这是用户在 2024-12-29 15:12 为 https://pubs.acs.org/doi/full/10.1021/acs.jpcc.4c04201 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?














ACS Publications. Most Trusted. Most Cited. Most Read
Temperature- and Pressure-Dependent Photoluminescence Emission of Bulk GaSe0.5Te0.5 Alloy

Figure 1Loading Img
  • Open Access
C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials

Temperature- and Pressure-Dependent Photoluminescence Emission of Bulk GaSe0.5Te0.5 Alloy
GaSe_(0.5)Te_(0.5)合金块体材料的光致发光随温度和压力的变化
Click to copy article link
单击以复制文章链接
Article link copied!

Open PDF

The Journal of Physical Chemistry C

Cite this: J. Phys. Chem. C 2024, 128, 36, 15062–15069
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpcc.4c04201
Published August 30, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

340

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Abstract  摘要

Click to copy section link
单击此处可复制分区链接
Section link copied!

In this study, we conduct a comprehensive investigation into the temperature and pressure dependencies of photoluminescence (PL) in a bulk GaSe0.5Te0.5 alloy. By using density functional theory (DFT) calculations and experimental measurements, we identify and distinguish the contributions of free excitons and indirect transitions to the PL spectrum. Our analysis reveals a nonlinear redshift for these transitions over the temperature range of 90–667 K, evolving in accord with the modified Varshni equation. We observe a pronounced influence of electron–phonon coupling in the GaSe0.5Te0.5 alloy compared to that of GaTe and GaSe crystal structures. Below 180 K, we detect the emergence of new broad bands associated with bound excitons and radiative recombination of trap states. Furthermore, by employing the Arrhenius plots, we determine activation energies for nonradiative recombination of the indirect and free exciton transitions. Concerning the pressure dependence of the PL spectra, the free exciton and indirect transitions undergo a linear redshift within the specific pressure range of 0.3 to 4.3 GPa, accompanied by a continuous reduction in PL intensity, leading to complete quenching at 4.8 GPa. This phenomenon is attributed to a direct-to-indirect band gap crossover. Pressure-dependent band structure calculation via DFT supports this assumption and shows a further metallization of the GaSe0.5Te0.5 alloy at ∼8.0 GPa. This study sheds new light on understanding the optical properties of the GaSe0.5Te0.5 alloy under extreme pressure and temperature conditions, thereby opening avenues for tailored applications and guiding future research efforts in this field.
在这项研究中,我们进行了全面的调查的光致发光(PL)的温度和压力的依赖关系在大块GaSe0.5 Te0.5合金。通过密度泛函理论(DFT)计算和实验测量,我们确定和区分的自由激子和间接跃迁的PL谱的贡献。我们的分析揭示了在90-667 K的温度范围内,这些转变的非线性红移,在雅阁修改的Varshni方程。我们观察到一个显着的影响,电子-声子耦合在GaSe0.5 Te0.5合金相比,GaTe和GaSe晶体结构。低于180 K,我们检测到与束缚激子和陷阱态的辐射复合相关的新宽带的出现。 此外,通过采用阿留申图,我们确定的非辐射复合的间接和自由激子跃迁的激活能。关于压力的PL光谱的依赖性,自由激子和间接跃迁进行线性红移的特定压力范围内的0.3至4.3 GPa,伴随着连续减少的PL强度,导致在4.8 GPa完全淬火。这种现象归因于直接到间接的带隙交叉。通过DFT的压力相关的能带结构计算支持这一假设,并显示了进一步的金属化的GaSe0.5 Te0.5合金在10.8.0 GPa。这项研究揭示了在极端压力和温度条件下理解GaSe0.5Te0.5合金的光学特性的新途径,从而为定制应用开辟了途径,并指导了该领域未来的研究工作。

This publication is licensed under
本出版物的许可

CC-BY 4.0 .
CC-BY 4.0版本 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society
版权所有© 2024作者。美国化学学会出版

Introduction  介绍

Click to copy section link
单击此处可复制分区链接
Section link copied!

The advent of two-dimensional (2D) semiconducting materials has led to several innovations in the field of nanoelectronics, providing unique properties and functionalities that are fundamental for technological applications, including field-effect transistors, optoelectronic and photovoltaic devices. (1−3)
二维(2D)半导体材料的出现引发了纳米电子领域的多项创新,提供了独特的特性和功能,这些特性和功能是场效应晶体管、光电子和光伏器件等技术应用的基础。(1 - 3)
Transition metal monochalcogenides form an important class of 2D materials with the standard chemical formula MX (M = In, Ga, Sn, and X = S, Se, Te). In general, these materials are layer-structured compounds where the two bonded M atoms are sandwiched between two X atoms to form the “X–M–M–X” structure. (4−6) Moreover, this family of materials exhibits a direct band gap in the bulk and few-layer systems, however, the band gap suffers a direct-to-indirect transition for flakes thinner than five layers. (7−10) Bulk GaSe has an indirect band gap of 2.1 eV, (11) which is largely applied in nonlinear optical systems. (12,13) In contrast, GaTe is known to present a direct band gap of 1.65 eV, (14) turning on a promising candidate for optoelectronic devices once it has a stronger absorbance than GaSe. (15,16)
过渡金属单硫族化物形成具有标准化学式MX(M = In、Ga、Sn,并且X = S、Se、Te)的一类重要的2D材料。通常,这些材料是层状结构的化合物,其中两个键合的M原子夹在两个X原子之间以形成“X-M-M-X”结构。(4−6)此外,这类材料在大块和少层系统中表现出直接带隙,然而,对于薄于五层的薄片,带隙经历了直接到间接的转变。(7 - 10)体GaSe具有2.1eV的间接带隙,(11)其大量应用于非线性光学系统。(12,13)相比之下,已知GaTe呈现1.65 eV的直接带隙,(14)一旦其具有比GaSe更强的吸收,则开启光电器件的有希望的候选者。(15,16)
In the past decade, 2D semiconductor alloys have received significant attention due to their tunable electronic and optical properties. (17−23) A plethora of these materials have been synthesized and investigated by changing different chalcogens, such as MoS2xSe2–2x, WS2xSe2–2x, or transition metals like MoxW1–xS2 as well, MoxW1–xSe2. (24−26)
在过去的十年中,二维半导体合金由于其可调的电子和光学性质而受到极大的关注。(17−23)通过改变不同的硫族元素,如MoS2x Se2-2x,WS2x Se2 -2x,或过渡金属如Mox W1-x S2,Mox W1-x Se2,已经合成和研究了大量的这些材料。(24 - 26)
For the alloy GaSe1–xTex, Hui Cai et al. (27) observed an instability region (0.56 < x < 0.67) where two phases (hexagonal and monoclinic) compete and coexist, resulting in two distinct band gap values. This phenomenon leads to anomalous band-bowing effects at nanoscales. Conversely, for Se-rich compositions (x < 0.57), the GaSe1–xTex predominantly exhibits the hexagonal phase akin to GaSe, while for Te-rich compositions (x > 0.57), the sample assumes a monoclinic structure reminiscent of GaTe. (28) Moreover, multilayer GaSe0.5Te0.5 adopts a hexagonal symmetry and undergoes a noncentrosymmetric AB stacking with a direct band gap, which decreases with an increasing number of layers. (29) This characteristic has facilitated the fabrication of high-performance photodetectors with rapid response times, exceptional stability, and high responsivity in both air and vacuum environments. (30)
对于合金GaSe1-x Tex,Hui Cai等人(27)观察到一个不稳定区域(0.56 <x< 0.67),其中两相(六方和单斜)竞争和共存,导致两个不同的带隙值。这一现象导致了纳米尺度的反常能带弯曲效应。相反,对于富Se的组合物(x< 0.57),GaSe1-x Tex主要表现出类似于GaSe的六方相,而对于富Te的组合物(x> 0.57),样品呈现令人联想到GaTe的单斜结构。(28)此外,多层GaSe0.5Te0.5采用六角对称,并经历具有直接带隙的非中心对称AB堆叠,其随着层数的增加而减小。 (29)这一特性促进了高性能光电探测器的制造,这些光电探测器具有快速响应时间、优异的稳定性以及在空气和真空环境中的高响应度。 (三十)
Photoluminescence (PL) spectroscopy represents a powerful and nondestructive technique for investigating the physical properties of materials, encompassing band structures, (31) excitonic states, (32) doping effects, (33) as well as relaxation and recombination mechanisms, (34−36) even under extreme pressure and temperature conditions. (37−39) Besides, pressure and temperature can work as fine-tuning parameters of the band structure, yielding new optical transitions and resonating new scattering channels. (40,41) Regarding the GaSe0.5Te0.5 alloy, only a few studies reported its PL properties, although under ambient conditions. (27,28) However, exploration of its behavior under extreme thermodynamic conditions remains absent, to the best of our knowledge.
In this work, we report a PL study of the bulk GaSe0.5Te0.5 alloy aiming to shed light on the origin of the PL band and its dependence on temperature and pressure. By using density functional theory (DFT) calculation, we elucidate the PL spectrum of the alloy. It is composed of two components, which are attributed to the free excitons and indirect transitions. These features exhibit a nonlinear redshift as the temperature increases from 90 to 667 K and evolves in accord with the modified Varshni equation. Below 180 K new broad bands appear on the low-energy side of the free exciton peak, being attributed to bound excitons and radiative recombination of trap states. In addition, the temperature dependence of the PL intensity is modeled with the Arrhenius plot. The effect of hydrostatic pressure on the GaSe0.5Te0.5 PL spectra is explored, revealing a linear redshift of the free exciton and indirect transitions within the pressure range of 0.3–4.3 GPa. Besides, the PL intensity is continuously reduced up to a complete quenching at 4.8 GPa, which is attributed to a transition from direct-to-indirect band gaps. Our experimental findings are corroborated by theoretical calculations.

Methodology

Click to copy section linkSection link copied!

Sample and Experimental Setup

GaSe0.5Te0.5 crystal was acquired from a 2D semiconductors company. The purity of the crystal was estimated by the supplier as larger than 99%. The sample was subsequently cleaved into small fragments for loading into both pressure and temperature chambers.
High-pressure and temperature PL spectroscopy experiments were carried out using a LabRAMHR Evol Spectrometer equipped with a laser excitation energy of 2.41 eV. The laser power was set to 0.55 mW at the lens outlet to improve the signal-to-noise ratio and to ensure that no damage was done to the sample. The laser beam was focused onto the sample surface by using a 20× objective lens with a numerical aperture of 0.25. Subsequently, the signal was dispersed by a grating with a density of 600 grooves/mm, thus resulting in a spectral resolution of ±0.18 meV.
A membrane-driven diamond anvil cell with a culet size of ∼500 μm was used to reach high pressure. The sample and small ruby spheres were simultaneously loaded into a cylindrical pressure chamber with a hole size of ∼150 μm, previously drilled in a preindented stainless-steel gasket, and positioned between the diamond anvils. Nujol, a type of paraffin oil, was used as the pressure-transmitting medium, while the pressure within the chamber was determined using the standard ruby luminescence R1 line method.
Low-temperature PL spectroscopy experiments were performed utilizing a THMS600 nitrogen-cooled temperature and environmental control system, spanning temperatures from 318 to 90 K, with a 5 min interval provided for thermal stabilization. High-temperature measurements were carried out using a Linkam thermal stage CCR1000 system, encompassing temperatures from 318 to 667 K. A nitrogen atmosphere was employed to preserve the sample against thermal oxidation at elevated temperatures.

Theoretical Methods

The electronic structure of the systems considered in this paper has been calculated according to DFT. (42,43) We chose the Quantum Espresso suite (44,45) as the platform for DFT implementation. The outermost electronic wave functions are represented as plane waves, with a cutoff energy set at 545.0 eV, within a supercell where a Monkhorst–Pack sampling (46) of 8 × 4 × 2 was applied. Moreover, the contribution of core electrons to the total energy was considered using the pseudopotential technique (47) as proposed by the Bachelet–Hamann–Schlüeter model. As known from the literature, (48) the localized density approximation (LDA) yields better results for this type of system, especially for vibrational properties, compared to the generalized gradient approximation. Thus, we present the LDA results throughout the main text. In agreement with the work of Longuinhos and Ribeiro-Soares and our previous work, (48,49) the Perdew and Zunger version of LDA suited the GaSeTe system better. The lattice vectors, as well as the atomic positions, were relaxed following the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, (50) until the forces were below 10–5 Ry/Bohr.

Results and Discussion

Click to copy section linkSection link copied!

In order to be consistent with our previous work (49) and for the sake of computational savings, we have applied the same approach considered in ref (49). Despite the change of unitary cell shape, the structural results were the same as those related earlier. Figure 1a depicts the side view (upper panel) of the relaxed bulk, which contains two single layers stacked in AA form. The bottom panel shows the upper view of the GaSe0.5Te0.5 lattice, accompanied by a schematic representation of the lattice vectors. Herein, the lattice parameters are defined as a = 3.85, b = 6.64, and c = 16.16 Å. The black spheres represent the Ga atom, while the yellow and red spheres represent the Se and Te atoms, respectively.

Figure 1

Figure 1. (a) Side- and top-view schematics of the AA stacking geometry for bulk GaSe0.5Te0.5. The primitive cell is depicted along with in-plane primitive vectors a⃗ and b⃗. (b) PL spectrum of bulk GaSe0.5Te0.5 showing both direct (red trace) and indirect (blue trace) transitions, as detailed in the corresponding band structure diagram in (c).

At ambient conditions, bulk GaSe has an indirect band gap of 1.99 eV and a direct transition of 2.02 eV. (11) In contrast, bulk GaTe has a relatively small direct band gap of 1.6 eV and exhibits high excitonic absorption even at room temperature. (14) The alloy GaSe0.5Te0.5 presents an asymmetric band in the PL spectrum under ambient conditions, as depicted in Figure 1b. This PL spectrum can be accurately modeled with two Voigt components centered at 1.87 (red) and 1.89 eV (blue trace).
To elucidate the origin of this PL band, we conducted band structure calculations for bulk GaSe0.5Te0.5 using the LDA functional, despite its known drawbacks related to the band gap value. As mentioned before, we decided to follow this path to be consistent with previously published works by our group. Furthermore, as will be shown in this paper, this model is suited in good agreement to our experimental findings, once, LDA can capture the physics behind the band structure except for the absolute value of the band gap, along with a better description of structural properties of this kind of system. (49) The resulting plot of the first Brillouin zone along selected directions is illustrated in Figure 1c. In the calculated band structure, the direct band gap of bulk GaSe0.5Te0.5 (labeled as D and marked with a red arrow) arises from the transition at the Γ point, from the top of the valence band to the bottom of the conduction band. Additionally, two indirect transitions are noticeable: one from the maximum of the valence band at the Γ point to the minimum of the conduction band at the high symmetry point Q (labeled as IQ and marked with a blue arrow), and another halfway between Γ and X points (labeled as IX and marked with a black arrow). The energy differences between the indirect–direct transitions are EIQED = 82 meV and EIXED = 336 meV. In a first approximation, let us consider the binding energy of a free exciton in GaSe0.5Te0.5 to be equal to that of GaSe (∼20 meV, as reported in ref (11)). Consequently, the emission energy of the free exciton should lie approximately 316 meV below the energy of the indirect transition IX and 62 meV below that of IQ. The latter is closer to the energy difference between the two PL peaks (20 meV). Therefore, we attribute the higher energy component of the PL spectrum to the phonon-assisted indirect transition IQ, while the lower energy band corresponds to the emission of the free exciton at the Γ point.
The temperature-dependent PL spectra of bulk GaSe0.5Te0.5 are depicted in Figure 2a. Within the temperature range of 90–667 K (180–667 K), the free exciton (IQ transition) exhibits a redshift as the temperature increases. Below 180 K, the peak associated with the indirect transition is no longer observed, while the free exciton remains detectable until 90 K. The absence of the IQ peak at low temperatures is consistent with the behavior expected for an indirect transition, thus supporting our previous hypotheses. Additionally, new broad bands appear on the low-energy side of the D peak below 180 K. A similar result was observed by Chengrong Wei et al. (21) in thin slabs of GaSe at around 140 K, which was attributed to bound excitons and radiative recombination of trap states. Hence, we follow the same assumption for the new bands at low temperatures as Chengrong Wei et al.

Figure 2

Figure 2. (a) PL spectra of GaSe0.5Te0.5 at various temperatures. (b) Temperature dependence of the D (red circles) and IQ (blue squares) energies. The solid red lines depict fits to experimental data using eq 1. Intensities of bands D (c) and IQ (d) as a function of 1/T. The solid lines show fits to the data using eq 2.

Figure 2b shows the temperature dependence of both free exciton (red circle) and IQ (blue square) energy transitions. To fit the experimental data set, we utilize the modified Varshni equation (51):
Eg(T)=Eg(0)Sω[coth(ω2kbT)1]
(1)
Here, Eg(0) represents the energy of the free exciton (or EIQ(0)) at 0 K, kb denotes the Boltzmann constant, S stands for the dimensionless electron–phonon coupling constant, and ⟨ω⟩ denotes the average energy of phonons participating in the electron–phonon interaction. From the fitting procedure, we obtained EgD(0) = 1.91 eV, SD = 3.92, and ⟨ω⟩D = 61 meV for the free exciton. Similarly, for the indirect transition, we obtained EIQ(0) = 1.92 eV, SI = 3.04, and ⟨ω⟩I = 68 meV. Our findings reveal a pronounced electron–phonon coupling in GaSe0.5Te0.5 in contrast to H-GaTe (S = 0.7), M-GaTe (S = 0.8), and GaSe (S = 0.3) crystals. (52,53) The high S value for GaSe0.5Te0.5 can be attributed to the temperature achieved in our experiment compared to those in refs (52,53). For GaSe and GaTe, the maximum temperature attained was 300 K, which is near the Debye temperature of these systems (ΘGaTe = 256 K (54) and ΘGaSe = 342 K (55)). In contrast, the maximum temperature reached in our experiment is 667 K, much higher than the ΘGaSe0.5Te0.5 = 190 K. (49) Therefore, since the phonon population is higher in our experiment, it is expected that a high electron–phonon coupling parameter is necessary to accurately model the experimental data for GaSe0.5Te0.5. Additionally, the average phonon energy values obtained from the fitting procedure closely align with the energy difference between free exciton emission and IQ transition (i.e., phonon energy involved in the indirect transition).
The quenching of the PL spectra as the temperature increases can be attributed to both thermally induced depopulation of excitonic states and the emergence of nonradiative recombination centers activated under such conditions. In this way, by fitting the integrated PL intensity with an Arrhenius plot, one can determine the activation energies of the processes involved. Figure 2c,d shows the temperature dependence of the free exciton and IQ intensities as a function of 1/T. The data can be well-fitted using the following model (37,56,57):
I(1/T)=I01+Ae(E1T/Kb)
(2)
where I0 is the PL intensity at T = 0 K, kB is the Boltzmann constant, A is related to the ratio of the nonradiative to radiative transitions lifetime of carriers, and E1 describes the activation energy for nonradiative recombination. (57,58) From the fitting procedure, the resulting parameters are E1D = 49 meV and AD = 0.63 for the free exciton, while for the indirect transition E1IQ = 30 meV and AIQ = 0.69.
We also studied the effect of hydrostatic pressure on the PL spectra of bulk GaSe0.5Te0.5. Figure 3a shows the pressure dependence of PL spectra in the pressure range of 0.3 to 4.8 GPa. As the pressure increases, both the free exciton (red circle) and IQ (blue square) energies exhibit a linear redshift with approximately the same pressure coefficients (dE/dP) = −0.082 eV/GPa, as shown in Figure 3b. At the same time, their intensities are continuously reduced up to complete disappearance at 4.8 GPa. A similar pressure-induced PL quenching has been observed in monolayer MoS2 and WSe2, (59,60) resulting from the existence of a crossover of the direct-to-indirect band gap. An analogous pressure-induced crossover is also found in layered indium selenide. (61) In this way, we attribute the PL quenching of bulk GaSe0.5Te0.5 to the change in a direct-to-indirect band gap induced by pressure. The pressure-dependent intensities of the free exciton and IQ are shown in Figure 3c,d, respectively. In order to fit the experimental data set, we propose the modified Arrhenius equation,
I(P)=I0e(E/KbT)
(3)

Figure 3

Figure 3. (a) PL spectra of GaSe0.5Te0.5 at different pressures. (b) Pressure dependence of the D (red circles) and IQ (blue squares) energies. The solid lines are linear fits to the experimental data. Intensities of D (c) and IQ (d) transitions as a function of pressure. The solid lines show fits to the data in eq 3.

Here, I0 is the PL intensity at P = 0 GPa, kb is the Boltzmann constant, T stands for the ambient temperature (T = 293 K), and E′ accounts for the difference in slope between direct and indirect transitions to achieve the crossover point. E′ works as a pressure derivative of an activation energy for nonradiative recombination, which can be associated with the change of direct-to-indirect band gap. The E′ value obtained from the fitting is −0.054 eV/GPa, for both the free exciton and IQ transitions.
Since the energies of the free exciton D and IQ evolve with the same pressure derivative (−0.082 eV/GPa), we do not expect a transition from D to IQ, so a crossover should occur from D to Ix. To better understand the direct-to-indirect transition, we calculate the electronic band structure for GaSe0.5Te0.5 in the pressure range of 0–8.0 GPa, as depicted in Figure 4. Our results show that the D, IQ, and Ix transitions redshift with increasing pressure, however with different rates. This redshift is strongly correlated with the decrease in intra- and interlayer distances caused by pressure. (62,63) The D and IQ evolve with approximately the same first-order pressure coefficient (dE/dP)D,IQ = −0.060 eV/GPa, in line with the results obtained experimentally. On the other hand, Ix decreases with a rate of (dE/dP)Ix = −0.11 eV/GPa. Therefore, a crossover of the direct band gap to indirect Ix one is achieved at 6.0 GPa, and subsequent metallization at ∼8.0 GPa. Besides, the E′ value obtained from the calculations is 0.050 eV/GPa (i.e., E′ = (dE/dP)D,IQ – (dE/dP)Ix), in perfect agreement with the experimental finding.

Figure 4

Figure 4. Calculated electronic band structure for GaSe0.5Te0.5 over the pressure range of 0.0–8.0 GPa. Inset shows the band gap as a function of the pressure. At 6.0 GPa a crossover of the direct band gap to indirect Ix one is achieved, followed by a subsequent closure of the gap around ∼8.0 GPa.

Conclusions

Click to copy section linkSection link copied!

In summary, we conducted a temperature- and pressure-dependent PL study of the bulk GaSe0.5Te0.5 alloy. By combining the DFT calculation with experimental observations, we discerned the contributions from D and IQ transitions to the PL spectrum. Our temperature-dependent findings revealed a nonlinear redshift for D and IQ transitions over the temperature range of 90–667 K, consistent with the modified Varshni equation. This analysis indicates a higher influence of electron–phonon coupling in the GaSe0.5Te0.5 alloy compared to H-GaTe, M-GaTe, and GaSe crystals. Below 180 K, we observed the emergence of new broad bands associated with bound excitons and radiative recombination of trap states. Furthermore, employing Arrhenius plots to fit the temperature dependence of the PL intensity, we derived activation energies for nonradiative recombination of the D and IQ transitions. The pressure dependence of the PL spectra revealed a linear redshift of the D and IQ transitions within the pressure range of 0.3–4.3 GPa. Simultaneously, the PL intensity exhibited a continuous reduction, reaching complete quenching at 4.8 GPa, following a modified Arrhenius plot proposed herein. The disappearance of PL was attributed to a direct-to-indirect band gap crossover. These experimental findings were supported by theoretical calculations. Our results significantly advance the understanding of the pressure and temperature-dependent optical properties of GaSe0.5Te0.5 alloy, offering prospects for tailored applications and laying the groundwork for future research in this area.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
  • Authors
    • F. F. Leite - Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá, AP 68903-419, BrazilDepartamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-900, BrazilOrcidhttps://orcid.org/0000-0002-3462-4423
    • F. W. N. Silva - Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Alcântara, Alcântara, MA 65250-000, BrazilPrograma de Pós-Graduação em Engenharia de Materiais (PPGEM), Campus Monte Castelo, São Luís, MA 65030-005, BrazilOrcidhttps://orcid.org/0000-0002-3241-3059
    • Victor V. Oliveira - Faculdade de Física, Universidade Federal do Pará, Belém, PA 66075-110, BrazilOrcidhttps://orcid.org/0000-0003-2149-6335
    • Yuset Guerra - Instituto de Física, Universidade Federal de Alagoas, Maceió, AL 57072-900, BrazilOrcidhttps://orcid.org/0000-0001-8245-1259
    • W. Paraguassu - Faculdade de Física, Universidade Federal do Pará, Belém, PA 66075-110, BrazilOrcidhttps://orcid.org/0000-0003-4980-4694
    • Antonio G. Souza Filho - Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-900, BrazilOrcidhttps://orcid.org/0000-0003-3802-1168
  • Funding

    The Article Processing Charge for the publication of this research was funded by the Coordination for the Improvement of Higher Education Personnel - CAPES (ROR identifier: 00x0ma614).

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

R.S.A. acknowledges funding from CNPq (Grant Nos. 311616/2020-8 and 310852/2023-4). F.F.L. acknowledges funding from CNPq (Grant No. 151494/2022-3). A.G.S.F acknowledges funding from CNPq (Grant Nos. 309309/2017-4, 442577/2019-2, and 438144/2018-0). W.P. acknowledges funding from CNPq (Grant No. 307058/2019-0). Research developed with support from Centro Nacional de Super Computação (CESUP), Universidade Federal do Rio Grande do Sul (UFRGS). This work was supported by MCTI/CNPQ/Universal 28/2018 (Grant No 427084/2018-0). B.C.V. acknowledges the support of CNPq-PQ No 09/2022 (Grant No 303315/2022-9), CNPq No 26/2021 (Grant No 400998/2022-0) and assistance to the researcher – PRPG/UFPI No 03/2022.

References

Click to copy section linkSection link copied!

This article references 63 other publications.

  1. 1
    Novoselov, K.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439,  DOI: 10.1126/science.aac9439
  2. 2
    Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192200,  DOI: 10.1038/nature11458
  3. 3
    Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 7074,  DOI: 10.1038/s41586-019-1052-3
  4. 4
    Heine, T. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Acc. Chem. Res. 2015, 48, 6572,  DOI: 10.1021/ar500277z
  5. 5
    Tremel, W.; Kleinke, H.; Derstroff, V.; Reisner, C. Transition metal chalcogenides: new views on an old topic. J. Alloys Compd. 1995, 219, 7382,  DOI: 10.1016/0925-8388(94)05064-3
  6. 6
    Jung, Y.; Zhou, Y.; Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452463,  DOI: 10.1039/C5QI00242G
  7. 7
    Bosi, M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv. 2015, 5, 7550075518,  DOI: 10.1039/C5RA09356B
  8. 8
    Huang, L.; Krasnok, A.; Alú, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A. E. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 046401  DOI: 10.1088/1361-6633/ac45f9
  9. 9
    Wickramaratne, D.; Zahid, F.; Lake, R. K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 2014, 140, 124710,  DOI: 10.1063/1.4869142
  10. 10
    Kolobov, A. V.; Tominaga, J. Two-dimensional transition-metal dichalcogenides; Springer: 2016; Vol. 239.
  11. 11
    Masui, A.; Onari, S.; Allakhverdiev, K.; Gashimzade, F.; Mamedov, T. Room-temperature photoluminescence in layered e-GaSe, GaSe0.9S0.1, GaSe0.8S0.2 under pressure. Phys. Status Solidi B 2001, 223, 139,  DOI: 10.1002/1521-3951(200101)223:1<139::AID-PSSB139>3.0.CO;2-R
  12. 12
    Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X.; Hao, J. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew. Chem., Int. Ed. 2015, 54, 11851189,  DOI: 10.1002/anie.201409837
  13. 13
    Allakhverdiev, K.; Yetis, M.; Özbek, S.; Baykara, T.; Salaev, E. Y. Effective nonlinear GaSe crystal. Optical properties and applications. Laser Phys. 2009, 19, 10921104,  DOI: 10.1134/S1054660X09050375
  14. 14
    Hu, P.; Zhang, J.; Yoon, M.; Qiao, X. F.; Zhang, X.; Feng, W.; Tan, P.; Zheng, W.; Liu, J.; Wang, X. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res. 2014, 7, 694703,  DOI: 10.1007/s12274-014-0430-2
  15. 15
    Wan, J.; Brebner, J.; Leonelli, R.; Graham, J. Optical properties of excitons in GaTe. Phys. Rev. B 1992, 46, 1468,  DOI: 10.1103/PhysRevB.46.1468
  16. 16
    Tatsuyama, C.; Watanabe, Y.; Hamaguchi, C.; Nakai, J. Some optical properties of layer-type semiconductor GaTe. J. Phys. Soc. Jpn. 1970, 29, 150155,  DOI: 10.1143/JPSJ.29.150
  17. 17
    Li, X.-L.; Han, W.-P.; Wu, J.-B.; Qiao, X.-F.; Zhang, J.; Tan, P.-H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468  DOI: 10.1002/adfm.201604468
  18. 18
    Rajabpour, S.; Vera, A.; He, W.; Katz, B. N.; Koch, R. J.; Lassaunière, M.; Chen, X.; Li, C.; Nisi, K.; El-Sherif, H. Tunable 2D Group-III Metal Alloys. Adv. Mater. 2021, 33, 2104265  DOI: 10.1002/adma.202104265
  19. 19
    Sun, Y.; Fujisawa, K.; Lin, Z.; Lei, Y.; Mondschein, J. S.; Terrones, M.; Schaak, R. E. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 2017, 139, 1109611105,  DOI: 10.1021/jacs.7b04443
  20. 20
    Yao, J.; Yang, G. 2D layered material alloys: Synthesis and application in electronic and optoelectronic devices. Adv. Sci. 2022, 9, 2103036  DOI: 10.1002/advs.202103036
  21. 21
    Wei, C.; Chen, X.; Li, D.; Su, H.; He, H.; Dai, J.-F. Bound exciton and free exciton states in GaSe thin slab. Sci. Rep. 2016, 6, 33890,  DOI: 10.1038/srep33890
  22. 22
    Chen, J.; Tan, X.; Lin, P.; Sa, B.; Zhou, J.; Zhang, Y.; Wen, C.; Sun, Z. Comprehensive understanding of intrinsic mobility in the monolayers of III-VI group 2D materials. Phys. Chem. Chem. Phys. 2019, 21, 2189821907,  DOI: 10.1039/C9CP04407H
  23. 23
    Ni, Y.; Wu, H.; Huang, C.; Mao, M.; Wang, Z.; Cheng, X. Growth and quality of gallium selenide (GaSe) crystals. J. Cryst. Growth 2013, 381, 1014,  DOI: 10.1016/j.jcrysgro.2013.06.030
  24. 24
    Liu, H.; Antwi, K. A.; Chua, S.; Chi, D. Vapor-phase growth and characterization of Mo 1- x W x S 2 (0 × 1) atomic layers on 2-in. sapphire substrates. Nanoscale 2014, 6, 624629,  DOI: 10.1039/C3NR04515C
  25. 25
    Zhang, W.; Li, X.; Jiang, T.; Song, J.; Lin, Y.; Zhu, L.; Xu, X. CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 2015, 7, 1355413560,  DOI: 10.1039/C5NR02515J
  26. 26
    Zheng, S.; Sun, L.; Yin, T.; Dubrovkin, A. M.; Liu, F.; Liu, Z.; Shen, Z. X.; Fan, H. J. Monolayers of WxMo1xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 2015, 106, 063113  DOI: 10.1063/1.4908256
  27. 27
    Cai, H.; Chen, B.; Blei, M.; Chang, S. L.; Wu, K.; Zhuang, H.; Tongay, S. Abnormal band bowing effects in phase instability crossover region of GaSe1-x Te x nanomaterials. Nat. Commun. 2018, 9, 1927,  DOI: 10.1038/s41467-018-04328-z
  28. 28
    Fonseca, J. J.; Horton, M. K.; Tom, K.; Yao, J.; Walukiewicz, W.; Dubon, O. D. Structure–Property Relationship of Low-Dimensional Layered GaSexTe1–x Alloys. Chem. Mater. 2018, 30, 42264232,  DOI: 10.1021/acs.chemmater.8b00130
  29. 29
    Azizi, A.; Antonius, G.; Regan, E.; Eskandari, R.; Kahn, S.; Wang, F.; Louie, S. G.; Zettl, A. Layer-Dependent Electronic Structure of Atomically Resolved Two-Dimensional Gallium Selenide Telluride. Nano Lett. 2019, 19, 17821787,  DOI: 10.1021/acs.nanolett.8b04802
  30. 30
    Zhong, X.; Zhou, W.; Zhou, Y.; Zhou, F.; Liu, C.; Yin, Y.; Peng, Y.; Tang, D. High-performance photodetectors based on bandgap engineered novel layer GaSe0.5Te0.5 nanoflakes. RSC Adv. 2016, 6, 6086260868,  DOI: 10.1039/C6RA09239J
  31. 31
    Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 12711275,  DOI: 10.1021/nl903868w
  32. 32
    Vaquero, D.; Clericò, V.; Salvador-Sánchez, J.; Martín-Ramos, A.; Díaz, E.; Domínguez-Adame, F.; Meziani, Y. M.; Diez, E.; Quereda, J. Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Commun. Phys. 2020, 3, 194,  DOI: 10.1038/s42005-020-00460-9
  33. 33
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 59445948,  DOI: 10.1021/nl403036h
  34. 34
    Toda, Y.; Moriwaki, O.; Nishioka, M.; Arakawa, Y. Efficient Carrier Relaxation Mechanism in InGaAs/GaAs Self-Assembled Quantum Dots Based on the Existence of Continuum States. Phys. Rev. Lett. 1999, 82, 41144117,  DOI: 10.1103/PhysRevLett.82.4114
  35. 35
    Wang, Y.; Nie, Z.; Wang, F. Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light: Sci. Appl. 2020, 9, 192,  DOI: 10.1038/s41377-020-00430-4
  36. 36
    Araujo, F. D. V.; Silva, F. W. N.; Zhang, T.; Zhou, C.; Lin, Z.; Perea-Lopez, N.; Rodrigues, S. F.; Terrones, M.; Souza Filho, A. G.; Alencar, R. S.; Viana, B. C. Substrate-Induced Changes on the Optical Properties of Single-Layer WS2. Materials 2023, 16, 2591,  DOI: 10.3390/ma16072591
  37. 37
    Davila, Y. G.; Silva, F. W. N.; Oliveira, M. C. D.; Yu, Z.; Carvalho, T. C. V.; dos Santos, C. C.; Filho, A. G. S.; Terrones, M.; Alencar, R. S.; Viana, B. C. Temperature and power-dependent photoluminescence spectroscopy in suspended WSe2 monolayer. J. Phys. D: Appl. Phys. 2024, 57, 165304  DOI: 10.1088/1361-6463/ad211d
  38. 38
    Li, C.; Liu, Y.; Yang, Q.; Zheng, Q.; Yan, Z.; Han, J.; Lin, J.; Wang, S.; Qi, J.; Liu, Y.; Zhu, J. Tuning of Optical Behavior in Monolayer and Bilayer Molybdenum Disulfide Using Hydrostatic Pressure. J. Phys. Chem. Lett. 2022, 13, 161167,  DOI: 10.1021/acs.jpclett.1c03919
  39. 39
    Loi, M.; Bongiovanni, G.; Mura, A.; Cai, Q.; Martin, C.; Chandrasekhar, H.; Chandrasekhar, M.; Graupner, W.; Garnier, F. High pressure effects on the photoluminescence intensity of sexithiophene single crystals. Synth. Met. 2001, 116, 311315,  DOI: 10.1016/S0379-6779(00)00428-8
  40. 40
    Aguiar Sousa, J. H.; Araújo, B. S.; Ferreira, R. S.; San-Miguel, A.; Alencar, R. S.; Souza Filho, A. G. Pressure Tuning Resonance Raman Scattering in Monolayer, Trilayer, and Many-Layer Molybdenum Disulfide. ACS Appl. Nano Mater. 2022, 5, 1446414469,  DOI: 10.1021/acsanm.2c02819
  41. 41
    Gontijo, R. N.; Gadelha, A.; Silveira, O. J.; Carvalho, B. R.; Nunes, R. W.; Campos, L. C.; Pimenta, M. A.; Righi, A.; Fantini, C. Temperature dependence of the double-resonance Raman bands in monolayer MoS2. J. Raman Spectrosc. 2019, 50, 18671874,  DOI: 10.1002/jrs.5736
  42. 42
    Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864B871,  DOI: 10.1103/PhysRev.136.B864
  43. 43
    Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133A1138,  DOI: 10.1103/PhysRev.140.A1133
  44. 44
    Giannozzi, P. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502  DOI: 10.1088/0953-8984/21/39/395502
  45. 45
    Giannozzi, P. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
  46. 46
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192,  DOI: 10.1103/PhysRevB.13.5188
  47. 47
    Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 41994228,  DOI: 10.1103/PhysRevB.26.4199
  48. 48
    Longuinhos, R.; Ribeiro-Soares, J. Ultra-weak interlayer coupling in two-dimensional gallium selenide. Phys. Chem. Chem. Phys. 2016, 18, 2540125408,  DOI: 10.1039/C6CP03806A
  49. 49
    Oliveira, V. V.; Leite, F. F.; Silva, F. W.; Oliveira, F. W.; Araujo, F. D.; Menezes, A. S.; Paraguassu, W.; Filho, A. G. S.; Viana, B. C.; Alencar, R. S. Temperature- and pressure-dependent phonon dynamics properties of gallium selenide telluride. J. Raman Spectrosc. 2022, 53, 12751284,  DOI: 10.1002/jrs.6364
  50. 50
    Dai, Y.-H. Convergence Properties of the BFGS Algoritm. SIAM J. Optim. 2002, 13, 693701,  DOI: 10.1137/S1052623401383455
  51. 51
    O’Donnell, K. P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 29242926,  DOI: 10.1063/1.104723
  52. 52
    Muhimmah, L. C.; Ho, C. H. Dual phase two-color emission observed in van der Waals GaTe planes. Appl. Surf. Sci. 2021, 542, 148593  DOI: 10.1016/j.apsusc.2020.148593
  53. 53
    Scrmid, P. H. VOITCIXOWKY: Electron-Lattice Interaction in GaSe 249 phys ; 1974.
  54. 54
    Aydinli, A.; Gasanly, N. M.; Uka, A.; Efeoglu, H. Anharmonicity in GaTe layered crystals. Cryst. Res. Technol. 2002, 37, 13031309,  DOI: 10.1002/crat.200290006
  55. 55
    Gasanly, N. M.; Aydinli, A.; Özkan, H.; Kocabas, C. Temperature dependence of the first-order Raman scattering in GaS layered crystals. Solid State Commun. 2000, 116, 147151,  DOI: 10.1016/S0038-1098(00)00292-1
  56. 56
    Luckert, F.; Yakushev, M. V.; Faugeras, C.; Karotki, A. V.; Mudryi, A. V.; Martin, R. W. Excitation power and temperature dependence of excitons in CuInSe2. J. Appl. Phys. 2012, 111, 093507  DOI: 10.1063/1.4709448
  57. 57
    Gupta, J. D.; Jangra, P.; Majee, B. P.; Mishra, A. K. Morphological dependent exciton dynamics and thermal transport in MoSe2 films. Nanoscale Adv. 2023, 5, 27562766,  DOI: 10.1039/D3NA00164D
  58. 58
    Fang, Y.; Wang, L.; Sun, Q.; Lu, T.; Deng, Z.; Ma, Z.; Jiang, Y.; Jia, H.; Wang, W.; Zhou, J.; Chen, H. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718,  DOI: 10.1038/srep12718
  59. 59
    Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C.-H.; Li, L.-J.; Chhowalla, M. Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Lett. 2015, 15, 346353,  DOI: 10.1021/nl5036397
  60. 60
    Ye, Y.; Dou, X.; Ding, K.; Jiang, D.; Yang, F.; Sun, B. Pressure-induced K- crossing in monolayer WSe2. Nanoscale 2016, 8, 1084310848,  DOI: 10.1039/C6NR02690G
  61. 61
    Segura, A.; Manjón, F. J.; Errandonea, D.; Pellicer-Porres, J.; Muñoz, V.; Tobias, G.; Ordejón, P.; Canadell, E.; San Miguel, A.; Sánchez-Portal, D. Specific features of the electronic structure of III–VI layered semiconductors: recent results on structural and optical measurements under pressure and electronic structure calculations. Phys. Status Solidi B 2003, 235, 267276,  DOI: 10.1002/pssb.200301567
  62. 62
    Pellicer-Porres, J.; Segura, A.; Ferrer, C.; Muñoz, V.; San Miguel, A.; Polian, A.; Itié, J. P.; Gauthier, M.; Pascarelli, S. High-pressure x-ray-absorption study of GaSe. Phys. Rev. B 2002, 65, 174103  DOI: 10.1103/PhysRevB.65.174103
  63. 63
    Pellicer-Porres, J.; Segura, A.; Muñoz, V.; San Miguel, A. High-pressure x-ray absorption study of GaTe including polarization. Phys. Rev. B 2000, 61, 125131,  DOI: 10.1103/PhysRevB.61.125

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

The Journal of Physical Chemistry C

Cite this: J. Phys. Chem. C 2024, 128, 36, 15062–15069
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpcc.4c04201
Published August 30, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .
  • Abstract

    Figure 1

    Figure 1. (a) Side- and top-view schematics of the AA stacking geometry for bulk GaSe0.5Te0.5. The primitive cell is depicted along with in-plane primitive vectors a⃗ and b⃗. (b) PL spectrum of bulk GaSe0.5Te0.5 showing both direct (red trace) and indirect (blue trace) transitions, as detailed in the corresponding band structure diagram in (c).

    Figure 2

    Figure 2. (a) PL spectra of GaSe0.5Te0.5 at various temperatures. (b) Temperature dependence of the D (red circles) and IQ (blue squares) energies. The solid red lines depict fits to experimental data using eq 1. Intensities of bands D (c) and IQ (d) as a function of 1/T. The solid lines show fits to the data using eq 2.

    Figure 3

    Figure 3. (a) PL spectra of GaSe0.5Te0.5 at different pressures. (b) Pressure dependence of the D (red circles) and IQ (blue squares) energies. The solid lines are linear fits to the experimental data. Intensities of D (c) and IQ (d) transitions as a function of pressure. The solid lines show fits to the data in eq 3.

    Figure 4

    Figure 4. Calculated electronic band structure for GaSe0.5Te0.5 over the pressure range of 0.0–8.0 GPa. Inset shows the band gap as a function of the pressure. At 6.0 GPa a crossover of the direct band gap to indirect Ix one is achieved, followed by a subsequent closure of the gap around ∼8.0 GPa.

  • References


    This article references 63 other publications.

    1. 1
      Novoselov, K.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439,  DOI: 10.1126/science.aac9439
    2. 2
      Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192200,  DOI: 10.1038/nature11458
    3. 3
      Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 7074,  DOI: 10.1038/s41586-019-1052-3
    4. 4
      Heine, T. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Acc. Chem. Res. 2015, 48, 6572,  DOI: 10.1021/ar500277z
    5. 5
      Tremel, W.; Kleinke, H.; Derstroff, V.; Reisner, C. Transition metal chalcogenides: new views on an old topic. J. Alloys Compd. 1995, 219, 7382,  DOI: 10.1016/0925-8388(94)05064-3
    6. 6
      Jung, Y.; Zhou, Y.; Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452463,  DOI: 10.1039/C5QI00242G
    7. 7
      Bosi, M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv. 2015, 5, 7550075518,  DOI: 10.1039/C5RA09356B
    8. 8
      Huang, L.; Krasnok, A.; Alú, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A. E. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 046401  DOI: 10.1088/1361-6633/ac45f9
    9. 9
      Wickramaratne, D.; Zahid, F.; Lake, R. K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 2014, 140, 124710,  DOI: 10.1063/1.4869142
    10. 10
      Kolobov, A. V.; Tominaga, J. Two-dimensional transition-metal dichalcogenides; Springer: 2016; Vol. 239.
    11. 11
      Masui, A.; Onari, S.; Allakhverdiev, K.; Gashimzade, F.; Mamedov, T. Room-temperature photoluminescence in layered e-GaSe, GaSe0.9S0.1, GaSe0.8S0.2 under pressure. Phys. Status Solidi B 2001, 223, 139,  DOI: 10.1002/1521-3951(200101)223:1<139::AID-PSSB139>3.0.CO;2-R
    12. 12
      Jie, W.; Chen, X.; Li, D.; Xie, L.; Hui, Y. Y.; Lau, S. P.; Cui, X.; Hao, J. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew. Chem., Int. Ed. 2015, 54, 11851189,  DOI: 10.1002/anie.201409837
    13. 13
      Allakhverdiev, K.; Yetis, M.; Özbek, S.; Baykara, T.; Salaev, E. Y. Effective nonlinear GaSe crystal. Optical properties and applications. Laser Phys. 2009, 19, 10921104,  DOI: 10.1134/S1054660X09050375
    14. 14
      Hu, P.; Zhang, J.; Yoon, M.; Qiao, X. F.; Zhang, X.; Feng, W.; Tan, P.; Zheng, W.; Liu, J.; Wang, X. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res. 2014, 7, 694703,  DOI: 10.1007/s12274-014-0430-2
    15. 15
      Wan, J.; Brebner, J.; Leonelli, R.; Graham, J. Optical properties of excitons in GaTe. Phys. Rev. B 1992, 46, 1468,  DOI: 10.1103/PhysRevB.46.1468
    16. 16
      Tatsuyama, C.; Watanabe, Y.; Hamaguchi, C.; Nakai, J. Some optical properties of layer-type semiconductor GaTe. J. Phys. Soc. Jpn. 1970, 29, 150155,  DOI: 10.1143/JPSJ.29.150
    17. 17
      Li, X.-L.; Han, W.-P.; Wu, J.-B.; Qiao, X.-F.; Zhang, J.; Tan, P.-H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468  DOI: 10.1002/adfm.201604468
    18. 18
      Rajabpour, S.; Vera, A.; He, W.; Katz, B. N.; Koch, R. J.; Lassaunière, M.; Chen, X.; Li, C.; Nisi, K.; El-Sherif, H. Tunable 2D Group-III Metal Alloys. Adv. Mater. 2021, 33, 2104265  DOI: 10.1002/adma.202104265
    19. 19
      Sun, Y.; Fujisawa, K.; Lin, Z.; Lei, Y.; Mondschein, J. S.; Terrones, M.; Schaak, R. E. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 2017, 139, 1109611105,  DOI: 10.1021/jacs.7b04443
    20. 20
      Yao, J.; Yang, G. 2D layered material alloys: Synthesis and application in electronic and optoelectronic devices. Adv. Sci. 2022, 9, 2103036  DOI: 10.1002/advs.202103036
    21. 21
      Wei, C.; Chen, X.; Li, D.; Su, H.; He, H.; Dai, J.-F. Bound exciton and free exciton states in GaSe thin slab. Sci. Rep. 2016, 6, 33890,  DOI: 10.1038/srep33890
    22. 22
      Chen, J.; Tan, X.; Lin, P.; Sa, B.; Zhou, J.; Zhang, Y.; Wen, C.; Sun, Z. Comprehensive understanding of intrinsic mobility in the monolayers of III-VI group 2D materials. Phys. Chem. Chem. Phys. 2019, 21, 2189821907,  DOI: 10.1039/C9CP04407H
    23. 23
      Ni, Y.; Wu, H.; Huang, C.; Mao, M.; Wang, Z.; Cheng, X. Growth and quality of gallium selenide (GaSe) crystals. J. Cryst. Growth 2013, 381, 1014,  DOI: 10.1016/j.jcrysgro.2013.06.030
    24. 24
      Liu, H.; Antwi, K. A.; Chua, S.; Chi, D. Vapor-phase growth and characterization of Mo 1- x W x S 2 (0 × 1) atomic layers on 2-in. sapphire substrates. Nanoscale 2014, 6, 624629,  DOI: 10.1039/C3NR04515C
    25. 25
      Zhang, W.; Li, X.; Jiang, T.; Song, J.; Lin, Y.; Zhu, L.; Xu, X. CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 2015, 7, 1355413560,  DOI: 10.1039/C5NR02515J
    26. 26
      Zheng, S.; Sun, L.; Yin, T.; Dubrovkin, A. M.; Liu, F.; Liu, Z.; Shen, Z. X.; Fan, H. J. Monolayers of WxMo1xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 2015, 106, 063113  DOI: 10.1063/1.4908256
    27. 27
      Cai, H.; Chen, B.; Blei, M.; Chang, S. L.; Wu, K.; Zhuang, H.; Tongay, S. Abnormal band bowing effects in phase instability crossover region of GaSe1-x Te x nanomaterials. Nat. Commun. 2018, 9, 1927,  DOI: 10.1038/s41467-018-04328-z
    28. 28
      Fonseca, J. J.; Horton, M. K.; Tom, K.; Yao, J.; Walukiewicz, W.; Dubon, O. D. Structure–Property Relationship of Low-Dimensional Layered GaSexTe1–x Alloys. Chem. Mater. 2018, 30, 42264232,  DOI: 10.1021/acs.chemmater.8b00130
    29. 29
      Azizi, A.; Antonius, G.; Regan, E.; Eskandari, R.; Kahn, S.; Wang, F.; Louie, S. G.; Zettl, A. Layer-Dependent Electronic Structure of Atomically Resolved Two-Dimensional Gallium Selenide Telluride. Nano Lett. 2019, 19, 17821787,  DOI: 10.1021/acs.nanolett.8b04802
    30. 30
      Zhong, X.; Zhou, W.; Zhou, Y.; Zhou, F.; Liu, C.; Yin, Y.; Peng, Y.; Tang, D. High-performance photodetectors based on bandgap engineered novel layer GaSe0.5Te0.5 nanoflakes. RSC Adv. 2016, 6, 6086260868,  DOI: 10.1039/C6RA09239J
    31. 31
      Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 12711275,  DOI: 10.1021/nl903868w
    32. 32
      Vaquero, D.; Clericò, V.; Salvador-Sánchez, J.; Martín-Ramos, A.; Díaz, E.; Domínguez-Adame, F.; Meziani, Y. M.; Diez, E.; Quereda, J. Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Commun. Phys. 2020, 3, 194,  DOI: 10.1038/s42005-020-00460-9
    33. 33
      Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 59445948,  DOI: 10.1021/nl403036h
    34. 34
      Toda, Y.; Moriwaki, O.; Nishioka, M.; Arakawa, Y. Efficient Carrier Relaxation Mechanism in InGaAs/GaAs Self-Assembled Quantum Dots Based on the Existence of Continuum States. Phys. Rev. Lett. 1999, 82, 41144117,  DOI: 10.1103/PhysRevLett.82.4114
    35. 35
      Wang, Y.; Nie, Z.; Wang, F. Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light: Sci. Appl. 2020, 9, 192,  DOI: 10.1038/s41377-020-00430-4
    36. 36
      Araujo, F. D. V.; Silva, F. W. N.; Zhang, T.; Zhou, C.; Lin, Z.; Perea-Lopez, N.; Rodrigues, S. F.; Terrones, M.; Souza Filho, A. G.; Alencar, R. S.; Viana, B. C. Substrate-Induced Changes on the Optical Properties of Single-Layer WS2. Materials 2023, 16, 2591,  DOI: 10.3390/ma16072591
    37. 37
      Davila, Y. G.; Silva, F. W. N.; Oliveira, M. C. D.; Yu, Z.; Carvalho, T. C. V.; dos Santos, C. C.; Filho, A. G. S.; Terrones, M.; Alencar, R. S.; Viana, B. C. Temperature and power-dependent photoluminescence spectroscopy in suspended WSe2 monolayer. J. Phys. D: Appl. Phys. 2024, 57, 165304  DOI: 10.1088/1361-6463/ad211d
    38. 38
      Li, C.; Liu, Y.; Yang, Q.; Zheng, Q.; Yan, Z.; Han, J.; Lin, J.; Wang, S.; Qi, J.; Liu, Y.; Zhu, J. Tuning of Optical Behavior in Monolayer and Bilayer Molybdenum Disulfide Using Hydrostatic Pressure. J. Phys. Chem. Lett. 2022, 13, 161167,  DOI: 10.1021/acs.jpclett.1c03919
    39. 39
      Loi, M.; Bongiovanni, G.; Mura, A.; Cai, Q.; Martin, C.; Chandrasekhar, H.; Chandrasekhar, M.; Graupner, W.; Garnier, F. High pressure effects on the photoluminescence intensity of sexithiophene single crystals. Synth. Met. 2001, 116, 311315,  DOI: 10.1016/S0379-6779(00)00428-8
    40. 40
      Aguiar Sousa, J. H.; Araújo, B. S.; Ferreira, R. S.; San-Miguel, A.; Alencar, R. S.; Souza Filho, A. G. Pressure Tuning Resonance Raman Scattering in Monolayer, Trilayer, and Many-Layer Molybdenum Disulfide. ACS Appl. Nano Mater. 2022, 5, 1446414469,  DOI: 10.1021/acsanm.2c02819
    41. 41
      Gontijo, R. N.; Gadelha, A.; Silveira, O. J.; Carvalho, B. R.; Nunes, R. W.; Campos, L. C.; Pimenta, M. A.; Righi, A.; Fantini, C. Temperature dependence of the double-resonance Raman bands in monolayer MoS2. J. Raman Spectrosc. 2019, 50, 18671874,  DOI: 10.1002/jrs.5736
    42. 42
      Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864B871,  DOI: 10.1103/PhysRev.136.B864
    43. 43
      Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133A1138,  DOI: 10.1103/PhysRev.140.A1133
    44. 44
      Giannozzi, P. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502  DOI: 10.1088/0953-8984/21/39/395502
    45. 45
      Giannozzi, P. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901,  DOI: 10.1088/1361-648X/aa8f79
    46. 46
      Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192,  DOI: 10.1103/PhysRevB.13.5188
    47. 47
      Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 41994228,  DOI: 10.1103/PhysRevB.26.4199
    48. 48
      Longuinhos, R.; Ribeiro-Soares, J. Ultra-weak interlayer coupling in two-dimensional gallium selenide. Phys. Chem. Chem. Phys. 2016, 18, 2540125408,  DOI: 10.1039/C6CP03806A
    49. 49
      Oliveira, V. V.; Leite, F. F.; Silva, F. W.; Oliveira, F. W.; Araujo, F. D.; Menezes, A. S.; Paraguassu, W.; Filho, A. G. S.; Viana, B. C.; Alencar, R. S. Temperature- and pressure-dependent phonon dynamics properties of gallium selenide telluride. J. Raman Spectrosc. 2022, 53, 12751284,  DOI: 10.1002/jrs.6364
    50. 50
      Dai, Y.-H. Convergence Properties of the BFGS Algoritm. SIAM J. Optim. 2002, 13, 693701,  DOI: 10.1137/S1052623401383455
    51. 51
      O’Donnell, K. P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 29242926,  DOI: 10.1063/1.104723
    52. 52
      Muhimmah, L. C.; Ho, C. H. Dual phase two-color emission observed in van der Waals GaTe planes. Appl. Surf. Sci. 2021, 542, 148593  DOI: 10.1016/j.apsusc.2020.148593
    53. 53
      Scrmid, P. H. VOITCIXOWKY: Electron-Lattice Interaction in GaSe 249 phys ; 1974.
    54. 54
      Aydinli, A.; Gasanly, N. M.; Uka, A.; Efeoglu, H. Anharmonicity in GaTe layered crystals. Cryst. Res. Technol. 2002, 37, 13031309,  DOI: 10.1002/crat.200290006
    55. 55
      Gasanly, N. M.; Aydinli, A.; Özkan, H.; Kocabas, C. Temperature dependence of the first-order Raman scattering in GaS layered crystals. Solid State Commun. 2000, 116, 147151,  DOI: 10.1016/S0038-1098(00)00292-1
    56. 56
      Luckert, F.; Yakushev, M. V.; Faugeras, C.; Karotki, A. V.; Mudryi, A. V.; Martin, R. W. Excitation power and temperature dependence of excitons in CuInSe2. J. Appl. Phys. 2012, 111, 093507  DOI: 10.1063/1.4709448
    57. 57
      Gupta, J. D.; Jangra, P.; Majee, B. P.; Mishra, A. K. Morphological dependent exciton dynamics and thermal transport in MoSe2 films. Nanoscale Adv. 2023, 5, 27562766,  DOI: 10.1039/D3NA00164D
    58. 58
      Fang, Y.; Wang, L.; Sun, Q.; Lu, T.; Deng, Z.; Ma, Z.; Jiang, Y.; Jia, H.; Wang, W.; Zhou, J.; Chen, H. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718,  DOI: 10.1038/srep12718
    59. 59
      Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C.-H.; Li, L.-J.; Chhowalla, M. Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Lett. 2015, 15, 346353,  DOI: 10.1021/nl5036397
    60. 60
      Ye, Y.; Dou, X.; Ding, K.; Jiang, D.; Yang, F.; Sun, B. Pressure-induced K- crossing in monolayer WSe2. Nanoscale 2016, 8, 1084310848,  DOI: 10.1039/C6NR02690G
    61. 61
      Segura, A.; Manjón, F. J.; Errandonea, D.; Pellicer-Porres, J.; Muñoz, V.; Tobias, G.; Ordejón, P.; Canadell, E.; San Miguel, A.; Sánchez-Portal, D. Specific features of the electronic structure of III–VI layered semiconductors: recent results on structural and optical measurements under pressure and electronic structure calculations. Phys. Status Solidi B 2003, 235, 267276,  DOI: 10.1002/pssb.200301567
    62. 62
      Pellicer-Porres, J.; Segura, A.; Ferrer, C.; Muñoz, V.; San Miguel, A.; Polian, A.; Itié, J. P.; Gauthier, M.; Pascarelli, S. High-pressure x-ray-absorption study of GaSe. Phys. Rev. B 2002, 65, 174103  DOI: 10.1103/PhysRevB.65.174103
    63. 63
      Pellicer-Porres, J.; Segura, A.; Muñoz, V.; San Miguel, A. High-pressure x-ray absorption study of GaTe including polarization. Phys. Rev. B 2000, 61, 125131,  DOI: 10.1103/PhysRevB.61.125