这是用户在 2025-1-21 15:06 为 https://app.immersivetranslate.com/pdf-pro/4400fc64-f77d-46bd-ae58-1a18b737baac 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

一种用于径向收缩变形的软环状作动缸:设计与建模 重试    错误原因

于党, 1 , 2 1 , 2 ^(1,2){ }^{1,2}马丁·斯托梅尔, 2 , 3 2 , 3 ^(2,3){ }^{2,3}Leo K.Cheng 先生, 2 , 4 2 , 4 ^(2,4){ }^{2,4}和徐伟良 1 , 2 1 , 2 ^(1,2){ }^{1,2}南开大学,党宇 重试    错误原因

抽象 重试    错误原因

在软机器人领域,诸如伸长/缩短和弯曲等仿生运动被广泛研究,然而,径向收缩变形被忽视了,这是自然界中另一种典型的变形,例如人类食道和膀胱的收缩变形。我们提出了一种产生径向收缩的新型软环形致动器,并研究了其在加压下的准静态性能。采用失蜡法创建同心嵌入作动器内部的单个圆形气室,根据最小总势能原理制定了作动器收缩变形的准静态理论模型,同时构建了有限元法(FEM)模型来刺激 actuator.In 加的径向收缩,进行了实验确定最大输入压力并测量了当执行器在 20.0 kPa 下加压时,实现了轴对称收缩,理论模型和 FEM 模型得出的预测结果与实验结果吻合较好,峰值点的平均相对差异很小, 3.4 % 3.4 % 3.4%3.4 \% 5.4 % 5.4 % 5.4%5.4 \%此外,respectively.In,试点试验表明,环形致动器可以完成机器人机械手的关键任务,如抓取和保持。 重试    错误原因

关键词:软体机器人,软体执行机构,建模,收缩,环形执行机构 重试    错误原因

介绍 重试    错误原因

SOFT RовотICS 是一个蓬勃发展的研究领域, 1 , 2 1 , 2 ^(1,2){ }^{1,2}其中,此类执行器和机器人的固有柔度和大变形使各种仿生机械手成为可能 3 , 4 3 , 4 ^(3,4){ }^{3,4}和移动系统。 5 7 5 7 ^(5-7){ }^{5-7}特别是,一些软机器人复制或增强生物系统的迷人运动,包括手、 8 8 ^(8){ }^{8} 9 9 ^(9){ }^{9}和 oc- topus 触手。 10 10 ^(10){ }^{10} 重试    错误原因
这些软体机器人的运动主要可分为两种类型:(1)伸长/缩短和(2)弯曲。 11 11 ^(11){ }^{11}McKibben 型人工肌肉致动器是典型的致动器,可缩短、模仿骨骼肌的运动。 12 12 ^(12){ }^{12}受章鱼启发的机械臂实现了由电缆和形状记忆合金弹簧驱动的伸长和缩短。 13 13 ^(13){ }^{13}形状记忆合金还用于通过延长和收缩 重试    错误原因
蚯蚓的长度来模拟蚯蚓的蠕动运动。
5 5 ^(5){ }^{5}相反,软致动器的弯曲功能在其建模、控制和应用方面得到了广泛的探索,弯曲运动使手的多功能性成为可能 8 8 ^(8){ }^{8}或者通过软手套增强其功能。 14 14 ^(14){ }^{14}还探索了弯曲功能以实现一些像蛇一样的运动 15 15 ^(15){ }^{15}还有鱼。 16 16 ^(16){ }^{16} 重试    错误原因
虽然这两种类型的运动可以模仿生物系统的某些动作,但是对于如何模拟人体食道、膀胱等人体管状器官的收缩变形,我们的技术还存在差距,这种收缩是指肌肉器官壁的运动,例如,食道壁的有节奏的收缩促进了食物的运输。充气气室呈圆形排列,旨在 重试    错误原因
相比之下,软执行的弯曲功能在建控制和应用方究。模拟食道的收缩。 重试    错误原因 17 17 ^(17){ }^{17}尽管如此,很少有研究来模拟桡动脉收缩并探索其潜在应用。 18 18 ^(18){ }^{18}从工程学的角度来看,这种收缩变形可以看作是相关器官的圆柱形段的径向收缩。这种径向收缩对于机器人社区来说是非常规的。 重试    错误原因
径向收缩有可能实现对物体的抓取和保持,这是机器人机械手的关键任务之一。目前的大多数设计都是基于多指夹持器。 19 , 20 19 , 20 ^(19,20){ }^{19,20}此方法应用弯曲变形,将手指置于要抓取的对象周围。另一种类型的夹持器利用颗粒材料的干扰。 21 , 22 21 , 22 ^(21,22){ }^{21,22}此控制手柄在对象周围变形,并部分包围要夹持的对象。与现有的方法不同,径向收缩可以通过圆形封闭物体来应用来抓取和保持物体。 重试    错误原因
我们假设这种非常规的运动可以使用软机器人技术来实现。这些技术与由软材料(如硅聚合物和弹性体)制成的执行器和机器人相关联。 1 1 ^(1){ }^{1}这些软材料的拉伸模量约为 10 4 10 4 10^(4)-10^{4}- 10 9 Pa 10 9 Pa 10^(9)Pa10^{9} \mathrm{~Pa},类似于皮肤的皮肤。现有的软致动器和机器人通常使用不同的刺激模式进行操作,例如气动和电力。特别是气动软体机器人,广泛应用于仿生系统中。这主要是因为气室的几何形状和布置允许各种变形。尽管这些气动装置是制造的,但变形和输入压力之间的关系仍然不是很清楚。 重试    错误原因
对软机器人中气动致动器的变形进行建模可以提高其可控性并拓宽其应用范围。然而,非线性材料和大变形对软体机器人的建模提出了挑战。提出了一些方法来解决特定机器人的建模挑战。它们可以分为三类。 23 23 ^(23){ }^{23}首先,应用牛顿-欧拉方程来构建特定软致动器中力和力矩的平衡方程。例如,弯曲促动器的运动性能是根据自由空间的扭矩平衡得出的 24 24 ^(24){ }^{24}以及与环境的接触。 25 25 ^(25){ }^{25}由弯曲软致动器和刚性连接器组成的蛇形机器人的控制方程是根据力和力矩平衡原理制定的。 15 15 ^(15){ }^{15}其次,使用 Euler-Bernoulli 梁理论来确定平面空间中的变形。 26 28 26 28 ^(26-28){ }^{26-28}例如,软食管致动器的建模基于可延弹性理论来描述分布式压力下的梁状元件。 29 29 ^(29){ }^{29}第三,能量法是一类处理软体结构变形的强大工具。 30 32 30 32 ^(30-32){ }^{30-32}这些方法包括能量守恒定律、稳态作用原理等。例如,指示软橡胶球和介电弹性体球囊致动器之间相互作用的控制方程基于能量守恒定律。 33 33 ^(33){ }^{33}值得注意的是,这三个组并不是完全独立的,而是可以协同工作的。尽管在软机器人的建模方面投入了大量精力,但大部分研究都集中在末端执行器或整个配置的性能上。 重试    错误原因
在软机器人的背景下,单个气室水平的变形并不容易理解。 重试    错误原因
在本文中,我们介绍了径向收缩的软环形致动器的设计和建模。该致动器由环形软体和刚性外壳组成,旨在实现加压时的径向收缩。单个圆形气室同心嵌入由失蜡法创建的致动器内部。构建了有限元法 (FEM) 模型来预测促动器的变形。同时,公式化了控制方程来表征变形的准静态状态。它是基于最小总势能原理推导的,并通过射击法进行数值求解。该理论模型提供了对单个气室变形的见解,并揭示了几何参数对变形的影响。进行了捕获致动器特定输入压力下变形的实验,以验证 FEM 和理论模型。最后,说明了这种新型致动器的潜在应用。 重试    错误原因

环形执行器 重试    错误原因

物理结构 重试    错误原因

环形致动器包括一个软体和一个刚性外壳,如图 1a 所示。如图所示,单个圆形气室同心位于环形体内部 重试    错误原因
FIG. 1. Schematics of a soft ring-shaped actuator. (a) The physical prototype of the actuator. (b) The structure of the soft body. Color images are available online. 重试    错误原因
in Figure 1b. The rigid casing encloses the top, bottom, and outer wall of the soft body. The inner radius of the rigid casing is the same as that of soft body, exposing the inner wall of the soft body to the free space. The pneumatic system powers the actuator. The inner wall of the soft body can deform under pressurization. One hole in the outer wall of the rigid casing is for the connection of a pneumatic tube. The pressurized air delivered through the tube results in the expansion of the air chamber. Owing to the constraints of the rigid casing on the covered walls, soft body expands radially inwards, leading the contracting movement. In addition, the adjacent edges of the soft body and rigid casing are glued together to prevent sliding. The rigid casing comprises the bottom part and top part, both of which are connected and clamped together. The single circular air chamber is the unique feature of this design that guarantees the contraction remains circular. 重试    错误原因
It is noted that the inner radius ( R 0 ) R 0 (R_(0))\left(R_{0}\right) and height ( L ) ( L ) (L)(L) of the soft body are two primary independent variables when designing the actuator, whereas the rest of the geometric parameters are constants or dependent on these two variables. A baseline set of these two parameters are R 0 = 40.0 mm R 0 = 40.0 mm R_(0)=40.0mmR_{0}=40.0 \mathrm{~mm} and L = 30.0 mm L = 30.0 mm L=30.0mmL=30.0 \mathrm{~mm}. The dimension was chosen for the investigation of the deformation performance. An additional four variations of this parameter set are selected to evaluate the influence of these two parameters on the performance of actuators. The values of geometrical parameters are as demonstrated in Table 1. The wall thickness of the soft body ( H 0 ) H 0 (H_(0))\left(H_{0}\right) and the wall thickness of the rigid casing ( H c ) H c (H_(c))\left(H_{c}\right) are kept at a constant of 5.0 mm . The width of the air chamber (a) was a constant 30.0 mm . 重试    错误原因

Fabrication 重试    错误原因

The ring-shaped actuator was fabricated through a multistep molding procedure involving a lost-wax approach. The lost-wax method was chosen because it allows for the design of complex internal air channels. 34 34 ^(34){ }^{34} The main fabrication procedure for the actuator consists of four steps depicted in Figure 2. In this procedure, the module and rigid casing were constructed by three-dimensional (3D) printers (Prusa i3; Prusa Research, Czech Republic) with acrylonitrile butadiene styrene plastic. The silicone rubber (Ecoflex-0030 silicone; Smooth-On, Inc.) was chosen due to its tensile modulus similar to the biological organ such as skin and muscular organs. In the first step, the uncured material was poured into the 3D printed mold to create the part of the soft body with a C-shaped cross section as can be seen in Figure 2a. Second, the wax (Beeswax; Jacquard, New Zealand) was melted and poured into the rubber mold to formulate the wax core. The 重试    错误原因
Table 1. Five Variations of Geometrical 重试    错误原因
Parameters of the Soft Body 重试    错误原因
Model 重试    错误原因 Inner radius, R 0 ( mm ) R 0 ( mm ) R_(0)(mm)\mathrm{R}_{0}(\mathrm{~mm}) 重试    错误原因 Height, L ( mm ) L ( mm ) L(mm)\mathrm{L}(\mathrm{mm}) 重试    错误原因
1 40.0 25.0
2 40.0 30.0
3 40.0 35.0
4 35.0 30.0
5 45.0 30.0
Model Inner radius, R_(0)(mm) Height, L(mm) 1 40.0 25.0 2 40.0 30.0 3 40.0 35.0 4 35.0 30.0 5 45.0 30.0| Model | Inner radius, $\mathrm{R}_{0}(\mathrm{~mm})$ | Height, $\mathrm{L}(\mathrm{mm})$ | | :--- | :---: | :---: | | 1 | 40.0 | 25.0 | | 2 | 40.0 | 30.0 | | 3 | 40.0 | 35.0 | | 4 | 35.0 | 30.0 | | 5 | 45.0 | 30.0 |
FIG. 2. Schematics outlining the main stages of the soft ring-shaped actuator fabrication procedure. (a) Fabrication of the part of the soft body with C-shaped cross section. (b) Fabrication of the wax core in the rubber mold. © Fabrication of the entire soft body with the wax core sealed inside. (d) Clearance of the wax core from the soft body. Color images are available online. 重试    错误原因
rubber mold avoids the breakdown of the wax core as shown in Figure 2b. Then the wax core was carefully fitted into the hollow portion of the part of the soft body. Third, the wax core was encapsulated into the rubber part, by placing the assembly into a 3D-printed mold and adding the same uncured material as indicated in Figure 2c. A single hole was pierced on the outer wall of the actuator using a needle. It enables the removal of the wax and the connection of the pneumatic tube later. The wax sealed inside the actuator was melted in a boiling water bath and squeezed out through the hole with the aid of tongs (Fig. 2d). Therefore, the removal of wax core defines the internal air channel. The boiling process does not change the property of the rubber because the material easily sustains
200 C 200 C 200^(@)C200^{\circ} \mathrm{C} according to its manufacture specification. Once the wax was removed, a 6.0 mm air tube was fed into the hole. It was sealed firmly with silicone adhesive (Sil-Proxy; Smooth-On) to prevent leakage. Consequently, the soft body was fitted into a rigid casing. A pneumatic tube was connected to the air chamber with a pressure regulator through a hole (of 8.0 mm in diameter) on the rigid casing. Adhesive (Loctite 401; Henkel) was used to 重试    错误原因