摘要:固体火箭发动机火焰传播过程对固体火箭发动机整个点火升压过程有着潜在的影响。本文通过不定常流动理论推导出火焰传播速度随时间,点火燃气质量流率的变化规律,并通过试验测定在不同质量流量的点火燃气以不同的角度喷射到推进剂表面时推进剂表面的火焰传播速率,试验结果与理论结果相一致。表明火焰传播速率随着时间,点火燃气质量流量的增大而加速。 Abstract: The flame propagation process of solid rocket motor has potential influence on the whole ignition boosting process of solid rocket motor. In this paper, through the unsteady flow theory deduces the flame propagation rate with time, the ignition gas mass flow rate of the law of change, and through the test to determine in different mass flow rate of the ignition gas to different angles of the propellant surface jet to the propellant surface when the flame propagation rate of the surface of the propellant, the test results and the theoretical results are consistent. The test results are consistent with the theoretical results. It shows that the flame propagation rate accelerates with the increase of time and ignition gas mass flow rate.
主题词:固体发动机;点火;火焰传播 SUBJECT TERMS: solid engines; ignition; flame propagation
中图分类号:V435 文献标识符:A Classification number: V435 Literature identifier: A
Study of the flame propagation Course of Solid Rocket Motors
Flame-spreading process is of the potential influence on the behavior of the overall ignition transient.Based on Unsteady flow theory to derivate how the change of time and Mass flow rate of igniting-gas influence flame-spreading speed and measure the Flame-spreading velocity in different mass flux and injection angle By tests.The tests result is in accord with the theoretical analysis and indicate.The addition of the the time and mass flux can accelerate flame-spreading speed. Flame-spreading process is of the potential influence on the behavior of the overall ignition transient.Based on Unsteady flow theory to Based on Unsteady flow theory to derivate how the change of time and Mass flow rate of igniting-gas influence flame-spreading speed and measure the Flame-spreading velocity in different mass flux and injection angle By tests. -The tests result is in accord with the theoretical analysis and indicate. The addition of the time and mass flux can accelerate flame-spreading speed.
固体火箭发动机火焰传播阶段是指从推进剂产生的第一个火焰开始,到推进剂表面完全点燃的这段时间。对于固体火箭发动机来说,火焰传播过程对瞬变压力影响很大,最早期的研究工作是作为点火过程的一部进行的 ^([1-4]){ }^{[1-4]} ,将火焰传播建立在连续点燃的前提上,并以推进剂表面达到一个临界温度为点火判据。联合技术中心的研究者 ^([5]){ }^{[5]} 提出了沿复合推进剂表面火焰扩张的详细模型,该模型包括了向固体推进剂传热的所有模式,同时考虑传热速率随时间和沿轴向两个方面变化并导出两条相似律,而Reizberg ^([6]){ }^{[6]} 提出一个分析方法,并给出了可以确定火焰传播速率随时间变化的近似解释解;在点火试验研究过程中,主要是通过采用压力传感器记录压力,激光多普勒速度场测试 ^([7]){ }^{[7]} ,高速摄影 ^([8]){ }^{[8]} 和热电偶 ^([9]){ }^{[9]} 等采集实验数据, The flame propagation phase of a solid rocket motor is the time from the first flame produced by the propellant to the complete ignition of the propellant surface. For solid rocket motors, the flame propagation process has a significant impact on transient pressure, and the earliest research efforts were conducted as part of the ignition process ^([1-4]){ }^{[1-4]} , basing the flame propagation on the premise of continuous ignition and taking the propellant surface reaching a critical temperature as the ignition criterion. JTC researchers ^([5]){ }^{[5]} proposed a detailed model for flame spread along a composite propellant surface that includes all modes of heat transfer to a solid propellant, considers the rate of heat transfer with respect to both time and axial direction, and derives two similarity laws, while Reizberg ^([6]){ }^{[6]} proposed an analytical method and gave an approximation for determining the rate of flame spread with respect to time. An approximate explanatory solution to determine the variation of flame propagation rate with time is given. During the ignition test study, the experimental data are collected mainly by using pressure sensors to record the pressure, laser Doppler velocity field test ^([7]){ }^{[7]} , high-speed photography ^([8]){ }^{[8]} and thermocouples ^([9]){ }^{[9]} .
Conover G H 利用纹影仪观测发动机头部翼槽部分的燃烧情况 ^([10]){ }^{[10]} ,,Moore J D 等人采用高速摄影和近红外探测器测量方法对发动机翼槽内火焰传播过程进行了实验研究 ^([11]){ }^{[11]} ,李逢春,张富升等人开展复合推进剂实际点火过程试验研究 ^([12]){ }^{[12]} ,王慧等人利用缩比模拟发动机研 Conover G H observed the combustion in the wing channel portion of the engine head using a ripple shader ^([10]){ }^{[10]} , Moore J D et al. conducted an experimental study on the flame propagation process in the wing channel of the engine using high-speed photography and near-infrared detector measurements ^([11]){ }^{[11]} , Li Fengchun, Zhang Fusheng et al. carried out an experimental study on the actual ignition process of composite propellants ^([12]){ }^{[12]} , Wang Hui et al. used a scaled-down simulation of engine research to study the combustion process in the wing channel of the engine. b2>, Wang Hui et al. used the scaled-down simulation engine to study the flame propagation process in the wing groove of a composite propellant.
究了大后翼与主流的相互作用 ^([13]){ }^{[13]} ,余贞勇等人开展了尾翼槽内火焰传播过程对固体火箭发动机整个点火升压过程的影响研究 ^([14]){ }^{[14]} ,肖波等人通过在推进剂表而嵌入热电偶丝的类靶线法及光电探测法开展了后向台阶型装药的高能推进剂火焰传播实验 ^([15]){ }^{[15]} ;除了试验研究之外,大量学者利用数值模拟的方法对点火火焰传播过程进行研究,唐金兰 ^([16]){ }^{[16]} 等人以"大力神 4 "运载火箭助推发动机PQM-1 为例,通过建立纯气相流动和气固两相流动模型,分析了SRM点火瞬态凝相粒子对火焰传播过程的影响,王健儒等 ^([77]){ }^{[77]} 通过质量流率入口模拟初期小火箭式点火装置的火焰喷射方式对整个的点火过程进行数值研究,丁鸿铭等 ^([18]){ }^{[18]} 采用颗粒轨道模型对某型固体火箭发动机点火瞬态点火药颗粒在燃烧室内的流动与燃烧特性进行数值研究,官典 ^([19-20]){ }^{[19-20]}等人建立塊合颗粒惯性过载场,颗粒碰撞推进剂增强传热,推进剂侵蚀/过载耦合燃烧,流场惯性过载场效应的综合点火模型,对横向过载下气一粒两相流对固体火箭发动机点火过程影响进行了研究。本文在分析总结国内外研究的基础上,通过不定常理论推导了火焰传播规律,并设计研制了模拟试验发动机,研究了在不同点火药量的点火燃气以不同的角度喷射到推进剂表面情况下的火焰传播速率。 , Yu Zhenyong et al. carried out a study on the influence of flame propagation process in the tail groove on the whole ignition boosting process of solid rocket motor ^([14]){ }^{[14]} , Xiao Bo et al. carried out an experiment on the flame propagation of high-energy propellant of backward stepped charge ^([15]){ }^{[15]} by embedding a thermocouple filament in the surface of the propellant with the target-like line method and photoelectric detection method; besides the experimental study, a large number of scholars used numerical simulation to study the ignition flame propagation process. b2>; In addition to experimental research, a large number of scholars use numerical simulation to study the ignition flame propagation process, Tang Jinlan ^([16]){ }^{[16]} et al. take the "Hercules 4" launch vehicle booster engine PQM-1 as an example, and analyze the SRM ignition flame propagation process by establishing the pure gas-phase flow and gas-solid two-phase flow model, and analyze the SRM ignition flame propagation process by establishing the pure gas-phase flow and gas-solid two-phase flow model. By establishing pure gas-phase flow and gas-solid two-phase flow models, they analyzed the influence of SRM ignition transient condensed-phase particles on the flame propagation process. The flow and combustion characteristics of a solid rocket motor ignition transient ignition drug particles in the combustion chamber for numerical study, Guan Dian ^([19-20]){ }^{[19-20]} et al. to establish a block of particles inertial overload field, particles collision propellant to enhance heat transfer, propellant erosion / overload coupled combustion, the flow field of inertial overload field effect of the integrated ignition model, the transverse overload of the two-phase flow of the gas under the gas a particle on the ignition process of solid rocket motors for research. In this paper, based on the analysis and summary of domestic and foreign research, the flame propagation law is deduced by the uncertainty theory, and a simulation test engine is designed and developed to study the flame propagation rate under the condition that the ignition gas with different ignition charge is sprayed onto the propellant surface at different angles.
2 火焰传播过程理论分析 2 Theoretical analysis of flame propagation process
2.1 理论分析条件 2.1 Theoretical analysis conditions
为便于分析,进行了如下的假设: For the purpose of this analysis, the following assumptions were made:
(1)推进剂最先被点燃的部位出现在头部,即火焰只向下游传播。 (1) The first part of the propellant to ignite occurs at the head, i.e., the flame propagates only downstream.
(2)在点火瞬态期间,燃烧室容积 VV 为常数,即为初始容积。 (2) During the ignition transient, the combustion chamber volume VV is constant, i.e., the initial volume.
(3)药柱中热传导是二维瞬变的; (3) Heat transfer in the pillars is two-dimensional and transient;
(3)燃烧室压强仅随时间变化而不随空间位置变化。 (3) The combustion chamber pressure varies only with time and not with spatial position.
(4)忽略侵蚀燃烧的影响。同样,由于装药通道的气流速度较低,可以忽略气流速度对燃速的影响。 (4) Neglect the effect of erosive combustion. Similarly, the effect of airflow velocity on the burning rate can be ignored due to the low airflow velocity in the charging channel.
(5)忽略两相流的影响,燃烧气体服从理想气体方程。 (5) Neglecting the effect of two-phase flow, the combustion gas obeys the ideal gas equation.
2.2 理论模型与基本方程 2.2 Theoretical model and basic equations
理论模型的基本观点是认为药柱未燃部分既接受燃气流的对流换热,又接受已燃部分固相传导热流,直至表面达到点火温度发生点火,可用二维偏微分方程(1)描述。未燃部分固相热传导所选用坐标系如图1。 The basic idea of the theoretical model is that the unignited portion of the column receives both convective heat transfer from the gas stream and solid-phase heat transfer from the ignited portion of the column until the surface reaches the ignition temperature at which ignition occurs, which can be described by the two-dimensional partial differential equation (1). The coordinate system chosen for the solid-phase heat transfer in the unburned part is shown in Fig. 1.
图1药柱坐标系图 Fig. 1 Coordinate system of pillars
Fig. 1 Propellant coordinate Fig. 1 Propellant coordinate
式中 a---x,ya---x, ~ y 方向热扩散系数。各向同性的物质,其 x,yx, ~ y 方向热扩散系数相等。初始条件: Where a---x,ya---x, ~ y Directional heat diffusion coefficient. Isotropic substances have equal x,yx, ~ y directional heat diffusion coefficients. Initial conditions:
{:[T(x","0","0)={[T_(s),0 <= x <= sigma],[T_(i),sigma(0) <= x <= L]:}],[T(x","y","0)=T_(i)quad0 <= x <= L","0 <= y <= delta]:}\begin{aligned}
& T(x, 0,0)=\left\{\begin{array}{cc}
T_{s} & 0 \leq x \leq \sigma \\
T_{i} & \sigma(0) \leq x \leq L
\end{array}\right. \\
& T(x, y, 0)=T_{i} \quad 0 \leq x \leq L, 0 \leq y \leq \delta
\end{aligned}
式中:delta\delta-药柱 y 方向厚度;L-L- 药柱 x 方向长度;sigma(t)\sigma(t)-时间 t 秒时,已燃药柱表面的轴向长度,即火焰位置;T_(g)-T_{g}- 燃气流温度;h(x,t)h(x, t)-传热系数,是 x,tx, t 的函数。 Where: delta\delta - thickness of the column in the y-direction; L-L- length of the column in the x-direction; sigma(t)\sigma(t) - axial length of the surface of the ignited column, i.e., the position of the flame, at time t seconds; T_(g)-T_{g}- gas stream temperature; h(x,t)h(x, t) - heat transfer coefficient, as a function of x,tx, t ; and -heat transfer coefficient as a function of x,tx, t .
本文在确定实际传热系数时,不考虑采热粒子的热辐射作用以及可能撞击未燃表面的情况,采用反映实际传热效果的半经验公式(6),即: In this paper, in determining the actual heat transfer coefficient, the semi-empirical equation (6) reflecting the actual heat transfer effect is used without considering the thermal radiation effect of the heat harvesting particles and the possibility of impacting the unburned surface, i.e:
h(x,t)=a(lambda )/(x)((rho_(p)ux)/(mu))^(b)((c_(p)mu)/(lambda))^(c)h(x, t)=a \frac{\lambda}{x}\left(\frac{\rho_{p} u x}{\mu}\right)^{b}\left(\frac{c_{p} \mu}{\lambda}\right)^{c}
式中:a,b,c---a, b, c--- 常数 (b < 1)(b<1) 。 aa 是不等于 1 的常数,反映出辐射传热与粒子撞击表面对药柱表面的热传递的影响,可作为调整参数。 Where a,b,c---a, b, c--- is the constant (b < 1)(b<1) . aa is a constant not equal to 1, reflecting the effect of radiative heat transfer and heat transfer from the particle impact surface to the surface of the pillars, and can be used as a tuning parameter.
如果知道公式(6)中的气流速度 uu ,则可以通过数值方法计算公式(1),并得出 T(x,y,t)T(x, y, t)的结果,通过点火判断准则确定药柱是否点燃,若达到点火温度则有燃气加入燃烧室。 If the air velocity uu in equation (6) is known, equation (1) can be calculated numerically and the result of T(x,y,t)T(x, y, t) can be obtained, and the ignition judgment criterion can be used to determine whether or not the pill column is ignited, and if it reaches the ignition temperature, then gas is added to the combustion chamber.
2.3 气流传播速度 2.3 Air velocity
在固体发动机点火瞬态过程中,加入燃烧室装药通道的燃气流质量有二个来源:一个是点火器提供的点火燃气质量;另一个是主装药燃烧所提供的燃气质量。未燃的装药表面不提供燃气质量,采用简化的分析方法,见图 2,根据质量守恒方程可导出气流速度的数学表达式,假设压力,温度仅随时间变化而不随空间位置变化。 In the solid engine ignition transient process, the gas flow mass added to the combustion chamber charge channel has two sources: one is the ignition gas mass provided by the igniter; the other is the gas mass provided by the main charge combustion. The unburned charge surface does not provide gas mass. Using a simplified analytical method, see Fig. 2, a mathematical expression for the gas flow velocity can be derived from the mass conservation equation, assuming that the pressure and temperature vary only with time and not with spatial position.
图2发动机模型 Fig. 2 Engine model
Fig. 2 Model of motor Fig. 2 Model of motor
图2中 x 处的质量守恒方程写为: The equation for conservation of mass at x in Fig. 2 is written as:
式中:m^(˙)_(i)\dot{m}_{i} —点火器气体质量生成速率;m^(˙)_(g)\dot{m}_{g} —点燃的推进剂的气体质量生成速率;m^(˙)_(x)\dot{m}_{x} - x 截面流出的气体质量速率;m^(˙)_(c)\dot{m}_{c} —头部距 x 截面容积内的气体质量生成速率。 Where: m^(˙)_(i)\dot{m}_{i} - igniter gas mass production rate; m^(˙)_(g)\dot{m}_{g} - gas mass production rate of ignited propellant; m^(˙)_(x)\dot{m}_{x} - gas mass rate of x-section outflow; m^(˙)_(c)\dot{m}_{c}m^(˙)_(c)\dot{m}_{c} - the rate of gas mass production in the volume of the head from the x-section.
点燃推进剂的气体生成率 m^(˙)_(g)\dot{m}_{g} 为: The gas generation rate for ignition of propellant m^(˙)_(g)\dot{m}_{g} is:
m^(˙)_(g)=rho_(p)A_(b)r=rho_(p)A_(b)aP^(n)\dot{m}_{g}=\rho_{p} A_{b} r=\rho_{p} A_{b} a P^{n}
式中:rho_(P)\rho_{P} —推进剂密度;A_(b)A_{b} —燃面面积;SS —燃烧周长;aa —燃速系数;nn 一压力指数。 Where: rho_(P)\rho_{P} - propellant density; A_(b)A_{b} - burning surface area; SS - combustion perimeter; aa - burning velocity coefficient; nn a pressure index.
x 截面流出的气体质量速率为: The rate of gas mass flowing out of the x-section is:
m^(˙)_(x)=rho Au\dot{m}_{x}=\rho A u
式中:rho\rho —推进剂密度;AA —通道截面面积;uu —流速; Where: rho\rho - propellant density; AA - channel cross-sectional area; uu - flow velocity;
头部距 x 截面容积内的气体质量生成速率为: The rate of gas mass generation in the head distance x cross-sectional volume is:
m^(˙)_(i)+rho_(P)A_(b)ap^(n)=(MP)/(RT)Au+V(x)(M)/(RT)(dp)/(dt)\dot{m}_{i}+\rho_{P} A_{b} a p^{n}=\frac{M P}{R T} A u+V(x) \frac{M}{R T} \frac{d p}{d t}
移项得: Shift the term to get:
u=m^(˙)_(i)+(arho_(p)RT)/(MAP^(1-n))A_(b)-(V(x))/(AP)(dp)/(dt)quad0 <= x <= L,t > 0u=\dot{m}_{i}+\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}-\frac{V(x)}{A P} \frac{d p}{d t} \quad 0 \leq x \leq L, t>0
从该式中可以看出,流速 uu 是 x,tx, t 的函数。另外根据通道截面面积不变的假设,可得: From this equation it can be seen that the flow rate uu is a function of x,tx, t . Also based on the assumption that the cross sectional area of the channel is constant:
V(x)=Ax,quad0 <= x <= L,t > 0V(x)=A x, \quad 0 \leq x \leq L, t>0
在火焰传播期间,在 0 <= sigma <= x0 \leq \sigma \leq x 范围内,A_(b)A_{b} 随 xx 线性变化;在 x <= sigma <= Lx \leq \sigma \leq L 范围内,A_(b)A_{b} 是常数。而在 x <= sigma <= Lx \leq \sigma \leq L 范围内的气流速度直接影响火焰传播速度,因此只对 x <= sigma <= Lx \leq \sigma \leq L 范围内的气流速度进行分析。 During flame propagation, A_(b)A_{b} varies linearly with xx in the 0 <= sigma <= x0 \leq \sigma \leq x range, and A_(b)A_{b} is constant in the x <= sigma <= Lx \leq \sigma \leq L range. The air velocity in the x <= sigma <= Lx \leq \sigma \leq L range directly affects the flame propagation velocity, so only the air velocity in the x <= sigma <= Lx \leq \sigma \leq L range is analyzed.
在 x <= sigma <= Lx \leq \sigma \leq L 范围内,A_(b)(x)=A_(b)(sigma),V(x)=AxA_{b}(x)=A_{b}(\sigma), V(x)=A x ,代入到(12)式得: In the range x <= sigma <= Lx \leq \sigma \leq L , A_(b)(x)=A_(b)(sigma),V(x)=AxA_{b}(x)=A_{b}(\sigma), V(x)=A x , substituting into equation (12) yields:
u(x,t)=m^(˙)_(i)+(arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)quad sigma <= x <= L,t > 0u(x, t)=\dot{m}_{i}+\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t} \quad \sigma \leq x \leq L, t>0
式(14)为燃烧室通道内的气流速度,由于只能通过数值计算求解 T(x,y,t)T(x, y, t) ,在此可以通过对流换热系数的变化规律分析火焰锋传播速度变化规律。 Type (14) for the combustion chamber channel air velocity, because only by numerical calculation solution T(x,y,t)T(x, y, t) , here can be through the change rule of convection heat transfer coefficient to analyze the change rule of flame front propagation speed.
2.3 火焰传播规律分析 2.3 Analysis of flame propagation laws
将式(14)代入反映实际传热效果的半经验公式(6)中可得: This can be obtained by substituting Eq. (14) into the semi-empirical Eq. (6) which reflects the actual heat transfer effect:
h(x,t)=a(lambda )/(x)((rho_(p)ux)/(mu))^(b)((c_(p)mu)/(lambda))^(c)=a(lambda )/(x)((rho_(p)x)/(mu))^(b)((c_(p)mu)/(lambda))^(c)[m^(˙)_(i)+(arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)]^(b)h(x, t)=a \frac{\lambda}{x}\left(\frac{\rho_{p} u x}{\mu}\right)^{b}\left(\frac{c_{p} \mu}{\lambda}\right)^{c}=a \frac{\lambda}{x}\left(\frac{\rho_{p} x}{\mu}\right)^{b}\left(\frac{c_{p} \mu}{\lambda}\right)^{c}\left[\dot{m}_{i}+\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t}\right]^{b}
对于距离燃烧室头部为 xx 的某一截面,该位置的对流换热系数越高,则被点燃所需时间越短,即火焰锋传播速度越快。在压强仅随时间变化而不随空间位置变化的假设下,对流换热系数主要受时间 tt 和点火器气体质量生成速率 m^(˙)_(i)\dot{m}_{i} 的影响,也可以说火焰锋通过该截面的速度主要受时间 tt 和点火器气体质量生成速率 m^(˙)_(i)\dot{m}_{i} 的影响。 For a section xx from the head of the combustion chamber, the higher the convective heat transfer coefficient at that location, the shorter the time required to ignite, i.e., the faster the flame front propagates. Under the assumption that the pressure varies only with time and not with spatial position, the convective heat transfer coefficient is mainly affected by time tt and the igniter gas mass generation rate m^(˙)_(i)\dot{m}_{i} , and it can also be said that the speed of the flame front passing through the cross-section is mainly affected by time tt and the igniter gas mass generation rate m^(˙)_(i)\dot{m}_{i} .
1)时间 tt 对火焰传播速率的影响 1) Effect of time tt on flame propagation rate
通过式(15)可以分析,随着 tt 的增大,燃面面积 A_(b)(sigma)A_{b}(\sigma) 增大,燃烧室内的压强 PP 相应的增大,由于压力指数 n < 1n<1 ,故 P^(1-n) < PP^{1-n}<P ,因此 (arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t} 随着 tt 的增大而增大,即 xx 截面的传热系数 h(x,t)h(x, t) 随着 tt 的增大而增大,而传热系数的增大直接导致了推进剂药条达到着火温度时间的缩短,故火焰传播速率随着时间的增大而增大。 It can be analyzed through equation (15) that with the increase of tt , the area of combustion surface A_(b)(sigma)A_{b}(\sigma) increases, and the pressure inside the combustion chamber PP increases accordingly, and because of the pressure exponent n < 1n<1 , it is P^(1-n) < PP^{1-n}<P so that the (arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t} increases with the increase of tt , i.e., the heat transfer coefficient xx of the > cross section increases, and the increase of heat transfer coefficient directly leads to the increase of time for the propellant strip to reach the ignition temperature. > The heat transfer coefficient of the cross-section h(x,t)h(x, t) increases with the increase of tt , and the increase of the heat transfer coefficient directly leads to the shortening of the time for the propellant strips to reach the ignition temperature, so the flame propagation rate increases with the increase of time.
2)点火器气体质量生成速率 m^(˙)_(i)\dot{m}_{i} 对火焰传播速率影响 2) Igniter gas mass generation rate m^(˙)_(i)\dot{m}_{i} on flame propagation rate
通过式(15)显而易见,当 m^(˙)_(i)\dot{m}_{i} 增大时,燃烧室内压强 PP 相应的增大,由于压力指数 n < 1n<1 ,故 P^(1-n) < PP^{1-n}<P ,因此 (arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t} 增大,传热系数 h(x,t)h(x, t) 相应增大,即同一时刻 tt同一截面 xx 火焰传播速率增大。 Through equation (15), it is obvious that when m^(˙)_(i)\dot{m}_{i} increases, the pressure inside the combustion chamber PP increases accordingly, and since the pressure exponent n < 1n<1 is P^(1-n) < PP^{1-n}<P , the heat transfer coefficient h(x,t)h(x, t) increases because of the increase in (arho_(p)RT)/(MAP^(1-n))A_(b)(sigma)-(x)/(P)(dp)/(dt)\frac{a \rho_{p} R T}{M A P^{1-n}} A_{b}(\sigma)-\frac{x}{P} \frac{d p}{d t} , i.e., the flame propagation rate increases in the same cross section at the same moment tt . b7> The rate of flame propagation increases.
3 火焰传播过程试验研究 3 Experimental study of the flame propagation process
3.1 试验装置 3.1 Test setup
试验研究的重点在对于不同点火药量生成的点火燃气以不同的角度喷射到推进剂表面的情况下推进剂表面的火焰传播规律。具体方案就是在推进剂表面等距离的埋设靶线,当点火燃气喷射到推进剂表面时,推进剂达到点火温度并点燃同时火焰沿推进剂表面传播,当火焰传播到埋设靶线的部位将靶线熔断,此时通过测试系统记录靶线熔断的时间,并以此推断出火焰的传播速率,同时通过压力传感器测得燃烧室的压力变化规律。不同角度燃气喷射的试验装置简图见图3。 The experimental research focuses on the flame propagation law on the propellant surface in the case of different ignition gas generated by different ignition charges and sprayed onto the propellant surface at different angles. Specific program is buried in the propellant surface at equal distances from the target line, when the ignition gas is sprayed to the propellant surface, the propellant reaches the ignition temperature and ignition at the same time the flame spreads along the propellant surface, when the flame spreads to the buried target line parts of the target line will be melted, at this time through the test system to record the time of melting of the target line, and thus deduced that the flame propagation rate, and at the same time through the pressure sensor measured by the pressure change law of the combustion chamber. The rule of change of the combustion chamber. Different angles of gas injection test setup sketch is shown in Figure 3.
图3 试验装置简图 Figure 3 Sketch of the test setup
Fig3 Schematic drawing of simulation test motor
3.2 试验结果 3.2 Test results
3.2.1 火焰峰传播位置分析 3.2.1 Analysis of flame peak propagation position
图4和图5分别是在密封燃烧室中, 10^(g),15^(g),20^(g)10^{g}, ~ 15^{g}, ~ 20^{g} 点火药产生的点火剂燃气平行,倾斜喷射入平板底座燃烧室时的火焰锋传播位置图。 FIGS. 4 and 5 are diagrams of the position of flame front propagation in a sealed combustion chamber when 10^(g),15^(g),20^(g)10^{g}, ~ 15^{g}, ~ 20^{g} the igniter gas produced by the igniter charge is injected parallel, at an angle, into the combustion chamber of a flat base, respectively.
图4 燃气平行喷射下的火焰锋传播位置图 图5 燃气倾斜喷射下的火焰锋传播位置 Fig. 4 Flame front propagation position under parallel gas injection Fig. 5 Flame front propagation position under inclined gas injection
Fig.4Flame front Location in parallel injection Fig.5Flame front Location in oblique injection Fig.4Flame front Location in parallel injection Fig.5Flame front Location in oblique injection
(1)当 10 g10 g 点火药产生的燃气平行喷射入燃烧室时,第 2 根靶线首先熔断,然后火焰沿着火点向四周扩展,连续扩大。 (1) When the gas produced by the 10 g10 g ignition charge is injected into the combustion chamber in parallel, the 2nd target wire first melts, and then the flame extends along the ignition point in all directions, expanding continuously.
当 15 g15 g 点火药产生点火剂燃气平行喷射入燃烧室时,通过靶线熔断的时间分析,第 3根靶线首先熔断,其次熔断的靶线分别为 4,5,24, ~ 5, ~ 2 根靶线,说明着火点相比上次试验中的着火点位置向燃烧室下游移动。由于第 5 根靶线的率先熔断说明在着火点下游出现二次点火,根据文献[21]分析出现二次点火的原因在于燃气(包括点火药生成的燃气和推进剂燃烧产生的燃气)对流传热速率增大导致新的着火点的出现,也有可能是推进剂燃烧产生的灼热铝粉颗粒飞溅到燃烧区下游通过热传导导致新的着火点出现或者点火药中粒径较大的颗粒在点火瞬态过程中飞散入燃烧室,在下游区域燃烧导致新的着火点的出现。 When 15 g15 g igniter gas from the ignition charge is injected into the combustion chamber in parallel, analyzing the melting time of the target line, the third target line melts first, followed by 4,5,24, ~ 5, ~ 2 target lines, which indicates that the ignition point moves downstream of the combustion chamber compared with the position of the ignition point in the last test. The first melting of the 5th target line indicates that the secondary ignition occurs downstream of the ignition point. According to the literature [21], the reason for the secondary ignition is that the convective heat transfer rate of the gas (including the gas generated by the ignition charge and the gas generated by the propellant combustion) is increased, resulting in the appearance of a new ignition point, and it may be the case that the burning aluminum particles generated by the propellant combustion are splashed downstream of the combustion zone through the heat conduction, resulting in the emergence of new ignition point or the ignition of the ignition charge or the ignition of the propellant combustion. It is also possible that the hot aluminum particles from propellant combustion splash downstream of the combustion zone and cause new ignition points through heat conduction, or the particles with larger sizes in the ignition charge are scattered into the combustion chamber during the ignition transient and burn in the downstream area, resulting in the emergence of new ignition points.
当 20 g20 g 点火药产生的点火剂燃气平行喷射入燃烧室时,第 5 根靶线首先熔断,说明随着点火药量的增加,着火点继续向下游移动。这是因为首先点燃部位与点火系统火焰形状有关,火焰形状影响着推进剂药条表面的热流率分布,火焰的最大截面处热流密度无疑最大,而随着点火药量的增加,火焰的最大截面处相应的向下游移动,因此首先点燃部位---着火点随之向下游移动。 When 20 g20 g the igniter gas produced by the ignition charge is injected into the combustion chamber in parallel, the 5th target wire is the first to melt, indicating that the ignition site continues to move downstream as the amount of ignition charge increases. This is because the first ignition site is related to the ignition system flame shape, the flame shape affects the heat flow rate distribution on the surface of the propellant strip, and the heat flow density is undoubtedly greatest at the largest cross-section of the flame, and with the increase in the amount of ignition charge, the largest cross-section of the flame correspondingly moves downstream, and therefore the first ignition site - - the ignition point then moves downstream. -the ignition point moves downstream.
(2)当不同药量点火药产生的燃气倾斜喷射入燃烧室时,着火点的位置不以点火药量的增加而改变。这是与整个模拟发动机的结构设计有关。图6是点火装置具有倾角的模拟发动机头部结构简图。 (2) When the gas produced by different dosage of ignition powder is injected into the combustion chamber at an inclined angle, the position of the ignition point does not change with the increase of the ignition powder dosage. This is related to the structural design of the whole simulated engine. Figure 6 is a sketch of the structure of the head of the simulated engine with an inclined angle of the ignition device.
图6 模拟发动机头部结构简图 Fig. 6 Simulated engine head structure sketch
Fig 6 Schematic drawing of head ignitor
滞止点距离燃烧室壁面的距离为: The distance of the lagging point from the wall of the combustion chamber is:
l=L+H xx ctg thetal=L+H \times \operatorname{ctg} \theta
式中: Style: LL 是射流中心距离燃烧室壁面的距离; LL is the distance from the center of the jet to the wall of the combustion chamber; HH 是射流中心距离推进剂药条的距离; HH is the distance from the center of the jet to the propellant strip; theta\theta 是射流角度。 theta\theta is the jet angle.
将相关数据代入上式中可得滞止点位于第 2 根靶线左侧区域。通过倾斜射流传热方式分析得知,当具有倾斜角度的射流喷射到推进剂药条上时,局部换热系数的最大值位于滞止点处,即着火点出现在第 2 根靶线左侧。 Substituting the relevant data into the above equation, we can get that the stagnation point is located in the area to the left of the 2nd target line. Through the analysis of the tilted jet heat transfer mode, when the jet with a tilted angle is sprayed onto the propellant strip, the maximum value of the local heat transfer coefficient is located in the stagnation point, i.e., the point of ignition occurs on the left side of the second target line.
3.2.2 火焰锋传播速度分析 3.2.2 Analysis of flame front propagation velocity
表 1 和表 2 是分别根据密封燃烧室中, 10 g,15 g,20 g10 g, ~ 15 g, ~ 20 g 点火药产生的点火剂燃气平行,倾斜喷射入平板底座燃烧室时计算的相邻龩线之间的火焰锋平均传播速度。 Tables 1 and 2 show the average flame front propagation velocities between neighboring 龩 lines, calculated from the parallel, inclined injection of the igniter gas from the 10 g,15 g,20 g10 g, ~ 15 g, ~ 20 g igniter charge into the flat base combustion chamber in the sealed combustion chamber, respectively.
表1点火剂燃气平喷下火焰锋平均传播速度 Table 1 Average flame front propagation velocity under flat spray of igniter gas
Table 1 Velocity of flame front in gas parallel injection
点火药量 (g)(g) Ignition charge (g)(g)
1-2 Target Line Average Propagation Speed (m//s)(\mathrm{m} / \mathrm{s})
表中:---表示此处产生着火点,并未计算该区间的火焰锋平均传播速度。 In the table: --- indicates that the ignition point was created here and the average flame front propagation speed was not calculated for this interval.
表2 点火剂燃气斜喷下火焰锋平均传播速度 Table 2 Mean flame front propagation velocity under oblique spray of ignitor gas
Table2 Velocity of flame front in gas oblique injection
点火药量 (g)(g) Ignition charge (g)(g)
1-2 Target Line Average Propagation Speed (m//s)(m / s)
表中:---表示此处产生着火点,并未计算该区间的火焰锋平均传播速度。 In the table: --- indicates that the ignition point was created here and the average flame front propagation speed was not calculated for this interval.
通过表1和表1数据可以看出,当相同药量点火药生成的燃气喷射入燃烧室后,火焰沿着火点向上游,下游传播,且向下游传播的速度大于火焰向上游的传播速度。 It can be seen from the data in Table 1 and Table 1 that when the gas generated by the same amount of ignition charge is injected into the combustion chamber, the flame propagates upstream and downstream along the fire point, and the speed of propagation downstream is greater than that of the flame upstream.
相同靶线之间的火焰传播速度,其大小随着点火药量的增加而增加,这是由于点火药量的增加既增加了点火剂燃气在燃烧室通道内的流动速度又增加了单位时间内的热流密度,因此加快了火焰传播速度。 The flame propagation velocity between the same target lines, the magnitude of which increases with the increase in the amount of ignition charge, is due to the increase in the amount of ignition charge increases both the flow rate of the igniter gas in the combustion chamber channel and the density of heat flow per unit of time, and therefore accelerates the flame propagation velocity.
当点火剂燃气倾斜喷射入燃烧室时,相同靶线之间的火焰传播速度略大于点火剂燃气平行喷射的情况。原因在于当点火剂燃气倾斜喷射时,点火剂燃气喷射到药条表面后燃气主流沿药条表面传播,其表面局部传热率大于点火剂燃气平行喷射时对推进剂表面的传热率,故火焰传播速度较快。 When the ignitor gas is injected into the combustion chamber at an angle, the flame propagation speed between the same target lines is slightly larger than that of the parallel injection of ignitor gas. The reason is that when the ignitor gas is sprayed at an angle, the gas mainstream spreads along the surface of the strip after the ignitor gas is sprayed onto the surface of the strip, and the local heat transfer rate of the surface is greater than that of the propellant surface when the ignitor gas is sprayed in parallel, so the flame propagation speed is faster.
4 结论 4 Conclusion
本文采用通过不定常理论推导了火焰传播规律,并对不同点火药量,不同射流角度的模拟发动机进行了装药点火试验,利用靶线法对点火瞬态过程中火焰锋传播位置进行测量,对点火瞬态过程中的着火点位置,火焰锋传播速度进行分析,通过试验结果分析的火焰锋传播速度变化规律与理论分析相一致,主要结论如下: In this paper, the flame propagation law is deduced through the unsteady theory, and the different ignition charge, different jet angle of the simulation engine was loaded ignition test, the use of target line method of ignition transient process of flame front propagation position measurements, ignition transient process of ignition location, flame front propagation velocity analysis, through the test results of the change rule of the flame front propagation velocity analysis and theory analysis Consistent with the theoretical analysis, the main conclusions are as follows:
1)火焰锋传播速度随着时间的增大而加速,同一时刻同一截面火焰锋传播速度随着点火剂燃气质量流量的增大而增大; (1) flame front propagation speed with the increase in time and acceleration, the same moment the same cross-section of the flame front propagation speed with the increase in the mass flow rate of the ignition agent gas and increase;
2)燃气平行喷射情况下,着火点随着点火药量的增加而向后移动;燃气倾斜喷射情况下,着火点位置不变; (2) In the case of parallel gas injection, the ignition point moves backward with the increase of the ignition charge; in the case of inclined gas injection, the ignition point position remains unchanged;
3)当相同药量点火药生成的燃气喷射入燃烧室后,火焰沿着火点向上游,下游传播,且向下游传播的速度大于火焰向上游的传播速度;燃气倾斜喷射导致的火焰锋传播速度大于燃气平行喷射下的火焰锋传播速度。 (3) When the gas generated by the same amount of ignition powder is injected into the combustion chamber, the flame propagates upstream and downstream along the fire point, and the speed of propagation downstream is greater than that of the flame upstream; the speed of propagation of the flame front due to the inclined gas injection is greater than that of the flame front under the parallel injection of gas.
5 参考文献 5 References
[1]Parker,K.H.,et al,The Ignition Transients in Solid Rocket Grain Propellants[J].AIAA Paper 64-126. [1] Parker, K. H., et al, The Ignition Transients in Solid Rocket Grain Propellants [J]. AIAA Paper 64-126.
[2]Summerfield,M.,et al,The Ignition Transients in Solid Propellant Rocket Motors[R].Aerospace and Mechbical Sciences Report 769,Feb.1966. [2] Summerfield, M., et al, The Ignition Transients in Solid Propellant Rocket Motors [R], Aerospace and Mechbical Sciences Report 769, Feb. 1966.
[3]Most,W.J.,et al,Starting Thrust Transients of Solid Rocket Engines[J].AIAA Paper64-125,Jan 1964. [3] Most, W. J., et al, Starting Thrust Transients of Solid Rocket Engines [J]. AIAA Paper 64-125, Jan 1964.
[4]Brown,R.S.,et al,Theory of Ignition and Ignition Propagation of Solid Propellant in a [4] Brown, R. S., et al, Theory of Ignition and Ignition Propagation of Solid Propellant in a
Flow Environment[J].AIAA Paper 64-157,Jan. 1964. Flow Environment[J]. AIAA Paper 64-157, Jan. 1964.
[5]Jensen,G.E.,Brown,R.S.,Cose,D.A.,ans Andson,R.,Ignnition and Ignition Propagation in Solid Propellants motors[C],AIAA Paper 66-677,Second propulsion Joint Specialist Conference,Colorado Springs,Colo.,June 1966 [5] Jensen, G.E., Brown, R.S., Cose, D.A., and Andson, R., Ignition and Ignition Propagation in Solid Propellants motors [C], AIAA Paper 66-677, Second propulsion Joint Specialist Conference, Colorado Springs, Colo. -677, Second propulsion Joint Specialist Conference, Colorado Springs, Colo., June 1966.
[6]Raizberg,B.A.,Physical Basis and Mathematical Model of the Propagrtion of a Flame Over the Surface of a Solid Propellant During Ignition.Combustion[J],Explosionand Shock Waces.Vol.4,N0.4,1968,pp330-335. [6] Raizberg, B. A., Physical Basis and Mathematical Model of the Propagrtion of a Flame Over the Surface of a Solid Propellant During Ignition. Combustion [J], Explosionand Shock Waces. vol. 4, N0. 4, 1968, pp330-335.
[7]WINFRED A,FOSTER J,RHONALD M ,J.Direct measurement of internal flow velocities in a star-slot model[C]//Proceedings of the 33rd Joint Propulsion Conference and Exhibit.Seattle,WA,US:AlAA, 1997. [7]WINFRED A, FOSTER J, RHONALD M , J. Direct measurement of internal flow velocities in a star-slot model[C]//Proceedings of the 33rd Joint Propulsion Conference and Exhibit. Seattle, WA, US: AlAA, 1997.
[8]TIAN H,YU R P,ZHU H.Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor[J].Acta Astronautics,2017,140: 247 - 254. [8]TIAN H, YU R P, ZHU H. Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor[J]. Acta Astronautics, 2017, 140: 247 - 254.
[9]GALFETTI L,COLOMBO G,MENALLI A ,et al.Experimental study of solid-propellant ignition transient and flame spreading under connective flows[J]. Combustion Explosion and ShockWaves,2000,36(1):108-118. [9]GALFETTI L, COLOMBO G, MENALLI A , et al. Experimental study of solid-propellant ignition transient and flame spreading under connective flows[J]. Combustion Explosion and ShockWaves, 2000, 36(1):108-118.
[10]Conover G H.Cold-flow studies of ignirer plume flow fields and heat transfer.NUT-OI-003-800[R],June 1984. [10] Conover G H. Cold-flow studies of igniter plume flow fields and heat transfer. 800 [R], June 1984.
[11]Jeffrey D.Moore,Kenneth K.Kuo,and Peter J.Ferrara.Flame Spreading in a Simulated Fin-Slot Rocket Motor[J],AIAA-2007-5780 [11] Jeffrey D. Moore, Kenneth K. Kuo, and Peter J. Ferrara. Flame Spreading in a Simulated Fin-Slot Rocket Motor[J], AIAA- 2007-5780
[12]李逢春,张富升等.复合推进剂实际点火过程的试验研究[J],固体火箭技术,1989,4:39-44.LI Fengchun,ZHANG Fusheng et.Experimental study on the actual ignition process of composite propellant[J].Journal of Solid Rocket Technology,1989,4:39-44. [12] LI Fengchun, ZHANG Fusheng et. al. Experimental study on the actual ignition process of composite propellant[J], Journal of Solid Rocket Technology, 1989, 4:39-44. composite propellant[J]. Journal of Solid Rocket Technology, 1989, 4: 39-44.
[13]王慧,塞泽群,王华等,大后翼与主流相互作用的模拟点火试验[J].推进技术,1997,18(3):32-36. WANG Hui,JIAN Zequn,WANG Hua et.Simulated ignition test on the interaction between large rear fin and main stream[J].Journal of propulsion technology,1997,18(3):32-36 [13]WANG Hui, JIAN Zequn, WANG Hua et.al. Simulated ignition test on the interaction between large rear fin and main stream[J]. Propulsion technology, 1997, 18(3): 32-36. WANG Hui, JIAN Zequn, WANG Hua et.Simulated ignition test on the interaction between large rear fin and main stream[J]. Journal of propulsion technology, 1997, 18(3):32-36
[14]余贞勇.固体火箭发动机翼槽内火焰传播机理研究[D].西北工业大学,2000,3.YU Zhenyong. Research On The Ignition Transient In Solid Rocket Motor With Finocyl Grain[D].Northwestern Polytechnical University,2000, 3. [14] Yu Zhenyong. Research On The Ignition Transient In Solid Rocket Motor With Finocyl Grain [D]. Northwestern Polytechnical University, 2000, 3. YU Zhenyong. Research On The Ignition Transient In Solid Rocket Motor With Finocyl Grain [D]. 2000, 3.
[15]肖波,刘佩进.高能推进剂火焰传播过程实验研究[J],含能材料,2011,19(1):55-59.XIAO Bo,LIU Peijin.Expermental Study on Flame-Spreading of High Energy Propellant[J],Chinese Journal of energetic materials.2011,19(1):55-59 [15] Xiao Bo, Liu Peijin. Experimental Study on Flame-Spreading Process of High Energy Propellant [J], Chinese Journal of energetic materials. 2011, 19(1):55-59. XIAO Bo, LIU Peijin. Propellant[J], Chinese Journal of energetic materials, 2011, 19(1):55-59.
[16]唐金兰,樊建龙,李进贤,冯喜平,SRM 点火瞬态凝相粒子对火焰传播过程的影响[J].Vol.29 No.5, 2008,29(5):1602-1606.TANG Jinlan,FANG Jianlong,LI Jinxian et al.The influence of coagulate particle to the flame propagation process in SRM ignition transient[J].Journal of Astronautics,2008, 29(5):142-146.(in Chinese) [16]TANG Jinlan, FAN Jianlong, LI Jinxian, FENG Xiping, The influence of coagulate particle to the flame propagation process in SRM ignition transient[J].Vol.29 No.5, 2008, 29(5): 1602-1606. influence of coagulate particle to the flame propagation process in SRM ignition transient [J]. Journal of Astronautics, 2008, 29(5):142-146.
[17]王健儒,晃㑆,陆贺建.大型分段式固体火箭发动机点火瞬态过程研究[J].固体火箭技术 2017, 10(2):141-145.Wang Jianru,Chao Kan,Lu Hejian,investigation of ignition transient in large segmented SRM[J].Journal of Solid Rocket Technology,2017,10(2):141-145. [17]Wang Jianru, Shuang Jie, Lu Hejian. Research on ignition transient process of large-scale segmented solid rocket motor [J]. Solid Rocket Technology 2017, 10(2):141-145. Wang Jianru, Chao Kan, Lu Hejian, investigation of ignition transient in large segmented SRM [J]. Solid Rocket Technology, 2017, 10(2):141-145.
[18]丁鸿铭,卓长飞,陈浩田等.基于点火药颗粒的固体火箭发动机点火瞬态过程数值研究[J].北京理工大学学报.2020,40(8):818-825.DING Hong-ming,ZHUO Chang-fei,CHFN Haotian,TAI Ding-hua.Numerical Study on Ignition Transient Process of Solid Rocket Motor Based on Ignition Particle[J].Transactions of Beijing institute of Technology.2020,40(8):818-825. [18]Hongming Ding, Changfei Zhuo, HaoTian Chen, etc. Numerical study on ignition transient process of solid rocket motor based on ignition powder particles [J]. Journal of Beijing Institute of Technology. 2020, 40(8): 818-825. DING Hong-ming, ZHUO Chang-fei, CHFN Haotian, TAI Ding-hua. Numerical Study on Ignition Transient Process of Solid Rocket Motor Based on Ignition Particle[J]. Transactions of Beijing institute of Technology. 2020, 40(8):818-825.
[19]GUAN Dian,LI Shipeng,LIU Zhu,et.Influence of lateral acceleration on ignition transients of silid rocket motor[J].Acta Armamentarii,2021,42(9):1877-1887(In chinese) [19]GUAN Dian, LI Shipeng, LIU Zhu, et. Influence of lateral acceleration on ignition transients of silid rocket motor[J]. Acta Armamentarii, 2021, 42 ( 9):1877-1887(In chinese)
[20]GUAN Dian,GUO Yawen,LI Shipeng,et.Influence of Gas-particle Two-phase Flow on Ignition of the Solid Rocket Motor under Lateral Acceleration[J].Acta Armamentarii,2022,43(8):1792-1807(In chinese) [20]GUAN Dian, GUO Yawen, LI Shipeng, et. al. Influence of Gas-particle Two-phase Flow on Ignition of the Solid Rocket Motor under Lateral Acceleration〔J〕. under Lateral Acceleration[J]. Acta Armamentarii, 2022, 43(8):1792-1807 (In chinese)
[21]Peretz,A.,et.al.Start Transient of Solid-Propellant Rocket Motor with High Internal Gas Velocities[J].AIAA Tournal Dec 1973:Vol 11.No 12 158-164 [21] Peretz, A., et. al. Start Transient of Solid-Propellant Rocket Motor with High Internal Gas Velocities[J]. AIAA Tournal Dec 1973:Vol 11. No 12 158-164
第一作者介绍:赵汝岩(1980-),男,博士,研究方向为航空航天发动机工作过程仿真联系人:赵汝岩,电话: 13805352619 First author introduction: Zhao Ruyan (1980-), male, Ph.D., research direction for aerospace engine work process simulation Contact: Zhao Ruyan, Tel: 13805352619