这是用户在 2024-10-26 20:06 为 https://app.immersivetranslate.com/pdf-pro/91234a80-f4ef-45b4-9e5a-a858b672a544 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Construct ordinal sums of triangular norms on pairwise non-overlapped subintervals in meet semi-lattices
在交会半格中对成对不重叠的子区间构造三角范数的序数和

Hongliang Lai *, Yang Luo
赖洪亮*, 罗扬
School of Mathematics, Sichuan University, Chengdu 610064, China
四川大学数学学院,中国成都 610064

Received 6 July 2022; received in revised form 26 October 2022; accepted 28 October 2022
收到日期:2022 年 7 月 6 日;修订后收到日期:2022 年 10 月 26 日;接受日期:2022 年 10 月 28 日

Available online 3 November 2022
2022 年 11 月 3 日在线可用

Abstract 摘要

In this paper, the ordinal sum of a family of given triangular norms on subintervals in a bounded meet semi-lattice is constructed when the subintervals are pairwise non-overlapped and all the endpoints of the subintervals constitute a chain. © 2022 Elsevier B.V. All rights reserved.
在本文中,当子区间成对不重叠且所有子区间的端点构成一个链时,构造了有界交半格上给定三角范数族的序和。© 2022 Elsevier B.V. 保留所有权利。

Keywords: Triangular norm; Ordinal sum; Meet semi-lattice; Galois connection
关键词:三角范数;序和;交半格;伽罗瓦连接

1. Introduction 1. 引言

To construct semigroups from existing ones, the ordinal sum construction is introduced in [3,15]. Particularly, for t -norms, a kind of special ordered semigroups on the unit interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1], ordinal sums play a fundamental role. It is well known that every continuous t-norm on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] is an ordinal sum of a family of continuous Archimedean t-norms [ 1 , 13 ] [ 1 , 13 ] [1,13][1,13].
为了从现有的半群构造新的半群,在文献[3,15]中引入了序和构造。特别是对于 t-范数,在单位区间 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 上,一种特殊的有序半群中,序和起着基础性作用。众所周知,单位区间 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 上的每一个连续 t-范数都是一族连续阿基米德 t-范数的序和 [ 1 , 13 ] [ 1 , 13 ] [1,13][1,13]
In recent years, ordered semigroups on bounded lattices, or more generally, on bounded posets, with the top element being the unit, are investigated also under the name t t tt-norms [ 2 , 4 7 , 10 , 12 , 16 21 ] [ 2 , 4 7 , 10 , 12 , 16 21 ] [2,4-7,10,12,16-21][2,4-7,10,12,16-21]. Saminger constructs the ordinal sum of t -norms on a bounded lattice [19,20] by extending the ordinal sums on the unit interval [0,1] straightforwardly. Let L L LL be a bounded meet semi-lattice and I I II be a totally ordered index set. Further, let ] a i , b i [ i I } a i , b i [ i I } ]a_(i),b_(i)[∣i in I}:}\left] a_{i}, b_{i}[\mid i \in I\}\right. be a family of pairwise disjoint subintervals of L L LL and each T i T i T_(i)T_{i} be a t t tt-norm on the interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right]. Then the ordinal sum T T TT is given by
近年来,受限格上的有序半群,或更一般地说,在有界偏序集上,顶元素为单位的情况,也被称为 t t tt -范数 [ 2 , 4 7 , 10 , 12 , 16 21 ] [ 2 , 4 7 , 10 , 12 , 16 21 ] [2,4-7,10,12,16-21][2,4-7,10,12,16-21] 。Saminger 通过直接扩展单位区间[0,1]上的序数和,构造了受限格上的 t-范数的序数和[19,20]。设 L L LL 为一个有界交半格, I I II 为一个全序索引集。此外,设 ] a i , b i [ i I } a i , b i [ i I } ]a_(i),b_(i)[∣i in I}:}\left] a_{i}, b_{i}[\mid i \in I\}\right. L L LL 的成对不相交子区间的家族,每个 T i T i T_(i)T_{i} 为区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上的 t t tt -范数。那么序数和 T T TT 由以下公式给出:
T ( x , y ) = { T i ( x , y ) , x , y [ a i , b i ] x y , otherwise T ( x , y ) = T i ( x , y ) ,      x , y a i , b i x y ,       otherwise  T(x,y)={[T_(i)(x","y)",",x","y in[a_(i),b_(i)]],[x^^y","," otherwise "]:}T(x, y)= \begin{cases}T_{i}(x, y), & x, y \in\left[a_{i}, b_{i}\right] \\ x \wedge y, & \text { otherwise }\end{cases}
However, as shown in [19], the binary operation T T TT may fail to be associative because in a lattice there may be incomparable elements with the endpoints of the involved subintervals. Accordingly, Saminger’s ordinal sum of t -
然而,如[19]所示,二元运算 T T TT 可能不满足结合律,因为在一个格中,可能存在与所涉及子区间的端点不可比较的元素。因此,Saminger 的序数和 t -
norms does not always yield a t-norm even if only one summand is involved [14,19]. Therefore, it is not trivial to construct a t-norm which is the ordinal sum of a family of t t tt-norms on the intervals in a bounded poset.
规范并不总是产生 t-规范,即使只涉及一个加数 [14,19]。因此,构造一个在有界偏序集的区间上是一组 t t tt -规范的序和的 t-规范并不是微不足道的。
Roughly speaking, the aim of constructing the ordinal sum of the family T i T i T_(i)T_{i} is to find a t-norm defined globally on the poset L L LL which coincides with each T i T i T_(i)T_{i} on [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] locally. When the index set I I II is finite and the endpoints of the intervals form a chain, it is shown that the t-norm defined globally on the bounded meet semi-lattice L L LL does always exist [8]. Moreover, for the index set Z Z Z\mathbb{Z} consisting of all integral numbers, if the endpoints of all intervals [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] form a chain such that b i a i + 1 b i a i + 1 b_(i) <= a_(i+1)b_{i} \leq a_{i+1} for all i Z i Z i inZi \in \mathbb{Z}, it is shown that the global t-norm on L L LL always exists whenever L L LL is a complete lattice [18]. Generally, the obtained t-norms on L L LL are different from the binary operation given by the Eq. (1).
粗略地说,构造家族 T i T i T_(i)T_{i} 的序和的目的是在偏序集 L L LL 上找到一个全局定义的 t-范数,该范数在局部上与每个 T i T i T_(i)T_{i} [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上重合。当索引集 I I II 是有限的,并且区间的端点形成一个链时,已证明在有界交半格 L L LL 上全局定义的 t-范数总是存在[8]。此外,对于由所有整数构成的索引集 Z Z Z\mathbb{Z} ,如果所有区间的端点 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 形成一个链,使得对于所有 i Z i Z i inZi \in \mathbb{Z} 都有 b i a i + 1 b i a i + 1 b_(i) <= a_(i+1)b_{i} \leq a_{i+1} ,则已证明在 L L LL 上的全局 t-范数总是存在,只要 L L LL 是一个完备格[18]。一般来说,在 L L LL 上获得的 t-范数与方程(1)给出的二元运算是不同的。
In this paper, for any given totally ordered index set I I II, our strategy is to collect all elements comparable with all the endpoints of the intervals [ a i , b i ] , i I a i , b i , i I [a_(i),b_(i)],i in I\left[a_{i}, b_{i}\right], i \in I. These elements form a subset C ¯ L C ¯ L bar(C)sube L\bar{C} \subseteq L, which contains each subinterval [ a i , b i ] , i I a i , b i , i I [a_(i),b_(i)],i in I\left[a_{i}, b_{i}\right], i \in I. Furthermore, the binary operation T T TT given by Eq. (1) is a t-norm on C ¯ C ¯ bar(C)\bar{C} indeed and coincides with each T i T i T_(i)T_{i} on [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] locally. Moreover, by aiding of the right adjoint of the inclusion map C ¯ L C ¯ L bar(C)↪L\bar{C} \hookrightarrow L (if it exists), one can extend the t-norm on C ¯ C ¯ bar(C)\bar{C} to the whole bounded meet semi-lattice L L LL.
在本文中,对于任何给定的全序索引集 I I II ,我们的策略是收集与区间 [ a i , b i ] , i I a i , b i , i I [a_(i),b_(i)],i in I\left[a_{i}, b_{i}\right], i \in I 的所有端点可比的所有元素。这些元素形成一个子集 C ¯ L C ¯ L bar(C)sube L\bar{C} \subseteq L ,其中包含每个子区间 [ a i , b i ] , i I a i , b i , i I [a_(i),b_(i)],i in I\left[a_{i}, b_{i}\right], i \in I 。此外,由公式(1)给出的二元运算 T T TT 确实是 C ¯ C ¯ bar(C)\bar{C} 上的一个 t-范数,并且在 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上与每个 T i T i T_(i)T_{i} 局部一致。此外,通过辅助包含映射 C ¯ L C ¯ L bar(C)↪L\bar{C} \hookrightarrow L 的右伴随(如果存在),可以将 t-范数从 C ¯ C ¯ bar(C)\bar{C} 扩展到整个有界交半格 L L LL
The content of this paper is organized as follows. In Section 2, we recall some basic notions of t-norms on bounded posets. In Section 3, we construct the ordinal sums of a family of triangular norms on a bounded meet semi-lattice, which are our main results. In Section 4, as applications of the main results, we include some examples of ordinal sums appearing in the literature.
本文的内容组织如下。在第二节中,我们回顾了有界偏序集上的 t-范数的一些基本概念。在第三节中,我们构造了有界交半格上三角范数族的序和,这是我们的主要结果。在第四节中,作为主要结果的应用,我们包括了一些文献中出现的序和的例子。

2. Preliminaries 2. 初步准备

In this section, we recall some basic notions of t-norms on bounded lattices.
在本节中,我们回顾有界格上的 t-范数的一些基本概念。

A poset P P PP is a nonempty set P P PP equipped with an order relation <=\leq (i.e., a reflexive, antisymmetric and transitive binary relation). A poset P P PP is called a totally ordered set, or a chain, if for all a , b P a , b P a,b in Pa, b \in P, it holds that either a b a b a <= ba \leq b or b a b a b <= ab \leq a. The principal ideals of a poset P P PP are the subsets x = { y P y x } x = { y P y x } darr x={y in P∣y <= x}\downarrow x=\{y \in P \mid y \leq x\}. The greatest lower bound of two element x x xx and y y yy is called the meet of x x xx and y y yy, denoted by x y x y x^^yx \wedge y. Dually, the least upper bound of two element of x x xx and y y yy is called the join of x x xx and y y yy, denoted by x y x y x vv yx \vee y. A poset L L LL is called a meet semi-lattice if any two elements x x xx and y y yy have a meet, and is called a lattice if any two elements x x xx and y y yy have both the meet and the join. For a , b L a , b L a,b in La, b \in L, we write a < b a < b a < ba<b for that a b a b a <= ba \leq b but a b a b a!=ba \neq b.
一个偏序集 P P PP 是一个非空集合 P P PP ,配备有一个顺序关系 <=\leq (即,一个自反、反对称和传递的二元关系)。如果对于所有 a , b P a , b P a,b in Pa, b \in P ,要么 a b a b a <= ba \leq b ,要么 b a b a b <= ab \leq a ,则称偏序集 P P PP 为全序集或链。偏序集 P P PP 的主理想是子集 x = { y P y x } x = { y P y x } darr x={y in P∣y <= x}\downarrow x=\{y \in P \mid y \leq x\} 。两个元素 x x xx y y yy 的最大下界称为 x x xx y y yy 的交,记作 x y x y x^^yx \wedge y 。对偶地,两个元素 x x xx y y yy 的最小上界称为 x x xx y y yy 的并,记作 x y x y x vv yx \vee y 。如果任何两个元素 x x xx y y yy 都有交,则称偏序集 L L LL 为交半格;如果任何两个元素 x x xx y y yy 都有交和并,则称为格。对于 a , b L a , b L a,b in La, b \in L ,我们写 a < b a < b a < ba<b 表示 a b a b a <= ba \leq b a b a b a!=ba \neq b
A poset P P PP is bounded if it has a top element, written as 1 , and a bottom element, written as 0 . Throughout this paper, unless otherwise stated, we always assume that L L LL is a bounded meet semi-lattice with the top element 1 and the bottom element 0 .
一个偏序集 P P PP 是有界的,如果它有一个上界元素,记作 1 ,以及一个下界元素,记作 0 。在本文中,除非另有说明,我们始终假设 L L LL 是一个有界的交半格,具有上界元素 1 和下界元素 0 。
Let L L LL be a meet semi-lattice, a , b L a , b L a,b in La, b \in L and a b a b a <= ba \leq b. The subinterval [ a , b ] [ a , b ] [a,b][a, b] is defined as
L L LL 成为一个交会半格, a , b L a , b L a,b in La, b \in L a b a b a <= ba \leq b 。子区间 [ a , b ] [ a , b ] [a,b][a, b] 定义为
[ a , b ] =: { x L a x b } [ a , b ] =: { x L a x b } [a,b]=:{x in L∣a <= x <= b}[a, b]=:\{x \in L \mid a \leq x \leq b\}
and ] a , b [ ] a , b [ ]a,b[] a, b[ is defined as
] a , b [ ] a , b [ ]a,b[] a, b[ 被定义为
] a , b [ =: { x L a < x < b } . ] a , b [ =: { x L a < x < b } . ]a,b[=:{x in L∣a < x < b}.] a, b[=:\{x \in L \mid a<x<b\} .
Two subintervals [ a , b ] [ a , b ] [a,b][a, b] and [ c , d ] [ c , d ] [c,d][c, d] are said to be non-overlapped if ] a , b [ ] c , d [ = ] a , b [ ] c , d [ = ]a,b[nn]c,d[=O/] a, b[\cap] c, d[=\emptyset.
两个子区间 [ a , b ] [ a , b ] [a,b][a, b] [ c , d ] [ c , d ] [c,d][c, d] 被称为不重叠,如果 ] a , b [ ] c , d [ = ] a , b [ ] c , d [ = ]a,b[nn]c,d[=O/] a, b[\cap] c, d[=\emptyset

Obviously, [ a , b ] [ a , b ] [a,b][a, b] is a bounded meet semi-lattice with the top element b b bb and the bottom element a a aa.
显然, [ a , b ] [ a , b ] [a,b][a, b] 是一个有界的交半格,顶元素是 b b bb ,底元素是 a a aa

Definition 2.1 ([6]). Let P P PP be a bounded poset. A binary operation T : P 2 P T : P 2 P T:P^(2)longrightarrow PT: P^{2} \longrightarrow P is called a triangular norm (or a t-norm for short) on P P PP, if for all x , y , z P x , y , z P x,y,z in Px, y, z \in P, it satisfies the following four properties:
定义 2.1 ([6])。设 P P PP 为一个有界偏序集。二元运算 T : P 2 P T : P 2 P T:P^(2)longrightarrow PT: P^{2} \longrightarrow P 称为三角范数(或简称 t-范数),如果对于所有 x , y , z P x , y , z P x,y,z in Px, y, z \in P ,它满足以下四个性质:

(1) T ( x , y ) = T ( y , x ) T ( x , y ) = T ( y , x ) T(x,y)=T(y,x)T(x, y)=T(y, x) (commutativity);
(1) T ( x , y ) = T ( y , x ) T ( x , y ) = T ( y , x ) T(x,y)=T(y,x)T(x, y)=T(y, x) (交换律);

(2) T ( x , y ) T ( x , z ) T ( x , y ) T ( x , z ) T(x,y) <= T(x,z)T(x, y) \leq T(x, z), if y z y z y <= zy \leq z (increasingness);
(2) T ( x , y ) T ( x , z ) T ( x , y ) T ( x , z ) T(x,y) <= T(x,z)T(x, y) \leq T(x, z) ,如果 y z y z y <= zy \leq z (递增性);

(3) T ( x , T ( y , z ) ) = T ( T ( x , y ) , z ) T ( x , T ( y , z ) ) = T ( T ( x , y ) , z ) T(x,T(y,z))=T(T(x,y),z)T(x, T(y, z))=T(T(x, y), z) (associativity);
(3) T ( x , T ( y , z ) ) = T ( T ( x , y ) , z ) T ( x , T ( y , z ) ) = T ( T ( x , y ) , z ) T(x,T(y,z))=T(T(x,y),z)T(x, T(y, z))=T(T(x, y), z) (结合性);

(4) T ( x , 1 ) = T ( 1 , x ) = x T ( x , 1 ) = T ( 1 , x ) = x T(x,1)=T(1,x)=xT(x, 1)=T(1, x)=x (neutrality). (4) T ( x , 1 ) = T ( 1 , x ) = x T ( x , 1 ) = T ( 1 , x ) = x T(x,1)=T(1,x)=xT(x, 1)=T(1, x)=x (中立性)。
For a bounded poset P P PP, there is a t -norm, called the drastic product t -norm:
对于一个有界的偏序集 P P PP ,存在一种 t-范数,称为剧烈乘积 t-范数:
T D ( x , y ) = { x y if 1 { x , y } 0 otherwise T D ( x , y ) = x y       if  1 { x , y } 0       otherwise  T_(D)(x,y)={[x^^y," if "1in{x","y}],[0," otherwise "]:}T_{D}(x, y)= \begin{cases}x \wedge y & \text { if } 1 \in\{x, y\} \\ 0 & \text { otherwise }\end{cases}
The drastic product T D T D T_(D)T_{D} is the smallest t-norm on P P PP under the pointwise order. If P P PP is a bounded meet semi-lattice, the binary operation ^^\wedge becomes a t-norm, denoted by T M T M T_(M)T_{M}. In this case, T M T M T_(M)T_{M} is the largest t -norm on P P PP under the pointwise order.
剧烈乘积 T D T D T_(D)T_{D} 是在点序下对 P P PP 的最小 t-范数。如果 P P PP 是一个有界交半格,则二元运算 ^^\wedge 变成一个 t-范数,记作 T M T M T_(M)T_{M} 。在这种情况下, T M T M T_(M)T_{M} 是在点序下对 P P PP 的最大 t-范数。
In the fuzzy set theory, the unit interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] consisting of real numbers plays the fundamental role among the bounded posets. The t-norm T M T M T_(M)T_{M} on the unit interval [0,1] is often called the Gödel t-norm. There are another two basic continuous t-norms T P T P T_(P)T_{P} and T E T E T_(E)T_{\mathrm{E}} on the unit interval:
在模糊集理论中,由实数组成的单位区间 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 在有界偏序集中发挥着基础作用。单位区间[0,1]上的 t-范数 T M T M T_(M)T_{M} 通常被称为哥德尔 t-范数。单位区间上还有另外两个基本的连续 t-范数 T P T P T_(P)T_{P} T E T E T_(E)T_{\mathrm{E}}
  • the product t-norm: T P ( x , y ) = x y T P ( x , y ) = x y T_(P)(x,y)=x*yT_{P}(x, y)=x \cdot y.
    产品 t-norm: T P ( x , y ) = x y T P ( x , y ) = x y T_(P)(x,y)=x*yT_{P}(x, y)=x \cdot y
  • the Łukasiewicz t-norm: T Ł ( x , y ) = max { x + y 1 , 0 } T Ł ( x , y ) = max { x + y 1 , 0 } T_(Ł)(x,y)=max{x+y-1,0}T_{\mathrm{Ł}}(x, y)=\max \{x+y-1,0\}Ł.
    Łukasiewicz t-范数: T Ł ( x , y ) = max { x + y 1 , 0 } T Ł ( x , y ) = max { x + y 1 , 0 } T_(Ł)(x,y)=max{x+y-1,0}T_{\mathrm{Ł}}(x, y)=\max \{x+y-1,0\}Ł
Given a family of pairwise disjoint open intervals ] a i , e i [ i I } a i , e i [ i I } ]a_(i),e_(i)[∣i in I}:}\left] a_{i}, e_{i}[\mid i \in I\}\right. in the unit interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] and for all i I i I i in Ii \in I, there is a t-norm T i T i T_(i)T_{i} on [ a i , e i a i , e i a_(i),e_(i)a_{i}, e_{i} ], one can constitute a t-norm T T TT as follows [13].
给定单位区间 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 中的一组成对不相交的开区间 ] a i , e i [ i I } a i , e i [ i I } ]a_(i),e_(i)[∣i in I}:}\left] a_{i}, e_{i}[\mid i \in I\}\right. ,对于所有 i I i I i in Ii \in I ,在[ a i , e i a i , e i a_(i),e_(i)a_{i}, e_{i} ]上存在一个 t-范数 T i T i T_(i)T_{i} ,可以如下构造 t-范数 T T TT [13]。
T ( x , y ) = { T i ( x , y ) if ( x , y ) [ a i , e i ] 2 x y otherwise. T ( x , y ) = T i ( x , y )       if  ( x , y ) a i , e i 2 x y       otherwise.  T(x,y)={[T_(i)(x","y)," if "(x","y)in[a_(i),e_(i)]^(2)],[x^^y," otherwise. "]:}T(x, y)= \begin{cases}T_{i}(x, y) & \text { if }(x, y) \in\left[a_{i}, e_{i}\right]^{2} \\ x \wedge y & \text { otherwise. }\end{cases}
The binary operation T T TT is called the ordinal sums of the family { T i : i I } T i : i I {T_(i):i in I}\left\{T_{i}: i \in I\right\}.
二元运算 T T TT 称为家族 { T i : i I } T i : i I {T_(i):i in I}\left\{T_{i}: i \in I\right\} 的序数和。

In this paper, we focus on the question: given a meet semi-lattice L L LL and a family of pairwise non-overlapped intervals { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\}, where I I II is a chain such that b i a j b i a j b_(i) <= a_(j)b_{i} \leq a_{j} whenever i j i j i <= ji \leq j, and a t -norm T i T i T_(i)T_{i} on each interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right], can one obtain an ordinal sum of the family { T i i I } T i i I {T_(i)∣i in I}\left\{T_{i} \mid i \in I\right\} ?
在本文中,我们关注的问题是:给定一个满足半格 L L LL 和一组成对不重叠的区间 { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\} ,其中 I I II 是一个链,当 b i a j b i a j b_(i) <= a_(j)b_{i} \leq a_{j} i j i j i <= ji \leq j ,以及在每个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上的 t-范数 T i T i T_(i)T_{i} ,是否可以获得该家族 { T i i I } T i i I {T_(i)∣i in I}\left\{T_{i} \mid i \in I\right\} 的序数和?

3. Main results 3. 主要结果

In this section, we always assume that L L LL is a bounded meet semi-lattice, I I II is a totally ordered index set and { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\} is a family of intervals in L L LL such that b i a j b i a j b_(i) <= a_(j)b_{i} \leq a_{j} whenever i j i j i <= ji \leq j, that is, the family { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\} is pairwise non-overlapped.
在本节中,我们始终假设 L L LL 是一个有界的交会半格, I I II 是一个全序的索引集, { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\} L L LL 中的一组区间,使得 b i a j b i a j b_(i) <= a_(j)b_{i} \leq a_{j} 每当 i j i j i <= ji \leq j 时,即该家族 { [ a i , b i ] i I } a i , b i i I {[a_(i),b_(i)]∣i in I}\left\{\left[a_{i}, b_{i}\right] \mid i \in I\right\} 是成对不重叠的。
Clearly, the endpoints of all intervals [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] form a chain in L L LL, which is denoted by
显然,所有区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 的端点在 L L LL 中形成一个链,记作
C =: { a i i I } { b i i I } C =: a i i I b i i I C=:{a_(i)∣i in I}uu{b_(i)∣i in I}C=:\left\{a_{i} \mid i \in I\right\} \cup\left\{b_{i} \mid i \in I\right\}
Collect all the elements in L L LL which are comparable with all the elements in C C CC, one obtains a subset of L L LL, denoted by
收集所有在 L L LL 中与 C C CC 中所有元素可比较的元素,可以得到 L L LL 的一个子集,记作
C ¯ =: { x L for all c C , either x c or c x } C ¯ =: { x L  for all  c C ,  either  x c  or  c x } bar(C)=:{x in L∣" for all "c in C," either "x <= c" or "c <= x}\bar{C}=:\{x \in L \mid \text { for all } c \in C, \text { either } x \leq c \text { or } c \leq x\}
We claim that C ¯ C ¯ bar(C)\bar{C} satisfies the following properties:
我们声称 C ¯ C ¯ bar(C)\bar{C} 满足以下属性:
  • Both 0 and 1 are in C ¯ C ¯ bar(C)\bar{C}, and for all i I , [ a i , b i ] C ¯ i I , a i , b i C ¯ i in I,[a_(i),b_(i)]sube bar(C)i \in I,\left[a_{i}, b_{i}\right] \subseteq \bar{C}.
    0 和 1 都在 C ¯ C ¯ bar(C)\bar{C} 中,并且对于所有 i I , [ a i , b i ] C ¯ i I , a i , b i C ¯ i in I,[a_(i),b_(i)]sube bar(C)i \in I,\left[a_{i}, b_{i}\right] \subseteq \bar{C}
  • C ¯ = L C ¯ = L bar(C)=L\bar{C}=L whenever L L LL is totally ordered.
    C ¯ = L C ¯ = L bar(C)=L\bar{C}=L 每当 L L LL 完全有序时。
  • C ¯ C ¯ bar(C)\bar{C} is closed with respect to the infima and suprema existing in L L LL. Therefore, C ¯ C ¯ bar(C)\bar{C} is a meet sub-semi-lattice of L L LL. Moreover, if L L LL is a complete lattice, then C ¯ C ¯ bar(C)\bar{C} is also a complete sub-lattice of L L LL. In fact, given a family { x j j x j j {x_(j)∣j in:}\left\{x_{j} \mid j \in\right. J } C ¯ J } C ¯ J}sube bar(C)J\} \subseteq \bar{C} with x x xx being the supremum in L L LL, one has that x c j J , x j c x c j J , x j c x <= c Longleftrightarrow AA j in J,x_(j) <= cx \leq c \Longleftrightarrow \forall j \in J, x_{j} \leq c. Hence, if x c x c x≰cx \not \leq c, there is some j J j J j in Jj \in J such that x j c x j c x_(j)≰cx_{j} \not \leq c, that is, c x j c x j c <= x_(j)c \leq x_{j} since x j C ¯ x j C ¯ x_(j)in bar(C)x_{j} \in \bar{C}. It follows that c x j x c x j x c <= x_(j) <= xc \leq x_{j} \leq x and x C ¯ x C ¯ x in bar(C)x \in \bar{C} holds as desired. One can check the infimum inf j J x j inf j J x j i n f_(j in J)x_(j)\inf _{j \in J} x_{j} is also in C ¯ C ¯ bar(C)\bar{C} similarly.
    C ¯ C ¯ bar(C)\bar{C} L L LL 中关于下确界和上确界是闭合的。因此, C ¯ C ¯ bar(C)\bar{C} L L LL 的一个交半格。此外,如果 L L LL 是一个完备格,那么 C ¯ C ¯ bar(C)\bar{C} 也是 L L LL 的一个完备子格。实际上,给定一个家族 { x j j x j j {x_(j)∣j in:}\left\{x_{j} \mid j \in\right. J } C ¯ J } C ¯ J}sube bar(C)J\} \subseteq \bar{C} ,其中 x x xx L L LL 中的上确界,可以得出 x c j J , x j c x c j J , x j c x <= c Longleftrightarrow AA j in J,x_(j) <= cx \leq c \Longleftrightarrow \forall j \in J, x_{j} \leq c 。因此,如果 x c x c x≰cx \not \leq c ,则存在某个 j J j J j in Jj \in J 使得 x j c x j c x_(j)≰cx_{j} \not \leq c ,即 c x j c x j c <= x_(j)c \leq x_{j} ,因为 x j C ¯ x j C ¯ x_(j)in bar(C)x_{j} \in \bar{C} 。因此, c x j x c x j x c <= x_(j) <= xc \leq x_{j} \leq x x C ¯ x C ¯ x in bar(C)x \in \bar{C} 按所需成立。可以类似地检查下确界 inf j J x j inf j J x j i n f_(j in J)x_(j)\inf _{j \in J} x_{j} 也在 C ¯ C ¯ bar(C)\bar{C} 中。
The theorem in the below is a consequence of Proposition 5.2 in [19], but we check it here straightforwardly for the convenience of readers.
下面的定理是[19]中命题 5.2 的结果,但我们在这里直接检查它,以方便读者。
Theorem 3.1. Let T i T i T_(i)T_{i} be a t t tt-norm on [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] for all i I i I i in Ii \in I, then the ordinal sum T = { [ a i , b i ] , T i } i I : C ¯ 2 C ¯ T = a i , b i , T i i I : C ¯ 2 C ¯ T={(:[a_(i),b_(i)],T_(i):)}_(i in I): bar(C)^(2)longrightarrow bar(C)T=\left\{\left\langle\left[a_{i}, b_{i}\right], T_{i}\right\rangle\right\}_{i \in I}: \bar{C}^{2} \longrightarrow \bar{C} given by
定理 3.1. 设 T i T i T_(i)T_{i} 是对所有 i I i I i in Ii \in I [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上的 t t tt -范数,则由以下给出的序数和 T = { [ a i , b i ] , T i } i I : C ¯ 2 C ¯ T = a i , b i , T i i I : C ¯ 2 C ¯ T={(:[a_(i),b_(i)],T_(i):)}_(i in I): bar(C)^(2)longrightarrow bar(C)T=\left\{\left\langle\left[a_{i}, b_{i}\right], T_{i}\right\rangle\right\}_{i \in I}: \bar{C}^{2} \longrightarrow \bar{C}
T ¯ ( x , y ) = { T i ( x , y ) if x , y [ a i , b i ] x y otherwise T ¯ ( x , y ) = T i ( x , y )       if  x , y a i , b i x y       otherwise  bar(T)(x,y)={[T_(i)(x","y)," if "x","y in[a_(i),b_(i)]],[x^^y," otherwise "]:}\bar{T}(x, y)= \begin{cases}T_{i}(x, y) & \text { if } x, y \in\left[a_{i}, b_{i}\right] \\ x \wedge y & \text { otherwise }\end{cases}
is a t t tt-norm on C ¯ C ¯ bar(C)\bar{C}.
是一个 t t tt -范数在 C ¯ C ¯ bar(C)\bar{C} 上。
Proof. Firstly, one can easily see that T ¯ T ¯ bar(T)\bar{T} has the unit element 1 and it is commutative.
证明。首先,可以很容易地看到 T ¯ T ¯ bar(T)\bar{T} 具有单位元素 1,并且它是可交换的。

Secondly, we show that T ¯ T ¯ bar(T)\bar{T} is associative, that is, T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)( bar(T)(x,y),z)= bar(T)(x, bar(T)(y,z))\bar{T}(\bar{T}(x, y), z)=\bar{T}(x, \bar{T}(y, z)) for all x , y x , y x,yx, y and z z zz in C ¯ C ¯ bar(C)\bar{C}. We check it in the following cases:
其次,我们证明 T ¯ T ¯ bar(T)\bar{T} 是结合的,即对于所有 x , y x , y x,yx, y z z zz C ¯ C ¯ bar(C)\bar{C} 中都有 T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)( bar(T)(x,y),z)= bar(T)(x, bar(T)(y,z))\bar{T}(\bar{T}(x, y), z)=\bar{T}(x, \bar{T}(y, z)) 。我们在以下情况下进行检查:

(1) There is an interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] such that x , y , z [ a i , b i ] x , y , z a i , b i x,y,z in[a_(i),b_(i)]x, y, z \in\left[a_{i}, b_{i}\right]. The associativity of T ¯ T ¯ bar(T)\bar{T} immediately follows from the associativity of T i T i T_(i)T_{i}.
(1) 存在一个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 使得 x , y , z [ a i , b i ] x , y , z a i , b i x,y,z in[a_(i),b_(i)]x, y, z \in\left[a_{i}, b_{i}\right] T ¯ T ¯ bar(T)\bar{T} 的结合性直接来自于 T i T i T_(i)T_{i} 的结合性。

(2) There is an interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] including two elements, say x x xx and y y yy, but b i < z b i < z b_(i) < zb_{i}<z. One has that T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( T ¯ ( x , y ) , z ) = bar(T)( bar(T)(x,y),z)=\bar{T}(\bar{T}(x, y), z)= T ¯ ( T i ( x , y ) , z ) = T i ( x , y ) z = T i ( x , y ) = T ¯ ( x , y ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ T i ( x , y ) , z = T i ( x , y ) z = T i ( x , y ) = T ¯ ( x , y ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)(T_(i)(x,y),z)=T_(i)(x,y)^^z=T_(i)(x,y)= bar(T)(x,y)= bar(T)(x,y^^z)= bar(T)(x, bar(T)(y,z))\bar{T}\left(T_{i}(x, y), z\right)=T_{i}(x, y) \wedge z=T_{i}(x, y)=\bar{T}(x, y)=\bar{T}(x, y \wedge z)=\bar{T}(x, \bar{T}(y, z)).
(2)有一个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] ,包括两个元素,即 x x xx y y yy ,但 b i < z b i < z b_(i) < zb_{i}<z 。有一个 T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( T ¯ ( x , y ) , z ) = bar(T)( bar(T)(x,y),z)=\bar{T}(\bar{T}(x, y), z)= T ¯ ( T i ( x , y ) , z ) = T i ( x , y ) z = T i ( x , y ) = T ¯ ( x , y ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ T i ( x , y ) , z = T i ( x , y ) z = T i ( x , y ) = T ¯ ( x , y ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)(T_(i)(x,y),z)=T_(i)(x,y)^^z=T_(i)(x,y)= bar(T)(x,y)= bar(T)(x,y^^z)= bar(T)(x, bar(T)(y,z))\bar{T}\left(T_{i}(x, y), z\right)=T_{i}(x, y) \wedge z=T_{i}(x, y)=\bar{T}(x, y)=\bar{T}(x, y \wedge z)=\bar{T}(x, \bar{T}(y, z))

(3) There is an interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] including two elements, say x x xx and y y yy, but z < a i z < a i z < a_(i)z<a_{i}. One has that T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( T ¯ ( x , y ) , z ) = bar(T)( bar(T)(x,y),z)=\bar{T}(\bar{T}(x, y), z)= T ¯ ( T i ( x , y ) , z ) = T i ( x , y ) z = z = x z = T ¯ ( x , z ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ T i ( x , y ) , z = T i ( x , y ) z = z = x z = T ¯ ( x , z ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)(T_(i)(x,y),z)=T_(i)(x,y)^^z=z=x^^z= bar(T)(x,z)= bar(T)(x,y^^z)= bar(T)(x, bar(T)(y,z))\bar{T}\left(T_{i}(x, y), z\right)=T_{i}(x, y) \wedge z=z=x \wedge z=\bar{T}(x, z)=\bar{T}(x, y \wedge z)=\bar{T}(x, \bar{T}(y, z)).
(3)存在一个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] ,包括两个元素,即 x x xx y y yy ,但 z < a i z < a i z < a_(i)z<a_{i} 。有一个条件是 T ¯ ( T ¯ ( x , y ) , z ) = T ¯ ( T ¯ ( x , y ) , z ) = bar(T)( bar(T)(x,y),z)=\bar{T}(\bar{T}(x, y), z)= T ¯ ( T i ( x , y ) , z ) = T i ( x , y ) z = z = x z = T ¯ ( x , z ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) T ¯ T i ( x , y ) , z = T i ( x , y ) z = z = x z = T ¯ ( x , z ) = T ¯ ( x , y z ) = T ¯ ( x , T ¯ ( y , z ) ) bar(T)(T_(i)(x,y),z)=T_(i)(x,y)^^z=z=x^^z= bar(T)(x,z)= bar(T)(x,y^^z)= bar(T)(x, bar(T)(y,z))\bar{T}\left(T_{i}(x, y), z\right)=T_{i}(x, y) \wedge z=z=x \wedge z=\bar{T}(x, z)=\bar{T}(x, y \wedge z)=\bar{T}(x, \bar{T}(y, z))

(4) There is no interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] including any two of x , y x , y x,yx, y and z z zz. The associativity of T ¯ T ¯ bar(T)\bar{T} immediately follows from the associativity of the meet ^^\wedge.
(4)没有间隔 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] ,包括 x , y x , y x,yx, y z z zz 中的任何两个。 T ¯ T ¯ bar(T)\bar{T} 的结合性直接来自于交集 ^^\wedge 的结合性。
The proof of the associativity of T ¯ T ¯ bar(T)\bar{T} is finished.
T ¯ T ¯ bar(T)\bar{T} 的结合性证明已完成。

Thirdly, we show that T ¯ T ¯ bar(T)\bar{T} is increasing. Take x , y , z C ¯ x , y , z C ¯ x,y,z in bar(C)x, y, z \in \bar{C} such that y z y z y <= zy \leq z, and consider the following cases:
第三,我们证明 T ¯ T ¯ bar(T)\bar{T} 是递增的。取 x , y , z C ¯ x , y , z C ¯ x,y,z in bar(C)x, y, z \in \bar{C} 使得 y z y z y <= zy \leq z ,并考虑以下几种情况:

(1) All elements x , y x , y x,yx, y and z z zz lie in some interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right]. The increasingness of T ¯ T ¯ bar(T)\bar{T} immediately follows from the increasingness of T i T i T_(i)T_{i}.
(1) 所有元素 x , y x , y x,yx, y z z zz 都位于某个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 内。 T ¯ T ¯ bar(T)\bar{T} 的递增性直接源于 T i T i T_(i)T_{i} 的递增性。

(2) The elements x x xx and y y yy lie in some interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] but b i < z b i < z b_(i) < zb_{i}<z. One has that T ¯ ( x , y ) = T i ( x , y ) x = x z = T ¯ ( x , y ) = T i ( x , y ) x = x z = bar(T)(x,y)=T_(i)(x,y) <= x=x^^z=\bar{T}(x, y)=T_{i}(x, y) \leq x=x \wedge z= T ¯ ( x , z ) T ¯ ( x , z ) bar(T)(x,z)\bar{T}(x, z).
(2) 元素 x x xx y y yy 位于某个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] b i < z b i < z b_(i) < zb_{i}<z 。有 T ¯ ( x , y ) = T i ( x , y ) x = x z = T ¯ ( x , y ) = T i ( x , y ) x = x z = bar(T)(x,y)=T_(i)(x,y) <= x=x^^z=\bar{T}(x, y)=T_{i}(x, y) \leq x=x \wedge z= T ¯ ( x , z ) T ¯ ( x , z ) bar(T)(x,z)\bar{T}(x, z)

(3) The elements x x xx and z z zz lie in some interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] but y < a i y < a i y < a_(i)y<a_{i}. One has that T ¯ ( x , y ) = x y = y < a i T ¯ ( x , z ) T ¯ ( x , y ) = x y = y < a i T ¯ ( x , z ) bar(T)(x,y)=x^^y=y < a_(i) <= bar(T)(x,z)\bar{T}(x, y)=x \wedge y=y<a_{i} \leq \bar{T}(x, z).
(3) 元素 x x xx z z zz 位于某个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] y < a i y < a i y < a_(i)y<a_{i} 。有 T ¯ ( x , y ) = x y = y < a i T ¯ ( x , z ) T ¯ ( x , y ) = x y = y < a i T ¯ ( x , z ) bar(T)(x,y)=x^^y=y < a_(i) <= bar(T)(x,z)\bar{T}(x, y)=x \wedge y=y<a_{i} \leq \bar{T}(x, z)

(4) Neither y y yy nor z z zz lies in same interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] with x x xx. One has that T ¯ ( x , y ) = x y x z = T ¯ ( x , z ) T ¯ ( x , y ) = x y x z = T ¯ ( x , z ) bar(T)(x,y)=x^^y <= x^^z= bar(T)(x,z)\bar{T}(x, y)=x \wedge y \leq x \wedge z=\bar{T}(x, z).
(4) y y yy z z zz 都不在与 x x xx 相同的区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 内。可以得出 T ¯ ( x , y ) = x y x z = T ¯ ( x , z ) T ¯ ( x , y ) = x y x z = T ¯ ( x , z ) bar(T)(x,y)=x^^y <= x^^z= bar(T)(x,z)\bar{T}(x, y)=x \wedge y \leq x \wedge z=\bar{T}(x, z)
Thus, the binary operation T ¯ T ¯ bar(T)\bar{T} is increasing as desired.
因此,二元运算 T ¯ T ¯ bar(T)\bar{T} 是按预期增加的。

Therefore, the ordinal sum T ¯ T ¯ bar(T)\bar{T} is indeed a t-norm on C ¯ C ¯ bar(C)\bar{C}.
因此,序数和 T ¯ T ¯ bar(T)\bar{T} 确实是 C ¯ C ¯ bar(C)\bar{C} 上的 t-范数。

To extend the ordinal sum t-norms T ¯ T ¯ bar(T)\bar{T} on C ¯ C ¯ bar(C)\bar{C} to the bounded meet semi-lattice L L LL, we need recall the notions on Galois connections.
为了将序数和 t-范数 T ¯ T ¯ bar(T)\bar{T} C ¯ C ¯ bar(C)\bar{C} 扩展到有界交半格 L L LL ,我们需要回顾 Galois 连接的概念。
Let f : P Q f : P Q f:P longrightarrow Qf: P \longrightarrow Q and g : Q P g : Q P g:Q longrightarrow Pg: Q \longrightarrow P be a pair of maps between posets. We say that f f ff is left adjoint to g g gg, and g g gg is right adjoint to f f ff, if
f : P Q f : P Q f:P longrightarrow Qf: P \longrightarrow Q g : Q P g : Q P g:Q longrightarrow Pg: Q \longrightarrow P 成为偏序集之间的一对映射。我们说 f f ff g g gg 的左伴随,而 g g gg f f ff 的右伴随,如果
f ( x ) y x g ( y ) f ( x ) y x g ( y ) f(x) <= y Longleftrightarrow x <= g(y)f(x) \leq y \Longleftrightarrow x \leq g(y)
for all x P x P x in Px \in P and y Q y Q y in Qy \in Q. In this case, we say that the pair ( f , g ) ( f , g ) (f,g)(f, g) is a Galois connection (or an adjunction), written as f g f g f⊣gf \dashv g. We say that f f ff is the left adjoint and g g gg is the right adjoint.
对于所有 x P x P x in Px \in P y Q y Q y in Qy \in Q 。在这种情况下,我们说对偶 ( f , g ) ( f , g ) (f,g)(f, g) 是一个伽罗瓦连接(或附加),记作 f g f g f⊣gf \dashv g 。我们说 f f ff 是左伴随, g g gg 是右伴随。
Some basic properties of Galois connection are collected in the following proposition.
一些伽罗瓦连接的基本性质汇集在以下命题中。

Proposition 3.2 ([11]). Let f g : P Q f g : P Q f⊣g:P longrightarrow Qf \dashv g: P \longrightarrow Q be a Galois connection between posets P P PP and Q Q QQ, then the following properties hold.
命题 3.2 ([11])。设 f g : P Q f g : P Q f⊣g:P longrightarrow Qf \dashv g: P \longrightarrow Q 是偏序集 P P PP Q Q QQ 之间的伽罗瓦连接,则以下性质成立。

(1) x g f ( x ) x g f ( x ) x <= gf(x)x \leq g f(x) and f g ( y ) y f g ( y ) y fg(y) <= yf g(y) \leq y for all x P x P x in Px \in P and y Q y Q y in Qy \in Q.
(1) x g f ( x ) x g f ( x ) x <= gf(x)x \leq g f(x) f g ( y ) y f g ( y ) y fg(y) <= yf g(y) \leq y 对于所有 x P x P x in Px \in P y Q y Q y in Qy \in Q

(2) f ( x ) = f g f ( x ) , g ( y ) = g f g ( y ) f ( x ) = f g f ( x ) , g ( y ) = g f g ( y ) f(x)=fgf(x),g(y)=gfg(y)f(x)=f g f(x), g(y)=g f g(y) for all x P x P x in Px \in P and y Q y Q y in Qy \in Q.
(2) f ( x ) = f g f ( x ) , g ( y ) = g f g ( y ) f ( x ) = f g f ( x ) , g ( y ) = g f g ( y ) f(x)=fgf(x),g(y)=gfg(y)f(x)=f g f(x), g(y)=g f g(y) 对于所有 x P x P x in Px \in P y Q y Q y in Qy \in Q
Theorem 3.3 ([21]). Let P P PP and Q Q QQ be bounded posets, and g : P Q , d : Q P g : P Q , d : Q P g:P longrightarrow Q,d:Q longrightarrow Pg: P \longrightarrow Q, d: Q \longrightarrow P are order-preserving functions such that ( d , g ) ( d , g ) (d,g)(d, g) is a Galois connection. If T T TT is a t t tt-norm on Q Q QQ such that for all x , y P , T ( g ( x ) , g ( y ) ) g ( P ) { ω x , y P , T ( g ( x ) , g ( y ) ) g ( P ) { ω x,y in P,T(g(x),g(y))in g(P)uu{omega inx, y \in P, T(g(x), g(y)) \in g(P) \cup\{\omega \in Q ω g ( 0 ) } Q ω g ( 0 ) } Q∣omega <= g(0)}Q \mid \omega \leq g(0)\}, then the following binary operation T g : P 2 P T g : P 2 P T_(g):P^(2)longrightarrow PT_{g}: P^{2} \longrightarrow P is a t t tt-norm:
定理 3.3 ([21])。设 P P PP Q Q QQ 为有界偏序集, g : P Q , d : Q P g : P Q , d : Q P g:P longrightarrow Q,d:Q longrightarrow Pg: P \longrightarrow Q, d: Q \longrightarrow P 为保持顺序的函数,使得 ( d , g ) ( d , g ) (d,g)(d, g) 是一个 Galois 连接。如果 T T TT t t tt -范数,定义在 Q Q QQ 上,使得对于所有 x , y P , T ( g ( x ) , g ( y ) ) g ( P ) { ω x , y P , T ( g ( x ) , g ( y ) ) g ( P ) { ω x,y in P,T(g(x),g(y))in g(P)uu{omega inx, y \in P, T(g(x), g(y)) \in g(P) \cup\{\omega \in Q ω g ( 0 ) } Q ω g ( 0 ) } Q∣omega <= g(0)}Q \mid \omega \leq g(0)\} ,则以下二元运算 T g : P 2 P T g : P 2 P T_(g):P^(2)longrightarrow PT_{g}: P^{2} \longrightarrow P 是一个 t t tt -范数:
T g ( x , y ) = { d T ( g ( x ) , g ( y ) ) x 1 and y 1 x y x = 1 or y = 1 T g ( x , y ) = d T ( g ( x ) , g ( y ) )      x 1  and  y 1 x y      x = 1  or  y = 1 T_(g)(x,y)={[dT(g(x)","g(y)),x!=1" and "y!=1],[x^^y,x=1" or "y=1]:}T_{g}(x, y)= \begin{cases}d T(g(x), g(y)) & x \neq 1 \text { and } y \neq 1 \\ x \wedge y & x=1 \text { or } y=1\end{cases}
Recall that an order preserving map int: P P P P P longrightarrow PP \longrightarrow P is an interior operator on the poset P P PP if for all x P x P x in Px \in P,
回想一下,如果对于所有 x P x P x in Px \in P ,映射 int: P P P P P longrightarrow PP \longrightarrow P 是偏序集 P P PP 上的一个内部运算符,则它是一个保序映射
int x x , int ( int x ) = int x int x x , int ( int x ) = int x int x <= x,quad int(int x)=int x\operatorname{int} x \leq x, \quad \operatorname{int}(\operatorname{int} x)=\operatorname{int} x
Let int: P P P P P longrightarrow PP \longrightarrow P be an interior operator, then the inclusion map i : int ( P ) P i : int ( P ) P i:int(P)↪Pi: \operatorname{int}(P) \hookrightarrow P has a right adjoint g : P int ( P ) g : P int ( P ) g:P longrightarrow int(P)g: P \longrightarrow \operatorname{int}(P) given by g ( x ) = int ( x ) g ( x ) = int ( x ) g(x)=int(x)g(x)=\operatorname{int}(x) for all x P x P x in Px \in P. Conversely, given an inclusion map i : Q P i : Q P i:Q↪Pi: Q \hookrightarrow P with a right adjoint g : P Q g : P Q g:P longrightarrow Qg: P \longrightarrow Q, one can obtain an interior operator
让内点算子 P P P P P longrightarrow PP \longrightarrow P 为一个内部算子,则包含映射 i : int ( P ) P i : int ( P ) P i:int(P)↪Pi: \operatorname{int}(P) \hookrightarrow P 具有右伴随 g : P int ( P ) g : P int ( P ) g:P longrightarrow int(P)g: P \longrightarrow \operatorname{int}(P) ,其由 g ( x ) = int ( x ) g ( x ) = int ( x ) g(x)=int(x)g(x)=\operatorname{int}(x) 给出,对于所有 x P x P x in Px \in P 。反之,给定一个具有右伴随 g : P Q g : P Q g:P longrightarrow Qg: P \longrightarrow Q 的包含映射 i : Q P i : Q P i:Q↪Pi: Q \hookrightarrow P ,可以得到一个内部算子。
int : P P , int x = g ( i ( x ) ) = g ( x ) int : P P , int x = g ( i ( x ) ) = g ( x ) int:P longrightarrow P,int x=g(i(x))=g(x)\operatorname{int}: P \longrightarrow P, \operatorname{int} x=g(i(x))=g(x)
The following corollary generalizes Theorem 4.2 in [18] slightly.
以下推论稍微概括了[18]中的定理 4.2。

Corollary 3.4. Let L L LL be a bounded poset, M P M P M sube PM \subseteq P be the range of an interior operator int : P P P P P longrightarrow PP \longrightarrow P and V V VV be a a aa t-norm on M M MM. Then V V VV can be extended to P P PP via int, i.e., the binary operation T T TT on P P PP given by
推论 3.4. 设 L L LL 为一个有界偏序集, M P M P M sube PM \subseteq P 为内运算符 int : P P P P P longrightarrow PP \longrightarrow P 的范围, V V VV a a aa M M MM 上的 t-范数。那么 V V VV 可以通过 int 扩展到 P P PP ,即在 P P PP 上给出的二元运算 T T TT
T ( x , y ) = { V ( int ( x ) , int ( y ) ) x 1 and y 1 x y x = 1 or y = 1 T ( x , y ) = V ( int ( x ) , int ( y ) )      x 1  and  y 1 x y      x = 1  or  y = 1 T(x,y)={[V(int(x)","int(y)),x!=1" and "y!=1],[x^^y,x=1" or "y=1]:}T(x, y)= \begin{cases}V(\operatorname{int}(x), \operatorname{int}(y)) & x \neq 1 \text { and } y \neq 1 \\ x \wedge y & x=1 \text { or } y=1\end{cases}
is a t t tt-norm on P P PP.
是一个 t t tt -范数在 P P PP 上。

The inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L does have right adjoints in a wide sense, as shown in the below.
包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 在广义上确实具有右伴随,如下所示。

Theorem 3.5. Let L L LL be a bounded meet semi-lattice. Then the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint g : L g : L g:L longrightarrowg: L \longrightarrow C ¯ C ¯ bar(C)\bar{C} iffor all x L x L x in Lx \in L, the set
定理 3.5。设 L L LL 为一个有界交半格。那么包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 具有右伴随 g : L g : L g:L longrightarrowg: L \longrightarrow C ¯ C ¯ bar(C)\bar{C} ,如果对于所有 x L x L x in Lx \in L ,集合
M x = { x } { c C c x } M x = { x } { c C c x } M_(x)={x}uu{c in C∣c≰x}M_{x}=\{x\} \cup\{c \in C \mid c \not \leq x\}
has an infimum in L. In this case, g ( x ) = inf M x g ( x ) = inf M x g(x)=i n fM_(x)g(x)=\inf M_{x}. Moreover, if L L LL is a bounded lattice, the condition is also necessary.
在 L 中有一个下确界。在这种情况下, g ( x ) = inf M x g ( x ) = inf M x g(x)=i n fM_(x)g(x)=\inf M_{x} 。此外,如果 L L LL 是一个有界格,则该条件也是必要的。

Proof. Let g ( x ) g ( x ) g(x)g(x) be the infimum of the set M x M x M_(x)M_{x}. We show that g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} is a right adjoint of the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L, that is, for all x L x L x in Lx \in L and y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x). Since g ( x ) g ( x ) g(x)g(x) is a lower bound of M x M x M_(x)M_{x}, one has that g ( x ) x g ( x ) x g(x) <= xg(x) \leq x. If y g ( x ) y g ( x ) y <= g(x)y \leq g(x), then y g ( x ) x y g ( x ) x y <= g(x) <= xy \leq g(x) \leq x. Conversely, if y x y x y <= xy \leq x, then y c y c y <= cy \leq c for all c C c C c in Cc \in C with c x c x c≰xc \not \leq x, otherwise, c < y c < y c < yc<y implies that c < y x c < y x c < y <= xc<y \leq x, which is a contradiction. Therefore, y y yy is a lower bound of M x M x M_(x)M_{x} and y g ( x ) y g ( x ) y <= g(x)y \leq g(x) as desired.
证明。设 g ( x ) g ( x ) g(x)g(x) 为集合 M x M x M_(x)M_{x} 的下确界。我们证明 g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} 是包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 的右伴随,即对于所有 x L x L x in Lx \in L y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x) 。由于 g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} 的下界,因此有 g ( x ) x g ( x ) x g(x) <= xg(x) \leq x 。如果 y g ( x ) y g ( x ) y <= g(x)y \leq g(x) ,则 y g ( x ) x y g ( x ) x y <= g(x) <= xy \leq g(x) \leq x 。反之,如果 y x y x y <= xy \leq x ,则对于所有 c C c C c in Cc \in C c x c x c≰xc \not \leq x ,有 y c y c y <= cy \leq c ,否则, c < y c < y c < yc<y 意味着 c < y x c < y x c < y <= xc<y \leq x ,这是一种矛盾。因此, y y yy M x M x M_(x)M_{x} y g ( x ) y g ( x ) y <= g(x)y \leq g(x) 的下界,如所愿。
Suppose that L L LL is a bounded lattice and the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C}, that is, for all y C ¯ y C ¯ y in bar(C)y \in \bar{C} and x L , y g ( x ) y x x L , y g ( x ) y x x in L,y <= g(x)Longleftrightarrow y <= xx \in L, y \leq g(x) \Longleftrightarrow y \leq x. We check that g ( x ) g ( x ) g(x)g(x) is the infimum of M x M x M_(x)M_{x} in L L LL. Firstly, since g ( x ) g ( x ) g ( x ) g ( x ) g(x) <= g(x)g(x) \leq g(x), one has that g ( x ) x g ( x ) x g(x) <= xg(x) \leq x. Secondly, g ( x ) c g ( x ) c g(x) <= cg(x) \leq c for all c C c C c in Cc \in C with c c cxc \not x, otherwise, one has that c < g ( x ) x c < g ( x ) x c < g(x) <= xc<g(x) \leq x since c C c C c in Cc \in C, which is a contradiction. Thus, g ( x ) g ( x ) g(x)g(x) is a lower bound of M x M x M_(x)M_{x}. Thirdly, for any y L y L y in Ly \in L which is a lower bound of M x M x M_(x)M_{x}, y g ( x ) y g ( x ) y vv g(x)y \vee g(x) is also a lower bound of M x M x M_(x)M_{x}. Notice that for all c C , c x c C , c x c in C,c <= xc \in C, c \leq x implies that c g ( x ) g ( x ) y c g ( x ) g ( x ) y c <= g(x) <= g(x)vv yc \leq g(x) \leq g(x) \vee y. Hence, one has that y g ( x ) y g ( x ) y vv g(x)y \vee g(x) is also in C ¯ C ¯ bar(C)\bar{C}. So, one obtains that g ( x ) y g ( x ) g ( x ) y g ( x ) g(x)vv y <= g(x)g(x) \vee y \leq g(x) because y g ( x ) x y g ( x ) x y vv g(x) <= xy \vee g(x) \leq x and g g gg is a right adjoint of the inclusion map. Therefore, one has that y y g ( x ) g ( x ) y y g ( x ) g ( x ) y <= y vv g(x) <= g(x)y \leq y \vee g(x) \leq g(x), which implies that g ( x ) g ( x ) g(x)g(x) is the infimum of M x M x M_(x)M_{x} in L L LL.
假设 L L LL 是一个有界格,包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 有一个右伴随 g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} ,即对于所有 y C ¯ y C ¯ y in bar(C)y \in \bar{C} x L , y g ( x ) y x x L , y g ( x ) y x x in L,y <= g(x)Longleftrightarrow y <= xx \in L, y \leq g(x) \Longleftrightarrow y \leq x 。我们检查 g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} L L LL 中的下确界。首先,由于 g ( x ) g ( x ) g ( x ) g ( x ) g(x) <= g(x)g(x) \leq g(x) ,可以得出 g ( x ) x g ( x ) x g(x) <= xg(x) \leq x 。其次,对于所有 g ( x ) c g ( x ) c g(x) <= cg(x) \leq c ,当 c c cxc \not x 时, c C c C c in Cc \in C ,否则,由于 c C c C c in Cc \in C ,可以得出 c < g ( x ) x c < g ( x ) x c < g(x) <= xc<g(x) \leq x ,这与事实相矛盾。因此, g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} 的下界。第三,对于任何 y L y L y in Ly \in L ,它是 M x M x M_(x)M_{x} 的下界, y g ( x ) y g ( x ) y vv g(x)y \vee g(x) 也是 M x M x M_(x)M_{x} 的下界。注意,对于所有 c C , c x c C , c x c in C,c <= xc \in C, c \leq x ,这意味着 c g ( x ) g ( x ) y c g ( x ) g ( x ) y c <= g(x) <= g(x)vv yc \leq g(x) \leq g(x) \vee y 。因此,可以得出 y g ( x ) y g ( x ) y vv g(x)y \vee g(x) 也在 C ¯ C ¯ bar(C)\bar{C} 中。所以,可以得出 g ( x ) y g ( x ) g ( x ) y g ( x ) g(x)vv y <= g(x)g(x) \vee y \leq g(x) ,因为 y g ( x ) x y g ( x ) x y vv g(x) <= xy \vee g(x) \leq x g g gg 是包含映射的右伴随。因此,可以得出 y y g ( x ) g ( x ) y y g ( x ) g ( x ) y <= y vv g(x) <= g(x)y \leq y \vee g(x) \leq g(x) ,这意味着 g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} L L LL 中的下确界。
Corollary 3.6. Let L L LL be a complete lattice, that is, any subset of L L LL has an infimum, then the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint.
推论 3.6. 设 L L LL 是一个完备格,即 L L LL 的任何子集都有下确界,则包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 具有右伴随。
Corollary 3.7. Let L L LL be a bounded meet semi-lattice and C C CC be a well-ordered chain in L. Then for each x L x L x in Lx \in L, the set { c C c x } { c C c x } {c in C∣c≰x}\{c \in C \mid c \not \leq x\} has an minimum c x c x c_(x)c_{x} and x c x x c x x^^c_(x)x \wedge c_{x} is the infimum of M x M x M_(x)M_{x}. Therefore, the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint.
推论 3.7. 设 L L LL 为一个有界交半格, C C CC 为 L 中的一个良序链。那么对于每个 x L x L x in Lx \in L ,集合 { c C c x } { c C c x } {c in C∣c≰x}\{c \in C \mid c \not \leq x\} 有一个最小元素 c x c x c_(x)c_{x} ,并且 x c x x c x x^^c_(x)x \wedge c_{x} M x M x M_(x)M_{x} 的下确界。因此,包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 有一个右伴随。
Generally, the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L may fail to have a right adjoint as shown in the below.
一般来说,包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 可能没有右伴随,如下所示。

Example 3.8. Let L = { 0 } × [ 1 , 0 [ ( { 0 , 1 } × ] 0 , 1 ] ) L = { 0 } × [ 1 , 0 [ ( { 0 , 1 } × ] 0 , 1 ] ) L={0}xx[-1,0[uu({0,1}xx]0,1])L=\{0\} \times[-1,0[\cup(\{0,1\} \times] 0,1]), which is a subset of the plane R 2 R 2 R^(2)\mathbb{R}^{2}. For all points ( x , y ) ( x , y ) (x,y)(x, y) and ( x , y ) x , y (x^('),y^('))\left(x^{\prime}, y^{\prime}\right) in L L LL, define the partial order <=\leq by
例 3.8. 设 L = { 0 } × [ 1 , 0 [ ( { 0 , 1 } × ] 0 , 1 ] ) L = { 0 } × [ 1 , 0 [ ( { 0 , 1 } × ] 0 , 1 ] ) L={0}xx[-1,0[uu({0,1}xx]0,1])L=\{0\} \times[-1,0[\cup(\{0,1\} \times] 0,1]) 为平面 R 2 R 2 R^(2)\mathbb{R}^{2} 的一个子集。对于 L L LL 中的所有点 ( x , y ) ( x , y ) (x,y)(x, y) ( x , y ) x , y (x^('),y^('))\left(x^{\prime}, y^{\prime}\right) ,通过以下方式定义偏序 <=\leq
( x , y ) ( x , y ) x x and y y ( x , y ) x , y x x  and  y y (x,y) <= (x^('),y^('))Longleftrightarrow x <= x^(')" and "y <= y^(')(x, y) \leq\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x \leq x^{\prime} \text { and } y \leq y^{\prime}
then L L LL becomes a bounded lattice. Given a chain
然后 L L LL 变成一个有界格。给定一个链
C = { ( 0 , 1 n ) | n = 1 , 2 , 3 , } { ( 1 , 1 n ) | n = 1 , 2 , 3 , } C = 0 , 1 n n = 1 , 2 , 3 , 1 , 1 n n = 1 , 2 , 3 , C={(0,-(1)/(n))|n=1,2,3,cdots}uu{(1,(1)/(n))|n=1,2,3,cdots}C=\left\{\left.\left(0,-\frac{1}{n}\right) \right\rvert\, n=1,2,3, \cdots\right\} \cup\left\{\left.\left(1, \frac{1}{n}\right) \right\rvert\, n=1,2,3, \cdots\right\}
one obtains that 得到的是
C ¯ = { 0 } × [ 1 , 0 [ { 1 } × ] 0 , 1 ] C ¯ = { 0 } × [ 1 , 0 [ { 1 } × ] 0 , 1 ] bar(C)={0}xx[-1,0[uu{1}xx]0,1]\bar{C}=\{0\} \times[-1,0[\cup\{1\} \times] 0,1]
However, the inclusion i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has no right adjoint. In fact, take a point ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1) in L L LL, then one can see that
然而,包含 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 没有右伴随。实际上,取 L L LL 中的一个点 ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1) ,那么可以看出
M ( 0 , 1 ) = { ( 0 , 1 ) } { 1 } × { 1 n | n = 1 , 2 , 3 , } . M ( 0 , 1 ) = { ( 0 , 1 ) } { 1 } × 1 n n = 1 , 2 , 3 , . M_((0,1))={(0,1)}uu{1}xx{(1)/(n)|n=1,2,3,cdots}.M_{(0,1)}=\{(0,1)\} \cup\{1\} \times\left\{\left.\frac{1}{n} \right\rvert\, n=1,2,3, \cdots\right\} .
The lower bounds of M x M x M_(x)M_{x} form a set { 0 } × [ 1 , 0 [ { 0 } × 1 , 0 {0}xx[-1,0[:}\{0\} \times\left[-1,0\left[\right.\right., which has no greatest element, which implies that M ( 0 , 1 ) M ( 0 , 1 ) M_((0,1))M_{(0,1)} has no infimum in L L LL. Therefore, the inclusion map form C ¯ C ¯ bar(C)\bar{C} to L L LL has no right adjoint.
M x M x M_(x)M_{x} 的下界形成一个集合 { 0 } × [ 1 , 0 [ { 0 } × 1 , 0 {0}xx[-1,0[:}\{0\} \times\left[-1,0\left[\right.\right. ,该集合没有最大元素,这意味着 M ( 0 , 1 ) M ( 0 , 1 ) M_((0,1))M_{(0,1)} L L LL 中没有下确界。因此,从 C ¯ C ¯ bar(C)\bar{C} L L LL 的包含映射没有右伴随。
By the aid of the interior operator, or equivalently, the right adjoint of the inclusion map, one can extend the binary operator T ¯ T ¯ bar(T)\bar{T} on C ¯ C ¯ bar(C)\bar{C} to the whole meet semi-lattice L L LL.
通过内部算子的帮助,或者等价地,通过包含映射的右伴随,可以将二元算子 T ¯ T ¯ bar(T)\bar{T} C ¯ C ¯ bar(C)\bar{C} 上扩展到整个交会半格 L L LL
Theorem 3.9. Let L L LL be a bounded meet semi-lattice such that the inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C}, then the t t tt-norm T ¯ T ¯ bar(T)\bar{T} on C ¯ C ¯ bar(C)\bar{C} defined by Eq. (2) can be extended to a t t tt-norm T ^ T ^ widehat(T)\widehat{T} on L, given by
定理 3.9. 设 L L LL 是一个有界的交半格,且包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 有一个右伴随 g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} ,则在 C ¯ C ¯ bar(C)\bar{C} 上由公式 (2) 定义的 t t tt -范数 T ¯ T ¯ bar(T)\bar{T} 可以扩展为 L 上的 t t tt -范数 T ^ T ^ widehat(T)\widehat{T} ,其表达式为
T ^ ( x , y ) = { T ¯ ( g ( x ) , g ( y ) ) x 1 and y 1 x y x = 1 or y = 1 T ^ ( x , y ) = T ¯ ( g ( x ) , g ( y ) )      x 1  and  y 1 x y      x = 1  or  y = 1 widehat(T)(x,y)={[ bar(T)(g(x)","g(y)),x!=1" and "y!=1],[x^^y,x=1" or "y=1]:}\widehat{T}(x, y)= \begin{cases}\bar{T}(g(x), g(y)) & x \neq 1 \text { and } y \neq 1 \\ x \wedge y & x=1 \text { or } y=1\end{cases}

4. Examples 4. 示例

In this section, we collect some examples of t-norms on bounded meet semi-lattices in the literature which are constructed by the technique of ordinal sums.
在本节中,我们收集了一些文献中关于有界交半格的 t-范数的例子,这些例子是通过序数和的技术构造的。
Example 4.1. Let [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] be the unit interval and U U UU be an open set contained in [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1], then U = n = 1 ] a n , b n [ U = n = 1 a n , b n [ {:U=uuu_(n=1)^(oo)]a_(n),b_(n)[\left.U=\bigcup_{n=1}^{\infty}\right] a_{n}, b_{n}[ with ] a n , b n [ ] a m , b m [ = ] a n , b n [ ] a m , b m = ]a_(n),b_(n)[nn]a_(m),b_(m)[=O/:}] a_{n}, b_{n}[\cap] a_{m}, b_{m}\left[=\emptyset\right. whenever n m n m n!=mn \neq m. All the endpoints a n a n a_(n)a_{n} and b n b n b_(n)b_{n} form a chain C C CC in [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1]. Notice that, generally, a n a n a_(n)a_{n} need not has a processor and b n b n b_(n)b_{n} need not has a successor in the chain C C CC. For example, when U U UU is the complement of the Cantor set in [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1], it holds that for each n n nn, neither a n a n a_(n)a_{n} has a processor nor b n b n b_(n)b_{n} has a successor. If there is a t t tt-norm T n T n T_(n)T_{n} on each interval [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right], then C ¯ = [ 0 , 1 ] C ¯ = [ 0 , 1 ] bar(C)=[0,1]\bar{C}=[0,1] and the ordinal sum T ¯ T ¯ bar(T)\bar{T} defined in Theorem 3.1 coincides with the usual one in [13].
例 4.1. 设 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 为单位区间, U U UU 为包含在 [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 中的开集,则 U = n = 1 ] a n , b n [ U = n = 1 a n , b n [ {:U=uuu_(n=1)^(oo)]a_(n),b_(n)[\left.U=\bigcup_{n=1}^{\infty}\right] a_{n}, b_{n}[ ] a n , b n [ ] a m , b m [ = ] a n , b n [ ] a m , b m = ]a_(n),b_(n)[nn]a_(m),b_(m)[=O/:}] a_{n}, b_{n}[\cap] a_{m}, b_{m}\left[=\emptyset\right. 的情况下成立,前提是 n m n m n!=mn \neq m 。所有的端点 a n a n a_(n)a_{n} b n b n b_(n)b_{n} [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 中形成一个链 C C CC 。注意,通常情况下, a n a n a_(n)a_{n} 不一定有处理器, b n b n b_(n)b_{n} 在链 C C CC 中也不一定有后继。例如,当 U U UU [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1] 中的康托集的补集时,对于每个 n n nn ,既 a n a n a_(n)a_{n} 没有处理器,也 b n b n b_(n)b_{n} 没有后继。如果每个区间 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] 上有一个 t t tt -范数 T n T n T_(n)T_{n} ,那么 C ¯ = [ 0 , 1 ] C ¯ = [ 0 , 1 ] bar(C)=[0,1]\bar{C}=[0,1] 和定理 3.1 中定义的序数和 T ¯ T ¯ bar(T)\bar{T} 与 [13] 中的通常定义一致。
Dvořák and Holčapek [8] introduces the ordinal sum of t-norms on bounded meet semi-lattices which are join of subintervals with all endpoints of subintervals being a finite chain.
Dvořák 和 Holčapek [8] 介绍了有界交半格上 t-范数的序和,这些半格是子区间的并,所有子区间的端点构成一个有限链。
Example 4.2. Let L L LL be a bounded meet semi-lattice such that there is a chain 0 = b 0 < b 1 < < b n = 1 0 = b 0 < b 1 < < b n = 1 0=b_(0) < b_(1) < dots < b_(n)=10=b_{0}<b_{1}<\ldots<b_{n}=1 with L = i = 0 n 1 [ b i , b i + 1 ] L = i = 0 n 1 b i , b i + 1 L=uuu_(i=0)^(n-1)[b_(i),b_(i+1)]L=\bigcup_{i=0}^{n-1}\left[b_{i}, b_{i+1}\right]. If T i T i T_(i)T_{i} is a t-norm on [ b i , b i + 1 ] b i , b i + 1 [b_(i),b_(i+1)]\left[b_{i}, b_{i+1}\right] for i = 0 , , n 1 i = 0 , , n 1 i=0,dots,n-1i=0, \ldots, n-1, then the ordinal sum of t -norms T 0 , , T n 1 T 0 , , T n 1 T_(0),dots,T_(n-1)T_{0}, \ldots, T_{n-1} on L L LL are given by
例 4.2. 设 L L LL 为一个有界的交半格,且存在一个链 0 = b 0 < b 1 < < b n = 1 0 = b 0 < b 1 < < b n = 1 0=b_(0) < b_(1) < dots < b_(n)=10=b_{0}<b_{1}<\ldots<b_{n}=1 使得 L = i = 0 n 1 [ b i , b i + 1 ] L = i = 0 n 1 b i , b i + 1 L=uuu_(i=0)^(n-1)[b_(i),b_(i+1)]L=\bigcup_{i=0}^{n-1}\left[b_{i}, b_{i+1}\right] 。如果 T i T i T_(i)T_{i} [ b i , b i + 1 ] b i , b i + 1 [b_(i),b_(i+1)]\left[b_{i}, b_{i+1}\right] 上的 t-范数,适用于 i = 0 , , n 1 i = 0 , , n 1 i=0,dots,n-1i=0, \ldots, n-1 ,那么 t-范数的序和 T 0 , , T n 1 T 0 , , T n 1 T_(0),dots,T_(n-1)T_{0}, \ldots, T_{n-1} L L LL 上给出。
T ^ ( x , y ) = { T i ( x , y ) if x , y [ b i , b i + 1 [ x y otherwise T ^ ( x , y ) = T i ( x , y )       if  x , y b i , b i + 1 [ x y       otherwise  widehat(T)(x,y)={[T_(i)(x","y)," if "x","y in[b_(i),b_(i+1)[:}],[x^^y," otherwise "]:}\widehat{T}(x, y)= \begin{cases}T_{i}(x, y) & \text { if } x, y \in\left[b_{i}, b_{i+1}[ \right. \\ x \wedge y & \text { otherwise }\end{cases}
In this case, the chain C = { b 0 , b 1 , , b n } C = b 0 , b 1 , , b n C={b_(0),b_(1),cdots,b_(n)}C=\left\{b_{0}, b_{1}, \cdots, b_{n}\right\} is finite, hence, it is well ordered. Clearly, L = C ¯ L = C ¯ L= bar(C)L=\bar{C} and T ^ = T ¯ T ^ = T ¯ widehat(T)= bar(T)\widehat{T}=\bar{T}.
在这种情况下,链 C = { b 0 , b 1 , , b n } C = b 0 , b 1 , , b n C={b_(0),b_(1),cdots,b_(n)}C=\left\{b_{0}, b_{1}, \cdots, b_{n}\right\} 是有限的,因此它是良序的。显然, L = C ¯ L = C ¯ L= bar(C)L=\bar{C} T ^ = T ¯ T ^ = T ¯ widehat(T)= bar(T)\widehat{T}=\bar{T}

Ü. Ertuğrul et al. [9] and Dan et al. [5] provided the class of t-norms on bounded meet semi-lattices as a particular case of our construction, as the next examples shows.
Ü. Ertuğrul 等人 [9] 和 Dan 等人 [5] 将有界交半格上的 t-范数类作为我们构造的一个特例,正如下一个例子所示。
Example 4.3. Let L L LL be a bounded meet semi-lattice, and take a L { 0 , 1 } a L { 0 , 1 } a in L\\{0,1}a \in L \backslash\{0,1\}. One has two intervals [ 0 , a ] [ 0 , a ] [0,a][0, a] and [ a , 1 ] [ a , 1 ] [a,1][a, 1] equipped with two t-norms T 1 T 1 T_(1)T_{1} and T 2 T 2 T_(2)T_{2} respectively. In this case, C = { 0 , a , 1 } C = { 0 , a , 1 } C={0,a,1}C=\{0, a, 1\} and the set C ¯ = [ 0 , a ] [ a , 1 ] C ¯ = [ 0 , a ] [ a , 1 ] bar(C)=[0,a]uu[a,1]\bar{C}=[0, a] \cup[a, 1]. The inclusion map i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L has a right adjoint given by
例 4.3. 设 L L LL 为一个有界的交半格,并取 a L { 0 , 1 } a L { 0 , 1 } a in L\\{0,1}a \in L \backslash\{0,1\} 。有两个区间 [ 0 , a ] [ 0 , a ] [0,a][0, a] [ a , 1 ] [ a , 1 ] [a,1][a, 1] ,分别配备两个 t-范数 T 1 T 1 T_(1)T_{1} T 2 T 2 T_(2)T_{2} 。在这种情况下, C = { 0 , a , 1 } C = { 0 , a , 1 } C={0,a,1}C=\{0, a, 1\} 和集合 C ¯ = [ 0 , a ] [ a , 1 ] C ¯ = [ 0 , a ] [ a , 1 ] bar(C)=[0,a]uu[a,1]\bar{C}=[0, a] \cup[a, 1] 。包含映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 具有一个右伴随。
g ( x ) = { x if x [ a , 1 ] x a if x L [ a , 1 ] . g ( x ) = x       if  x [ a , 1 ] x a       if  x L [ a , 1 ] . g(x)={[x," if "x in[a","1]],[x^^a," if "x in L\\[a","1]].:}g(x)=\left\{\begin{array}{ll} x & \text { if } x \in[a, 1] \\ x \wedge a & \text { if } x \in L \backslash[a, 1] \end{array} .\right.
The ordinal sum T ^ : L 2 L T ^ : L 2 L widehat(T):L^(2)longrightarrow L\widehat{T}: L^{2} \longrightarrow L of T 1 T 1 T_(1)T_{1} and T 2 T 2 T_(2)T_{2} is given explicitly by
序数和 T ^ : L 2 L T ^ : L 2 L widehat(T):L^(2)longrightarrow L\widehat{T}: L^{2} \longrightarrow L T 1 T 1 T_(1)T_{1} T 2 T 2 T_(2)T_{2} 明确表示为
T ^ ( x , y ) = { T 1 ( a x , a y ) , a x , a ; T 2 ( x , y ) a x < 1 , a y < 1 ; a x a x , a y < 1 ; a y a y , a x < 1 ; x y x = 1 or y = 1 . T ^ ( x , y ) = T 1 ( a x , a y ) ,      a x , a ; T 2 ( x , y )      a x < 1 , a y < 1 ; a x      a x , a y < 1 ; a y      a y , a x < 1 ; x y      x = 1  or  y = 1 . widehat(T)(x,y)={[T_(1)(a^^x","a^^y)",",a≰x","ay;],[T_(2)(x","y),a <= x < 1","a <= y < 1;],[a^^x,axx","a <= y < 1;],[a^^y,a≰y","a <= x < 1;],[x^^y,x=1" or "y=1.]:}\widehat{T}(x, y)= \begin{cases}T_{1}(a \wedge x, a \wedge y), & a \not \leq x, a \not y ; \\ T_{2}(x, y) & a \leq x<1, a \leq y<1 ; \\ a \wedge x & a \not x x, a \leq y<1 ; \\ a \wedge y & a \not \leq y, a \leq x<1 ; \\ x \wedge y & x=1 \text { or } y=1 .\end{cases}
It can easily be shown that this t -norm coincides with the t -norm T T TT from Theorem 4 of [9].
可以很容易地证明,这个 t -范数与[9]中定理 4 的 t -范数 T T TT 一致。

Example 4.4. Let L L LL be a bounded meet semi-lattice, and a , b L { 0 , 1 } a , b L { 0 , 1 } a,b in L\\{0,1}a, b \in L \backslash\{0,1\} with a < b a < b a < ba<b. In this case, C ¯ = [ 0 , a ] [ a , b ] C ¯ = [ 0 , a ] [ a , b ] bar(C)=[0,a]uu[a,b]uu\bar{C}=[0, a] \cup[a, b] \cup [ b , 1 ] [ b , 1 ] [b,1][b, 1], let W W WW be a t-norm on [ a , b ] [ a , b ] [a,b][a, b]. The embedded mapping i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L have a right adjoint given by
例 4.4. 设 L L LL 为一个有界的交半格, a , b L { 0 , 1 } a , b L { 0 , 1 } a,b in L\\{0,1}a, b \in L \backslash\{0,1\} 具有 a < b a < b a < ba<b 。在这种情况下, C ¯ = [ 0 , a ] [ a , b ] C ¯ = [ 0 , a ] [ a , b ] bar(C)=[0,a]uu[a,b]uu\bar{C}=[0, a] \cup[a, b] \cup [ b , 1 ] [ b , 1 ] [b,1][b, 1] ,设 W W WW [ a , b ] [ a , b ] [a,b][a, b] 上的 t-范数。嵌入映射 i : C ¯ L i : C ¯ L i: bar(C)↪Li: \bar{C} \hookrightarrow L 具有一个右伴随,给出如下:
g ( x ) = { x if x [ b , 1 ] x b if x [ a , 1 ] [ b , 1 ] , x a if x L [ a , 1 ] g ( x ) = x       if  x [ b , 1 ] x b       if  x [ a , 1 ] [ b , 1 ] , x a       if  x L [ a , 1 ] g(x)={[x," if "x in[b","1]],[x^^b," if "x in[a","1]\\[b","1]","],[x^^a," if "x in L\\[a","1]]:}g(x)= \begin{cases}x & \text { if } x \in[b, 1] \\ x \wedge b & \text { if } x \in[a, 1] \backslash[b, 1], \\ x \wedge a & \text { if } x \in L \backslash[a, 1]\end{cases}
Then, the binary operation T ^ : L 2 L T ^ : L 2 L widehat(T):L^(2)longrightarrow L\widehat{T}: L^{2} \longrightarrow L is a t-norm defined as follows
然后,二元运算 T ^ : L 2 L T ^ : L 2 L widehat(T):L^(2)longrightarrow L\widehat{T}: L^{2} \longrightarrow L 被定义为以下的 t-范数
T ^ ( x , y ) = { W ( g ( x ) , g ( y ) ) if g ( x ) , g ( y ) [ a , b ] and 1 { x , y } x y if 1 { x , y } g ( x ) g ( y ) otherwise. T ^ ( x , y ) = W ( g ( x ) , g ( y ) )       if  g ( x ) , g ( y ) [ a , b ]  and  1 { x , y } x y       if  1 { x , y } g ( x ) g ( y )       otherwise.  widehat(T)(x,y)={[W(g(x)","g(y))," if "g(x)","g(y)in[a","b]" and "1!in{x","y}],[x^^y," if "1in{x","y}],[g(x)^^g(y)," otherwise. "]:}\widehat{T}(x, y)= \begin{cases}W(g(x), g(y)) & \text { if } g(x), g(y) \in[a, b] \text { and } 1 \notin\{x, y\} \\ x \wedge y & \text { if } 1 \in\{x, y\} \\ g(x) \wedge g(y) & \text { otherwise. }\end{cases}
It can easily be shown that this t -norm coincides with the t -norm T T TT from Theorem 3.3 of [5].
可以很容易地证明,这个 t -范数与[5]中定理 3.3 的 t -范数 T T TT 一致。

Example 4.5. Let L L LL be a bounded meet semi-lattice, { [ a n , b n ] n Z } a n , b n n Z {[a_(n),b_(n)]∣n inZ}\left\{\left[a_{n}, b_{n}\right] \mid n \in \mathbb{Z}\right\} be a family of intervals in L L LL with b n a n + 1 b n a n + 1 b_(n) <= a_(n+1)b_{n} \leq a_{n+1}. Given a family L n [ a n , b n ] , n Z L n a n , b n , n Z L_(n)sube[a_(n),b_(n)],n inZL_{n} \subseteq\left[a_{n}, b_{n}\right], n \in \mathbb{Z} with both a n L n a n L n a_(n)inL_(n)a_{n} \in L_{n} and b n L n b n L n b_(n)inL_(n)b_{n} \in L_{n} for all n Z n Z n inZn \in \mathbb{Z}, let
例 4.5. 设 L L LL 为一个有界的交半格, { [ a n , b n ] n Z } a n , b n n Z {[a_(n),b_(n)]∣n inZ}\left\{\left[a_{n}, b_{n}\right] \mid n \in \mathbb{Z}\right\} L L LL 中的一个区间族,满足 b n a n + 1 b n a n + 1 b_(n) <= a_(n+1)b_{n} \leq a_{n+1} 。给定一个族 L n [ a n , b n ] , n Z L n a n , b n , n Z L_(n)sube[a_(n),b_(n)],n inZL_{n} \subseteq\left[a_{n}, b_{n}\right], n \in \mathbb{Z} ,对于所有 n Z n Z n inZn \in \mathbb{Z} ,同时具有 a n L n a n L n a_(n)inL_(n)a_{n} \in L_{n} b n L n b n L n b_(n)inL_(n)b_{n} \in L_{n} ,设
L ~ = ( n Z [ 0 , a n ] ) ( n Z L n ) ( n Z [ b n , 1 ] ) L ~ = n Z 0 , a n n Z L n n Z b n , 1 widetilde(L)=(nnn_(n inZ)[0,a_(n)])uu(uuu_(n inZ)L_(n))uu(nnn_(n inZ)[b_(n),1])\widetilde{L}=\left(\bigcap_{n \in \mathbb{Z}}\left[0, a_{n}\right]\right) \cup\left(\bigcup_{n \in \mathbb{Z}} L_{n}\right) \cup\left(\bigcap_{n \in \mathbb{Z}}\left[b_{n}, 1\right]\right)
If L ~ L ~ widetilde(L)\widetilde{L} is the range of some interior operator on L L LL, then for each n Z , L n n Z , L n n inZ,L_(n)n \in \mathbb{Z}, L_{n} is clearly the range of some interior operator on the interval [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right], that is, the inclusion map L n [ a n , b n ] L n a n , b n L_(n)↪[a_(n),b_(n)]L_{n} \hookrightarrow\left[a_{n}, b_{n}\right] has a right adjoint. Thus, one can obtain a t-norm T ^ n T ^ n widehat(T)_(n)\widehat{T}_{n} on [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] by extending a given t -norm T n T n T_(n)T_{n} on L n L n L_(n)L_{n} through the right adjoint from [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] to L n L n L_(n)L_{n}.
如果 L ~ L ~ widetilde(L)\widetilde{L} 是某个内部算子的范围在 L L LL 上,那么对于每个 n Z , L n n Z , L n n inZ,L_(n)n \in \mathbb{Z}, L_{n} ,显然是区间 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] 上某个内部算子的范围,也就是说,包含映射 L n [ a n , b n ] L n a n , b n L_(n)↪[a_(n),b_(n)]L_{n} \hookrightarrow\left[a_{n}, b_{n}\right] 具有右伴随。因此,可以通过从 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] L n L n L_(n)L_{n} 的右伴随扩展给定的 t-范数 T n T n T_(n)T_{n} ,在 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] 上获得 t-范数 T ^ n T ^ n widehat(T)_(n)\widehat{T}_{n}
Define 定义
L ^ = ( n Z [ 0 , a n ] ) ( n Z [ a n , b n ] ) ( n Z [ b n , 1 ] ) , L ^ = n Z 0 , a n n Z a n , b n n Z b n , 1 , widehat(L)=(nnn_(n inZ)[0,a_(n)])uu(uuu_(n inZ)[a_(n),b_(n)])uu(nnn_(n inZ)[b_(n),1]),\widehat{L}=\left(\bigcap_{n \in \mathbb{Z}}\left[0, a_{n}\right]\right) \cup\left(\bigcup_{n \in \mathbb{Z}}\left[a_{n}, b_{n}\right]\right) \cup\left(\bigcap_{n \in \mathbb{Z}}\left[b_{n}, 1\right]\right),
then it is clear that L ~ L ^ L ~ L ^ widetilde(L)sube widehat(L)\widetilde{L} \subseteq \widehat{L}. Recall that the chain C C CC consisting of all endpoints of the intervals [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right]. One can see that
那么很明显 L ~ L ^ L ~ L ^ widetilde(L)sube widehat(L)\widetilde{L} \subseteq \widehat{L} 。回想一下链 C C CC 由所有区间的端点 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] 组成。可以看出
C ¯ = ( n Z [ 0 , a n ] ) ( n Z [ a n , b n ] [ b n , a n + 1 ] ) ( n Z [ b n , 1 ] ) C ¯ = n Z 0 , a n n Z a n , b n b n , a n + 1 n Z b n , 1 bar(C)=(nnn_(n inZ)[0,a_(n)])uu(uuu_(n inZ)[a_(n),b_(n)]uu[b_(n),a_(n+1)])uu(nnn_(n inZ)[b_(n),1])\bar{C}=\left(\bigcap_{n \in \mathbb{Z}}\left[0, a_{n}\right]\right) \cup\left(\bigcup_{n \in \mathbb{Z}}\left[a_{n}, b_{n}\right] \cup\left[b_{n}, a_{n+1}\right]\right) \cup\left(\bigcap_{n \in \mathbb{Z}}\left[b_{n}, 1\right]\right)
and L ^ = C ¯ L ^ = C ¯ widehat(L)= bar(C)\widehat{L}=\bar{C} if and only if for every n Z n Z n inZn \in \mathbb{Z}, the interval ] b n , a n + 1 [ ] b n , a n + 1 [ ]b_(n),a_(n+1)[] b_{n}, a_{n+1}[ in L L LL is empty. Thus, obviously, it holds that
并且 L ^ = C ¯ L ^ = C ¯ widehat(L)= bar(C)\widehat{L}=\bar{C} 当且仅当对于每个 n Z n Z n inZn \in \mathbb{Z} ,区间 ] b n , a n + 1 [ ] b n , a n + 1 [ ]b_(n),a_(n+1)[] b_{n}, a_{n+1}[ L L LL 中是空的。因此,显然,它成立。
L ~ L ^ C ¯ L ~ L ^ C ¯ widetilde(L)sube widehat(L)sube bar(C)\widetilde{L} \subseteq \widehat{L} \subseteq \bar{C}
and the both inclusion maps have a right adjoint.
并且这两个包含映射都有一个右伴随。

By Theorem 3.1, one obtains a t-norm T ¯ T ¯ bar(T)\bar{T} on C ¯ C ¯ bar(C)\bar{C},
根据定理 3.1,可以在 C ¯ C ¯ bar(C)\bar{C} 上获得一个 t-范数 T ¯ T ¯ bar(T)\bar{T}
T ¯ ( x , y ) = { T ^ n ( x , y ) if x , y [ a n , b n ] x y otherwise T ¯ ( x , y ) = T ^ n ( x , y )       if  x , y a n , b n x y       otherwise  bar(T)(x,y)={[ widehat(T)_(n)(x","y)," if "x","y in[a_(n),b_(n)]],[x^^y," otherwise "]:}\bar{T}(x, y)= \begin{cases}\widehat{T}_{n}(x, y) & \text { if } x, y \in\left[a_{n}, b_{n}\right] \\ x \wedge y & \text { otherwise }\end{cases}
which is the ordinal sum of the family of t-norms T ^ n T ^ n widehat(T)_(n)\widehat{T}_{n} on [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right]. One can check that the binary operation T ¯ T ¯ bar(T)\bar{T} is closed both in the set L ~ L ~ widetilde(L)\widetilde{L} and L ^ L ^ widehat(L)\widehat{L}, and coincides with the t-norm T ~ T ~ widetilde(T)\widetilde{T} on L ~ L ~ widetilde(L)\widetilde{L} defined in [18] (Theorem 4.1).
这是在 [ a n , b n ] a n , b n [a_(n),b_(n)]\left[a_{n}, b_{n}\right] 上对 t-范数家族 T ^ n T ^ n widehat(T)_(n)\widehat{T}_{n} 的序和。可以检查二元运算 T ¯ T ¯ bar(T)\bar{T} 在集合 L ~ L ~ widetilde(L)\widetilde{L} L ^ L ^ widehat(L)\widehat{L} 中都是封闭的,并且在文献[18]中定义的 L ~ L ~ widetilde(L)\widetilde{L} 上的 t-范数 T ~ T ~ widetilde(T)\widetilde{T} 是相同的(定理 4.1)。
Now we claim that the inclusion map from C ¯ C ¯ bar(C)\bar{C} to L L LL has a right adjoint g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} if and only if the infimum of M x M x M_(x)M_{x} exists in L L LL when a m a m a_(m)xa_{m} \not x for all m Z m Z m inZm \in \mathbb{Z}. We divide the proof of the sufficiency in three cases.
现在我们声称,从 C ¯ C ¯ bar(C)\bar{C} L L LL 的包含映射 g : L C ¯ g : L C ¯ g:L longrightarrow bar(C)g: L \longrightarrow \bar{C} 有一个右伴随当且仅当在 L L LL 中存在 M x M x M_(x)M_{x} 的下确界,当 a m a m a_(m)xa_{m} \not x 对所有 m Z m Z m inZm \in \mathbb{Z} 成立时。我们将充分性的证明分为三种情况。

(i) There is some n Z n Z n inZn \in \mathbb{Z} such that a m x a m x a_(m) <= xa_{m} \leq x (or b m x b m x b_(m) <= xb_{m} \leq x for all m < n m < n m < nm<n and b m b m b_(m)xb_{m} \not x (or a m + 1 x a m + 1 x a_(m+1)xxa_{m+1} \not x x ) for all m n m n m >= nm \geq n. Define g ( x ) = x b n g ( x ) = x b n g(x)=x^^b_(n)g(x)=x \wedge b_{n} (or g ( x ) = x a n + 1 g ( x ) = x a n + 1 g(x)=x^^a_(n+1)g(x)=x \wedge a_{n+1} ), one can see that g ( x ) g ( x ) g(x)g(x) is the infimum of M x M x M_(x)M_{x} and for all y C ¯ y C ¯ y in bar(C)y \in \bar{C}, y g ( x ) y x y g ( x ) y x y <= g(x)Longleftrightarrow y <= xy \leq g(x) \Longleftrightarrow y \leq x.
(i) 存在一些 n Z n Z n inZn \in \mathbb{Z} 使得 a m x a m x a_(m) <= xa_{m} \leq x (或 b m x b m x b_(m) <= xb_{m} \leq x 对所有 m < n m < n m < nm<n b m b m b_(m)xb_{m} \not x (或 a m + 1 x a m + 1 x a_(m+1)xxa_{m+1} \not x x ) 对所有 m n m n m >= nm \geq n 。定义 g ( x ) = x b n g ( x ) = x b n g(x)=x^^b_(n)g(x)=x \wedge b_{n} (或 g ( x ) = x a n + 1 g ( x ) = x a n + 1 g(x)=x^^a_(n+1)g(x)=x \wedge a_{n+1} ), 可以看出 g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} 的下确界,并且对所有 y C ¯ y C ¯ y in bar(C)y \in \bar{C} y g ( x ) y x y g ( x ) y x y <= g(x)Longleftrightarrow y <= xy \leq g(x) \Longleftrightarrow y \leq x

(ii) For all m Z , b m x m Z , b m x m inZ,b_(m) <= xm \in \mathbb{Z}, b_{m} \leq x. One has that M x = { x } M x = { x } M_(x)={x}M_{x}=\{x\} and x m Z [ b m , 1 ] x m Z b m , 1 x innnn_(m inZ)[b_(m),1]x \in \bigcap_{m \in \mathbb{Z}}\left[b_{m}, 1\right]. Thus, define g ( x ) = x g ( x ) = x g(x)=xg(x)=x and it is the infimum of M x M x M_(x)M_{x}. Clearly, one has that for all y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x).
(ii) 对于所有 m Z , b m x m Z , b m x m inZ,b_(m) <= xm \in \mathbb{Z}, b_{m} \leq x 。有 M x = { x } M x = { x } M_(x)={x}M_{x}=\{x\} x m Z [ b m , 1 ] x m Z b m , 1 x innnn_(m inZ)[b_(m),1]x \in \bigcap_{m \in \mathbb{Z}}\left[b_{m}, 1\right] 。因此,定义 g ( x ) = x g ( x ) = x g(x)=xg(x)=x ,它是 M x M x M_(x)M_{x} 的下确界。显然,对于所有 y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x) ,都有。

(iii) for all m Z , a m x m Z , a m x m inZ,a_(m)≰xm \in \mathbb{Z}, a_{m} \not \leq x. If inf M x M x M_(x)M_{x} exists in L L LL, then let g ( x ) = inf M x g ( x ) = inf M x g(x)=i n fM_(x)g(x)=\inf M_{x} and g ( x ) a m g ( x ) a m g(x) <= a_(m)g(x) \leq a_{m} for all m Z m Z m inZm \in \mathbb{Z}. One can see that g ( x ) g ( x ) g(x)g(x) lies in C ¯ C ¯ bar(C)\bar{C} and for all y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x).
(iii) 对于所有 m Z , a m x m Z , a m x m inZ,a_(m)≰xm \in \mathbb{Z}, a_{m} \not \leq x 。如果 inf M x M x M_(x)M_{x} 存在于 L L LL 中,则让 g ( x ) = inf M x g ( x ) = inf M x g(x)=i n fM_(x)g(x)=\inf M_{x} g ( x ) a m g ( x ) a m g(x) <= a_(m)g(x) \leq a_{m} 对于所有 m Z m Z m inZm \in \mathbb{Z} 。可以看出 g ( x ) g ( x ) g(x)g(x) 位于 C ¯ C ¯ bar(C)\bar{C} 中,并且对于所有 y C ¯ , y x y g ( x ) y C ¯ , y x y g ( x ) y in bar(C),y <= x Longleftrightarrow y <= g(x)y \in \bar{C}, y \leq x \Longleftrightarrow y \leq g(x)
To check the necessity, let g g gg be the right adjoint of the inclusion map from C ¯ C ¯ bar(C)\bar{C} to L L LL and x x xx be an element in L L LL such that each a m a m a_(m)xa_{m} \not x. Since g ( x ) x g ( x ) x g(x) <= xg(x) \leq x, one has that g ( x ) a m g ( x ) a m g(x) <= a_(m)g(x) \leq a_{m} for all m Z m Z m inZm \in \mathbb{Z}, otherwise, a m < g ( x ) x a m < g ( x ) x a_(m) < g(x) <= xa_{m}<g(x) \leq x for some a m a m a_(m)a_{m}, which is a contradiction. Thus, g ( x ) g ( x ) g(x)g(x) is a lower bounds of M x M x M_(x)M_{x}. Take a lower bound y y yy of M x M x M_(x)M_{x} in L L LL, then y y yy is already in C ¯ C ¯ bar(C)\bar{C} since y m Z [ 0 , a m ] y m Z 0 , a m y innnn_(m inZ)[0,a_(m)]y \in \bigcap_{m \in \mathbb{Z}}\left[0, a_{m}\right]. One can easily see that y g ( x ) y g ( x ) y <= g(x)y \leq g(x) and g ( x ) g ( x ) g(x)g(x) is the infimum of M x M x M_(x)M_{x} in L L LL.
为了检查必要性,设 g g gg 为从 C ¯ C ¯ bar(C)\bar{C} L L LL 的包含映射的右伴随, x x xx L L LL 中的一个元素,使得每个 a m a m a_(m)xa_{m} \not x 。由于 g ( x ) x g ( x ) x g(x) <= xg(x) \leq x ,可以得出对于所有 m Z m Z m inZm \in \mathbb{Z} ,都有 g ( x ) a m g ( x ) a m g(x) <= a_(m)g(x) \leq a_{m} ,否则,对于某些 a m a m a_(m)a_{m} ,有 a m < g ( x ) x a m < g ( x ) x a_(m) < g(x) <= xa_{m}<g(x) \leq x ,这就产生了矛盾。因此, g ( x ) g ( x ) g(x)g(x) M x M x M_(x)M_{x} 的下界。在 L L LL 中取 M x M x M_(x)M_{x} 的一个下界 y y yy ,那么 y y yy 已经在 C ¯ C ¯ bar(C)\bar{C} 中,因为 y m Z [ 0 , a m ] y m Z 0 , a m y innnn_(m inZ)[0,a_(m)]y \in \bigcap_{m \in \mathbb{Z}}\left[0, a_{m}\right] 。人们可以很容易地看到 y g ( x ) y g ( x ) y <= g(x)y \leq g(x) g ( x ) g ( x ) g(x)g(x) L L LL M x M x M_(x)M_{x} 的下确界。
Combining with the Theorem 3.15 in [18] and Theorem 3.5, one can see that the following three statements are equivalent:
结合文献[18]中的定理 3.15 和定理 3.5,可以看出以下三个陈述是等价的:

(1) the inclusion map L ~ ^ L L ~ ^ L widehat(widetilde(L))↪L\widehat{\widetilde{L}} \hookrightarrow L has a right adjoint;
包含映射 L ~ ^ L L ~ ^ L widehat(widetilde(L))↪L\widehat{\widetilde{L}} \hookrightarrow L 具有右伴随

(2) the inclusion map L ~ L L ~ L widetilde(L)↪L\widetilde{L} \hookrightarrow L has a right adjoint;
(2) 包含映射 L ~ L L ~ L widetilde(L)↪L\widetilde{L} \hookrightarrow L 具有右伴随

(3) the inclusion map C ¯ L C ¯ L bar(C)↪L\bar{C} \hookrightarrow L has a right adjoint.
(3) 包含映射 C ¯ L C ¯ L bar(C)↪L\bar{C} \hookrightarrow L 具有右伴随。
Therefore, when any one of the above three conditions holds, one can extend the both t-norms T ~ T ~ widetilde(T)\widetilde{T} and T ¯ T ¯ bar(T)\bar{T} to the whole meet semi-lattice L L LL through the right adjoint of the inclusion maps as in Theorem 3.3. It should be pointed out that the extension of T ~ T ~ widetilde(T)\widetilde{T} is exactly the one given in [18] (Theorem 4.3), which is less or equal to the extension of C ¯ C ¯ bar(C)\bar{C} given by Theorem 3.9.
因此,当上述三个条件中的任何一个成立时,可以通过包含映射的右伴随将两个 t-范数 T ~ T ~ widetilde(T)\widetilde{T} T ¯ T ¯ bar(T)\bar{T} 扩展到整个交半格 L L LL ,如定理 3.3 所示。需要指出的是, T ~ T ~ widetilde(T)\widetilde{T} 的扩展正是 [18] 中给出的(定理 4.3),它小于或等于定理 3.9 给出的 C ¯ C ¯ bar(C)\bar{C} 的扩展。

5. Conclusion 5. 结论

In a meet semi-lattice L L LL, given a family of pairwise non-overlapped intervals [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] with all endpoints a i a i a_(i)a_{i} and b i b i b_(i)b_{i} forming a chain and a t-norm T i T i T_(i)T_{i} on each interval [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right], we construct a global t-norm on L L LL which coincides with each T i T i T_(i)T_{i} on [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] locally. Our strategy is to collect all elements comparable with all the endpoints a i a i a_(i)a_{i} and b i b i b_(i)b_{i}. We obtain a subset C ¯ C ¯ bar(C)\bar{C} which is large enough to contain all given intervals [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right]. Moreover, the binary operation T T TT in Eq. (1) given by Saminger is a t -norm on C ¯ C ¯ bar(C)\bar{C}. By the aid of the right adjoint of the inclusion map i : C ¯ L i : C ¯ L i: bar(C)longrightarrow Li: \bar{C} \longrightarrow L, we extend the t -norm on C ¯ C ¯ bar(C)\bar{C} to the whole meet semi-lattice L L LL.
在一个交会半格 L L LL 中,给定一组成对不重叠的区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] ,其所有端点 a i a i a_(i)a_{i} b i b i b_(i)b_{i} 形成一个链,并且在每个区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上有一个 t-范数 T i T i T_(i)T_{i} ,我们构造一个在 L L LL 上的全局 t-范数,该范数在 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 上与每个 T i T i T_(i)T_{i} 局部一致。我们的策略是收集所有与所有端点 a i a i a_(i)a_{i} b i b i b_(i)b_{i} 可比的元素。我们获得一个子集 C ¯ C ¯ bar(C)\bar{C} ,该子集足够大,可以包含所有给定的区间 [ a i , b i ] a i , b i [a_(i),b_(i)]\left[a_{i}, b_{i}\right] 。此外,Saminger 在公式(1)中给出的二元运算 T T TT C ¯ C ¯ bar(C)\bar{C} 上的一个 t-范数。在包含映射 i : C ¯ L i : C ¯ L i: bar(C)longrightarrow Li: \bar{C} \longrightarrow L 的右伴随的帮助下,我们将 C ¯ C ¯ bar(C)\bar{C} 上的 t-范数扩展到整个交会半格 L L LL
Furthermore, by Proposition 5.2 in [19], collect all elements x L x L x in Lx \in L, such that for all i I i I i in Ii \in I,
此外,根据[19]中的命题 5.2,收集所有元素 x L x L x in Lx \in L ,使得对于所有 i I i I i in Ii \in I

(a) if x x xx is incomparable to a i a i a_(i)a_{i}, then it is incomparable to all u [ a i , b i [ u a i , b i [ u in[a_(i),b_(i)[:}u \in\left[a_{i}, b_{i}[\right.,
如果 x x xx a i a i a_(i)a_{i} 不可比,那么它与所有 u [ a i , b i [ u a i , b i [ u in[a_(i),b_(i)[:}u \in\left[a_{i}, b_{i}[\right. 也不可比

(b) if x x xx is incomparable to b i b i b_(i)b_{i}, then it is incomparable to all u ] a i , b i u a i , b i {:u in]a_(i),b_(i)\left.u \in\right] a_{i}, b_{i} ],
(b) 如果 x x xx b i b i b_(i)b_{i} 不可比较,那么它与所有 u ] a i , b i u a i , b i {:u in]a_(i),b_(i)\left.u \in\right] a_{i}, b_{i} 也不可比较

then we obtain a subset M M MM of L L LL, which contains C ¯ C ¯ bar(C)\bar{C} clearly. But it remains open to construct t-norms on L L LL by the aid of the set M M MM.
然后我们得到一个 L L LL 的子集 M M MM ,显然包含 C ¯ C ¯ bar(C)\bar{C} 。但是,利用集合 M M MM L L LL 上构造 t-范数仍然是一个未解决的问题。

Declaration of competing interest
竞争利益声明

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明,他们没有已知的竞争性财务利益或个人关系,这些关系可能会影响本文所报告的工作。

Data availability 数据可用性

No data was used for the research described in the article.
文章中描述的研究没有使用任何数据。

Acknowledgement 致谢

The authors acknowledge the reviewers and professor Hua-peng Zhang for their valuable suggestions, and acknowledge the support of National Natural Science Foundation of China (12171342).
作者感谢评审和张华鹏教授的宝贵建议,并感谢中国国家自然科学基金(12171342)的支持。

References 参考文献

[1] C. Alsina, M.J. Frank, B. Schweizer, Associative Function: Triangular Norms and Copulas, Word Scientific, 2006.
C. Alsina, M.J. Frank, B. Schweizer, 关联函数:三角范数与联合分布,世界科学,2006。

[2] G.D. Çaylı, On a new class of t-norms and t-conorms on bounded lattices, Fuzzy Sets Syst. 332 (2018) 129-143.
[2] G.D. Çaylı, 关于有界格上的一种新类 t-范数和 t-共范数, 模糊集系统. 332 (2018) 129-143.

[3] A.H. Clifford, Naturally totally ordered commutative semigroups, Am. J. Math. 76 (1954) 631-646.
[3] A.H. Clifford, 自然全序的交换半群, 美国数学杂志 76 (1954) 631-646.

[4] C.A. Drossos, Generalized t-norms, Fuzzy Sets Syst. 104 (1999) 53-59.
[4] C.A. Drossos, 广义 t-范数, 模糊集系统. 104 (1999) 53-59.

[5] Y. Dan, B. Hu, J. Qiao, New construction of t-norms and t-conorms on bounded lattices, Fuzzy Sets Syst. 395 (2020) 40-70.
[5] Y. Dan, B. Hu, J. Qiao, 在有界格上构造新的 t-范数和 t-共范数, 模糊集与系统. 395 (2020) 40-70.

[6] B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets Syst. 104 (1999) 61-75.
[6] B. De Baets, R. Mesiar, 产品格上的三角范数, 模糊集系统. 104 (1999) 61-75.

[7] G. De Cooman, E.E. Kerre, Order norms on bounded partially ordered sets, J. Fuzzy Math. 2 (1994) 281-310.
[7] G. De Cooman, E.E. Kerre, 有界偏序集上的序范数, J. Fuzzy Math. 2 (1994) 281-310.

[8] A. Dvořák, M. Holčapek, New construction of an ordinal sum of t-norms and t-conorms on bounded lattices, Inf. Sci. 515 (2020) 116-131.
[8] A. Dvořák, M. Holčapek, 有界格上的 t-范数和 t-共范数的序和的新构造,信息科学 515 (2020) 116-131。

[9] Ü. Ertuğrul, M. Yeşilyurt, Ordinal sums of triangular norms on bounded lattices, Inf. Sci. 517 (2020) 198-216.
[9] Ü. Ertuğrul, M. Yeşilyurt, 有界格上的三角范数的序和, 信息科学 517 (2020) 198-216.

[10] M. El-Zekey, Lattice-based sum of t-norms on bounded lattices, Fuzzy Sets Syst. 386 (2020) 60-76.
[10] M. El-Zekey, 有界格上的基于格的 t-范数的和, 模糊集系统. 386 (2020) 60-76.

[11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications, vol. 93, Cambridge University Press, Cambridge, 2003.
[11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, 连续格与域,数学及其应用百科全书,第 93 卷,剑桥大学出版社,剑桥,2003 年。

[12] S. Jenei, B. De Baets, On the direct decomposability of t-norms on product lattices, Fuzzy Sets Syst. 139 (2003) 699-707.
[12] S. Jenei, B. De Baets, 关于乘积格上 t-范数的直接可分解性, 模糊集系统. 139 (2003) 699-707.

[13] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.
[13] E.P. 克莱门特, R. 梅西亚尔, E. 帕普, 三角范数, 克鲁威尔, 多德雷赫特, 2000.

[14] J. Medina, Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices, Fuzzy Sets Syst. 202 (2012) 75-88.
[14] J. Medina, 描述有界格上何时序数和 t-范数是 t-范数, 模糊集系统. 202 (2012) 75-88.

[15] P.S. Mostert, A.L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. Math. 65 (1957) 117-143.
[15] P.S. Mostert, A.L. Shields, 关于带边界的紧流形上的半群结构, 数学年刊 65 (1957) 117-143.

[16] H. Nguyen, E. Walker, A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997.
[16] H. Nguyen, E. Walker, 模糊逻辑入门, CRC 出版社, 博卡拉顿, 1997.

[17] Y. Ouyang, H.-P. Zhang, B. De Baets, Ordinal sums of triangular norms on a bounded lattice, Fuzzy Sets Syst. 408 (2021) 1-12.
[17] Y. Ouyang, H.-P. Zhang, B. De Baets, 有界格上的三角范数的序和, 模糊集与系统. 408 (2021) 1-12.

[18] Y. Ouyang, H.-P. Zhang, Z. Wang, B. De Baets, On triangular norms representable as ordinal sums based on interior operators on a bounded meet semilattice, Fuzzy Sets Syst. 439 (2022) 89-101.
[18] Y. Ouyang, H.-P. Zhang, Z. Wang, B. De Baets, 关于可表示为基于有界交半格的内部算子的序和的三角范数, 模糊集系统. 439 (2022) 89-101.

[19] S. Saminger, On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets Syst. 157 (2006) 1403-1416.
[19] S. Saminger, 关于有界格上的三角范数的序数和,模糊集系统,157 (2006) 1403-1416。

[20] S. Saminger-Platz, E.P. Klement, R. Mesiar, On extensions of triangular norms on bounded lattices, Indag. Math. 19 (2008) 135-150.
[20] S. Saminger-Platz, E.P. Klement, R. Mesiar, 关于有界格上的三角范数的扩展, Indag. Math. 19 (2008) 135-150.

[21] D. Zhang, Triangular norms on partially ordered sets, Fuzzy Sets Syst. 153 (2005) 195-209.
[21] D. Zhang, 部分有序集上的三角范数, 模糊集系统. 153 (2005) 195-209.

    • Corresponding author. 通讯作者。
    E-mail addresses: hllai@scu.edu.cn (H. Lai), luoyang1125@126.com (Y. Luo).
    电子邮件地址:hllai@scu.edu.cn(H. Lai),luoyang1125@126.com(Y. Luo)。