图像识别技术在腐蚀防护应用领域的现状
Current Status of Image Recognition Technology in the Field of Corrosion Protection Applications
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
Zhuhai Zhongke Huizhi Technology Co., Ltd., Zhuhai 518900, China
Zhuhai International Container Terminals (Gaolan) Co., Ltd., Zhuhai 519050, China
Authors to whom correspondence should be addressed.
Coatings 2024, 14(8), 1051; https://doi.org/10.3390/coatings14081051
Submission received: 11 July 2024 / Revised: 11 August 2024 / Accepted: 14 August 2024 / Published: 16 August 2024
(This article belongs to the Special Issue Corrosion Resistance, Mechanical Properties and Characterization of Metallic Materials and Coatings, 2nd Edition)
摘要
Abstract
Corrosion brings serious losses to the economy annually. Therefore, various corrosion protection and detection techniques are widely used in the daily maintenance of large metal engineering structures.
图像识别技术的出现为无损检测带来了更方便、更快捷的方式。
The emergence of image recognition technology has brought a more convenient and faster way for nondestructive testing.
现有图像识别技术可根据算法分为两类:传统图像识别技术和基于深度学习的图像识别技术。
Existing image recognition technology can be divided into two categories according to the algorithm: traditional image recognition technology and image recognition technology based on deep learning.
这两种技术已广泛应用于金属、涂层和电化学数据图像这三个领域。
These two types of technologies have been widely used in the three fields of metal, coating, and electrochemical data images.
已开展大量工作来识别金属和涂层中的缺陷,基于深度学习的方法在识别电化学数据图像方面也显示出潜力。
A large amount of work has been carried out to identify defects in metals and coatings, and deep learning-based methods also show potential for identifying electrochemical data images.
将电化学图像与缺陷形态检测相匹配,将为金属和涂层的图像识别技术带来更深入的理解。
Matching electrochemical images with the detection of defect morphology will bring a deeper understanding of image recognition techniques for metals and coatings.
一个累积形态和电化学参数的数据库将使得使用图像识别技术预测钢和涂层的寿命成为可能。
A database of accumulated morphology and electrochemical parameters will make it possible to predict the life of steel and coatings using image recognition techniques.
1. 引言
1. Introduction
Corrosion, a pervasive natural phenomenon, is often referred to as “quiet destruction” due to its insidious and destructive nature. In 2014, the cost of metal corrosion in China accounted for 3.34% of the gross domestic product, approximately US $310 billion [1]. However, with appropriate measures, 25% to 40% of corrosion losses can be prevented [2]. The ocean, which harbors vast amounts of oil, natural gas, and combustible ice, necessitates extensive offshore equipment for resource extraction. Offshore oil drilling platforms [3], transportation ships [4,5], and oil pipelines [6] are particularly susceptible to corrosion due to the high-temperature, high-humidity, and high-salinity environment of the ocean [7,8,9]. To mitigate corrosion, scientists have explored corrosion-resistant materials [10,11], corrosion inhibitors [12], protective coatings [13,14,15], and electrochemical cathodic protection [16,17]. Concurrently, engineers have employed non-destructive testing (NDT) techniques for metal corrosion detection. NDT techniques, which do not damage the inspection object, are extensively used to identify corrosion defects [18,19,20,21]. Common NDT methods include visual inspection, ultrasonic testing (UT) [22,23], pulsed eddy current testing (ECT) [24,25,26], and radiographic testing (RT) [27,28].
Visual inspection is the simplest and most convenient inspection method, making it widely used for detecting defects in ships, bridges, pipelines, and other facilities [29,30]. Engineers identify defects such as cracks and corrosion by sight. However, this method demands significant labor, materials, and financial resources [31]. Additionally, the identification results can vary between workers. The advent of Artificial Intelligence (AI) has introduced new approaches to corrosion detection [32,33,34,35], including image recognition as a non-destructive testing technique with the potential to replace visual inspection [36]. Engineers employ intelligent devices like drones and robots to capture corrosion images of large steel structures, enabling the efficient and accurate identification of corroded areas through computer vision.
这种方法不会损坏被检测对象,并且可以初步区分腐蚀的类型和程度。
This method does not damage the inspection object and can preliminarily distinguish the type and degree of corrosion.
重要的是,它的评估更客观,因为图像识别技术不仅可以复制人眼捕捉颜色、形状、纹理和其他特征的能力,还可以对这些数据进行量化,以便根据预设标准做出更准确的判断。
Importantly, its evaluation is more objective, as image recognition technology can not only replicate the human eye in capturing color, shape, texture, and other features, but also quantify these data to make more accurate judgments based on predefined standards.
Image recognition techniques in corrosion protection are categorized into traditional image recognition algorithms and deep learning-based image recognition techniques [37,38,39,40,41,42,43,44]. Traditional image recognition techniques can accurately identify corrosion areas and have been widely used [42,43]. However, they rely on manually designed feature extractors, making the tuning process complex and reducing the generalization ability and robustness.
相比之下,深度学习图像识别技术通过从大量数据中提取特征并揭示数据集之间更深层次的关联,更精确地表达数据集[37,38,39,40,41]。这种方法需要大量数据集和强大的计算资源。
By contrast, deep learning image recognition technology more precisely expresses datasets by extracting features from vast amounts of data and uncovering deeper associations between datasets [37,38,39,40,41]. This approach requires large datasets and powerful computing resources.
This paper primarily summarizes three aspects of image recognition technology in corrosion protection: metal, coating, and electrochemical imaging.
金属和涂层的识别侧重于其形态图像特征,以区分腐蚀类型和特征。
The recognition of metals and coatings focuses on their morphological image features to distinguish between corrosion types and characteristics.
电化学数据图像的识别涉及到理解腐蚀机制,并基于数据图像进行预测。图 1 提供了图像识别技术在腐蚀防护中的应用概述。
The recognition of electrochemical data images involves understanding the corrosion mechanism and making predictions based on data images. Figure 1 provides an overview of the application of image recognition technology in corrosion protection.
2. 图像识别技术的一般步骤
2. General Steps in Image Recognition Techniques
Traditional image recognition methods typically involve the following steps: image acquisition, image preprocessing, feature extraction, and image classification. Deep learning-based image recognition algorithms differ significantly.
它们需要大量的标注数据,并且它们的算法架构更加复杂。图 2 展示了这两种方法的流程图。
They require a large amount of labeled data, and their algorithmic architecture is more complex. Figure 2 illustrates the flowcharts of both methods.
Figure 2. Flowcharts of traditional image recognition techniques and deep learning-based image recognition techniques.
2.1. 传统图像识别步骤
2.1. Traditional Image Recognition Steps
2.1.1. 图像采集集合
2.1.1. Image Acquisition Collection
Three main types of capture devices are used in image recognition technology: video cameras, digital cameras, and scanning instruments (such as scanning electron microscopes and scanning acoustic microscopes).
这些设备可以通过采样来提取数字图像(包括动态图像),并将图片的颜色、形状、纹理和外部声音存储在计算机设备中。
These devices can extract digital images (including moving images) through sampling, and storing the color, shape, texture, and external sounds of the pictures in computer equipment.
图像采集是图像识别的第一步,采集到的图像质量会影响识别精度。
Image acquisition is the first step in image recognition, and the quality of the acquired image affects recognition accuracy.
The quality of an image is generally related to the pixels, resolution, and DPI (dots per inch) of the capture device. Pixels, the smallest units, can only display one color. The larger each pixel, the fewer pixels can be displayed per unit area.
分辨率是指图像中包含的像素数量,而 DPI 则表示沿图像长度每英寸(1 英寸=25.4 毫米)包含的像素数量。因此,较高的分辨率和 DPI 通常会导致更高的图像质量,提供更多的信息。
Resolution refers to the number of pixels contained in an image, while DPI measures the number of pixels per inch (1 inch = 25.4 mm) along the length of the image. Therefore, a higher resolution and DPI typically result in higher image quality, providing more information.
In addition to image quality and clarity, the type of image also affects the choice of recognition method. Common image types for corrosion recognition include color images, grayscale images, and black-and-white images.
彩色图像是最常用的,可以应用于传统和深度学习图像识别算法中。灰度图像和黑白图像通常是从彩色图像中派生出来的,尽管一些扫描仪器,如扫描电子显微镜,可以直接捕获灰度图像。
Color images are the most commonly used and can be employed in both traditional and deep learning image recognition algorithms. Grayscale and black-and-white images are often derived from color images, although some scanning instruments, such as scanning electron microscopes, can directly capture grayscale images.
2.1.2. 图像预处理
2.1.2. Image Pre-Processing
Image preprocessing aims to segment objects in the picture, eliminating unnecessary information and focusing on the data required for research. This step is crucial before feature extraction.
该任务可以使用 Matlab R2024a 或 OpenCV 4.0 来完成,这两个工具都提供了专门为图像识别设计的各种功能工具包。
The task can be accomplished by utilizing either Matlab R2024a or OpenCV 4.0, both of which offer a variety of functional toolkits specifically designed for image recognition.
常见的预处理方法包括图像二值化、降噪、增强和几何变换。
Common preprocessing methods include image binarization, noise reduction, enhancement, and geometric transformation.
图像二值化对于传统的图像识别算法至关重要,它使用特定的阈值将图像的灰度值转换为二进制(0 和 255),便于提取关键信息。
Image binarization is essential for traditional image recognition algorithms, converting the grayscale values of an image into binary (0 and 255) using a specific threshold, facilitating key information extraction.
降噪可最大程度减少干扰,而增强则突出关键特征以提高图像质量。降噪通常通过滤波方法实现,包括平均、中值、高通和低通滤波。
Noise reduction minimizes interference, while enhancement highlights critical features to improve image quality. Noise reduction is typically achieved through filtering methods, including average, median, high-pass, and low-pass filtering.
图像增强技术多种多样,例如对比度调整、锐化、颜色调整、腐蚀和膨胀。几何变换,如翻转、平移、旋转和缩放,不会改变图像信息,但有助于计算机更好地理解图片。
Image enhancement techniques vary widely, such as contrast adjustment, sharpening, color adjustment, erosion, and dilation. Geometric transformations, like flipping, panning, rotating, and scaling, do not alter image information but help computers better understand the picture.
这些变换还增加了图像数据量,以便更有效地进行深度学习训练。
These transformations also increase the amount of image data for more effective deep learning training.
2.1.3. 特征提取
2.1.3. Feature Extraction
Computers process images as numbers, so feature extraction involves obtaining information about these numerical or vector data through specific algorithms. Features such as color, brightness, edges, and texture can be extracted.
各种图像特征,包括边缘、角、脊和区域,用于识别不同类型的腐蚀。特征提取方法根据处理方法进行分类,包括基于纹理的方法[50,51]、基于颜色的方法[52]、基于边缘的方法[44]、基于灰度的方法[45]和基于模型变换的方法[23,53]。
Various image features, including edges, corners, ridges, and regions, are used to recognize different types of corrosion. Feature extraction methods are categorized based on the processing approach, including texture-based methods [50,51], color-based methods [52], edge-based methods [44], grayscale-based methods [45], and model transformation-based methods [23,53].
2.1.4. 图像分类
2.1.4. Image Classification
The core task of image classification is to assign a corresponding label to the picture. Once processed, the image feature data or vectors are classified using labels through a classifier.
传统图像识别算法通常使用分类器,如支持向量机(SVM)和随机森林(RF)[46]。SVM 分类器可以进行二分类,是一种用于确定区域是否存在腐蚀等任务的线性判断方法。
Traditional image recognition algorithms commonly use classifiers such as Support Vector Machines (SVM) and Random Forests (RF) [46]. The SVM classifier can perform binary classification and is a linear judgment method used for tasks such as determining whether there is corrosion in an area.
随机森林是一种更复杂的判别系统,可以通过判断多个决策树预测的结果来判断非常复杂的问题。
Random forests is a more complex discrimination system, which can judge very complex problems by judging the results predicted by multiple decision trees.
作为应用最广泛的分类器,SVM 特别适合于中小规模复杂数据集的分类,因此其效果优于传统算法。
As the most widely used classifier, SVM is especially suitable for the classification of small- and medium-sized complex datasets, so its effect is better than traditional algorithms.
2.2. 基于深度学习的图像识别
2.2. Deep Learning-Based Image Recognition
Deep learning-based image recognition involves four main steps: image acquisition, preprocessing, model training, and application. It utilizes convolutional neural networks (CNNs) to extract high-level features from images, requiring large datasets with accurately labeled images.
深度学习的常见分类架构包括 AlexNet、VGG 和 ResNet。深度学习可以解决简单的腐蚀问题,例如钢板和涂层的缺陷,以及腐蚀数据的复杂图像分析[47,54]。
The common classification architectures for deep learning include AlexNet, VGG, and ResNet. Deep learning can address both simple corrosion problems, such as defects in steel plates and coatings, and the complex image analysis of corrosion data [47,54].
3. 金属的鉴定
3. Identification of Metals
3.1. 传统方法
3.1. Traditional Methods
Traditional image processing algorithms rely heavily on manually designed feature extractors, which can meet various needs and have mature application techniques, but they are also susceptible to interference and noise [55]. By contrast, deep learning can automatically learn image features during the training process without manual feature design, offering stronger generalization capabilities.
常见的传统方法包括基于小波变换的方法、基于分形理论的方法和基于灰度图像的方法。表 1 总结了金属识别的传统算法,而表 2 则列出了它们的优缺点。
Common traditional methods include wavelet variation-based methods, fractal theory-based methods, and grayscale image-based methods. Table 1 summarizes traditional algorithms for metal recognition, while Table 2 outlines their advantages and disadvantages.
Table 2. Advantages and disadvantages of image recognition based on traditional algorithms.
3.1.1. 基于小波变换的方法
3.1.1. Wavelet Transform-Based Approach
Wavelet transform, an image processing algorithm, decomposes an image into multiple sub-images by transforming the image’s time domain into the frequency domain, enabling better feature extraction. Electrochemical noise signals can be studied using metal corrosion textures [50,51], wavelet transforms [23], corrosion pits [53], and more. Yan [50] assessed the corrosion state of weathering steel bridges using wavelet variations on corrosion texture images. Jahanshahi [51] evaluated the effect of parameters such as the color space, color channel, and sub-image block size on the color wavelet-based texture analysis algorithm to detect corrosion properties. Liu [23] used wavelet transform to decompose electrochemical noise signals into a series of sub-signals in the time–frequency domain to study localized corrosion. Pidaparti [53] evaluated the corrosion damage of aerospace materials using wavelet transform processing, investigating material loss and residual strength prediction with Artificial Neural Networks (ANNs).
基于此,还完成了基于 ANN 的腐蚀疲劳条件下的寿命预测。
Based on this, ANN-based life prediction under corrosion fatigue conditions was also accomplished.
Wavelet transform can effectively extract the features of time–frequency maps of corrosion images.
低频区域对应于图像的颜色空间分布和亮度差异,而高频区域对应于腐蚀的局部特征。
The low-frequency region corresponds to the color spatial distribution and brightness differences of the image, while the high-frequency region responds to the local features of corrosion.
然而,小波能量熵的计算差异可能会导致腐蚀图像处理的变化。此外,小波方法获取腐蚀图像特征往往受到数据集大小的影响。
However, differences in the calculation of wavelet energy entropy may lead to variations in corrosion image processing. Additionally, the acquisition of corrosion image features by wavelet methods is often affected by the dataset size.
3.1.2. 基于分形理论的方法
3.1.2. Approaches Based on Fractal Theory
The structural features in corrosion images often do not conform to traditional Euclidean geometry, and fractal theory can describe these irregular shapes effectively. Therefore, the features of each localized corrosion region can be extracted using fractal theory.
通过研究腐蚀图像的分形维数,研究人员可以分析钢的腐蚀发展模式、腐蚀坑的生长变化以及钢筋混凝土的腐蚀速率[56,57,58]。Park[56]使用分形理论研究了腐蚀坑的 SEM(扫描电子显微镜)图像的分形维数,发现分形维数随溶液温度的升高而增加。
By studying the fractal dimension of corrosion images, researchers can analyze the corrosion development pattern of steel, the growth change of corrosion pits, and the corrosion rate of reinforced concrete [56,57,58]. Park [56] studied the fractal dimension of SEM (scanning electron microscope) images of corrosion pits using fractal theory and found that the fractal dimension increases with increasing solution temperatures.
腐蚀坑在不同溶液温度下的生长满足一定的分形几何特征。李[57]使用钢筋混凝土表面裂缝形状的分形维数来研究裂缝纹理与钢筋混凝土棱柱体的腐蚀速率和直径尺寸之间的关系。他发现分形维数与腐蚀速率和钢筋直径密切相关。
The growth of corrosion pits at different solution temperatures satisfies certain fractal geometric features. Li [57] used the fractal dimension of the cracked shape of reinforced concrete surfaces to study the relationship between the cracked texture and the corrosion rate and diameter size of reinforced concrete prisms. He found that the fractal dimension was closely related to the corrosion rate and the diameter of the reinforcement.
傅[58]研究了不同交流电流密度对 X80 钢在沿海土壤溶液中腐蚀形貌发展的影响。
Fu [58] studied the effect of different alternating current densities on the development of the corrosion morphology of X80 steel in a coastal soil solution.
他发现,在低交流电流密度下,X80 钢主要是均匀腐蚀;当交流电流密度达到 150 A/m2 时,腐蚀形态逐渐转变为不规则点蚀腐蚀,二维/三维分形维数分别随交流电流密度的增加呈线性和指数增长。
He found that at low alternating current densities, X80 steel was mainly corroded uniformly; when the alternating current density reached 150 A/m2, the corrosion morphology gradually transformed into irregular pitting corrosion, and the two-dimensional/three-dimensional fractal dimensions increased linearly and exponentially, respectively, with the increase in alternating current density.
分形理论可以识别图像中非传统欧几里得几何的特征,并检测图像信息中的粗糙度差异。
Fractal theory can identify the features of non-traditional Euclidean geometry in images and detect roughness differences in image information.
然而,它通常不能单独用作判断图像的标准,因为不同的图像可能具有相同的分形维数。
However, it often cannot be used alone as a criterion for judging images, because the fractal dimension may be the same for different images.
3.1.3. 基于灰度图像的方法
3.1.3. Methods Based on Grayscale Images
Grayscale-based image processing is also a common method, utilizing differences in the gray values of images to determine the optimal gray threshold and create a binary image. Zhu et al. [24] used scanning acoustic microscopy (SAM) in C-mode with tomographic acoustic microimaging (TAMI) to determine the morphology and depth of corrosion pits on 7050 aluminum alloy.
他们使用光学显微镜检查结果,并使用二值图像计算点蚀面积。图 3 显示了二值计算的结果。此外,他们还绘制了去除腐蚀产物后的铝合金样品的 3D 形貌(图 4),以直观地观察腐蚀深度分布的差异。通过二值图像可以清晰地提取缺陷区域(如裂缝)的面积份额。徐等人[59]提出了一种基于图像处理的方法,通过对蚀坑深度的图像进行二值化,并提取腐蚀椭圆的参数,对高强度钢丝表面的蚀坑进行可视化建模。
They examined the results using an optical microscope and calculated the pitting area using a binary image. Figure 3 shows the results of the binary calculation. Additionally, they plotted the 3D morphology of an aluminum alloy sample after removing the corrosion products (Figure 4) to visualize the difference in the distribution of the corrosion depth. The area share of defective areas (such as cracks) can be clearly extracted using the binarized image. Xu et al. [59] proposed an image processing-based method for the visual modeling of pits on the surface of high-strength steel wires by binarizing the image of the pit depth and extracting the parameters of corrosion ellipses.
他们通过统计发现,腐蚀表面坑的长轴方向与圆周方向一致,平面几何特征满足高斯分布。钱等。[60]研究了 AerMet100 钢在不同腐蚀阶段的腐蚀形貌图像差异。他们使用中值滤波、灰度变化和模糊增强对原始图像进行了预处理。
They statistically found that the direction of the long axis of the pits on the corroded surface is consistent with the circumferential direction and that the planar geometric features satisfy the Gaussian distribution. Qian et al. [60] investigated the image differences in corrosion morphology of AerMet100 Steel at different corrosion stages. They preprocessed the original images using median filtering, grayscale variation, and fuzzy enhancement.
在确定图像二值化的最优阈值后,他们基于灰度阈值分割理论计算方法提取图像特征来计算腐蚀程度。
After determining the optimal threshold for image binarization, they extracted image features to calculate the degree of corrosion based on the separation theory grayscale threshold calculation method.
发现 AerMet100 钢(一种高强度马氏体合金钢)在加速试验中最初表现出点蚀腐蚀,随后逐渐发展为均匀腐蚀。
It was found that AerMet100 Steel (a high-strength martensitic alloy steel) initially showed pitting corrosion in the accelerated test, which then gradually developed into uniform corrosion.
Figure 3. Binary image processing of SAM image of 7050 aluminum alloy under TAMI scanning [24] (setting all the gray values of the bright spots to 0 and all the gray values of the other points to 1); (a–g) are the layered images with depths of 51.0, 76.5, 102.0, 127.5, 153.0, 178.5, and 204.0 μm, respectively.
Figure 4. 3D image of 7050 aluminum alloy sample after removal of corrosion products [24]. (a) Upper-left region; (b) lower-right region.
3.2. 基于深度学习的方法
3.2. Deep Learning-Based Approach
Algorithms used for metal image recognition are often enhanced versions of Convolutional Neural Networks (CNNs). These optimized models effectively identify and detect crack defects on metal surfaces. For instance, Zhao [61] improved the Faster R-CNN algorithm by reconfiguring the network structure and introducing multi-scale fusion and deformable convolutional networks.
这种增强将钢表面缺陷的检测准确率提高到平均 0.752,比原始算法高 0.128。同样,肖等人[54]通过将 Transformer 模型与 YOLO-v5 骨干特征提取网络相结合,检测镀锌钢表面的锌花缺陷。图 5a-c 展示了这种混合算法 YOLOv5-TB 的架构、识别性能和结果。
This enhancement increased the detection accuracy of steel surface defects to an average of 0.752, which is 0.128 higher than the original algorithm. Similarly, Xiao et al. [54] detected zinc bloom defects on galvanized steel surfaces by combining the Transformer model with the YOLO-v5 backbone feature extraction network. Figure 5a–c illustrate the architecture, recognition performance, and results of this hybrid algorithm, YOLOv5-TB.
通过使用加权双向特征金字塔网络(Bi-FPN)进行多尺度特征融合,YOLOv5-TB 模型在检测精度和效率方面超过了大多数现有的主流目标检测算法。
By employing a weighted bidirectional feature pyramid network (Bi-FPN) for multi-scale feature fusion, the YOLOv5-TB model surpasses most existing mainstream target-detection algorithms in both detection accuracy and efficiency.
Figure 5. (a) YOLOv5-TB algorithm architecture; (b) experimental data of YOLOv5-TB algorithm defects; (c) effectiveness of this algorithm for detecting diagonal defects [54].
4. 腐蚀数据图像的识别与挖掘
4. Recognition and Mining of Corrosion Data Images
Corrosion detection of coatings, a phenomenon influenced by various factors, can be approached through multiple methods.
电化学阻抗谱(EIS)是一种理想的无损检测方法,可捕获涂层损伤引起的电化学反应信息。
Electrochemical Impedance Spectroscopy (EIS) is an ideal non-destructive testing method that captures information about the electrochemical reactions caused by coating damage.
模态值的大小反映了涂层的防护性能,并支持涂层寿命预测。机器学习方法可以有效地分析 EIS 谱。Ma 等人[46]提出了一种使用原位 EIS 数据预测多层 Cr/GLC 涂层寿命的方法,结合了一个将涂层阻抗与寿命联系起来的已建立方程。
The magnitude of the modal value reflects the protective performance of the coating and supports coating life prediction. Machine learning methods can analyze EIS spectra effectively. Ma et al. [46] proposed a method for predicting the lifetime of multilayer Cr/GLC coatings using in situ EIS data, combined with an established equation linking the coating impedance and lifetime.
他们改进的机械-经验模型表明,低频阻抗和多层 Cr/GLC 涂层在不同静水压力下的暴露时间遵循线性经验关系。
Their modified mechanistic–empirical model demonstrated that low-frequency impedance and the exposure time of multilayer Cr/GLC coatings at different hydrostatic pressures follow a linear empirical relationship.
这种机械-经验方法和机械学习模型的组合方法有效地区分了各种类型的电化学阻抗谱,将涂层性能与涂层寿命相关联。该模型的总体结构如图 6 所示。对多个模型的比较分析表明,ANN + RF 集成机器学习模型对涂层性能和寿命的综合预测准确率最高,达到 97.9%,如图 7 所示。
This combined approach of mechanistic–empirical methods and mechanistic-learning models effectively differentiates various types of electrochemical impedance spectra, correlating the coating performance with coating life. The overall structure of this model is shown in Figure 6. A comparative analysis of multiple models revealed that the ANN + RF integrated machine learning model achieved the highest combined prediction accuracy of 97.9% for coating performance and lifetime, as illustrated in Figure 7.
Figure 6. (a) Schematic of the process of synthesizing the empirical method of the mechanism and a machine learning model; (b) schematic of the BP-ANN algorithm; (c) schematic of the RF algorithm; (d) multi-layer Cr/GLC coatings on the sub-surface of a plunger; (e) the surface morphology of the multilayered Cr/GLC coatings; and (f) cross-sectional morphology [46].
Figure 7. Evaluation metrics for the empirical model of the mechanistic model, ANN + mechanistic model, RF + mechanistic model, and ANN + RF + mechanistic model R2 [46]. 0.1 MPa, 5 MPa, 10 MPa and 15 MPa indicate that they are different “hydrostatic pressure conditions”. R2 represents the performance indicators of the four models, with a value close to 1 indicating better performance.
EIS analysis is challenging because different corrosion types correspond to different equivalent circuits. It requires a deep understanding of corrosion reactions to build appropriate equivalent circuit diagrams and fit corresponding parameters using computational software.
一些研究尝试使用机器学习模型分析电化学阻抗谱,以识别其相应的等效电路。 Bongiorno 等人[47]研究了数据集大小对机器学习模型的解析性能的影响,考虑了分类和拟合情况。
Some studies have attempted to analyze electrochemical impedance spectra with machine learning models to identify their corresponding equivalent circuits. Bongiorno et al. [47] investigated the effect of the dataset size on the parsing performance of machine learning models, considering classification and fitting cases.
训练和测试数据集使用 Labview™编程语言进行数值模拟,并使用内部开发的程序生成了大量的 EIS 光谱。
The training and test datasets were numerically simulated using the Labview™ programming language and a large number of EIS spectra were generated using an in-house developed program.
首先确定一个等效电路,然后给出拟合参数值的范围,随机选择数据并分配给电路元件,然后模拟其等效电路。
First, an equivalent circuit was determined, then the range of fitting parameter values was given, the data were randomly selected and allocated to the circuit components, and then their equivalent circuit was simulated.
他们发现,一个包含 200 个样本的数据集足以训练具有多达五个等效电路元件的模型。在用于拟合时,该模型的准确率达到 95%,且具有较高的召回率。
They found that a dataset of 200 samples is sufficient for training models with up to five equivalent circuit components. When used for fitting, the model achieved 95% accuracy with high recall.
用于分类时,准确率约为 75%,但不同电路的召回率差异较大。
For classification, the accuracy was around 75%, though recall varied significantly across different circuits.
5. 涂层的识别
5. Identification of Coatings
5.1. 传统方法
5.1. Traditional Methods
Using a computer vision system to extract specific characteristics from images of coating conditions allows engineers to assess the extent of coating corrosion more rapidly.
该系统可以根据锈蚀程度分析导致腐蚀的主要因素,并确定是否需要重新涂覆。Momber[52]利用基于颜色的数字图像处理技术来评估涂层恶化的程度。图 8a 展示了海上风能设备上一些涂层区域的图像识别结果,而图 8b 显示了涂层的颜色变化,表明设备涂层恶化。
This system can analyze the primary factors causing corrosion based on the degree of rusting and determine if recoating is necessary. Momber [52] utilized color-based digital image processing techniques to evaluate the degree of coating deterioration. Figure 8a illustrates the image recognition results for some coating areas on an offshore wind energy device, while Figure 8b shows the color changes in the coating, indicating equipment coating deterioration.
在该图中,标签 1 和 2 表示一种新涂层的颜色分布,而标签 3 和 4 超出了可接受范围,表明该涂层不符合规格。图 8c 展示了腐蚀区域的 HSV(色调-饱和度-值)直方图,这些特征的分布差异区分了重锈和轻锈。对每种图像类型的损坏原因进行分析表明,大多数涂层损坏是由于结构设计不当和机械载荷造成的。
In this figure, labels 1 and 2 represent the color distribution of a new coating, whereas labels 3 and 4 fall outside the acceptable range, signaling that the coating does not meet the specifications. Figure 8c presents the HSV (Hue–Saturation–Value) histogram of the corroded area, where the distribution differences in these features distinguish between heavy and light rust. The analysis of the damage causes, corresponding to each image type, revealed that most coating damage is due to inappropriate structural design and mechanical loading.
Figure 8. Effectiveness of coating evaluation on Offshore Wind Energy Installation (OWEA) [52]. (a) Example of evaluating the coating condition with digital image processing techniques; the numbers below the picture indicate the degree of coating deterioration. (b) Coating color chart. (c) Histogram of HSV for two steel corrosion stages.
Monitoring coating quality is another critical application. Lu et al. [44] developed a hybrid algorithmic framework that effectively recognizes three different thermal barrier coating (TBC) images.
通过将图像分析技术与统计方法相结合,他们的模型能够准确识别 TCL 层的上下边界,并为 TBC 图像生成掩码。该方法在识别这些边界方面的分类准确率达到了 98%。
By integrating image analysis techniques with statistical methods, their model accurately identifies the upper and lower boundaries of the TCL layer and generates masks for TBC images. This method achieved a classification accuracy of 98% for identifying these boundaries.
准确区分涂层边界有助于计算涂层的孔隙率。与他们之前基于自适应局部阈值的孔隙率测量方法[62]相比,新算法扩展了 TBC 物种识别的范围。
Accurately differentiating the coating boundary helps calculate the coating’s porosity. Compared to their previous porosity measurement method based on adaptive local thresholding [62], the new algorithm extends the range of TBC species recognized.
Detecting the damage morphology on coating surfaces is also significant for evaluation. Blistering, a common coating defect, is primarily detected through visual inspection, which is labor-intensive and time-consuming.
机器学算法使计算机能够有效地检测破损的涂层层。ISO 4628-2[63]提供了使用图像方法对起泡大小和频率进行分级的标准图像,为使用人工智能监测涂层表面老化提供了基础。Nadia Moradi 等人[45]通过分析起泡区域反射光的差异,创建了起泡涂层像素梯度变化的三维图,如图 9a 所示。他们的方法分别检测大泡和小泡,以准确评估各种泡大小。然后,计算整个图像中凸起的频率,并将其与标准图像频率进行比较,以确定其评级。图 9b 显示了标准图像的计算频率,图 9c 显示了使用该方法的涂层评级结果与手动评级的比较。该算法对直径大于 5 毫米的泡的识别准确率达到 95%,超过了手动视觉监测方法。
Machine learning algorithms enable computers to detect broken coating layers efficiently. ISO 4628-2 [63] provides standard images for grading the size and frequency of blistering using image methods, forming a basis for monitoring coating surface aging with artificial intelligence. Nadia Moradi et al. [45] created a three-dimensional graph of pixel gradient variations in blistered coatings by analyzing the reflected light differences from blistered areas, as shown in Figure 9a. Their method separately detects large and small blisters to accurately assess various blister sizes. Subsequently, the frequency of bulges in the entire image is calculated and compared with standard image frequencies to determine its rating. Figure 9b displays the calculated frequency for the standard image, and Figure 9c shows the coating rating results using this method compared with manual ratings. The algorithm achieves a 95% identification accuracy for blisters larger than 5 mm in diameter, surpassing manual visual monitoring methods.
它能有效地识别白色和浅灰色涂层起泡,但对深灰色和黑色涂层的效果较差。
It effectively identifies white and light gray coating blisters but is less effective for dark gray and black coatings.
Figure 9. Identification of coating bubbles [45]. (a) 3D graph of the blister image and its gradient magnitude. Because of the differences in the intensity of the reflected light from the bubbles of different sizes, the image can be drawn based on their grayscale gradient changes. (b) Frequency criterion values used by the algorithm for grading standardized images according to ISO 4628. They are found by calculating the proportion of differently sized bubbles in the standard image proposed in [63] to the image area. (c) Comparison of the mean value of the inspector size assessment with the sample size assessment algorithm. Error bars indicate the standard deviation of the inspector results.
Image recognition can also simultaneously detect coating defects and corrosion in steel plates. Po-Han Chen et al. [64] implemented image recognition technology to evaluate the effectiveness of steel bridge coatings. They used multi-resolution pattern classification (MPC) to identify rust and calculate defect percentages, determining whether the coating quality meets acceptance criteria.
这种方法提供了一种更准确的检测手段。
This method offers a more accurate means of detection.
5.2. 深度学习图像识别算法
5.2. Deep Learning Image Recognition Algorithm
Deep learning-based methods require clear labeling of coating images to accurately determine the coating quality and types of damage. Hu et al. [65] improved the SSEResNet101 regression model to predict surface roughness through images using feature fusion methods based on the SSEResNet101 backbone.
此外,他们还开发了一种增强型级联 R-CNN 模型,该模型能够有效地识别飞机涂层激光清洗过程中产生的火焰变化,从而能够精确评估清洗质量。
Additionally, they developed an enhanced Cascade R-CNN model that effectively identifies flame changes produced during the laser cleaning of aircraft coatings, allowing for the precise evaluation of cleaning quality.
SSEResNet101 模型训练过程中的均方误差(MSE)损失为 0.0249,平均绝对误差(MAE)为 0.278μm。
The mean square error (MSE) loss during the SSEResNet101 model training was 0.0249, and the mean absolute error (MAE) was 0.278 μm.
改进后的级联 R-CNN 模型在交并比(IoU)为 0.6 时的平均准确率(mAP)值达到 93.6%。一些研究已经利用 CNN 网络对涂层的形态特征进行多层提取。Liu 等人[66]开发了一个智能评估系统,该系统包括基于区域的卷积神经网络(FAST R-CNN)和深度迁移学习 Vgg19 模型,能够有效地识别表面、边缘和焊缝上的涂层失效和腐蚀(CBC)。Holm[67]比较了不同卷积神经网络(CNNs)在自动分类桥梁结构腐蚀和涂层损伤图像方面的性能。
The improved Cascade R-CNN model achieved a mean accuracy (mAP) value of 93.6% at an intersection over union (IoU) of 0.6. Several studies have utilized CNN networks for the multi-layer extraction of the morphological features of coatings. Liu et al. [66] developed an intelligent evaluation system that includes a region-based convolutional neural network (FAST R-CNN) and a deep migratory learning Vgg19 model, which efficiently identifies coating breakdown and corrosion (CBC) on surfaces, edges, and welds. Holm [67] compared the performance of different convolutional neural networks (CNNs) for automatically classifying bridge structural corrosion and coating damage in images.
VGG-16 训练的卷积神经网络表现出了最佳的整体性能,其召回率、准确率、精确率和 F1 得分分别为 95.45%、95.61%、97.74%和 95.53%。
The VGG-16-trained convolutional neural network demonstrated the best overall performance, with recall, precision, accuracy, and F1 scores of 95.45%, 95.61%, 97.74%, and 95.53%, respectively.
Convolutional neural networks are adept at extracting the surface topography and thickness features of coatings, which can be compared with data from electrochemical tests. Samide et al. [68] conducted electrochemical tests with scanning electron microscopy (SEM) observations on PVA and nAg/PVA coatings immersed in 0.1 mol-L-1 HCl solution.
他们的图像特征使用卷积神经网络进行提取,以评估 PVA 和 nAg/PVA 在延缓铜腐蚀方面的性能。
Their image features were extracted using convolutional neural networks to evaluate the performance of PVA and nAg/PVA in retarding copper corrosion.
CNN 数据与电化学测量和 SEM 结果进行了比较,结果表明在 PVA(0.94)和 nAg/PVA(0.98)存在的情况下表面覆盖率很高。Schmitz 等人[69]结合 FEA 数值模拟和深度学习方法通过色散曲线来表征涂层厚度和均匀性。
The CNN data were compared with results from electrochemical measurements and SEM, showing high surface coverage in the presence of PVA (0.94) and nAg/PVA (0.98). Schmitz et al. [69] combined FEA numerical simulations with a deep learning approach to characterize coating thickness and uniformity through dispersion curves.
特征通过将瞬态导波转换为频散图来提取,表明其对分类涂层厚度具有可行性。于等。[70]提出了一种结合深度卷积神经网络(CNN)和基于 Dempster-Shafer(D-S)理论的改进数据融合方法的新方法,用于评估煤炭输送和洗选厂的腐蚀和涂层缺陷。
Features were extracted by transforming transient guided waves into dispersion plots, showing feasibility for classifying coating thickness. Yu et al. [70] proposed a novel method combining a deep convolutional neural network (CNN) with an improved data fusion approach based on Dempster–Shafer (D-S) theory to evaluate corrosion and coating defects in coal transmission and washing plants.
这种方法能够准确识别涂层缺陷,并且对各种类型和强度的噪声干扰具有鲁棒性。
This method accurately recognizes coating defects and is robust against various types and intensities of noise interference.
These advancements in deep learning algorithms significantly enhance the ability to detect and analyze coating defects and corrosion, providing more precise and efficient tools for maintaining structural integrity. Table 3 summarizes traditional and deep learning methods for coating identification.
6. 未来展望
6. Future Outlook
Current image recognition methods in the field of corrosion predominantly focus on identifying defects in steel plates and coatings.
虽然形态分析有助于识别和分类各种缺陷特征和损坏特征,但它不能提供更深入的腐蚀电化学信息。因此,腐蚀数据的分析至关重要。Li [71]提出了一种“腐蚀大数据”方法,主张建立一个标准化的腐蚀数据仓库,同时进行数据建模,并使用这些数据进行腐蚀过程模拟和实验验证。
While morphological analysis helps recognize and classify various defect features and damage characteristics, it does not provide deeper insights into corrosion electrochemical information. Therefore, the analysis of corrosion data is crucial. Li [71] proposed a “corrosion big data” approach, advocating for the establishment of a standardized data warehouse for corrosion, along with data modeling and the use of this data for corrosion process simulation and experimental validation.
这种方法旨在模拟腐蚀过程并进行实验验证,同时还建议更直观地可视化和显示腐蚀数据。
This approach aims to simulate the corrosion process and validate it experimentally, and also suggests that corrosion data be visualized and displayed more intuitively.
Deep learning has significant potential for data image parsing. Electrochemical information obtained through testing can be visualized and displayed in images, which can then be analyzed using convolutional neural networks to extract features from various corrosion images.
将提取的特征信息与钢或涂层的形态变化联系起来,可以创建一个受控数据库,从而增强对腐蚀图像的理解。
Linking this extracted feature information with the morphological changes in steel or coatings allows for the creation of a controlled database, enhancing the understanding of corrosion images.
图像识别技术的应用可以加速腐蚀数据和图像的积累,从而拓宽其工程应用。
The application of image recognition technology can accelerate the accumulation of corrosion data and images, thereby broadening its engineering applications.
通过不断将各种缺陷图像与电化学图像进行关联,将有可能建立一个包含电化学信息的“腐蚀大数据”存储库,这为预测钢材或涂层的使用寿命提供了巨大的潜力。
By continuously linking various defect images with electrochemical images, it will be possible to establish a “corrosion big data” repository containing electrochemical information, offering great potential for predicting the lifespan of steel or coatings.
7. 结论
7. Conclusions
Traditional detection methods mainly rely on manual visual inspection, which is inefficient and costly, requiring significant human, material, and financial resources.
相比之下,图像处理技术可以提高识别金属或涂层缺陷的速度和准确性。本文总结了图像识别技术在金属、腐蚀数据和涂层中的应用:
By contrast, image processing technology can improve the speed and accuracy of identifying metal or coating defects. This paper summarizes the application of image recognition technology in metals, corrosion data, and coatings:
- 传统方法已被有效用于检测钢结构中的裂纹、麻点和其他缺陷。
Traditional methods have been effectively used for detecting cracks, pitting, and other defects in steel structures.
通过对腐蚀钢材的采集图像进行分析,提取腐蚀特征,并运用数学方法挖掘灰度图像的深层特征,从而能够区分各种腐蚀形貌。
By analyzing collected images of corroded steel, extracting corrosion features, and applying mathematical methods to mine the deep features of grayscale images, it is possible to distinguish between various corrosion morphologies.
然而,这些模型通常缺乏泛化能力,这意味着环境和识别对象的变化会极大地影响准确性。此外,选择合适的模型和提取特征可能很复杂。
However, these models often lack generalization, meaning that changes in the environment and the recognition object can greatly affect the accuracy. Additionally, selecting the right model and extracting features can be complex.
深度学习方法需要大量的钢材表面形貌图像,提供了一种解决方案,不同的应用场景可以使用相同的模型,尽管使用的是不同的数据集。
Deep learning methods, which require a large number of steel surface topography images, offer a solution where different application scenarios can use the same model, albeit with different datasets. - 通过分析金属腐蚀过程中电化学参数的变化图像,可以提取更深入的腐蚀信息,例如确定等效电路图和预测涂层的使用寿命。
By analyzing images of changes in electrochemical parameters during metal corrosion, deeper corrosion information can be extracted, such as determining equivalent circuit diagrams and predicting the lifetime of coatings. - 传统的涂层图像识别方法与金属的类似。然而,深度学习图像识别算法在识别涂层的边界、厚度和均匀性方面显示出更大的潜力。
Traditional image recognition methods for coatings are similar to those used for metals. However, deep learning image recognition algorithms show more potential in recognizing the boundary, thickness, and uniformity of coatings.
Combining data from electrochemical testing with image recognition technology is a promising research direction. This integration allows the results of image recognition to be supported by electrochemical information.
虽然需要大量的数据积累和工作量,但它提供了一种更快的腐蚀检测和评级方法。
Although it requires a substantial amount of data accumulation and workload, it offers a faster method for corrosion detection and rating.
资金
Funding
This research was funded by the Zhuhai Industry–University–Research Cooperation Project [Grant No. 2220004002965] and National Natural Science Foundation of China [Grant Nos. 21203034 and 51771057].
机构审查委员会声明
Institutional Review Board Statement
Not applicable.
知情同意声明
Informed Consent Statement
Not applicable.
数据可用性声明
Data Availability Statement
No new data were created or analyzed in this study.
致谢
Acknowledgments
The authors thank the Zhuhai Industry—University–Research Project: 2220004002965 for supporting this article.
利益冲突
Conflicts of Interest
Authors Xueqiang You, Bolin Luo and Zhenghua Yu were employed by Zhuhai Zhongke Huizhi Technology Co., Ltd. Author Yang Zeng was employed by Zhuhai International Container Terminals (Gaolan) Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
参考文献
References
- 侯保荣、李献华、马秀敏、杜翠薇、张达、郑茂盛、徐蔚、陆达、马飞. 中国腐蚀成本. NPJ 材料降解. 2017, 1, 4. [谷歌学术] [CrossRef]
Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. NPJ Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef] - 侯保荣、张盾、王鹏程. 海洋腐蚀与防护:现状与展望. 中国科学院院刊, 2016, 31, 1326-1331. [谷歌学术]
Hou, B.; Zhang, D.; Wang, P. Marine Corrosion and Protection: Current Status and Prospect. Bull. Chin. Acad. Sci. 2016, 31, 1326–1331. [Google Scholar] - 乔,D.;闫,J.;欧,J. 腐蚀作用下深海混合系泊索的疲劳分析。 Pol. Marit. Res. 2014, 21, 68–76. [ Google Scholar] [ CrossRef]
Qiao, D.; Yan, J.; Ou, J. Fatigue analysis of deepwater hybrid mooring line under corrosion effect. Pol. Marit. Res. 2014, 21, 68–76. [Google Scholar] [CrossRef] - 扎耶德、A.;加巴托夫、Y.;盖德斯·苏亚雷斯、C. 考虑局部环境条件的船体钢板腐蚀退化。海洋工程。2018, 163, 299-306. [谷歌学术] [交叉引用]
Zayed, A.; Garbatov, Y.; Guedes Soares, C. Corrosion degradation of ship hull steel plates accounting for local environmental conditions. Ocean. Eng. 2018, 163, 299–306. [Google Scholar] [CrossRef] - 古德泽,M.T.;梅尔彻斯,R.E. 海军舰船基于运行的腐蚀分析。腐蚀科学。2008 年,50,3296-3307。[谷歌学术] [交叉引用]
Gudze, M.T.; Melchsers, R.E. Operational based corrosion analysis in naval ships. Corros. Sci. 2008, 50, 3296–3307. [Google Scholar] [CrossRef] - 阿克拉吉,B.;梅斯加利,H.;埃特沙米,M.;穆罕默德普尔,J.;萨利希,F.;阿巴希,R. 埋地输油管道点蚀腐蚀建模的预测性深度学习。过程安全环境保护 2023 年,174,320-327。[谷歌学术] [交叉引用]
Akhlaghi, B.; Mesghali, H.; Ehteshami, M.; Mohammadpour, J.; Salehi, F.; Abbassi, R. Predictive deep learning for pitting corrosion modeling in buried transmission pipelines. Process. Saf. Environ. Prot. 2023, 174, 320–327. [Google Scholar] [CrossRef] - 班达里、J.;汗、F.;阿巴希、R.;加拉尼亚、V.;奥赫达、R. 海洋和近海钢结构点蚀建模—技术综述。J. 损失预防过程。工业 2015 年,37,39-62。[谷歌学术] [交叉引用]
Bhandari, J.; Khan, F.; Abbassi, R.; Garaniya, V.; Ojeda, R. Modelling of pitting corrosion in marine and offshore steel structures—A technical review. J. Loss Prev. Process. Ind. 2015, 37, 39–62. [Google Scholar] [CrossRef] - 阿尔坎塔拉,J.;德拉富恩特,D.;奇科,B.;西蒙卡斯,J.;迪亚斯,I.;莫西略,M. 碳钢的海洋大气腐蚀:综述。材料 2017,10,406。[谷歌学术] [交叉引用]
Alcantara, J.; de la Fuente, D.; Chico, B.; Simancas, J.; Diaz, I.; Morcillo, M. Marine Atmospheric Corrosion of Carbon Steel: A Review. Materials 2017, 10, 406. [Google Scholar] [CrossRef] - 黄,J.;孟,X.;黄,Y.;蒋,W.;陈,R.;郑,Z.;高,Y. 中国南方热带和亚热带气候下碳钢的大气腐蚀. 材料腐蚀与防护 2020, 71, 1400–1406. [ Google Scholar] [ CrossRef]
Huang, J.; Meng, X.; Huang, Y.; Jiang, W.; Chen, R.; Zheng, Z.; Gao, Y. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China. Mater. Corros. Werkst. Und Korros. 2020, 71, 1400–1406. [Google Scholar] [CrossRef] - 吕,S.;李,K. 耐蚀钢筋钝化膜的半导体行为及耐蚀性. 材料 2022, 15, 7644. [谷歌学术] [交叉引用]
Lv, S.; Li, K. Semiconducting Behaviour and Corrosion Resistance of Passive Film on Corrosion-Resistant Steel Rebars. Materials 2022, 15, 7644. [Google Scholar] [CrossRef] - 考萨尔,A.;艾哈迈德,I.;博切塔,P. 用于生物医学相关的高性能耐蚀聚合物/石墨烯纳米材料。J. 复合材料科学。2022,6,362。[谷歌学术] [交叉引用]
Kausar, A.; Ahmad, I.; Bocchetta, P. High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance. J. Compos. Sci. 2022, 6, 362. [Google Scholar] [CrossRef] - 王, Q.; 王, R.; 张, Q.; 赵, C.; 周, X.; 郑, H.; 张, R.; 孙, Y.; 闫, Z. 生物质缓蚀剂在金属腐蚀控制中的应用: 综述. 分子 2023, 28, 2832. [谷歌学术] [交叉引用] [PubMed]
Wang, Q.; Wang, R.; Zhang, Q.; Zhao, C.; Zhou, X.; Zheng, H.; Zhang, R.; Sun, Y.; Yan, Z. Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review. Molecules 2023, 28, 2832. [Google Scholar] [CrossRef] [PubMed] - 李,H.;司,S.;杨,K.;毛,Z.;孙,Y.;曹,X.;于,H.;张,J.;丁,C.;梁,H.;等。基于六氟异丙醇的丝素蛋白涂层在 AZ31 生物金属上,具有增强的附着力、耐腐蚀性和生物相容性。《有机涂料进展》2023 年,184,107881。[谷歌学术] [交叉引用]
Li, H.; Si, S.; Yang, K.; Mao, Z.; Sun, Y.; Cao, X.; Yu, H.; Zhang, J.; Ding, C.; Liang, H.; et al. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility. Prog. Org. Coat. 2023, 184, 107881. [Google Scholar] [CrossRef] - 格涅坚科夫,A.S.;菲洛尼娜,V.S.;西涅布留霍夫,S.L.;格涅坚科夫,S.V. 通过智能无毒混合抑制剂-含涂层实现镁合金的卓越腐蚀防护。分子 2023,28,2538。[谷歌学术] [交叉引用] [PubMed]
Gnedenkov, A.S.; Filonina, V.S.; Sinebryukhov, S.L.; Gnedenkov, S.V. A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor -Containing Coatings. Molecules 2023, 28, 2538. [Google Scholar] [CrossRef] [PubMed] - 杨,C.;徐,W.;孟,X.;石,X.;邵,L.;曾,X.;杨,Z.;李,S.;刘,Y.;夏,X. 一种基于 ZIF-8 的 pH 响应型亲水性控释体系,用于自修复防腐应用。化学工程杂志。2021, 415, 128985. [谷歌学术] [交叉引用]
Yang, C.; Xu, W.; Meng, X.; Shi, X.; Shao, L.; Zeng, X.; Yang, Z.; Li, S.; Liu, Y.; Xia, X. A pH-responsive hydrophilic controlled release system based on ZIF-8 for self-healing anticorrosion application. Chem. Eng. J. 2021, 415, 128985. [Google Scholar] [CrossRef] - 张,B.;李,L.;张,Y.;王,J. 交流输电线路对长输管道阴极保护电位干扰规律的研究. 磁化学 2023, 9, 75. [谷歌学术] [交叉引用]
Zhang, B.; Li, L.; Zhang, Y.; Wang, J. Study on the Interference Law of AC Transmission Lines on the Cathodic Protection Potential of Long-Distance Transmission Pipelines. Magnetochemistry 2023, 9, 75. [Google Scholar] [CrossRef] - 埃尔多安,C.;斯温,G. 海上风力单桩的概念性牺牲阳极阴极保护设计。海洋工程。2021, 235, 109339. [谷歌学术] [交叉引用]
Erdogan, C.; Swain, G. Conceptual Sacrificial Anode Cathodic Protection Design for offshore wind monopiles. Ocean. Eng. 2021, 235, 109339. [Google Scholar] [CrossRef] - 古谢夫、B.V.;费多托夫、M.Y.;列什琴科、V.V.;列皮金、A.M.;马胡托夫、N.A.;布达丁、O.N. 根据风险标准对近海海底管道进行无损检测和安全计算的论证。《化学与石油工程》,2023 年,58 卷,776-787 页。[谷歌学术] [交叉引用]
Gusev, B.V.; Fedotov, M.Y.; Leshchenko, V.V.; Lepikhin, A.M.; Makhutov, N.A.; Budadin, O.N. Nondestructive Testing of Offshore Subsea Pipelines and Calculation Substantiation of their Safety According to Risk Criteria. Chem. Pet. Eng. 2023, 58, 776–787. [Google Scholar] [CrossRef] - 蒋天武;阿克巴尔;贾瓦德;叶;萨扎利. 微波无损检测复合材料涂层的过去、现在和展望综述. 涂料 2021, 11, 913. [谷歌学术] [CrossRef]
Siang, T.W.; Akbar, M.F.; Jawad, G.N.; Yee, T.S.; Sazali, M.I.S.M. A Past, Present, and Prospective Review on Microwave Nondestructive Evaluation of Composite Coatings. Coatings 2021, 11, 913. [Google Scholar] [CrossRef] - 汤加,D.A.;阿克巴尔,M.F.;斯里法恩,N.H.M.M.;贾瓦德,G.N.;加扎利,N.A.;帕克耶·穆罕默德,M.F.;阿尔-格布里,A.J.A.;阿布·瓦哈卜,M.N. 基于微波技术的纤维增强聚合物无损检测:综述。 Coatings 2023, 13, 590. [ Google Scholar] [ CrossRef]
Tonga, D.A.; Akbar, M.F.; Shrifan, N.H.M.M.; Jawad, G.N.; Ghazali, N.A.; Packeer Mohamed, M.F.; Al-Gburi, A.J.A.; Ab Wahab, M.N. Nondestructive Evaluation of Fiber-Reinforced Polymer Using Microwave Techniques: A Review. Coatings 2023, 13, 590. [Google Scholar] [CrossRef] - 龚,W.;阿克巴尔,M.F.;贾瓦德,G.N.;穆罕默德,M.F.P.;阿布·瓦哈卜,M.N. 轨道检测无损检测技术综述。 Coatings 2022, 12, 1790. [谷歌学术] [交叉引用]
Gong, W.; Akbar, M.F.; Jawad, G.N.; Mohamed, M.F.P.; Ab Wahab, M.N. Nondestructive Testing Technologies for Rail Inspection: A Review. Coatings 2022, 12, 1790. [Google Scholar] [CrossRef] - Wasif, R.; Tokhi, M.O.; Shirkoohi, G.; Marks, R.; Rudlin, J. 用于铁磁管道腐蚀监测的永久安装磁性电涡流传感器的开发。应用科学。2022, 12, 1037。[谷歌学术] [交叉引用]
Wasif, R.; Tokhi, M.O.; Shirkoohi, G.; Marks, R.; Rudlin, J. Development of Permanently Installed Magnetic Eddy Current Sensor for Corrosion Monitoring of Ferromagnetic Pipelines. Appl. Sci. 2022, 12, 1037. [Google Scholar] [CrossRef] - 刘学锋; 王洪刚; 黄圣杰; 顾华成. 基于小波变换的电化学噪声分析. 腐蚀科学与防护技术 2001, 13, 843–852. [ Google Scholar] [ CrossRef]
Liu, X.F.; Wang, H.G.; Huang, S.J.; Gu, H.C. Analysis of electrochemical noise with wavelet transform. Corrosion 2001, 57, 843–852. [Google Scholar] [CrossRef] - 朱,Y.;王,L.;贝赫纳米安,Y.;宋,S.;王,R.;高,Z.;胡,W.;夏,D.-H. 扫描声学显微镜和二值图像处理表征的金属点蚀腐蚀。腐蚀科学。2020, 170, 108685. [谷歌学术] [交叉引用]
Zhu, Y.; Wang, L.; Behnamian, Y.; Song, S.; Wang, R.; Gao, Z.; Hu, W.; Xia, D.-H. Metal pitting corrosion characterized by scanning acoustic microscopy and binary image processing. Corros. Sci. 2020, 170, 108685. [Google Scholar] [CrossRef] - 海格勒,T. 无损检测方法和技术在发电厂中的应用。材料评估。2020,78,1094-1096。[谷歌学术] [交叉引用]
Haigler, T. Introduction of NDT Methods and Techniques in Power Plants. Mater. Eval. 2020, 78, 1094–1096. [Google Scholar] [CrossRef] - 何德;库萨诺;渡边。利用涡流检测方法检测热喷涂 Ti-6Al-4V 涂层的缺陷。无损检测。2022,125,102565。[谷歌学术] [交叉引用]
He, D.; Kusano, M.; Watanabe, M. Detecting the defects of warm-sprayed Ti-6Al-4V coating using Eddy current testing method. Ndt E Int. 2022, 125, 102565. [Google Scholar] [CrossRef] - 莫瓦费吉、A.;穆罕默德扎德、N.;雅哈吉、E.;内库伊、J.;罗斯塔米、P.;莫拉迪、G. 基于稀疏编码模型的氨气管工业射线照相图像缺陷检测。无损评估杂志 2018, 37, 3. [谷歌学术] [CrossRef]
Movafeghi, A.; Mohammadzadeh, N.; Yahaghi, E.; Nekouei, J.; Rostami, P.; Moradi, G. Defect Detection of Industrial Radiography Images of Ammonia Pipes by a Sparse Coding Model. J. Nondestruct. Eval. 2018, 37, 3. [Google Scholar] [CrossRef] - 王 C.;李 W.;辛 G.;王 Y.;徐 S.;范 M. 基于混合 LWQPSO-NN 模型的杂散电流干扰下输气管道钢腐蚀电流密度预测新方法. 测量 2022, 200, 111592. [谷歌学术] [交叉引用]
Wang, C.; Li, W.; Xin, G.; Wang, Y.; Xu, S.; Fan, M. Novel method for prediction of corrosion current density of gas pipeline steel under stray current interference based on hybrid LWQPSO-NN model. Measurement 2022, 200, 111592. [Google Scholar] [CrossRef] - 阿加瓦尔、夏尔马、舒克拉、亚达夫、辛格。基于物联网和无损检测的桥梁风险评估与识别。
Agarwal, A.; Sharma, V.; Shukla, V.; Yadav, B.P.; Singh, R. IoT-and NDT-Based Bridge Risk Assessment and Identification.
在 2018 年 6 月 28 日于印度德拉敦举行的健康、安全、消防、环境、相关科学与工程领域进展国际会议(HSFEA)会议录中。[谷歌学术]
In Proceedings of the International Conference on Advances in the Field of Health, Safety, Fire, Environment, Allied Sciences and Engineering (HSFEA), Dehradun, India, 28 June 2018. [Google Scholar] - 坎波内斯基,E.T.,小;克莱恩,R.;班多斯,B. 无损检测在美海军复合材料舰船结构中的作用和应用。材料评估。2007 年,65 卷,752-758 页。[谷歌学术]
Camponeschi, E.T., Jr.; Crane, R.; Bandos, B. The role and use of nondestructive testing for US navy composite ship structures. Mater. Eval. 2007, 65, 752–758. [Google Scholar] - 法哈多、J.I.;帕尔坦、C.A.;洛佩斯、L.M.;卡拉斯科罗、E.J. 基于灰度共生矩阵方法的纹理分析。案例:蒸汽管道系统的腐蚀。材料今日进展 2022, 49, 149-154. [谷歌学术] [交叉引用]
Fajardo, J.I.; Paltan, C.A.; Lopez, L.M.; Carrasquero, E.J. Textural analysis by means of a gray level co-occurrence matrix method. Case: Corrosion in steam piping systems. Mater. Today Proc. 2022, 49, 149–154. [Google Scholar] [CrossRef] - 林,Z.;张,W.;李,J.;杨,J.;韩,B.;谢,P. 人工智能(AI)在腐蚀防护领域的应用。《腐蚀防护方法与材料》,2023,70,243-251。[谷歌学术] [交叉引用]
Lin, Z.; Zhang, W.; Li, J.; Yang, J.; Han, B.; Xie, P. Application of artificial intelligence (AI) in the area of corrosion protection. Anti-Corros. Methods Mater. 2023, 70, 243–251. [Google Scholar] [CrossRef] - 费勒,C;梅,D;瓦赫芬纳扎里,B;武尔格,T;迈斯纳,R.H;卢特林格-费耶拉本德,B.J.C;温克勒,D.A;日尔达科夫,M.L;拉马卡,S.V. 镁溶解调节剂的计算机筛选。腐蚀科学。2020,163,108245。[谷歌学术] [交叉引用]
Feiler, C.; Mei, D.; Vaghefinazari, B.; Wuerger, T.; Meissner, R.H.; Luthringer-Feyerabend, B.J.C.; Winkler, D.A.; Zheludkevich, M.L.; Lamaka, S.V. In silico screening of modulators of magnesium dissolution. Corros. Sci. 2020, 163, 108245. [Google Scholar] [CrossRef] - 蔡,Y.H.;金,S.G.;金,H.;金,J.T.;成,P.H. 使用加速度计和深度学习模型诊断 FAC 引起的管道变薄的方法。《核能源年鉴》2020 年,143,107501。[谷歌学术] [交叉引用]
Chae, Y.H.; Kim, S.G.; Kim, H.; Kim, J.T.; Seong, P.H. A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models. Ann. Nucl. Energy 2020, 143, 107501. [Google Scholar] [CrossRef] - 智,Y.;杨,T.;傅,D. 一种改进的深度森林模型,用于预测低合金钢的户外大气腐蚀速率。材料科学与技术杂志。2020,49,202-210。[谷歌学术] [交叉引用]
Zhi, Y.; Yang, T.; Fu, D. An improved deep forest model for forecasting the outdoor atmospheric corrosion rate of low-alloy steels. J. Mater. Sci. Technol. 2020, 49, 202–210. [Google Scholar] [CrossRef] - 纳拉达拉、拉朱、艾莎瓦娅、库拉古迪。利用图像处理进行船舶部件的腐蚀损伤识别和寿命估计。
Naladala, I.; Raju, A.; Aishwarya, C.; Koolagudi, S.G. Corrosion Damage Identification and Lifetime Estimation of Ship Parts using Image Processing.
在 2018 年 9 月 19 日至 22 日于印度班加罗尔举行的第七届计算、通信和信息学国际会议(ICACCI)会议录中;第 678-683 页。[谷歌学术]
In Proceedings of the 7th International Conference on Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 678–683. [Google Scholar] - 金利姆,H.;黄,S.;金,H.;宋,H. 结合视觉和热成像图像的钢桥腐蚀检测。结构健康监测。国际杂志 2021 年,20,3424-3435。[谷歌学者][交叉引用]
Jin Lim, H.; Hwang, S.; Kim, H.; Sohn, H. Steel bridge corrosion inspection with combined vision and thermographic images. Struct. Health Monit. Int. J. 2021, 20, 3424–3435. [Google Scholar] [CrossRef] - 张,W.;张,Y.;顾,Q.;赵,H. 基于图像级标签的水闸钢闸门腐蚀的分割和等级评定。土木结构健康监测杂志。2024,14,1141-1154。[谷歌学术] [交叉引用]
Zhang, W.; Zhang, Y.; Gu, Q.; Zhao, H. Segmentation and grade evaluation of corrosion on hydraulic steel gates based on image-level labels. J. Civ. Struct. Health Monit. 2024, 14, 1141–1154. [Google Scholar] [CrossRef] - 徐立、王勇、莫磊、唐勇、王峰、李超. 油气管道腐蚀预测数据挖掘方法的研究进展与展望. 工程失效分析. 2023, 144, 106951. [谷歌学术] [交叉引用]
Xu, L.; Wang, Y.; Mo, L.; Tang, Y.; Wang, F.; Li, C. The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines. Eng. Fail. Anal. 2023, 144, 106951. [Google Scholar] [CrossRef] - 纳什、郑、比尔比利斯。具有置信度的深度学习腐蚀检测。NPJ 材料降解。2022,6,26。[谷歌学术][交叉引用]
Nash, W.; Zheng, L.; Birbilis, N. Deep learning corrosion detection with confidence. NPJ Mater. Degrad. 2022, 6, 26. [Google Scholar] [CrossRef] - 董,Y.;潘,Y.;王,D.;程,T. 基于多视觉扫描系统的钢丝腐蚀检测与评价。建筑材料 2022, 322, 125877. [谷歌学术] [交叉引用]
Dong, Y.; Pan, Y.; Wang, D.; Cheng, T. Corrosion detection and evaluation for steel wires based on a multi-vision scanning system. Constr. Build. Mater. 2022, 322, 125877. [Google Scholar] [CrossRef] - 蒙伯,A. 基于颜色的大气腐蚀产物评估,即钢上的闪锈。材料腐蚀- Werkst. Und Korros. 2012, 63, 333-342. [谷歌学术] [交叉引用]
Momber, A. Colour-based assessment of atmospheric corrosion products, namely of flash rust, on steel. Mater. Corros. -Werkst. Und Korros. 2012, 63, 333–342. [Google Scholar] [CrossRef] - 王凯; 李超; 卢军; 南春; 张倩; 张宏. 基于图像识别方法的 Q420 钢海洋腐蚀智能评价. 涂料工业 2022, 12, 881. [谷歌学术] [CrossRef]
Wang, K.; Li, C.; Lu, J.; Nan, C.; Zhang, Q.; Zhang, H. Intelligent Evaluation of Marine Corrosion of Q420 Steel Based on Image Recognition Method. Coatings 2022, 12, 881. [Google Scholar] [CrossRef] - 陆, 宇; 陈, 文彬; 王, 晓; 齐默曼, B. 热障涂层图像中全自动化顶层涂层识别.
Lu, Y.; Chen, W.-B.; Wang, X.; Zimmerman, B. Fully Automatic Top Coat Layer Recognition in Thermal Barrier Coating Images.
在 2022 年 8 月 9 日至 11 日于美国加利福尼亚州圣地亚哥举行的第 23 届 IEEE 信息重用与集成数据科学会议(IEEE IRI)上的会议录中,电气网络,第 132-137 页。[谷歌学术]
In Proceedings of the 23rd IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI), Electr Network, San Diego, CA, USA, 9–11 August 2022; pp. 132–137. [Google Scholar] - 莫拉迪,N.;坎迪,S.G.;雅亚伊,H. 一种使用机器视觉系统检测和分级涂层起泡缺陷的新方法。测量 2022 年,203,111954。[谷歌学术] [交叉引用]
Moradi, N.; Kandi, S.G.; Yahyaei, H. A new approach for detecting and grading blistering defects of coatings using a machine vision system. Measurement 2022, 203, 111954. [Google Scholar] [CrossRef] - 马, H.; 秦, P.; 崔, Y.; 刘, R.; 柯, P.; 王, F.; 刘, L. 基于综合力学和机器学习模型预测深海环境中多层 Cr/GLC 涂层的降解. 腐蚀科学. 2023, 224, 111513. [ Google Scholar] [ CrossRef]
Ma, H.; Qin, P.; Cui, Y.; Liu, R.; Ke, P.; Wang, F.; Liu, L. Prediction of multilayer Cr/GLC coatings degradation in deep-sea environments based on integrated mechanistic and machine learning models. Corros. Sci. 2023, 224, 111513. [Google Scholar] [CrossRef] - Bongiorno, V.; Gibbon, S.; Michailidou, E.; Curioni, M. 探索机器学习在解释电化学阻抗谱数据中的应用:训练数据集大小的评估。腐蚀科学。2022, 198, 110119. [谷歌学术] [交叉引用]
Bongiorno, V.; Gibbon, S.; Michailidou, E.; Curioni, M. Exploring the use of machine learning for interpreting electrochemical impedance spectroscopy data: Evaluation of the training dataset size. Corros. Sci. 2022, 198, 110119. [Google Scholar] [CrossRef] - 阿里,A.A.I.M.;贾马鲁丁,S.;伊姆兰,M.M.H.;阿亚布,A.F.M.;艾哈迈德,S.Z.A.S.;阿克巴尔,M.F.A.;苏赫拉布,M.I.R.;拉马利,M.R. 计算机视觉和图像处理方法在腐蚀检测中的应用。J. 海洋科学工程。2023,11,1954。[谷歌学术] [交叉引用]
Ali, A.A.I.M.; Jamaludin, S.; Imran, M.M.H.; Ayob, A.F.M.; Ahmad, S.Z.A.S.; Akhbar, M.F.A.; Suhrab, M.I.R.; Ramli, M.R. Computer Vision and Image Processing Approaches for Corrosion Detection. J. Mar. Sci. Eng. 2023, 11, 1954. [Google Scholar] [CrossRef] - 查,Y.-J.;崔,W.;苏,G.;马哈茂德哈尼,S.;布尤科佐特克,O. 使用基于区域的深度学习进行自主结构视觉检测,以检测多种损伤类型。计算机辅助土木基础设施工程 2018 年,33,731-747。[谷歌学术] [交叉引用]
Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Buyukozturk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef] - 闫波;后藤聪;宫本敦;赵辉. 基于小波变换和 PSO-SVM 技术的耐候钢腐蚀状态的成像评价. 计算机与土木工程, 2014, 28, 04014008. [ Google Scholar] [ CrossRef]
Yan, B.; Goto, S.; Miyamoto, A.; Zhao, H. Imaging-Based Rating for Corrosion States of Weathering Steel Using Wavelet Transform and PSO-SVM Techniques. J. Comput. Civ. Eng. 2014, 28, 04014008. [Google Scholar] [CrossRef] - 贾汉沙希,M.R.;马斯里,S.F. 颜色空间、颜色通道和子图像块大小对基于小波的纹理分析算法性能的影响:在钢结构腐蚀检测中的应用。计算土木工程师 2013,2013,685-692。[谷歌学术]
Jahanshahi, M.R.; Masri, S.F. Effect of Color Space, Color Channels, and Sub-image Block Size on the Performance of Wavelet-based Texture Analysis Algorithms: An Application to Corrosion Detection on Steel Structures. Comput. Civ. Eng. 2013, 2013, 685–692. [Google Scholar] - 蒙伯,A.W. 海上风力发电传输平台腐蚀防护系统的定量性能评估。可再生能源 2016, 94, 314-327。[谷歌学术] [交叉引用]
Momber, A.W. Quantitative performance assessment of corrosion protection systems for offshore wind power transmission platforms. Renew. Energy 2016, 94, 314–327. [Google Scholar] [CrossRef] - 皮达帕蒂,R.M. 使用计算智能方法进行结构腐蚀健康评估。结构健康监测-国际杂志。2007 年,6,245-259。[谷歌学术] [交叉引用]
Pidaparti, R.M. Structural corrosion health assessment using computational intelligence methods. Struct. Health Monit. -Int. J. 2007, 6, 245–259. [Google Scholar] [CrossRef] - 肖,D.;谢,F.T.;高,Y.;李,Z.N.;谢,H.F. 基于改进 YOLO-v5 的镀锌钢表面锌花缺陷检测方法. 国际先进制造技术杂志. 2023, 128, 937–951. [谷歌学术] [交叉引用]
Xiao, D.; Xie, F.T.; Gao, Y.; Li, Z.N.; Xie, H.F. A detection method of spangle defects on zinc-coated steel surfaces based on improved YOLO-v5. Int. J. Adv. Manuf. Technol. 2023, 128, 937–951. [Google Scholar] [CrossRef] - 温, X.; 单, J.; 何, Y.; 宋, K. 钢表面缺陷识别: 综述. 涂料 2023, 13, 17. [谷歌学术] [交叉引用]
Wen, X.; Shan, J.; He, Y.; Song, K. Steel Surface Defect Recognition: A Survey. Coatings 2023, 13, 17. [Google Scholar] [CrossRef] - 朴俊吉;Pyun,S.I. 在 298-573 K 温度下,使用分形几何在含 Cl-离子的硫代硫酸盐溶液中合金 600 的坑形成和生长。腐蚀科学。2003,45,995-1010。[谷歌学术] [交叉引用]
Park, J.J.; Pyun, S.I. Pit formation and growth of alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 298–573 K using fractal geometry. Corros. Sci. 2003, 45, 995–1010. [Google Scholar] [CrossRef] - 李, 吴, 石, 杨, 潘, 刘, 刘, 杨. 基于分形理论的混凝土保护层表面裂缝与钢筋锈蚀程度关系的实验研究. 分形与分形 2022, 6, 325. [ Google Scholar] [ CrossRef]
Li, W.; Wu, M.; Shi, T.; Yang, P.; Pan, Z.; Liu, W.; Liu, J.; Yang, X. Experimental Investigation of the Relationship between Surface Crack of Concrete Cover and Corrosion Degree of Steel Bar Using Fractal Theory. Fractal Fract. 2022, 6, 325. [Google Scholar] [CrossRef] - 傅宇;寇杰;杜翠凤. X80 管线钢在沿海土壤溶液中的交流腐蚀形貌的分形特征. 防腐蚀方法与材料. 2019, 66, 868-878. [谷歌学术] [交叉引用]
Fu, Y.; Kou, J.; Du, C. Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution. Anti-Corros. Methods Mater. 2019, 66, 868–878. [Google Scholar] [CrossRef] - 徐,Y.;李,H.;李,S.;关,X.;兰,C. 基于图像处理技术的腐蚀钢丝表面蚀坑的三维建模和统计特性。腐蚀科学。2016,111,275-287。[谷歌学术] [交叉引用]
Xu, Y.; Li, H.; Li, S.; Guan, X.; Lan, C. 3-D modelling and statistical properties of surface pits of corroded wire based on image processing technique. Corros. Sci. 2016, 111, 275–287. [Google Scholar] [CrossRef] - 安,Q.;平,J.;小明,T.;德,W. 基于图像分析的 AerMet100 钢腐蚀损伤评估。IOP 会议论文集材料科学与工程 2018 年,394,052066。[谷歌学术]
Ang, Q.; Ping, J.; Xiaoming, T.; De, W. Corrosion Damage Assessment of AerMet100 Steel Based on Image Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 052066. [Google Scholar] - 赵,W.;陈,F.;黄,H.;李,D.;程,W. 一种基于深度学习的新型钢缺陷检测算法. 计算机智能神经科学. 2021, 2021, 5592878. [谷歌学术] [CrossRef]
Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A New Steel Defect Detection Algorithm Based on Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 5592878. [Google Scholar] [CrossRef] - 陈,W.-B.;陆,Y.;高,S.;张,C.;李,J.;奥贡布米尼,O.S.;普拉丹,L.;拉姆桑达尔,P.;齐默曼,B. 一种用于热障涂层孔隙率测量的自动化图像分析框架。
Chen, W.-B.; Lu, Y.; Gao, S.; Zhang, C.; Li, J.; Ogunbunmi, O.S.; Pradhan, L.; Ramsundar, P.; Zimmerman, B. An Automated Image Analysis Framework for Thermal Barrier Coating Porosity Measurement.
在 2015 年 4 月 20 日至 22 日于中国北京举行的 IEEE 第一届多媒体大数据国际会议上的论文集。[谷歌学术]
In Proceedings of the IEEE First International Conference on Multimedia Big Data, Beijing, China, 20–22 April 2015. [Google Scholar] - EN ISO 4628-2;涂料和清漆-涂层降解的评估-缺陷的数量和大小以及外观均匀变化程度的标记-第 2 部分:起泡程度的评估。欧洲标准化委员会。2016 年。
EN ISO 4628-2; Paints and Varnishes-Evaluation of Degradation of Coatings-Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance-Part 2: Assessment of Degree of Blistering. Comite Europeen de Normalisation. 2016. - 陈,P.H.;张,Y.C.;张,L.M.;多施克,P.C. 多分辨率模式分类在钢桥涂层评估中的应用。J. 计算机土木工程师 2002,16,244-251。[谷歌学术] [交叉引用]
Chen, P.H.; Chang, Y.C.; Chang, L.M.; Doerschuk, P.C. Application of multiresolution pattern classification to steel bridge coating assessment. J. Comput. Civ. Eng. 2002, 16, 244–251. [Google Scholar] [CrossRef] - 胡, Q.; 魏, X.; 梁, X.; 周, L.; 何, W.; 常, Y.; 张, Q.; 李, C.; 吴, X. 基于深度学习的飞机涂层激光清洗过程视觉监测方法. 光学与激光工程. 2023, 160, 107291. [ Google Scholar ] [ CrossRef ]
Hu, Q.; Wei, X.; Liang, X.; Zhou, L.; He, W.; Chang, Y.; Zhang, Q.; Li, C.; Wu, X. In-process vision monitoring methods for aircraft coating laser cleaning based on deep learning. Opt. Lasers Eng. 2023, 160, 107291. [Google Scholar] [CrossRef] - 刘,L.;谭,E.;甄,Y.;尹,X.J.;蔡,Z.Q. 用于提高生产力的 AI 辅助涂层腐蚀评估系统。在 2018 年 5 月 31 日至 6 月 2 日于中国武汉举行的第 13 届 IEEE 工业电子与应用会议(ICIEA)上的论文集,第 606-610 页。[谷歌学术]
Liu, L.; Tan, E.; Zhen, Y.; Yin, X.J.; Cai, Z.Q. AI-facilitated Coating Corrosion Assessment System for Productivity Enhancement. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 606–610. [Google Scholar] - 霍尔姆,E.;特兰塞特,A.A.;克努森,O.O.;斯塔尔,A. 使用卷积神经网络对桥梁结构的腐蚀和涂层损坏进行分类。
Holm, E.; Transeth, A.A.; Knudsen, O.O.; Stahl, A. Classification of Corrosion and Coating Damages on Bridge Constructions from Images using Convolutional Neural Networks.
在 2020 年 11 月 16 日至 18 日于荷兰阿姆斯特丹举行的第十二届机器视觉国际会议(ICMV)会议录中。[谷歌学术]
In Proceedings of the 12th International Conference on Machine Vision (ICMV), Amsterdam, The Netherlands, 16–18 November 2020. [Google Scholar] - 萨米德、A.;斯托扬、R.;斯托扬、C.;图图纳鲁、B.;格雷库、R.;乔亚特拉、N. 利用深度卷积神经网络研究在酸性介质中由聚乙烯醇和银纳米粒子在铜表面形成的聚合物涂层。 Coatings 2019, 9, 105. [谷歌学术] [CrossRef]
Samide, A.; Stoean, R.; Stoean, C.; Tutunaru, B.; Grecu, R.; Cioatera, N. Investigation of Polymer Coatings Formed by Polyvinyl Alcohol and Silver Nanoparticles on Copper Surface in Acid Medium by Means of Deep Convolutional Neural Networks. Coatings 2019, 9, 105. [Google Scholar] [CrossRef] - 施密茨,M.;金,J.-Y.;雅各布斯,L.J. 使用兰姆波进行涂层厚度预测的机器和深度学习。波运动 2023,120,103137。[谷歌学术] [交叉引用]
Schmitz, M.; Kim, J.-Y.; Jacobs, L.J. Machine and deep learning for coating thickness prediction using Lamb waves. Wave Motion 2023, 120, 103137. [Google Scholar] [CrossRef] - 于洋; 奥恩·纳赛尔·侯赛因; 萨马利; 张刚; 拉希迪; 穆罕默迪. 基于深度卷积神经网络集成和决策级数据融合的选煤厂腐蚀和涂层缺陷评估. 神经计算与应用. 2023, 35, 18697–18718. [ Google Scholar] [ CrossRef]
Yu, Y.; Hoshyar, A.N.; Samali, B.; Zhang, G.; Rashidi, M.; Mohammadi, M. Corrosion and coating defect assessment of coal handling and preparation plants (CHPP) using an ensemble of deep convolutional neural networks and decision-level data fusion. Neural Comput. Appl. 2023, 35, 18697–18718. [Google Scholar] [CrossRef] - 李霞;张达;刘泽;李泽;杜春;董晨。材料科学:共享腐蚀数据。自然 2015 年,527,441-442。[谷歌学术] [交叉引用]
Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Materials science: Sharing corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef]
Figure 2. Flowcharts of traditional image recognition techniques and deep learning-based image recognition techniques.
Figure 3. Binary image processing of SAM image of 7050 aluminum alloy under TAMI scanning [24] (setting all the gray values of the bright spots to 0 and all the gray values of the other points to 1); (a–g) are the layered images with depths of 51.0, 76.5, 102.0, 127.5, 153.0, 178.5, and 204.0 μm, respectively.
Figure 4. 3D image of 7050 aluminum alloy sample after removal of corrosion products [24]. (a) Upper-left region; (b) lower-right region.
Figure 5. (a) YOLOv5-TB algorithm architecture; (b) experimental data of YOLOv5-TB algorithm defects; (c) effectiveness of this algorithm for detecting diagonal defects [54].
Figure 6. (a) Schematic of the process of synthesizing the empirical method of the mechanism and a machine learning model; (b) schematic of the BP-ANN algorithm; (c) schematic of the RF algorithm; (d) multi-layer Cr/GLC coatings on the sub-surface of a plunger; (e) the surface morphology of the multilayered Cr/GLC coatings; and (f) cross-sectional morphology [46].
Figure 7. Evaluation metrics for the empirical model of the mechanistic model, ANN + mechanistic model, RF + mechanistic model, and ANN + RF + mechanistic model R2 [46]. 0.1 MPa, 5 MPa, 10 MPa and 15 MPa indicate that they are different “hydrostatic pressure conditions”. R2 represents the performance indicators of the four models, with a value close to 1 indicating better performance.
Figure 8. Effectiveness of coating evaluation on Offshore Wind Energy Installation (OWEA) [52]. (a) Example of evaluating the coating condition with digital image processing techniques; the numbers below the picture indicate the degree of coating deterioration. (b) Coating color chart. (c) Histogram of HSV for two steel corrosion stages.
Figure 9. Identification of coating bubbles [45]. (a) 3D graph of the blister image and its gradient magnitude. Because of the differences in the intensity of the reflected light from the bubbles of different sizes, the image can be drawn based on their grayscale gradient changes. (b) Frequency criterion values used by the algorithm for grading standardized images according to ISO 4628. They are found by calculating the proportion of differently sized bubbles in the standard image proposed in [63] to the image area. (c) Comparison of the mean value of the inspector size assessment with the sample size assessment algorithm. Error bars indicate the standard deviation of the inspector results.
Table 1. Summary of image recognition based on conventional algorithms.
方法 Method | 材料 Materials | 主要内容 Main Content | 作者/参考文献 Author/Ref. | 年 Year |
---|---|---|---|---|
基于小波变换的方法 Method based on wavelet transform | 7075-T76 铝合金 Al 7075-T76 | 对电化学噪声信号进行分析,以详细揭示电位信号的特征,并监测局部腐蚀的发生 The electrochemical noise signal was analyzed to reveal the characteristics of the potential signal in detail and monitor the occurrence of local corrosion | 刘[23] Liu [23] | 2001 |
航空铝合金 Aero-aluminum alloy | 腐蚀坑的形成和生长进行了建模和模拟。利用基于小波的图像处理对腐蚀板进行了评估。 The formation and growth of corrosion pits were modeled and simulated. The corroded panels were evaluated by wavelet-based image processing | 皮达帕蒂[53] Pidaparti [53] | 2007 | |
耐候钢 Weathering steel | 小波变换与 PSO-SVM 技术相结合对耐候钢的腐蚀状态进行评估 The corrosion state of weathering-resistant steel was evaluated by combining wavelet transform with the PSO-SVM technique | 严[50] Yan [50] | 2014 | |
基于分形理论的方法 Methods based on fractal theory | 因科镍合金 600 Inconel alloy 600 | 蚀坑的分形维数几乎不随温度变化 The fractal dimension of pitting pits hardly changes with temperature | 公园[56] Park [56] | 2003 |
钢筋混凝土(RC) Reinforced Concrete (RC) | 建立了裂缝分形维数、腐蚀速率与钢筋直径之间的关系,以评估退化钢筋混凝土结构中钢筋的腐蚀行为 The relationship between the crack fractal dimension, corrosion rate and steel bar diameter was established to evaluate the corrosion behavior of steel bars in degraded reinforced concrete structures | 李[57] Li [57] | 2022 | |
X80 钢 X80 steel | 腐蚀坑的二维/三维分形维数随交流密度的增加而增加,分别呈线性和指数关系 The two-dimensional/three-dimensional fractal dimension of corrosion pit increased with the increase of AC density, showing linear and exponential relationships, respectively | 傅 Fu [58] | 2019 | |
基于灰度的方法 Method based on grayscale | 镀锌高强度钢 Galvanized high strength steel | 腐蚀坑的二值图像的椭圆参数被提取出来,并且发现腐蚀坑的椭圆参数在所有方向上都满足高斯分布 The elliptic parameters of the binary image of the corrosion pit were extracted, and it was found that the elliptic parameters of the corrosion pit satisfy the Gaussian distribution along all directions | 徐[59] Xu [59] | 2016 |
Table 2. Advantages and disadvantages of image recognition based on traditional algorithms.
方法 Method | 优势 Advantage | 劣势 Disadvantage |
---|---|---|
基于小波变化的方法 Methods based on wavelet variations | 低频区域响应图像的颜色空间分布和亮度差异,而高频区域能够响应腐蚀的局部特征。 The low-frequency region responds to the color spatial distribution and brightness differences of the image, while the high-frequency region is able to respond to the local features of corrosion. | 小波能量摘计算方法的不同可能会导致腐蚀图像处理结果的差异 Differences in the calculation of wavelet energy entropy may lead to differences in corrosion image processing |
基于类型论的方法 Approach based on typing theory | 它具有识别图像中非欧几里得几何特征的能力,并能够区分图像信息中粗糙度的差异。 It has the ability to recognize features of non-traditional Euclidean geometry in an image and to distinguish differences in roughness in image information. | 分形维数可能对于不同的图像是相同的,不能单独用作判断图像的标准 The fractal dimension may be the same for different images and cannot be used alone as a criterion for judging images |
基于灰度图像的方法 Gray scale image based approach | 它具有降低复杂性、提高计算速度和提高细节清晰度的能力。 It has the ability to reduce complexity, increase computing speed, and improve detail clarity. | 信息不完整表示和无法处理具有颜色特征的腐蚀 Incomplete representation of information and inability to process corrosion with color characteristics |
Table 3. Summary of image recognition methods of coatings.
方法 Method | 具体算法 Concrete Algorithm | 材料 Materials | 主要内容 Main Content | 参考文献 Ref. |
---|---|---|---|---|
传统方法 Traditional method | 基于灰度的方法 Method based on grayscale | 醇酸漆 Alkyd paint | 根据灰度图像确定气泡大小和面积比,从而确定气泡等级 The bubble size and area ratio are determined based on the gray image, so as to determine the bubble grade | [45] [45] |
基于颜色空间的方法 Method based on color space | 海上风力发电平台涂层 Coatings on offshore wind platforms | 定量记录和评定涂层劣化过程 Quantitative recording and rating of coating deterioration processes | [52] [52] | |
基于灰度的方法 Method based on grayscale | 钢结构桥梁涂层 Coatings on steel bridge | 多分辨率模式分类(MPC)被用于分析钢桥的表面涂层图像,并计算灰度图像中涂层和铁锈的比例 Multiresolution pattern classification (MPC) was used to analyze the surface coating images of steel bridges, and the proportion of coating and rust in gray images was calculated | [64] [64] [64] | |
基于深度学习的方法 Methods based on deep learning | 深度迁移学习技术 Deep transfer learning techniques | 压载舱涂层 The coating on the ballast tank | 基于人工智能的 CBC 评估系统(A-CAS)被开发出来,以识别不同类型的涂层损伤和腐蚀 An AI-based aided CBC evaluation system (A-CAS) was developed to identify different types of coating damage and corrosion | [66] [66] |
卷积神经网络(CNN) Convolutional neural networks (CNN) | 聚醋酸乙烯银纳米粒子(nAg/PVA) PVAsilver nanoparticles (nAg/PVA) | CNN 数据与电化学测量和扫描电子显微镜(SEM)数据进行了比较 The CNN data were compared with electrochemical measurements and scanning electron microscopy (SEM) data | [69] [69] |
免责声明/出版商注:所有出版物中的声明、意见和数据仅代表个别作者和贡献者的观点,而不代表 MDPI 和/或编辑的观点。 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI 和/或编辑者对于因本文内容中提及的任何想法、方法、说明或产品而导致的任何人身伤害或财产损失不承担任何责任。 MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 年由作者所有。许可方 MDPI,瑞士巴塞尔。本文是一篇开放获取文章,根据知识共享署名(CC BY)许可证(https://creativecommons.org/licenses/by/4.0/)的条款和条件分发。
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
分享和引用
Share and Cite
MDPI and ACS Style
王 X.;张 W.;林 Z.;李 H.;张 Y.;全 W.;陈 Z.;游 X.;曾 Y.;王 G.;等。
Wang, X.; Zhang, W.; Lin, Z.; Li, H.; Zhang, Y.; Quan, W.; Chen, Z.; You, X.; Zeng, Y.; Wang, G.;
et al.
当前图像识别技术在腐蚀防护应用领域的现状。《涂料》2024 年,14 卷,1051 期。https://doi.org/10.3390/coatings14081051
Current Status of Image Recognition Technology in the Field of Corrosion Protection Applications. Coatings 2024, 14, 1051.
https://doi.org/10.3390/coatings14081051
AMA Style
王 X,张 W,林 Z,李 H,张 Y,全 W,陈 Z,游 X,曾 Y,王 G,等。
Wang X, Zhang W, Lin Z, Li H, Zhang Y, Quan W, Chen Z, You X, Zeng Y, Wang G,
et al.
图像识别技术在腐蚀防护应用领域的现状。涂料。2024;14(8):1051。https://doi.org/10.3390/coatings14081051
Current Status of Image Recognition Technology in the Field of Corrosion Protection Applications. Coatings. 2024; 14(8):1051.
https://doi.org/10.3390/coatings14081051
Chicago/Turabian Style
王欣然、张伟、林志峰、李豪杰、张元清、全伟音、陈志强、游雪强、曾杨、王刚等。
Wang, Xinran, Wei Zhang, Zhifeng Lin, Haojie Li, Yuanqing Zhang, Weiyin Quan, Zhiwei Chen, Xueqiang You, Yang Zeng, Gang Wang,
and et al.
2024. “当前图像识别技术在腐蚀防护应用领域的现状”《涂料》14,第 8 期:1051。https://doi.org/10.3390/coatings14081051
2024. "Current Status of Image Recognition Technology in the Field of Corrosion Protection Applications" Coatings 14, no. 8: 1051.
https://doi.org/10.3390/coatings14081051
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
文章指标
Article Metrics
引文
Citations
No citations were found for this article, but you may check on Google Scholar
文章访问统计
Article Access Statistics
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.