Evaluation of surface coal mines reclaimed to different vegetation types and their stability in semi-arid areas
对不同植被类型恢复的地表煤矿及其在半干旱地区的稳定性进行评估
简介IF(5) 5.9SCI升级版 农林科学1区SCI基础版 农林科学1区SCI Q1Highlights
- •A method to identify the spatio-temporal growth dynamics of different vegetation.
一种识别不同植被时空生长动态的方法。 - •Spatio-temporal processes of vegetation changes were reconstructed at pixel level.
植被变化的时空过程在像素级别上被重建。 - •Evaluated vegetation restoration after reclamation combined with growth curves.
评估了与生长曲线相结合的复垦后植被恢复情况。 - •Predicted the temporal information and spatial pattern of stable reclamation effect.
预测了稳定复垦效果的时间信息和空间模式。
Abstract
在采矿区,植被恢复一直是土地复垦研究的重点,对于恢复被人类破坏的自然环境至关重要。不幸的是,土地复垦研究常常受到时间和空间数据不足的限制。利用卫星观测数据和云计算,本研究识别了中国最大露天煤矿——平朔露天矿区内各种植被复垦的时空动态。基于植被生长曲线,研究评估了复垦的当前影响。矿区在西南和东北形成了两个大和小的复垦区域,森林、草地和农田分别占总复垦面积的 15.79%、42.61%和 41.59%。大量复垦活动发生在 2010 年至 2015 年之间,复垦高峰出现在矿区的西南部,随后转移到矿区的东北部。历史上,森林复垦转向草地复垦,但自 2010 年以来,耕地复垦有所增加。 通过我们的研究,我们能够确定矿区森林土地、草地和农田的平均稳定时间分别为 6.50 年、5.42 年和 4.64 年。总的来看,50.54%的面积已达到复垦的稳定阶段,其中草地占稳定植被的 41.37%,农田占 41.93%,而森林土地仅占稳定植被的 16.70%。本研究采用简单易用的方法,提供适用于多种场景的信息,从而为区域发展和政策服务。
Keywords
1. Introduction
植被是陆地生态系统中最重要的组成部分之一。它不仅覆盖了全球近 70%的陆地表面(Arellano et al., 2015),而且也是自然界中最脆弱的元素之一(Dufour et al., 2019)。人类社会从植被在生态功能方面的表现中长期受益,例如缓解气候变化和保护生物多样性及水资源(Knoke et al., 2014,Onaindia et al., 2013,Strand et al., 2018)。然而,显而易见的是,由人类活动引起的土地覆盖变化是植被组成和多样性变化的重要因素(Bobbink et al., 2010,Walther et al., 2005)。极为令人担忧的是,以地表煤矿开采为代表的矿产生产通过大规模移除植被和土壤,对采矿生态系统造成了严重损害(Feng et al., 2019,Wang et al., 2022)。暴露在自然环境中的土地更容易受到侵蚀和化学物质释放等影响,这加剧了环境退化(Xiao et al., 2023)。 因此,恢复被开采的土地是必不可少的,以便它们能够维持健康状态,同时尽量减少因矿业活动对周围环境造成的影响。
事实上,矿灾后受损地表覆盖的恢复是一个长期的动态过程。一个再植被的生态系统必须经历一个成熟期,以便稳定并发挥作用(Guan et al., 2022),这个过程与区域的自然条件、复垦措施和不同植被的发展时间等因素密切相关(Fleisher and Hufford, 2020)。仅仅分析矿区植物覆盖的空间特征不足以将其恢复到最接近的采矿前状态。还需要对植物生长动态的知识,以便发现动态植被生长中可能出现的问题(Yuan et al., 2018)。当植物被允许继续发展、稳定和成熟时,可以确保恢复的土壤提供植物生长所需的养分、物理结构和化学条件(H. Li et al., 2022)。除此之外,发展时机和植被类型高度相关(Jiao et al., 2021,Xu et al., 2018)。 许多矿区与不同的植被种植区相关,这些复杂的植被类型提供了更广泛的生态系统服务,并且更难以完全恢复(Chen et al., 2018)。因此,矿区植被的复垦具有挑战性,关键是很难观察到矿区植被的快速变化。尤其是由于大面积土地被露天矿占用,已经破坏和干扰植被多年。
为了监测矿区复垦后植被的状态,出现了许多技术工具(Zhou et al., 2022)。早期研究通常采用现场采集土壤样本、植物生长状态调查、微生物群落特征分析和居民满意度调查等方法(Chasmer et al., 2018,Wang et al., 2021)。尽管上述方法可以帮助消除主观因素的影响,但通常需要大量的时间和精力。由于其局限性,它们无法考虑研究区域的大小,或量化植被生长的动态过程。通过使用遥感技术,可以监测植被复垦对环境的影响(Ren et al., 2022)。在过去十年中,包括 MODIS、Landsat 和 SPOT 在内的各种传感器平台已大量投入使用,收集了大量不同空间和时间分辨率的图像(Li et al., 2020,Pettorelli et al., 2014)。它被广泛用于检测采矿干扰和评估环境影响(Gastauer et al., 2018)。 这涉及评估来自多时相遥感数据的复垦效果,识别矿区干扰和复垦的时间和空间区域,并跟踪不同植被类型的复垦变化(Ren et al., 2021),以及识别复垦植被的恢复阶段(Feng et al., 2022)。在这些条件下进行的研究已证明在监测和描述矿山复垦效果方面的可靠性和有效性。
利用遥感监测植被恢复在今天蓬勃发展,这得益于时间序列分析算法的进步和 Google Earth Engine (GEE)的强大功能(Wang et al., 2020)。最近有几项研究支持在像素尺度上记录矿山恢复后植被的动态(He et al., 2021, Wang et al., 2021)。通过对 NDVI 时间轨迹的分析,这些研究识别了恢复后植被再生与采矿前植被水平之间的差异(J. Li et al., 2022)。还有一些研究利用时间序列影像和专门分析数据库识别了各种恢复植被类型的恢复周期和关键阶段(Guan et al., 2022, Han et al., 2022)。当前研究依赖于单一时间相位栅格数据之间的土地利用覆盖差异,这使得在植被恢复过程中准确表征生长动态变得困难。 因此,我们使用了图像元素级时间序列分析技术,并拟合了植被生长曲线动态,以提高表面采矿后植被恢复监测的效率和有效性。
我们打算通过一些努力在本研究中实现以下目标:(1)使用 LandTrendr 算法、CART 分类结合归一化差异植被指数(NDVI)分别识别采矿复垦区域和复垦后的植被类型(森林、草地和农田);(2)通过利用累积 NDVI(cumNDVI)的时间序列数据,可以逐像素识别不同类型的植被单元,考虑其空间分布、恢复周期和关键时间点;(3)中国最大的露天煤矿区域将作为研究对象,用于监测当前复垦后植被的恢复效果。
2. Study area and data sources
2.1. Study area
由于在半干旱地区的采矿区监测植被恢复困难,如果能够解决监测此类区域的问题,则可以应用于绝大多数采矿区,因此我们选择了一个典型的采矿区——平朔矿区。在这里,植被恢复的监测将基于对采矿干扰的识别。干扰将被定义为由于与采矿相关的活动导致的植被完全丧失。如图 1 所示,平朔矿区位于中国山西省北部,隶属于山西省朔州市。它是中国最大的煤炭集中开发区之一(Xu et al., 2021)。地理坐标为 112°16′20″- 112°30′32 “E 和 39°26′10″- 39°35′30 ”N。东西长 67.9 公里,南北宽 69.5 公里,总面积为 517.48 平方公里。该研究区域包括朔州市的三个区,即平鲁、朔城和山阴,位于黄土高原与北部土山之间的边界地区。 年平均降水量为 428.2–449.0 毫米,蒸发量为 1786.6–2598.0 毫米,其中 75%的降水发生在七月、八月和九月(K. Yang et al., 2022)。这种自然环境使得研究区的生态系统在恢复力方面较弱,土壤侵蚀严重,植被覆盖仅限。此外,长期的采矿作业和城镇建设显著改变了土地的覆盖和使用,导致已经脆弱的黄土高原生态严重恶化。该地区的土地利用管理长期以来关注采矿地点的环境退化以及采矿区的持续复垦。

Fig. 1. Schematic diagram of the geographical location. The study area is located in Shuozhou City, Shanxi Province, China.
3. Methodology
3.1. Data acquisition and preprocessing
这项研究包括覆盖研究区域的所有表面反射率图像(30米x 30米)。表面反射率数据由1987年至2021年期间的34幅时间序列Landsat TM/OLI图像组成,包括Landsat 5 TM、Landsat 7 ETM+和Landsat 8 OLI卫星。数据收集自美国地质调查局(USGS;https://glovis.usgs.gov/)并在GEE平台上处理。鉴于植被特征以及云和其他大气条件的干扰,所有图像都是在4月至9月拍摄的,云量低于10%(廖等人,2019)。为了校准Landsat 5、7和8图像的表面反射率的传感器辐射,使用了Landsat生态系统干扰自适应处理系统(LEDAPS)(Park等人,2020年)和Landsat表面反射率代码(LaSRC)(Myroniuk等人,2020年)。掩码函数(CFMASK)的C实现确定了暗示云、阴影、水和雪的重要像素数据质量标志信息(Stillinger等人,2019)。第2.3节对应于整个研究流程图的步骤2(图2),第2.3、2.4和2.5节分别对应于步骤2、3和4。

Fig. 2. Flow diagram of research.
3.2. LandTrendr for automatic extraction of variation areas
显然,露天煤矿开采和复垦事件主要导致表面植被和土壤的剥离,相关证据包含在各种遥感数据集中,这些数据集由卫星传感器监测。除了能够通过视觉解释获取关于采矿和复垦事件发生的空间和时间信息外,现在在技术上可行的是直接解释采矿区内任何像素的干扰信息。LandTrendr 算法作为一种技术,在矿区的干扰监测中被广泛使用,通过时间分段,我们可以确定何时何地发生干扰(Cohen et al., 2018)。LandTrendr 是一个简化算法,它倾听一个像素故事的年度、冗长、嘈杂细节,并写出一个摘要版本。在实践中,LandTrendr 从像素的光谱历史中获取单一视角,如一个波段或一个指数,并经历一个过程,以识别分隔持久变化或光谱轨迹稳定期的断点,并记录变化发生的年份。 使用 Landsat 图像(路径/行 092/076)和 LandTrendr,我们研究了 1986 年至 2021 年间平朔矿区的植被生长。目的是尽量减少物理和气候条件的变化、洪水或太阳几何变化的影响。先前关于采矿扰动和恢复的研究结果表明,正常参考区域的 NDVI 范围为 0.242 到 0.505,植被指数低于 0.116,而恢复的植被指数则在 0.145 到 0.494 之间(Yang et al., 2018)。在平朔露天煤矿和这一发现所创建的研究区域,半干旱区占主导地位。因此,我们通过聚合具有相同扰动特征的图像元素,使用 NDVI 的时间序列数据收集了平朔矿区的扰动特征。为了进行这项研究,我们将总扰动区域分为三类,即未扰动区域、扰动和恢复区域以及扰动未恢复区域。特别关注的是扰动和恢复区域的植被生长。
3.3. Vegetation classification using phenological index

Fig. 3. NDVI dynamic curves for monitoring different vegetation by phenology information.
3.4. Identification of reclamation stages based on CumNDVI

Fig. 4. Dynamic growth curves of vegetation and determination of thresholds. f(x) is the growth curve function of vegetation; f’(x) is the first-order derivative of the vegetation growth function to identify the growth turning point; f’’(x) is the second-order derivative of the vegetation growth function to identify the reclamation stage.
4. Results
4.1. Extraction of the reclaimed areas and vegetation

Fig. 5. Distribution of the reclaimed areas and vegetation and their amount structure.
4.2. Spatial and temporal patterns of vegetation change in reclaimed areas

Fig. 6. Spatial and temporal patterns of vegetation change in reclaimed areas for forest, grassland and cropland.

Fig. 7. Spatial and temporal change of vegetation amount in reclaimed areas for forest, grassland and cropland, The area is in square kilometers.
4.3. Monitoring the restoration of vegetation in the reclaimed areas

Fig. 8. Stabilization Phases in the vegetation growing season and years of stability for different vegetation. (a) shows the distribution of time spent in the stabilization phase, the legend represents the year; (b) shows the statistics of time spent at the pixel level for different vegetation types.
5. Discussion
5.1. Reliability of the reclamation phase division

Fig. 9. Statistics on the timing of stabilization cycles in different vegetation growing seasons.
5.2. Assessment of the time required for future vegetation stabilization

Fig. 10. Growth time of the three vegetation types as of 2021 and the time needed to reach steady state in the future. (a) (b) and (c) are the current growth times of forest, grassland and cropland in order, and the legend unit is year; (d) indicates the years it will take to reach a stable state of vegetation in the future.
5.3. Policy implications for land reclamation management
5.4. Limitations and prospects
6. Conclusion
CRediT authorship contribution statement
Declaration of competing interest
References
- Arellano et al., 2015Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite imagesEnviron. Pollut., 205 (2015), pp. 225-239, 10.1016/j.envpol.2015.05.041
- Bobbink et al., 2010Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesisEcol. Appl., 20 (2010), pp. 30-59, 10.1890/08-1140.1
- Chasmer et al., 2018Monitoring ecosystem reclamation recovery using optical remote sensing: comparison with field measurements and eddy covarianceSci. Total Environ., 642 (2018), pp. 436-446, 10.1016/j.scitotenv.2018.06.039
- Chen et al., 2018Reclamation strategies for mined forest soils and overstorey drive understorey vegetationJ. Appl. Ecol., 55 (2018), pp. 926-936, 10.1111/1365-2664.13018
- Chu et al., 2019NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015Sci. Total Environ., 650 (2019), pp. 2051-2062, 10.1016/j.scitotenv.2018.09.115
- Cohen et al., 2018A LandTrendr multispectral ensemble for forest disturbance detectionRemote Sens. Environ., 205 (2018), pp. 131-140, 10.1016/j.rse.2017.11.015
- Dufour et al., 2019Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing worldSci. Total Environ., 653 (2019), pp. 1168-1185, 10.1016/j.scitotenv.2018.10.383
- Feng et al., 2022Improving mine reclamation efficiency for farmland sustainable use: Insights from optimizing mining schemeJ. Clean. Prod., 379 (2022), Article 134615, 10.1016/j.jclepro.2022.134615
- Feng et al., 2019Effects of surface coal mining and land reclamation on soil properties: a reviewEarth Sci. Rev., 191 (2019), pp. 12-25, 10.1016/j.earscirev.2019.02.015
- Fleisher and Hufford, 2020Assessing habitat heterogeneity and vegetation outcomes of geomorphic and traditional linear-slope methods in post-mine reclamationJ. Environ. Manage., 255 (2020), Article 109854, 10.1016/j.jenvman.2019.109854
- Forkuor et al., 2020Mapping and monitoring small-scale mining activities in Ghana using Sentinel-1 time series (2015–2019)Remote Sens. (Basel), 12 (2020), p. 911, 10.3390/rs12060911
- Gastauer et al., 2018Mine land rehabilitation: modern ecological approaches for more sustainable miningJ. Clean. Prod., 172 (2018), pp. 1409-1422, 10.1016/j.jclepro.2017.10.223
- Guan et al., 2022Identification of land reclamation stages based on succession characteristics of rehabilitated vegetation in the Pingshuo opencast coal mineJ. Environ. Manage., 305 (2022), Article 114352, 10.1016/j.jenvman.2021.114352
- Han et al., 2022How to account for changes in carbon storage from coal mining and reclamation in Eastern China? taking Yanzhou coalfield as an example to simulate and estimateRemote Sens. (Basel), 14 (2022), p. 2014, 10.3390/rs14092014
- He et al., 2021Continues monitoring of subsidence water in mining area from the eastern plain in China from 1986 to 2018 using Landsat imagery and Google Earth EngineJ. Clean. Prod., 279 (2021), Article 123610, 10.1016/j.jclepro.2020.123610
- Hill and Donald, 2003Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time seriesRemote Sens. Environ., 84 (2003), pp. 367-384, 10.1016/S0034-4257(02)00128-1
- Jia et al., 2014Land cover classification of landsat data with phenological features extracted from time series MODIS NDVI dataRemote Sens. (Basel), 6 (2014), pp. 11518-11532, 10.3390/rs61111518
- Jiao et al., 2021Observed increasing water constraint on vegetation growth over the last three decadesNat. Commun., 12 (2021), p. 3777, 10.1038/s41467-021-24016-9
- Kattenborn et al., 2021Review on Convolutional Neural Networks (CNN) in vegetation remote sensingISPRS J. Photogramm. Remote Sens., 173 (2021), pp. 24-49, 10.1016/j.isprsjprs.2020.12.010
- Knoke et al., 2014Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlandsNat. Commun., 5 (2014), p. 5612, 10.1038/ncomms6612
- Lai et al., 2018An empirical model for prediction of wheat yield, using time-integrated Landsat NDVIInt. J. Appl. Earth Obs. Geoinf., 72 (2018), pp. 99-108, 10.1016/j.jag.2018.07.013
- Li et al., 2020Identification of successional trajectory over 30 Years and evaluation of reclamation effect in coal waste dumps of surface coal mineJ. Clean. Prod., 269 (2020), Article 122161, 10.1016/j.jclepro.2020.122161
- Li et al., 2022Identification of cultivated land change trajectory and analysis of its process characteristics using time-series Landsat images: a study in the overlapping areas of crop and mineral production in Yanzhou City, ChinaSci. Total Environ., 806 (2022), Article 150318, 10.1016/j.scitotenv.2021.150318
- Li et al., 2022Variation analysis of spectral characteristics of reclamation vegetation in a rare earth mining area under environmental stressIEEE Trans. Geosci. Remote Sens., 60 (2022), pp. 1-12, 10.1109/TGRS.2022.3141579
- Liao et al., 2019Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybeanSci. Total Environ., 650 (2019), pp. 1707-1721, 10.1016/j.scitotenv.2018.09.308
- Liu et al., 2020Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth EngineRemote Sens. Environ., 239 (2020), Article 111624, 10.1016/j.rse.2019.111624
- Myroniuk et al., 2020Tracking rates of forest disturbance and associated carbon loss in areas of illegal amber mining in Ukraine using Landsat time seriesRemote Sens. (Basel), 12 (2020), p. 2235, 10.3390/rs12142235
- Onaindia et al., 2013Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulationFor. Ecol. Manage., 289 (2013), pp. 1-9, 10.1016/j.foreco.2012.10.010
- Park et al., 2020Dramatic decrease of flood frequency in the Mekong Delta due to river-bed mining and dyke constructionSci. Total Environ., 723 (2020), Article 138066, 10.1016/j.scitotenv.2020.138066
- Pettorelli et al., 2014Satellite remote sensing for applied ecologists: opportunities and challengesJ. Appl. Ecol., 51 (2014), pp. 839-848, 10.1111/1365-2664.12261
- Purwadi et al., 2020Targeting rare earth element bearing mine tailings on Bangka Island, Indonesia, with Sentinel-2 MSIInt. J. Appl. Earth Obs. Geoinf., 88 (2020), Article 102055, 10.1016/j.jag.2020.102055
- Ren et al., 2021Influence of management on vegetation restoration in coal waste dump after reclamation in semi-arid mining areas: examining ShengLi coalfield in Inner Mongolia, ChinaEnviron. Sci. Pollut. Res., 28 (2021), pp. 68460-68474, 10.1007/s11356-021-15361-9
- Ren et al., 2022Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approachJ. Environ. Manage., 317 (2022), Article 115502, 10.1016/j.jenvman.2022.115502
- Song et al., 2022Spatio-temporal variation and dynamic scenario simulation of ecological risk in a typical artificial oasis in northwestern ChinaJ. Clean. Prod., 369 (2022), Article 133302, 10.1016/j.jclepro.2022.133302
- Stillinger et al., 2019Cloud masking for Landsat 8 and MODIS terra over snow‐covered terrain: error analysis and spectral similarity between snow and cloudWater Resour. Res., 55 (2019), pp. 6169-6184, 10.1029/2019WR024932
- Strand et al., 2018Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem ServicesNat. Sustain., 1 (2018), pp. 657-664, 10.1038/s41893-018-0175-0
- Townsend et al., 2009Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series[J]Remote Sens. Environ., 113 (1) (2009), pp. 62-72
- Walther et al., 2005An ecological ‘footprint’ of climate changeProc. R. Soc. B., 272 (2005), pp. 1427-1432, 10.1098/rspb.2005.3119
- Wang et al., 2021Monitoring and evaluating restoration vegetation status in mine region using remote sensing data: case study in Inner Mongolia, ChinaRemote Sens., 13 (2021), p. 1350, 10.3390/rs13071350
- Wang et al., 2020Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth EngineISPRS J. Photogramm. Remote Sens., 163 (2020), pp. 312-326, 10.1016/j.isprsjprs.2020.03.014
- Wang et al., 2021Monitoring ecosystem restoration of multiple surface coal mine sites in China via LANDSAT images using the Google Earth EngineLand Degrad. Dev., 32 (2021), pp. 2936-2950, 10.1002/ldr.3914
- Wang et al., 2024Soil nutrients inversion in open‐pit coal mine reclamation area of Loess Plateau, China: a study based on ZhuHai‐1 hyperspectral remote sensing[J]Land Degrad. Dev. (2024)
- Wang et al., 2022Dust pollution in cold region Surface Mines and its prevention and controlEnviron. Pollut., 292 (2022), Article 118293, 10.1016/j.envpol.2021.118293
- Xiao et al., 2023Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth EngineJ. Environ. Manage., 327 (2023), Article 116920, 10.1016/j.jenvman.2022.116920
- Xu et al., 2018Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014Agric. For. Meteorol., 262 (2018), pp. 1-13, 10.1016/j.agrformet.2018.06.027
- Xu et al., 2021Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine areaJ. Clean. Prod., 286 (2021), Article 125523, 10.1016/j.jclepro.2020.125523
- Yang et al., 2018Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithmJ. Clean. Prod., 178 (2018), pp. 353-362, 10.1016/j.jclepro.2018.01.050
- Yang et al., 2022Assessment of ecological cumulative effect due to mining disturbance using google earth engineRemote Sens. (Basel), 14 (2022), p. 4381, 10.3390/rs14174381
- Yang et al., 2022Ecological restoration of a Loess open-cast mining area in China: perspective from an ecological security patternForests, 13 (2022), p. 269, 10.3390/f13020269
- Yuan et al., 2018Reclamation promotes the succession of the soil and vegetation in opencast coal mine: a case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, ChinaCatena, 165 (2018), pp. 72-79, 10.1016/j.catena.2018.01.025
- Zeng et al., 2020A review of vegetation phenological metrics extraction using time-series, multispectral satellite dataRemote Sens. Environ., 237 (2020), Article 111511, 10.1016/j.rse.2019.111511
- Zhang et al., 2019Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015J. Clean. Prod., 232 (2019), pp. 940-952, 10.1016/j.jclepro.2019.05.334
- Zhou et al., 2022Analysis and discrimination of hyperspectral characteristics of typical vegetation leaves in a rare earth reclamation mining areaEcol. Eng., 174 (2022), Article 106465, 10.1016/j.ecoleng.2021.106465