这是用户在 2024-6-11 14:56 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097525/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳到主要内容
U.S. flag

An official website of the United States government

Access keys 访问密钥 NCBI Homepage NCBI主页 MyNCBI Homepage MyNCBI主页 Main Content 事由 Main Navigation 主导航
2024; 22: 273.
Published online 2024 May 16. doi: 10.1186/s12964-024-01640-8

细胞通信信号。2024;22: 273.2024 年 5 月 16 日在线发布。doi: 10.1186/s12964-024-01640-8
PMCID: PMC11097525
PMID: 38755675

PMCID:PMC11097525PMID:38755675

Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions
对来自 C2C12 成肌细胞的小细胞外囊泡进行综合蛋白质组学、磷酸化蛋白质组学和 N-糖蛋白组学分析可识别配体-受体相互作用中的特定 PTM 模式

Xiulan Chen,corresponding author1,2 Xi Song,1,2 Jiaran Li,1 Jifeng Wang,1 Yumeng Yan,1 and Fuquan Yangcorresponding author1,2
陈秀兰, corresponding author 1, 2 宋习, 1, 2 李佳然, 1 王继峰, 1 闫玉萌, 1corresponding author 1, 2 福泉

Associated Data 相关数据

Supplementary Materials 补充材料
Data Availability Statement
数据可用性声明

Abstract 抽象

Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.
小细胞外囊泡 (sEV) 是细胞间通讯的重要介质,通过将功能成分(蛋白质、RNA 和脂质)转移到受体细胞。据报道,一些 PTM(包括磷酸化和 N-糖基化)在 EV 生物学中发挥重要作用,例如生物发生、蛋白质分选和 sEV 的摄取。基于MS的蛋白质组学技术已被应用于鉴定sEV中的蛋白质和PTM修饰。先前对来自 C2C12 成肌细胞(一种重要的骨骼肌细胞系)的 sEV 的蛋白质组学研究侧重于蛋白质的鉴定,但没有关于 sEVs 蛋白的 PTM 信息。

In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC–MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.
在这项研究中,我们系统地分析了来自C2C12成肌细胞的sEVs的蛋白质组、磷酸化蛋白质组和N-糖蛋白组,对3个蛋白质组数据集的深入分析表明,3个蛋白质组鉴定了不同的蛋白质目录,PTMomic分析可以扩大sEVs中货物的鉴定。在蛋白质组学水平上,鉴定出高比例的膜蛋白,尤其是四跨膜蛋白。sEVs衍生的磷酸化蛋白质组具有非常高的酪氨酸磷酸化位点。酪氨酸磷酸化蛋白可能与 EPH-Ephrin 信号通路有关。在N-糖蛋白质组学水平上,几种糖型,如复合N-连接聚糖和聚糖上的唾液酸,在sEV中富集。对sEVs中配体-受体相互作用的检索表明,细胞外基质(ECM)和细胞粘附分子(CAM)是sEVs中最丰富的配体-受体对。通过对配体和受体的PTM信息进行定位分析,发现N-糖基化主要发生在ECM和CAM蛋白上,而磷酸化则发生在不同类别的受体和配体上。还提供了ECM-受体相互作用及其组分的综合PTM图谱。

In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
综上所述,我们对C2C12成肌细胞的sEVs进行了全面的蛋白质组学和PTMomic分析。sEV 的综合蛋白质组学、磷酸化蛋白质组学和 N-糖蛋白组学分析可能会提供一些关于其特定摄取机制的见解。

Supplementary Information
补充资料

The online version contains supplementary material available at 10.1186/s12964-024-01640-8.
在线版本包含补充材料,网址为 10.1186/s12964-024-01640-8。

Keywords: Small extracellular vesicles (sEVs), C2C12 myoblast, Skeletal muscle, Proteomics, Phosphoproteomics, N-glycoproteomics, LC–MS/MS, Membrane transporters, Ligand-receptor interaction
关键词:小细胞外囊泡(sEVs),C2C12成肌细胞,骨骼肌,蛋白质组学,磷酸化蛋白质组学,N-糖蛋白组学,LC-MS/MS,膜转运蛋白,配体-受体相互作用

Background 背景

Extracellular vesicles (EVs) are small membrane vesicles secreted from almost all cell types. EVs contain many functional components, such as proteins, different types of RNAs, lipids, and metabolites [, ]. Though initially being identified as a mechanism for removal of cellular waste [], EVs have now been identified as important mediators of intercellular communication by transferring the functional components to recipient cells []. EVs have been involved in a diverse range of biological processes, such as signaling transduction, antigen presentation and regulation of immune responses [], as well as in some pathological conditions or diseases, such as cancer metastasis and neurodegenerative disorders [].
细胞外囊泡 (EV) 是从几乎所有细胞类型分泌的小膜囊泡。EV包含许多功能成分,如蛋白质、不同类型的RNA、脂质和代谢物[1,2]。虽然最初被确定为清除细胞废物的机制[3],但现在已确定EV通过将功能成分转移到受体细胞中,成为细胞间通讯的重要介质[4]。EV参与了多种生物过程,如信号转导、抗原呈递和免疫应答调节[5–7],以及一些病理状况或疾病,如癌症转移和神经退行性疾病[8–10]。

Over the years, EVs have been broadly classified into three groups according to their physical size and biogenesis pathways: exosomes (30–200 nm), microvesicles (MVs) (100–1000 nm) and apoptotic bodies (> 1000 nm) []. Exosomes are formed when endosomal membrane buds inwardly to create intraluminal vesicles (ILVs), which mature into multivesicular body (MVB) and then fuse with plasma membrane to secret as exosomes. MVs are produced by outward budding followed by pinching of plasma membrane, and apoptotic bodies are released when plasma membrane blebbing occurs during apoptosis []. However, there are no universal molecular markers to distinguish different subtypes of EVs. In 2018, International Society for Extracellular Vesicles (ISEV) suggests classification of EV subtypes based on physical characteristics of EVs. For example, EVs can be classified into small EVs (sEVs) (< 200 nm) and medium/large EVs (> 200 nm) based on size []. Since sEVs (primary exosomes and to a less extent MVs in the previous nomenclature) are implicated in numerous physiological processes and diseases, we focus on this subgroup in this study.
多年来,EV根据其物理大小和生物发生途径大致分为三类:外泌体(30-200 nm)、微囊泡(MV)(100-1000 nm)和凋亡体(> 1000 nm)[11]。当内体膜向内萌芽以产生腔内囊泡 (ILV) 时,就会形成外泌体,ILV 成熟为多囊泡体 (MVB),然后与质膜融合以分泌为外泌体。MVs通过向外出芽后夹压质膜产生,在细胞凋亡期间发生质膜起泡时释放凋亡小体[12]。然而,没有通用的分子标记来区分不同的 EV 亚型。2018 年,国际细胞外囊泡学会 (ISEV) 建议根据 EV 的物理特性对 EV 亚型进行分类。例如,电动汽车可根据尺寸分为小型电动汽车(sEV)(<200 nm)和中型/大型电动汽车(> 200 nm)[13]。由于 sEV(原代外泌体和先前命名法中较小程度的 MV)与许多生理过程和疾病有关,因此我们在本研究中重点关注该亚组。

Mass spectrometry (MS)-based proteomic technologies have been applied to characterize the molecular composition of sEVs from different tissues and cells []. The rapid development of MS-based proteomic technologies has enabled identification of thousands of proteins in sEVs. Besides proteins, some protein post-translational modifications (PTMs), such as phosphorylation, glycosylation, ubiquitination, sumoylation, palmitoylation, oxidation, and citrullination, have been identified in EVs [, ]. PTMs have been reported to play important roles in EV biology [, ]. For example, phosphorylation influences the biogenesis and release of EVs [], and participates in cellular communication by transferring kinases [] or phosphatases [] between cells. Glycosylation has been reported to involve in biogenesis, protein sorting and uptake of EVs []. Analysis of PTMs in sEVs at proteomic level could provide more information about the roles of PTMs in sEVs.
基于质谱(MS)的蛋白质组学技术已被应用于表征来自不同组织和细胞的sEV的分子组成[14]。基于MS的蛋白质组学技术的快速发展使sEV中的数千种蛋白质得以鉴定成为可能。除蛋白质外,在EV中还发现了一些蛋白质翻译后修饰(PTM),如磷酸化、糖基化、泛素化、sumoyl化、棕榈酰化、氧化和瓜氨酸化[15,16]。据报道,PTM在EV生物学中起着重要作用[17,18]。例如,磷酸化影响EV的生物发生和释放[19],并通过在细胞之间转移激酶[20]或磷酸酶[21]参与细胞通讯。据报道,糖基化参与EV的生物发生、蛋白质分选和摄取[22–24]。在蛋白质组学水平上分析 sEV 中的 PTM 可以提供有关 PTM 在 sEV 中的作用的更多信息。

C2C12 myoblasts, an extensively studied skeletal muscle cell line [, ], can secrete EVs into the culture media []. However, previous proteomic studies of C2C12 sEVs focused on the identification of proteins, no PTM information on C2C12 sEVs proteins is available.
C2C12成肌细胞是一种被广泛研究的骨骼肌细胞系[25,26],可以将EV分泌到培养基中[27\u201229]。然而,先前对 C2C12 sEV 的蛋白质组学研究侧重于蛋白质的鉴定,没有关于 C2C12 sEVs 蛋白的 PTM 信息。

In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs derived from C2C12 myoblasts. We found that the three proteomes identified distinct catalogues of proteins in sEVs. PTMomic analysis could expand the identification of cargos in sEVs. PTM modifications (phosphorylation and N-glycosylation) in sEVs on the ligand-receptor interactions of sEVs were extensively discussed, which might account for the targeted uptake of sEVs by recipient cells.
在这项研究中,我们系统地分析了来自C2C12成肌细胞的sEVs的蛋白质组、磷酸化蛋白组和N-糖蛋白组。我们发现这三个蛋白质组在sEV中鉴定了不同的蛋白质目录。PTMomic分析可以扩大sEV中货物的识别范围。广泛讨论了sEVs中PTM修饰(磷酸化和N-糖基化)对sEV配体-受体相互作用的影响,这可能解释了受体细胞对sEVs的靶向摄取。

Materials and methods 材料与方法

Cell culture 细胞培养

Mouse C2C12 myoblasts were gifts from Professor Pingsheng Liu from Institute of Biophysics, Chinese Academy of Sciences. Mouse C2C12 myoblasts were maintained in DMEM medium supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml streptomycin at 37℃, 5% CO2.
小鼠C2C12成肌细胞是中国科学院生物物理研究所刘平生教授赠送的。将小鼠 C2C12 成肌细胞维持在补充有 10% 胎牛血清 (FBS)、100 U/ml 青霉素和 100 μg/ml 链霉素的 DMEM 培养基中,温度为 37°C,5% CO 2

Isolation of small extracellular vesicles (sEVs) from C2C12 myoblasts
从 C2C12 成肌细胞中分离小细胞外囊泡 (sEV)

The isolation of sEVs from C2C12 myoblasts was performed with a standard ultracentrifugation-based method described previously [] with minor modifications. Briefly, cell-conditioned medium was collected from approximately 90% confluent C2C12 myoblasts grown for 48 h in 100 mm cell culture dishes with DMEM medium containing FBS depleted of bovine serum extracellular vesicles by ultracentrifugation at 120,000 g for 24 h. The collected cell culture medium was first subjected to centrifugation at 400 g for 10 min to pellet and remove cells. Next, the supernatant was centrifuged at 2,000 g for 20 min to remove cell debris and apoptotic bodies. Then, the supernatant was centrifuged at 15,000 g for 40 min to remove large EVs. To remove any remaining of large EVs, the supernatant from the first 15,000 g step was passed through a 0.22 mm pore PES filter (Corning). This supernatant (pre-cleared medium) was subjected to ultracentrifugation at 120,000 g for 4 h (Rotor: 45Ti, Beckman Coulter, Fullerton, CA) to sediment small EVs (sEVs). The crude sEV pellet was re-suspended in a large volume of ice-cold PBS followed by ultracentrifugation at 120,000 g for 4 h. The pellet (sEV sample) was re-suspended in 100 μl PBS supplemented with EDTA-free complete protease inhibitor cocktail and phosphatase inhibitor cocktail. All centrifugation steps were performed at 4℃. The obtained sEV samples were stored at -80℃ for less than half a year before subsequent sample preparation and PTM enrichments.
从C2C12成肌细胞中分离sEVs是用前面描述的基于超速离心的标准方法进行的[30],并稍作修改。简而言之,从在100 mm细胞培养皿中生长48小时的约90%汇合C2C12成肌细胞收集细胞条件培养基,DMEM培养基含有FBS的DMEM培养基通过超速离心120,000g去除牛血清细胞外囊泡24小时。首先将收集的细胞培养基以 400 g 离心 10 分钟以沉淀并除去细胞。接下来,将上清液以 2,000 g 离心 20 分钟以除去细胞碎片和凋亡小体。然后,将上清液以 15,000 g 离心 40 分钟以除去大 EV。为了除去任何残留的大型EV,将第一个15,000 g步骤中的上清液通过0.22 mm孔径PES过滤器(Corning)。将该上清液(预清除培养基)以 120,000 g 超速离心 4 小时(转子:45Ti,Beckman Coulter,Fullerton,CA)以沉淀小型 EV (sEV)。将粗的sEV颗粒重新悬浮在大量冰冷的PBS中,然后以120,000g超速离心4小时。将沉淀(sEV样品)重新悬浮在补充有不含EDTA的完全蛋白酶抑制剂混合物和磷酸酶抑制剂混合物的100μlPBS中。所有离心步骤均在4°C下进行。将获得的sEV样品在-80°C下储存不到半年,然后进行随后的样品制备和PTM富集。

Cell culture medium from 30*100 mm cell culture dishes (~ 300 ml) was collected for one purification of sEVs. Eight purifications were performed to obtain enough sEVs proteins for further characterization of sEVs, PTM (phosphorylation and N-glycosylation) enrichments, and LC–MS/MS analysis.
从30*100 mm细胞培养皿(~300 ml)中收集细胞培养基,用于一次纯化sEV。进行了八次纯化以获得足够的 sEVs 蛋白,用于进一步表征 sEV、PTM(磷酸化和 N-糖基化)富集和 LC-MS/MS 分析。

Transmission electron microscope (TEM) analysis
透射电子显微镜(TEM)分析

For negative staining TEM analysis, 5 µL sEV sample in PBS was loaded on a hydrophilized carbon-coated 230 mesh copper grid (Beijing Zhongjingkeyi Technology Co., China) and allowed to settle for 1 min. The sample was blotted and negatively stained with 3 continuous drops of 2% uranyl acetate, blotting between each drop. After staining the sample with the last drop for 1 min, the grid was blotted and air-dried. Grids were imaged with a Tecnai Spirit (FEI Co., US) TEM operating at 100 kV.
对于阴性染色TEM分析,将PBS中的5μLsEV样品加载到亲水性碳涂层230目铜网格(中国北京中景科谊科技有限公司)上,并静置1分钟。将样品吸干并用 3 滴连续的 2% 乙酸铀酰染色,每滴之间印迹。用最后一滴对样品染色1分钟后,将网格吸干并风干。使用工作电压为 100 kV 的 Tecnai Spirit(FEI Co.,US)TEM 对电网进行成像。

Nanoparticle tracking analysis (NTA)
纳米颗粒跟踪分析(NTA)

The concentration and size distribution of sEV samples was determined by ZetaView (Particle Matrix, German) equipped with a 488 nm laser. Samples were 1:10, 000 diluted in PBS to obtain around 300 particles/view. Three videos of 20 s duration were recorded for each independent replicate and used to compute the particle size and mean concentration. Data were analyzed with ZetaView 8.04.10 software.
sEV样品的浓度和大小分布由配备488 nm激光器的ZetaView(Particle Matrix,德语)测定。样品以 1:10, 000 的比例在 PBS 中稀释,以获得约 300 个颗粒/视图。为每个独立的重复记录三个持续时间为20秒的视频,并用于计算粒径和平均浓度。使用ZetaView 8.04.10软件分析数据。

Protein extraction and western blotting
蛋白质提取和蛋白质印迹

Total cell lysate (TCL) was extracted from C2C12 myoblasts as described previously []. Briefly, C2C12 myoblasts were collected in the lysis buffer containing 8 M urea and 100 mM Tris–HCl (pH 8.5) supplemented with EDTA-free complete protease inhibitor cocktail (Roche, Basel, Switzerland). Then, the cells were lysed with Precellys Evolution homogenizer (Bertin Technologies, Paris, France). After centrifugation at 20,000 g for 20 min at 4℃, the supernatant was collected as TCL. sEV samples were solubilized in the same lysis buffer. The protein concentration of TCL and sEVs was determined using a BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA).
如前所述,从C2C12成肌细胞中提取总细胞裂解物(TCL)[31]。简而言之,将 C2C12 成肌细胞收集在含有 8 M 尿素和 100 mM Tris-HCl (pH 8.5) 的裂解缓冲液中,并补充有不含 EDTA 的完全蛋白酶抑制剂混合物(Roche,Basel,Switzerland)。然后,用Precellys Evolution匀浆器(Bertin Technologies,Paris,France)裂解细胞。在4°C下以20,000g离心20分钟后,收集上清液为TCL。将sEV样品溶解在相同的裂解缓冲液中。使用 BCA 蛋白测定试剂盒(Thermo Fisher Scientific,Waltham,MA)测定 TCL 和 sEV 的蛋白质浓度。

For western blotting, equal amounts of proteins from sEV and TCL were subjected to SDS-PAGE. After separation, proteins were transferred to Immobilon PVDF Membrane at 200 mA for 1–2 h. PVDF Membranes were blocked with 5% non-fat dry milk in TBST for 2 h at RT. After blocking, PVDF membranes were washed with TBST and incubated with primary antibodies diluted in 5% milk overnight at 4˚C. Primary antibodies used for immunoblotting were ALIX (Cat#ab186429, Abcam; 1:1,000), TSG101 (Cat# ab125011, Abcam; 1:1,000), CD9 (Cat#ab92726, Abcam; 1:1,000), HSP90 (Cat#ab203126, Abcam; 1:10,000), and HRP-conjugated GAPDH (AC035, ABclonal; 1:1,000). PVDF Membranes were then washed with TBST and incubated with secondary antibodies diluted in TBST. After washing, the secondary antibodies were detected using SuperSignal Western Blot Substrate (Thermo Fisher Scientific, Waltham, MA, USA). Four replicates of sEV samples were analyzed with western blotting.
对于蛋白质印迹,对来自 sEV 和 TCL 的等量蛋白质进行 SDS-PAGE。分离后,将蛋白质以200mA转移到Immobilon PVDF膜上1-2小时,在室温下用5%脱脂奶粉在TBST中封闭PVDF膜2小时。封闭后,用TBST洗涤PVDF膜,并与在4°C下用5%牛奶稀释的一抗孵育过夜。用于免疫印迹的一抗是 ALIX (Cat#ab186429, Abcam; 1:1,000)、TSG101 (Cat# ab125011, Abcam; 1:1,000)、CD9 (Cat#ab92726, Abcam; 1:1,000)、HSP90 (Cat#ab203126, Abcam; 1:10,000) 和 HRP 偶联的 GAPDH (AC035, ABclonal; 1:1,000)。然后用TBST洗涤PVDF膜,并与在TBST中稀释的二抗一起孵育。洗涤后,使用 SuperSignal Western Blot 底物(Thermo Fisher Scientific,Waltham,MA,USA)检测二抗。用蛋白质印迹法分析了 4 个重复的 sEV 样品。

In-solution digestion of proteins
蛋白质的溶液内消化

Three biological replicates of sEVs purified from C2C12 myoblasts were combined from eight sEV purifications and used for in-solution digestion and subsequent PTMs (phosphorylation and N-glycosylation) enrichment.
从 C2C12 成肌细胞纯化的 3 个 sEV 生物学重复片段从 8 个 sEV 纯化中合并,用于溶液内消化和随后的 PTM(磷酸化和 N-糖基化)富集。

sEV proteins were in-solution digested into peptides as described previously []. In brief, proteins were reduced with 10 mM DTT at 30℃ for 1 h. The resulting free thiols were alkylated with 40 mM IAM for 45 min at room temperature in the dark. The same amount of DTT was subsequently added to remove excess IAM at 30℃ for 30 min. Then, proteins were digested with Lys-C (Wako Pure Chemical Industries, Osaka, Japan) at an enzyme/protein ratio of 1:100 (w/w) at 37℃ for 3 h. After dilution with 50 mM Tris–HCl (pH 8.0), samples were digested with sequencing grade modified trypsin (Promega, Madison, WI) at an enzyme/protein ratio of 1:50 (w/w) at 37℃ overnight. The enzymatic digestion was stopped with formic acid (FA), and the supernatant was collected after centrifugation at 20,000 g for 20 min. After that, peptides were desalted on HLB cartridges (Waters, Milford, MA, USA) and dried in SpeedVac (LABCONCO, Kansas City, MO, USA). After dissolving the desalted peptides with 0.1% FA, peptide concentration was determined using a BCA peptide assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Then, peptides were split into different amounts according to different PTM enrichment experiments mentioned below and dried in SpeedVac.
如前所述,sEV蛋白在溶液中消化成肽[31]。简而言之,在30°C下用10mM DTT还原蛋白质1小时。将所得游离硫醇在室温下在黑暗中用40 mM IAM烷基化45分钟。随后加入相同量的DTT,以在30°C下去除多余的IAM,持续30分钟。然后,用 Lys-C(Wako Pure Chemical Industries,大阪,日本)在 37°C 下以 1:100 (w/w) 的酶/蛋白质比例消化蛋白质 3 小时。用 50 mM Tris–HCl (pH 8.0) 稀释后,在 37°C 下以 1:50 (w/w) 的酶/蛋白比用测序级修饰胰蛋白酶(Promega,Madison,WI)酶/蛋白比酶解样品过夜。用甲酸(FA)停止酶解,以20,000g离心20分钟后收集上清液。之后,肽在HLB卡式瓶(Waters,Milford,MA,USA)上脱盐,并在SpeedVac(LABCONCO,堪萨斯城,密苏里州,美国)中干燥。用 0.1% FA 溶解脱盐肽后,使用 BCA 肽测定试剂盒(Thermo Fisher Scientific,Waltham,MA,USA)测定肽浓度。然后,根据下面提到的不同PTM富集实验将肽分成不同的量,并在SpeedVac中干燥。

Phosphopeptide enrichment
磷酸肽富集

The enrichment of phosphopeptides using TiO2 with lactic acid was performed as described previously []. Briefly, 200 μg dried peptides were re-solubilized in 100 μl sample loading buffer containing 70% ACN, 5% TFA, and 20% lactic acid (Sigma) to a final concentration of 2 μg/μl. TiO2 beads (5 μm Titansphere, GL Sciences, Tokyo, Japan) were preconditioned with sample loading buffer for 5 min, and the process was repeated three times. Subsequently, the peptides were incubated with preconditioned TiO2 beads at a peptides/TiO2 ratio of 1:6 (w/w) for 15 min at room temperature. After pelleted TiO2 beads, the supernatant was transferred to another tube and incubated with half of the amount of TiO2 beads used in the first incubation. A third incubation was performed with 1/4 of the amount of TiO2 beads used in the first incubation. TiO2 beads from the three incubations were pooled with loading buffer and transferred to preconditioned C8 StageTips. The TiO2 beads were sequentially washed with sample loading buffer, washing buffer 1 (30% ACN, 0.5% TFA), and washing buffer 2 (80% ACN, 0.4% TFA). Phosphopeptides on TiO2 beads were eluted with elution buffer 1 (4% NH3.H2O) and elution buffer 2 (4% NH3.H2O and 50% ACN) sequentially. The eluted phosphopeptides were immediately acidified with 10% FA and dried in SpeedVac. Before LC–MS/MS analysis, phosphopeptides were desalted with homemade OLIGOTM R3 StageTips.
如前所述,使用TiO 2 和乳酸富集磷酸肽[31]。简而言之,将 200 μg 干肽重新溶解在含有 70% 乙腈、5% TFA 和 20% 乳酸 (Sigma) 的 100 μl 样品上样缓冲液中,最终浓度为 2 μg/μl。TiO 2 微珠(5μm Titansphere,GL Sciences,Tokyo,Japan)用样品上样缓冲液预处理5分钟,并重复该过程三次。随后,将肽与预处理的TiO 2 微珠以1:6(w/w)的肽/TiO 2 比在室温下孵育15分钟。沉淀TiO 2 微珠后,将上清液转移到另一个试管中,并与第一次孵育中使用的TiO 2 微珠量的一半一起孵育。使用第一次孵育中使用的 1/4 的 TiO 2 微珠进行第三次孵育。将来自三个孵育的 TiO 2 微珠与上样缓冲液合并并转移到预处理的 C8 StageTips 中。用上样缓冲液、洗涤缓冲液1(30%乙腈,0.5%TFA)和洗涤缓冲液2(80%乙腈,0.4%TFA)依次洗涤TiO 2 微珠。TiO 2 微珠上的磷酸肽用洗脱缓冲液1(4%NH 3 .H 2 O)和洗脱缓冲液2(4%NH 3 . 2 H O 和 50% 乙腈)依次。洗脱的磷酸肽立即用 10% FA 酸化,并在 SpeedVac 中干燥。在LC-MS/MS分析之前,使用自制的OLIGO TM R3 StageTips对磷酸肽进行脱盐。

Three biological replicates of sEVs samples with two technical replicates of phosphopeptide enrichment and six LC–MS/MS analyses were performed to obtain the phosphoproteome of sEVs.
对 sEV 样品进行 3 次生物学重复,其中 2 次磷酸肽富集技术重复和 6 次 LC–MS/MS 分析,以获得 sEV 的磷酸化蛋白质组。

N-glycopeptide enrichment
N-糖肽富集

100 μg dried peptides were re-solubilized in 50 μl loading buffer (80% ACN, 1% TFA) before enrichment of glycopeptides with home-made ZIC-HILIC tips. ZIC-HILIC beads (Agela Technologies, China) were loaded onto 200 μl pipette tips with C8 3M membrane to make ZIC-HILIC tips. The ZIC-HILIC tips were sequentially conditioned with ACN, 0.1% TFA, and 80% ACN/0.1% TFA, and peptides were loaded onto ZIC-HILIC tips. After washed ZIC-HILIC tips with 1% 80% ACN/0.1%TFA, the enriched N-glycopeptides were eluted with 0.1% TFA and dried for LC–MS/MS analysis.
将 100 μg 干肽重新溶解在 50 μl 上样缓冲液(80% 乙腈、1% TFA)中,然后用自制的 ZIC-HILIC 吸头富集糖肽。将ZIC-HILIC微球(Agela Technologies,中国)加载到带有C8 3M膜的200μl移液器吸头上,以制备ZIC-HILIC吸头。用 ACN、0.1% TFA 和 80% ACN/0.1% TFA 依次对 ZIC-HILIC 吸头进行调理,并将肽加载到 ZIC-HILIC 吸头上。用 1% 80% 乙腈/0.1% TFA 洗涤 ZIC-HILIC 吸头后,用 0.1% TFA 洗脱富集的 N-糖肽并干燥用于 LC–MS/MS 分析。

Three biological replicates of sEVs samples with two technical replicates of N-glycopeptide enrichment and six LC–MS/MS analyses were performed to obtain the N-glycoproteome of sEVs.
对 sEV 样品进行 3 次生物学重复,其中 2 次 N-糖肽富集技术重复和 6 次 LC-MS/MS 分析,以获得 sEV 的 N-糖蛋白组。

LC–MS/MS analysis LC-MS/MS分析

Peptides and phosphopeptides of sEVs were analyzed on an Easy-nLC 1200 HPLC system (Thermo Fisher Scientific) coupled to an Orbitrap Exploris 480 (Thermo Fisher Scientific) with a high-field asymmetric waveform ion mobility spectrometry (FAIMS) device (Thermo Fisher Scientific). All samples were reconstituted in 0.1% FA and separated on a fused silica trap column (100 μm ID * 2 cm) in-house packed with reversed-phase silica (Reprosil-Pur C18 AQ, 5 μm, Dr. Maisch GmbH, Baden-Wuerttemberg, Germany) coupled to an analytical column (75 μm ID * 20 cm) packed with reversed-phase silica (Reprosil-Pur C18 AQ, 3 μm, Dr. Maisch GmbH). The peptides and phosphopeptides were analyzed with 103 min gradient (buffer A: 0.1% FA in H2O, buffer B: 80% ACN, 0.1% FA in H2O) at a flow rate of 300 nL/min (5–9% B, 4 min; 9–20% B, 32 min; 20–30% B, 31 min; 30–40% B, 23 min; 40–99% B, 4 min; 99% B, 9 min). MS data were acquired using an Orbitrap mass analyzer in data-dependent acquisition mode. The cycle time was set as 2 s. The spray voltage of the nanoelectrospray ion source was 2.0 kV, and the heated capillary temperature was 320℃. Full scan MS data were collected at a high resolution of 60,000 (m/z 200) from 350 to 1500 m/z. The automatic gain control target was 4*105, dynamic exclusion was 30 s, and the intensity threshold was 5.0*104. The precursor ions were selected from each MS full scan with an isolation width of 1.6 m/z for fragmentation with a normalized collision energy of 30%. For phosphopeptide analysis, MS/MS data were acquired at a resolution of 30,000 (m/z 200). The automatic gain control target was 1*105, the maximum injection time was 54 ms, dynamic exclusion was 30 s, and the intensity threshold was 5.0*104. For peptide analysis, MS/MS data were acquired at a resolution of 15,000 (m/z 200). The automatic gain control target was 5*104; the maximum injection time was 22 ms. The compensation voltage of FAIMS was set as -45 V and -65 V.
在 Easy-nLC 1200 HPLC 系统 (Thermo Fisher Scientific) 和 Orbitrap Exploris 480 (Thermo Fisher Scientific) 上,使用高场非对称波形离子淌度光谱 (FAIMS) 设备 (Thermo Fisher Scientific) 分析 sEV 的肽和磷酸肽。将所有样品在0.1%FA中复溶,并在内部填充反相二氧化硅(Reprosil-Pur C18 AQ,5μm,Dr. Maisch GmbH,Baden-Wuerttemberg,Germany)的熔融石英捕集柱(100μmID * 20 cm)上分离,该柱装有反相二氧化硅(Reprosil-Pur C18 AQ,3μm,Dr. Maisch GmbH)。以300 nL/min(5-9%B,4分钟;9-20%B,32分钟;30-30%B,31分钟;30-40%B,23分钟;40-99%B,30-40%B,23分钟;40-99%B,30-40%B,23分钟;40-99%B,103 min 2 2 梯度分析肽和磷酸肽, 4 分钟;99% B,9 分钟)。MS数据是在数据依赖性采集模式下使用Orbitrap质量分析器采集的。循环时间设置为 2 秒。纳米电喷雾离子源的喷雾电压为2.0 kV,加热的毛细管温度为320°C。在350至1500 m/z范围内以60,000(m/z 200)的高分辨率收集全扫描MS数据。自动增益控制目标为4*10 5 ,动态排除为30 s,强度阈值为5.0*10 4 。从每次MS全扫描中选择母离子,隔离宽度为1.6 m/z,以30%的归一化碰撞能量进行碎裂。对于磷酸肽分析,以 30,000 (m/z 200) 的分辨率采集 MS/MS 数据。自动增益控制目标为1*10 5 ,最大注入时间为54 ms,动态排除为30 s,强度阈值为5.0*10 4 。 对于肽分析,以 15,000 (m/z 200) 的分辨率采集 MS/MS 数据。自动增益控制目标为5*10 4 ;最长进样时间为22 ms。FAIMS的补偿电压设置为-45 V和-65 V。

The enriched N-glycopeptides of sEVs were analyzed on an Easy-nLC 1200 HPLC system (Thermo Fisher Scientific) coupled to an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific). N-glycopeptides were separated with trap column and analytical column mentioned above. The N-glycopeptides were analyzed with 103 min gradient at a flow rate of 300 nL/min (0–11% B, 4 min; 11–22% B, 32 min; 22–32% B, 31 min; 32–42% B, 23 min; 42–95% B, 3 min; 95% B, 10 min). MS data were acquired in data-dependent acquisition mode. The cycle time was set as 3 s. The spray voltage of the nano-electrospray ion source was 2.0 kV and the heated capillary temperature was 320 °C. An MS1 scan was acquired from 350 to 2000 m/z (60,000 resolution, 4e5 AGC) followed by stepped energy HCD MS/MS acquisition of the precursors and detection in the Orbitrap (30, 000 resolution, 5e4 AGC, maximum injection time = 100 ms, stepped collision energy = 25%, 35%, 45%).
在Easy-nLC 1200 HPLC系统(Thermo Fisher Scientific)和Orbitrap Eclipse Tribrid质谱仪(Thermo Fisher Scientific)上分析sEV的富集N-糖肽。N-糖肽用上述陷阱柱和分析柱分离。以 300 nL/min 的流速(0–11% B,4 分钟;11–22% B,32 分钟;22–32% B,31 分钟;32–42% B,23 分钟;42–95% B,3 分钟;95% B,10 分钟)以 103 分钟梯度分析 N-糖肽。MS数据以数据依赖性采集模式采集。循环时间设置为 3 秒。纳米电喷雾离子源的喷雾电压为2.0 kV,加热的毛细管温度为320 °C。 从 350 到 2000 m/z(60,000 分辨率,4e 5 AGC)采集 MS1 扫描,然后采集前驱体的步进能量 HCD MS/MS,并在 Orbitrap 中检测(30, 000 分辨率,5e 4 AGC,最大注入时间 = 100 ms,步进碰撞能量 = 25%、35%、45%)。

MS database searching MS 数据库搜索

For protein or phosphopeptide identification, LC–MS/MS raw data were processed with Proteome Discoverer (PD) (version 2.4.1.15) using SequestHT search engine. The precursor detector node in PD 2.4 was added to reduce the influence of chimeric spectra. The database was UniProt reviewed mouse protein database (updated July 2022) with 17,119 entries and common contaminants. Database searching parameters were set as following: enzyme specificity for trypsin and up to two missed cleavages were allowed, minimum peptide length was 6, and mass tolerance for precursor and fragment ions were set as 10 ppm and 0.02 Da, respectively. Cysteine carbamidomethylation was set as a fixed modification. For peptide identification, methionine oxidation and acetylation at the N-terminal of proteins were set as variable modifications. For phosphopeptide identification, phosphorylation at serine, threonine, tyrosine was also set as variable modifications besides the mentioned two variable modifications. The false discovery rate (FDR) was calculated using Percolator algorithm provided by PD. FDR on peptide and protein levels was 1%. PhosphoRS localization probability for phosphopeptides was set to greater than 0.75[]. Only phosphopeptides with fully-localized sites were regarded as localized phosphopeptides. The number of non-redundant localized phosphopeptides and localized phosphosites were extracted with an in-house python script. The contaminating proteins were excluded from further data analysis.
对于蛋白质或磷酸肽的鉴定,使用SequestHT搜索引擎使用Proteome Discoverer(PD)(版本2.4.1.15)处理LC-MS/MS原始数据。在PD 2.4中增加了前驱体检测器节点,以减少嵌合光谱的影响。该数据库是 UniProt 审查的小鼠蛋白数据库(2022 年 7 月更新),包含 17,119 个条目和常见污染物。数据库检索参数设置如下:允许胰蛋白酶的酶特异性和最多两次漏解,最小肽长度为 6,母离子和碎片离子的质量容差分别设置为 10 ppm 和 0.02 Da。半胱氨酸氨基甲化被设定为固定修饰。对于肽鉴定,蛋白质N端的蛋氨酸氧化和乙酰化被设定为可变修饰。对于磷酸肽的鉴定,除了上述两种可变修饰外,丝氨酸、苏氨酸、酪氨酸的磷酸化也被设定为可变修饰。使用PD提供的渗滤器算法计算错误发现率(FDR),肽和蛋白质水平的FDR为1%。磷酸肽的磷酸化RS定位概率设置为大于0.75[32]。只有具有完全定位位点的磷酸肽才被视为局部磷酸肽。使用内部 python 脚本提取非冗余局部磷酸肽和局部磷酸化位点的数量。污染蛋白被排除在进一步的数据分析之外。

For N-glycopeptide identification, LC-MS/MS raw data were searched with the same database mentioned above using PTMcentric search engine Byonic (version 3.11.3, Protein Metrics) incorporated in PD 2.2. Trypsin was selected as the enzyme and up to two missed cleavages were allowed. Searches were performed with a precursor mass tolerance of 10 ppm and a fragment mass tolerance of 0.02 Da. Cysteine carbamidomethylation was set as static modification. Dynamic modifications included oxidation of methionine residues, deamidation of asparagine and glutamine, and N-glycosylation on asparagine. Oxidation and deamidation were set as “rare” modifications, and N-glycosylation was set as “common” modification. Two rare modifications and one common modification were allowed. Mammalian N-glycan database embedded in Byonic, which contains 309 glycan entities, was used. Results were filtered to 1% protein FDR as set in Byonic parameters, and data was further processed to 1% FDR at the PSM level using the 2D-FDR score (a simple variation of the standard target-decoy strategy that estimates and controls PSM and protein FDRs simultaneously) [, ]. Only N-glycopeptides with Byonic score > 100 and |logProb|> 1 were reported (the absolute value of the log base 10 of the protein p-value). Each N-glycopeptide identified should have the consensus motif N-X-S/T (X ≠ P). This filtering criteria has been reported to result in confident glycosite assignment at glycopeptide spectral match level []. The contaminating proteins were excluded from further data analysis.
对于N-糖肽鉴定,使用PD 2.2中包含的PTM中心搜索引擎Bionic(版本3.11.3,蛋白质指标)使用上述相同数据库检索LC-MS/MS原始数据。选择胰蛋白酶作为酶,最多允许两次遗漏的裂解。在母体质量数公差为10 ppm,片段质量数公差为0.02 Da的情况下进行搜索。 半胱氨酸氨基甲化被设定为静态修饰。动态修饰包括蛋氨酸残基的氧化、天冬酰胺和谷氨酰胺的脱酰胺化以及天冬酰胺的 N-糖基化。氧化和脱酰胺被设定为“罕见”修饰,N-糖基化被设定为“常见”修饰。允许进行两次罕见修改和一次常见修改。使用嵌入在 Byonic 中的哺乳动物 N-聚糖数据库,其中包含 309 个聚糖实体。按照 Byonic 参数中设置的结果过滤至 1% 的蛋白质 FDR,并使用 2D-FDR 评分(同时估计和控制 PSM 和蛋白质 FDR 的标准靶标诱饵策略的简单变体)在 PSM 水平上进一步处理数据至 1% FDR [ 33, 34]。仅报告了 Byonic 评分> 100 且 |logProb|> 1 的 N-糖肽(蛋白质 p 值的对数碱基 10 的绝对值)。鉴定出的每个 N-糖肽都应具有共识基序 N-X-S/T (X ≠ P)。据报道,该过滤标准在糖肽谱匹配水平上可产生可靠的糖位点分配[35]。污染蛋白被排除在进一步的数据分析之外。

Gene ontology and pathway analysis of three proteomic data
3种蛋白质组学数据的基因本体与通路分析

Gene ontology (GO) analysis of three proteomic data (proteome, phosphoproteome, and N-glycoproteome) was performed with Panther GOSlim[], DAVID Bioinformatics Resource [], and ToppCluster []. The hypergeometric statistical test and Benjamini & Hochberg false discovery rate correction were adopted to derive overrepresented functions. The level of significance was set as P ≤ 0.05. Pathway analysis of the three proteomic data was conducted with KEGG database [] and Reactome database []. ECM-receptor interaction network was retrieved from Pathview web (https://pathview.uncc.edu/) []. Uniprot database was used to annotate membrane proteins in the proteome of C2C12 sEVs. TOPCONS (https://topcons.cbr.su.se/) [] was used to predict the number of transmembrane helices (TMs) of the multi-pass membrane proteins.
使用Panther GOSlim[ 36]、DAVID Bioinformatics Resource [ 37]和ToppCluster [ 38]对3个蛋白质组数据(蛋白质组、磷酸化蛋白质组和N-糖蛋白组)进行基因本体分析。采用超几何统计检验和Benjamini & Hochberg错误发现率校正来推导过表示函数。显著性水平设定为P≤0.05。利用KEGG数据库[39]和反应组数据库[40]对3个蛋白质组学数据进行通路分析。ECM-受体相互作用网络取自Pathview web(https://pathview.uncc.edu/)[41]。利用Uniprot数据库对C2C12 sEVs蛋白质组中的膜蛋白进行注释。TOPCONS ( https://topcons.cbr.su.se/) [ 42] 用于预测多通道膜蛋白的跨膜螺旋 (TM) 数量。

Phosphoproteomic analysis of C2C12 sEVs
C2C12 sEVs的磷酸化蛋白质组学分析

Localized phosphosites were mapped in PhosphoSitePlus [] and dbPTM []. GPS5.0 was used to predict kinases responsible for tyrosine phosphosites. The classification of kinases identified in the three proteomic data was performed according to mouse Kinome database [].
在PhosphoSitePlus [ 43] 和 dbPTM [ 44] 中定位了局部磷酸化位点。GPS5.0用于预测酪氨酸磷酸位点的激酶。根据小鼠Kinome数据库[45]对3种蛋白质组学数据中鉴定出的激酶进行分类。

Membrane transporters analysis
膜转运蛋白分析

Membrane transporters identified in the three proteomic data were classified according to the Transporter Classification database (TCDB) []. PTM information was integrated on membrane transporters and presented with circular barplot.
根据转运蛋白分类数据库(TCDB)对3种蛋白质组学数据中鉴定的膜转运蛋白进行分类[46]。PTM信息被整合到膜转运蛋白上,并以圆形条形图呈现。

Ligand-receptor interaction analysis
配体-受体相互作用分析

Ligand-receptor interaction pairs in the three proteomic data of sEVs were retrieved from CellTalkDB (http://tcm.zju.edu.cn/celltalkdb), a manually curated comprehensive database of ligand-receptor interaction pairs in humans and mice []. The classification of ligands and receptors was on the basis of annotation of Uniprot database. The ligand-receptor interactions were constructed with Hierarchical Edge Bundling R Graph (https://r-graph-gallery.com/310-custom-hierarchical-edge-bundling.html). PTM information was integrated on the ligands and receptors with Adobe illustrator.
sEV的三个蛋白质组学数据中的配体-受体相互作用对是从CellTalkDB(http://tcm.zju.edu.cn/celltalkdb)中检索的,CellTalkDB是一个手动策划的人类和小鼠配体-受体相互作用对的综合数据库[47]。配体和受体的分类基于Uniprot数据库的注释。配体-受体相互作用是用Hierarchical Edge Bundling R Graph(https://r-graph-gallery.com/310-custom-hierarchical-edge-bundling.html)构建的。PTM信息与Adobe illustrator整合在配体和受体上。

Results 结果

Characterization of C2C12 myoblasts-derived sEVs
C2C12成肌细胞衍生sEV的表征

To isolate sEVs from C2C12 myoblasts, cells were incubated in EVs-free FBS medium for 48 h and sEVs were isolated from cell-conditioned medium by a standard ultracentrifugation-based method []. Then, the morphology, size feature, and purity of C2C12 myoblasts-derived sEVs were characterized with different techniques. First, the morphology of sEVs was evaluated by TEM, which showed that the purified vesicles were membrane bound, round and heterogeneous in size (Fig. 1A). NTA result showed that the size of sEVs distributed around 100 nm with center at 102.5 nm, and the majority of sEVs were sized < 200 nm in diameter (Fig. 1B), which is consistent with previous observed size of exosomes from C2C12 myoblasts []. Western blotting analysis revealed that sEVs marker proteins (ALIX, TSG101, and CD9) were enriched in the sEVs samples compared with that of cells. HSP90 was exclusively present in cells and the abundance of GAPDH was remarkably higher in cells than that of sEVs (Fig. 1C). These results demonstrated a selective enrichment of sEVs from C2C12 myoblasts cell culture conditioned media.
为了从C2C12成肌细胞中分离sEV,将细胞在无EVs的FBS培养基中孵育48小时,并通过基于标准超速离心的方法从细胞条件培养基中分离sEV[30]。然后,采用不同技术对C2C12成肌细胞来源的sEVs的形貌、大小特征和纯度进行表征。首先,通过透射电镜评估sEVs的形貌,结果表明纯化的囊泡是膜结合的,圆形且大小不均一(图1A)。NTA结果显示,sEVs的大小分布在100 nm左右,中心在102.5 nm处,大多数sEV的直径<200 nm(图1B),这与之前观察到的C2C12成肌细胞外泌体的大小一致[48]。Western blotting分析显示,sEVs标记蛋白(ALIX、TSG101和CD9)在sEVs样品中富集,与细胞相比。HSP90仅存在于细胞中,细胞中GAPDH的丰度明显高于sEV(图1C)。这些结果表明,C2C12成肌细胞培养条件培养基中sEVs的选择性富集。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig1_HTML.jpg

The characterization of C2C12 myoblasts-derived sEVs. A TEM image of sEVs isolated from the culture medium of C2C12 myoblasts. The scale bar represents 50 nm. B NTA results of C2C12 myoblasts-derived sEVs. The histogram represents the particle size distribution. C Western blot analysis of protein level in the TCL and sEVs of C2C12 myoblasts. Four replicates of sEVs and TCL proteins were analyzed. TCL, total cell lysate
C2C12 成肌细胞衍生的 sEV 的表征。从 C2C12 成肌细胞培养基中分离出的 sEV 的 TEM 图像。比例尺表示 50 nm。C2C12 成肌细胞衍生的 sEV 的 B NTA 结果。直方图表示粒径分布。C C2C12成肌细胞TCL和sEVs蛋白水平的蛋白质印迹分析。分析了 sEV 和 TCL 蛋白的 4 个重复。TCL,总细胞裂解物

Proteomic analysis of sEVs from C2C12 myoblasts
C2C12成肌细胞sEV的蛋白质组学分析

To characterize the cargos in C2C12 myoblasts-derived sEVs, we conducted a comprehensive analysis of proteins, phosphoproteins, and N-glycoproteins with LC–MS/MS. Proteins from three biological replicates of sEVs samples were digested into peptides. For each biological replicate, two technical replicates of LC–MS/MS analyses were performed. In this way, six LC–MS/MS data were obtained for each proteomic or PTMomic analysis.
为了表征 C2C12 成肌细胞衍生的 sEV 中的货物,我们使用 LC-MS/MS 对蛋白质、磷蛋白和 N-糖蛋白进行了全面分析。 将来自 sEV 样品的三个生物学重复的蛋白质消化成肽。对于每个生物学重复,进行两次LC-MS/MS分析的技术重复。通过这种方式,每个蛋白质组学或PTMomic分析都获得了6个LC-MS/MS数据。

At the proteome level, 2024 proteins were identified in C2C12 sEVs (Table S1). sEVs proteins were categorized with GO biological process (GOBP), GO cellular component (GOCC), and GO molecular function (GOMF) using GOSlim in Panther (Fig. 2A). GOBP overrepresentation analysis revealed that sEVs proteins were enriched with vesicle structure- and vesicle biogenesis-related biological processes, such as cellular localization, protein localization, intracellular transport, protein transport, and vesicle-mediated transport, which is consistent with the role of sEVs as a means of transport. Cytosol, vesicle, and endosome were the most highly represented terms in GOCC overrepresentation analysis of sEVs proteins. Certain functional activities, such as binding activities (protein-containing complex binding, nucleotide binding), were overrepresented in sEVs, suggesting that sEVs exert their functions with binding with other functional molecules.
在蛋白质组水平上,在 C2C12 sEV 中鉴定出 2024 种蛋白质(表 S 1)。在Panther中使用GOSlim对sEVs蛋白进行GO生物过程(GOBP),GO细胞成分(GOCC)和GO分子功能(GOMF)分类(图2A)。GOBP过表达分析显示,sEVs蛋白富集囊泡结构和囊泡生物发生相关生物过程,如细胞定位、蛋白质定位、细胞内转运、蛋白质转运和囊泡介导的转运,这与sEVs作为转运手段的作用一致。胞质溶胶、囊泡和内体是 sEVs 蛋白 GOCC 过表达分析中代表性最强的术语。某些功能活性,如结合活性(含蛋白质复合物结合、核苷酸结合)在 sEV 中被过度表达,表明 sEV 通过与其他功能分子结合发挥其功能。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig2_HTML.jpg

Proteomic analysis of C2C12 myoblasts-derived sEVs. A Analysis of the proteome of sEVs with GOCC, GOBP, and GOMF. B Reactome pathway analysis of the proteome of sEVs. C The classification of membrane proteins identified in sEVs. TMs, transmembrane helices
C2C12 成肌细胞衍生的 sEV 的蛋白质组学分析。具有 GOCC、GOBP 和 GOMF 的 sEV 蛋白质组分析。B sEVs蛋白质组的反应组通路分析。C 在sEV中鉴定的膜蛋白的分类。TMs,跨膜螺旋

Top10 Reactome pathways in the proteome of sEVs are shown in Fig. 2B. Endosomal sorting complexes required for transport (ESCRT), signaling by MET, and axon guidance were the most represented pathways in sEVs. ESCRT protein complex is required for both the formation of MVB vesicles and the sorting of cargos into vesicles [], while MET signaling and axon guidance are signaling pathways specifically reported in sEVs of C2C12 myoblasts.
sEVs蛋白质组中的Top10反应组途径如图2B所示。转运所需的内体分选复合物 (ESCRT)、MET 信号传导和轴突引导是 sEV 中最具代表性的通路。ESCRT蛋白复合物是MVB囊泡形成和将货物分选到囊泡中所必需的[49],而MET信号转导和轴突引导是在C2C12成肌细胞的sEV中特异性报道的信号通路。

As we have published a comprehensive proteomic and phosphoproteomic analysis of C2C12 myoblasts, in which 7827 proteins were identified [], we compared the proteomes of cells and sEVs of C2C12 myoblasts. First, the number of proteins identified in sEVs was about 1/4 of that of cells, which suggested that a specific subpopulation of proteins from the cells of origin is sorted into sEVs. Second, most of proteins (1757/2024 proteins) identified in sEVs proteome were also identified in the proteome of cells, suggesting that the abundance of proteins, instead of types of proteins, accounts for the major difference of the proteomes of sEVs and cells. Furthermore, 267 proteins were exclusively identified in the proteome of sEVs (Figure S1A). GOCC analysis of these sEVs-specific proteins revealed that they were mainly from extracellular region, extracellular space, membrane, and cell surface (Figure S1B), indicating that sEVs were enriched of secreted proteins and membrane proteins. Then, we compared the proteomes of cells and sEVs with GO. GOBP analysis showed that different biological processes were overrepresented in the cells and sEVs. Vesicle structure-and vesicle biogenesis-related biological processes were overrepresented in sEVs (Fig. 2A), while different metabolic processes and organelle organization were overrepresented in the proteome of cells (Figure S1C). For GOCC analysis, cytosol and vesicles were overrepresented in sEVs (Fig. 2A), while organelle, cytoplasm, and nucleus were overrepresented in the proteome of cells (Figure S1C). These results indicated that sEVs contain a specific subpopulation of proteins, which might play specific functions for sEVs.
由于我们发表了对C2C12成肌细胞的综合蛋白质组学和磷酸化蛋白质组学分析,其中鉴定了7827种蛋白质[50],我们比较了细胞的蛋白质组和C2C12成肌细胞的sEV。首先,在sEV中鉴定出的蛋白质数量约为细胞的1/4,这表明来自来源细胞的特定蛋白质亚群被分类到sEV中。其次,在sEVs蛋白质组中鉴定出的大多数蛋白质(1757/2024个蛋白质)也在细胞的蛋白质组中鉴定出来,这表明蛋白质的丰度,而不是蛋白质的类型,是sEVs和细胞蛋白质组的主要差异。此外,在sEV的蛋白质组中专门鉴定了267种蛋白质(图S 1A)。对这些sEVs特异性蛋白的GOCC分析显示,它们主要来自细胞外区域、细胞外空间、细胞膜和细胞表面(图S 1B),表明sEVs富集了分泌蛋白和膜蛋白。然后,我们将细胞和sEV的蛋白质组与GO进行了比较。GOBP分析表明,不同的生物过程在细胞和sEV中被过度表达。囊泡结构和囊泡生物发生相关的生物过程在sEV中过高(图2A),而不同的代谢过程和细胞器组织在细胞蛋白质组中过高(图S 1C)。对于GOCC分析,细胞质和囊泡在sEV中过高(图2A),而细胞器、细胞质和细胞核在细胞蛋白质组中过高(图S 1C)。这些结果表明,sEVs含有特定的蛋白质亚群,这些蛋白质亚群可能对sEVs起特定功能。

Since sEVs enriched of secreted proteins, we predicted classical secreted proteins in the proteome of sEVs with the workflow described previously []. 200 classical secreted proteins were identified in the proteome of sEV (Table S2). Functional analysis of these secreted proteins revealed that they were mainly involved in extracellular matrix organization, cell adhesion, and collagen fibril organization. They also participated in pathways of regulation of insulin-like growth factor transport and uptake by IGFBPs, and post-translational protein phosphorylation (Figure S1D), suggesting that these secreted proteins take part in signaling through post-translational protein phosphorylation.
由于sEV富集了分泌蛋白,我们用前面描述的工作流程预测了sEV蛋白质组中的经典分泌蛋白[51]。在sEV的蛋白质组中鉴定出200种经典分泌蛋白(表S 2)。对这些分泌蛋白的功能分析表明,它们主要参与细胞外基质组织、细胞粘附和胶原纤维组织。它们还参与了IGFBP调节胰岛素样生长因子转运和摄取的途径,以及翻译后蛋白质磷酸化(图S 1D),表明这些分泌的蛋白质通过翻译后蛋白质磷酸化参与信号传导。

As membrane proteins have important functions in numerous cellular processes, such as signal transduction, cell-to-cell interaction, cell-to-matrix interaction, membrane trafficking, and transmembrane transport of ions, metabolites and proteins, we annotated the proteome of sEVs with Uniprot database, and found that there was a remarkable number of membrane proteins. 737 proteins were annotated as membrane proteins (Table S3), accounting for 36.4% of the total proteins identified in sEVs. This percentage is equivalent to the estimated percentage of membrane proteins in cell culture medium-derived EVs (34%) [].
由于膜蛋白在信号转导、细胞间相互作用、细胞间相互作用、细胞间相互作用、膜运输以及离子、代谢物和蛋白质的跨膜转运等众多细胞过程中具有重要功能,因此我们用Uniprot数据库对sEVs的蛋白质组进行了注释,发现膜蛋白的数量非常显著。737 种蛋白质被注释为膜蛋白(表 S 3),占 sEV 中鉴定的总蛋白质的 36.4%。该百分比相当于细胞培养基衍生EV中膜蛋白的估计百分比(34%)[52]。

According to intramolecular arrangement and position in the cell, membrane proteins are generally classified into six types: single-pass type I membrane protein, single-pass type II membrane protein, multi-pass membrane protein, lipid-anchored membrane protein, glycosylphosphatidylinositol (GPI)-anchored membrane protein, and peripheral membrane protein []. We classified the 737 membrane proteins into four types according to the annotation in Uniprot database: single-pass membrane protein, lipid-/GPI-anchored membrane protein, peripheral membrane protein, and multi-pass membrane protein. The percentage of single-pass membrane proteins, peripheral membrane proteins, multi-pass membrane proteins, and lipid-/GPI-anchored membrane proteins of all membrane proteins is 38%, 23%, 24%, and 15%, respectively (Fig. 2C). The high percentage of GPI-anchored proteins is in agreement with previous observation that GPI-anchored proteins are enriched in exosomes/EVs []. These proteins might perform or mediate diverse cellular functions of EVs, such as signal transduction and cell adhesion []. Then, we predicted TMs of the multi-pass membrane proteins and found that about 1/4 multi-pass membrane proteins had four TMs (Fig. 2C), including some tetraspanins (TSPANs) (CD9, CD63, CD81, CD151, Tspan 2–9, Tspan 14–15). The enrichment of TSPANs in sEVs probably because TSPANs can form TSPAN-complexes/ TSPAN web with other TSPANs, integrins or signaling receptors, which locate in TSPAN-enriched microdomain, and play important roles in biogenesis of exosomes, sorting proteins into sEVs, and contribute to target cell selection and uptake [, ].
根据分子内排列和在细胞中的位置,膜蛋白一般分为6种类型:单程I.型膜蛋白、单程II.型膜蛋白、多程膜蛋白、脂质锚定膜蛋白、糖基磷脂酰肌醇(GPI)锚定膜蛋白和外周膜蛋白[53]。根据Uniprot数据库的注释,将737种膜蛋白分为4种类型:单程膜蛋白、脂质/GPI锚定膜蛋白、外周膜蛋白和多程膜蛋白。在所有膜蛋白中,单程膜蛋白、外周膜蛋白、多程膜蛋白和脂质/GPI锚定膜蛋白的百分比分别为38%、23%、24%和15%(图2C)。GPI锚定蛋白的高百分比与先前的观察结果一致,即GPI锚定蛋白富集于外泌体/EV中[54]。这些蛋白质可能执行或介导EV的各种细胞功能,例如信号转导和细胞粘附[55]。然后,我们预测了多通道膜蛋白的TM,发现大约1/4的多通道膜蛋白有四个TM(图2C),包括一些四跨膜蛋白(TSPAN)(CD9、CD63、CD81、CD151、Tspan 2-9、Tspan 14-15)。TSPANs在sEVs中的富集可能是因为TSPANs可以与其他TSPANs、整合素或信号受体形成TSPAN复合物/TSPAN网,它们位于TSPAN富集的微结构域中,在外泌体的生物发生中发挥重要作用,将蛋白质分类为sEVs,并有助于靶细胞的选择和摄取[56,57]。

In summary, the proteome of C2C12 sEVs is different from that of cells on the basis of GO and pathway analysis. A high percentage of membrane proteins was identified in sEVs, which is in agreement with the concept that sEVs share the same plasma membrane with their parent cells.
综上所述,基于GO和通路分析,C2C12 sEVs的蛋白质组与细胞的蛋白质组不同。在sEV中鉴定出高比例的膜蛋白,这与sEV与其亲本细胞共享同一质膜的概念一致。

Phosphoproteomic analysis of sEVs from C2C12 myoblasts
C2C12成肌细胞sEV的磷酸化蛋白质组学分析

We performed phosphoproteomic analysis of sEV samples with six LC–MS/MS analyses. 4890 phosphopeptides (including 4088 phosphopeptides with localized phosphosites), 3429 unique phosphosites, and 1434 phosphoproteins were identified in sEVs of C2C12 myoblasts (Fig. 3A; Table S4). The in-house python script for phosphoproteomic analysis is also provided in Table S4.
我们通过六次LC-MS/MS分析对sEV样品进行了磷酸化蛋白质组学分析。在 C2C12 成肌细胞的 sEV 中鉴定出 4890 个磷酸肽(包括 4088 个具有局部磷酸位点的磷酸肽)、3429 个独特磷酸位点和 1434 个磷蛋白(图 3A;表S 4)。表 S 4 中还提供了用于磷酸化蛋白质组学分析的内部 python 脚本。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig3_HTML.jpg

Phosphoproteomic analysis of C2C12 myoblasts-derived sEVs. A Phosphoproteomic results of sEVs of C2C12 myoblasts. B Reactome pathway analysis of phosphoproteins identified in sEVs. C The number and distribution of newly-identified phosphosites in sEVs. D Phosphosites identified on Alix, a marker protein of sEVs. E Comparison of the distribution of phosphosites in sEVs and cells. F Reactome pathway analysis of tyrosine-phosphorylated proteins in sEVs
C2C12 成肌细胞衍生的 sEV 的磷酸化蛋白质组学分析。A C2C12成肌细胞sEV的磷酸化蛋白质组学结果。B sEVs中鉴定的磷蛋白的反应组通路分析。C sEV中新发现的磷酸位点的数量和分布。D 在 sEV 的标记蛋白 Alix 上鉴定出的磷酸化位点。E sEVs和细胞中磷酸化位点分布的比较。F sEVs中酪氨酸磷酸化蛋白的反应组通路分析

First, we compared the phosphoproteomes of sEVs and cells []. The overlap of phosphoproteins with localized phosphosites in C2C12 cells and sEVs was high. About 70% phosphoproteins identified in sEVs were also identified in cells (Figure S2A), which is similar to the proteomes of sEVs and cells. However, 409 phosphoproteins were specifically identified in the phosphoproteome of sEVs. GOCC analysis revealed that these sEV-specific phosphoproteins mainly localized in membrane, endosome, and cell surface (Figure S2B). GOBP analysis of the phosphoproteomes of sEVs and cells showed that distinct biological processes were enriched in sEVs and cells. Biological processes of protein phosphorylation, cell migration, endocytosis, and cell adhesion were enriched in the phosphoproteome of sEVs, while biological processes of chromatin, cell cycle, mRNA processing, and RNA splicing were overrepresented in the phosphoproteome of cells (Figure S2C). Cytoplasm, membrane, endosome, and plasma membrane were the most highly represented GOCC terms in the phosphoproteome of sEVs, while nucleus, cytoplasm, cytosol, and cytoskeleton were enriched in the phosphoproteome of cells (Figure S2D). Focal adhesion, proteoglycans in cancer, endocytosis, axon guidance, and regulation of actin cytoskeleton were among the top 10 enriched KEGG pathways in the phosphoproteome of sEVs, while spliceosome, proteoglycans in cancer, adherens junction, and cell cycle were among the top 10 enriched KEGG pathways in the phosphoproteome of cells (Figure S2E). Reactome pathway analysis of phosphoproteins in sEVs revealed that cell–cell communication, signaling by VEGF, EPH-Ephrin signaling, axon guidance, signaling by Rho GTPases, and signaling by Rho receptor tyrosine kinases were enriched in sEVs (Fig. 3B), suggested that phosphoproteins in sEVs might play specific roles in different signaling pathways in C2C12 myoblasts.
首先,我们比较了sEV和细胞的磷酸化蛋白质组[50]。C2C12细胞和sEV中磷蛋白与局部磷酸位点的重叠度很高。在sEV中鉴定出的约70%的磷蛋白也在细胞中鉴定(图S 2A),这与sEV和细胞的蛋白质组相似。然而,在 sEV 的磷酸化蛋白质组中特异性鉴定了 409 种磷蛋白。GOCC分析显示,这些sEV特异性磷蛋白主要定位于膜、内体和细胞表面(图S 2B)。对sEVs和细胞的磷酸化蛋白质组进行GOBP分析表明,sEVs和细胞中富集了不同的生物过程。蛋白质磷酸化、细胞迁移、内吞作用和细胞粘附等生物学过程在sEV的磷酸化蛋白质组中富集,而染色质、细胞周期、mRNA加工和RNA剪接的生物学过程在细胞的磷酸化蛋白质组中被过度表达(图S 2C)。细胞质、膜、内体和质膜是sEVs磷酸化蛋白质组中最具代表性的GOCC术语,而细胞核、细胞质、胞质和细胞骨架在细胞的磷酸化蛋白质组中富集(图S 2D)。黏着斑、癌症中的蛋白聚糖、内吞作用、轴突引导和肌动蛋白细胞骨架的调节是 sEV 磷酸化蛋白质组中前 10 个富集的 KEGG 通路之一,而剪接体、癌症中的蛋白聚糖、粘附连接和细胞周期是细胞磷酸化蛋白质组中前 10 个富集的 KEGG 通路之一(图 S 2E)。sEVs中磷蛋白的反应组通路分析显示,sEVs富集了细胞间通讯、VEGF信号传导、EPH-Eph蛋白信号传导、轴突引导、Rho GTP酶信号传导和Rho受体酪氨酸激酶信号传导(图1)。 3B),表明sEV中的磷蛋白可能在C2C12成肌细胞的不同信号通路中发挥特定作用。

Detailed analysis of phosphoproteins revealed that about half of phosphoproteins in sEVs had at least two phosphosites (Figure S3A). Some important phosphoproteins in sEVs were identified with a high number of phosphosites. For example, 25 phosphosites, including 15 pS, 8 pT, and 2 pY, were identified in Tight junction protein ZO-1 (Tjp1), an important cell adhesion protein in sEVs.
对磷蛋白的详细分析表明,sEV中大约一半的磷蛋白至少具有两个磷酸位点(图S 3A)。sEV中的一些重要磷蛋白被鉴定出具有大量的磷酸位点。例如,在 sEV 中重要的细胞粘附蛋白 ZO-1 (Tjp1) 中鉴定出 25 个磷酸化位点,包括 15 个 pS、8 个 pT 和 2 个 pY。

At the level of phosphosite, 172 phosphosites (about 5% of phosphosites identified) in sEVs were novel (not described in two comprehensive PTM databases–PhosphositePlus and dbPTM). About 40% of these novel phosphosites were on threonine and tyrosine (Fig. 3C). Alix (programmed cell death 6-interacting protein), a frequently used marker of sEVs, was identified with 13 phosphosites, among which four phosphothreonine sites were not reported previously (Fig. 3D). Since Alix is an accessory ESCRT protein and plays some roles in ESCRT-mediated protein sorting [], these novel phosphothreonine sites on Alix might provide us some clues about its role in sEVs.
在磷酸位点水平上,sEV中的172个磷酸位点(约占已鉴定磷酸位点的5%)是新的(在两个全面的PTM数据库(PhosphositePlus和dbPTM)中未描述)。这些新型磷酸化位点中约有40%位于苏氨酸和酪氨酸上(图3C)。Alix(程序性细胞死亡 6 相互作用蛋白)是 sEV 的常用标志物,鉴定有 13 个磷酸位点,其中 4 个磷酸苏氨酸位点以前未报道 (Fig. 3D)。由于Alix是一种辅助ESCRT蛋白,在ESCRT介导的蛋白质分选中起着一定的作用[58],Alix上的这些新的磷酸苏氨酸位点可能为我们提供了一些关于其在sEV中的作用的线索。

Phosphorylation pattern of sEVs was considerably different from that of cells. The sEVs-derived phosphoproteome had a high level of tyrosine (Y)-phosphorylated sites (2.89% vs 1.06% in cellular phosphoproteome) (Fig. 3E). Reactome pathway analysis of these tyrosine-phosphorylated proteins revealed that they were enriched in EPH-Ephrin signaling pathway (Fig. 3F), which is consistent with previous report []. An integrated EPH-Ephrin signaling network in sEVs, including tyrosine-phosphoproteins, tyrosine kinases predicted from GPS5.0, and phosphorylation sites, was constructed from STRING (Figure S3B).
sEVs的磷酸化模式与细胞的磷酸化模式有很大不同。sEVs衍生的磷酸化蛋白质组具有高水平的酪氨酸(Y)磷酸化位点(2.89%对细胞磷酸化蛋白质组中的1.06%)(图3E)。对这些酪氨酸磷酸化蛋白的反应组通路分析显示,它们富集于EPH-Ephrin信号通路(图3F),这与先前的报道一致[59]。从 STRING 构建了 sEV 中的集成 EPH-Ephrin 信号网络,包括酪氨酸-磷蛋白、从 GPS5.0 预测的酪氨酸激酶和磷酸化位点(图 S 3B)。

In summary, phosphorylation pattern of sEVs differs from that of cells. However, this phosphorylation pattern is in agreement with sEVs from other sources, suggesting that phosphorylation on tyrosine plays some roles in the formation and function of sEVs.
总之,sEV的磷酸化模式与细胞的磷酸化模式不同。然而,这种磷酸化模式与其他来源的 sEV 一致,表明酪氨酸的磷酸化在 sEV 的形成和功能中起着一定的作用。

N-glycoproteomic analysis of sEVs from C2C12 myoblasts
C2C12成肌细胞sEVs的N-糖蛋白质组学分析

N-Glycoproteins decorate cell surface and are released in the extracellular milieu, and play an essential role in cell-to-cell communication. It has reported that EVs are enriched in glycoconjugates (glycoproteins, glycosphingolipids, and protepglycans) and exhibit specific glycosignature []. In this study, we conducted N-glycoproteomic analysis of sEVs by enrichment of N-glycopeptides with ZIC-HILIC. From six LC–MS/MS analyses of N-glycopeptides, we documented a total number of 8764 intact N-glycopeptides composed of 770 N-glycosites and 278 glycan composition from 267 N-glycoproteins in sEVs of C2C12 myoblasts (Fig. 4A; Table S5).
N-糖蛋白修饰细胞表面并在细胞外环境中释放,并在细胞间通讯中起着至关重要的作用。据报道,EV富含糖缀合物(糖蛋白、鞘糖脂和蛋白聚糖)并表现出特异性糖特征[23]。在这项研究中,我们通过用 ZIC-HILIC 富集 N-糖肽对 sEV 进行了 N-糖蛋白组学分析。通过对 N-糖肽的六次 LC-MS/MS 分析,我们记录了 C2C12 成肌细胞 sEV 中由 770 个 N-糖位点组成的 8764 个完整 N-糖肽和 267 个 N-糖蛋白组成的 278 个聚糖组成(图 4A;表S 5)。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig4_HTML.jpg

N-glycoproteomic analysis of C2C12 myoblasts-derived sEVs. A The number of N-glycoproteins, intact N-glycopeptides, N-glycosites, and glycan composition identified in sEVs. B Reactome pathway analysis of N-glycoproteome of sEVs. C The distribution of the number of N-glycosites on glycoproteins in sEVs. D Top10 N-glycans detected on glycoproteins of sEVs based on the numbers of their modified N-glycosites. E Distribution of N-glycan subtypes from intact glycopeptides identified in sEVs. F Distribution of N-glycans with or without sialic acids (S and G). S, N-Acetylneuraminic acid (Neu5Ac); G, N-Glycolylneuraminic acid (Neu5Gc)
C2C12 成肌细胞衍生的 sEV 的 N-糖蛋白质组学分析。A 在 sEV 中鉴定的 N-糖蛋白、完整 N-糖肽、N-糖位点和聚糖组成的数量。B sEVs的N-糖蛋白组的反应组通路分析。C sEVs中糖蛋白上N-糖位点数量的分布。D 根据其修饰的 N-糖位数在 sEV 的糖蛋白上检测到的 Top10 N-聚糖。E 来自 sEV 中鉴定的完整糖肽的 N-聚糖亚型的分布。F 含或不含唾液酸(S 和 G)的 N-聚糖的分布。S,N-乙酰神经氨酸(Neu5Ac);G,N-羟乙基神经氨酸(Neu5Gc)

First, we performed GO analysis of N-glycoproteins of sEVs (Figure S4A). GOCC analysis showed that N-glycoproteins were mainly from cell surface, membrane, extracellular space, extracellular region, and basement membrane. Biological processes predominantly associated with N-glycoproteins were cell adhesion, cell–matrix adhesion, and cell migration, indicating that N-glycoproteins in sEVs mainly participate in cell adhesion and cell migration. Certain binding activities, including integrin binding, collagen binding, laminin binding, calcium binding, receptor binding, were significantly overrepresented in N-glycoproteome of sEVs. Reactome pathway analysis revealed that several pathways, including signaling by receptor tyrosine kinases, extracellular matrix organization, signaling by MET, integrin interactions, and laminin interactions were overrepresented in N-glycoproteome of sEVs (Fig. 4B).
首先,我们对sEV的N-糖蛋白进行了GO分析(图S 4A)。GOCC分析显示,N-糖蛋白主要来源于细胞表面、细胞膜、细胞外空间、细胞外区和基底膜。与N-糖蛋白相关的生物学过程主要为细胞粘附、细胞-基质粘附和细胞迁移,表明sEV中的N-糖蛋白主要参与细胞粘附和细胞迁移。某些结合活性,包括整合素结合、胶原结合、层粘连蛋白结合、钙结合、受体结合,在 sEV 的 N-糖蛋白组中显着过高。反应组通路分析显示,几种通路,包括受体酪氨酸激酶的信号传导、细胞外基质组织、MET 信号传导、整合素相互作用和层粘连蛋白相互作用在 sEV 的 N-糖蛋白组中过度表达(图 4B)。

Detailed analysis of N-glycoproteins in sEVs revealed that more than 60% N-glycoproteins contained at least two N-glycosites (Figure S4B). On average, three N-glycosites were identified on the glycosylated sEV proteins. Some important proteins, which mediate the attachment, migration and organization of cells, were identified as heavily-glycosylated proteins. 29, 22, and 15 N-glycosites were identified on Prolow-density lipoprotein receptor-related protein 1 (LRP1), laminin subunit alpha 5 (LAMA5), and laminin subunit alpha 2 (LAMA2), respectively (Fig. 4C), which suggests glycosylation on proteins in sEVs plays important role in cell adhesion and migration.
对sEV中N-糖蛋白的详细分析显示,超过60%的N-糖蛋白含有至少两种N-糖位(图S 4B)。平均而言,在糖基化的sEV蛋白上鉴定出3个N-糖位点。一些介导细胞附着、迁移和组织的重要蛋白质被鉴定为重糖基化蛋白质。分别在低密度脂蛋白受体相关蛋白 1 (LRP1)、层粘连蛋白亚基 α 5 (LAMA5) 和层粘连蛋白亚基 α 2 (LAMA2) 上鉴定出 29、22 和 15 个 N-糖位点(图 4C),这表明 sEV 中蛋白质的糖基化在细胞粘附和迁移中起重要作用。

At the level of glycoform, 6474 glycoforms were identified on 770 N-glycosites of glycoproteins. About 28% N-glycosites had only one glycoform, while 72% N-glycosites had at least two glycoforms. On average, 8.4 glycoforms existed on one N-glycosite, indicating complex micro-heterogeneity of glycosylation on glycoproteins of sEVs (Figure S4C). Some N-glycoproteins in sEVs displayed a highly diverse microheterogeneity. For example, 119 glycoforms were identified on glycosite N316 of lactadherin protein (MFGE8), a peripheral surface protein that binds to phosphatidylserine in the outer leaflet of exosomes [].
在糖型水平上,在 770 个糖蛋白的 N-糖位上鉴定出 6474 个糖型。大约 28% 的 N-糖位只有一种糖型,而 72% 的 N-糖位至少具有两种糖型。平均而言,一个N-糖位上存在8.4个糖型,表明sEV糖蛋白上的糖基化具有复杂的微异质性(图S 4C)。sEV中的一些N-糖蛋白表现出高度多样化的微异质性。例如,在乳粘蛋白(MFGE8)的糖位N316上鉴定出119种糖型,MFGE8是一种外周表面蛋白,与外泌体外叶中的磷脂酰丝氨酸结合[60]。

At the level of N-glycan, top10 glycan structures appeared at different N-glycosites were high-mannose glycans and complex glycans (Fig. 4D). For the 278 N-glycans, the majority of glycans were complex glycans (81.7%) (Fig. 4E), which is in agreement with previous observation that complex N-linked glycans serve as key determination of glycoprotein sorting into EVs[]. Detailed analysis of the composition of glycans revealed that most of N-glycans contained at least one sialic acid: Neu5Ac (S) or Neu5Gc (G) (Fig. 4F). Sialylation plays a critical role in cell recognition, cell adhesion, and cell signaling. It has reported that sialic acids are enriched in exosomes from mesenchymal stem cells compared with cell membranes and sialic acids on exosomes promoted the interaction between exosomes and cells []. EV sialylation also seems to play a role during EV uptake by recipient cells []. We speculate that the enrichment of sialic acids in the sEVs of C2C12 myoblasts would be related to sialic acid-mediated uptake of sEVs by target cells.
在N-聚糖水平上,出现不同N-糖位的top10聚糖结构是高甘露糖聚糖和复合聚糖(图4D)。对于278种N-聚糖,大多数聚糖是复合聚糖(81.7%)(图4E),这与先前的观察结果一致,即复合N-连接聚糖是糖蛋白分选为EV的关键决定[22]。对聚糖组成的详细分析表明,大多数N-聚糖至少含有一种唾液酸:Neu5Ac(S)或Neu5Gc(G)(图4F)。唾液酸化在细胞识别、细胞粘附和细胞信号传导中起着关键作用。据报道,与细胞膜相比,间充质干细胞的外泌体富含唾液酸,外泌体上的唾液酸促进了外泌体与细胞之间的相互作用[61]。EV唾液酸化似乎也在受体细胞摄取EV的过程中发挥作用[62]。我们推测 C2C12 成肌细胞 sEV 中唾液酸的富集与唾液酸介导的靶细胞对 sEV 的摄取有关。

The surface of EVs is enriched with glycoproteins. CD63, a widely known marker of sEVs, was identified with three N-glycosites (N130, N150, and N172), which is in agreement with previous result []. The three N-glycosites located on the large extracellular loop of CD63 [] and glycosylation of CD63 plays critical role in mediating its interaction with other proteins [, ]. The three N-glycosites of CD63 displayed a high degree of glycan heterogeneity. 55 glycans existed on the three N-glycosites. Glycosylation micro-heterogeneity on each N-glycosite of CD63 is shown in Figure S4D. Besides that, CD82 was identified to be glycosylated on N157. It has reported that glycosylation of CD82 at N157 is necessary for CD82-mediated inhibition of ovarian cancer cells migration and metastasis[]. Except CD63 and CD82, another six TSPANs including TSPAN3, TSPAN6, TSPAN9, TSPAN14, TSPAN15, and CD151 were also identified as glycoproteins.
EV的表面富含糖蛋白。CD63是一种广为人知的sEV标志物,与3个N-糖位(N130、N150和N172)鉴定一致,与先前的结果一致[63]。位于CD63大细胞外环上的三个N-糖位[64]和CD63的糖基化在介导其与其他蛋白质的相互作用中起着关键作用[63,65]。CD63的3个N-糖位表现出高度的聚糖异质性。3 个 N-糖位上存在 55 种聚糖。CD63的每个N-糖位的糖基化微异质性如图S 4D所示。除此之外,CD82 被鉴定为在 N157 上糖基化。据报道,CD82在N157位点的糖基化是CD82介导的抑制卵巢癌细胞迁移和转移所必需的[66]。除CD63和CD82外,TSPAN3、TSPAN6、TSPAN9、TSPAN14、TSPAN15和CD151等另外6个TSPAN也被鉴定为糖蛋白。

Integrated analysis of the three proteomes of sEVs from C2C12 myoblasts
C2C12成肌细胞sEVs的三种蛋白质组的综合分析

We performed a comparative and integrated analysis of the three proteomes (proteome, phosphoproteome, N-glycoproteome) of sEVs. In total, 2780 proteins were identified in the three proteomes of C2C12 myoblast sEVs (Table S6). The overlap of proteins identified in the three proteomes is shown in Fig. 5A. 70% proteins were identified in only one proteome, suggesting that integrated proteomic and PTMomic analyses could expand the identification of cargos in sEVs. Next, we compared our dataset with Vesiclepedia database [] (http://microvesicles.org/, accessed on 20 September 2022), which included 4937 genes of encoding exosomal proteins. 1779 proteins identified in our dataset were overlapped with Vesiclepedia database (Figure S5A) and 90 of the top100 EV proteins in Vesiclepedia database were identified in our dataset (Figure S5B), indicating a good enrichment of EV proteins.
我们对sEV的三种蛋白质组(蛋白质组、磷酸化蛋白质组、N-糖蛋白组)进行了比较和综合分析。在C2C12成肌细胞sEV的三个蛋白质组中总共鉴定出2780种蛋白质(表S 6)。在三个蛋白质组中鉴定出的蛋白质重叠如图5A所示,仅在一个蛋白质组中鉴定出70%的蛋白质,这表明综合蛋白质组学和PTM组学分析可以扩大sEV中货物的鉴定。接下来,我们将我们的数据集与 Vesiclepedia 数据库 [ 67] ( http://microvesicles.org/, 2022 年 9 月 20 日访问) 进行了比较,该数据库包括 4937 个编码外泌体蛋白的基因。在我们的数据集中鉴定出的 1779 种蛋白质与 Vesiclepedia 数据库重叠(图 S 5A),在我们的数据集中鉴定出 Vesiclepedia 数据库中前 100 种 EV 蛋白中的 90 种(图 S 5B),表明 EV 蛋白的富集良好。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig5_HTML.jpg

Integrated analysis of proteomic, phosphoproteomic, and N-glycoproteomic results of C2C12 myoblasts-derived sEVs. A The overlap of proteins identified in the three proteomes (proteome, phosphoproteome, and N-glycoproteome) of sEVs. B Comparative GOBP enrichment analysis of the proteome, phosphoproteome, and N-glycoproteome of sEVs with ToppCluster. C Kinase groups identified in the three-proteome dataset. D KEGG pathway and GOBP analysis of the kinases identified in the three-proteome dataset
C2C12 成肌细胞衍生的 sEV 的蛋白质组学、磷酸化蛋白质组学和 N-糖蛋白组学结果的综合分析。A 在 sEV 的三个蛋白质组(蛋白质组、磷酸化蛋白质组和 N-糖蛋白组)中鉴定的蛋白质重叠。B 使用 ToppCluster 对 sEV 的蛋白质组、磷酸化蛋白组和 N-糖蛋白组进行比较 GOBP 富集分析。在三蛋白质组数据集中鉴定的 C 激酶组。三蛋白质组数据集中鉴定的激酶的 D KEGG 通路和 GOBP 分析

Next, we compared our dataset with published EV proteomes of C2C12 myoblasts. In 2014, Forterre et al. [] identified 344 proteins from EVs secreted from C2C12 myoblasts, among which 319 proteins (95.5%) were found in our results. In 2022, Watanabe et al. [] identified 984 proteins from EVs secreted from C2C12 myoblasts, among which 795 protein (80.8%) were identified in our results. The overlap of the two published datasets with our data is shown in Figure S5C. 1985 proteins were specifically identified in our dataset, including 1244 proteins from proteome, 713 proteins from phosphoproteome, 19 proteins from N-glycoproteome, and 9 proteins from both phosphoproteome and N-glycoproteome (Figure S5C). Reactome pathway analysis of the proteins specifically identified in our data (1985 proteins) revealed that they were mainly involved in different signaling pathways, including integrin signaling, signaling by MET, signaling by EGFR, EPH-Ephrin signaling, RHOB GTPase cycle, signaling by TGFB family members, axon guidance, signaling by Rho GTPases, suggesting that integration analysis of proteomic and PTMomic data could provide more information about the role of sEVs in different signaling pathways (Figure S5D).
接下来,我们将我们的数据集与已发表的 C2C12 成肌细胞的 EV 蛋白质组进行了比较。2014年,Forterre等[28]从C2C12成肌细胞分泌的EV中鉴定出344种蛋白质,其中319种蛋白质(95.5%)在我们的结果中被发现。2022年,Watanabe等[29]从C2C12成肌细胞分泌的EV中鉴定出984种蛋白质,其中795种(80.8%)蛋白质被鉴定出来。图S 5C显示了两个已发表的数据集与我们的数据的重叠。 在我们的数据集中特别鉴定了1985种蛋白质,包括来自蛋白质组的1244种蛋白质,来自磷酸化蛋白质组的713种蛋白质,来自N-糖蛋白组的19种蛋白质,以及来自磷酸化蛋白质组和N-糖蛋白组的9种蛋白质(图S 5C)。对数据中特异鉴定的蛋白质(1985 种蛋白质)的反应组通路分析表明,它们主要参与不同的信号通路,包括整合素信号转导、MET 信号转导、EGFR 信号转导、EPH-Ephrin 信号转导、RHOB GTP 酶循环、TGFB 家族成员信号转导、轴突引导、Rho GTP 酶信号转导,表明蛋白质组学和 PTMomic 数据的整合分析可以提供更多关于 sEV 在不同信号转导中的作用的信息通路(图S 5D)。

Comparative GOBP and GOMF enrichment analyses of the three proteomic data were conducted with ToppCluster [], a tool for performing multi-cluster gene functional enrichment analyses. Proteins shared by all three proteomes, or two proteomes, or specifically identified in one proteome, were associated with specific biological processes (Fig. 5B). Proteins identified by all three proteomes were mainly involved in cell morphogenesis. Proteins identified in both proteome and phosphoproteome were enriched with actin filament-based process, actin cytoskeleton organization, and regulation of cellular component biogenesis. Proteins shared by proteome and N-glycoproteome were mainly involved in cell-substrate adhesion and regulation of locomotion, while proteins specifically identified in each proteome were enriched with unique processes, for example, proteins specifically identified in the phosphoproteome were mainly involved in signaling transduction, such as small GTPase mediated signaling transduction, enzyme-linked receptor protein signaling pathway. Proteins specifically identified in the N-glycoproteome were mainly involved in extracellular matrix organization, cell–matrix adhesion and integrin-mediated signaling pathway. Proteins specifically identified in the proteome were mainly involved in metabolic process and intracellular protein transport.
使用ToppCluster[38]对三种蛋白质组学数据进行了GOBP和GOMF富集的比较分析,ToppCluster是一种用于进行多簇基因功能富集分析的工具。所有三个蛋白质组或两个蛋白质组共享的蛋白质,或在一个蛋白质组中特异性鉴定的蛋白质,都与特定的生物过程有关(图5B)。所有三个蛋白质组鉴定的蛋白质主要参与细胞形态发生。在蛋白质组和磷酸化蛋白质组中鉴定的蛋白质富含基于肌动蛋白丝的过程、肌动蛋白细胞骨架组织和细胞成分生物发生的调节。蛋白质组和N-糖蛋白组共享的蛋白质主要参与细胞-底物粘附和运动调控,而每个蛋白质组中特异性鉴定的蛋白质富集了独特的过程,例如,磷酸化蛋白质组中特异性鉴定的蛋白质主要参与信号转导,如小GTP酶介导的信号转导、酶联受体蛋白信号转导通路。在N-糖蛋白组中特异性鉴定的蛋白质主要参与细胞外基质组织、细胞-基质粘附和整合素介导的信号通路。在蛋白质组中特异性鉴定的蛋白质主要参与代谢过程和细胞内蛋白质转运。

At GOMF level, different molecular functions were overrepresented in proteins identified in different parts. Proteins shared by the three proteomes were associated with growth factor binding, cell adhesion molecule binding, and cadherin binding, proteins identified in both proteome and phosphoproteome were mainly enriched for kinase binding, actin binding and small GTPase binding, and proteins identified in both proteome and N-glycoproteome were mainly involved in collagen binding, laminin binding, integrin binding (Figure S5E).
在GOMF水平上,不同的分子功能在不同部位鉴定的蛋白质中被过度表达。3种蛋白质组共有的蛋白质与生长因子结合、细胞粘附分子结合和钙粘蛋白结合有关,蛋白质组和磷酸化蛋白质组鉴定的蛋白质主要富集激酶结合、肌动蛋白结合和小GTP酶结合,蛋白质组和N-糖蛋白组鉴定的蛋白质主要参与胶原结合、层粘连蛋白结合、整合素结合(图S 5E)。

Since EVs have been reported to carry active kinases, which can be transferred to recipient cells and exert different functions through phosphorylation events [], we focused our analysis on protein kinases detected in the three proteomic dataset. 121 kinases were identified (Table S7), among which 104 kinases were identified as phosphoproteins and 7 kinases were identified as N-glycoproteins. Three dominant groups of kinases identified in sEVs were: (I) tyrosine kinases, including receptor tyrosine kinase (e.g. ERBB2, ERBB3, EPHA2, EPHA7, EPHB2-4, MET, EGFR), and non-receptor tyrosine kinases (e.g. SRC, FAK, FYN, YES); (II) serine/threonine protein kinases or dual specificity kinases from CMGC group (e.g. GSK3A, GSK3B, ERK1, ERK2, CDC2, CDK2, CDK4, CDK7); (III) serine/threonine protein kinases from AGC group (e.g. AKT1, PRKACa, PRKCb) (Fig. 5C). The biological processes predominantly associated with these kinases were transmembrane receptor protein tyrosine kinases signaling pathway, MAPK cascade, and insulin receptor signaling pathway. KEGG pathways linked to these kinases were ErbB signaling pathway, EGFR tyrosine kinase inhibitor resistance, and MAPK signaling pathway (Fig. 5D), suggesting that sEVs regulate signaling pathways through these kinases.
据报道,EV携带活性激酶,这些激酶可以转移到受体细胞中,并通过磷酸化事件发挥不同的功能[20],因此我们将分析重点放在三个蛋白质组学数据集中检测到的蛋白激酶上。鉴定出121种激酶(表S 7),其中104种激酶鉴定为磷蛋白,7种激酶鉴定为N-糖蛋白。在sEV中鉴定出的三组显性激酶是:(I)酪氨酸激酶,包括受体酪氨酸激酶(如ERBB2、ERBB3、EPHA2、EPHA7、EPHB2-4、MET、EGFR)和非受体酪氨酸激酶(如SRC、FAK、FYN、YES);(II)来自CMGC组的丝氨酸/苏氨酸蛋白激酶或双特异性激酶(例如GSK3A、GSK3B、ERK1、ERK2、CDC2、CDK2、CDK4、CDK7);(III)来自AGC组的丝氨酸/苏氨酸蛋白激酶(例如AKT1,PRKACa,PRKCb)(图5C)。与这些激酶主要相关的生物过程是跨膜受体蛋白酪氨酸激酶信号通路、MAPK级联反应和胰岛素受体信号通路。与这些激酶相关的KEGG通路是ErbB信号通路、EGFR酪氨酸激酶抑制剂耐药性和MAPK信号通路(图5D),表明sEV通过这些激酶调节信号通路。

As sEVs have reported to contain certain populations of membrane transporters to transport of substances across cells, we classified membrane transporters identified in C2C12 sEVs according to the Transporter Classification database (TCDB)[]. 325 membrane transporters were identified in C2C12 sEV proteome and PTMomes, which mainly belonged to five classes: channels/pores, electrochemical potential-driven transporters, primary active transporters, accessory factors involved in transport, and incompletely characterized transport systems (Figure S6; Table S8). Proteins in the class of channels/pores facilitate translocation of molecules across membrane. For example, Aquaporin-1 (Aqp1) and Aquaporin-5 (Aqp5) are water channel proteins, which facilitate the transport of water across membrane. Proteins in the class of electrochemical potential-driven transporters utilize electrochemical potential to facilitate the transport of molecules across membrane. For example, some amino acid transports, including Slc1a4, Slc1a5, Slc7a5, Slc43a2, Slc38a1, mediate the uptake of amino acids across membrane. Proteins in the class of primary active transporters directly use chemical energy to transport solutes across membrane. Furthermore, about 40% of membrane transporters belong to the class of Accessory factors involved in transport, including sixteen TSPANs, such as known exosome marker proteins CD9, CD63, CD81, and CD82.
由于sEVs已经报道含有某些膜转运蛋白群,以跨细胞转运物质,因此我们根据转运蛋白分类数据库(TCDB)对C2C12 sEV中鉴定的膜转运蛋白进行了分类[46]。在C2C12 sEV蛋白质组和PTMomes中鉴定出325个膜转运蛋白,主要分为通道/孔隙、电化学势驱动转运蛋白、初级活性转运蛋白、参与转运的辅助因子和不完全表征的转运系统(图S 6;表S 8)。通道/孔类中的蛋白质促进分子跨膜易位。例如,水通道蛋白-1 (Aqp1) 和水通道蛋白-5 (Aqp5) 是水通道蛋白,可促进水跨膜运输。电化学势驱动转运蛋白类中的蛋白质利用电化学势来促进分子跨膜的转运。例如,一些氨基酸转运,包括 Slc1a4、Slc1a5、Slc7a5、Slc43a2、Slc38a1,介导氨基酸跨膜的摄取。初级活性转运蛋白类的蛋白质直接利用化学能跨膜运输溶质。此外,大约 40% 的膜转运蛋白属于参与转运的辅助因子类,包括 16 种 TSPAN,例如已知的外泌体标记蛋白 CD9、CD63、CD81 和 CD82。

Integration of phosphorylation and glycosylation information on these membrane transports revealed that glycosylation mainly occurred on membrane transporters in the class of Accessory factors involved in transport, while phosphorylation occurred evenly on membrane transporters of the five classes (Fig. S6), which suggested that phosphorylation and glycosylation in sEVs play specific roles in transporting different substances between cells.
对这些膜转运的磷酸化和糖基化信息的整合表明,糖基化主要发生在参与转运的辅助因子类的膜转运蛋白上,而磷酸化均匀地发生在五类膜转运蛋白上(图S6),这表明sEV中的磷酸化和糖基化在细胞间运输不同物质中起着特定的作用。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig6_HTML.jpg

Ligand-receptor interactions identified in sEVs of C2C12 myoblasts. Ligand-receptor interactions were retrieved from CellTalk DB and constructed with R using hierarchical edge bundling. The classification of receptor or ligand categories was annotated with Uniport database. Outermost circle indicates receptors or ligands identified. Phosphorylated proteins and glycosylated proteins identified in the receptors or ligands are shown in the middle layer, with the dots color-coded. The inner layer contains gene names, color-coded for the corresponding ligand or receptor categories. Connections are marked as lines between ligands and receptors
在 C2C12 成肌细胞的 sEV 中鉴定的配体-受体相互作用。从CellTalk DB中检索配体-受体相互作用,并使用分层边缘捆绑使用R构建。使用Uniport数据库对受体或配体类别的分类进行注释。最外层的圆圈表示已鉴定的受体或配体。在受体或配体中鉴定的磷酸化蛋白和糖基化蛋白显示在中间层,点用颜色编码。内层包含基因名称,针对相应的配体或受体类别进行颜色编码。连接被标记为配体和受体之间的线

Ligand-receptor interaction in sEVs
sEV中的配体-受体相互作用

As a means of intercellular communications, the “code” by which sEVs are addressed to specific recipient cells likely involves specific ligand-receptor interactions and glycoproteins []. To investigate intercellular communication in sEVs of C2C12 myoblasts, we sought to retrieve ligand-receptor interactions using CellTalkDB, a curated database of ligand-receptor interactions. 246 ligand-receptor pairs were retrieved in sEVs. The most enriched categories were extracellular matrix (ECM) and cell adhesion molecule (CAM) among the ligands, while CAM was enriched in the receptor categories. ECM is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms, and plays an important role in cell adhesion and migration through interaction with cell-surface receptors (e.g. integrins, syndecans, adhesion GPCRs) []. CAM are cell-surface proteins that mediate cell-to-cell and cell-to-ECM interactions []. ECM and CAM represented the most abundant ligand-receptor interactions in sEVs (Fig. 6). Mapping phosphorylation and glycosylation information on these ligands and receptors revealed that glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands (Fig. 6 and Table S9).
作为细胞间通讯的一种手段,sEV被定位到特定受体细胞的“代码”可能涉及特定的配体-受体相互作用和糖蛋白[4]。为了研究 C2C12 成肌细胞 sEV 中的细胞间通讯,我们试图使用 CellTalkDB(一个精选的配体-受体相互作用数据库)检索配体-受体相互作用。在sEVs中检索到246个配体-受体对。配体中细胞外基质(ECM)和细胞粘附分子(CAM)最富集,而CAM在受体类别中富集。ECM是由数百种蛋白质组成的复杂组合,构成了多细胞生物的结构支架,通过与细胞表面受体(如整合素、十一聚糖、粘附GPCR)的相互作用,在细胞粘附和迁移中发挥重要作用[68]。CAM是介导细胞间和细胞间ECM相互作用的细胞表面蛋白[69]。ECM和CAM代表了sEV中最丰富的配体-受体相互作用(图6)。绘制这些配体和受体上的磷酸化和糖基化信息表明,糖基化主要发生在ECM和CAM蛋白上,而磷酸化发生在不同类别的受体和配体上(图6和表S 9)。

Since ECM-receptor interaction is the most abundant ligand-receptor interactions in sEVs, a comprehensive map of ECM-receptor interaction was retrieved with Pathview (Fig. 7). Most ECM proteins and receptors underwent extensive phosphorylation and/or N-glycosylation modifications. Receptors in sEVs, mainly different integrin subunits, were identified to be phosphorylated and/or N-glycosylated. Integrins are a large family of heterodimeric transmembrane receptors comprising α and β subunits. The extracellular domain of integrin subunits associate with ECM proteins, while cytoplasmic domain of intergins acts as both a receptor and transmitter of signals by binding with many cellular signaling molecules. In this way, integrins constitute both a structural connection and a bi-directional signaling pathway that crosses cell membrane [, ]. Intergins play important role in the interaction of cells with each other and with ECM []. In this study, 14 integrin subunits were identified in sEVs of C2C12 myoblasts, among which 6 subunits were phosphorylated and 11 subunits were glycosylated. A comprehensive PTM map of different integrin subunits including their phosphorylation sites, N-glycosites and glycan heterogeneity on each glycosite is shown Fig. 8. It is intriguing that all phosphorylation sites are at the end of integrins, suggesting these phosphosites may be important for sending cellular signaling into the cells. N-glycosylation is essential for integrin heterodimerization, stabilization of conformation, expression at the cell membrane, and interaction with ligands []. Here, we observed that integrin subunits displayed different levels of glycosylation microheterogeneity. Some integrins, such as Itga1, Itga2, Itgb5, and Itgb8, had several N-glycosites but relatively little glycan heterogeneity overall. Some N-glycosites on Itga5, Itga6, Itga7, Itgav, and Itgb3 showed notably little heterogeneity while other N-glycosites displayed high levels of glycan microheterogeneity. All the N-glycosites on Itga3 and Itgb1 displayed high levels of glycan microheterogeneity. This meta-heterogeneity of glycosylation [] on integrin subunits in sEVs might link to the specificity of the uptake of sEVs by different target cells.
由于 ECM-受体相互作用是 sEV 中最丰富的配体-受体相互作用,因此使用 Pathview 检索了 ECM-受体相互作用的综合图谱(图 7)。大多数ECM蛋白和受体经历了广泛的磷酸化和/或N-糖基化修饰。sEV中的受体,主要是不同的整合素亚基,被鉴定为磷酸化和/或N-糖基化。整合素是一大类异二聚体跨膜受体,由α亚基和β亚基组成。整合素亚基的细胞外结构域与ECM蛋白结合,而intergins的细胞质结构域通过与许多细胞信号分子结合而充当信号的受体和递质。通过这种方式,整合素既构成结构连接,又构成穿过细胞膜的双向信号通路[70,71]。Intergins在细胞之间以及与ECM的相互作用中起着重要作用[72]。本研究在C2C12成肌细胞sEVs中鉴定出14个整合素亚基,其中6个亚基被磷酸化,11个亚基被糖基化。不同整合素亚基的综合PTM图谱,包括它们的磷酸化位点、N-糖位点和每个糖位点上的聚糖异质性如图8所示。有趣的是,所有磷酸化位点都位于整合素的末端,这表明这些磷酸化位点对于将细胞信号传导发送到细胞中可能很重要。N-糖基化对于整合素异二聚化、构象稳定、细胞膜表达以及与配体的相互作用至关重要[72]。在这里,我们观察到整合素亚基表现出不同水平的糖基化微异质性。 一些整合素,如 Itga1、Itga2、Itgb5 和 Itgb8,具有几种 N-糖位,但总体上聚糖异质性相对较小。Itga5、Itga6、Itga7、Itgav 和 Itgb3 上的一些 N-糖位表现出明显的低异质性,而其他 N-糖位则表现出高水平的聚糖微异质性。Itga3 和 Itgb1 上的所有 N-糖位都显示出高水平的聚糖微异质性。sEV中整合素亚基糖基化的这种元异质性[73]可能与不同靶细胞摄取sEV的特异性有关。

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig7_HTML.jpg

Comprehensive PTM map of ECM-receptor interaction in sEVs. ECM-receptor interaction was retrieved from Pathview. P and NG indicate phosphorylation and N-glycosylation, respectively. The number before P or NG indicates the number of phosphorylation sites or N-glycosylation sites identified on the proteins. *Collagen, laminin, syndecan, and THBS (thrombospondin) were identified with several isoforms or subunits. The detailed information of collagen isoforms and laminin subunits are shown in Figure S7 and S8, respectively
sEV中ECM-受体相互作用的综合PTM图谱。ECM-受体相互作用是从Pathview中检索的。P 和 NG 分别表示磷酸化和 N-糖基化。P 或 NG 之前的数字表示在蛋白质上鉴定的磷酸化位点或 N-糖基化位点的数量。*胶原蛋白、层粘连蛋白、十聚糖和 THBS(血小板反应蛋白)被鉴定为几种亚型或亚基。胶原亚型和层粘连蛋白亚基的详细信息分别如图 S 7 和 S 8 所示

An external file that holds a picture, illustration, etc.
Object name is 12964_2024_1640_Fig8_HTML.jpg

Comprehensive PTM information and glycan heterogeneity on each N-glycosite of integrin subunits identified in sEVs of C2C12 myoblasts. Itga2b (Integrin alpha-IIb) and Itgb2 (Integrin beta-2) are not displayed in the figure, as they were identified with no PTM information. Itga1, Integrin alpha-1; Itga2, Integrin alpha-2; Itga3, Integrin alpha-3; Itga4, Integrin alpha-4; Itga5, Integrin alpha-5; Itga6, Integrin alpha-6; Itga7, Integrin alpha-7; Itgav, Integrin alpha-V; Itgb1, Integrin beta-1; Itgb3, Integrin beta-3; Itgb5, Integrin beta-5; Itgb8, Integrin beta-8
在 C2C12 成肌细胞的 sEV 中鉴定出的整合素亚基的每个 N-糖位的综合 PTM 信息和聚糖异质性。图中未显示 Itga2b(整合素 α-IIb)和 Itgb2(整合素 β-2),因为它们被鉴定为没有 PTM 信息。Itga1,整合素α-1;Itga2,整合素α-2;Itga3,整合素α-3;Itga4,整合素α-4;Itga5,整合素α-5;Itga6,整合素α-6;Itga7,整合素α-7;Itgav,整合素α-V;Itgb1,整合素β-1;Itgb3,整合素β-3;Itgb5,整合素β-5;Itgb8,整合素β-8

Many ECM proteins, such as collagens, laminins, fibronectin, osteopontin, vitronectin, and tenascin, were identified in sEVs of C2C12 myoblasts. As the most abundant proteins in ECM, 15 collagen isoforms were identified in sEVs, among which 7 collagen isoforms were phosphorylated and 10 collagen isoforms were glycosylated. The PTM map of different collagen isoforms including their phosphorylation sites, N-glycosites, and glycan heterogeneity on each glycosite is shown Figure S7. Compared with integrins, most of glycosites on collagen isoforms display lower levels of glycan microheterogeneity.
在 C2C12 成肌细胞的 sEV 中鉴定出许多 ECM 蛋白,例如胶原蛋白、层粘连蛋白、纤连蛋白、骨桥蛋白、玻连蛋白和腱蛋白。作为ECM中含量最高的蛋白质,在sEVs中鉴定出15种胶原亚型,其中7种胶原亚型被磷酸化,10种胶原亚型被糖基化。不同胶原亚型的PTM图谱,包括它们的磷酸化位点、N-糖位点和每个糖位点上的聚糖异质性,如图S 7所示。与整合素相比,胶原蛋白亚型上的大多数糖位显示出较低水平的聚糖微异质性。

Seven laminin subunits were identified in sEVs of C2C12 myoblasts, among which 4 subunits were phosphorylated and 6 subunits were glycosylated. Laminins are heavily glycosylated molecules and between 13 and 30% of their molecular weight is contributed by N-glycosylation []. Site-specific N-glycosylation pattern of laminin subunits is shown in Figure S8. As observed in integrins, laminin subunits displayed different levels of glycosylation microheterogeneity. Most of N-glycosites on Lama5 displayed high levels of glycan microheterogeneity. For Lamb1 and Lamc1, some N-glycosites displayed high levels of glycan microheterogeneity, while some N-glycosites displayed relatively little glycan heterogeneity. However, Lama4 displayed little glycan heterogeneity (Figure S8). The different glycosylation microheterogeneity on laminins might link to specific functions of laminins in cell–cell interaction and cell-ECM interactions.
在C2C12成肌细胞sEVs中鉴定出7个层粘连蛋白亚基,其中4个亚基被磷酸化,6个亚基被糖基化。层粘连蛋白是高度糖基化的分子,其分子量的13%至30%由N-糖基化贡献[74]。层粘连蛋白亚基的位点特异性N-糖基化模式如图S 8所示。如在整合素中观察到的那样,层粘连蛋白亚基表现出不同水平的糖基化微异质性。Lama5 上的大多数 N-糖位点表现出高水平的聚糖微异质性。对于Lamb1和Lamc1,一些N-糖位点显示出高水平的聚糖微异质性,而一些N-糖位点表现出相对较少的聚糖异质性。然而,Lama4 表现出很少的聚糖异质性(图 S 8)。层粘连蛋白上不同的糖基化微异质性可能与层粘连蛋白在细胞间相互作用和细胞-ECM相互作用中的特定功能有关。

Fibronectin, which is a core component of ECM and plays a key role in the assembly and remodeling of ECM [], was identified with 6 phosphosites and 6 N-glycosites. Among these PTM sites, 3 phosphosites and 1 N-glycosite were newly identified (not included in PhosphoSitePlus and Uniprot Database).
纤连蛋白是ECM的核心成分,在ECM的组装和重塑中起着关键作用[75],鉴定出有6个磷酸化位点和6个N-糖位点。在这些PTM位点中,新发现的3个磷酸化位点和1个N-糖位点(未包含在PhosphoSitePlus和Uniprot数据库中)。

Seven phosphosites were identified with Osteopontin, which is a major phosphoprotein of ECM and binds to a variety of cell surface integrins to stimulate cell–cell and cell-ECM adhesion []. Vitronectin, a glycoprotein found in ECM, was identified with 1 N-glycosite. Tenascin was identified with 5 phosphosites and 12 N-glycosites. The glycosylation of tenascin might regulate its binding capabilities [].
骨桥蛋白是ECM的主要磷蛋白,与多种细胞表面整合素结合以刺激细胞间和细胞间ECM粘附[76]。玻连蛋白是一种在 ECM 中发现的糖蛋白,被鉴定为 1 个 N-糖位。Tenascin 被鉴定为 5 个磷酸位点和 12 个 N-糖位点。腱蛋白的糖基化可能调节其结合能力[77]。

Besides ECM-integrin interactions, some ECM proteins, such as collagens, fibronectin, tenascin, can interact with heparan sulfate proteoglycans including syndecans and CD44 (Fig. 7) to mediate the uptake of exosomes [] or to promote cell motility []. In this study, both syndecan-1 and syndecan-2 were identified with two phosphosites, however, no N-glycosylation modification was identified on these two proteins, probably because heparan sulfate chains are O-glycosidically linked to a serine residue in the protein. CD44 was identified with five phosphosites and two N-glycosites. N-glycosylation of CD44 has reported to affect its interaction with hyaluronic acid [].
除了ECM-整合素相互作用外,一些ECM蛋白,如胶原蛋白、纤连蛋白、腱蛋白,可以与硫酸乙酰肝素蛋白聚糖相互作用,包括十聚糖和CD44(图7),以介导外泌体的摄取[78]或促进细胞运动[79]。在这项研究中,syndecan-1 和 syndecan-2 都被鉴定为两个磷酸位点,然而,在这两种蛋白质上没有发现 N-糖基化修饰,可能是因为硫酸乙酰肝素链在 O-糖苷上与蛋白质中的丝氨酸残基相连。CD44 被鉴定为 5 个磷酸化位点和 2 个 N-糖位点。据报道,CD44的N-糖基化会影响其与透明质酸的相互作用[80]。

In summary, some phosphorylation and N-glycosylation modifications were identified on the components of ligand-receptor interaction in sEVs of C2C12 myoblasts, which might account for the targeted biological effects of sEVs.
综上所述,在C2C12成肌细胞sEVsEVs中发现了一些磷酸化和N-糖基化修饰,这可能解释了sEVs的靶向生物学效应。

Discussion 讨论

EVs are reported to play some roles in physiology and pathology, which are mediated through the cargos they carry, and different omics technologies have been applied to identify the cargos of sEVs. In this study, we performed a comprehensive and integrated analysis of the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts.
据报道,电动汽车在生理学和病理学中发挥着一些作用,这些作用是通过它们所携带的货物介导的,并且已经应用了不同的组学技术来识别电动汽车的货物。在这项研究中,我们对来自 C2C12 成肌细胞的 sEV 的蛋白质组、磷酸化蛋白组和 N-糖蛋白组进行了全面和综合的分析。

In the proteome of sEVs from C2C12 myoblasts, we identified a group of cell-specific proteins that might account for cell-specific functions, such as proteins involved in MET signaling and axon guidance (Fig. 2B). MET is a receptor tyrosine kinase and triggers several downstream pathways to promote cell proliferation, growth and motility []. Axon guidance is a special case of cellular migration, which is regulated by many different families of ligands and receptors [, ]. These results suggested that proteins in sEVs from C2C12 myoblasts play specific function in cell growth and migration, which might account for the observation that EVs from C2C12 could enhance cell survival and neurite outgrowth of a motor neuron cell line [].
在来自 C2C12 成肌细胞的 sEV 的蛋白质组中,我们鉴定了一组可能解释细胞特异性功能的细胞特异性蛋白,例如参与 MET 信号传导和轴突引导的蛋白质(图 2B)。MET是一种受体酪氨酸激酶,可触发多种下游途径,促进细胞增殖、生长和运动[81]。轴突引导是细胞迁移的一种特殊情况,它由许多不同的配体和受体家族调控[82,83]。这些结果表明,来自C2C12成肌细胞的sEV中的蛋白质在细胞生长和迁移中起着特定的功能,这可能解释了来自C2C12的EV可以增强运动神经元细胞系的细胞存活和神经突生长的观察结果[84]。

In the phosphoproteome of sEVs, sEVs displayed a distinct phosphorylation pattern compared with that of cells (Fig. 3E). The high level of tyrosine-phosphorylated sites in sEVs was also observed in a few large-scale phosphoproteomic analysis of sEVs from different cell types or body fluids [, , ], suggesting that tyrosine phosphorylation of sEVs proteins may contribute to the formation and functions of sEVs []. Pathway analysis of the tyrosine-phosphorylated proteins indicated that they mainly participated in EPH-Ephrin signaling pathway (Fig. 3F, Figure S3B). Exosomes can mediate cell contact-independent EPH-ephrin signaling during axon guidance []. EPH-Ephrin signaling has been described as guidance cues that mediate migration of cells over long distances [].In this way, phosphoproteins in sEVs of C2C12 myoblasts might mediate cell migration through EPH-Ephrin signaling pathway.
在sEV的磷酸化蛋白质组中,与细胞相比,sEV表现出明显的磷酸化模式(图3E)。在对来自不同细胞类型或体液的sEV进行的一些大规模磷酸化蛋白质组学分析中也观察到sEV中高水平的酪氨酸磷酸化位点[59,85,86],表明sEVs蛋白的酪氨酸磷酸化可能有助于sEVs的形成和功能[87]。酪氨酸磷酸化蛋白的通路分析表明,它们主要参与EPH-Eph蛋白信号通路(图3F,图S 3B)。外泌体可以在轴突引导过程中介导细胞接触非依赖性EPH-肝配蛋白信号传导[88]。EPH-Eph蛋白信号转导被描述为介导细胞长距离迁移的引导线索[89]。通过这种方式,C2C12 成肌细胞 sEV 中的磷蛋白可能通过 EPH-Ephrin 信号通路介导细胞迁移。

To date, most of large-scale N-glycoproteomic analyses of EVs have been conducted in EVs from body fluids such as urine. There is few comprehensive N-glycoproteomic analysis of EVs from cell culture medium, probably because of the low yield and purity of current sEV isolation approaches. Complex glycans and sialic acid-containing glycans were enriched in sEVs of C2C12 myoblasts (Fig. 4E and F). Since glyco-interaction play important role on the uptake of EVs by target cells, detailed analysis microheterogeneity of glycosylation would provide more information about the specific uptake of EVs by recipient cells.
迄今为止,大多数大规模的 EV N-糖蛋白组学分析都是在 EV 中从尿液等体液中进行的。对细胞培养基中的 EV 进行全面的 N-糖蛋白组学分析很少,这可能是因为当前 sEV 分离方法的产量和纯度较低。复合聚糖和含唾液酸的聚糖富集在C2C12成肌细胞的sEV中(图4E和F)。由于糖相互作用在靶细胞对 EV 的摄取中起着重要作用,因此详细分析糖基化的微异质性将提供有关受体细胞对 EV 的特异性摄取的更多信息。

Though different mechanisms of sEVs uptake, including ligand-receptor interaction, direct fusion with cell membrane, and endocytosis pathways, exist in the same cell [], specific targeting of sEVs to recipient cells is determined by recognition between ligands/receptors at the surface of EVs and ligands/receptors on the plasma membrane of the recipient cells []. Specific enrichment of surface molecules in sEVs, mainly CAM and ECM proteins, is critical for specific uptake of sEVs. Surface glycosylation patterns is also essential for the uptake of sEVs by recipient cells.
尽管在同一细胞中存在不同的sEV摄取机制,包括配体-受体相互作用、与细胞膜的直接融合和内吞途径[90],但sEV对受体细胞的特异性靶向是通过EV表面的配体/受体和受体细胞质膜上的配体/受体之间的识别来确定的[91]。sEVs(主要是CAM和ECM蛋白)中表面分子的特异性富集对于sEV的特异性摄取至关重要。表面糖基化模式对于受体细胞摄取 sEV 也至关重要。

CAM plays an important role in anchoring and internalizing exosomes []. CAM identified in sEVs of C2C12 myoblasts included integrins, TSPANs and glycoproteins. Based on mass spectrometric analysis, 15% of all adhesion proteins on the surface of exosomes were integrins [, ]. Intergins bind a diverse group of ligands, such as several ECM components (collagens, laminins, and fibronectins), and other cell receptors or soluble molecules []. It has reported that exosomes play crucial roles in the development of organ-specific metastases through distinct integrin expression patterns. For example, exosomal integrin α6β4 on breast cancer exosomes and integrin αvβ5 on pancreatic cancer exosomes showed an essential role in the uptake of exosomes by lung fibroblasts and liver macrophages, respectively []. In this study, 14 integrin isoforms were identified in C2C12 sEVs, including 9 α-and 5 β-intergin isoforms. The αβ pairings of integrin subunits dictate the specificity of integrin to a particular ligand to form intracellular adhesion complexes, and regulate downstream signaling []. The activity of integrins is strongly influenced by glycans through glycosylation events [, ]. Glycosylation of integrins affects cellular signaling and interaction with the extracellular matrix, receptor tyrosine kinases, and galectins, thereby regulating cell adhesion, motility, growth, and survival [, ]. Alteration of N-glycans on integrins might regulate their interactions with membrane-associated proteins, including EGFR and TSPANs []. In this study, site-specific N-glycosylation patterns were observed for different integrin subunits. Integrin subunits displayed different levels of glycosylation microheterogeneity (Fig. 8). The integrin β1 subunit displayed the highest level of mciroheterogeneity, which is consistent with the observation that β1 subunit is the most frequently seen β subunit integrin heterodimers (Fig. 7). N-glycosylation of different domains of integrin β1 and α5 plays crucial roles in the formation of integrin α5β1 heterodimer and its biological functions such as cell adhesion and cell migration []. Though mechanism underlines the formation of unique integrin expression pattern in sEVs still needs further investigation, different glycosylation patterns on integrins subunits might provide some insights for understanding of the roles of integins in specific targeting of sEVs to recipient cells.
CAM在锚定和内化外泌体中起着重要作用[69]。在 C2C12 成肌细胞的 sEV 中鉴定出的 CAM 包括整合素、TSPAN 和糖蛋白。根据质谱分析,外泌体表面所有粘附蛋白中有15%是整合素[92,93]。Intergins结合多种配体,如几种ECM成分(胶原蛋白、层粘连蛋白和纤连蛋白)以及其他细胞受体或可溶性分子[72]。据报道,外泌体通过不同的整合素表达模式在器官特异性转移的发展中起着至关重要的作用。例如,乳腺癌外泌体上的外泌体整合素α6β4和胰腺癌外泌体上的整合素αvβ5分别在肺成纤维细胞和肝巨噬细胞摄取外泌体中起重要作用[92]。在这项研究中,在 C2C12 sEV 中鉴定了 14 种整合素亚型,包括 9 种α-亚型和 5 种 β-intergin 亚型。整合素亚基的αβ配对决定了整合素对特定配体形成细胞内粘附复合物的特异性,并调节下游信号传导[71]。整合素的活性通过糖基化事件受到聚糖的强烈影响[72,94]。整合素的糖基化影响细胞信号传导以及与细胞外基质、受体酪氨酸激酶和半乳糖凝集素的相互作用,从而调节细胞粘附、运动、生长和存活[95,96]。整合素上N-聚糖的改变可能会调节它们与膜相关蛋白(包括EGFR和TSPAN)的相互作用[97]。在这项研究中,观察到不同整合素亚基的位点特异性 N-糖基化模式。整合素亚基表现出不同程度的糖基化微异质性(图8)。 整合素β1亚基表现出最高水平的mciroheterogeneity,这与β1亚基是最常见的亚基整合素异二聚体β观察结果一致(图7)。整合素β1和α5不同结构域的N-糖基化在整合素α5β1异二聚体的形成及其细胞粘附和细胞迁移等生物学功能中起着至关重要的作用[97\u201299]。尽管机制强调了sEV中独特整合素表达模式的形成仍需要进一步研究,但整合素亚基上不同的糖基化模式可能为理解整合素在sEV对受体细胞的特异性靶向中的作用提供一些见解。

The laminin-binding integrins (α3β1, α6β1, α7β1) show robust associate with TSPAN proteins. TSPAN CD151, CD81, CD9 modulate laminin binding, thus affecting integrin-dependent neurite outgrowth, cell adhesion, migration, and morphology [].
层粘连蛋白结合整合素(α3β1、α6β1、α7β1)与 TSPAN 蛋白具有很强的相关性。TSPAN CD151、CD81、CD9调节层粘连蛋白结合,从而影响整合素依赖性神经突的生长、细胞粘附、迁移和形态[70]。

Glycosylation can modulate the function of TSPANs []. It has reported that N-glycosylation modulated the molecular organization of CD82 and N-cadherin, which impacted in vivo trafficking of AML cells []. In this study, eight TSPANs were identified as glycoproteins, however, the function of glycosylation on TSPANs in sEVs of C2C12 myoblasts needs more investigation.
糖基化可以调节TSPAN的功能[100]。据报道,N-糖基化调节了CD82和N-钙粘蛋白的分子组织,从而影响了AML细胞的体内运输[101]。在这项研究中,8 个 TSPAN 被鉴定为糖蛋白,然而,糖基化对 C2C12 成肌细胞 sEVs 中 TSPANs 的功能需要更多的研究。

The specific interaction of integrins with ECM proteins, mostly fibronectin and laminin, has been shown to have important roles in ensuring that exosomes interact with the right recipients []. ECM proteins identified in sEVs of C2C12 myoblasts included different collagen isoforms, laminin subunits, and fibronectin. Laminins can interact with integrins and non-integrin receptors such as syndecans and α-dystroglycan to regulate cell adhesion and normal cellular functions []. It has reported that N-glycosylation of Laminin-332 is important for its association with intergins and the subsequent cellular signaling [, ]. Fibronectin is a critical motility-promoting cargo. The sorting of fibronectin into exosomes depends on binding to integrins []. N-glycans on fibronectin have a role in the positive regulation of cell adhesion and directed cell migration via integrin-mediated signals [].
整合素与ECM蛋白(主要是纤连蛋白和层粘连蛋白)的特异性相互作用已被证明在确保外泌体与正确的受体相互作用方面具有重要作用[102]。在 C2C12 成肌细胞的 sEV 中鉴定出的 ECM 蛋白包括不同的胶原亚型、层粘连蛋白亚基和纤连蛋白。层粘连蛋白可以与整合素和非整合素受体(如十聚糖和α-肌营养不良聚糖)相互作用,以调节细胞粘附和正常细胞功能[103]。据报道,层粘连蛋白-332的N-糖基化对于其与intergins的结合和随后的细胞信号传导很重要[70,74]。纤连蛋白是一种关键的促进运动物质。纤连蛋白分选为外泌体取决于与整合素的结合[104]。纤连蛋白上的N-聚糖通过整合素介导的信号在细胞粘附和定向细胞迁移的正向调节中发挥作用[105]。

In summary, many proteins identified in sEVs, such as integrins, tetraspanins, laminins, and fibronectin, as well as their PTMs especially N-glycosylation have been implicated in the specific interaction to affect uptake of sEVs by recipient targets []. Integration proteomic, phosphoproteomic and N-glycoproteomic analysis of sEVs would provide more information about their specific uptake mechanism.
总之,在sEV中发现的许多蛋白质,如整合素、四跨膜蛋白、层粘连蛋白和纤连蛋白,以及它们的PTM,特别是N-糖基化,都与影响受体靶标摄取sEV的特异性相互作用有关[106]。sEVs的整合蛋白质组学、磷酸化蛋白质组学和N-糖蛋白组学分析将提供有关其特定摄取机制的更多信息。

Supplementary Information
补充资料

Supplementary Material 1.(82M, zip)
补充材料 1. (82M, zip)

Acknowledgements 确认

We would like to thank all members in the Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences for their help.
我们要感谢中国科学院生物物理研究所蛋白质组学实验室的所有成员的帮助。

Abbreviations 缩写

EVsExtracellular vesicles 细胞外囊泡
sEVsSmall extracellular vesicles
小的细胞外囊泡
MVsMicrovesicles
PTMPost-translational modification
翻译后修饰
MVBMultivesicular body 多泡体
TEMTransmission electron microscope
透射电子显微镜
NTANanoparticle tracking analysis
纳米颗粒跟踪分析
TCLTotal cell lysate 总细胞裂解物
ESCRTEndosomal sorting complexes required for transport
运输所需的内体分选复合物
TMsTransmembrane helices 跨膜螺旋
TSPANTetraspanin
ECMExtracellular matrix 细胞外基质
CAMCell adhesion molecule 细胞粘附分子
LAMA5Laminin subunit alpha 5 层粘连蛋白亚基α5
LAMA2Laminin subunit alpha 2 层粘连蛋白亚基α2

Authors’ contributions 作者的贡献

X.C. designed the experiments, conducted proteomic experiments and data analysis, wrote the manuscript. X.S. performed western blotting and TEM analysis. J.L. isolated sEVs from C2C12 myoblasts. J.W. performed LC–MS/MS analysis. Y.Y., assisted in the analysis of phosphoproteomic data. F.Y. supervised the experiment and revised the manuscript.
X.C.设计了实验,进行了蛋白质组学实验和数据分析,并撰写了手稿。X.S.进行蛋白质印迹和TEM分析。J.L. 从 C2C12 成肌细胞中分离出 sEV。J.W.进行了LC-MS/MS分析。Y.Y.,协助分析磷酸化蛋白质组学数据。F.Y.监督了实验并修改了手稿。

Funding 资金

This work was supported by grants from the National Key R&D Program of China (Grant Nos. 2018YFA0507103).
这项工作得到了国家重点研发计划(批准号:2018YFA0507103)的资助。

Availability of data and materials
数据和材料的可用性

The mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository [] with the dataset identifier PXD047974.
质谱蛋白质组学数据已通过 iProX 合作伙伴存储库 [ 107] 存入 ProteomeXchange 联盟 (http://proteomecentral.proteomexchange.org),数据集标识符为 PXD047974。

Declarations 声明

Ethics approval and consent to participate
伦理批准和同意参与

Not applicable. 不適用。

Consent for publication 同意发布

Not applicable. 不適用。

Competing interests 利益争夺

The authors declare no competing interests.
作者声明没有竞争利益。

Footnotes 脚注

Publisher’s Note 出版商注

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
施普林格·自然(Springer Nature)对已出版地图和机构隶属关系中的管辖权主张保持中立。

Contributor Information 贡献者信息

Xiulan Chen, nc.ca.pbi.noom@naluixnehc.
陈秀兰, Email: nc.ca.pbi.noom@naluixnehc.

Fuquan Yang, nc.ca.pbi@gnayqf.
杨福泉, Email: nc.ca.pbi@gnayqf.

References 引用

1. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. doi: 10.1146/annurev-biochem-013118-111902. [PubMed] [CrossRef] []
1. 佩格特尔 DM,古尔德 SJ。外泌体。Annu Rev Biochem.2019;88:487–514.doi: 10.1146/annurev-biochem-013118-111902.[ 出版][ 交叉引用][ 谷歌学术搜索]
2. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. [PubMed] [CrossRef] []
2. Colombo M, Raposo G, Théry C. 外泌体和其他细胞外囊泡的生物发生、分泌和细胞间相互作用。2014 年细胞开发生物学年鉴;30:255–289.doi: 10.1146/annurev-cellbio-101512-122326.[ 出版][ 交叉引用][ 谷歌学术搜索]
3. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J Biol Chem. 1987;262(19):9412–20. doi: 10.1016/S0021-9258(18)48095-7. [PubMed] [CrossRef] []
3. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 网织红细胞成熟过程中的囊泡形成。质膜活性与释放囊泡(外泌体)的关联 J Biol Chem.1987;262(19):9412–20.doi: 10.1016/S0021-9258(18)48095-7.[ 出版][ 交叉引用][ 谷歌学术搜索]
4. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–188. doi: 10.1016/j.tcb.2016.11.003. [PMC free article] [PubMed] [CrossRef] []
4. Maas SLN、Breakefield XO、Weaver AM。细胞外囊泡:独特的细胞间递送载体。趋势细胞生物学 2017;27(3):172–188.doi: 10.1016/j.tcb.2016.11.003.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
5. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. [PMC free article] [PubMed] [CrossRef] []
5. Yáñez-Mó M、Siljander PR、Andreu Z、Zavec AB、Borràs FE、Buzas EI 等。细胞外囊泡的生物学特性及其生理功能。J 细胞外囊泡。2015;4:27066.doi: 10.3402/jev.v4.27066.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
6. Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017;28(1):3–18. doi: 10.1016/j.tem.2016.10.003. [PubMed] [CrossRef] []
6. Huang-Doran I, Zhang CY, Vidal-Puig A. 细胞外囊泡:代谢疾病中细胞通讯的新型介质。趋势 Endocrinol Metab.2017;28(1):3–18.doi: 10.1016/j.tem.2016.10.003.[ 出版][ 交叉引用][ 谷歌学术搜索]
7. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195–208. doi: 10.1038/nri3622. [PMC free article] [PubMed] [CrossRef] []
7. 罗宾斯 PD,莫雷利 AE。细胞外囊泡对免疫反应的调节。Nat Rev Immunol.2014;14(3):195–208.doi: 10.1038/nri3622.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
8. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–638. doi: 10.1038/s41571-018-0036-9. [PubMed] [CrossRef] []
8. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ.癌症中的细胞外囊泡 - 对未来癌症护理改进的影响。Nat Rev Clin Oncol.2018;15(10):617–638.doi: 10.1038/s41571-018-0036-9.[ 出版][ 交叉引用][ 谷歌学术搜索]
9. Clancy JW, D'Souza-Schorey C. Tumor-derived extracellular vesicles: multifunctional entities in the tumor microenvironment. Annu Rev Pathol. 2023;18:205–229. doi: 10.1146/annurev-pathmechdis-031521-022116. [PMC free article] [PubMed] [CrossRef] []
9. Clancy JW, D'Souza-Schorey C. 肿瘤衍生的细胞外囊泡:肿瘤微环境中的多功能实体。Annu Rev Pathol.2023;18:205–229.doi: 10.1146/annurev-pathmechdis-031521-022116.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
10. Li Z, Wang X, Wang X, Yi X, Wong YK, Wu J, et al. Research progress on the role of extracellular vesicles in neurodegenerative diseases. Translational Neurodegeneration. 2023;12(1):43. doi: 10.1186/s40035-023-00375-9. [PMC free article] [PubMed] [CrossRef] []
10. 李志, 王旭, 王旭, 汝旭, 黄彦, 吴杰, 等.细胞外囊泡在神经退行性疾病中的作用研究进展.转化神经退行性变。2023;12(1):43.doi: 10.1186/s40035-023-00375-9.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
11. Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47. doi: 10.1186/s12964-021-00730-1. [PMC free article] [PubMed] [CrossRef] []
11. 古隆 S、佩罗切 D、图拉马尼杜 L、巴鲁托 J.外泌体之旅:从生物发生到摄取和细胞内信号传导。细胞通信信号。2021;19(1):47.doi: 10.1186/s12964-021-00730-1.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
12. Teng F, Fussenegger M. Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Adv Sci. 2021;8(1):2003505. doi: 10.1002/advs.202003505. [PMC free article] [PubMed] [CrossRef] []
12. Teng F, Fussenegger M. 阐明细胞外囊泡生物发生和生物工程。高级科学 2021;8(1):2003505.doi: 10.1002/advs.202003505.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
13. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750. [PMC free article] [PubMed] [CrossRef] []
13. Thery C、Witwer KW、Aikawa E、Alcaraz MJ、Anderson JD、Andriantsitohaina R 等。2018 年细胞外囊泡研究的最小信息 (MISEV2018):国际细胞外囊泡学会的立场声明和 MISEV2014 指南的更新。J 细胞外囊泡.2018;7(1): 1535750.doi: 10.1080/20013078.2018.1535750.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
14. Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiak L, et al. Mass spectrometry of extracellular vesicles. Mass Spectrom Rev. 2016;35(1):3–21. doi: 10.1002/mas.21457. [PubMed] [CrossRef] []
14. Pocsfalvi G、Stanly C、Vilasi A、Fiume I、Capasso G、Turiak L 等。细胞外囊泡的质谱法。质谱 Rev. 2016;35(1):3–21.doi: 10.1002/mas.21457.[ 出版][ 交叉引用][ 谷歌学术搜索]
15. Moreno-Gonzalo O, Villarroya-Beltri C, Sanchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol. 2014;5:383. doi: 10.3389/fimmu.2014.00383. [PMC free article] [PubMed] [CrossRef] []
15. Moreno-Gonzalo O, Villarroya-Beltri C, Sanchez-Madrid F. 外泌体蛋白的翻译后修饰。前免疫。2014;5:383.doi: 10.3389/fimmu.2014.00383.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
16. Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci. 2018;75(1):1–19. doi: 10.1007/s00018-017-2690-y. [PMC free article] [PubMed] [CrossRef] []
16. Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. 翻译后添加物标志着外泌体蛋白质分选的路径。细胞分子生命科学 2018;75(1):1–19.doi: 10.1007/s00018-017-2690-y.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
17. Atukorala I, Mathivanan S. The role of post-translational modifications in targeting protein cargo to extracellular vesicles. Subcell Biochem. 2021;97:45–60. doi: 10.1007/978-3-030-67171-6_3. [PubMed] [CrossRef] []
17. 阿图科拉拉一世,马蒂瓦南 S.翻译后修饰在将蛋白质货物靶向细胞外囊泡中的作用。亚细胞生化。2021;97:45–60.doi: 10.1007/978-3-030-67171-6_3.[ 出版][ 交叉引用][ 谷歌学术搜索]
18. Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics. 2019;16(1):17–31. doi: 10.1080/14789450.2019.1551135. [PubMed] [CrossRef] []
18. 克拉里奇 B、卡斯塔尼加德 K、斯滕斯巴勒 A、格林宁 DW。翻译后和转录动力学 - 调节细胞外囊泡生物学。专家修订蛋白质组学。2019;16(1):17–31.doi: 10.1080/14789450.2019.1551135.[ 出版][ 交叉引用][ 谷歌学术搜索]
19. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–1885. doi: 10.1016/j.cub.2009.09.059. [PMC free article] [PubMed] [CrossRef] []
19. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6 调节肿瘤细胞来源的质膜微泡脱落。Curr Biol. 2009;19(22):1875–1885.doi: 10.1016/j.cub.2009.09.059.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
20. Rigogliuso S, Donati C, Cassarà D, Taverna S, Salamone M, Bruni P, et al. An active form of sphingosine kinase-1 is released in the extracellular medium as component of membrane vesicles shed by two human tumor cell lines. Journal of oncology. 2010;2010:509329. doi: 10.1155/2010/509329. [PMC free article] [PubMed] [CrossRef] []
20. Rigogliuso S、Donati C、Cassarà D、Taverna S、Salamone M、Bruni P 等。鞘氨醇激酶-1 的活性形式在细胞外培养基中释放,作为两种人类肿瘤细胞系脱落的膜囊泡的成分。肿瘤学杂志。2010;2010:509329.doi: 10.1155/2010/509329.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
21. Putz U, Howitt J, Doan A, Goh CP, Low LH, Silke J, et al. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci Signal. 2012;5(243):ra70. doi: 10.1126/scisignal.2003084. [PubMed] [CrossRef] []
21. Putz U、Howitt J、Doan A、Goh CP、Low LH、Silke J 等。肿瘤抑制因子PTEN在外泌体中输出,并在受体细胞中具有磷酸酶活性。科学信号。2012;5(243):RA70。doi: 10.1126/scisignal.2003084.[ 出版][ 交叉引用][ 谷歌学术搜索]
22. Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J Biol Chem. 2014;289(47):32526–32537. doi: 10.1074/jbc.M114.606269. [PMC free article] [PubMed] [CrossRef] []
22. Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK.复合 N-连接聚糖可作为外泌体/微囊泡货物募集的决定因素。生物化学杂志 2014;289(47): 32526–32537.doi: 10.1074/jbc.货号 M114.606269。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
23. Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: structural characterization and biological functions. Mol Immunol. 2021;135:226–246. doi: 10.1016/j.molimm.2021.04.017. [PubMed] [CrossRef] []
23. Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. 细胞外囊泡中的蛋白质糖基化:结构表征和生物学功能。分子免疫。2021;135:226–246.doi: 10.1016/j.molimm.2021.04.017.[ 出版][ 交叉引用][ 谷歌学术搜索]
24. Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of cancer extracellular vesicles: capture strategies, functional roles and potential clinical applications. Cells. 2021;10(1):109. doi: 10.3390/cells10010109. [PMC free article] [PubMed] [CrossRef] []
24. Martins ÁM, Ramos CC, Freitas D, Reis CA. 癌症细胞外囊泡的糖基化:捕获策略、功能作用和潜在的临床应用。细胞。2021;10(1):109.doi: 10.3390/cells10010109.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
25. Cui Z, Chen X, Lu B, Park SK, Xu T, Xie Z, et al. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture. Proteomics. 2009;9(5):1274–1292. doi: 10.1002/pmic.200800354. [PMC free article] [PubMed] [CrossRef] []
25. 崔志, 陈旭, 卢斌, 朴SK, 徐婷, 谢志, 等.通过细胞培养物中氨基酸的稳定同位素标记,大鼠 L6 成肌细胞和肌管之间差异蛋白表达的初步定量谱。蛋白质组学。2009;9(5):1274–1292.doi: 10.1002/pmic.200800354.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
26. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010;9(11):2482–2496. doi: 10.1074/mcp.M110.002113. [PMC free article] [PubMed] [CrossRef] []
26. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. 成肌细胞分化过程中骨骼肌分泌组的动力学。分子细胞蛋白质组学。2010;9(11): 2482–2496.doi: 10.1074/mcp.货号 M110.002113。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
27. Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 2010;316(12):1977–1984. doi: 10.1016/j.yexcr.2010.04.006. [PubMed] [CrossRef] []
27. Guescini M、Guidolin D、Vallorani L、Casadei L、Gioacchini AM、Tibollo P 等。C2C12 成肌细胞释放含有 mtDNA 和参与信号转导的蛋白质的微囊泡。Exp Cell Res.2010;316(12):1977–1984.doi: 10.1016/j.yexcr.2010.04.006.[ 出版][ 交叉引用][ 谷歌学术搜索]
28. Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, et al. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS ONE. 2014;9(1):e84153. doi: 10.1371/journal.pone.0084153. [PMC free article] [PubMed] [CrossRef] []
28. Forterre A、Jalabert A、Berger E、Baudet M、Chikh K、Errazuriz E 等。C2C12 成肌细胞和肌管外泌体样囊泡的蛋白质组学分析:成肌细胞-肌管串扰的新范式?PLoS 一号。2014;9(1):e84153.doi: 10.1371/journal.pone.0084153.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
29. Watanabe S, Sudo Y, Makino T, Kimura S, Tomita K, Noguchi M, et al. Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment. PNAS nexus. 2022;1(4):pgac173. doi: 10.1093/pnasnexus/pgac173. [PMC free article] [PubMed] [CrossRef] []
29. 渡边 S、须藤 Y、牧野 T、木村 S、富田 K、野口 M 等。骨骼肌释放具有独特蛋白质和 microRNA 特征的细胞外囊泡,这些特征在肌肉微环境中起作用。PNAS关系。2022;1(4):p GAC173.doi: 10.1093/PNassNexus/PGAC173.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
30. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–45 e18. doi: 10.1016/j.cell.2019.02.029. [PMC free article] [PubMed] [CrossRef] []
30. Jeppesen DK、Fenix AM、Franklin JL、Higginbotham JN、Zhang Q、Zimmerman LJ 等。重新评估外泌体组成。细胞。2019;177(2):428–45 E18。doi: 10.1016/j.cell.2019.02.029.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
31. Li J, Wang J, Yan Y, Li N, Qing X, Tuerxun A, et al. Comprehensive evaluation of different TiO2-based phosphopeptide enrichment and fractionation methods for phosphoproteomics. Cells. 2022;11(13):2047. doi: 10.3390/cells11132047. [PMC free article] [PubMed] [CrossRef] []
31. 李杰, 王杰, 闫彦, 李恩, X青, 图尔勋, 等.综合评估不同基于TiO2的磷酸肽富集和磷酸化蛋白质组学的分离方法。细胞.2022;11(13):2047.doi: 10.3390/cells11132047.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
32. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10(12):5354–5362. doi: 10.1021/pr200611n. [PubMed] [CrossRef] []
32. Taus T、Kocher T、Pichler P、Paschke C、Schmidt A、Henrich C 等人。使用 phosphoRS 进行通用且可靠的磷酸化位点定位。J 蛋白质组研究 2011;10(12): 5354–5362.doi: 10.1021/PR200611N.[ 出版][ 交叉引用][ 谷歌学术搜索]
33. Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;Chapter 13:13.20.1–13.20.14. [PMC free article] [PubMed] []
33. Bern M, Kil YJ, Becker C. Byonic:先进的肽和蛋白质鉴定软件。Curr Protoc 生物信息学。2012;第13章:13.20.1–13.20.14。[ PMC免费商品][ 出版][ 谷歌学术搜索]
34. Bern MW, Kil YJ. Two-dimensional target decoy strategy for shotgun proteomics. J Proteome Res. 2011;10(12):5296–5301. doi: 10.1021/pr200780j. [PMC free article] [PubMed] [CrossRef] []
34. 伯尔尼 MW,基尔 YJ。鸟枪蛋白质组学的二维目标诱饵策略。J 蛋白质组研究.2011;10(12): 5296–5301.doi: 10.1021/PR200780J.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
35. Lee LY, Moh ES, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward automated N-Glycopeptide identification in glycoproteomics. J Proteome Res. 2016;15(10):3904–3915. doi: 10.1021/acs.jproteome.6b00438. [PubMed] [CrossRef] []
35. Lee LY, Moh ES, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. 在糖蛋白组学中实现自动 N-糖肽鉴定。J 蛋白质组研究 2016;15(10): 3904–3915.doi: 10.1021/acs.jproteome.6b00438.[ 出版][ 交叉引用][ 谷歌学术搜索]
36. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–2141. doi: 10.1101/gr.772403. [PMC free article] [PubMed] [CrossRef] []
36. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER:按功能索引的蛋白质家族和亚家族文库。基因组研究 2003;13(9): 2129–2141.doi: 10.1101/gr.772403.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
37. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50(W1):W216–W221. doi: 10.1093/nar/gkac194. [PMC free article] [PubMed] [CrossRef] []
37. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID:用于基因列表功能富集分析和功能注释的 Web 服务器(2021 年更新) 核酸研究 Res.2022;50(W1):W216–W221。doi: 10.1093/nar/gkac194.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
38. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 2010;38(Web Server issue):W96–102. doi: 10.1093/nar/gkq418. [PMC free article] [PubMed] [CrossRef] []
38. Kaimal V、Bardes EE、Tabar SC、Jegga AG、Aronow BJ。ToppCluster:用于生物系统的比较富集聚类和基于网络的解剖的多基因列表特征分析器。核酸研究 2010;38(Web 服务器问题):W96–102。doi: 10.1093/nar/gkq418.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
39. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277–80. doi: 10.1093/nar/gkh063. [PMC free article] [PubMed] [CrossRef] []
39. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M.用于破译基因组的KEGG资源。核酸研究 2004;32(数据库问题):D 277–80。doi: 10.1093/nar/gkh063.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
40. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al. Reactome graph database: efficient access to complex pathway data. PLoS Comput Biol. 2018;14(1):e1005968. doi: 10.1371/journal.pcbi.1005968. [PMC free article] [PubMed] [CrossRef] []
40. Fabregat A、Korninger F、Viteri G、Sidiropoulos K、Marin-Garcia P、Ping P 等。反应组图数据库:高效访问复杂的通路数据。PLoS Comput Biol. 2018;14(1):e1005968。doi: 10.1371/journal.pcbi.1005968.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
41. Luo W, Pant G, Bhavnasi YK, Blanchard SG, Jr, Brouwer C. Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res. 2017;45(W1):W501–W508. doi: 10.1093/nar/gkx372. [PMC free article] [PubMed] [CrossRef] []
41. Luo W, Pant G, Bhavnasi YK, Blanchard SG, Jr, Brouwer C. Pathview Web:用户友好的路径可视化和数据集成。核酸研究 2017;45(W1):W501–W508。doi: 10.1093/nar/gkx372.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
42. Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43(W1):W401–W407. doi: 10.1093/nar/gkv485. [PMC free article] [PubMed] [CrossRef] []
42. 齐里戈斯 KD, 彼得斯 C, 舒 N, 凯尔 L, 埃洛夫森 A.用于膜蛋白拓扑和信号肽的共识预测的 TOPCONS Web 服务器。核酸研究 2015;43(W1):W401–W407。doi: 10.1093/nar/gkv485.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
43. Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A, et al. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 2019;47(D1):D433–D441. doi: 10.1093/nar/gky1159. [PMC free article] [PubMed] [CrossRef] []
43. Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A, et al. 15 年的 PhosphoSitePlus®:整合翻译后修饰位点、疾病变异和亚型。核酸研究 2019;47(D1):D 433–D441。doi: 10.1093/nar/gky1159.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
44. Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 2022;50(D1):D471–D479. doi: 10.1093/nar/gkab1017. [PMC free article] [PubMed] [CrossRef] []
44. Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, et al. dbPTM in 2022:用于探索蛋白质翻译后修饰的调控网络和功能关联的更新数据库。核酸研究 2022;50(D1):D 471–D479。doi: 10.1093/nar/gkab1017.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
45. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci U S A. 2004;101(32):11707–11712. doi: 10.1073/pnas.0306880101. [PMC free article] [PubMed] [CrossRef] []
45. Caenepeel S、Charydczak G、Sudarsanam S、Hunter T、Manning G。小鼠激酶组:所有小鼠蛋白激酶的发现和比较基因组学。美国国家科学院院刊 A.2004;101(32): 11707–11712.doi: 10.1073/pnas.0306880101.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
46. Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y, Iddamsetty V, et al. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 2021;49(D1):D461–D467. doi: 10.1093/nar/gkaa1004. [PMC free article] [PubMed] [CrossRef] []
46. Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y, Iddamsetty V, et al.转运蛋白分类数据库 (TCDB):2021 年更新。核酸研究 2021;49(D1):D 461–D467。doi: 10.1093/nar/gkaa1004.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
47. Shao X, Liao J, Li C, Lu X, Cheng J, Fan X. Cell TalkDB: a manually curated database of ligand-receptor interactions in humans and mice. Briefings Bioinformatics. 2021;22(4):bbaa269. doi: 10.1093/bib/bbaa269. [PubMed] [CrossRef] []
47. Shao X, Liao J, Li C, Lu X, Cheng J, Fan X. Cell TalkDB:人类和小鼠配体-受体相互作用的手动数据库。简报生物信息学。2021;22(4):BBAA269。doi: 10.1093/bib/bbaa269.[ 出版][ 交叉引用][ 谷歌学术搜索]
48. Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M, Takakura Y. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci. 2017;96:316–322. doi: 10.1016/j.ejps.2016.10.009. [PubMed] [CrossRef] []
48. Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M, Takakura Y. 小鼠细胞系来源的外泌体的细胞类型特异性和共同特征:产量、理化性质和药代动力学。2017年欧洲药学杂志;96:316–322.doi: 10.1016/j.ejps.2016.10.009.[ 出版][ 交叉引用][ 谷歌学术搜索]
49. Babst M. A protein's final ESCRT. Traffic (Copenhagen, Denmark) 2005;6(1):2–9. doi: 10.1111/j.1600-0854.2004.00246.x. [PubMed] [CrossRef] []
49.巴布斯特M.蛋白质的最终 ESCRT。交通(丹麦哥本哈根),2005年;6(1):2–9.doi: 10.1111/j.1600-0854.2004.00246.x.[ 出版][ 交叉引用][ 谷歌学术搜索]
50. Chen X, Sun Y, Zhang T, Roepstorff P, Yang F. Comprehensive analysis of the proteome and PTMomes of C2C12 myoblasts reveals that sialylation plays a role in the differentiation of skeletal muscle cells. J Proteome Res. 2021;20(1):222–235. doi: 10.1021/acs.jproteome.0c00353. [PubMed] [CrossRef] []
50. Chen X, Sun Y, Zhang T, Roepstorff P, Yang F. C2C12成肌细胞蛋白质组和PTM组的综合分析表明,唾液酸化在骨骼肌细胞的分化中起作用。J 蛋白质组研究 2021;20(1):222–235.doi: 10.1021/acs.jproteome.0c00353.[ 出版][ 交叉引用][ 谷歌学术搜索]
51. Le Bihan MC, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, Lainé J, et al. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics. 2012;77:344–356. doi: 10.1016/j.jprot.2012.09.008. [PubMed] [CrossRef] []
51. Le Bihan MC、Bigot A、Jensen SS、Dennis JL、Rogowska-Wrzesinska A、Lainé J 等。对分泌组的深入分析确定了分化人成肌细胞的三个主要独立分泌途径。J 蛋白质组学。2012;77:344–356.doi: 10.1016/j.jprot.2012.09.008.[ 出版][ 交叉引用][ 谷歌学术搜索]
52. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11(4):709–720. doi: 10.1002/pmic.201000422. [PubMed] [CrossRef] []
52. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. 膜囊泡和外泌体蛋白质组学的进展,改善生物学理解和生物标志物发现。蛋白质组学.2011;11(4):709–720.doi: 10.1002/pmic.201000422.[ 出版][ 交叉引用][ 谷歌学术搜索]
53. Chou KC, Cai YD. Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model. 2005;45(2):407–413. doi: 10.1021/ci049686v. [PubMed] [CrossRef] []
53. Chou KC, Cai YD. 通过结合两亲性效应预测膜蛋白类型.J Chem Inf 模型。2005;45(2):407–413.doi: 10.1021/ci049686v.[ 出版][ 交叉引用][ 谷歌学术搜索]
54. Tutanov OS, Glass SE, Coffey RJ. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. Extracell Vesicles Circ Nucl Acids. 2023;4(2):195–217. doi: 10.20517/evcna.2023.17. [PMC free article] [PubMed] [CrossRef] []
54. Tutanov OS、Glass SE、Coffey RJ。结直肠癌中 GPI 锚定蛋白与其细胞外载体之间的新兴连接。细胞外囊泡环绕核酸。2023;4(2):195–217.doi: 10.20517/evcna.2023.17.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
55. Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev. 2020;161–162:110–123. doi: 10.1016/j.addr.2020.08.006. [PubMed] [CrossRef] []
55. Vidal M. 外泌体和 GPI 锚定蛋白:用于研究体液生物标志物的明智配对。Adv Drug Deliv 修订版 2020;161–162:110–123.doi: 10.1016/j.addr.2020.08.006.[ 出版][ 交叉引用][ 谷歌学术搜索]
56. Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44(9):1574–1584. doi: 10.1016/j.biocel.2012.06.018. [PubMed] [CrossRef] []
56. Rana S, Yue S, Stadel D, Zöller M. 走向定制的外泌体:外泌体四跨膜蛋白网有助于靶细胞选择。Int J Biochem Cell Biol. 2012;44(9):1574–1584.doi: 10.1016/j.biocel.2012.06.018.[ 出版][ 交叉引用][ 谷歌学术搜索]
57. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014;127(Pt 17):3641–3648. [PubMed] []
57. Charrin S、Jouannet S、Boucheix C、Rubinstein E. Tetraspanins 一目了然。细胞科学杂志 2014;127(第17页):3641-3648。[ 出版][ 谷歌学术搜索]
58. Odorizzi G. The multiple personalities of Alix. J Cell Sci. 2006;119(Pt 15):3025–3032. doi: 10.1242/jcs.03072. [PubMed] [CrossRef] []
58. 奥多里齐 G.Alix的多重人格。细胞科学杂志 2006;119(第15页):3025-3032。doi: 10.1242/jcs.03072.[ 出版][ 交叉引用][ 谷歌学术搜索]
59. Guo J, Cui Y, Yan Z, Luo Y, Zhang W, Deng S, et al. Phosphoproteome characterization of human colorectal cancer SW620 cell-derived exosomes and new phosphosite discovery for C-HPP. J Proteome Res. 2016;15(11):4060–4072. doi: 10.1021/acs.jproteome.6b00391. [PubMed] [CrossRef] []
59. 郭杰, 崔彦, 闫志, 罗彦, 张伟, 邓, 等.人类结直肠癌 SW620 细胞来源的外泌体的磷酸化蛋白质组表征和 C-HPP 的新磷酸化位点发现。J 蛋白质组研究 2016;15(11): 4060–4072.doi: 10.1021/acs.jproteome.6b00391.[ 出版][ 交叉引用][ 谷歌学术搜索]
60. Oshima K, Aoki N, Kato T, Kitajima K, Matsuda T. Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane vesicles. Eur J Biochem. 2002;269(4):1209–1218. doi: 10.1046/j.1432-1033.2002.02758.x. [PubMed] [CrossRef] []
60. Oshima K, Aoki N, Kato T, Kitajima K, Matsuda T. 外周膜蛋白 MFG-E8 的分泌,作为与膜囊泡的复合物。欧洲生化杂志。2002;269(4):1209–1218.doi: 10.1046/j.1432-1033.2002.02758.x.[ 出版][ 交叉引用][ 谷歌学术搜索]
61. Shimoda A, Tahara Y, Sawada SI, Sasaki Y, Akiyoshi K. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Biochem Biophys Res Commun. 2017;491(3):701–707. doi: 10.1016/j.bbrc.2017.07.126. [PubMed] [CrossRef] []
61. Shimoda A, Tahara Y, Sawada SI, Sasaki Y, Akiyoshi K. 使用倏逝场荧光辅助凝集素阵列进行聚糖分析:糖识别对间充质干细胞外泌体细胞摄取的重要性。Biochem Biophys Res Commun.2017;491(3):701–707.doi: 10.1016/j.bbrc.2017.07.126.[ 出版][ 交叉引用][ 谷歌学术搜索]
62. Williams C, Pazos R, Royo F, González E, Roura-Ferrer M, Martinez A, et al. Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci Rep. 2019;9(1):11920. doi: 10.1038/s41598-019-48499-1. [PMC free article] [PubMed] [CrossRef] []
62. 威廉姆斯 C、帕索斯 R、罗约 F、冈萨雷斯 E、罗拉-费雷尔 M、马丁内斯 A 等人。评估细胞外囊泡表面聚糖对细胞摄取的作用。2019年科学代表;9(1):11920.doi: 10.1038/s41598-019-48499-1.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
63. Yoshida T, Ebina H, Koyanagi Y. N-linked glycan-dependent interaction of CD63 with CXCR4 at the Golgi apparatus induces downregulation of CXCR4. Microbiol Immunol. 2009;53(11):629–635. doi: 10.1111/j.1348-0421.2009.00167.x. [PubMed] [CrossRef] []
63. Yoshida T, Ebina H, Koyanagi Y. CD63 与 CXCR4 在高尔基体的 N-连接聚糖依赖性相互作用诱导 CXCR4 下调。微生物免疫学。2009;53(11):629–635.doi: 10.1111/j.1348-0421.2009.00167.x.[ 出版][ 交叉引用][ 谷歌学术搜索]
64. Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the functional impact of their interaction in cancer. Int J Mol Sci. 2021;22(17):9319. doi: 10.3390/ijms22179319. [PMC free article] [PubMed] [CrossRef] []
64. Justo BL, Jasiulionis MG. TIMP1、CD63 和 β1-整合素的特征及其相互作用在癌症中的功能影响。国际分子科学杂志 2021;22(17):9319.doi: 10.3390/ijms22179319.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
65. Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H, Ochiya T. RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol Cancer. 2014;13:134. doi: 10.1186/1476-4598-13-134. [PMC free article] [PubMed] [CrossRef] []
65. Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H, Ochiya T. RPN2介导的四跨膜蛋白CD63糖基化调节乳腺癌细胞恶性肿瘤。摩尔癌。2014;13:134.doi: 10.1186/1476-4598-13-134.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
66. Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics. 2020;10(14):6467–6482. doi: 10.7150/thno.43865. [PMC free article] [PubMed] [CrossRef] []
66. Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, et al. MGAT3介导的四跨膜蛋白CD82在天冬酰胺157位点的糖基化通过抑制整合素信号通路抑制卵巢癌转移。治疗诊断学。2020;10(14): 6467–6482.doi: 10.7150/thno.43865.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
67. Chitti SV, Gummadi S, Kang T, Shahi S, Marzan AL, Nedeva C, et al. Vesiclepedia 2024: an extracellular vesicles and extracellular particles repository. Nucleic Acids Res. 2023:1-5. [PMC free article] [PubMed]
67. Chitti SV、Gummadi S、Kang T、Shahi S、Marzan AL、Nedeva C 等。Vesiclepedia 2024:细胞外囊泡和细胞外颗粒库。核酸研究 2023:1-5。[ PMC免费商品][ 出版]
68. Ten NA. Years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol Cell Proteomics. 2023;22(4):100528. doi: 10.1016/j.mcpro.2023.100528. [PMC free article] [PubMed] [CrossRef] []
68. 十个 NA。多年的细胞外基质蛋白质组学:成就、挑战和未来展望。分子细胞蛋白质组学。2023;22(4):100528.doi: 10.1016/j.mcpro.2023.100528.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
69. Gibson NJ. Cell adhesion molecules in context: CAM function depends on the neighborhood. Cell Adh Migr. 2011;5(1):48–51. doi: 10.4161/cam.5.1.13639. [PMC free article] [PubMed] [CrossRef] []
69.新泽西州吉布森。上下文中的细胞粘附分子:CAM 功能取决于邻域。细胞 Adh Migr.2011;5(1):48–51.doi: 10.4161/cam.5.1.13639.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
70. Yoshinobu Kariya YK, Jianguo Gu. Laminin-332 and Integrins: Signaling Platform for Cell Adhesion and Migration and its Regulation by N-Glycosylation. Laminins: Structure, Biological Activity and Role in Disease. 2013.
70. Yoshinobu Kariya YK, 顾建国.层粘连蛋白-332 和整合素:细胞粘附和迁移的信号传导平台及其通过 N-糖基化调节。层粘连蛋白:结构、生物活性和在疾病中的作用。2013.
71. Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res. 2021;89(7):1619–1626. doi: 10.1038/s41390-020-01177-9. [PMC free article] [PubMed] [CrossRef] []
71. Mezu-Ndubuisi OJ,马赫什瓦里 A.整合素在炎症和血管生成中的作用。2021 年儿科研究;89(7):1619–1626.doi: 10.1038/s41390-020-01177-9.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
72. Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends in cancer. 2018;4(8):537–552. doi: 10.1016/j.trecan.2018.05.009. [PubMed] [CrossRef] []
72. Marsico G, Russo L, Quondamatteo F, Pandit A. 癌症中的糖基化和整合素调节。癌症趋势。2018;4(8):537–552.doi: 10.1016/j.trecan.2018.05.009.[ 出版][ 交叉引用][ 谷歌学术搜索]
73. Čaval T, Heck AJR, Reiding KR. Meta-heterogeneity: evaluating and describing the diversity in glycosylation between sites on the same glycoprotein. Mol Cell Proteomics. 2021;20:100010. doi: 10.1074/mcp.R120.002093. [PMC free article] [PubMed] [CrossRef] []
73. Čaval T, Heck AJR, Reiding KR. 元异质性:评估和描述同一糖蛋白位点之间糖基化的多样性。分子细胞蛋白质组学。2021;20:100010.doi: 10.1074/mcp.R120.002093 中。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
74. Kariya Y, Kato R, Itoh S, Fukuda T, Shibukawa Y, Sanzen N, et al. N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc. J Biol Chem. 2008;283(48):33036–45. doi: 10.1074/jbc.M804526200. [PMC free article] [PubMed] [CrossRef] []
74. Kariya Y、Kato R、Itoh S、Fukuda T、Shibukawa Y、Sanzen N 等。层粘连蛋白-332的N-糖基化调节其生物学功能。平分 GlcNAc 的新函数。生物化学杂志.2008;283(48):33036–45.doi: 10.1074/jbc.M804526200。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
75. Peng Z, Lv X, Huang S. Recent progress on the role of fibronectin in tumor stromal immunity and immunotherapy. Curr Top Med Chem. 2022;22(30):2494–2505. doi: 10.2174/1568026622666220615152647. [PubMed] [CrossRef] []
75. 彭志, 吕旭, 黄淑.纤连蛋白在肿瘤基质免疫和免疫治疗中的作用研究进展.Curr Top Med Chem. 2022;22(30): 2494–2505.doi: 10.2174/1568026622666220615152647.[ 出版][ 交叉引用][ 谷歌学术搜索]
76. Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. Faseb j. 1993;7(15):1475–1482. doi: 10.1096/fasebj.7.15.8262332. [PubMed] [CrossRef] []
76. Denhardt DT, Guo X. 骨桥蛋白:一种具有多种功能的蛋白质。Faseb j. 1993 年;7(15):1475–1482.doi: 10.1096/fasebj.7.15.8262332.[ 出版][ 交叉引用][ 谷歌学术搜索]
77. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321–4327. [PubMed] []
77. Midwood KS、Chiquet M、Tucker RP、Orend G. Tenascin-C 一目了然。细胞科学杂志.2016;129(23): 4321–4327.[ 出版][ 谷歌学术搜索]
78. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43):17380–17385. doi: 10.1073/pnas.1304266110. [PMC free article] [PubMed] [CrossRef] []
78. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. 癌细胞外泌体依赖于细胞表面硫酸乙酰肝素蛋白聚糖的内化和功能活性。美国国家科学院院刊,2013年;110(43): 17380–17385.doi: 10.1073/pnas.1304266110.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
79. Mu W, Xu Y, Gu P, Wang W, Li J, Ge Y, et al. Exosomal CD44 cooperates with integrin α6β4 to support organotropic metastasis via regulating tumor cell motility and target host cell activation. Engineering. 2021;7(10):1413–1423. doi: 10.1016/j.eng.2020.08.013. [CrossRef] []
79. 穆伟, 徐勇, 顾萍, 王伟, 李杰, 葛勇, 等.外泌体 CD44 与整合素 α6β4 合作,通过调节肿瘤细胞运动和靶宿主细胞活化来支持器官转移。工程。2021;7(10):1413–1423.doi: 10.1016/j.eng.2020.08.013.[ 交叉引用][ 谷歌学术搜索]
80. Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, et al. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis. 2023;14(3):222. doi: 10.1038/s41419-023-05733-z. [PMC free article] [PubMed] [CrossRef] []
80. 胡 M, 张R, 杨杰, 赵 C, 刘伟, 黄勇, 等.N-糖基化修饰在肝癌发病机制中的作用。细胞死亡 Dis. 2023;14(3):222.doi: 10.1038/s41419-023-05733-z.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
81. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–848. doi: 10.1038/nrm3012. [PubMed] [CrossRef] []
81. Trusolino L, Bertotti A, Comoglio PM. MET信号传导:发育、器官再生和癌症中的原理和功能。Nat Rev Mol 细胞生物学 2010;11(12):834–848.doi: 10.1038/NRM3012.[ 出版][ 交叉引用][ 谷歌学术搜索]
82. Aberle H. Axon guidance and collective cell migration by substrate-derived attractants. Front Mol Neurosci. 2019;12:148. doi: 10.3389/fnmol.2019.00148. [PMC free article] [PubMed] [CrossRef] []
82. Aberle H. 基质衍生引诱剂的轴突引导和集体细胞迁移。前摩尔神经科学。2019;12:148.doi: 10.3389/fnmol.2019.00148.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
83. Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol. 2021;142:147–196. doi: 10.1016/bs.ctdb.2020.11.008. [PMC free article] [PubMed] [CrossRef] []
83. 臧 Y, 乔达里 K, 巴肖 GJ.对轴突引导受体调控和信号传导的分子机制的新见解。Curr Top Dev Biol. 2021 年;142:147–196.doi: 10.1016/bs.ctdb.2020.11.008.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
84. Madison RD, McGee C, Rawson R, Robinson GA. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34) J Extracell Vesicles. 2014;3(1):22865. doi: 10.3402/jev.v3.22865. [PMC free article] [PubMed] [CrossRef] []
84. Madison RD, McGee C, Rawson R, Robinson GA. 来自肌肉细胞系 (C2C12) 的细胞外囊泡可增强运动神经元细胞系 (NSC-34) J 细胞外囊泡的细胞存活和神经突生长。2014;3(1):22865.doi: 10.3402/jev.v3.22865.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
85. Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, Wesseling J, et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol. 2019;2:325. doi: 10.1038/s42003-019-0570-8. [PMC free article] [PubMed] [CrossRef] []
85. Rontogianni S、Synadaki E、Li B、Liefaard MC、Lips EH、Wesseling J 等。细胞外囊泡的蛋白质组学分析允许人类乳腺癌亚型。社区生物学 2019;2:325。doi: 10.1038/s42003-019-0570-8.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
86. Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A. 2017;114(12):3175–3180. doi: 10.1073/pnas.1618088114. [PMC free article] [PubMed] [CrossRef] []
86. 陈 IH, 薛 L, Hsu CC, Paez JS, Pan L, Andaluz H, 等.细胞外囊泡中的磷蛋白作为乳腺癌的候选标志物。美国国家科学院院刊,2017 年;114(12): 3175–3180.doi: 10.1073/pnas.1618088114.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
87. Carnino JM, Ni K, Jin Y. Post-translational modification regulates formation and cargo-loading of extracellular vesicles. Front Immunol. 2020;11:948. doi: 10.3389/fimmu.2020.00948. [PMC free article] [PubMed] [CrossRef] []
87. Carnino JM, Ni K, Jin Y. 翻译后修饰调节细胞外囊泡的形成和载货量。前免疫。2020;11:948.doi: 10.3389/fimmu.2020.00948.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
88. Gong J, Körner R, Gaitanos L, Klein R. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol. 2016;214(1):35–44. doi: 10.1083/jcb.201601085. [PMC free article] [PubMed] [CrossRef] []
88. Gong J, Körner R, Gaitanos L, Klein R. 外泌体介导轴突引导过程中细胞接触非依赖性肝配蛋白-Eph 信号传导。细胞生物学杂志 2016;214(1):35–44.doi: 10.1083/jcb.201601085.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
89. Niethamer TK, Bush JO. Getting direction(s): the Eph/ephrin signaling system in cell positioning. Dev Biol. 2019;447(1):42–57. doi: 10.1016/j.ydbio.2018.01.012. [PMC free article] [PubMed] [CrossRef] []
89. Niethamer TK,布什乔。获取方向:细胞定位中的 Eph/ephrin 信号系统。开发生物学 2019;447(1):42–57.doi: 10.1016/j.ydbio.2018.01.012.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
90. Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res. 2019;17(2):337–347. doi: 10.1158/1541-7786.MCR-18-0891. [PubMed] [CrossRef] []
90. 贡达 A、卡巴格维拉 J、森蒂尔 GN、沃尔 NR。通过受体介导的内吞作用内化外泌体。Mol Cancer Res. 2019;17(2):337–347.doi: 10.1158/1541-7786.MCR-18-0891.[ 出版][ 交叉引用][ 谷歌学术搜索]
91. Chen Y, Yu L. Extracellular vesicles: from bench to bedside. Curr Med. 2022;1(1):3. doi: 10.1007/s44194-022-00001-2. [CrossRef] []
91. Chen Y, Yu L. 细胞外囊泡:从工作台到床边。Curr Med. 2022 年;1(1):3.doi: 10.1007/s44194-022-00001-2.[ 交叉引用][ 谷歌学术搜索]
92. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–335. doi: 10.1038/nature15756. [PMC free article] [PubMed] [CrossRef] []
92. 星野 A、科斯塔-席尔瓦 B、沈 TL、罗德里格斯 G、桥本 A、泰西奇 Mark M 等。肿瘤外泌体整合素决定了器官转移。自然界。2015;527(7578):329–335.doi: 10.1038/nature15756.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
93. Grigoryeva ES, Savelieva OE, Popova NO, Cherdyntseva NV, Perelmuter VM. Do tumor exosome integrins alone determine organotropic metastasis? Mol Biol Rep. 2020;47(10):8145–8157. doi: 10.1007/s11033-020-05826-4. [PubMed] [CrossRef] []
93. 格里戈里耶娃 ES、萨维利耶娃 OE、波波娃 NO、切尔丁采娃 NV、佩雷尔穆特 VM。单独使用肿瘤外泌体整合素可以决定器官转移吗?Mol Biol Rep. 2020 年;47(10): 8145–8157.doi: 10.1007/s11033-020-05826-4.[ 出版][ 交叉引用][ 谷歌学术搜索]
94. Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, et al. Potential roles of N-glycosylation in cell adhesion. Glycoconj J. 2012;29(8–9):599–607. doi: 10.1007/s10719-012-9386-1. [PubMed] [CrossRef] []
94. 顾J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, et al.N-糖基化在细胞粘附中的潜在作用。Glycoconj J. 2012 年;29(8–9):599–607.doi: 10.1007/s10719-012-9386-1.[ 出版][ 交叉引用][ 谷歌学术搜索]
95. Kariya Y, Kariya Y, Gu J. Roles of integrin α6β4 glycosylation in cancer. Cancers. 2017;9(7):79. doi: 10.3390/cancers9070079. [PMC free article] [PubMed] [CrossRef] []
95. Kariya Y, Kariya Y, Gu J. 整合素 α6β4 糖基化在癌症中的作用.癌症。2017;9(7):79.doi: 10.3390/cancers9070079.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
96. Huang YL, Liang CY, Labitzky V, Ritz D, Oliveira T, Cumin C, et al. Site-specific N-glycosylation of integrin α2 mediates collagen-dependent cell survival. iScience. 2021;24(10):103168. doi: 10.1016/j.isci.2021.103168. [PMC free article] [PubMed] [CrossRef] []
96. Huang YL, Liang CY, Labitzky V, Ritz D, Oliveira T, Cumin C, et al. 整合素 α2 的位点特异性 N-糖基化介导胶原依赖性细胞存活。iScience的。2021;24(10):103168.doi: 10.1016/j.isci.2021.103168.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
97. Isaji T, Sato Y, Fukuda T, Gu J. N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem. 2009;284(18):12207–12216. doi: 10.1074/jbc.M807920200. [PMC free article] [PubMed] [CrossRef] []
97. Isaji T, Sato Y, Fukuda T, Gu J. β1 整合素 I 样结构域的 N-糖基化对 β1 整合素表达和生物学功能至关重要:鉴定 α5β1 的最小 N-糖基化需求。生物化学杂志 2009;284(18): 12207–12216.doi: 10.1074/jbc.M807920200。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
98. Isaji T, Sato Y, Zhao Y, Miyoshi E, Wada Y, Taniguchi N, et al. N-glycosylation of the beta-propeller domain of the integrin alpha5 subunit is essential for alpha5beta1 heterodimerization, expression on the cell surface, and its biological function. J Biol Chem. 2006;281(44):33258–33267. doi: 10.1074/jbc.M607771200. [PubMed] [CrossRef] []
98. Isaji T, Sato Y, Zhao Y, Miyoshi E, Wada Y, Taniguchi N, et al.整合素 α5 亚基的 β-螺旋结构域的 N-糖基化对 α5β1 异二聚化、细胞表面表达及其生物学功能至关重要。生物化学杂志 2006;281(44): 33258–33267.doi: 10.1074/jbc.M607771200。[ 出版][ 交叉引用][ 谷歌学术搜索]
99. Hang Q, Isaji T, Hou S, Wang Y, Fukuda T, Gu J. A key regulator of cell adhesion: identification and characterization of important N-Glycosylation sites on integrin α5 for cell migration. Mol Cell Biol. 2017;37(9):e00558–16. doi: 10.1128/MCB.00558-16. [PMC free article] [PubMed] [CrossRef] []
99. Hang Q, Isaji T, Hou S, Wang Y, Fukuda T, Gu J.细胞粘附的关键调节因子:鉴定和表征整合素α5上重要的N-糖基化位点,以进行细胞迁移。分子细胞生物学.2017;37(9):e00558–16。doi: 10.1128/MCB.00558-16.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
100. Termini CM, Gillette JM. Tetraspanins function as regulators of cellular signaling. Front Cell Dev Biol. 2017;5:34. doi: 10.3389/fcell.2017.00034. [PMC free article] [PubMed] [CrossRef] []
100. Termini CM,吉列 JM。四跨膜蛋白可作为细胞信号传导的调节剂。前沿细胞开发生物学 2017;5:34。doi: 10.3389/fcell.2017.00034.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
101. Marjon KD, Termini CM, Karlen KL, Saito-Reis C, Soria CE, Lidke KA, et al. Tetraspanin CD82 regulates bone marrow homing of acute myeloid leukemia by modulating the molecular organization of N-cadherin. Oncogene. 2016;35(31):4132–4140. doi: 10.1038/onc.2015.449. [PMC free article] [PubMed] [CrossRef] []
101. Marjon KD、Termini CM、Karlen KL、Saito-Reis C、Soria CE、Lidke KA 等。Tetraspanin CD82 通过调节 N-钙粘蛋白的分子组织来调节急性髓系白血病的骨髓归巢。基因。2016;35(31): 4132–4140.doi: 10.1038/onc.2015.449.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
102. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem. 2016;291(4):1652–1663. doi: 10.1074/jbc.M115.686295. [PMC free article] [PubMed] [CrossRef] []
102. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. 骨髓瘤细胞来源的外泌体表面的纤连蛋白介导外泌体-细胞相互作用。生物化学杂志.2016;291(4):1652–1663.doi: 10.1074/jbc.货号 M115.686295。[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
103. Miyazaki K. Laminin-5 (laminin-332): Unique biological activity and role in tumor growth and invasion. Cancer Sci. 2006;97(2):91–98. doi: 10.1111/j.1349-7006.2006.00150.x. [PubMed] [CrossRef] []
103. Miyazaki K. Laminin-5 (laminin-332):独特的生物活性和在肿瘤生长和侵袭中的作用。癌症科学 2006;97(2):91–98.doi: 10.1111/j.1349-7006.2006.00150.x.[ 出版][ 交叉引用][ 谷歌学术搜索]
104. Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164. doi: 10.1038/ncomms8164. [PMC free article] [PubMed] [CrossRef] []
104. 宋 BH、Ketova T、星野 D、Zijlstra A、Weaver AM。细胞通过组织的定向运动受外泌体分泌的控制。国家公社。2015;6:7164.doi: 10.1038/ncomms8164.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
105. Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, et al. Fibronectin in cell adhesion and migration via N-glycosylation. Oncotarget. 2017;8(41):70653–70668. doi: 10.18632/oncotarget.19969. [PMC free article] [PubMed] [CrossRef] []
105. Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, et al.纤连蛋白通过N-糖基化在细胞粘附和迁移中的作用。肿瘤靶标。2017;8(41): 70653–70668.doi: 10.18632/oncotarget.19969.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]
106. Kwok ZH, Wang C, Jin Y. Extracellular vesicle transportation and uptake by recipient cells: a critical process to regulate human diseases. Processes (Basel, Switzerland) 2021;9(2):273. [PMC free article] [PubMed] []
106. Kwok ZH, Wang C, Jin Y. 受体细胞的细胞外囊泡运输和摄取:调节人类疾病的关键过程.流程(瑞士巴塞尔)2021;9(2):273.[ PMC免费商品][ 出版][ 谷歌学术搜索]
107. Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50(D1):D1522–D1527. doi: 10.1093/nar/gkab1081. [PMC free article] [PubMed] [CrossRef] []
107. 陈 T, 马 J, 刘 Y, 陈 Z, 肖 N, 卢 Y, et al. iProX in 2021:将蛋白质组学数据共享与大数据连接起来。核酸研究 2022;50(D1):D 1522–D1527。doi: 10.1093/nar/gkab1081.[ PMC免费商品][ 出版][ 交叉引用][ 谷歌学术搜索]

Articles from Cell Communication and Signaling : CCS are provided here courtesy of BMC
来自 Cell Communication and Signaling : CCS 的文章由 BMC 提供