Environ. Sci. Technol. 2011, 45 (15), 65396544,  DOI: 10.1021/es200310p
    31. 31
      Guo, F.; Peng, K.; Liang, S.; Jia, X.; Jiang, X.; Qian, L. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel 2019, 258, 116204,  DOI: 10.1016/j.fuel.2019.116204
    32. 32
      Wang, S.; Shan, R.; Lu, T.; Zhang, Y.; Yuan, H.; Chen, Y. Pyrolysis char derived from waste peat for catalytic reforming of tar model compound. Appl. Energy 2020, 263, 114565,  DOI: 10.1016/j.apenergy.2020.114565
    33. 33
      Shi, C.; Zhang, P. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane. Appl. Catal. B 2015, 170–171, 4352,  DOI: 10.1016/j.apcatb.2015.01.034
    34. 34
      Zhang, J.; Chen, J.; Chen, Z.; Xiong, Q.; Di, Y.; Yin, L.; Tian, Y. A highly efficient bimetallic/biochar composite with enhanced catalytic reforming of pyrolysis tar: Performance and mechanism. Bioresour. Technol. Rep. 2022, 19, 101204,  DOI: 10.1016/j.biteb.2022.101204
    35. 35
      Liu, L.; Zhang, Z.; Das, S.; Kawi, S. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review. Appl. Catal. B 2019, 250, 250272,  DOI: 10.1016/j.apcatb.2019.03.039
    36. 36
      Kang, Y.; Tang, Y.; Zhu, L.; Jiang, B.; Xu, X.; Guselnikova, O.; Li, H.; Asahi, T.; Yamauchi, Y. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catal. 2022, 12 (23), 1477314793,  DOI: 10.1021/acscatal.2c03480
    37. 37
      Kang, Y.; Guo, Y.; Zhao, J.; Jiang, B.; Guo, J.; Tang, Y.; Li, H.; Malgras, V.; Amin, M. A.; Nara, H.; Sugahara, Y.; Yamauchi, Y.; Asahi, T. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small 2022, 18 (33), 2203411,  DOI: 10.1002/smll.202203411
    38. 38
      Santamaria, L.; Lopez, G.; Arregi, A.; Amutio, M.; Artetxe, M.; Bilbao, J.; Olazar, M. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Appl. Catal. B 2018, 229, 105113,  DOI: 10.1016/j.apcatb.2018.02.003
    39. 39
      Fang, S.; Cui, Z.; Zhu, Y.; Wang, C.; Bai, J.; Zhang, X.; Xu, Y.; Liu, Q.; Chen, L.; Zhang, Q.; Ma, L. In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to γ-valerolactone. J. Energy Chem. 2019, 37, 204214,  DOI: 10.1016/j.jechem.2019.03.021
    40. 40
      Li, Y.; Men, Y.; Liu, S.; Wang, J.; Wang, K.; Tang, Y.; An, W.; Pan, X.; Li, L. Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Appl. Catal. B 2021, 293, 120206,  DOI: 10.1016/j.apcatb.2021.120206
    41. 41
      Jin, H.; Yu, R.; Hu, C.; Ji, P.; Ma, Q.; Liu, B.; He, D.; Mu, S. Size-controlled engineering of cobalt metal catalysts through a coordination effect for oxygen electro catalysis. Appl. Catal. B 2022, 317, 121766,  DOI: 10.1016/j.apcatb.2022.121766
    42. 42
      Meng, J.; Zhao, Z.; Wang, X.; Zheng, A.; Zhang, D.; Huang, Z.; Zhao, K.; Wei, G.; Li, H. Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods. Energy Convers. Manage. 2018, 168, 6073,  DOI: 10.1016/j.enconman.2018.04.112
    43. 43
      Santamaria, L.; Lopez, G.; Arregi, A.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts. J. Ind. Eng. Chem. 2020, 91, 167181,  DOI: 10.1016/j.jiec.2020.07.050
    44. 44
      Moyer, M. M.; Karakaya, C.; Kee, R. J.; Trewyn, B. G. In-Situ Formation of Metal Carbide Catalysts. ChemCatchem 2017, 9 (16), 30903101,  DOI: 10.1002/cctc.201700304
    45. 45
      Shen, Y.; Zhao, P.; Shao, Q.; Ma, D.; Takahashi, F.; Yoshikawa, K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B 2014, 152–153, 140151,  DOI: 10.1016/j.apcatb.2014.01.032
    46. 46
      Gai, C.; Zhang, F.; Yang, T.; Liu, Z.; Jiao, W.; Peng, N.; Liu, T.; Lang, Q.; Xia, Y. Hydrochar supported bimetallic Ni–Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chem. 2018, 20 (12), 27882800,  DOI: 10.1039/C8GC00433A
    47. 47
      Nabgan, W.; Tuan Abdullah, T. A.; Mat, R.; Nabgan, B.; Gambo, Y.; Triwahyono, S. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int. J. Hydrogen. Energy 2016, 41 (48), 2292222931,  DOI: 10.1016/j.ijhydene.2016.10.055
    48. 48
      Yang, F.-L.; Cao, J.-P.; Zhao, X.-Y.; Ren, J.; Tang, W.; Huang, X.; Feng, X.-B.; Zhao, M.; Cui, X.; Wei, X.-Y. Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles. Energy Convers. Manage. 2019, 196, 12571266,  DOI: 10.1016/j.enconman.2019.06.075
    49. 49
      Wu, Y.-L.; Yang, R.-R.; Yang, G.-P.; Yan, Y.-T.; Su, X.-L.; He, X.-H.; Song, Y.-Y.; Ma, Z.-S.; Wang, Y.-Y. A new porous Co(ii)-metal–organic framework for high sorption selectivity and affinity to CO2 and efficient catalytic oxidation of benzyl alcohols to benzaldehydes. CrystEngcomm 2021, 23 (20), 37173723,  DOI: 10.1039/D1CE00250C
    50. 50
      Ashok, J.; Dewangan, N.; Das, S.; Hongmanorom, P.; Wai, M. H.; Tomishige, K.; Kawi, S. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Process. Technol. 2020, 199, 106252,  DOI: 10.1016/j.fuproc.2019.106252
    51. 51
      Aramouni, N. A. K.; Touma, J. G.; Tarboush, B. A.; Zeaiter, J.; Ahmad, M. N. Catalyst design for dry reforming of methane: Analysis review. Renewable Sustainable Energy Rev. 2018, 82, 25702585,  DOI: 10.1016/j.rser.2017.09.076
    52. 52
      Xu, J.; Holthaus, P.; Yang, N.; Jiang, S.; Heupel, A.; Schönherr, H.; Yang, B.; Krumm, W.; Jiang, X. Catalytic tar removal using TiO2/NiWO4-Ni5TiO7 films. Appl. Catal. B 2019, 249, 155162,  DOI: 10.1016/j.apcatb.2019.03.006
    53. 53
      Lee, Y.-L.; Kim, K.-J.; Hong, G.-R.; Roh, H.-S. Target-oriented water–gas shift reactions with customized reaction conditions and catalysts. Chem. Eng. J. 2023, 458, 141422,  DOI: 10.1016/j.cej.2023.141422
    54. 54
      Bimbela, F.; Ábrego, J.; Puerta, R.; García, L.; Arauzo, J. Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts. Appl. Catal. B 2017, 209, 346357,  DOI: 10.1016/j.apcatb.2017.03.009
    55. 55
      Huang, Z.; Deng, Z.; Feng, Y.; Chen, T.; Chen, D.; Zheng, A.; Wei, G.; He, F.; Zhao, Z.; Wu, J.; Li, H. Exploring the Conversion Mechanisms of Toluene as a Biomass Tar Model Compound on NiFe2O4 Oxygen Carrier. ACS Sustainable Chem. Eng. 2019, 7 (19), 1653916548,  DOI: 10.1021/acssuschemeng.9b03831
    56. 56
      Xie, Y.; Su, Y.; Wang, P.; Zhang, S.; Xiong, Y. In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts. Fuel Process. Technol. 2018, 182, 7787,  DOI: 10.1016/j.fuproc.2018.10.019
    57. 57
      Huang, S.; Xu, H.; Li, H.; Guo, Y.; Sun, Z.; Du, Y.; Li, H.; Zhang, J.; Pang, R.; Dong, Q.; Zhang, S. Preparation and characterization of char supported Ni-Cu nanoalloy catalyst for biomass tar cracking together with syngas-rich gas production. Fuel Process. Technol. 2021, 218, 106858,  DOI: 10.1016/j.fuproc.2021.106858
    58. 58
      Liu, H.; Chen, T.; Chang, D.; Chen, D.; He, H.; Frost, R. L. Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni. J. Mol. Catal A Chem. 2012, 363–364, 304310,  DOI: 10.1016/j.molcata.2012.07.005
    59. 59
      Liu, L.; Liu, Y.; Song, J.; Ahmad, S.; Liang, J.; Sun, Y. Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 2019, 377, 2433,  DOI: 10.1016/j.jhazmat.2019.05.019
    60. 60
      Kang, S.; He, M.; Yin, C.; Xu, H.; Cai, Q.; Wang, Y.; Cui, L. Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem. 2020, 22 (6), 19341943,  DOI: 10.1039/C9GC03357B
    61. 61
      Kaewpanha, M.; Karnjanakom, S.; Guan, G.; Hao, X.; Yang, J.; Abudula, A. Removal of biomass tar by steam reforming over calcined scallop shell supported Cu catalysts. J. Energy Chem. 2017, 26 (4), 660666,  DOI: 10.1016/j.jechem.2017.03.012
    62. 62
      Huang, Z.; Gao, N.; Lin, Y.; Wei, G.; Zhao, K.; Zheng, A.; Zhao, Z.; Yuan, H.; Li, H. Exploring the migration and transformation of lattice oxygen during chemical looping with NiFe2O4 oxygen carrier. Chem. Eng. J. 2022, 429, 132064,  DOI: 10.1016/j.cej.2021.132064
    63. 63
      Ren, J.; Liu, Y.-L. Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)Ox catalyst. Appl. Catal. B 2022, 300, 120743,  DOI: 10.1016/j.apcatb.2021.120743
    64. 64
      Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Batchu, R.; Buelens, L. C.; Detavernier, C.; Marin, G. B. Mechanism of carbon deposits removal from supported Ni catalysts. Appl. Catal. B 2018, 239, 502512,  DOI: 10.1016/j.apcatb.2018.08.042
    65. 65
      Shen, Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renewable Sustainable Energy Rev. 2015, 43, 281295,  DOI: 10.1016/j.rser.2014.11.061
    66. 66
      Liu, Q.; Gu, F.; Gao, J.; Li, H.; Xu, G.; Su, F. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation. J. Energy Chem. 2014, 23 (6), 761770,  DOI: 10.1016/S2095-4956(14)60210-2
    67. 67
      Fakeeha, A. H.; Khan, W. U.; Al-Fatesh, A. S.; Abasaeed, A. E. Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chin. J. Catal. 2013, 34 (4), 764768,  DOI: 10.1016/S1872-2067(12)60554-3
    68. 68
      Sun, H.; Feng, D.; Sun, S.; Wei, Q.; Zhao, Y.; Zhang, Y.; Xie, M.; Qin, Y. Effect of steam on coke deposition during the tar reforming from corn straw pyrolysis over biochar. Fuel Process. Technol. 2021, 224, 107007,  DOI: 10.1016/j.fuproc.2021.107007
    69. 69
      Pereira Lopes, R.; Astruc, D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord. Chem. Rev. 2021, 426, 213585,  DOI: 10.1016/j.ccr.2020.213585
    70. 70
      Yu, J.; Tang, L.; Pang, Y.; Zeng, G.; Wang, J.; Deng, Y.; Liu, Y.; Feng, H.; Chen, S.; Ren, X. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146159,  DOI: 10.1016/j.cej.2019.01.163
    71. 71
      Mao, Z.; Lustemberg, P. G.; Rumptz, J. R.; Ganduglia-Pirovano, M. V.; Campbell, C. T. Ni nanoparticles on CeO2 (111): energetics, electron transfer, and structure by Ni adsorption calorimetry, spectroscopies, and density functional theory. ACS Catal. 2020, 10 (9), 51015114,  DOI: 10.1021/acscatal.0c00333
    72. 72
      Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 2007, 107 (10), 39523991,  DOI: 10.1021/cr0501994
    73. 73
      Rostrup-Nielsen, J. R.; Sehested, J.; No̷rskov, J. K. Hydrogen and synthesis gas by steam-and CO2 reforming. Adv. Catal. 2002, 47, 65139,  DOI: 10.1016/S0360-0564(02)47006-X
    74. 74
      Boldrin, P.; Gallagher, J. R.; Combes, G. B.; Enache, D. I.; James, D.; Ellis, P. R.; Kelly, G.; Claridge, J. B.; Rosseinsky, M. J. Proxy-based accelerated discovery of Fischer–Tropsch catalysts. Chem. Sci. 2015, 6 (2), 935944,  DOI: 10.1039/C4SC02116A
    75. 75
      Bayram, B.; Soykal, I. I.; Deak, D. V.; Miller, J. T.; Ozkan, U. S. Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions. J. Catal. 2011, 284 (1), 7789,  DOI: 10.1016/j.jcat.2011.09.001
    76. 76
      Li, Z.; Li, M.; Ashok, J.; Kawi, S. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers. Manage. 2019, 180, 822830,  DOI: 10.1016/j.enconman.2018.11.034
    77. 77
      Zhai, Y.; Li, C.; Xu, G.; Ma, Y.; Liu, X.; Zhang, Y. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon. Green Chem. 2017, 19 (8), 18951903,  DOI: 10.1039/C7GC00149E
    78. 78
      Zhang, S.; Wang, P.; Chen, Y.; Yao, W.; Li, Z.; Tang, Y. One-Pot Synthesis of Pt Nanobowls Assembled from Ultrafine Nanoparticles for Methanol Oxidation Reaction. Nanomater (Basel) 2022, 12, 19,  DOI: 10.3390/nano12193471
    79. 79
      Huang, Y.; Cheng, M.; Xiang, Z.; Cui, Y. Facile synthesis of NiCo2S4/CNTs nanocomposites for high-performance supercapacitors. R. Soc. Open Sci. 2018, 5 (9), 180953,  DOI: 10.1098/rsos.180953
    80. 80
      Ren, J.; Cao, J.-P.; Yang, F.-L.; Zhao, X.-Y.; Tang, W.; Cui, X.; Chen, Q.; Wei, X.-Y. Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar. Energy Convers. Manage. 2019, 183, 182192,  DOI: 10.1016/j.enconman.2018.12.093
    81. 81
      Xuan, J.; Liu, Y.; Xu, L.; Xin, Y.; Xue, L.; Li, L. Properties of SS304 Modified by Nickel–Cobalt Alloy Coating with Cauliflower-Shaped Micro/Nano Structures in Simulated PEMFC Cathode Environment. Nanomater(Basel) 2022, 12 (12), 1976,  DOI: 10.3390/nano12121976
    82. 82
      Zhao, L.; Mu, X.; Liu, T.; Fang, K. Bimetallic Ni–Co catalysts supported on Mn–Al oxide for selective catalytic CO hydrogenation to higher alcohols. Catal. Sci. Technol. 2018, 8 (8), 20662076,  DOI: 10.1039/C7CY02555F
    83. 83
      Law, Y. T.; Dintzer, T.; Zafeiratos, S. Surface oxidation of NiCo alloy: A comparative X-ray photoelectron spectroscopy study in a wide pressure range. Appl. Surf. Sci. 2011, 258 (4), 14801487,  DOI: 10.1016/j.apsusc.2011.09.111
    84. 84
      Tang, W.; Cao, J.; Wang, Z.; He, Z.; Liu, T.; Wang, Z.; Yang, F.; Ren, J.; Zhao, X.; Feng, X.; Bai, H. Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature. Energy Convers. Manage. 2021, 244, 114454,  DOI: 10.1016/j.enconman.2021.114454
    85. 85
      Wang, Y.; Wang, H.; Li, S.; Sun, S. Waste PET Plastic-Derived CoNi-Based Metal-Organic Framework as an Anode for Lithium-Ion Batteries. ACS Omega 2022, 7 (39), 3518035190,  DOI: 10.1021/acsomega.2c04264
    86. 86
      Li, Z.; Wang, J.; Tian, K.; Zhou, C.; Pei, Y.; Zhang, J.; Zang, L. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production. ACS Omega 2022, 7 (45), 4159441605,  DOI: 10.1021/acsomega.2c05580
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c08857.

    • Additional experimental details, characterization, catalytic activity, stability results, computational methods, and additional data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.