Research articles 研究文章Industry-oriented Fe-based amorphous soft magnetic composites with SiO2-coated layer by one-pot high-efficient synthesis method
以單盤高效合成方法為基於行業的Fe基無定形軟磁複合材料,帶有SIO 2塗層層
Highlights 亮點
- •One-pot highly efficient synthesis method for SiO2-coating with only 1.9 h was developed.
僅開發了僅開發了僅1.9 h的SIO 2塗層的一柱高效合成方法。 - •An industry-oriented automated coating device was designed.
設計了面向行業的自動塗料設備。 - •Eddy current loss contributes only 13.5 ~ 18.1% of total loss when TEOS concentration over 0.09 ml/g.
當TEOS濃度超過0.09 mL/g時,渦流損失僅貢獻總損失的13.5〜18.1%。 - •Fe-based amorphous SMCs insulated using TEOS concentration of 0.09 ~ 0.14 ml/g exhibit excellent magnetic properties.
使用0.09〜0.14 mL/g的TEOS濃度絕緣的基於Fe的非晶SMC具有出色的磁性特性。
Abstract 抽象的
設計和開發了一種新的使用面向行業的機器人化塗層裝置實施的新型單鍋高效合成方法,用於在室溫下在通用FE 78 SI 13 B 9 (FESIB)無定形片狀粉末的表面上獲得高質量的SIO 2塗層。在這裡,常規灌輸方法被修改為將無水乙醇直接倒入反應混合物中,有利於簡單操作和將總製造時間縮短至1.9 h(包括約0.7 h的干燥時間)。詳細研究了對使用不同的前體濃度絕緣的FESIB無定形粉末芯的軟磁性能的比較和分析。使用SEM,ED和FTIR來表徵磁粉的核心殼結構。由升高前體濃度引起的固定位點的增加會導致有效的滲透率降低,同時導致磁滯損失和多餘損失的增加。在TEOS濃度下,渦流損失僅貢獻約13.5%〜18.1%的TEOS濃度在0.09 mL/g的濃度下,表明相應的磁複合材料具有良好的電構造層。這項工作提供了一個引用的想法,可以有效地塗上不同形狀內磁粉的其他無機絕緣。
Keywords 關鍵字
1. Introduction 1。簡介
為了滿足高頻應用和電力電子設備的微型化的內在要求,晶間絕緣軟磁複合材料(SMC)具有低核心損失和相對較高的磁通量密度,在過去的幾十年中引起了科學家和生產商的日益增長的關注[1] ,[1], [2] ,[3], [3] 。伴隨著良好的DC偏差特性的獨特優勢,三維的物理性各向同性,有效滲透性的頻率穩定性,近網狀形狀具有高維準確性有益於質量生產成本的降低[3] , [4] , [5] [5] 6] , [7] 。
據報導,隨著電磁傳輸和分佈期間的熱量耗散,約有9%的產生的電能丟失了[3] 。如我們所知,SMC的總能量損失( W T )由磁滯損失( W H ),渦流損失( W e )和多餘損失( W EXC )組成。 W h是由SMC冷壓縮過程中產生的缺陷和位錯密度增加引起的內部殘留應力[8] 。隨後在足夠高溫下退火的熱處理是通過減少SMC的缺陷來釋放殘餘應力的有效均值,從而導致W H的降低。這一事實要求在鐵磁粉末上覆蓋的薄絕緣層必須承受高退火溫度(通常高於450°C),以確保W e的不顯著增加。通常可以分解為兩種類型:顆粒間和粒子內渦流損失,前者的幅度由磁性顆粒上表面絕緣塗層的均勻性和質量主導[9] 。結果,採用合適的隔熱塗層材料已成為SMC準備的重點。
考慮到有機塗層(例如矽樹脂和酚醛樹脂)表現出較低的熱阻力(幾乎小於200°C),因此無機塗料(例如Al 2 O 3 [8] ,[10], [10] ,Sio 2 [7],[11] , [11] ,Tio 2 [12] ,可以為長時間的高溫提供高度的溫度,以至於為高高的溫度提供了高度的啟動,並提出了一個頻繁的溫度。在這裡,通常採用化學溶膠方法在鐵磁顆粒表面獲得均勻的無機塗層。但是,據報導的無機塗料程序現在面臨兩個顯著問題:較低的製備效率(總製備時間超過5 h [10,11,13,14])和相對較高的合成溫度(超過50°C [10,13,14]),這些溫度在工業應用中不受歡迎。最近,為了避免上面兩種非磁性塗層引起的有效滲透性的降低,將Nizn- [15]和Mnzn- [16]的軟磁性塗層提前提出,因為它們是通過化學共沉澱方法製備的,由於SMC的高滲透率和電阻率。 然而,作為典型的氧化物陶瓷的鐵素體表現出高耐磨性和低粘附性的特性,很容易導致磁聚集和SMC的綠色緊湊密度的降低[18] 。此外,鐵氧體塗層的製備也面臨著低效率和高合成溫度的問題[17] , [18],例如上面的無機塗層。此外,在基於Fe的非晶磁粉表面上塗上原位的細鐵礦層[19] ,因為非磁性Feb相會在高鈣化溫度(通常大於500°C [20] )下沉澱,以獲得獲得甲氧化鐵礦塗層的有利磁性特性。
在以前的工作中,我們通過溶膠 - 凝膠方法成功地在室溫下的總製備時間約為2.6小時[7] , [21] ,成功地在基於Fe的磁性片狀粉末的表面上製造了高質量的SIO 2絕緣層。在這項研究中,一種新的單鍋高效合成方法,用於在商業Fe 78 Si 13 B 9 (at。%,FESIB)在室溫及其相應的行業導向的實驗塗層設備上獲得均勻的SIO 2塗層。詳細研究了前體添加量對SMC的軟磁性能的影響,並且還進行了上面相關SMC的損耗分離分析。
2. Experimental section 2.實驗部分
2.1. Materials and reagents
2.1。材料和試劑
中國無需粉狀粉狀的商業FESIB無定形片狀粉末,粒度分佈的範圍為45〜165μm(-325〜 -100元),由中國無定形技術Co。,作為原始粉末基材,由中國粉狀技術公司提供,其中片狀粉末粉的厚度約為20毫米。濃度為99 wt%的四乙基矽酸鹽(TEOS),作為單源前體和平均分子量為130 kg·mol -1的聚乙烯基吡咯烷酮(PVP),作為表面活性劑,是從Aldrich購買的。水溶液溶液(NH 3 ·H 2 O,25 wt%),無水乙醇(ETOH),丙酮和矽樹脂來自廣州化學試劑有限公司,有限公司,由LDF-II II II水淨化系統(Ludao Instruments Co,Ludao Instruments Co,Ltd,Ltd,Shanghai,Shanghai,Charane,Shanghai,Chere)製備。
2.2. Fabrication of core-shell structural FeSiB/SiO2 magnetic flaky powders
2.2。核殼結構FESIB/SIO 2磁性片狀粉末的製造
圖1給出了核心殼磁粉及其相應面向行業的實驗塗料裝置的一鍋合成程序。結果表明,塗料設備由可編程邏輯控制器(PLC)系統,同步提升系統和機械攪拌系統組成。如圖1所示,在典型的單鍋合成過程中,步驟I :1500 g無定形磁性片狀粉末在圓柱體中的PVP(38 g)和EtOH(1400 mL)的混合物中加入,在室溫下每分鐘300轉(RPM)的速度為20分鐘。在此步驟中,使用PLC控制面板上的電梯按鈕來控制機械攪拌器的位置和旋轉速度。第II步:通過其平板上的孔中將溶解在350 mL去離子水中的某些水性氨中添加到圓柱體中,以在連續機械攪拌下在8-10範圍內調節pH值10分鐘。步驟III:具有0.04、0.09、0.14、0.20和0.25 mL/g的預測濃度(相對於磁粉的質量)在ETOH中稀釋(範圍為420 ml至3000 ml,範圍從40毫升到3000 ml,體積比(TEOS/ETOH)在1:7〜1:8)均在40分鐘下均連續攪拌PLC控制面板。基於上面的步驟,首先通過圓柱體底部的消防栓排出圓柱體中的上清液,如圖1所示。 然後,將1500 mL去離子水或EtOH添加到圓柱體中,以200 rpm的機械攪拌速度至少兩次沖洗塗層粉末。最後,將所得塗層的粉末在95°C的干燥烤箱中乾燥40分鐘。與先前工作中提到的準備信息相比[11] , [13] , [14] , [22] ,使用設計的經驗式塗料設備實施的新的單鍋合成方法顯示出更少的總準備時間約為1.9 h(包括約0.7 h的干燥時間),以及較高的核心殼粉末粉的收益率為1500 g。導致上述現象的主要因素可以歸因於:i)傳統的灌輸方法不是將稀釋的Teos直接倒入反應器中的混合溶液中,這不僅簡化了操作,還縮短了製造時間,而且還縮短了製造時間;

Fig. 1. Schematic of the one-pot synthesis procedure for the core-shelled magnetic powders and its corresponding experimental coating device.
2.3. Preparation of FeSiB/SiO2 magnetic flaky powders cores
2.4. Characterizations
3. Results and discussions
3.1. Characterization of the SiO2-coated amorphous powders

Fig. 2. SEM images for the surface morphologies of magnetic flaky powders before (a) and after chemical coating process with TEOS concentrations of (b) 0.04 ml/g, (b) 0.09 ml/g, (c) 0.14 ml/g, (d) 0.20 ml/g, (b) 0.25 ml/g.

Fig. 3. SEM images, EDS elemental distribution maps and (c) EDS spectrums of the as-coated flaky powders with the TEOS concentrations of (a) 0.04 ml/g and (b) 0.14 ml/g.







Fig. 4. FTIR spectra of the magnetic flaky powders before and after chemical coating process with different TEOS concentrations.
3.2. Magnetic properties of FeSiB/SiO2 magnetic flaky powders cores

Fig. 5. Frequency dependences (a) of real-part and imaginary-part of complex permeability for the powder cores insulated with SiO2 under different concentrations of TEOS and their corresponding green compact densities and electrical resistivities (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Mesh surfaces (a) of total core loss versus frequency and the maximum magnetic flux density, frequency dependency of total core loss (b), hysteresis loss (c), eddy current loss (e) and excess loss (f), fitting results for the Ph/f vs. Bm (d) and KexcBmy vs. Bm (g), and DC-bias field dependence (h) of percent permeability for the powder cores insulated with SiO2 using different concentrations of TEOS.
Table 1. Fitted coefficients of each formula of different partial losses for the FeSiB amorphous magnetic powder cores insulated under concentrations of TEOS.
TEOS concentration, ml/g | Ph | Pe | Wexc | |||
---|---|---|---|---|---|---|
Kh | x | Ke | Kexc | y | z | |
0 | 178.97 | 2.05 | 4.30 | 0.92 | 2.12 | 2.12 |
0.04 | 272.51 | 2.08 | 1.53 | 1.10 | 2.09 | 2.10 |
0.09 | 345.60 | 2.09 | 0.544 | 1.19 | 2.07 | 2.08 |
0.14 | 325.60 | 2.06 | 0.532 | 1.28 | 2.09 | 2.04 |
0.20 | 318.61 | 2.01 | 0.525 | 1.35 | 1.98 | 2.05 |
0.25 | 345.40 | 1.98 | 0.523 | 1.47 | 1.97 | 2.03 |
4. Conclusions
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgements
References
- [1]Past, present, and future of soft magnetic compositesAppl. Phys. Rev., 5 (2018), Article 031301
- [2]Soft magnetic materials for a sustainable and electrified worldScience, 362 (2018)eaao0195
- [3]Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficientAdv. Mater., 23 (2011), pp. 821-842
- [4]Analysis of the magnetic properties of a silicate-coated spherical FeSiAl-based soft magnetic composite for high-frequency power-applicationsAppl. Phys. Lett., 115 (2019), Article 212401
- [5]Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic compositesJ. Magn. Magn. Mater., 423 (2017), pp. 164-170
- [6]Soft magnetic composites based on hybrid coated Fe-Si nanocrystalline powdersSurf. Coat. Tech., 330 (2017), pp. 219-227
- [7]Enhancements of preparation efficiency and magnetic properties for Fe-based amorphous magnetic flake powder cores upon the adoption of a novel double-paralleled slits nozzleJ. Magn. Magn. Mater., 500 (2020), Article 166358
- [8]Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol–gel methodJ. Alloys Compd., 581 (2013), pp. 293-297
- [9]Intergranular insulating reduced iron powder-carbonyl iron powder/SiO2-Al2O3 soft magnetic composites with high saturation magnetic flux density and low core lossJ. Magn. Magn. Mater., 493 (2020), Article 165705
- [10]Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol-gel methodMater. Des., 109 (2016), pp. 390-395
- [11]High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applicationsActa Mater., 167 (2019), pp. 267-274
- [12]Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layerJ. Magn. Magn. Mater., 474 (2019), pp. 1-8
- [13]Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core lossAdv. Powder Technol., 27 (2016), pp. 1189-1194
- [14]High resistivity and low core loss of intergranular insulated Fe-6.5wt.%Si/SiO2 composite compactsMater. Des., 89 (2016), pp. 1251-1258
- [15]Effects of heat treatment on structure and magnetic properties of Fe/(NiZn) Fe2O4 soft magnetic composite powders prepared using a co-precipitation methodJ. Alloys Compd., 728 (2017), pp. 571-577
- [16]Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic compositesJ. Magn. Magn. Mater., 411 (2016), pp. 12-17
- [17]Magnetic properties and loss mechanism of Fe-6.5 wt% Si powder core insulated with magnetic Mn-Zn ferrite nanoparticlesJ. Magn. Magn. Mater., 482 (2019), pp. 148-154
- [18]Low-loss and high-induction Fe-based soft magnetic composites coated with magnetic insulating layersJ. Magn. Magn. Mater., 492 (2019), Article 165651
- [19]New Fe-based amorphous soft magnetic composites with significant enhancement of magnetic properties by compositing with nano-(NiZn) Fe2O4J. Alloys Compd., 696 (2017), pp. 1323-1328
- [20]Study on novel Fe-based core-shell structured soft magnetic composites with remarkable magnetic enhancement by in-situ coating nano-ZnFe2O4 layerJ. Magn. Magn. Mater., 500 (2020), Article 166321
- [21]Fe-based amorphous powder cores with low core loss and high permeability fabricated using the core-shell structured magnetic flaky powdersJ. Magn. Magn. Mater., 502 (2020), Article 166548
- [22]Magnetic properties of iron-based soft magnetic composites with SiO2 coating obtained by reverse microemulsion methodJ. Magn. Magn. Mater., 381 (2015), pp. 451-456
- [23]One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabricationChem. Eng. J., 252 (2014), pp. 11-16
- [24]Process optimization and magnetic properties of soft magnetic composite cores based on phosphated and mixed resin coated Fe powdersJ. Magn. Magn. Mater., 501 (2020), Article 166455
- [25]A coherent model for the complex permeability in polycrystalline ferritesIEEE Trans. Magn., 26 (1990), pp. 1987-1989
- [26]Iron-borosilicate soft magnetic composites: The correlation between processing parameters and magnetic properties for high frequency applicationsJ. Magn. Magn. Mater., 429 (2017), pp. 241-250
- [27]General properties of power losses in soft ferromagnetic materialsIEEE Trans. Magn., 24 (1988), pp. 621-630
- [28]Analysis of magnetic losses and complex permeability in novel soft magnetic composite with ferrite nanofibersIEEE Trans. Magn., 54 (2018), pp. 1-6
- [29]A multiscale approach to predict classical losses in soft magnetic compositesIEEE Trans. Magn., 48 (2012), pp. 1537-1540
- [30]High-frequency rotational losses in different soft magnetic compositesJ. Appl. Phys., 17A331 (2014), p. 115
Cited by (30)
Soft magnetic materials for power inductors: State of art and future development
2023, Materials Today ElectronicsRecent advances and future developments in Fe-based amorphous soft magnetic composites
2023, Journal of Non-Crystalline SolidsInsulation layer design for soft magnetic composites by synthetically comparing their magnetic properties and coating process parameters
2021, Journal of Magnetism and Magnetic MaterialsCitation Excerpt :The absorption peaks of 803 cm−1 and 467 cm−1 are associated with the symmetric stretching vibration of Si-O-Si [22]. The stretching vibration of Si-OH gives rise to the absorption peak located at 949 cm−1 [23]. For the case using TBOT as the single-source precursor, the absorption band in the range of 500 ~ 800 cm−1 is associated with the stretching vibration of Ti-O-Ti [12,24].
Microstructure and magnetic properties of novel powder cores composed of iron-based amorphous alloy and PTFE
2022, Journal of Materials ScienceImprovement of magnetic properties for FeSi/FeSiAl compound soft magnetic composites by introducing impact of powder size matching
2021, Journal of Materials Science: Materials in Electronics
- 1
- C. Wang and Z. Guo contributed equally to this work.