這是用戶在 2025-2-2 18:25 為 https://app.immersivetranslate.com/pdf-pro/d5842b73-86c1-43f7-a4b9-f4564b0518b0 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

Effect of Cold Plasma-Treated Turmeric on the Oxidative Stability and Quality of the Oil From the Milk Thistle Seeds
冷等離子體處理的薑黃對奶薊種子油的氧化穩定性和品質的影響

Kamyab Samandari 0 , 1 0 , 1 o+_(0),^(1)\oplus_{0},{ }^{1} Bahram Fathi-Achachlouei C D 1 1 C D 1 1 CD^(1)^(1)\mathbb{C D}^{1}{ }^{1} Sodeif Azadmard-Damirchi D 2 2 D 2 2 D^(2)^(2)\mathbb{D}^{2}{ }^{2} Jafar Borhanian (ㄷ), 3 3 ^(3){ }^{3} Ebrahim Taghinezhad © 4 , 5 4 , 5 ^(4,5){ }^{4,5} and Antoni Szumny ( C ) 6 ( C ) 6 ^((C))^(6){ }^{(\mathbb{C})}{ }^{6}
Kamyab Samandari 0 , 1 0 , 1 o+_(0),^(1)\oplus_{0},{ }^{1} Bahram Fathi-Achachlouei C D 1 1 C D 1 1 CD^(1)^(1)\mathbb{C D}^{1}{ }^{1} Sodeif Azadmard-Damirchi D 2 2 D 2 2 D^(2)^(2)\mathbb{D}^{2}{ }^{2} Jafar Borhanian (ㄷ), 3 3 ^(3){ }^{3} Ebrahim Taghinezhad © 4 , 5 4 , 5 ^(4,5){ }^{4,5} 和 Antoni Szumny ( C ) 6 ( C ) 6 ^((C))^(6){ }^{(\mathbb{C})}{ }^{6}
1 1 ^(1){ }^{1} Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
1 1 ^(1){ }^{1} 食品科學與技術系,農業與自然資源學院,莫哈基赫阿爾達比利大學,郵政信箱 56199-11367,阿爾達比勒,伊朗
2 2 ^(2){ }^{2} Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
2 2 ^(2){ }^{2} 塔布里茲大學農業學院食品科學與技術系,郵政信箱 51666-16471,伊朗塔布里茲
3 3 ^(3){ }^{3} Department of Physics, University of Mohaghegh Ardabili, Ardabil, Iran
3 3 ^(3){ }^{3} 摩哈基赫阿爾達比利大學物理系,伊朗阿爾達比勒
4 4 ^(4){ }^{4} Department of Agricultural Engineering and Technology, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, 5697194781 Ardabil, Iran
4 4 ^(4){ }^{4} 農業工程與技術系,莫甘農業與自然資源學院,莫哈基赫阿爾達比利大學,5697194781 阿爾達比爾,伊朗
5 5 ^(5){ }^{5} Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
5 5 ^(5){ }^{5} 生物系統工程系,農業學院,塔爾比亞特·莫達雷斯大學(TMU),德黑蘭,伊朗
6 6 ^(6){ }^{6} Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, CK Norwida 25, 50-375 Wrocław, Poland
6 6 ^(6){ }^{6} 食品化學與生物催化系,生物技術與食品科學學院,波蘭環境與生命科學大學,CK Norwida 25,50-375 Wrocław,波蘭

Correspondence should be addressed to Bahram Fathi-Achachlouei; b_fathi@uma.ac.ir
信件應寄給巴赫拉姆·法提-阿查克盧伊;b_fathi@uma.ac.ir

and Ebrahim Taghinezhad; e.taghinezhad@uma.ac.ir
和 Ebrahim Taghinezhad; e.taghinezhad@uma.ac.ir

Received 21 March 2024; Revised 11 September 2024; Accepted 4 October 2024
收到日期:2024 年 3 月 21 日;修訂日期:2024 年 9 月 11 日;接受日期:2024 年 10 月 4 日

Academic Editor: Ali Ganjloo
學術編輯:阿里·甘祖洛

Copyright © 2024 Kamyab Samandari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
版權 © 2024 Kamyab Samandari 等人。這是一篇開放獲取的文章,根據創用 CC 署名授權條款發佈,允許在任何媒介中不受限制地使用、分發和複製,前提是正確引用原始作品。

Abstract  摘要

Many studies have been carried out on the antioxidant effects of medicinal plants in edible oils. One of those plants is turmeric, which, due to its biological and antioxidant compounds such as curcuminoids, has a strong antioxidant effect and prevents oxidation of unsaturated fatty acids (FAs). In this study, turmeric at different levels ( 5 % 5 % 5%5 \% and 10 % w / w 10 % w / w 10%w//w10 \% w / w ) was used to increase the oxidative stability of the milk thistle (Silybum marianum L.) seed oil (MTSO). Additionally, to improve the performance of turmeric, cold plasma (CP) treatment was used at different durations ( 5 and 10 min ). The effect of turmeric on the quality parameters of MTSO was investigated during different storage times ( 1,30 , and 60 days). The results indicated that the addition of turmeric treated with CP significantly ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) decreased the acidity value (AV) ( 1.00 0.62 mg NaOH / g 1.00 0.62 mg NaOH / g 1.00-0.62mgNaOH//g1.00-0.62 \mathrm{mg} \mathrm{NaOH} / \mathrm{g} oil) and the peroxide value ( PV ) ( 4.47 3.65 mEq O 2 / kg 4.47 3.65 mEq O 2 / kg (4.47-3.65mEqO_(2)//kg:}\left(4.47-3.65 \mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg}\right. oil) and also increased the total phenolic content ( 1003.23 1116.90 mg / GAE / 1003.23 1116.90 mg / GAE / 1003.23-1116.90mg//GAE//1003.23-1116.90 \mathrm{mg} / \mathrm{GAE} / 100 g oil), antioxidant activity, α α alpha\alpha-tocopherol, and finally the oxidative stability compared to the control sample and oil containing untreated turmeric. Furthermore, gas chromatography (GC) analysis of the oil sample of the FA profile containing CP-treated turmeric revealed the higher ratio of unsaturated FAs (i.e., linoleic and arachidonic acid) and lower saturated FA content (palmitic and stearic acid) compared to oil samples containing untreated turmeric. To conclude, CP treatment increased turmeric performance and improved the quality characteristics of MTSO.
許多研究已經對食用油中藥用植物的抗氧化效果進行了探討。其中一種植物是薑黃,由於其生物和抗氧化化合物如薑黃素,具有強大的抗氧化效果,並能防止不飽和脂肪酸的氧化。在這項研究中,使用了不同濃度的薑黃( 5 % 5 % 5%5 \% 10 % w / w 10 % w / w 10%w//w10 \% w / w )來提高乳薊(Silybum marianum L.)種子油(MTSO)的氧化穩定性。此外,為了改善薑黃的性能,使用了不同持續時間(5 和 10 分鐘)的冷等離子體(CP)處理。研究了薑黃對 MTSO 在不同儲存時間(1、30 和 60 天)下的質量參數的影響。結果表明,使用 CP 處理的薑黃的添加顯著( p < 0.05 p < 0.05 p < 0.05p<0.05 )降低了酸值(AV)( 1.00 0.62 mg NaOH / g 1.00 0.62 mg NaOH / g 1.00-0.62mgNaOH//g1.00-0.62 \mathrm{mg} \mathrm{NaOH} / \mathrm{g} 油)和過氧化值(PV)( ( 4.47 3.65 mEq O 2 / kg 4.47 3.65 mEq O 2 / kg (4.47-3.65mEqO_(2)//kg:}\left(4.47-3.65 \mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg}\right. 油),並且增加了總酚含量( 1003.23 1116.90 mg / GAE / 1003.23 1116.90 mg / GAE / 1003.23-1116.90mg//GAE//1003.23-1116.90 \mathrm{mg} / \mathrm{GAE} / 每 100 克油)、抗氧化活性、 α α alpha\alpha -生育酚,最終提高了與對照樣本和含有未處理薑黃的油相比的氧化穩定性。 此外,對含有 CP 處理薑黃的油樣進行氣相色譜 (GC) 分析顯示,與含有未處理薑黃的油樣相比,該 FA 譜的油樣中不飽和脂肪酸(即亞油酸和花生四烯酸)的比例較高,而飽和脂肪酸(棕櫚酸和硬脂酸)的含量較低。總之,CP 處理提高了薑黃的性能,改善了 MTSO 的質量特徵。

Keywords: cold plasma; milk thistle oil; oxidative stability; turmeric
關鍵詞:冷等離子體;奶薊油;氧化穩定性;薑黃

1. Introduction  1. 介紹

Nowadays, medicinal plants are widely used to improve the quality parameters of oils, among others increasing their shelf life, improving their antioxidant activity and oxidative stability, and preventing microbial spoilage [1]. For example, fortification of soybean oil with savory cardamom and
如今,藥用植物被廣泛用於改善油品的質量參數,包括延長其保質期、提高其抗氧化活性和氧化穩定性,以及防止微生物變質[1]。例如,將香料豆蔻強化於大豆油中,並

essential oils of cumin reduced its free fatty acids (FAs) and peroxide value ( PV ). One of the medicinal plants of the Mediterranean region is the milk thistle (Silybum marianum L.) [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3]. This plant is also found in Iran with local names such as Khar Alis, Khar Maryam, Kharseh, Khreshjaf, Tigh Panbe, and Shishemor [4]. Milk thistle seeds (MTSs) contain nutritionally valuable oil ( 26 % 31 % w / w ) ( 26 % 31 % w / w ) (26%-31%w//w)(26 \%-31 \% w / w) with
孜然精油降低了其游離脂肪酸(FAs)和過氧化值(PV)。地中海地區的一種藥用植物是奶薊(Silybum marianum L.) [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3] 。這種植物在伊朗也有當地名稱,如 Khar Alis、Khar Maryam、Kharseh、Khreshjaf、Tigh Panbe 和 Shishemor [4]。奶薊種子(MTSs)含有營養價值高的油 ( 26 % 31 % w / w ) ( 26 % 31 % w / w ) (26%-31%w//w)(26 \%-31 \% w / w)

many health properties in the treatment of liver diseases, lowering LDL cholesterol, antioxidant activity, and anticancer activities [5]. Oleic acid (C18:1, 36%) and linoleic acid (C18:2, 39%) are the main FAs of MTSs [6]. However, the presence of other valuable FAs in the milk thistle seed oil (MTSO) has made it a nutritional edible oil [7]. Turmeric is obtained from the rhizome of the curcuma longa plant, which is part of the ginger family, a tropical plant of the Zingiberaceae family native to South Asia [8]. Alongside its healthpromoting attributes, for example, antioxidant, anti-inflammatory, and antimicrobial properties, its bioactive compounds are mainly used in foods in the form of rhizomes powder as colorant, flavoring, and preservation agents. The presence of flavonoids, phenolic, and curcuminoids content can be one of the reasons of the antioxidant effect of turmeric. In addition, essential oil of turmeric is known as a natural antioxidant additive [9]. Tinello and Lante [10] used a turmeric and ginger powder in soybean oil, increasing the antioxidant activity and oxidative stability of the oil and making it resistant to thermal degradation. Lee et al. [9] applied a turmeric extract obtained by supercritical extraction for higher stability of perilla oil, which reduced its PV and acidity value (AV) along with at least a 1.5 times higher induction period.
許多健康特性在肝病的治療中,降低 LDL 膽固醇,抗氧化活性和抗癌活性 [5]。油酸 (C18:1, 36%) 和亞油酸 (C18:2, 39%) 是牛奶薊種子油 (MTSs) 的主要脂肪酸 [6]。然而,牛奶薊種子油 (MTSO) 中其他有價值的脂肪酸的存在使其成為一種營養食用油 [7]。薑黃是從薑黃植物的根莖中提取的,該植物屬於薑科,是一種原產於南亞的熱帶植物 [8]。除了其促進健康的特性,例如抗氧化、抗炎和抗微生物特性外,其生物活性化合物主要以根莖粉的形式用於食品中,作為著色劑、調味劑和防腐劑。類黃酮、酚類和薑黃素的存在可能是薑黃抗氧化效果的原因之一。此外,薑黃的精油被認為是一種天然抗氧化添加劑 [9]。Tinello 和 Lante [10] 在大豆油中使用了薑黃和薑粉,增加了油的抗氧化活性和氧化穩定性,使其對熱降解具有抵抗力。Lee 等。 [9] 應用超臨界萃取獲得的薑黃提取物以提高紫蘇油的穩定性,這降低了其過氧化值(PV)和酸度值(AV),並且誘導期至少提高了 1.5 倍。
Cold plasma ( CP ) is classified among green technologies due to its low-energy request, management in smooth temperature, lowering the solvent-to-solute ratio, and shortening the extraction time. CP has been used to enhance the extraction efficiency of bioactive compounds from raw materials, including antioxidant and phenolic compositions. This technology provides the possibility of increasing the extraction with lower energy under mild temperature, shorter time, and lower rates of organic solvents [11]. Plasma can damage the membranes and plant cell walls with generation of atoms, molecules, electrons, positive and negative ions, and free radicals, which causes the intracellular oil transferring into the solvent. It has also been reported that this technology as compared to a control extraction can reduce the required diffusion temperature, the diffusion time, and the ethanol content in the diffusion solvent. Moreover, in comparison to other treatments (such as pulsed electric fields, microwave, and ultrasounds), the application of CP results in a higher extraction rate than that obtained with pulsed electric fields and ultrasounds. Also, one of the other advantages of this technique is the low temperature increase due to the treatment as compared to ultrasounds and microwave [12]. Hemmati et al. [13] applied CP to increase the total phenolic content (TPC) in turmeric. The aim of this research was to determine the effect of CP on the performance of turmeric powder on the quality parameters of MTSO and also to compare the performance of turmeric treated and untreated with CP in oil. To our knowledge, scientific research has been reported for investigation of the effect of CP-treated turmeric on various properties of MTSO.
冷等離子體(CP)被歸類為綠色技術,因為它的低能量需求、在平穩溫度下的管理、降低溶劑與溶質的比例,以及縮短提取時間。CP 已被用來提高從原材料中提取生物活性化合物的效率,包括抗氧化劑和酚類成分。這項技術提供了在溫和的溫度下、較短的時間和較低的有機溶劑使用率下增加提取的可能性[11]。等離子體可以通過生成原子、分子、電子、正負離子和自由基來損壞膜和植物細胞壁,這導致細胞內的油轉移到溶劑中。還有報導指出,與對照提取相比,這項技術可以降低所需的擴散溫度、擴散時間和擴散溶劑中的乙醇含量。此外,與其他處理(如脈衝電場、微波和超聲波)相比,CP 的應用產生的提取率高於脈衝電場和超聲波所獲得的提取率。 此外,這項技術的另一個優點是與超聲波和微波相比,處理過程中溫度的增加較低[12]。Hemmati 等人[13]應用 CP 來提高薑黃的總酚含量(TPC)。本研究的目的是確定 CP 對薑黃粉在 MTSO 質量參數上的性能影響,以及比較處理過和未處理薑黃在油中的性能。據我們所知,已有科學研究報告調查 CP 處理的薑黃對 MTSO 各種性質的影響。

2. Materials and Methods
2. 材料與方法

Milk thistle (S. marianum L.) seeds obtained from Meshkin (Ardabil, Iran) and turmeric (curcuma, India) were pur-
chased from a local market in Iran, and the solvents were bought from Merck (Darmstadt, Germany).
被驅逐出伊朗的一個當地市場,溶劑是從默克(德國達姆施塔特)購買的。

2.1. DC Glow Discharge CP Treatment Turmeric Process.
2.1. 直流輝光放電 CP 處理薑黃過程。

Turmeric powder was first cleaned (separation of external particles) and weighed at 5 g and/or 10 g by analytical balance (A502AND-DJ, Japan); then treated by an CP apparatus (DC glow discharge, Iran) under certain conditions (voltage 2 kV , argon gas, pressure 500 m Torr, 100 mA of electric current) for 5 and 10 min [13].
薑黃粉首先被清潔(去除外部顆粒)並用分析天平(A502AND-DJ,日本)稱量為 5 克和/或 10 克;然後在特定條件下(電壓 2 kV,氬氣,壓力 500 m Torr,電流 100 mA)使用 CP 設備(DC 放電,伊朗)處理 5 分鐘和 10 分鐘[13]。

2.2. Fortification of MTSO With Untreated and CP-Treated
2.2. 未處理和 CP 處理的 MTSO 的加固

Turmeric (CPTT). Oil extraction was performed by a cold press machine (Iran, Oilset) with screw speed 60 rpm after (without applying temperature) cleaning the MTSs (separation of foreign particles). Then, different ratios ( 0 % , 5 % 0 % , 5 % 0%,5%0 \%, 5 \%, and 10 % w / w ) 10 % w / w ) 10%w//w)10 \% w / w) of CPTT and untreated turmeric (UT) were added to MTSO [10]. The samples were homogenized (Ultra Turrax, IKA, Germany) with 24 , 000 rpm 24 , 000 rpm 24,000rpm24,000 \mathrm{rpm} for 10 min and stored in the refrigerator for 1 week; the oil was separated by filter paper (Whatman, 4). The oil samples were kept in the refrigerator ( 4 C ) 4 C (4^(@)C)\left(4^{\circ} \mathrm{C}\right) for further use. The samples were analyzed for AV, PV, TPC, antioxidant activity, FA profile, α α alpha\alpha-tocopherol, and Rancimat (oxidative stability) during storage time ( 1,30 , and 60 days).
薑黃 (CPTT)。油的提取是通過一台冷壓機(伊朗,Oilset)以 60 轉/分鐘的螺桿速度進行的,清潔 MTS(分離外來顆粒)後(未加溫)。然後,將不同的比例( 0 % , 5 % 0 % , 5 % 0%,5%0 \%, 5 \% 10 % w / w ) 10 % w / w ) 10%w//w)10 \% w / w) 的 CPTT 和未處理的薑黃(UT))添加到 MTSO [10]。樣品用 24 , 000 rpm 24 , 000 rpm 24,000rpm24,000 \mathrm{rpm} 在超聲波均質機(Ultra Turrax,IKA,德國)中均質化 10 分鐘,並在冰箱中儲存 1 週;油通過濾紙(Whatman,4)分離。油樣品在冰箱中 ( 4 C ) 4 C (4^(@)C)\left(4^{\circ} \mathrm{C}\right) 保存以備進一步使用。樣品在儲存期間(1、30 和 60 天)分析了 AV、PV、TPC、抗氧化活性、FA 譜、 α α alpha\alpha -生育酚和 Rancimat(氧化穩定性)。

2.3. Analysis of the Extracted Oil's Quality
2.3. 提取油品質的分析

2.3.1. AVs and PVs. AV was measured by titration of oil samples under a standard solution of sodium hydroxide 0.1 N in the presence of phenolphthalein reagent, according to the AOCS method with cd 3-63 (AOCS 1998) [14]. While PV measurement was achieved by titration of oil samples under a standard 0.02 N 0.02 N 0.02-N0.02-\mathrm{N} sodium thiosulfate solution in the presence of starch reagent, based on the AOCS method with cd 8-53 (AOCS 1998) [15].
2.3.1. AVs 和 PVs。根據 AOCS 方法 cd 3-63 (AOCS 1998) [14],AV 是通過在存在酚酞試劑的情況下,使用 0.1 N 的氫氧化鈉標準溶液對油樣進行滴定來測量的。而 PV 的測量則是通過在存在澱粉試劑的情況下,使用標準的 0.02 N 0.02 N 0.02-N0.02-\mathrm{N} 硫代硫酸鈉溶液對油樣進行滴定,基於 AOCS 方法 cd 8-53 (AOCS 1998) [15]。

2.3.2. TPCs. Determining TPC was performed by mixing oil and methanol ( 1 : 3 w / v 1 : 3 w / v 1:3w//v1: 3 w / v ) and extracted by centrifugation at the temperature of 25 C 25 C 25^(@)C25^{\circ} \mathrm{C} and time of 10 min (LiSA, France, 2501 g ). For TPC analysis, the pellet was re-extracted for 2 cycles and the supernatant was mixed in three steps [ 16 , 17 ] [ 16 , 17 ] [16,17][16,17].
2.3.2. TPCs。TPC 的確定是通過混合油和甲醇( 1 : 3 w / v 1 : 3 w / v 1:3w//v1: 3 w / v )並在 25 C 25 C 25^(@)C25^{\circ} \mathrm{C} 的溫度下以 2501 g 的離心力進行 10 分鐘的離心提取(LiSA,法國)。在 TPC 分析中,沉澱物重新提取 2 次,並將上清液分三步混合 [ 16 , 17 ] [ 16 , 17 ] [16,17][16,17]

2.3.3. Antioxidant Compounds. The antioxidant activity was measured using Shahidi and Ambigaipalan method [18] and calculated according to Equation (1):
2.3.3. 抗氧化化合物。抗氧化活性是使用 Shahidi 和 Ambigaipalan 方法測量的[18],並根據方程式(1)計算。
antioxidant activity ( % ) = ( 1 AC / AS ) × 100 ,  antioxidant activity  ( % ) = ( 1 AC / AS ) × 100 , " antioxidant activity "(%)=(1-AC//AS)xx100,\text { antioxidant activity }(\%)=(1-\mathrm{AC} / \mathrm{AS}) \times 100,
where AS is the absorption of the blank solution and AC is the absorption of oil containing the solution.
其中 AS 是空白溶液的吸收,AC 是含油溶液的吸收。

2.3.4. Determination of FA Composition. The method of Savage, McNeil, and Dutta [19] has been used for the measurement of fatty acid methyl esters (FAMEs). The FAMEs were obtained by comparison of their retention times under standard FAMEs, and the peak areas were considered as a percentage of the total FAs. Briefly, 2 mL of 0.01 M NaOH in methanol was added to a tube containing the oil sample (ca. 10 mg ) dissolved in 0.5 mL of hexane and then the tube was placed in a water bath at 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} for 10 min . Subsequently,
2.3.4. 脂肪酸組成的確定。Savage、McNeil 和 Dutta [19] 的方法已被用於測量脂肪酸甲酯 (FAMEs)。通過比較其在標準 FAMEs 下的保留時間來獲得 FAMEs,並將峰面積視為總脂肪酸的百分比。簡而言之,將 2 毫升 0.01 M 的氫氧化鈉溶液加入含有油樣品(約 10 毫克)溶解在 0.5 毫升己烷的管中,然後將該管放置在 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} 的水浴中 10 分鐘。隨後,
Table 1: Acidity and peroxide values in oils fortified with CPTT.
表 1:添加 CPTT 的油脂的酸度和過氧化值。
Treatment  治療 1st day  第一天 30th day  第 30 天 60th day  第六十天
AV ( mg NaOH / g AV ( mg NaOH / g AV(mgNaOH//g\mathrm{AV}(\mathrm{mg} \mathrm{NaOH} / \mathrm{g} oil ) ) ))   AV ( mg NaOH / g AV ( mg NaOH / g AV(mgNaOH//g\mathrm{AV}(\mathrm{mg} \mathrm{NaOH} / \mathrm{g} ) ) ))
T1 0.79 ± 0.04 aA 0.79 ± 0.04 aA 0.79+-0.04aA0.79 \pm 0.04 \mathrm{aA} 1.61 ± 0.04 aB 1.61 ± 0.04 aB 1.61+-0.04aB1.61 \pm 0.04 \mathrm{aB} 1.97 ± 0.05 aC 1.97 ± 0.05 aC 1.97+-0.05aC1.97 \pm 0.05 \mathrm{aC}
T2 0.53 ± 0.05 bA 0.53 ± 0.05 bA 0.53+-0.05bA0.53 \pm 0.05 \mathrm{bA} 1.01 ± 0.03 bB 1.01 ± 0.03 bB 1.01+-0.03bB1.01 \pm 0.03 \mathrm{bB} 1.38 ± 0.02 bC 1.38 ± 0.02 bC 1.38+-0.02bC1.38 \pm 0.02 \mathrm{bC}
T3 0.42 ± 0.01 cA 0.42 ± 0.01 cA 0.42+-0.01cA0.42 \pm 0.01 \mathrm{cA} 0.80 ± 0.02 cB 0.80 ± 0.02 cB 0.80+-0.02cB0.80 \pm 0.02 \mathrm{cB} 1.07 ± 0.03 cC 1.07 ± 0.03 cC 1.07+-0.03cC1.07 \pm 0.03 \mathrm{cC}
T4 0.42 ± 0.01 cA 0.42 ± 0.01 cA 0.42+-0.01cA0.42 \pm 0.01 \mathrm{cA} 0.80 ± 0.05 cB 0.80 ± 0.05 cB 0.80+-0.05cB0.80 \pm 0.05 \mathrm{cB} 1.04 ± 0.02 cdC 1.04 ± 0.02 cdC 1.04+-0.02cdC1.04 \pm 0.02 \mathrm{cdC}
T5 0.35 ± 0.03 dA 0.35 ± 0.03 dA 0.35+-0.03dA0.35 \pm 0.03 \mathrm{dA} 0.59 ± 0.04 dB 0.59 ± 0.04 dB 0.59+-0.04dB0.59 \pm 0.04 \mathrm{~dB} 1.00 ± 0.01 dC 1.00 ± 0.01 dC 1.00+-0.01dC1.00 \pm 0.01 \mathrm{dC}
T6 0.37 ± 0.03 cdA 0.37 ± 0.03 cdA 0.37+-0.03cdA0.37 \pm 0.03 \mathrm{cdA} 0.78 ± 0.01 cB 0.78 ± 0.01 cB 0.78+-0.01cB0.78 \pm 0.01 \mathrm{cB} 1.02 ± 0.01 cdC 1.02 ± 0.01 cdC 1.02+-0.01cdC1.02 \pm 0.01 \mathrm{cdC}
T7 0.24 ± 0.01 eA 0.24 ± 0.01 eA 0.24+-0.01eA0.24 \pm 0.01 \mathrm{eA} 0.50 ± 0.01 eB 0.50 ± 0.01 eB 0.50+-0.01eB0.50 \pm 0.01 \mathrm{eB} 0.62 ± 0.06 eC 0.62 ± 0.06 eC 0.62+-0.06eC0.62 \pm 0.06 \mathrm{eC}
PV ( mEq O 2 / kg oil ) PV mEq O 2 / kg oil ) PV(mEqO_(2)//kg(oil)):}\mathrm{PV}\left(\mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg} \mathrm{oil)}\right.
T1 2.92 ± 0.02 aB 2.92 ± 0.02 aB 2.92+-0.02aB2.92 \pm 0.02 \mathrm{aB} 8.10 ± 0.02 aC 8.10 ± 0.02 aC 8.10+-0.02aC8.10 \pm 0.02 \mathrm{aC}
T2 1.50 ± 0.01 aA 1.50 ± 0.01 aA 1.50+-0.01aA1.50 \pm 0.01 \mathrm{aA} 2.73 ± 0.01 bB 2.73 ± 0.01 bB 2.73+-0.01bB2.73 \pm 0.01 \mathrm{bB} 6.68 ± 0.02 bC 6.68 ± 0.02 bC 6.68+-0.02bC6.68 \pm 0.02 \mathrm{bC}
T3 1.40 ± 0.01 aA 1.40 ± 0.01 aA 1.40+-0.01aA1.40 \pm 0.01 \mathrm{aA} 2.42 ± 0.03 cB 2.42 ± 0.03 cB 2.42+-0.03cB2.42 \pm 0.03 \mathrm{cB} 5.80 ± 0.02 cC 5.80 ± 0.02 cC 5.80+-0.02cC5.80 \pm 0.02 \mathrm{cC}
T4 1.13 ± 0.01 bA 1.13 ± 0.01 bA 1.13+-0.01bA1.13 \pm 0.01 \mathrm{bA} 2.33 ± 0.15 cB 2.33 ± 0.15 cB 2.33+-0.15cB2.33 \pm 0.15 \mathrm{cB} 5.47 ± 0.15 dC 5.47 ± 0.15 dC 5.47+-0.15dC5.47 \pm 0.15 \mathrm{dC}
T5 0.95 ± 0.04 cA 0.95 ± 0.04 cA 0.95+-0.04cA0.95 \pm 0.04 \mathrm{cA} 2.15 ± 0.02 dB 2.15 ± 0.02 dB 2.15+-0.02dB2.15 \pm 0.02 \mathrm{~dB} 4.47 ± 0.02 eC 4.47 ± 0.02 eC 4.47+-0.02eC4.47 \pm 0.02 \mathrm{eC}
T6 0.77 ± 0.01 dA 0.77 ± 0.01 dA 0.77+-0.01dA0.77 \pm 0.01 \mathrm{dA} 2.00 ± 0.05 eB 2.00 ± 0.05 eB 2.00+-0.05eB2.00 \pm 0.05 \mathrm{eB} 4.33 ± 0.15 fC 4.33 ± 0.15 fC 4.33+-0.15fC4.33 \pm 0.15 \mathrm{fC}
T7 0.59 ± 0.01 eA 0.59 ± 0.01 eA 0.59+-0.01eA0.59 \pm 0.01 \mathrm{eA} 1.81 ± 0.10 fB 1.81 ± 0.10 fB 1.81+-0.10fB1.81 \pm 0.10 \mathrm{fB} 3.65 ± 0.07 gC 3.65 ± 0.07 gC 3.65+-0.07gC3.65 \pm 0.07 \mathrm{gC}
Treatment 1st day 30th day 60th day AV(mgNaOH//g oil ) T1 0.79+-0.04aA 1.61+-0.04aB 1.97+-0.05aC T2 0.53+-0.05bA 1.01+-0.03bB 1.38+-0.02bC T3 0.42+-0.01cA 0.80+-0.02cB 1.07+-0.03cC T4 0.42+-0.01cA 0.80+-0.05cB 1.04+-0.02cdC T5 0.35+-0.03dA 0.59+-0.04dB 1.00+-0.01dC T6 0.37+-0.03cdA 0.78+-0.01cB 1.02+-0.01cdC T7 0.24+-0.01eA 0.50+-0.01eB 0.62+-0.06eC PV(mEqO_(2)//kg(oil)):} T1 2.92+-0.02aB 8.10+-0.02aC T2 1.50+-0.01aA 2.73+-0.01bB 6.68+-0.02bC T3 1.40+-0.01aA 2.42+-0.03cB 5.80+-0.02cC T4 1.13+-0.01bA 2.33+-0.15cB 5.47+-0.15dC T5 0.95+-0.04cA 2.15+-0.02dB 4.47+-0.02eC T6 0.77+-0.01dA 2.00+-0.05eB 4.33+-0.15fC T7 0.59+-0.01eA 1.81+-0.10fB 3.65+-0.07gC| Treatment | 1st day | 30th day | 60th day | | :--- | :---: | :---: | :---: | | | | $\mathrm{AV}(\mathrm{mg} \mathrm{NaOH} / \mathrm{g}$ oil $)$ | | | T1 | $0.79 \pm 0.04 \mathrm{aA}$ | $1.61 \pm 0.04 \mathrm{aB}$ | $1.97 \pm 0.05 \mathrm{aC}$ | | T2 | $0.53 \pm 0.05 \mathrm{bA}$ | $1.01 \pm 0.03 \mathrm{bB}$ | $1.38 \pm 0.02 \mathrm{bC}$ | | T3 | $0.42 \pm 0.01 \mathrm{cA}$ | $0.80 \pm 0.02 \mathrm{cB}$ | $1.07 \pm 0.03 \mathrm{cC}$ | | T4 | $0.42 \pm 0.01 \mathrm{cA}$ | $0.80 \pm 0.05 \mathrm{cB}$ | $1.04 \pm 0.02 \mathrm{cdC}$ | | T5 | $0.35 \pm 0.03 \mathrm{dA}$ | $0.59 \pm 0.04 \mathrm{~dB}$ | $1.00 \pm 0.01 \mathrm{dC}$ | | T6 | $0.37 \pm 0.03 \mathrm{cdA}$ | $0.78 \pm 0.01 \mathrm{cB}$ | $1.02 \pm 0.01 \mathrm{cdC}$ | | T7 | $0.24 \pm 0.01 \mathrm{eA}$ | $0.50 \pm 0.01 \mathrm{eB}$ | $0.62 \pm 0.06 \mathrm{eC}$ | | | | $\mathrm{PV}\left(\mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg} \mathrm{oil)}\right.$ | | | T1 | $2.92 \pm 0.02 \mathrm{aB}$ | $8.10 \pm 0.02 \mathrm{aC}$ | | | T2 | $1.50 \pm 0.01 \mathrm{aA}$ | $2.73 \pm 0.01 \mathrm{bB}$ | $6.68 \pm 0.02 \mathrm{bC}$ | | T3 | $1.40 \pm 0.01 \mathrm{aA}$ | $2.42 \pm 0.03 \mathrm{cB}$ | $5.80 \pm 0.02 \mathrm{cC}$ | | T4 | $1.13 \pm 0.01 \mathrm{bA}$ | $2.33 \pm 0.15 \mathrm{cB}$ | $5.47 \pm 0.15 \mathrm{dC}$ | | T5 | $0.95 \pm 0.04 \mathrm{cA}$ | $2.15 \pm 0.02 \mathrm{~dB}$ | $4.47 \pm 0.02 \mathrm{eC}$ | | T6 | $0.77 \pm 0.01 \mathrm{dA}$ | $2.00 \pm 0.05 \mathrm{eB}$ | $4.33 \pm 0.15 \mathrm{fC}$ | | T7 | $0.59 \pm 0.01 \mathrm{eA}$ | $1.81 \pm 0.10 \mathrm{fB}$ | $3.65 \pm 0.07 \mathrm{gC}$ |
Note: T1: control sample (oil without turmeric); T2 and T3: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of untreated turmeric (UT); T4 and T5: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of cold plasma-treated turmeric (CPTT) (5-min treatment time); and T6 and T7: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of CPTT (10-min treatment time). Different lowercase letters indicate a significant difference ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) between different treatments at one time in each column. Different uppercase letters indicate a significant difference ( p < 0.05 ) ( p < 0.05 ) (p < 0.05)(p<0.05) in a treatment at different times in each row.
注意:T1:對照樣本(不含薑黃的油);T2 和 T3:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的未處理薑黃(UT)的油;T4 和 T5:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的冷等離子體處理薑黃(CPTT)(5 分鐘處理時間)的油;T6 和 T7:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的 CPTT(10 分鐘處理時間)的油。不同的小寫字母表示在每一列中不同處理之間的顯著差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )。不同的大寫字母表示在每一行中不同時間的處理之間的顯著差異 ( p < 0.05 ) ( p < 0.05 ) (p < 0.05)(p<0.05)

Figure 1: Rancimat analysis of oil fortified with 10 % 10 % 10%10 \% CPTT (treatment times: 0 and 10 min ) on the 60th day. T1: control sample (without turmeric); T2: oil fortified with 10 % 10 % 10%10 \% UT; and T3: oil with 10 % 10 % 10%10 \% of CPTT ( 10 min 10 min 10-min10-\mathrm{min} treatment time). Different uppercase Latin letters indicate significant differences among treatments at the level ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) according to the Duncan test.
圖 1:在第 60 天對添加了 10 % 10 % 10%10 \% CPTT 的油進行的 Rancimat 分析(處理時間:0 和 10 分鐘)。T1:對照樣本(不含薑黃);T2:添加了 10 % 10 % 10%10 \% UT 的油;T3:含有 10 % 10 % 10%10 \% CPTT 的油( 10 min 10 min 10-min10-\mathrm{min} 處理時間)。不同的大寫拉丁字母表示根據 Duncan 測試在水平( p < 0.05 p < 0.05 p < 0.05p<0.05 )上處理之間的顯著差異。

boron trifluoride in methanol ( 20 % 20 % 20%20 \% BF3 in methanol) was added, and the samples remained for an additional 10 min in a 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} water bath. The sample was cooled under running water and 2 mL of 20 % ( w / v ) 20 % ( w / v ) 20%(w//v)20 \%(w / v) of sodium chloride and 1 mL hexane were added. After being completely mixed, the hexane layer containing FAMEs was separated by centrifugation. The FA profile was analyzed by gas chromatograph ((GC) YL6100, India) equipped with a capillary column (Teknokroma, 60 m × 0.25 mm × 0.2 μ m 60 m × 0.25 mm × 0.2 μ m 60mxx0.25mmxx0.2 mum60 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.2 \mu \mathrm{~m} ) with the following conditions: injector and a detector temperature 260 C 260 C 260^(@)C260^{\circ} \mathrm{C} and
在甲醇中加入三氟化硼( 20 % 20 % 20%20 \% BF3 in methanol),樣品在 60 C 60 C 60^(@)C60^{\circ} \mathrm{C} 水浴中再保持 10 分鐘。樣品在流動水下冷卻,然後加入 2 毫升 20 % ( w / v ) 20 % ( w / v ) 20%(w//v)20 \%(w / v) 氯化鈉和 1 毫升己烷。完全混合後,通過離心分離含有 FAMEs 的己烷層。FA 譜通過氣相色譜儀((GC)YL6100,印度)進行分析,該儀器配備有毛細管柱(Teknokroma, 60 m × 0.25 mm × 0.2 μ m 60 m × 0.25 mm × 0.2 μ m 60mxx0.25mmxx0.2 mum60 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.2 \mu \mathrm{~m} ),條件如下:進樣器和檢測器溫度 260 C 260 C 260^(@)C260^{\circ} \mathrm{C}

280 C 280 C 280^(@)C280^{\circ} \mathrm{C}, respectively [4]. The initial temperature was set at 80 C 80 C 80^(@)C80^{\circ} \mathrm{C} and increased to 120 C 120 C 120^(@)C120^{\circ} \mathrm{C} with gradient program of 20 C / min 20 C / min 20^(@)C//min20^{\circ} \mathrm{C} / \mathrm{min} which afterwards elevated to 260 C 260 C 260^(@)C260^{\circ} \mathrm{C} with 3 C / min 3 C / min 3^(@)C//min3^{\circ} \mathrm{C} / \mathrm{min} and continued for 10 min at this temperature. Helium as the carrier gas and nitrogen as the make-up gas at a flow rate of 30 mL / min 30 mL / min 30mL//min30 \mathrm{~mL} / \mathrm{min} was used. The FAMEs were identified by comparison of their retention times with standard FAMEs, and the peak areas reported as percentage of total FAs.
280 C 280 C 280^(@)C280^{\circ} \mathrm{C} ,分別[4]。初始溫度設置為 80 C 80 C 80^(@)C80^{\circ} \mathrm{C} ,並以 20 C / min 20 C / min 20^(@)C//min20^{\circ} \mathrm{C} / \mathrm{min} 的梯度程序提高至 120 C 120 C 120^(@)C120^{\circ} \mathrm{C} ,隨後提升至 260 C 260 C 260^(@)C260^{\circ} \mathrm{C} ,並以 3 C / min 3 C / min 3^(@)C//min3^{\circ} \mathrm{C} / \mathrm{min} 持續 10 分鐘在此溫度下。使用氦作為載氣,氮作為補充氣體,流速為 30 mL / min 30 mL / min 30mL//min30 \mathrm{~mL} / \mathrm{min} 。通過與標準 FAMEs 的保留時間比較來識別 FAMEs,並將峰面積報告為總脂肪酸的百分比。

2.3.5. Measurement of Tocopherols. The determination of tocopherols was done by high-performance liquid chromatography (HPLC) (Agilent, Crawford Scientific Ltd., UK) according to the method described by Naderi et al. [20]. The LiChro-CART 250-4 column packed with LiChrosphere 100 NH2 (Merck KGaA, Darmstadt, Germany) was used for this purpose. Tocopherol detection was performed by Agilent 1260 fluorescence detector (model: G1321B). The mobile phase was n-heptane:tert-butyl methyl ether:tetrahydrofuran:methanol (79:20:0.98:0.02; v✌️v:v) mixture, and its flow rate was 1.0 mL / min 1.0 mL / min 1.0mL//min1.0 \mathrm{~mL} / \mathrm{min}.
2.3.5. 生育酚的測定。生育酚的測定是通過高效液相色譜(HPLC)(Agilent,Crawford Scientific Ltd.,英國)根據 Naderi 等人所描述的方法進行的[20]。為此使用了填充有 LiChrosphere 100 NH2(Merck KGaA,達姆施塔特,德國)的 LiChro-CART 250-4 柱。生育酚的檢測是通過 Agilent 1260 螢光檢測器(型號:G1321B)進行的。流動相為 n-庚烷:叔丁基甲基醚:四氫呋喃:甲醇(79:20:0.98:0.02; v✌️v:v)混合物,其流速為 1.0 mL / min 1.0 mL / min 1.0mL//min1.0 \mathrm{~mL} / \mathrm{min}

2.3.6. Rancimat. The oil oxidation test was performed based on the AOCS cd 12-57 standard. Briefly, 3 mL of oil was dispersed in 60 mL distilled water and exposed to hot air ( 110 C 110 C (110^(@)C:}\left(110^{\circ} \mathrm{C}\right. for 30 min ), and the oxidative stability was measured for about 13 h by a Rancimat (Metrohm 743, Switzerland) [21].
2.3.6. Rancimat。根據 AOCS cd 12-57 標準進行了油氧化測試。簡而言之,將 3 毫升油分散在 60 毫升蒸餾水中,並在熱空氣 ( 110 C 110 C (110^(@)C:}\left(110^{\circ} \mathrm{C}\right. 中暴露 30 分鐘,然後通過 Rancimat(Metrohm 743,瑞士)測量氧化穩定性約 13 小時[21]。

2.3.7. Statistical Analysis. A design of completely randomized statistical was applied by the variance analysis. The experimental results were reported as mean ± ± +-\pm SD. One-way ANOVA statistical analysis and Duncan’s multiple range test were used for means comparison ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) by using SAS software (version 9.4).
2.3.7. 統計分析。應用變異數分析進行完全隨機的統計設計。實驗結果以平均值 ± ± +-\pm 標準差報告。使用單因子變異數分析和邓肯多重範圍測試進行均值比較 ( p < 0.05 p < 0.05 p < 0.05p<0.05 ),使用 SAS 軟體(版本 9.4)。
TAbLe 2: Total phenolic content (TPC) of the oils fortified with cold plasma-treated turmeric (CPTT) (treatment times: 5 and 10 min ).
表 2:添加冷等離子體處理薑黃(CPTT)的油的總酚含量(TPC)(處理時間:5 分鐘和 10 分鐘)。
Treatment  治療 1st day  第一天 TPC ( m g G A E / 1 0 0 g m g G A E / 1 0 0 g mgGAE//100g\mathbf{m g} \mathbf{~ G A E / 1 0 0} \mathbf{g} oil)  TPC ( m g G A E / 1 0 0 g m g G A E / 1 0 0 g mgGAE//100g\mathbf{m g} \mathbf{~ G A E / 1 0 0} \mathbf{g} 油)
30th day  第 30 天 60th day  第六十天
T1 666.57 ± 5.77 fA 666.57 ± 5.77 fA 666.57+-5.77fA666.57 \pm 5.77 \mathrm{fA} 659.60 ± 17.58 eA 659.60 ± 17.58 eA 659.60+-17.58eA659.60 \pm 17.58 \mathrm{eA} 426.57 ± 5.77 gB 426.57 ± 5.77 gB 426.57+-5.77gB426.57 \pm 5.77 \mathrm{gB}
T2 999.90 ± 3.00 eA 999.90 ± 3.00 eA 999.90+-3.00eA999.90 \pm 3.00 \mathrm{eA} 839.90 ± 20.00 dB 839.90 ± 20.00 dB 839.90+-20.00dB839.90 \pm 20.00 \mathrm{~dB} 719.90 ± 10.00 fC 719.90 ± 10.00 fC 719.90+-10.00fC719.90 \pm 10.00 \mathrm{fC}
T3 1033.23 ± 25.16 eA 1033.23 ± 25.16 eA 1033.23+-25.16eA1033.23 \pm 25.16 \mathrm{eA} 1013.23 ± 5.77 cA 1013.23 ± 5.77 cA 1013.23+-5.77cA1013.23 \pm 5.77 \mathrm{cA} 836.57 ± 20.81 eB 836.57 ± 20.81 eB 836.57+-20.81eB836.57 \pm 20.81 \mathrm{eB}
T4 1083.33 ± 5.77 dA 1083.33 ± 5.77 dA 1083.33+-5.77dA1083.33 \pm 5.77 \mathrm{dA} 1026.57 ± 5.77 cB 1026.57 ± 5.77 cB 1026.57+-5.77cB1026.57 \pm 5.77 \mathrm{cB} 919.90 ± 20.00 dC 919.90 ± 20.00 dC 919.90+-20.00dC919.90 \pm 20.00 \mathrm{dC}
T5 1226.57 ± 20.20 cA 1226.57 ± 20.20 cA 1226.57+-20.20cA1226.57 \pm 20.20 \mathrm{cA} 1043.23 ± 5.77 cB 1043.23 ± 5.77 cB 1043.23+-5.77cB1043.23 \pm 5.77 \mathrm{cB} 1003.23 ± 5.07 cC 1003.23 ± 5.07 cC 1003.23+-5.07cC1003.23 \pm 5.07 \mathrm{cC}
T6 1289.90 ± 10.00 bA 1289.90 ± 10.00 bA 1289.90+-10.00bA1289.90 \pm 10.00 \mathrm{bA} 1113.23 ± 15.27 bB 1113.23 ± 15.27 bB 1113.23+-15.27bB1113.23 \pm 15.27 \mathrm{bB} 1053.23 ± 5.77 bC 1053.23 ± 5.77 bC 1053.23+-5.77bC1053.23 \pm 5.77 \mathrm{bC}
T7 1343.23 ± 11.74 aA 1343.23 ± 11.74 aA 1343.23+-11.74aA1343.23 \pm 11.74 \mathrm{aA} 1309.90 ± 10.00 aA 1309.90 ± 10.00 aA 1309.90+-10.00aA1309.90 \pm 10.00 \mathrm{aA} 1116.90 ± 6.08 aB 1116.90 ± 6.08 aB 1116.90+-6.08aB1116.90 \pm 6.08 \mathrm{aB}
Treatment 1st day TPC ( mgGAE//100g oil) 30th day 60th day T1 666.57+-5.77fA 659.60+-17.58eA 426.57+-5.77gB T2 999.90+-3.00eA 839.90+-20.00dB 719.90+-10.00fC T3 1033.23+-25.16eA 1013.23+-5.77cA 836.57+-20.81eB T4 1083.33+-5.77dA 1026.57+-5.77cB 919.90+-20.00dC T5 1226.57+-20.20cA 1043.23+-5.77cB 1003.23+-5.07cC T6 1289.90+-10.00bA 1113.23+-15.27bB 1053.23+-5.77bC T7 1343.23+-11.74aA 1309.90+-10.00aA 1116.90+-6.08aB| Treatment | 1st day | TPC ( $\mathbf{m g} \mathbf{~ G A E / 1 0 0} \mathbf{g}$ oil) | | | :--- | :---: | :---: | :---: | | | 30th day | 60th day | | | T1 | $666.57 \pm 5.77 \mathrm{fA}$ | $659.60 \pm 17.58 \mathrm{eA}$ | $426.57 \pm 5.77 \mathrm{gB}$ | | T2 | $999.90 \pm 3.00 \mathrm{eA}$ | $839.90 \pm 20.00 \mathrm{~dB}$ | $719.90 \pm 10.00 \mathrm{fC}$ | | T3 | $1033.23 \pm 25.16 \mathrm{eA}$ | $1013.23 \pm 5.77 \mathrm{cA}$ | $836.57 \pm 20.81 \mathrm{eB}$ | | T4 | $1083.33 \pm 5.77 \mathrm{dA}$ | $1026.57 \pm 5.77 \mathrm{cB}$ | $919.90 \pm 20.00 \mathrm{dC}$ | | T5 | $1226.57 \pm 20.20 \mathrm{cA}$ | $1043.23 \pm 5.77 \mathrm{cB}$ | $1003.23 \pm 5.07 \mathrm{cC}$ | | T6 | $1289.90 \pm 10.00 \mathrm{bA}$ | $1113.23 \pm 15.27 \mathrm{bB}$ | $1053.23 \pm 5.77 \mathrm{bC}$ | | T7 | $1343.23 \pm 11.74 \mathrm{aA}$ | $1309.90 \pm 10.00 \mathrm{aA}$ | $1116.90 \pm 6.08 \mathrm{aB}$ |
Note: T1: control sample (oil without turmeric); T2 and T3: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of untreated turmeric (UT); T4 and T5: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of cold plasma-treated turmeric (CPTT) ( 5 min 5 min 5-min5-\mathrm{min} treatment time); and T6 and T7: oil with, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of CPTT (10-min treatment time). Different lowercase letters show a significant difference ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) between treatments at one time in each column. Different uppercase letters indicate a significant difference ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) in a treatment at different times in each row.
注意:T1:對照樣本(不含薑黃的油);T2 和 T3:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的未處理薑黃(UT)的油;T4 和 T5:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的冷等離子體處理薑黃(CPTT)( 5 min 5 min 5-min5-\mathrm{min} 處理時間)的油;T6 和 T7:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的 CPTT(10 分鐘處理時間)的油。不同的小寫字母顯示在每列中一次處理之間的顯著差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )。不同的大寫字母表示在每行中不同時間的處理之間的顯著差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )。

Figure 2: Gallic acid calibration curve for TPC evaluation.
圖 2:用於總酚含量評估的鞣酸標定曲線。

3. Results and Discussion
3. 結果與討論

3.1. Oxidative Stability of Oil Samples. By measuring AV, PV, and oxidative induction time (Rancimat), oxidative stability was evaluated [14] as shown in Table 1. The results showed that the longer storage time increased AV (mg NaOH / g NaOH / g NaOH//g\mathrm{NaOH} / \mathrm{g} oil) and PV ( mEq O O 2 / 100 g PV mEq O O 2 / 100 g PV(mEqOO_(2)//100(g):}\mathrm{PV}\left(\mathrm{mEq} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~g}\right. oil) in all treatments. This could be related to hydrolytic decomposition of oil under environmental conditions, for example, high temperature, moisture content, and lipophilic enzymes that are naturally found in oil seeds; they cause the formation of free FAs and progressive oxidative reactions over storage time [15]. Oxidation is a radical-dependent reaction in which activated oxygen reacts with fats and oils to form by-products. Double bonds in unsaturated oils have a key role in the spontaneous oxidation of oils, making the unsaturated oils more exposed to autocatalytic decomposition. In the initial phase, the formation of peroxides is slow, while in the propagation and branching stage, free radicals induce and accelerate the formation of peroxides; therefore, the amount of PV in prolonged time ( 60 days) of storage increased compared to short storage time
3.1. 油樣品的氧化穩定性。通過測量酸價(AV)、過氧化值(PV)和氧化誘導時間(Rancimat),評估了氧化穩定性[14],如表 1 所示。結果顯示,所有處理中,儲存時間越長,酸價(mg NaOH / g NaOH / g NaOH//g\mathrm{NaOH} / \mathrm{g} 油)和 PV ( mEq O O 2 / 100 g PV mEq O O 2 / 100 g PV(mEqOO_(2)//100(g):}\mathrm{PV}\left(\mathrm{mEq} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~g}\right. 油)均增加。這可能與油在環境條件下的水解分解有關,例如高溫、濕度和自然存在於油籽中的親脂酶;它們導致游離脂肪酸的形成和隨著儲存時間的推移而進行的漸進氧化反應[15]。氧化是一種依賴自由基的反應,其中活化氧與脂肪和油反應生成副產品。未飽和油中的雙鍵在油的自發氧化中起著關鍵作用,使未飽和油更容易受到自催化分解的影響。在初始階段,過氧化物的形成較慢,而在傳播和分支階段,自由基誘導並加速過氧化物的形成;因此,與短期儲存時間相比,延長儲存時間(60 天)時的過氧化值增加。

(30 days) [16, 17]. Various MTSOs have been reported to have very low AVs and PVs. These values according to those determined by the Codex Alimentarius Commission were even lower, which there were no more than 10 mEq of peroxide/ kg oil as a maximum peroxide level for vegetable oils. According to those reported by Meddeb et al. [22], the obtained results are similar. The lower the acidity of MTSOs is, the more edible and the longer the shelf life is. Additionally, the AV ( mg NaOH / g mg NaOH / g mgNaOH//g\mathrm{mg} \mathrm{NaOH} / \mathrm{g} oil) and the PV ( mEq O O 2 / 100 g mEq O O 2 / 100 g mEqOO_(2)//100g\mathrm{mEq} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~g} oil) of oils containing CPTT were lower than their counterparts that had UT at all long lifetimes ( 1,30 , and 60 days). Comparison of samples showed that AV reversely decreased with increasing turmeric content. However, there were no statistically significant differences ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) between oils containing 10% UT and those containing 5% CPTT (treatment times: 5 and 10 min ). Furthermore, increasing the CP treatment time with 5 % 5 % 5%5 \% turmeric has not affected the AV of the oil. However, for oil samples fortified with 10 % 10 % 10%10 \% turmeric, AV decreased at higher exposure times to CP.
(30 天)[16, 17]。據報導,各種 MTSO 的酸價(AV)和過氧化值(PV)非常低。根據食品法典委員會確定的數值,這些值甚至更低,植物油的最大過氧化物水平不超過每公斤油 10 毫克當量(mEq)。根據 Meddeb 等人[22]的報導,獲得的結果相似。MTSO 的酸度越低,食用性越高,保質期越長。此外,含有 CPTT 的油的酸價( mg NaOH / g mg NaOH / g mgNaOH//g\mathrm{mg} \mathrm{NaOH} / \mathrm{g} 油)和過氧化值( mEq O O 2 / 100 g mEq O O 2 / 100 g mEqOO_(2)//100g\mathrm{mEq} \mathrm{O} \mathrm{O}_{2} / 100 \mathrm{~g} 油)在所有長期儲存(1、30 和 60 天)中均低於其對應的 UT 油。樣本比較顯示,酸價隨著薑黃含量的增加而反向下降。然而,含有 10% UT 和 5% CPTT 的油之間沒有統計學上顯著的差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )(處理時間:5 和 10 分鐘)。此外,隨著薑黃的 CP 處理時間增加,油的酸價並未受到影響。然而,對於添加了 10 % 10 % 10%10 \% 薑黃的油樣,酸價在更長的 CP 暴露時間下下降。
Unlike AV, PV was reduced both with the increasing turmeric levels ( 5 % 10 % w / v 5 % 10 % w / v 5%-10%w//v5 \%-10 \% \mathrm{w} / v ) and treatment times ( 5 10 min 5 10 min 5-10min5-10 \mathrm{~min} ).
與 AV 不同,PV 隨著薑黃水平的增加( 5 % 10 % w / v 5 % 10 % w / v 5%-10%w//v5 \%-10 \% \mathrm{w} / v )和處理時間的增加( 5 10 min 5 10 min 5-10min5-10 \mathrm{~min} )而減少。

Figure 3: Mean antioxidant activity (a) and α α alpha\alpha-tocopherol content (b) of oil fortified with CPTT (cold plasma-treated turmeric) in the 60th day. T1: control sample (without turmeric); T2 and T3: the oil fortified with 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of UT; T4 and T5: the oil containing, respectively, 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of CPTT ( 5 min 5 min 5-min5-\mathrm{min} treatment time); and T6 and T7: oil, respectively, with 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% of CPTT ( 10 min 10 min 10-min10-\mathrm{min} treatment time). Different uppercase Latin letters (A-E) indicate significant differences among treatments ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) based on the Duncan test.
圖 3:在第 60 天,添加 CPTT(冷等離子體處理的薑黃)油的平均抗氧化活性(a)和 α α alpha\alpha -生育酚含量(b)。T1:對照樣本(不含薑黃);T2 和 T3:分別添加 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的 UT 的油;T4 和 T5:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的 CPTT 的油( 5 min 5 min 5-min5-\mathrm{min} 處理時間);T6 和 T7:分別含有 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% 的 CPTT 的油( 10 min 10 min 10-min10-\mathrm{min} 處理時間)。不同的大寫拉丁字母(A-E)表示根據邓肯測試在處理之間的顯著差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )。
Rancimat analysis (Figure 1) after 60 days confirmed that oils having 10 % 10 % 10%10 \% CPTT ( 10 min ) had the highest oxidative stability compared to those containing the same level of UT and also blank oil. Tinello and Lante [10] used turmeric and ginger powder in soybean oil, which increased its oxidative stability and antioxidant activity and made the oil resistant to thermal degradation. Similar to the current study, the stabilization of soybean oil containing ginger and turmeric showed that the oil with turmeric and ginger had more oxidative stability and less PV than oils containing synthetic antioxidants (BHT). Curcumin and other antioxidants from turmeric prevent triglyceride breakdown and the formation of free radicals in oil during storage, thereby reducing AV and PV and increasing the induction time of oxidation (Rancimat) during storage [ 9,17 ]. According to our study, plasma treatment has previously been demonstrated to increase the bioactive compounds of turmeric, such as TPC and other compounds, including α α alpha\alpha-zingiberene and α α alpha\alpha-turmerone; CP pretreatment is believed
Rancimat 分析(圖 1)在 60 天後確認,具有 10 % 10 % 10%10 \% CPTT(10 分鐘)的油品相比於含有相同水平的 UT 和空白油,具有最高的氧化穩定性。Tinello 和 Lante [10] 在大豆油中使用了薑黃和生薑粉,這提高了其氧化穩定性和抗氧化活性,使油品對熱降解具有抵抗力。與目前的研究類似,含有生薑和薑黃的大豆油的穩定性顯示,含有薑黃和生薑的油品具有更高的氧化穩定性和較低的 PV,與含有合成抗氧化劑(BHT)的油品相比。薑黃中的薑黃素和其他抗氧化劑可以防止三酸甘油脂的分解和油品在儲存過程中自由基的形成,從而降低 AV 和 PV,並增加儲存過程中的氧化誘導時間(Rancimat)[9,17]。根據我們的研究,等離子體處理已被證明可以增加薑黃的生物活性化合物,如 TPC 和其他化合物,包括 α α alpha\alpha -生薑烯和 α α alpha\alpha -薑黃酮;CP 預處理被認為

to have a detrimental effect on the cellular structures of turmeric. Damage caused by plasma to turmeric tissues can be associated with the release of cell contents, including bioactive compounds such as phenol and antioxidants. This might be an answer to why the CPTT provided better oxidative stability in oils [13].
對薑黃的細胞結構產生不利影響。等離子體對薑黃組織造成的損害可能與細胞內容物的釋放有關,包括生物活性化合物,如酚和抗氧化劑。這可能解釋了為什麼 CPTT 在油中提供了更好的氧化穩定性[13]。

3.2. Total Phenolics and Antioxidant Activities of Oil Samples. Phenolic compositions are phytochemicals with antioxidant activity found in various forms in plants and oilseeds, which have the potential to eliminate free radicals and prevent the oxidation and conversion of hydroperoxides to free radicals [10]. As expressed in Table 2, the amount of TPC decreased with storage time. Phenolic compounds (mg GAE/ 100 g of oil) decompose during the maintenance of oils and fats and form a number of oxidation products [18].
3.2. 油樣品的總酚類和抗氧化活性。酚類成分是植物和油籽中發現的具有抗氧化活性的植物化學物質,具有消除自由基和防止過氧化氫轉化為自由基的潛力[10]。如表 2 所示,TPC 的含量隨著儲存時間的增加而減少。酚類化合物(毫克 GAE/100 克油)在油脂的維護過程中分解,並形成多種氧化產物[18]。
Table 2 and Figure 2 (gallic acid concentration) show that the oils containing CPTT had more TPC compared to
表 2 和圖 2(沒食子酸濃度)顯示,含有 CPTT 的油脂相比較具有更高的總酚含量

Figure 4: Gas chromatogram of fatty acids in oils extracted from milk thistle seeds; control sample (a), oil containing 10 % 10 % 10%10 \% of UT (b), and oil containing 10 % 10 % 10%10 \% of cold plasma-treated turmeric (CPTT) ©. (C16:0, palmitic; C18:0, stearic; C 18 : 1 C 18 : 1 C18:1\mathrm{C} 18: 1 oleic; C 18 : 2 C 18 : 2 C18:2\mathrm{C} 18: 2, linoleic; C 18 : 3 C 18 : 3 C18:3\mathrm{C} 18: 3, linolenic; C20:0, arachidic; and C20:4, arachidonic acid methyl esters).
圖 4:從奶薊種子提取的油脂中的脂肪酸氣相色譜圖;對照樣本(a),含有 10 % 10 % 10%10 \% 的 UT 的油(b),以及含有 10 % 10 % 10%10 \% 的冷等離子體處理薑黃(CPTT)油(c)。 (C16:0,棕櫚酸;C18:0,硬脂酸; C 18 : 1 C 18 : 1 C18:1\mathrm{C} 18: 1 ,油酸; C 18 : 2 C 18 : 2 C18:2\mathrm{C} 18: 2 ,亞油酸; C 18 : 3 C 18 : 3 C18:3\mathrm{C} 18: 3 ,亞麻酸;C20:0,花生酸;C20:4,花生四烯酸甲酯)。
Table 3: Fatty acid profile (%) of milk thistle seed oil (MTSO) which contains turmeric treated with cold plasma ( 10 min , 10 % UT 10 min , 10 % UT 10min,10%UT10 \mathrm{~min}, 10 \% \mathrm{UT} ) in 60 days.
表 3:含有經冷等離子體處理的薑黃( 10 min , 10 % UT 10 min , 10 % UT 10min,10%UT10 \mathrm{~min}, 10 \% \mathrm{UT} )的奶薊種子油(MTSO)在 60 天內的脂肪酸組成(%)。
Fatty acid  脂肪酸 Control  控制 Fatty acid profile (%)
脂肪酸組成 (%)
T1 T2
C16:0 10.32 ± 0.01 b 10.32 ± 0.01 b 10.32+-0.01b10.32 \pm 0.01 \mathrm{~b} 10.99 ± 0.02 a 10.99 ± 0.02 a 10.99+-0.02a10.99 \pm 0.02 \mathrm{a} 10.22 ± 0.01 c 10.22 ± 0.01 c 10.22+-0.01c10.22 \pm 0.01 \mathrm{c}
C18:0 5.51 ± 0.03 a 5.51 ± 0.03 a 5.51+-0.03a5.51 \pm 0.03 \mathrm{a} 5.39 ± 0.04 b 5.39 ± 0.04 b 5.39+-0.04b5.39 \pm 0.04 \mathrm{~b} 5.19 ± 0.04 c 5.19 ± 0.04 c 5.19+-0.04c5.19 \pm 0.04 \mathrm{c}
C18:1 31.17 ± 0.01 a 31.17 ± 0.01 a 31.17+-0.01a31.17 \pm 0.01 \mathrm{a} 31.03 ± 0.05 b 31.03 ± 0.05 b 31.03+-0.05b31.03 \pm 0.05 \mathrm{~b} 30.84 ± 0.02 c 30.84 ± 0.02 c 30.84+-0.02c30.84 \pm 0.02 \mathrm{c}
C18:2 46.98 ± 0.02 c 46.98 ± 0.02 c 46.98+-0.02c46.98 \pm 0.02 \mathrm{c} 47.68 ± 0.02 b 47.68 ± 0.02 b 47.68+-0.02b47.68 \pm 0.02 \mathrm{~b} 48.20 ± 0.04 a 48.20 ± 0.04 a 48.20+-0.04a48.20 \pm 0.04 \mathrm{a}
C20:0 2.73 ± 0.01 b 2.73 ± 0.01 b 2.73+-0.01b2.73 \pm 0.01 \mathrm{~b} 2.70 ± 0.03 c 2.70 ± 0.03 c 2.70+-0.03c2.70 \pm 0.03 \mathrm{c} 3.02 ± 0.03 a 3.02 ± 0.03 a 3.02+-0.03a3.02 \pm 0.03 \mathrm{a}
C18:3 0.71 ± 0.01 b 0.71 ± 0.01 b 0.71+-0.01b0.71 \pm 0.01 \mathrm{~b} 0.83 ± 0.01 a 0.83 ± 0.01 a 0.83+-0.01a0.83 \pm 0.01 \mathrm{a} 0.69 ± 0.02 c 0.69 ± 0.02 c 0.69+-0.02c0.69 \pm 0.02 \mathrm{c}
C20:4 1.31 ± 0.02 c 1.31 ± 0.02 c 1.31+-0.02c1.31 \pm 0.02 \mathrm{c} 1.38 ± 0.03 b 1.38 ± 0.03 b 1.38+-0.03b1.38 \pm 0.03 \mathrm{~b} 1.84 ± 0.03 a 1.84 ± 0.03 a 1.84+-0.03a1.84 \pm 0.03 \mathrm{a}
sum\sum SFAs 18.56 19.08 18.43
C PUFAs 49.00 49.89 50.73
PUFA/SFA 2.64 2.61 2.75
PUFAs n-6/PUFA sn-3 68.01 59.10 72.52
Fatty acid Control Fatty acid profile (%) T1 T2 C16:0 10.32+-0.01b 10.99+-0.02a 10.22+-0.01c C18:0 5.51+-0.03a 5.39+-0.04b 5.19+-0.04c C18:1 31.17+-0.01a 31.03+-0.05b 30.84+-0.02c C18:2 46.98+-0.02c 47.68+-0.02b 48.20+-0.04a C20:0 2.73+-0.01b 2.70+-0.03c 3.02+-0.03a C18:3 0.71+-0.01b 0.83+-0.01a 0.69+-0.02c C20:4 1.31+-0.02c 1.38+-0.03b 1.84+-0.03a sum SFAs 18.56 19.08 18.43 C PUFAs 49.00 49.89 50.73 PUFA/SFA 2.64 2.61 2.75 PUFAs n-6/PUFA sn-3 68.01 59.10 72.52| Fatty acid | Control | Fatty acid profile (%) | | | :--- | :---: | :---: | :---: | | | T1 | T2 | | | C16:0 | $10.32 \pm 0.01 \mathrm{~b}$ | $10.99 \pm 0.02 \mathrm{a}$ | $10.22 \pm 0.01 \mathrm{c}$ | | C18:0 | $5.51 \pm 0.03 \mathrm{a}$ | $5.39 \pm 0.04 \mathrm{~b}$ | $5.19 \pm 0.04 \mathrm{c}$ | | C18:1 | $31.17 \pm 0.01 \mathrm{a}$ | $31.03 \pm 0.05 \mathrm{~b}$ | $30.84 \pm 0.02 \mathrm{c}$ | | C18:2 | $46.98 \pm 0.02 \mathrm{c}$ | $47.68 \pm 0.02 \mathrm{~b}$ | $48.20 \pm 0.04 \mathrm{a}$ | | C20:0 | $2.73 \pm 0.01 \mathrm{~b}$ | $2.70 \pm 0.03 \mathrm{c}$ | $3.02 \pm 0.03 \mathrm{a}$ | | C18:3 | $0.71 \pm 0.01 \mathrm{~b}$ | $0.83 \pm 0.01 \mathrm{a}$ | $0.69 \pm 0.02 \mathrm{c}$ | | C20:4 | $1.31 \pm 0.02 \mathrm{c}$ | $1.38 \pm 0.03 \mathrm{~b}$ | $1.84 \pm 0.03 \mathrm{a}$ | | $\sum$ SFAs | 18.56 | 19.08 | 18.43 | | C PUFAs | 49.00 | 49.89 | 50.73 | | PUFA/SFA | 2.64 | 2.61 | 2.75 | | PUFAs n-6/PUFA sn-3 | 68.01 | 59.10 | 72.52 |
Note: control: control oil (without turmeric); T1: the oil contains 10 % 10 % 10%10 \% of UT; T2: the oil contains 10 % 10 % 10%10 \% of cold plasma-treated turmeric (CPTT) (10-min treatment time). Different lowercase letters indicate a significant difference between treatments ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) according to the Duncan test.
注意:控制:控制油(不含薑黃);T1:該油含有 10 % 10 % 10%10 \% 的 UT;T2:該油含有 10 % 10 % 10%10 \% 的冷等離子體處理薑黃(CPTT)(10 分鐘處理時間)。不同的小寫字母表示根據邓肯檢驗,處理之間存在顯著差異( p < 0.05 p < 0.05 p < 0.05p<0.05 )。

the samples loaded with UT. Furthermore, TPC increased with plasma exposing time ( 5 10 min 5 10 min 5-10min5-10 \mathrm{~min} ) and turmeric levels ( 5 % 10 % 5 % 10 % 5%-10%5 \%-10 \% w / w ) w / w ) w//w)w / w). In addition to TPC, CPTT increased the antioxidant activity (Figure 3(a)) of oils compared to those containing UT. As was to be predicted, the addition of 5 % 5 % 5%5 \% and 10 % 10 % 10%10 \% CPTT increased the antioxidant activity of MTSO three times and 3.5 times, respectively, compared to the control sample. Unlike the treatment level of turmeric, the time did not have a significant effect ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) on the antioxidant activity.
樣本中加載了 UT。此外,TPC 隨著等離子體暴露時間( 5 10 min 5 10 min 5-10min5-10 \mathrm{~min} )和薑黃水平( 5 % 10 % 5 % 10 % 5%-10%5 \%-10 \% w / w ) w / w ) w//w)w / w) )的增加而增加。除了 TPC,CPTT 還提高了油的抗氧化活性(圖 3(a)),與含有 UT 的油相比。正如預測的那樣,添加 5 % 5 % 5%5 \% 10 % 10 % 10%10 \% CPTT 使 MTSO 的抗氧化活性分別增加了三倍和 3.5 倍,與對照樣本相比。與薑黃的處理水平不同,時間對抗氧化活性沒有顯著影響( p < 0.05 p < 0.05 p < 0.05p<0.05 )。
The measurement of α α alpha\alpha-tocopherol (Figure 3(b)) for oils fortified with 10 % ( w / w ) 10 % ( w / w ) 10%(w//w)10 \%(w / w) CPTT for 10 min showed that after 60 days of storage, α α alpha\alpha-tocopherol content increased almost four times and the addition of UT ( 10 % w / w ) ( 10 % w / w ) (10%w//w)(10 \% w / w) increased its content (approximately three times) compared to the control sample. Furthermore, the amount of δ δ delta\delta-tocopherol in the control oil was 0.89 ( μ g mL L μ g mL L mugmL-L\mu \mathrm{g} \mathrm{mL}-\mathrm{L} oil), while its content in oils containing CPTT and UT was undetectable. Rosemary extract has been applied to promote the stability of vegetable oils, which increased their antioxidant, tocopherol, and TPC contents [23]. The study by Li et al. [24] distinguished the effect of CP treatment on pitaya fruit, which increased phenolic and antioxidant compounds in fresh cut pitaya (Hylocereus undatus) fruit. Plasma treatment of turmeric is thought to put pressure on the cell wall and membrane; therefore, it facilitates the release of bioactive compounds, especially phenolic and antioxidant compounds into the solvent. With increasing treatment time, the output rate of TPC increased [25]. Taking into account the mentioned reasons, the addition of turmeric and also increasing the treatment time could increase the TPC and antioxidant of MTSO corresponding to the addition of CPTT. Indeed, MTSO is very rich in tocopherols and polyphenols and it has been shown that these characteristics could be useful to prevent age-related diseases often associated with an important oxidative stress [26, 27]. According to the studies conducted in this research, treatment with CP can strengthen the nutritional and antioxidant benefits of MTSO in the elderly.
對於添加了 10 % ( w / w ) 10 % ( w / w ) 10%(w//w)10 \%(w / w) CPTT 的油脂,測量 α α alpha\alpha -生育酚(圖 3(b))顯示,在儲存 60 天後, α α alpha\alpha -生育酚的含量幾乎增加了四倍,並且與對照樣本相比,添加 UT ( 10 % w / w ) ( 10 % w / w ) (10%w//w)(10 \% w / w) 使其含量增加(約三倍)。此外,對照油中的 δ δ delta\delta -生育酚含量為 0.89( μ g mL L μ g mL L mugmL-L\mu \mathrm{g} \mathrm{mL}-\mathrm{L} 油),而含有 CPTT 和 UT 的油中其含量無法檢測到。迷迭香提取物已被應用於促進植物油的穩定性,這增加了它們的抗氧化劑、生育酚和 TPC 含量 [23]。Li 等人的研究 [24] 區分了 CP 處理對火龍果的影響,這增加了新鮮切割火龍果(Hylocereus undatus)中的酚類和抗氧化化合物。薑黃的等離子體處理被認為對細胞壁和膜施加壓力;因此,它促進了生物活性化合物,特別是酚類和抗氧化化合物釋放到溶劑中。隨著處理時間的增加,TPC 的產出率增加 [25]。 考慮到上述原因,添加薑黃以及延長治療時間可能會增加與 CPTT 添加相對應的 MTSO 的總酚含量和抗氧化劑。事實上,MTSO 富含生育酚和多酚,已顯示這些特性對預防與重要氧化壓力相關的年齡相關疾病是有益的[26, 27]。根據本研究進行的研究,使用 CP 治療可以增強 MTSO 在老年人中的營養和抗氧化益處。

3.3. FA Profile. The composition of FAs of MTSs specified by GC is presented in Figure 4. Seven FAs at different levels were found in MTS-extracted oils (Table 3), including pal-
3.3. FA 檔案。GC 指定的 MTSs 的 FA 組成如圖 4 所示。在 MTS 提取的油中發現了七種不同水平的 FA(表 3),包括棕櫚酸-

mitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0) as saturated FA and oleic acid (C18:1n9c), linoleic acid (C18:2n6c), linolenic acid (C18: 3n3), and arachidonic acid (C20:4n6) as unsaturated FA, were tested after 60 days of storage. The effect of adding UT to MTSO showed that the amount of saturated FAs (palmitic acid) increased but saturated FAs: stearic acid and arachidic acid, were lower than in the control sample. Also, in oils containing CPTT, the amount of saturated FA (arachidic acid) increased, while palmitic acid and stearic acid were lower than in the control sample. The results of unsaturated FA showed that the addition of UT in MTSO causes a significant increase ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) in unsaturated FAs: linoleic acid (1.48%), linolenic acid (16.9%), and arachidonic acid (5.3%), but resulted in a significant reduction ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) in oleic acid compared to the control sample. Furthermore, the addition of CPTT revealed a significant increase ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) in unsaturated FA: linoleic acid (2.5%) and arachidonic acid (40.45%) and a significant decrease ( p < 0.05 p < 0.05 p < 0.05p<0.05 ) in oleic acid and linolenic acid compared to the control sample. Comparing the effect of adding CPTT and UT revealed that the amount of unsaturated FAs: linoleic acid and arachidonic acid, in oils containing CPTT was higher, and the amount of unsaturated FAs: oleic acid and linolenic acid, in oils containing UT was high. The sums of saturated fatty acids (SFAs) (C16:0, C18:0, C20.0) shows that the oil containing turmeric untreated with CP (UT, 10%) and the oil containing CPTT ( 10 % , 10 min 10 % , 10 min 10%,10min10 \%, 10 \mathrm{~min} ) have the highest and the lowest amount SFA, respectively. Also, the highest and lowest levels of polyunsaturated fatty acids (PUFAs) (C18:2, C18:3, and C20:4) were related to the oil containing CPTT ( 10 % 10 % 10%10 \%, 10 min ) and the control sample, respectively. The obtained results also showed that the ratio of omega 6 to omega 3 FA (PUFAs n-6/PUFA sn-3) in the oil containing 10% of CPTT ( 10 % , 10 min 10 % , 10 min 10%,10-min10 \%, 10-\mathrm{min} treatment time) was the highest (Table 3). In a similar study by Eshgi et al. [28], adding the potential of natural curcumin to achieve the oxidative stability of soybean oil showed stability in unsaturated FAs; in fact, turmeric phenolic compositions hindered the oxidation of unsaturated FAs in the oil and, as a result, caused more stability of unsaturated FAs during storage.
肉豆蔻酸 (C16:0)、硬脂酸 (C18:0)、花生酸 (C20:0) 作為飽和脂肪酸,和油酸 (C18:1n9c)、亞油酸 (C18:2n6c)、亞麻酸 (C18:3n3) 及花生四烯酸 (C20:4n6) 作為不飽和脂肪酸,在儲存 60 天後進行測試。添加 UT 到 MTSO 的效果顯示,飽和脂肪酸(棕櫚酸)的量增加,但飽和脂肪酸:硬脂酸和花生酸的量低於對照樣本。此外,在含有 CPTT 的油中,飽和脂肪酸(花生酸)的量增加,而棕櫚酸和硬脂酸的量低於對照樣本。不飽和脂肪酸的結果顯示,將 UT 添加到 MTSO 中會導致不飽和脂肪酸的顯著增加( p < 0.05 p < 0.05 p < 0.05p<0.05 ),包括亞油酸 (1.48%)、亞麻酸 (16.9%) 和花生四烯酸 (5.3%),但與對照樣本相比,油酸的量顯著減少( p < 0.05 p < 0.05 p < 0.05p<0.05 )。此外,添加 CPTT 顯示不飽和脂肪酸的顯著增加( p < 0.05 p < 0.05 p < 0.05p<0.05 ),包括亞油酸 (2.5%) 和花生四烯酸 (40.45%),並且與對照樣本相比,油酸和亞麻酸的量顯著減少( p < 0.05 p < 0.05 p < 0.05p<0.05 )。 比較添加 CPTT 和 UT 的效果顯示,含有 CPTT 的油中不飽和脂肪酸:亞油酸和花生四烯酸的含量較高,而含有 UT 的油中不飽和脂肪酸:油酸和亞麻酸的含量較高。飽和脂肪酸(SFAs)(C16:0, C18:0, C20.0)的總和顯示,未經 CP 處理的薑黃油(UT,10%)和含有 CPTT 的油( 10 % , 10 min 10 % , 10 min 10%,10min10 \%, 10 \mathrm{~min} )的 SFA 含量分別最高和最低。此外,聚不飽和脂肪酸(PUFAs)(C18:2, C18:3 和 C20:4)的最高和最低水平分別與含有 CPTT 的油( 10 % 10 % 10%10 \% ,10 分鐘)和對照樣品相關。獲得的結果還顯示,含有 10% CPTT 的油中 omega 6 與 omega 3 脂肪酸(PUFAs n-6/PUFA sn-3)的比率是最高的(表 3)。在 Eshgi 等人的類似研究中[28],添加天然薑黃素的潛力以實現大豆油的氧化穩定性顯示出不飽和脂肪酸的穩定性;事實上,薑黃酚類成分阻礙了油中不飽和脂肪酸的氧化,從而在儲存期間導致不飽和脂肪酸的更高穩定性。

4. Conclusions  4. 結論

The results of this study revealed that CP treatment improved turmeric performance in MTSO. Furthermore, the results indicated that the addition of CP-treated turmeric significantly ( p < 0.05 ) ( p < 0.05 ) (p < 0.05)(p<0.05) decreased the AV ( 1.00 0.62 mg ( 1.00 0.62 mg (1.00-0.62mg(1.00-0.62 \mathrm{mg} NaOH / g NaOH / g NaOH//g\mathrm{NaOH} / \mathrm{g} oil) and the PV ( 4.47 3.65 mEq O 2 / kg PV 4.47 3.65 mEq O 2 / kg PV(4.47-3.65mEqO_(2)//kg:}\mathrm{PV}\left(4.47-3.65 \mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg}\right. oil) and also increased the TPC (1003.23-1116.90 mg/GAE/100g oil), antioxidant activity, α α alpha\alpha-tocopherol, and finally oxidative stability (Rancimat) compared to the control sample and oil containing UT. Evaluation by GC analysis of the oil sample of the FA profile containing CP-treated turmeric ( 10 % w / w 10 % w / w 10%w//w10 \% w / w and 10 min ) revealed the higher ratio of unsaturated FAs (i.e., linoleic and arachidonic acid) and lower ratio of saturated FAs (i.e., palmitic and stearic acids) compared to the control sample and the oil samples containing UT. To conclude, CP treatment increased turmeric performance and improved the quality characteristics of MTSO.
這項研究的結果顯示,CP 處理改善了薑黃在 MTSO 中的表現。此外,結果表明,添加 CP 處理的薑黃顯著 ( p < 0.05 ) ( p < 0.05 ) (p < 0.05)(p<0.05) 降低了 AV ( 1.00 0.62 mg ( 1.00 0.62 mg (1.00-0.62mg(1.00-0.62 \mathrm{mg} NaOH / g NaOH / g NaOH//g\mathrm{NaOH} / \mathrm{g} 油和 PV ( 4.47 3.65 mEq O 2 / kg PV 4.47 3.65 mEq O 2 / kg PV(4.47-3.65mEqO_(2)//kg:}\mathrm{PV}\left(4.47-3.65 \mathrm{mEq} \mathrm{O}_{2} / \mathrm{kg}\right. 油,並且還增加了 TPC(1003.23-1116.90 mg/GAE/100g 油)、抗氧化活性、 α α alpha\alpha -生育酚,最後與對照樣本和含有 UT 的油相比,氧化穩定性(Rancimat)也有所提高。通過 GC 分析含有 CP 處理薑黃的油樣本的 FA 譜,顯示不飽和脂肪酸(即亞油酸和花生四烯酸)的比例較高,而飽和脂肪酸(即棕櫚酸和硬脂酸)的比例較低,與對照樣本和含有 UT 的油樣本相比。總之,CP 處理提高了薑黃的表現,改善了 MTSO 的質量特徵。

Data Availability Statement
數據可用性聲明

Data are contained within the article.
數據包含在文章中。

Conflicts of Interest  利益衝突

The authors declare no conflicts of interest.
作者聲明沒有利益衝突。

Funding  資金

This project was financed by the University of Mohaghegh Ardabili (UMA).
本項目由莫哈基赫·阿爾達比利大學(UMA)資助。

Acknowledgments  致謝

This study was financed by the University of Mohaghegh Ardabili.
本研究由莫哈基赫·阿爾達比利大學資助。

References  參考文獻

[1] G. N. Mezza, A. V. Borgarello, N. R. Grosso, H. Fernandez, M. C. Pramparo, and M. F. Gayol, “Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil,” Food Chemistry, vol. 242, pp. 9-15, 2018.
[1] G. N. Mezza, A. V. Borgarello, N. R. Grosso, H. Fernandez, M. C. Pramparo, 和 M. F. Gayol, “通過分子蒸餾獲得的迷迭香精油分餾物的抗氧化活性及其對葵花油氧化穩定性的影響,” 食品化學, 第 242 卷, 頁 9-15, 2018.

[2] M. Dolati, K. Rezaei, Z. P. Vanak, and S. Movahed, “Study of the effects of essential oils of cumin, savory and cardamom as natural antioxidants on the flavor and oxidative stability of soybean oil during the storage,” Journal of Essential Oil Bearing Plants, vol. 19, no. 1, pp. 176-184, 2016.
[2] M. Dolati, K. Rezaei, Z. P. Vanak, and S. Movahed, “研究孜然、香草和豆蔻精油作為天然抗氧化劑對大豆油在儲存期間的風味和氧化穩定性的影響,”《精油植物期刊》,第 19 卷,第 1 期,頁 176-184,2016 年。

[3] J. Pepping, “Milk thistle: Silybum marianum,” American Journal of Health-System Pharmacy, vol. 56, no. 12, pp. 1195-1197, 1999.
[3] J. Pepping, “奶薊:Silybum marianum,” 美國健康系統藥學期刊, 第 56 卷, 第 12 期, 頁 1195-1197, 1999.

[4] B. Fathi-Achachlouei and S. Azadmard-Damirchi, “Milk thistle seed oil constituents from different varieties grown in Iran,” Journal of the American Oil Chemists’ Society, vol. 86, no. 7, pp. 643-649, 2009.
[4] B. Fathi-Achachlouei 和 S. Azadmard-Damirchi,“來自伊朗不同品種的奶薊種子油成分,”美國油脂化學家學會期刊,第 86 卷,第 7 期,頁 643-649,2009。

[5] A. Zarrouk, L. Martine, S. Grégoire et al., “Profile of fatty acids, tocopherols, phytosterols and polyphenols in Mediterranean oils (argan oils, olive oils, milk thistle seed oils and nigella seed oil) and evaluation of their antioxidant and cytoprotective
[5] A. Zarrouk, L. Martine, S. Grégoire 等,“地中海油脂(阿甘油、橄欖油、奶薊種子油和黑種草油)中的脂肪酸、維生素 E、植物甾醇和多酚的特徵及其抗氧化和細胞保護作用的評估”

activities,” Current Pharmaceutical Design, vol. 25, no. 15, pp. 1791-1805, 2019.
[6] B. Fathi-Achachlouei, S. Azadmard-Damirchi, Y. Zahedi, and R. Shaddel, “Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed,” Industrial Crops and Products, vol. 128, pp. 527-533, 2019.
[6] B. Fathi-Achachlouei, S. Azadmard-Damirchi, Y. Zahedi, 和 R. Shaddel, “微波預處理作為增加營養保健品含量和從奶薊種子中提取油的產量的有前景策略,” 工業作物與產品, 第 128 卷, 頁 527-533, 2019.

[7] M. M. Majidi, F. Shafiei-Koij, F. Pirnajmedin, M. Jami, and A. Radan, “Fatty acid profile, silymarin content and production properties of milk thistle,” Crop & Pasture Science, vol. 72, no. 4, pp. 302-310, 2021.
[7] M. M. Majidi, F. Shafiei-Koij, F. Pirnajmedin, M. Jami, 和 A. Radan, “奶薊的脂肪酸組成、奶薊素含量及生產特性,” 作物與牧草科學, 第 72 卷, 第 4 期, 頁 302-310, 2021.

[8] D. Kuttigounder, J. R. Lingamallu, and S. Bhattacharya, “Turmeric powder and starch: selected physical, physicochemical, and microstructural properties,” Journal of Food Science, vol. 76, no. 9, pp. C1284-C1291, 2011.
[8] D. Kuttigounder, J. R. Lingamallu, 和 S. Bhattacharya, “薑黃粉和澱粉:選定的物理、物理化學和微觀結構特性,” 食品科學期刊, 第 76 卷, 第 9 期, 頁 C1284-C1291, 2011.

[9] K. Y. Lee, K. Gul, A. N. Kim et al., “Impact of supercritical carbon dioxide turmeric extract on the oxidative stability of perilla oil,” International Journal of Food Science and Technology, vol. 55, no. 1, pp. 183-191, 2020.
[9] K. Y. Lee, K. Gul, A. N. Kim 等人,“超臨界二氧化碳薑黃提取物對紫蘇油氧化穩定性的影響,”國際食品科學與技術期刊,第 55 卷,第 1 期,頁 183-191,2020。

[10] F. Tinello and A. Lante, “Accelerated storage conditions effect on ginger- and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT,” L W T L W T LWTL W T, vol. 131, article 109797, 2020.
[10] F. Tinello 和 A. Lante, “加速儲存條件對姜和薑黃強化大豆油的影響,並比較合成抗氧化劑 BHT,” L W T L W T LWTL W T , 第 131 卷, 文章 109797, 2020.

[11] C. Gros, J. L. Lanoisellé, and E. Vorobiev, “Aqueous extraction and separation of linseed press-cake components enhanced by high voltage electrical discharges,” in 9th World Filtration Congress, 2004, New Orleans, United States, 2004.
[11] C. Gros, J. L. Lanoisellé, 和 E. Vorobiev,“通過高電壓電放電增強亞麻籽壓餅成分的水提取和分離,”在第九屆世界過濾大會,2004 年,美國新奧爾良,2004 年。

[12] N. Boussetta and E. Vorobiev, “Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review,” Comptes Rendus Chimie, vol. 17, no. 3, pp. 197-203, 2014.
[12] N. Boussetta 和 E. Vorobiev, “高壓電放電輔助提取有價值的生物化合物:綜述,” Comptes Rendus Chimie, 第 17 卷, 第 3 期, 頁 197-203, 2014.

[13] V. Hemmati, F. Garavand, M. Goudarzi, Z. Sarlak, I. Cacciotti, and B. K. Tiwari, “Cold atmospheric-pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses,” International Journal of Food Science and Technology, vol. 56, no. 5, pp. 2224-2232, 2021.
[13] V. Hemmati, F. Garavand, M. Goudarzi, Z. Sarlak, I. Cacciotti, 和 B. K. Tiwari, “冷大氣壓等離子體處理薑黃粉:微生物負荷、精油特徵、生物活性和微觀結構分析,”國際食品科學與技術期刊,第 56 卷,第 5 期,頁 2224-2232,2021。

[14] K. Y. Lee, M. S. Rahman, A. N. Kim et al., “Quality characteristics and storage stability of low-fat tofu prepared with defatted soy flours treated by supercritical-CO2 and hexane,” LWT, vol. 100, pp. 237-243, 2019.
[14] K. Y. Lee, M. S. Rahman, A. N. Kim 等人,“用超臨界二氧化碳和己烷處理的脫脂大豆粉製作的低脂豆腐的質量特徵和儲存穩定性,”LWT,第 100 卷,第 237-243 頁,2019 年。

[15] J. Aricetti and M. A. Tubino, “A visual titration method for the determination of the acid number of oils and fats: a green alternative,” Journal of the American Oil Chemists’ Society, vol. 89, no. 11, pp. 2113-2115, 2012.
[15] J. Aricetti 和 M. A. Tubino,“一種用於測定油脂酸值的視覺滴定法:一種綠色替代方案,”美國油脂化學家學會期刊,第 89 卷,第 11 期,頁 2113-2115,2012。

[16] T. D. Crowe and P. J. White, “Adaptation of the AOCS official method for measuring hydroperoxides from small-scale oil samples,” Journal of the American Oil Chemists’ Society, vol. 78, no. 12, pp. 1267-1269, 2001.
[16] T. D. Crowe 和 P. J. White,“小規模油樣中過氧化物測量的 AOCS 官方方法的適應”,美國油脂化學家學會期刊,第 78 卷,第 12 期,頁 1267-1269,2001。

[17] E. Sneha, V. Sarath, S. Rani, and K. Bindu Kumar, “Effect of turmeric oil and halloysite nano clay as anti-oxidant and anti-wear additives in rice bran oil,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 235, no. 6, pp. 1085-1092, 2021.
[17] E. Sneha, V. Sarath, S. Rani, 和 K. Bindu Kumar,“薑黃油和高嶺土納米粘土作為米糠油中的抗氧化劑和抗磨損添加劑的效果,”機械工程師學會會議錄,J 部分:工程摩擦學期刊,第 235 卷,第 6 期,頁 1085-1092,2021 年。

[18] F. Shahidi and P. Ambigaipalan, “Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects-a review,” Journal of Functional Foods, vol. 18, pp. 820897, 2015.
[18] F. Shahidi 和 P. Ambigaipalan, “食品、飲料和香料中的酚類和多酚類:抗氧化活性和健康影響的綜述,” 功能食品期刊, 第 18 卷, 頁 820897, 2015。

[19] G. P. Savage, D. L. Mcneil, and P. C. Dutta, “Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in New Zealand,” Journal of the American Oil Chemists’ Society, vol. 74, no. 6, pp. 755-759, 1997.
[19] G. P. Savage, D. L. Mcneil, 和 P. C. Dutta, “在新西蘭種植的榛子 (Corylus avellana L.) 中油脂成分和氧化穩定性,” 美國油脂化學家學會期刊, 第 74 卷, 第 6 期, 頁 755-759, 1997.

[20] M. Naderi, M. Torbati, S. Azadmard-Damirchi, S. Asnaashari, and G. P. Savage, “Common ash (Fraxinus excelsior L.) seeds as a new vegetable oil source,” L W T L W T LWTL W T, vol. 131, article 109811, 2020.
[20] M. Naderi, M. Torbati, S. Azadmard-Damirchi, S. Asnaashari, 和 G. P. Savage, “普通梣(Fraxinus excelsior L.)種子作為一種新的植物油來源,” L W T L W T LWTL W T , vol. 131, article 109811, 2020.

[21] R. Farhoosh, R. Niazmand, M. Rezaei, and M. Sarabi, “Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions,” European Journal of Lipid Science and Technology, vol. 110, no. 6, pp. 587-592, 2008.
[21] R. Farhoosh, R. Niazmand, M. Rezaei, 和 M. Sarabi, “在 Rancimat 測試條件下植物油氧化的動力學參數確定,” 歐洲脂質科學與技術期刊, 第 110 卷, 第 6 期, 頁 587-592, 2008.

[22] W. Meddeb, L. Rezig, M. Abderrabba, G. Lizard, and M. Mejri, “Tunisian milk thistle: an investigation of the chemical composition and the characterization of its cold-pressed seed oils,” International Journal of Molecular Sciences, vol. 18, no. 12, p. 2582, 2017.
[22] W. Meddeb, L. Rezig, M. Abderrabba, G. Lizard, 和 M. Mejri, “突尼西亞乳薊:化學成分及其冷壓種子油的特徵研究,” 國際分子科學期刊, 第 18 卷, 第 12 期, 頁 2582, 2017.

[23] Y. Yang, X. Song, X. Sui et al., “Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability,” Industrial Crops and Products, vol. 80, pp. 141-147, 2016.
[23] Y. Yang, X. Song, X. Sui et al., “迷迭香提取物可用作合成抗氧化劑以改善植物油的氧化穩定性,” 工業作物與產品,卷 80,頁 141-147,2016。

[24] X. Li, M. Li, N. Ji et al., “Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in freshcut pitaya (Hylocereus undatus) fruit,” LWT, vol. 115, article 108447, 2019.
[24] X. Li, M. Li, N. Ji et al., “冷等離子體處理促進新鮮切割火龍果(Hylocereus undatus)中的酚類積累並增強抗氧化活性,” LWT, vol. 115, article 108447, 2019.

[25] O. Rodríguez, W. F. Gomes, S. Rodrigues, and F. A. Fernandes, “Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.),” LWT, vol. 84, pp. 457-463, 2017.
[25] O. Rodríguez, W. F. Gomes, S. Rodrigues, 和 F. A. Fernandes, “間接冷等離子體處理對腰果蘋果汁(Anacardium occidentale L.)的影響,” LWT, 第 84 卷, 頁 457-463, 2017.

[26] W. Meddeb, L. Rezig, A. Zarrouk et al., “Cytoprotective activities of milk thistle seed oil used in traditional Tunisian medicine on 7 -ketocholesterol and 24S-hydroxycholesterolinduced toxicity on 158 N murine oligodendrocytes,” Antioxidants (Basel), vol. 7, no. 7, p. 95, 2018.
[26] W. Meddeb, L. Rezig, A. Zarrouk et al., “傳統突尼西亞醫學中使用的奶薊種子油對 7-酮膽固醇和 24S-羥膽固醇誘導的毒性在 158 N 小鼠寡突膠質細胞中的細胞保護活性,” Antioxidants (Basel), vol. 7, no. 7, p. 95, 2018.

[27] S. Maaloul, I. Ghzaiel, M. Mahmoudi et al., “Characterization of Silybum marianum and Silybum eburneum seed oils: phytochemical profiles and antioxidant properties supporting important nutritional interests,” PLoS One, vol. 19, no. 6, article e0304021, 2024.
[27] S. Maaloul, I. Ghzaiel, M. Mahmoudi 等人,“對乳薊(Silybum marianum)和白乳薊(Silybum eburneum)種子油的特徵描述:植物化學特徵和抗氧化特性支持重要的營養利益,”PLoS One,第 19 卷,第 6 期,文章編號 e0304021,2024 年。

[28] N. Eshghi, M. Asnaashari, M. H. Haddad Khodaparast, and F. Hosseini, “Evaluating the potential of natural curcumin for oxidative stability of soybean oil,” Natural Product Research, vol. 28, no. 17, pp. 1375-1378, 2014.
[28] N. Eshghi, M. Asnaashari, M. H. Haddad Khodaparast, 和 F. Hosseini, “評估天然薑黃素對大豆油氧化穩定性的潛力,” 自然產品研究, 第 28 卷, 第 17 期, 頁 1375-1378, 2014.