这是用户在 2024-4-2 20:17 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133849/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳至主要内容
U.S. flag

An official website of the United States government

Access keys 访问键 NCBI Homepage 国家生物伦理学委员会主页 MyNCBI Homepage MyNCBI 主页 Main Content 主要内容 Main Navigation 主导航
2016 Nov; 17(11): 1849.
Published online 2016 Nov 7. doi: 10.3390/ijms17111849
2016年11月7日在线发表。DOI:10.3390/IJMS17111849
PMCID: PMC5133849
PMID: 27827996

The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins
溴结构域和末端外域 (BET) 家族:BET 对映体蛋白的功能剖析

William Chi-shing Cho, Academic Editor
William Chi-shing Cho,学术编辑

Abstract 摘要

The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically bind acetylated lysine residues in histones serve as chromatin-targeting modules that decipher the histone acetylation code. BET proteins play a crucial role in regulating gene transcription through epigenetic interactions between bromodomains and acetylated histones during cellular proliferation and differentiation processes. On the other hand, BET proteins have been reported to mediate latent viral infection in host cells and be involved in oncogenesis. Human BRD4 is involved in multiple processes of the DNA virus life cycle, including viral replication, genome maintenance, and gene transcription through interaction with viral proteins. Aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin containing the cell proliferation-promoting genes. BET bromodomain blockade using small-molecule inhibitors gives rise to selective repression of the transcriptional network driven by c-MYC These inhibitors are expected to be potential therapeutic drugs for a wide range of cancers. This review presents an overview of the basic roles of BET proteins and highlights the pathological functions of BET and the recent developments in cancer therapy targeting BET proteins in animal models.
溴结构域和末端外结构域(BET)蛋白家族的特征是存在两个串联溴结构域和一个末端外结构域。哺乳动物的 BET 蛋白家族包括 BRD2、BRD3、BRD4 和 BRDT,它们由对等基因编码,可能是在进化过程中通过重复复制祖先基因而产生的。能与组蛋白中的乙酰化赖氨酸残基特异性结合的溴结构域是一种染色质靶向模块,能破译组蛋白乙酰化密码。在细胞增殖和分化过程中,BET 蛋白通过溴结构域与乙酰化组蛋白之间的表观遗传学相互作用,在调节基因转录方面发挥着至关重要的作用。另一方面,有报道称 BET 蛋白可介导宿主细胞中的潜伏病毒感染,并参与肿瘤发生。人类 BRD4 参与了 DNA 病毒生命周期的多个过程,包括病毒复制、基因组维护以及通过与病毒蛋白相互作用进行基因转录。BRD4的异常表达通过介导含有细胞增殖促进基因的染色质的高乙酰化而导致癌变。使用小分子抑制剂阻断 BET 溴域可选择性地抑制 c-MYC 驱动的转录网络。本综述概述了 BET 蛋白的基本作用,重点介绍了 BET 的病理功能以及在动物模型中针对 BET 蛋白进行癌症治疗的最新进展。

Keywords: Bromodomain and Extra-Terminal Domain (BET), bromodomain, histone acetylation, gene transcription, BET inhibitor
关键词溴结构域和末端外域(BET)、溴结构域、组蛋白乙酰化、基因转录、BET 抑制剂

1. Introduction 1.导言

In Drosophila, the maternal effects gene, fsh, plays critical roles in establishing segments and specifying their identities during embryonic development []. The RING3 gene, found in the class II region of the human major histocompatibility complex (MHC) has substantial homology with the fsh gene []. The yeast Bdf1 gene encodes a transcription factor that is required for sporulation [,]. A comparison of the Bdf1 protein with the FSH and RING3 proteins reveals three regions of amino acid sequence similarities including two tandem bromodomains and an extra-terminal domain [,]. The syntenic chromosomal areas in vertebrates are believed to have been generated by the repeated duplication of ancestral genes []. In human, the ORFX [], MCAP [], and BRDT [] genes have a paralogous relationship with the RING3 located in the MHC region [,]. The proteins produced from these genes also possess two tandem bromodomains and an extra-terminal domain. The group of proteins containing these three domains is termed the Bromodomain and Extra-Terminal Domain (BET) family. Based on the structural and functional similarities among the four paralogous genes, mammalian Ring3, Orfx, Mcap, and Brdt are simply named as Brd2, Brd3, Brd4, and Brdt, respectively.
在果蝇中,母体效应基因 fsh 在胚胎发育过程中建立节段和明确其特征方面起着关键作用[1]。人类主要组织相容性复合体(MHC)第二类区域中的 RING3 基因与 fsh 基因有很大的同源性[2]。酵母 Bdf1 基因编码一种转录因子,是孢子形成所必需的[3, 4]。将 Bdf1 蛋白与 FSH 蛋白和 RING3 蛋白进行比较,发现有三个氨基酸序列相似的区域,包括两个串联溴域和一个末端外域[3, 5]。脊椎动物的同源染色体区域被认为是由祖先基因的重复复制产生的[6]。在人类中,ORFX[7]、MCAP[8]和 BRDT[9]基因与位于 MHC 区域的 RING3 具有同源关系[10, 11]。由这些基因产生的蛋白质也具有两个串联的溴结构域和一个末端外结构域。含有这三个结构域的蛋白质被称为溴结构域和端外域(BET)家族。根据四个同源基因在结构和功能上的相似性,哺乳动物的 Ring3、Orfx、Mcap 和 Brdt 分别被简单地命名为 Brd2、Brd3、Brd4 和 Brdt。

In Drosophila, the brahma (brm) gene encodes a bromodomain-containing protein that is required for transcriptional activation of several Hox genes []. Tetrahymena histone acetyltransferase (HAT) A is a homolog of the yeast Gcn5p that is a bromodomain-containing transcriptional activator []. Further, biochemical analysis has identified Gcn5p as a HAT catalytic subunit, suggesting that histone acetylation is linked to the transcriptional activation of genes []. Most of the HAT-associated transcriptional activators contain bromodomains [,], which can interact specifically with acetylated lysine []. The bromodomain that is functionally linked to the HAT activity of transcriptional activators serves as a chromatin-targeting module deciphering the histone acetylation code [,]. In mouse cell lines, BRD4 plays crucial roles in controlling cell growth by regulating the expression of transcription factors []. This regulation requires recognition of the histone acetylation code by the Brd4 bromodomains []. BRD2 selectively interacts with acetylated lysine 12 on histone H4, indicating the specificity of histone recognition by the bromodomains []. BRD4 is bound to the positive transcription elongation factor b (P-TEFb) that is involved in most RNA polymerase II (RNA Pol II)-dependent transcription processes, and positively regulates P-TEFb activity in transcription [,]. BRD2 and BRD3 specifically recognize the histone acetylation code and allow RNA Pol II to transcribe through nucleosomes in an in vitro transcription system []. To facilitate transcription, Brd4 functions on distal enhancers as well as on gene bodies by interacting with the acetylated histones through bromodomains [,]. These facts provide evidence that the BET proteins regulate gene transcription through epigenetic interactions between bromodomains and acetylated histones.
在果蝇中,梵天(brahma,brm)基因编码一种含溴结构域的蛋白质,它是多个 Hox 基因转录激活所必需的[12]。四膜虫组蛋白乙酰转移酶(HAT)A 是酵母 Gcn5p 的同源物,是一种含溴结构域的转录激活因子[13]。此外,生化分析发现 Gcn5p 是 HAT 的催化亚基,这表明组蛋白乙酰化与基因的转录激活有关[13]。大多数与 HAT 相关的转录激活因子都含有溴结构域[14, 15],能与乙酰化赖氨酸发生特异性相互作用[16]。在功能上与转录激活子的 HAT 活性相关的溴结构域可作为染色质靶向模块,破译组蛋白乙酰化密码[17, 18]。在小鼠细胞系中,BRD4 通过调节转录因子的表达,在控制细胞生长方面发挥着至关重要的作用[8]。这种调控需要 Brd4 溴域识别组蛋白乙酰化代码[19]。BRD2 选择性地与组蛋白 H4 上的乙酰化赖氨酸 12 相互作用,这表明溴化链识别组蛋白具有特异性[20]。BRD4 与参与大多数 RNA 聚合酶 II(RNA Pol II)依赖性转录过程的正转录伸长因子 b(P-TEFb)结合,并在转录过程中正调控 P-TEFb 的活性[21, 22]。BRD2 和 BRD3 能特异性识别组蛋白乙酰化代码,并允许 RNA Pol II 在体外转录系统中通过核小体进行转录[23]。为了促进转录,Brd4 通过溴域与乙酰化组蛋白相互作用,在远端增强子和基因体上发挥作用[24, 25]。这些事实证明,BET 蛋白通过溴结构域和乙酰化组蛋白之间的表观遗传学相互作用来调控基因转录。

A genome wide approach for the characterization of nucleosomes decoded by the double bromodomain BET factors shows that direct binding of BRD4 to acetylated nucleosomes associated with transcribed genes is required for their proper expression []. Global transcriptome analysis identifies BRDT as a transcriptional regulator that controls the expression of over 3000 genes responsible for the progression of meiosis during spermatogenesis []. On the other hand, the aberrant expression of BET promotes oncogenesis, blocking cell differentiation and driving the growth of cells. NUT midline carcinoma (NMC) is caused by a translocation-derived fusion protein, BRD4-NUT or BRD3-NUT, which hyperacetylates the nucleosomal domains including the anti-differentiation genes [,]. These studies have demonstrated that the BET proteins, which are epigenetic regulators of gene transcription, are strongly implicated in the regulation of cell growth and differentiation. In mouse models of NMC, JQ1, a small molecular BET inhibitor that binds specifically to bromodomains, promotes the differentiation and regression of tumor cells and contributes to prolonged survival []. In addition, a growing body of recent work highlights the pre-clinical efficacy of BET inhibitors including JQ1 in a wide range of malignancies [,,]. BET inhibitors are used not only to validate their therapeutic potential in many cancers, but also to demonstrate that BET mediates the transcriptional regulation underlying learning and memory in mice [].
对双溴域 BET 因子解码的核糖体进行全基因组表征的方法表明,BRD4 与转录基因相关的乙酰化核糖体直接结合是基因正常表达所必需的[26]。全球转录组分析发现,BRDT 是一种转录调节因子,控制着精子发生过程中负责减数分裂进程的 3000 多个基因的表达[27]。另一方面,BET 的异常表达会促进肿瘤发生,阻碍细胞分化并推动细胞生长。NUT中线癌(NMC)是由易位衍生的融合蛋白BRD4-NUT或BRD3-NUT引起的,这种融合蛋白会使包括抗分化基因在内的核糖体结构域过度乙酰化[28, 29]。这些研究表明,BET 蛋白是基因转录的表观遗传调节因子,与细胞生长和分化的调节密切相关。在非小细胞肺癌小鼠模型中,JQ1 是一种小分子 BET 抑制剂,能特异性地与溴代结构域结合,促进肿瘤细胞的分化和消退,并有助于延长存活时间[30]。此外,越来越多的最新研究表明,包括 JQ1 在内的 BET 抑制剂对多种恶性肿瘤具有临床前疗效[31、32、33]。BET 抑制剂不仅用于验证其在许多癌症中的治疗潜力,还用于证明 BET 介导了小鼠学习和记忆的转录调控[34]。

Since FSH was first found to be a morphogenetic regulator in Drosophila, the roles of mammalian BET proteins, FSH counterparts, have been conclusively determined by a well-defined analysis. On an earlier occasion, interest in the functional analysis of BET was directed toward the elucidation of its basic roles as a transcriptional regulator. However, recent identification of the carcinogenic activity induced by aberrant BET expression and small molecular BET inhibitors has attracted the interest of many researchers in cancer therapy. This review article presents an overview of the basic roles of BET proteins in transcriptional regulation, and highlights the pathological roles of BET in oncogenesis and latent viral infection.
自从在果蝇中首次发现 FSH 是一种形态发生调节因子以来,哺乳动物 BET 蛋白(FSH 的对应物)的作用已通过明确的分析得到确定。早些时候,人们对 BET 功能分析的兴趣主要集中在阐明其作为转录调节因子的基本作用上。然而,最近发现 BET 表达异常和小分子 BET 抑制剂会诱发癌症,这引起了许多癌症治疗研究人员的兴趣。这篇综述文章概述了 BET 蛋白在转录调控中的基本作用,并强调了 BET 在肿瘤发生和潜伏病毒感染中的病理作用。

2. Genomic Organization of Bromodomain and Extra-Terminal Domain (BET) Family Genes and Structure of the Proteins Encoded by These Genes
2.溴基底域和末端外域(BET)家族基因的基因组结构及这些基因所编码蛋白质的结构

Paralogous genome regions in vertebrates, including the BET family genes, are presumed to have arisen by several rounds of genome-wide duplication [,]. In mammals, four BET paralogous proteins (BRD2, BRD3, BRD4, and BRDT) have been reported to exhibit similar amino acid sequences, domain organization, and some functional properties. The domain organization of mammalian BET proteins is conserved in orthologues including Drosophila FSH and Saccharomyces cerevisiae Bdf1 and Bdf2. The exon-intron organization of mammalian BET genes and the primary structure of BET proteins are shown in Figure 1, in comparison with those of amphioxus, Drosophila, and yeast. The coding region of the Brd2 gene consists of 11 exons, spanning more than 6 kb of genomic DNA [,,]. The coding region of Brd3 consists of 12 exons spread over more than 20 kb of genomic DNA []. Nineteen coding exons of Brd4 and 17 coding exons of Brdt span more than 39 and 52 kb of genomic DNA, respectively [,]. The BET family proteins essentially contain two tandem bromodomains (BDI and BDII) and an extra-terminal (ET) domain. The bromodomain is a conserved sequence of ~110 amino acids that structurally forms 4 α-helices (αZ, αA, αB, and αC) and 2 loops (ZA and BC), and can bind to acetyl-lysine residues in histones and other proteins (Figure 2) [,]. The bromodomain is required for the epigenetic regulation of gene transcription by BET proteins, through interaction with nucleosomes within chromatin []. The ET domain is a conserved region of ~80 amino acids that fulfills its regulatory function by recruiting specific effector proteins []. As shown in Figure 1, short variants of Brd3 and Brdt (Brd3-S and Brdt-S), generated by using a longer form of exon 5 as a terminal exon during the process of alternative splicing, show truncated BDII and lack ET. These short variants may be competitors of long isoforms (Brd3-L and Brdt-L) for acetyl-lysine motifs; however, their functions remain to be elucidated. Long variants of Brd4, Brdt, and Drosophila FSH (Brd4-L, Brdt-L, and FSH-L) possess the C-terminal domain (CTD) at their carboxy terminal region that is a conserved region of ~40 amino acids. The CTD interacts with the positive transcription elongation factor b (P-TEFb), which phosphorylates serine residues of the RNA Pol II C-terminal motif (CTM) []. Further, the CTD is identified to mediate P-TEFb activation from the inactive ribonucleoprotein complex [,]. Brd2, Brd3, and Brd4 are ubiquitously expressed in various tissues of adult mice whereas Brdt is specifically expressed in the testis [,].
脊椎动物的同源基因组区域,包括 BET 家族基因,据推测是通过几轮全基因组复制产生的[10, 11]。据报道,在哺乳动物中,有四种 BET 对映体蛋白(BRD2、BRD3、BRD4 和 BRDT)表现出相似的氨基酸序列、结构域组织和某些功能特性。哺乳动物 BET 蛋白的结构域组织在果蝇 FSH 和酿酒酵母 Bdf1 和 Bdf2 等直向同源物中是保守的。哺乳动物 BET 基因的外显子内含子结构和 BET 蛋白的一级结构如图 1 所示,并与文昌鱼、果蝇和酵母的 BET 基因进行了比较。Brd2 基因的编码区由 11 个外显子组成,横跨超过 6 kb 的基因组 DNA [ 2, 35, 36]。Brd3 基因的编码区由 12 个外显子组成,横跨 20 多 kb 的基因组 DNA [ 7]。Brd4 的 19 个编码外显子和 Brdt 的 17 个编码外显子分别跨越超过 39 和 52 kb 的基因组 DNA [ 8, 9]。BET 家族蛋白主要包含两个串联溴域(BDI 和 BDII)和一个末端外域(ET)。溴结构域是一个约 110 个氨基酸的保守序列,在结构上形成 4 个 α-螺旋(αZ、αA、αB 和 αC)和 2 个环(ZA 和 BC),可与组蛋白和其他蛋白质中的乙酰赖氨酸残基结合(图 2)[37, 38]。BET 蛋白通过与染色质中的核糖体相互作用,对基因转录进行表观遗传调控,需要溴结构域的参与[21]。ET 结构域是一个约 80 个氨基酸的保守区域,通过招募特定的效应蛋白来实现其调控功能[39]。如图 1 所示,Brd3 和 Brdt 的短变体(Brd3-S 和 Brdt-S)是在替代剪接过程中使用较长形式的第 5 号外显子作为末端外显子而产生的,它们显示截短的 BDII 并缺乏 ET。这些短变体可能是长异构体(Brd3-L 和 Brdt-L)乙酰基赖氨酸基团的竞争者;然而,它们的功能仍有待阐明。Brd4、Brdt 和果蝇 FSH 的长变体(Brd4-L、Brdt-L 和 FSH-L)在其羧基末端区域具有 C 端结构域(CTD),这是一个约 40 个氨基酸的保守区域。CTD 与正转录延伸因子 b(P-TEFb)相互作用,后者会使 RNA Pol II C-terminal motif(CTM)的丝氨酸残基磷酸化[40]。此外,CTD 被确定为介导 P-TEFb 从非活性核糖核蛋白复合物中激活[41, 42]。Brd2、Brd3 和 Brd4 在成年小鼠的各种组织中普遍表达,而 Brdt 则在睾丸中特异性表达[43, 44]。

An external file that holds a picture, illustration, etc.
Object name is ijms-17-01849-g001a.jpg
An external file that holds a picture, illustration, etc.
Object name is ijms-17-01849-g001b.jpg

Structure of the mouse Bromodomain and Extra-Terminal Domain (BET) (Brd2, Brd3, Brd4, and Brdt), amphioxus BET, Drosophila fsh and yeast Bdf1 genes, and the proteins encoded by these genes. Rectangles filled in yellowish green represent individual exons on genomic DNA. Long and short forms of an exon, which share the same nucleotide sequence, are classified by a decimal. Successive rectangles filled in yellow represent the primary structure of the proteins. The numbers in rectangles show areas encoded by the corresponding exons. Red, blue, and green areas indicate bromodomains (BDI, BDII, and truncated BDII), extra-terminal domains (ET), and C-terminal domains (CTD), respectively. The total number of amino acids comprising the protein is represented on the right of each primary protein structure. In amphioxus, partial structures are depicted on the basis of the information in the Data Bank. The nucleotide sequences of BET genes and amino acid sequences of BET proteins are based on the database information provided in the following accession numbers: Brd2: D89801 and AB212273; Brd3-S: AB212272; Brd3-L: AB206708; Brd4-S: AF461396; Brd4-L: AF273217; Brdt-S: AB208640; Brdt-L: AF358660; amphioxus BET: AF391288; FSH-S: M23222; FSH-L: M23221; and Bdf1, Z18944.
小鼠溴结构域和末端外域(BET)(Brd2、Brd3、Brd4 和 Brdt)、文昌鱼 BET、果蝇 fsh 和酵母 Bdf1 基因的结构,以及这些基因编码的蛋白质。用黄绿色填充的矩形代表基因组 DNA 上的单个外显子。具有相同核苷酸序列的长外显子和短外显子以十进制分类。连续的黄色矩形代表蛋白质的主要结构。矩形中的数字表示相应外显子编码的区域。红色、蓝色和绿色区域分别表示溴结构域(BDI、BDII 和截短的∆BDII)、末端外结构域(ET)和 C 端结构域(CTD)。组成蛋白质的氨基酸总数显示在每个一级蛋白质结构的右侧。在文昌鱼中,部分结构是根据数据库中的信息绘制的。BET 基因的核苷酸序列和 BET 蛋白的氨基酸序列基于数据库中提供的信息,其登录号如下:Brd2: D89801 和 AB212273; Brd3-S: AB212272; Brd3-L:AB206708;Brd4-S:AF461396;Brd4-L:AF273217; Brdt-S: AB208640; Brdt-L:AF358660; amphioxus BET:AF391288;FSH-S:M23222;FSH-L:M23221;以及 Bdf1,Z18944。

An external file that holds a picture, illustration, etc.
Object name is ijms-17-01849-g002.jpg

The tertiary structure of the human BRD4-BDI complex with the inhibitor JQ1. A long loop (loop ZA) connects helices αZ and αA, and another loop (loop BC) connects helices αB and αC. A pocket-shaped region formed by these two loops is a binding site for JQ1 or an acetylated lysine residue in histones. The small molecule seen in the pocket is the inhibitor JQ1. The structure of BRD4-BDI is based on the NCBI database information provided in the accession number 3MXF_A.
人类 BRD4-BDI 与抑制剂 JQ1 复合物的三级结构。一个长环(loop ZA)连接螺旋 αZ 和 αA,另一个环(loop BC)连接螺旋 αB 和 αC。这两个环形成的口袋状区域是 JQ1 或组蛋白中乙酰化赖氨酸残基的结合位点。口袋中的小分子就是抑制剂 JQ1。BRD4-BDI 的结构基于 NCBI 数据库中的信息,其登录号为 3MXF_A。

Amphioxus or lancelet belongs to the subphylum Cephalochordata and is regarded as similar to the archetypal vertebrate form. An investigation of the MHC paralogous regions revealed a single genomic region in amphioxus that corresponds to the mammalian MHC []. Further, analysis of the genomic region in amphioxus identified a gene equivalent to the mammalian BET genes. The protein encoded by this gene possesses two bromodomains and an extra-terminal domain (Figure 1). The exon organization of the amphioxus BET gene bears some resemblance to those of the mouse BET genes. The amphioxus and mouse BET genes are composed of more than 10 exons and encode the bromodomain I across three exons (Figure 1). Phylogenetic analysis of genes in these MHC paralogous regions shows that several rounds of genome-wide duplications occurred after the divergence of cephalochordates and vertebrates but before the jawed vertebrate (Gnathostomata) radiation [].
文昌鱼属于头足亚纲,被认为与脊椎动物的原型相似。对 MHC 同源区的研究发现,文昌鱼的一个基因组区域与哺乳动物的 MHC 相对应[11]。此外,对文昌鱼基因组区域的分析还发现了一个相当于哺乳动物 BET 基因的基因。该基因编码的蛋白质具有两个溴结构域和一个末端外结构域(图 1)。文昌鱼 BET 基因的外显子结构与小鼠 BET 基因的外显子结构有些相似。文昌鱼和小鼠的 BET 基因都由 10 多个外显子组成,并在三个外显子中编码溴结构域 I(图 1)。对这些 MHC 同源区基因的系统发育分析表明,在头索类和脊椎动物分化之后、有颌脊椎动物(Gnathostomata)辐射之前,发生了几轮全基因组范围的重复[11]。

3. Basic Functions of BRD2 and BRD3
3.BRD2 和 BRD3 的基本功能

3.1. BRD2 Plays a Role in Cell Growth and Neuronal Cell Generation
3.1.BRD2 在细胞生长和神经细胞生成中发挥作用

Human BRD2 protein is known to be a novel nuclear Ser/Thr kinase whose activity is increased upon cellular proliferation and is remarkably elevated in peripheral blood lymphocytes collected from acute and chronic lymphoma patients []. Although kinase activity has not been observed in mouse BRD2, which has more than 90% amino acid sequence identity with human BRD2 [], FSH-S, which is a Drosophila counterpart of BRD2, is reported to be a Ser/Thr kinase []. An assay using 3T3 fibroblast cells co-transfected with a BRD2 expression vector and luciferase reporter vectors harboring cis-acting E2F sites shows that BRD2 stimulates E2F reporter activity []. E2F protein is a transcription factor that promotes the synthesis of proteins required for the G1/S transition during the cell cycle. Further, in anti-BRD2 antibody affinity chromatography, E2F protein is co-purified with BRD2 from an extract derived from HeLa nuclei or HEK293 whole cells [,]. These results indicate that BRD2 is a positive regulator that promotes E2F-dependent cell cycle progression.
已知人类 BRD2 蛋白是一种新型核 Ser/Thr 激酶,细胞增殖时其活性增加,在急性和慢性淋巴瘤患者的外周血淋巴细胞中显著升高[ 45]。小鼠 BRD2 与人类 BRD2 有 90% 以上的氨基酸序列相同,虽然在小鼠 BRD2 中没有观察到激酶活性[35],但据报道,果蝇 BRD2 的对应物 FSH-S 是一种 Ser/Thr 激酶[46]。一项使用 3T3 成纤维细胞与 BRD2 表达载体和携带顺式作用 E2F 位点的荧光素酶报告载体共转染的试验表明,BRD2 可刺激 E2F 报告活性[47]。E2F 蛋白是一种转录因子,可促进细胞周期中 G1/S 转换所需的蛋白质的合成。此外,在抗 BRD2 抗体亲和层析中,从 HeLa 细胞核或 HEK293 整细胞提取物中可共同纯化出 E2F 蛋白与 BRD2[47,48]。这些结果表明,BRD2 是一种促进依赖 E2F 的细胞周期进展的正调控因子。

Mice lacking Brd2, which were generated by a commercially available embryonic stem (ES) cell line in which the gene-trap vector is inserted into the Brd2 locus, exhibit embryonic lethality and abnormalities in the neural tube where the gene is highly expressed [,]. Embryonic lethality is likely to be due to impaired cellular proliferation and enhanced cell death []. Association analysis in human genetics using single nucleotide polymorphisms and microsatellite markers in the critical genomic region has revealed that BRD2 is a major susceptibility locus for juvenile myoclonic epilepsy (JME), a group of neurological disorders characterized by epileptic seizures []. Heterozygous Brd2+/− mice are viable and overtly normal, but have a decreased tonic-clonic seizure threshold compared to Brd2+/+ wild type mice. Further, anatomical analysis of the brain shows that the number of GABAergic neurons in the neocortex and the striatum of Brd2+/− mice are decreased, compared to those in Brd2+/+ mice []. These findings indicate that an insufficiency of BRD2 protein is associated with a decrease in the number of neuronal cells required for critical brain structures.
缺乏 Brd2 的小鼠是通过将基因诱捕载体插入 Brd2 基因座的市售胚胎干(ES)细胞系产生的,这种小鼠表现出胚胎致死性和神经管异常,而该基因在神经管中高度表达[49, 50]。胚胎夭折可能是由于细胞增殖受阻和细胞死亡增加所致[49]。利用关键基因组区域的单核苷酸多态性和微卫星标记进行的人类遗传学关联分析表明,BRD2 是幼年肌阵挛性癫痫(JME)的一个主要易感位点,JME 是一组以癫痫发作为特征的神经系统疾病[51]。杂合子 Brd2 +/− 小鼠存活率高且明显正常,但与 Brd2 +/+ 野生型小鼠相比,强直阵挛发作阈值降低。此外,大脑解剖分析表明,与 Brd2 +/+ 小鼠相比,Brd2 +/− 小鼠新皮层和纹状体中的 GABA 能神经元数量减少[ 52]。这些发现表明,BRD2 蛋白不足与关键大脑结构所需的神经细胞数量减少有关。

3.2. BRD2 and BRD3 Specifically Recognize Acetylated Histones through Their Bromodomains to Promote Transcription of Genes Required for Determining Cell Identities
3.2.BRD2 和 BRD3 通过其溴结构域特异性地识别乙酰化组蛋白,促进确定细胞身份所需的基因转录

Fluorescence resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon occurring between appropriate fluorophores in sufficient proximity. When a high-energy donor fluorescent molecule transfers energy to a low-energy acceptor fluorescent molecule, a photon of a specific wavelength emitted by the acceptor can be detected as the FRET signal []. FRET provides a useful approach to many biochemical studies on molecular interactions [,]. A flow cytometric adaptation of the FRET technique is employed to delineate general patterns of interactions between bromodomains and acetylated histones in living cells []. A FRET signal is observed in living HeLa cells transfected with both CFP-BRD2 and YFP-histone H4, but is not observed in cells transfected with both CFP-BRD2 and YFP-histone H1. Histones H3 and H2A produce little or no FRET signals. Furthermore, mutations in the lysines K5 and K12 of the N-terminal tail on H4 histone effectively abolish the FRET signals. Peptide precipitation of extracts from CFP-BRD2 transfected HeLa cells with H4 tail peptides, either unacetylated or acetylated at various lysines, shows that BRD2 binds strongly to H4 peptides acetylated at K12. Taken together, these findings provide valid evidence that BRD2 specifically recognizes the acetylated K12 of the N-terminal tail on histone H4.
荧光共振能量转移(FRET)是一种可测量的物理能量转移现象,发生在足够接近的适当荧光团之间。当高能量的供体荧光分子将能量传递给低能量的受体荧光分子时,受体发出的特定波长的光子就能被检测到,这就是 FRET 信号[53]。FRET 为许多分子相互作用的生化研究提供了一种有用的方法 [ 54, 55]。对 FRET 技术进行流式细胞仪改造后,可用于描述活细胞中溴化组蛋白和乙酰化组蛋白之间相互作用的一般模式[20]。在转染了 CFP-BRD2 和 YFP 组蛋白 H4 的活体 HeLa 细胞中可以观察到 FRET 信号,但在转染了 CFP-BRD2 和 YFP 组蛋白 H1 的细胞中则观察不到。组蛋白 H3 和 H2A 几乎不产生 FRET 信号。此外,H4 组蛋白 N 端尾部赖氨酸 K5 和 K12 的突变有效地消除了 FRET 信号。用未乙酰化或在不同赖氨酸处乙酰化的 H4 尾肽沉淀转染 HeLa 细胞的 CFP-BRD2 提取物显示,BRD2 与在 K12 处乙酰化的 H4 肽结合强烈。综上所述,这些发现提供了有效的证据,证明 BRD2 能特异性地识别组蛋白 H4 N 端尾部的乙酰化 K12。

Chromatin immunoprecipitation (ChIP) of nuclear extracts from HEK293 cells expressing FLAG-tagged BRD2 or BRD3 shows that BRD2- and BRD3-bound chromatin is significantly enriched in several acetylation marks associated with transcribed genes, including H4K5, H4K12, and H3K14 acetylation, but contains little dimethylated H3K9, which is a characteristic of transcriptionally inactive heterochromatin []. An in vitro transcription assay, with highly purified RNA Pol II and nucleosomal templates that are assembled with either hypo- or hyperacetylated histones purified from HeLa cells, shows that both BRD2 and BRD3 assist transcription from hyperacetylated chromatin templates much more efficiently than from hypoacetylated chromatin templates []. These results demonstrate that BRD2 and BRD3 proteins possess nucleosome chaperone activities that allow RNA Pol II to elongate transcripts through hyperacetylated nucleosomes (Figure 3A).
对表达FLAG标记的BRD2或BRD3的HEK293细胞核提取物进行染色质免疫沉淀(ChIP)显示,BRD2和BRD3结合的染色质显著富含与转录基因相关的几种乙酰化标记,包括H4K5、H4K12和H3K14乙酰化,但很少含有二甲基化的H3K9,而二甲基化的H3K9是转录不活跃的异染色质的特征[23]。用高度纯化的 RNA Pol II 和从 HeLa 细胞中纯化的低乙酰化或高乙酰化组蛋白组装的核糖体模板进行的体外转录试验表明,BRD2 和 BRD3 协助高乙酰化染色质模板转录的效率比协助低乙酰化染色质模板转录的效率高得多[23]。这些结果表明,BRD2 和 BRD3 蛋白具有核小体伴侣活性,可使 RNA Pol II 通过高乙酰化核小体延伸转录本(图 3A)。

An external file that holds a picture, illustration, etc.
Object name is ijms-17-01849-g003.jpg

Transcriptional control by BET proteins. (A) Brd2 and Brd3 promote gene transcription. Interactions between their bromodomains (BD) and the acetylated lysine (Ac) in histones facilitate the passage of RNA Pol II to elongate nascent transcripts through hyperacetylated nucleosomes. The arrow indicates the direction of transcription; (B) Brd4 regulates gene transcription in the process of initiation and elongation. In the promoter-proximal region, RNA Pol II pauses due to inactivation of positive transcription elongation factor b (P-TEFb), forming a complex with the 7SK small nuclear RNA (snRNA) and the HEXIM1 protein. Enhanced recruitment of P-TEFb by Brd4 causes Ser2 phosphorylation in Pol II, leading to Pol II release from the pause in transcription elongation. The pause release is also supported by the interaction of P-TEFb with Brd4 and JMJD6 associated with distal enhancers. Brd4 interacts with acetylated lysine through its bromodomains (the red circle in Brd4), and P-TEFb interacts with the Brd4 CTD (the green area in Brd4). Further, Brd4 promotes nascent RNA synthesis along the gene on hyperacetylated nucleosomes via its bromodomains.
BET 蛋白的转录控制。(A) Brd2 和 Brd3 促进基因转录。它们的溴化结构域(BD)与组蛋白中的乙酰化赖氨酸(Ac)相互作用,促进 RNA Pol II 通过超乙酰化核小体拉长新生转录本。箭头表示转录方向;(B)Brd4 在启动和延伸过程中调控基因转录。在启动子近端区域,由于正转录延伸因子 b(P-TEFb)失活,RNA Pol II 暂停,与 7SK 小核 RNA(snRNA)和 HEXIM1 蛋白形成复合物。Brd4 对 P-TEFb 的招募增强会导致 Pol II 中的 Ser2 磷酸化,从而使 Pol II 从转录延伸的暂停中释放出来。P-TEFb 与远端增强子相关的 Brd4 和 JMJD6 的相互作用也支持了暂停的释放。Brd4 通过其溴结构域(Brd4 中的红圈)与乙酰化赖氨酸相互作用,而 P-TEFb 则与 Brd4 CTD(Brd4 中的绿色区域)相互作用。此外,Brd4 还通过其溴结构域促进新生 RNA 在超乙酰化核糖体上沿基因合成。

To fully elucidate how BET proteins decipher the histone codes, which are combinations of histone modifications such as acetylation and methylation on nucleosomes, ChIP of the nuclear extract from HEK293 cells expressing FLAG-tagged BET proteins and quantitative mass spectrometry for immunoprecipitated core histones have been conducted. Consequently, it was confirmed that nucleosomes associated with BRD2, BRD3, and BRD4 are mostly enriched in at least three acetylations of H4K5, H4K8, H4K12, and H4K16, and H3K4 dimethylation or H3K4 trimethylation []. To further determine where BET proteins reside on the genome, the DNA isolated from BET-bound nucleosomes has been deeply sequenced. More than half the BET-binding sites are found on genes including promoters, and the remaining sites are found on intergenic regions. The majority of these genes are highly and moderately expressed, and a few genes are transcriptionally silent []. Moreover, a ranked list of genes that are ordered based on the BET binding score within the promoter region of all annotated genes shows that an unusually large number of the highest-ranking promoters are derived from HOX genes []. Thirty-nine HOX genes that are arranged in four clusters on the mammalian genome encode transcription factors that determine cell and tissue identities in the embryo during development and in the adult [,,]. Because the Drosophila FSH, a counterpart of mammalian BET proteins, has been reported as crucial for the activation of the Ultrabithorax HOX gene [,], the regulatory mechanism of HOX expression by BET proteins might be conserved across species. Collectively, these findings support the idea that BET proteins fulfill key roles as “readers” of the histone code to induce transcriptional activation of various genes that are required for determining cell identities.
为了全面阐明 BET 蛋白如何破译组蛋白密码(即核小体上乙酰化和甲基化等组蛋白修饰的组合),研究人员对表达 FLAG 标记 BET 蛋白的 HEK293 细胞的核提取物进行了 ChIP,并对免疫沉淀的核心组蛋白进行了定量质谱分析。结果证实,与BRD2、BRD3和BRD4相关的核小体大多富含至少三种乙酰化H4K5、H4K8、H4K12和H4K16,以及H3K4二甲基化或H3K4三甲基化[26]。为了进一步确定 BET 蛋白在基因组中的位置,对从 BET 结合核小体中分离出来的 DNA 进行了深入测序。一半以上的 BET 结合位点位于基因(包括启动子)上,其余位点位于基因间区域。这些基因中的大多数是高表达和中度表达的,少数基因是转录沉默的[ 26]。此外,根据所有注释基因启动子区域内的 BET 结合得分排序的基因列表显示,排名最高的启动子中有异常多的基因来自 HOX 基因[26]。哺乳动物基因组上的 39 个 HOX 基因分为四个簇,它们编码的转录因子决定了胚胎发育过程中和成年后的细胞和组织特征[56, 57, 58]。据报道,果蝇的 FSH(哺乳动物 BET 蛋白的对应物)对 Ultrabithorax HOX 基因的激活至关重要[46, 59],因此 BET 蛋白对 HOX 表达的调控机制在不同物种间可能是一致的。总之,这些发现支持了这样一种观点,即 BET 蛋白作为组蛋白密码的 "阅读者 "发挥着关键作用,诱导决定细胞特性所需的各种基因的转录激活。

BRD3 has been reported to directly interact with acetylated lysine residues of the transcription factor GATA1, which regulates the expression of all erythroid and megakaryocyte-specific genes []. Pull-down of extracts from GATA1-null erythroblasts (G1E cells) expressing normal or mutant forms of HA-tagged BRD3 using acetylated GATA1 peptides shows that lack of BDI interferes with the binding of BRD3 to acetylated peptides, suggesting that recruitment of BRD3 to GATA1-associated chromatin requires BDI []. G1E cells transfected with a GATA1-estrogen receptor fusion gene, termed as G1E-ER cells, express GATA1 in the presence of exogenous estradiol []. ChIP-sequencing (ChIP-seq) analysis using antibodies against GATA1 and BET proteins in G1E-ER cells in the absence and presence of estradiol reveals that BRD2, BRD3, and BRD4 occupy GATA1-bound loci, including the β-globin locus Hbb []. An increase in BRD3 occupancy at GATA1 sites following GATA1 activation is most significant as compared to that of BRD2 and BRD4 occupancy, suggesting that BRD3 recruitment is predominantly affected by GATA1 whereas BRD2 and BRD4 recruitment is regulated by factors besides GATA1 []. However, BRD3 ablation by small hairpin RNA (shRNA)-mediated knockdown in G1E-ER cells has little effect on the expression of GATA1-target genes upon GATA1 induction, suggesting that BRD3 is not essential for erythroid differentiation. In contrast, BRD2 deficiency markedly reduces the transcript levels of GATA1-target genes. Since BRD3 knockdown exacerbates the consequences of BRD2-deficiency on GATA1-activated gene expression, BRD2 and BRD3 may act synergistically in GATA1-mediated erythroid gene activation [].
据报道,BRD3 可直接与转录因子 GATA1 的乙酰化赖氨酸残基相互作用,而 GATA1 可调控所有红细胞和巨核细胞特异性基因的表达[ 60]。使用乙酰化的 GATA1 肽对表达正常或突变形式 HA 标记 BRD3 的 GATA1 缺失红细胞(G1E 细胞)提取物进行牵引,结果显示,缺乏 BDI 会干扰 BRD3 与乙酰化肽的结合,这表明 BRD3 募集到 GATA1 相关染色质需要 BDI[ 61]。转染了GATA1-雌激素受体融合基因的G1E细胞(称为G1E-ER细胞)在外源性雌二醇存在的情况下表达GATA1[62]。使用针对 GATA1 和 BET 蛋白的抗体对 G1E-ER 细胞进行的 ChIP 序列分析(ChIP-seq)显示,在没有和有雌二醇的情况下,BRD2、BRD3 和 BRD4 占用 GATA1 结合的位点,包括β-球蛋白位点 Hbb[ 63]。GATA1 激活后,BRD3 在 GATA1 位点的占有率与 BRD2 和 BRD4 的占有率相比增加最为显著,这表明 BRD3 的招募主要受 GATA1 的影响,而 BRD2 和 BRD4 的招募则受 GATA1 以外的因素调控[63]。然而,在G1E-ER细胞中通过小发夹RNA(shRNA)介导敲除BRD3对GATA1诱导时GATA1靶基因的表达几乎没有影响,这表明BRD3不是红细胞分化所必需的。相反,BRD2 的缺乏会显著降低 GATA1 靶基因的转录水平。由于BRD3的敲除会加剧BRD2缺乏对GATA1激活基因表达的影响,因此BRD2和BRD3可能在GATA1介导的红细胞基因激活中发挥协同作用[63]。

4. Basic Functions of BRD4
4.BRD4 的基本功能

4.1. BRD4 Is Required for Cellular Proliferation
4.1.细胞增殖需要 BRD4

BRD4 is a nuclear protein widely expressed in mammalian tissues, and its expression is induced by mitogen stimulation during the G0/G1 transition in lymphocytes, prior to entry into the S phase []. BRD4 localized in whole nuclei during the interphase becomes exclusively associated with chromosomes during the M phase when most of the nuclear regulatory factors are released into the cytoplasm in response to global stop of transcription []. Further, microinjection of an anti-BRD4 antibody into HeLa cell nuclei completely inhibits mitotic entry, suggesting that BRD4 plays a role in G2/M transition []. In a technique of fluorescence loss in photobleaching (FLIP), an area within living cells is repeatedly bleached, and the loss of fluorescence in areas that are distinct from the bleached area is monitored [,]. The rate of fluorescence signal loss is dependent on the mobility of a protein, and is decreased in slower mobile proteins. FLIP assays using P19 embryonic carcinoma cells transfected with GFP-tagged BRD4 show that GFP-BRD4 fluorescence is lost more slowly in the presence of trichostatin A (TSA), which is a histone deacetylase inhibitor, suggesting the affinity of BRD4 for chromatin is increased by histone acetylation []. Furthermore, mutations introduced into BRD4 bromodomains lead to more rapid loss of fluorescence signal in the presence of TSA, suggesting that bromodomains preferentially interact with acetylated histones []. These findings collectively indicate that BRD4 is associated with chromatin and chromosomes during the cell cycle, by interacting with acetylated histones via its bromodomains, and is necessary for cell cycle progression.
BRD4是一种在哺乳动物组织中广泛表达的核蛋白,在淋巴细胞进入S期之前的G 0 /G 1 转换过程中,有丝分裂原刺激会诱导其表达[ 8]。在淋巴细胞进入 S 期之前的 G 0 /G 1 转换过程中,有丝分裂原刺激会诱导其表达[ 8]。在间期,BRD4定位于整个细胞核,到了M期,当转录全面停止时,大部分核调控因子被释放到细胞质中,BRD4就只与染色体相关联了[8]。此外,将抗BRD4抗体显微注射到HeLa细胞核中可完全抑制有丝分裂的进入,这表明BRD4在G 2 /M转变中发挥作用[8]。/M 转换中发挥作用[ 8]。在光漂白中的荧光损失(FLIP)技术中,活细胞内的一个区域被反复漂白,然后监测与漂白区域不同的区域的荧光损失[ 64, 65]。荧光信号消失的速度取决于蛋白质的流动性,流动性较慢的蛋白质荧光信号消失的速度会减慢。使用转染有 GFP 标记的 BRD4 的 P19 胚胎癌细胞进行的 FLIP 分析表明,在组蛋白去乙酰化酶抑制剂 trichostatin A(TSA)存在的情况下,GFP-BRD4 荧光的消失速度更慢,这表明 BRD4 与染色质的亲和力因组蛋白乙酰化而增加[19]。此外,BRD4溴结构域的突变导致荧光信号在TSA作用下更快消失,这表明溴结构域优先与乙酰化组蛋白相互作用[19]。这些发现共同表明,BRD4 在细胞周期中通过其溴结构域与乙酰化组蛋白相互作用,从而与染色质和染色体相关联,并且是细胞周期进展所必需的。

Using mouse embryonic stem (ES) cells transfected with a gene-trap vector for screening insertional mutations in developmentally regulated genes, a mouse mutant line in which an insertion generates a null allele of the Brd4 gene was established []. Brd4 heterozygotes display prenatal and postnatal growth defects associated with a reduced rate of cell growth. Embryos homozygous for a Brd4 loss-of-function mutation die shortly after implantation because of their disability to form the inner cell mass (ICM) in blastocysts []. BRD4 knockdown by small interfering RNA (siRNA) microinjection into the blastomere of a two-celled mouse embryo leads to the reduction of ICM cells and inhibition of Nanog expression in these cells, suggesting that BRD4 regulates the expression of Nanog, which is required for maintaining the pluripotency of ES cells during early mammalian development []. These results provide evidence that BRD4 plays a critical role in cellular proliferation and ES cell self-renewal.
利用转染了基因诱捕载体的小鼠胚胎干(ES)细胞筛选发育调控基因的插入突变,建立了一个小鼠突变系,其中的插入突变产生了 Brd4 基因的无效等位基因[66]。Brd4 杂合子显示出与细胞生长速度降低有关的产前和产后生长缺陷。Brd4功能缺失突变的同源胚胎会在植入后不久死亡,因为它们无法在囊胚中形成内细胞团(ICM)[ 66]。通过将小干扰 RNA(siRNA)微注射到两细胞小鼠胚胎的胚泡中来敲除 BRD4,会导致 ICM 细胞减少,并抑制这些细胞中 Nanog 的表达,这表明 BRD4 可调控 Nanog 的表达,而 Nanog 是哺乳动物早期发育过程中维持 ES 细胞多能性所必需的[67]。这些结果证明,BRD4 在细胞增殖和 ES 细胞自我更新中发挥着关键作用。

4.2. BRD4 Regulates Gene Transcription by Interacting with Acetylated Histones through Its Bromodomains
4.2.BRD4 通过其溴结构域与乙酰化组蛋白相互作用来调控基因转录

Immunoaffinity purification of nuclear extracts from HeLa cells expressing FLAG-tagged and HA-tagged BRD4 with an anti-FLAG or anti-HA antibody results in the precipitation of complexes composed of BRD4, Cdk9, and cyclinT1 [,]. This finding demonstrates that BRD4 interacts with Cdk9 and cyclinT1, which constitute the core positive transcription elongation factor b (P-TEFb). Active P-TEFb, which functions as a protein kinase, phosphorylates the RNA Pol II CTM, and results in releasing the Pol II from a pause in transcription elongation in the promoter-proximal region and promotes the efficient progression of Pol II along the gene [,,]. About half of the cellular P-TEFb in HeLa cells also exists in an inactive complex with the 7SK small nuclear RNA (snRNA) and the HEXIM1 protein [,]. Immunoblotting of extracts from BRD4 overexpressing HeLa cells with an antibody specific to Ser2 or Ser5 CTM phosphorylation results in a specific increase in Ser2 CTM phosphorylation. Conversely, in HeLa cells that express BRD4-siRNA, Ser2 phosphorylation is substantially reduced. Moreover, BRD4 promotes the activity of a reporter gene driven by the HIV-1 long terminal repeat (LTR) promoter and cellular promoters such as c-Myc and c-Jun in a dose-dependent manner. These results indicate that BRD4 has a positive effect on Ser2 phosphorylation of the RNA Pol II CTM by enhancing the recruitment of P-TEFb []. Immunoprecipitation experiments using 293T cells transfected with FLAG-tagged BRD4 deletion mutants reveal that the C-terminal 34 amino acids of BRD4 are crucial for interaction with P-TEFb []. BRD4 has also been reported to be an atypical kinase that directly phosphorylates a Ser2 residue in the RNA Pol II CTM []. In vitro kinase activity assays have been performed using the following four peptides: recombinant P-TEFb, the CTM of RNA Pol II, a C-terminal segment of 54 amino acid residues in BRD4 that is termed as the P-TEFb interacting domain (PID), and HEXIM1, sequestering P-TEFb into an inactive complex. The result showed that an antagonistic effect of HEXIM1 on P-TEFb-mediated CTM phosphorylation is canceled in the presence of PID, indicating that BRD4 relieves the inhibition of P-TEFb by HEXIM1 rather than phosphorylating P-TEFb [].
用抗FLAG或抗HA抗体对表达FLAG标记和HA标记BRD4的HeLa细胞的核提取物进行免疫亲和纯化,结果沉淀出由BRD4、Cdk9和cyclinT1组成的复合物[ 21, 22]。这一发现表明,BRD4 与 Cdk9 和 cyclinT1 相互作用,它们构成了核心的正转录延伸因子 b(P-TEFb)。活跃的 P-TEFb 作为一种蛋白激酶,可使 RNA Pol II CTM 磷酸化,从而使 Pol II 从启动子近端区域的转录延伸暂停中释放出来,并促进 Pol II 沿着基因有效地向前推进[68, 69, 70]。在 HeLa 细胞中,大约一半的细胞 P-TEFb 也与 7SK 小核 RNA(snRNA)和 HEXIM1 蛋白以非活性复合物的形式存在 [ 71, 72]。用 Ser2 或 Ser5 CTM 磷酸化特异性抗体对过量表达 BRD4 的 HeLa 细胞提取物进行免疫印迹,结果发现 Ser2 CTM 磷酸化特异性增加。相反,在表达 BRD4-siRNA 的 HeLa 细胞中,Ser2 磷酸化显著降低。此外,BRD4 还能以剂量依赖的方式促进由 HIV-1 长末端重复(LTR)启动子和细胞启动子(如 c-Myc 和 c-Jun)驱动的报告基因的活性。这些结果表明,BRD4 通过增强 P-TEFb 的招募,对 RNA Pol II CTM 的 Ser2 磷酸化有积极作用[ 21]。使用转染了FLAG标记的BRD4缺失突变体的293T细胞进行的免疫沉淀实验表明,BRD4的C端34个氨基酸是与P-TEFb相互作用的关键[40]。另据报道,BRD4 是一种非典型激酶,可直接磷酸化 RNA Pol II CTM 中的 Ser2 残基[73]。体外激酶活性测定使用了以下四种肽:重组 P-TEFb、RNA Pol II 的 CTM、BRD4 中一个由 54 个氨基酸残基组成的 C 端片段(称为 P-TEFb 交互作用域(PID))以及 HEXIM1(将 P-TEFb 封闭在一个非活性复合物中)。结果表明,在PID存在的情况下,HEXIM1对P-TEFb介导的CTM磷酸化的拮抗作用被取消,这表明BRD4缓解了HEXIM1对P-TEFb的抑制作用,而不是使P-TEFb磷酸化[42]。

Mass spectrometry analysis of affinity-purified proteins from cell lysates of 293T cells stably expressing BRD4 Flag-HA-tagged fragments identified NSD3 and JMJD6 as interactors of the BRD4 ET domain []. NSD3 belongs to a subfamily of H3K36 methyltransferases [], and JMJD6 is known to be a histone arginine demethylase []. Knockdown of NSD3 or JMJD6 using siRNA in C33A cells decreases the expression of BRD4 target genes by 2- to 3-fold, suggesting that NSD3 and JMJD6 are recruited to the regulated genes in a BRD4-dependent manner []. A pull-down assay of nuclear extracts from HEK293T cells with an anti-JMJD6 antibody results in the precipitation of BRD4 complexed with P-TEFb, suggesting that JMJD6 associates with the active form of the P-TEFb complex []. Whole genome ChIP-seq with an anti-Pol II antibody shows that knockdown of JMJD6 or BRD4 by siRNA in HEK293T cells significantly increases the Pol II occupancy rate at promoter-proximal regions and dramatically decreases its rate along the gene body, suggesting that association of JMJD6 and BRD4 promotes the Pol II promoter-proximal pause release []. Further, genome-wide ChIP-seq analysis with antibodies against several histone markers, JMJD6, and BRD4 identifies JMJD6- and BRD4-associated distal enhancers characterized by H3K4me1 [], H3Ac, H4Ac, and H3K27Ac markers []. In concert, these findings raise the possibility that the next-nearest-neighbor interaction of the P-TEFb complex at the promoter-proximal region with BRD4 and JMJD6 co-bound to the distal enhancer permits the pause release for transcriptional elongation (Figure 3B).
对稳定表达 BRD4 Flag-HA 标记片段的 293T 细胞裂解液中亲和层析蛋白质的质谱分析发现,NSD3 和 JMJD6 与 BRD4 ET 结构域相互作用[39]。NSD3 属于 H3K36 甲基转移酶亚家族[74],而 JMJD6 是已知的组蛋白精氨酸去甲基化酶[75]。在 C33A 细胞中使用 siRNA 敲除 NSD3 或 JMJD6 会使 BRD4 靶基因的表达量减少 2-3 倍,这表明 NSD3 和 JMJD6 是以依赖 BRD4 的方式被招募到受调控的基因上的[39]。用抗 JMJD6 抗体对 HEK293T 细胞的核提取物进行下拉实验,结果发现与 P-TEFb 复合物结合的 BRD4 会沉淀,这表明 JMJD6 与 P-TEFb 复合物的活性形式结合[24]。用抗Pol II抗体进行的全基因组ChIP-seq分析表明,在HEK293T细胞中用siRNA敲除JMJD6或BRD4会显著提高Pol II在启动子近端区域的占据率,并显著降低其在基因体上的占据率,这表明JMJD6和BRD4的结合促进了Pol II启动子近端暂停释放[24]。此外,利用针对几种组蛋白标记、JMJD6 和 BRD4 的抗体进行的全基因组 ChIP-seq 分析发现,JMJD6 和 BRD4 相关的远端增强子以 H3K4me1[76]、H3Ac、H4Ac 和 H3K27Ac 标记为特征[24]。这些发现共同提出了这样一种可能性,即启动子近端区域的 P-TEFb 复合物与共同结合在远端增强子上的 BRD4 和 JMJD6 的近邻相互作用允许暂停释放以促进转录延伸(图 3B)。

In addition to the role of recruiting P-TEFb to release RNA Pol II from pausing in the promoter-proximal region, BRD4 has been reported to play a role in supporting the progression of Pol II through hyperacetylated nucleosomes by interacting with acetylated histones via its bromodomains [,]. Assays with NIH3T3 cells stimulated with interferon (IFN)-β show that IFN-induced gene transcription is markedly suppressed by JQ1, which inhibits BRD4-acetyl histone binding, or by a transfected short hairpin RNA (shRNA) plasmid causing BRD4 knockdown []. This result indicates that inducible gene transcription is dependent on interactions between BRD4 and the acetylated lysine residues in histones. Metagene analysis of chromatin-bound nascent RNA-seq reads of serum-responsive genes, activated by serum re-stimulation after starvation in 3T3 cells shows that JQ1 antagonizes the downstream process of transcriptional elongation rather than the typical pause-releasing event occurring in the proximal region of transcription start sites []. c-Myc and Klf-4 are BRD4-dependent genes whose transcript levels are reduced upon BRD4 knockdown or JQ1 treatment. In BRD4-knockdown cells, wild type YFP-tagged BRD4 effectively rescues c-Myc and Klf-4 expression, whereas YFP-BRD4 whose bromodomains are mutated does not rescue their expression. Analysis of nascent chromatin-bound RNA-seq reads across the c-Myc and Klf-4 gene loci in NIH3T3 cells reveals that transcript elongation on these genes is clearly inhibited by JQ1. An in vitro transcription assay shows that BRD4 allows Pol II to transcribe through nucleosomes in a histone hyperacetylation dependent manner, and that JQ1 specifically inhibits the activity of BRD4 but not that of the histone chaperone FACT (facilitates chromatin transcription). In BRD4-knockdown cells, the short form of BRD4 lacking the C-terminal P-TEFb interacting domain (BRD4 short) rescues the expression of c-Myc and Klf-4, while the BRD4 short form whose bromodomains are mutated (BRD4 short mBD mutant) does not rescue the expression of these genes. ChIP and quantitative PCR (ChIP-qPCR) assays with an antibody specific for Ser2 CTM phosphorylation in RNA Pol II (Ser2P Pol II) reveal that Ser2P Pol II distribution on the Klf-4 locus is shifted towards and beyond the transcription end site in BRD4-knockdown cells reconstituted with the short BRD4 compared with those reconstituted with the BRD4 short mBD mutant. These observations collectively support the idea that BRD4 facilitates Pol II progression along the gene body independently of P-TEFb as it traverses hyperacetylated nucleosomes by interacting with acetylated histones through its bromodomains []. This assistance of BRD4 for Pol II elongation is due to its histone-chaperone activity. Figure 3B illustrates the manner by which BRD4 contributes to gene transcription together with other components.
除了招募 P-TEFb 使 RNA Pol II 从启动子近端区域的停顿中释放出来的作用外,据报道,BRD4 还通过其溴结构域与乙酰化组蛋白相互作用,在支持 Pol II 穿过超乙酰化核小体的过程中发挥作用[ 25, 77]。用干扰素(IFN)-β刺激 NIH3T3 细胞进行的试验表明,抑制 BRD4-乙酰组蛋白结合的 JQ1 或转染短发夹 RNA(shRNA)质粒导致 BRD4 基因敲除,会明显抑制 IFN 诱导的基因转录[77]。这一结果表明,诱导基因转录依赖于 BRD4 与组蛋白中乙酰化赖氨酸残基之间的相互作用。对 3T3 细胞饥饿后血清再刺激激活的血清反应基因的染色质结合新生 RNA-seq 读数进行的元基因分析表明,JQ1 可拮抗转录伸长的下游过程,而不是发生在转录起始位点近端区域的典型暂停释放事件[25]。在BRD4敲除的细胞中,野生型YFP标记的BRD4能有效地挽救c-Myc和Klf-4的表达,而溴域突变的YFP-BRD4不能挽救它们的表达。对 NIH3T3 细胞中 c-Myc 和 Klf-4 基因位点的新生染色质结合 RNA-seq 读数分析表明,这些基因的转录本延伸明显受到 JQ1 的抑制。体外转录试验表明,BRD4允许Pol II以组蛋白超乙酰化依赖的方式通过核小体进行转录,而JQ1能特异性地抑制BRD4的活性,但不能抑制组蛋白伴侣FACT(促进染色质转录)的活性。在BRD4敲除的细胞中,缺少C端P-TEFb相互作用结构域的短型BRD4(BRD4 short)能挽救c-Myc和Klf-4的表达,而溴结构域发生突变的短型BRD4(BRD4 short mBD突变体)不能挽救这些基因的表达。使用 RNA Pol II(Ser2P Pol II)中 Ser2 CTM 磷酸化特异性抗体进行的 ChIP 和定量 PCR(ChIP-qPCR)检测发现,与使用 BRD4 短 mBD 突变体重组的细胞相比,在使用短 BRD4 重组的 BRD4 敲除细胞中,Ser2P Pol II 在 Klf-4 基因座上的分布向转录末端位点和转录末端位点以外移动。这些观察结果共同支持了这样一种观点,即BRD4通过其溴结构域与乙酰化组蛋白相互作用,穿越超乙酰化核小体,从而在P-TEFb之外促进Pol II沿着基因体前进[ 25]。BRD4 协助 Pol II 延长是由于它具有组蛋白伴侣活性。 图 3B 说明了 BRD4 与其他成分共同促进基因转录的方式。

Rapid activation of immediate early genes (IEGs) in response to external signals is critical for the consolidation of synaptic modifications underlying synaptic plasticity and memory formation [,]. In cultured neurons isolated from mice, brain-derived neurotrophic factor (BDNF) causes a rapid increase in IEG transcripts. However, both JQ1-treatment and BRD4 knockdown by siRNA block the BDNF-induced increase in IEG expression []. These data support the idea that BRD4 recruits P-TEFb to promote Pol II phosphorylation and rapidly allows Pol II to elongate the IEG transcripts. Among the experimental models assessing cognitive functions in mice, the novel object recognition test can be evaluated by differences in the exploration time of novel and familiar objects []. If mice remember the previous objects, they will subsequently spend more time with a novel object. JQ1-injected mice showed no preference for novel objects compared with that of control mice, suggesting that JQ1 affects long-term memory []. Taken together, these findings indicate that BRD4 is critical for neuronal function and mediates the transcriptional regulation underlying learning and memory in mice. The heat shock response is a set of regulated responses to stress in the cell. The features of the heat shock response are the production of heat shock proteins and a partial inhibition of pre-mRNA splicing []. BRD4 has been identified as a regulator of the IFN-stimulated and oxidative stress-induced responses [,]. Alternative splicing analysis from RNA splicing data of heat shock-treated cells and heat shock-treated cells with BRD4 knockdown shows a significant increase in splicing inhibition, in particular intron retentions, in BRD4-depleted cells after heat shock, indicating that BRD4 prevents cells from heat stress-induced splicing inhibition []. Overall, BRD4 plays a critical role in controlling gene expression in response to external signals.
即时早期基因(IEG)对外界信号的快速激活对于突触可塑性和记忆形成所依赖的突触修饰的巩固至关重要[78, 79]。在从小鼠分离的培养神经元中,脑源性神经营养因子(BDNF)会导致 IEG 转录物的快速增加。然而,JQ1 处理和通过 siRNA 敲除 BRD4 都会阻断 BDNF 诱导的 IEG 表达的增加 [ 34]。这些数据支持这样一种观点,即 BRD4 招募 P-TEFb 以促进 Pol II 磷酸化,并迅速使 Pol II 延长 IEG 转录本。在评估小鼠认知功能的实验模型中,新物体识别测试可通过新物体和熟悉物体探索时间的差异进行评估[80]。如果小鼠记住了以前的物体,它们随后就会在新物体上花费更多时间。与对照组小鼠相比,注射了JQ1的小鼠没有表现出对新奇物体的偏好,这表明JQ1会影响长期记忆[34]。综上所述,这些研究结果表明,BRD4 对神经元功能至关重要,并介导了小鼠学习和记忆的转录调控。热休克反应是对细胞内压力的一系列调节反应。热休克反应的特征是产生热休克蛋白和部分抑制前核糖核酸的剪接[81]。BRD4 已被确定为 IFN 刺激和氧化应激诱导反应的调节因子[77, 82]。根据热休克处理细胞和敲除 BRD4 的热休克处理细胞的 RNA 剪接数据进行的替代剪接分析表明,热休克后去除了 BRD4 的细胞的剪接抑制显著增加,尤其是内含子的保留,这表明 BRD4 可防止细胞受到热应激诱导的剪接抑制[83]。总之,BRD4 在控制基因表达以响应外部信号方面发挥着关键作用。

4.3. BRD4 Functions in Mitotic Bookmarking
4.3.BRD4 在有丝分裂书签中的功能

Fluorescence recovery after photobleaching (FRAP) is a technique used to study protein mobility in living cells by measuring the rate of fluorescence recovery at the bleached site []. FRAP results are analyzed quantitatively to determine whether protein mobility is rapid or slow. FRAP analysis with a confocal laser-scanning microscope provides a crucial means to globally describe the binding dynamics of chromatin-associated proteins in living cells [,]. The recovery of the bleached fluorescence signal in wild-type chromatin-associated proteins is slower than in the binding-impaired mutants of chromatin-associated proteins, suggesting that an increase in binding affinity to chromatin gives rise to decreased recovery rate []. Fluorescently bleached GFP-BRD4 in NIH3T3 cells shows more rapid recovery in the G1 and G2 phases and metaphase/anaphase than that in the telophase during mitosis, indicating that BRD4 acquires increased binding affinity for chromatin at telophase when other nuclear factors begin to reassociate with chromatin and transcription restarts []. At telophase, the chromatin-binding BRD4 promotes P-TEFb-dependent phosphorylation of Ser2 in the CTM, which signifies an elongation state of Pol II. Subsequently, BRD4 has an impact on restarting the transcription of late M and early G1 genes, many of which are crucial for cellular functions in newly divided cells. These results suggest that BRD4 marks the M/G1 genes for transcriptional memory during mitosis and plays a role in the prompt initiation of their transcription in late mitotic and post-mitotic cells [].
光漂白后荧光恢复(FRAP)是一种通过测量漂白部位荧光恢复速度来研究活细胞中蛋白质流动性的技术[84]。对 FRAP 结果进行定量分析,以确定蛋白质流动性是快还是慢。利用激光扫描共聚焦显微镜进行 FRAP 分析是全面描述活细胞中染色质相关蛋白结合动态的重要手段 [ 85, 86]。野生型染色质相关蛋白漂白荧光信号的恢复速度比染色质相关蛋白结合力受损突变体慢,这表明与染色质结合亲和力的增加导致恢复速度降低[85]。在 NIH3T3 细胞中荧光漂白的 GFP-BRD4 在有丝分裂的 G1 期、G2 期和分裂相/有丝分裂期比在端期恢复得更快,这表明 BRD4 在端期与染色质的结合亲和力增强,此时其他核因子开始与染色质重新结合,转录重新启动[87]。在端期,与染色质结合的BRD4会促进CTM中依赖于P-TEFb的Ser2磷酸化,这标志着Pol II的伸长状态。随后,BRD4 对重启晚期 M 基因和早期 G1 基因的转录产生影响,其中许多基因对新分裂细胞的细胞功能至关重要。这些结果表明,在有丝分裂过程中,BRD4 标记了 M/G1 基因的转录记忆,并在有丝分裂后期和有丝分裂后期细胞中迅速启动这些基因的转录过程中发挥作用[ 87]。

Transmission of transcriptional memory from mother to daughter cells is reported to be mediated by chromatin-based epigenetic bookmarks [,,]. In the study of transcriptional activation kinetics, the doxycyclin (Dox)-inducible mammalian cells, U2OS-2-6-3, expressing pTet-on, mCherry-Pol II and MS2-YFP, allow real-time imaging of the dynamics of Pol II recruitment and mRNA synthesis during the cell cycle [,,]. Both Pol II and MS2 signals induced by Dox in cells reach a plateau level much more rapidly during post-mitotic transcriptional reactivation than during interphase transcriptional activation, indicating that a gene bookmark is involved in post-mitotic transcriptional reactivation. The kinetic analysis of mRNA synthesis during post-mitotic transcriptional induction shows that signals of MS2 nascent transcripts reach a plateau level more slowly in BRD4 knockdown and BRD4 inhibitor-treated cells compared to those in control cells []. Collectively, these facts suggest that BRD4 acts as a gene bookmark for transcriptional reactivation in post-mitotic cells.
据报道,转录记忆从母细胞到子细胞的传递是由基于染色质的表观遗传标记介导的[20, 88, 89]。在研究转录激活动力学时,表达 pTet-on、mCherry-Pol II 和 MS2-YFP 的多西环素(Dox)诱导哺乳动物细胞 U2OS-2-6-3 允许对细胞周期中 Pol II 招募和 mRNA 合成的动态进行实时成像 [ 89, 90, 91]。与间期转录激活相比,Dox 诱导的细胞 Pol II 和 MS2 信号在有丝分裂后转录再激活过程中达到高原水平的速度要快得多,这表明基因书签参与了有丝分裂后转录再激活。对有丝分裂后转录诱导过程中mRNA合成的动力学分析表明,与对照细胞相比,BRD4敲除和BRD4抑制剂处理的细胞中MS2新生转录本信号达到高原水平的速度更慢[89]。总之,这些事实表明,BRD4 是有丝分裂后细胞转录再激活的基因书签。

5. Basic Functions of BRDT
5.BRDT 的基本功能

5.1. BRDT Is Essential for Spermatogenesis
5.1.BRDT 对精子发生至关重要

Brdt is exclusively expressed in the testis [,,]. Its expression restricted to the male germ line is initiated at the early spermatocyte stage during meiosis and persists throughout the post-meiotic stage during spermiogenesis []. Targeted mutagenesis has been carried out to introduce BrdtBDI, which lacks only the first of the two bromodomains, into the Brdt locus. BrdtBDI/BDI homozygous male mice are sterile and show impaired testicular histology with severely reduced sperm concentrations and abnormal sperm morphology, suggesting that Brdt is essential for normal spermatogenesis []. Furthermore, complete deletion of Brdt alleles results in meiotic arrest at the end of the prophase when the pairing chromosomes should undergo compaction in preparation for the first meiotic division []. Transcriptome analyses with wild type and Brdt−/− pachytene spermatocytes show that BRDT governs the expression levels of more than 3000 genes, activating approximately two-thirds of these genes and repressing one-third of them []. Ccna1 (Cyclin A1), one of the genes markedly activated by BRDT, is exclusively expressed in the male germ cell lineage, and is essential for spermatocytes to enter the first meiotic division [,]. Taken together, these findings indicate that the BRDT protein is a transcriptional regulator that controls the expression of genes responsible for meiotic progression during spermatogenesis.
Brdt 只在睾丸中表达[9, 43, 44]。它的表达局限于雄性生殖系,在减数分裂的早期精母细胞阶段开始表达,并在精子形成的减数分裂后阶段持续表达[27]。通过靶向诱变引入 Brdt BDI BDI ,它只缺少两个溴结构域中的第一个。Brdt BDI/BDI BDI/BDI }同基因雄性小鼠不育,并表现出睾丸组织学受损、精子浓度严重下降和精子形态异常,这表明Brdt对正常的精子发生至关重要[ 92]。此外,完全缺失 Brdt 等位基因会导致减数分裂停滞在前期的末端,此时配对染色体应进行压实,为减数第一次分裂做准备[ 27]。对野生型和Brdt −/− 柏氏精母细胞的转录组分析表明,BRDT控制着3000多个基因的表达水平,其中大约三分之二的基因被激活,三分之一的基因被抑制[27]。Ccna1(细胞周期蛋白 A1)是被 BRDT 明显激活的基因之一,只在雄性生殖细胞系中表达,是精母细胞进入减数第一次分裂的必要条件[93, 94]。综上所述,这些研究结果表明,BRDT 蛋白是一种转录调节因子,可控制精子发生过程中负责减数分裂进程的基因的表达。

5.2. BRDT Interacts with Various Proteins and Functions as a Transcriptional Regulator during Spermatogenesis
5.2.BRDT 与多种蛋白质相互作用,在精子发生过程中发挥转录调控作用

Immunoprecipitation of extracts from adult mouse testes with anti-Cdk 9 and anti-cyclin T1 antibodies showed BRDT as a factor binding to both Cdk 9 and cyclin T1, suggesting that BRDT as well as BRD4 is required for the recruitment of P-TEFb, which is known to bind the C-terminal region of BRD4 [,]. This finding is also supported by the fact that the C-terminal sequence of BRDT is strikingly similar to that of BRD4 (Figure 1). These data confirmed that BRDT is a true functional tissue-specific paralogue of BRD4. To determine the interacting partners of BRDT, immunoprecipitation of rat testicular nuclear extracts using an anti-BRDT antibody and mass spectrometry analysis of proteins derived from precipitates identified Smarce1 as an interacting partner of BRDT []. Smarce1 is a member of the SWI/SNF (SWItch/Sucrose Non-Fermentable) family and a component of the multimeric ATP-dependent chromatin remodeling complexes that regulate subunit interactions and transcriptional activation. A pull-down assay of a FLAG-tagged BRDT deletion mutant and recombinant Smarce1 mixture using an anti-Smarce1 antibody shows that N-terminal deletion interferes with co-immunoprecipitation of BRDT with Smarce1, suggesting that the N-terminal region is necessary for BRDT to associate with Smarce1 []. Comparative microarray analysis of RNA from wild-type and BrdtBDI/BDI mutant round spermatids reveals that, among the genes that are upregulated by BDI deletion, RNA splicing genes are enriched and that over 60% of these splicing genes have transcripts that lack the truncation of their 3′-untranslated region, that is typical of round spermatids []. Immunoprecipitation of mouse testicular lysates using an anti-BRDT antibody reveals the co-immunoprecipitation of Srsf2, Ddx5, Hnrnpk, and Tardbp that participate in RNA splicing, suggesting that BRDT complexes with these splicing proteins and functions as a part of the splicing machinery in the testis []. Further, BRDT has been reported to repress the expression of the testis-specific histone H1t during spermatogenesis by interacting with the histone deacetylase, HDAC1, the arginine-specific histone methyltransferase 5, PRMT5, and the Tripartite motif-containing 28 protein, TRIM28 []. Collectively, these results indicate that BRDT associates with a number of regulatory proteins such as P-TEFb and exerts its functions as a transcriptional activator or repressor during spermatogenesis.
用抗 Cdk 9 和抗细胞周期蛋白 T1 抗体对成年小鼠睾丸提取物进行免疫沉淀显示,BRDT 既是与 Cdk 9 结合的因子,也是与细胞周期蛋白 T1 结合的因子。BRDT 的 C 端序列与 BRD4 的 C 端序列极为相似(图 1),这也支持了上述发现。这些数据证实,BRDT 是 BRD4 的一个真正的功能性组织特异性同源物。为了确定BRDT的相互作用伙伴,使用抗BRDT抗体对大鼠睾丸核提取物进行免疫沉淀,并对沉淀物中的蛋白质进行质谱分析,发现Smarce1是BRDT的相互作用伙伴[95]。Smarce1 是 SWI/SNF(SWItch/蔗糖不发酵)家族的成员,也是多聚 ATP 依赖性染色质重塑复合物的组成成分,该复合物可调节亚基相互作用和转录激活。使用抗Smarce1抗体对FLAG标记的BRDT缺失突变体和重组Smarce1混合物进行的牵引试验表明,N端缺失会干扰BRDT与Smarce1的共免疫沉淀,这表明N端区域是BRDT与Smarce1结合所必需的[95]。对来自野生型和Brdt BDI/BDI 突变圆精子的RNA进行芯片比较分析 BDI/BDI突变体圆型精子的 RNA 的比较微阵列分析表明,在因 BDI 缺失而上调的基因中,RNA 剪接基因富集,而且这些剪接基因中超过 60% 的转录本缺乏圆型精子典型的 3′-非翻译区截断[96]。使用抗 BRDT 抗体对小鼠睾丸裂解液进行免疫沉淀后,发现参与 RNA 剪接的 Srsf2、Ddx5、Hnrnpk 和 Tardbp 发生了共免疫沉淀,这表明 BRDT 与这些剪接蛋白复合,并作为睾丸中剪接机制的一部分发挥作用[96]。此外,有报道称,在精子发生过程中,BRDT通过与组蛋白去乙酰化酶HDAC1、精氨酸特异性组蛋白甲基转移酶5(PRMT5)和含三方基序的28蛋白TRIM28相互作用,抑制睾丸特异性组蛋白H1t的表达[97]。这些结果综合表明,BRDT与P-TEFb等多种调控蛋白结合,在精子发生过程中发挥转录激活剂或抑制剂的功能。

5.3. BRDT Exerts a Function as a Chromatin-Remodeling Factor during Spermatogenesis by Interacting with Acetylated Histones
5.3.BRDT 通过与乙酰化组蛋白相互作用,在精子发生过程中发挥染色质重塑因子的功能

Chromatin remodeling assays with Cos7 cells transfected with Brdt cDNA show that ectopic expression of Brdt triggers dramatic reorganization of chromatin only after induction of histone hyperacetylation by TSA []. The same effect was confirmed by experiments in which nuclei isolated from TSA-treated mouse erythroleukemia (MEL) and 3T3 fibroblast cells are incubated with recombinant BRDT in vitro. Mutation in the first bromodomain compromises chromatin reorganization by insulating the BRDT protein from hyperacetylated histone H4 N-terminal tails []. In vitro remodeling assays with nuclei isolated from cultured rat haploid round spermatid cells show that exogenously added recombinant BRDT causes chromatin reorganization in the presence of histone deacetylase inhibitors such as sodium butyrate and TSA []. Isothermal titration calorimetry (ITC) is a quantitative technique that can determine the binding affinity of protein-protein interactions in solution []. An ITC analysis performed to study the binding of variously acetylated histone H4 peptides with recombinant BRDT (full length), BDI, and BDII, shows that a single bromodomain (BDI) of BRDT is responsible for the cooperative binding of two or more acetylation marks among K5, K8, K12, and K16 on the histone H4 tail []. Further, intramolecular FRET assays with a tandem fusion protein consisting of BRDT bromodomains and a histone H4 flanked by two different colored fluorescent proteins serving as the donor and acceptor fluorophores, show that COS7 cells expressing the fusion protein release a FRET signal only in the presence of TSA, suggesting that BRDT bromodomains interact with acetylated histones in living cells []. Overall, these findings indicate that BRDT is a key molecule that participates in chromatin remodeling by interacting with hyperacetylated nucleosomes via its bromodomains.
用转染了 Brdt cDNA 的 Cos7 细胞进行染色质重塑试验表明,只有在 TSA 诱导组蛋白超乙酰化之后,异位表达的 Brdt 才会引发染色质的剧烈重组[ 98]。从经 TSA 处理的小鼠红细胞白血病(MEL)和 3T3 成纤维细胞中分离出来的细胞核与重组 BRDT 在体外孵育的实验也证实了同样的效果。第一个溴结构域的突变会使 BRDT 蛋白与高乙酰化组蛋白 H4 N 端尾巴绝缘,从而影响染色质重组[ 98]。用从培养的大鼠单倍体圆形精母细胞中分离出来的细胞核进行体外重塑试验表明,在组蛋白去乙酰化酶抑制剂(如丁酸钠和 TSA)存在的情况下,外源添加的重组 BRDT 会导致染色质重组[95]。等温滴定量热法(ITC)是一种定量技术,可以测定溶液中蛋白质-蛋白质相互作用的结合亲和力[99]。为研究不同乙酰化组蛋白 H4 肽与重组 BRDT(全长)、BDI 和 BDII 的结合而进行的一项 ITC 分析表明,BRDT 的单个溴化域(BDI)负责与组蛋白 H4 尾部 K5、K8、K12 和 K16 之间的两个或多个乙酰化标记协同结合[100]。此外,利用由 BRDT 溴化结构域和组蛋白 H4 组成的串联融合蛋白进行的分子内 FRET 试验表明,表达该融合蛋白的 COS7 细胞只有在存在 TSA 的情况下才释放 FRET 信号,这表明 BRDT 溴化结构域与活细胞中的乙酰化组蛋白相互作用[101]。总之,这些研究结果表明,BRDT 是一种关键分子,通过其溴结构域与高乙酰化核小体相互作用,从而参与染色质重塑。

During the post-meiotic stages of spermatogenesis, haploid spermatids undergo extensive morphological changes including a striking chromatin reorganization and compaction []. During this process, the nuclear volume dramatically reduces, and genome-wide histone removal and their step-wise replacement by small basic proteins occur. Histones are first replaced by transition proteins (TPs), which are later followed by protamines. This exchange is associated with hyperacetylation of histone H4 []. Elongating spermatids from the testes of BrdtBDI/BDI mice contain as a large number of hyperacetylated histones as the normal elongating spermatids. However, immunohistochemical analysis of elongating spermatids from BrdtBDI/BDI mice shows that TPs and protamines synthesized in the cytoplasm do not enter the nuclei and that histone replacement does not occur []. This finding suggests that the first bromodomain, BDI, is required to reorganize chromatin architecture by mediating the replacement of acetylated histones at post-meiotic stages during spermatogenesis.
在精子发生的减数分裂后阶段,单倍体精子会发生广泛的形态变化,包括显著的染色质重组和压实[102]。在这一过程中,核体积急剧缩小,整个基因组的组蛋白被移除,并逐步被小型碱性蛋白取代。组蛋白首先被过渡蛋白(TPs)取代,随后被原胺取代。这种交换与组蛋白 H4 的超乙酰化有关[ 103]。来自 Brdt 小鼠睾丸的伸长精子中含有 BDI/BDIBDI/BDI 小鼠与正常伸长精子一样含有大量高乙酰化组蛋白。然而,对Brdt BDI/BDI 小鼠的伸长精子进行的免疫组化分析表明,睾丸中的超乙酰化组蛋白数量与正常伸长精子一样多。BDI/BDI}小鼠的伸长精子的免疫组化分析表明,在细胞质中合成的TPs和原胺没有进入细胞核,组蛋白置换也没有发生[ 27]。这一发现表明,在精子发生过程中,第一个溴结构域BDI需要在减数分裂后阶段通过介导乙酰化组蛋白的替换来重组染色质结构。

6. Pathological Functions of BET Proteins Leading to Disease
6.导致疾病的 BET 蛋白的病理功能

6.1. BRD4-NUT or BRD3-NUT Fusion Protein Causes NUT Midline Carcinoma
6.1.BRD4-NUT 或 BRD3-NUT 融合蛋白导致 NUT 中线癌

NUT midline carcinoma (NMC) is a rare but poorly differentiated and highly aggressive cancer of the squamous cell lineage that arises in midline structures [,]. NMC is cytogenetically characterized by a reciprocal translocation of the NUT (nuclear protein in testis) gene on the long arm of chromosome 15, with BRD4 on chromosome 19p13.1 (t(15;19)(q14;p13.1)) or, in rare cases, with BRD3 on chromosome 9q34.2 (t(15;9)(q14;q34.2)), leading to BRD4-NUT or BRD3-NUT fusion protein production by NMC cells [,]. Knockdown of BRD4-NUT or BRD3-NUT in NMC cell lines (TC797, PER-403, and 10326 cells) results in squamous differentiation and growth arrest []. Further, knockdown of BRD4-NUT in HCC2429 cells, an NMC cell line established from a t(15;19) BRD4-NUT translocation lung cancer patient [], induces their transformation from spindle-shape mesenchymal morphology to squamous morphology, increased expression of cell differentiation markers, and a reduction in cellular proliferation rate []. These results suggest that BRD-NUT fusion proteins contribute to carcinogenesis by interfering with epithelial differentiation.
鳞状细胞中线癌(NUT midline carcinoma,NMC)是一种罕见但分化差、侵袭性强的鳞状细胞癌,发生于中线结构[104, 105]。NMC 的细胞遗传学特征是 15 号染色体长臂上的 NUT(睾丸核蛋白)基因与 19p13 号染色体上的 BRD4 相互易位。1(t(15;19)(q14;p13.1)),或在极少数情况下与染色体 9q34.2 上的 BRD3(t(15;9)(q14;q34.2))互位,导致 NMC 细胞产生 BRD4-NUT 或 BRD3-NUT 融合蛋白[28, 106]。在 NMC 细胞系(TC797、PER-403 和 10326 细胞)中敲除 BRD4-NUT 或 BRD3-NUT 会导致鳞状分化和生长停滞 [ 103]。此外,在 HCC2429 细胞(一种由 t(15;19) BRD4-NUT 易位肺癌患者建立的 NMC 细胞系[107])中敲除 BRD4-NUT,可诱导其从纺锤形间质形态转变为鳞状形态,增加细胞分化标记物的表达,并降低细胞增殖率[108]。这些结果表明,BRD-NUT 融合蛋白通过干扰上皮细胞分化来促进癌变。

Immunohistochemical staining of Cos7 cells transfected with a BRD4-NUT expression vector and of HCC2429 cells using an anti-acetylated histone H4 antibody shows that the BRD4-NUT fusion protein forms speckled nuclear foci that contain hyperacetylated chromatin domains [,]. Immunoprecipitation experiments using extracts from Cos7 cells transfected with the HA-tagged NUT and HA-tagged BRD4-NUT expression vectors show that p300, a cellular histone acetyltransferase, is co-immunoprecipitated with an anti-HA antibody, suggesting that the NUT moiety of the fusion protein interacts with and recruits p300 []. This result is also supported by an immunohistochemical study showing the co-localization of BRD4-NUT with p300 in punctate nuclear foci that are observed in HCC2429 cells [].
用抗乙酰化组蛋白 H4 抗体对转染了 BRD4-NUT 表达载体的 Cos7 细胞和 HCC2429 细胞进行免疫组化染色显示,BRD4-NUT 融合蛋白形成的斑点状核病灶含有高乙酰化染色质结构域[ 108, 109]。使用转染有 HA 标记的 NUT 和 HA 标记的 BRD4-NUT 表达载体的 Cos7 细胞提取物进行的免疫沉淀实验表明,细胞组蛋白乙酰转移酶 p300 与抗-HA 抗体共免疫沉淀,这表明融合蛋白的 NUT 分子与 p300 相互作用并招募 p300[ 109]。一项免疫组化研究也支持这一结果,该研究显示在 HCC2429 细胞中观察到 BRD4-NUT 与 p300 共同定位在点状核病灶中[109]。

Treatment of HCC2429 cells with etoposide, an inducer of single- or double- strand DNA breaks, does not induce expression of the p21 gene that is a direct target of the p53 transcription factor, whereas treatment of A549 lung cancer cells with etoposide causes p21 expression. Knockdown of BRD4-NUT in HCC2429 cells induces efficient restoration of p21 expression, accompanied by accumulation of caspase 3, a member of the cascading reaction associated with apoptotic cell death, and E-cadherin, a marker of epithelial cell differentiation []. Moreover, treatment of the BRD4-NUT knockdown cells with a p300 inhibitor severely interferes with the induction of p53 target genes, suggesting that p300 activity is required to activate these genes after BRD4-NUT knockdown. Altogether, these findings demonstrate that sequestration of p300 into the BRD4-NUT foci principally drives oncogenesis leading to p53 inactivation, and that knockdown of BRD4-NUT releases p300 and regenerates p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis.
依托泊苷是单链或双链DNA断裂的诱导剂,用依托泊苷处理HCC2429细胞不会诱导作为p53转录因子直接靶标的p21基因的表达,而用依托泊苷处理A549肺癌细胞则会引起p21基因的表达。在 HCC2429 细胞中敲除 BRD4-NUT 可诱导 p21 表达的有效恢复,同时伴随着与细胞凋亡相关的级联反应成员 caspase 3 和上皮细胞分化标志物 E-cadherin 的积累[ 109]。此外,用 p300 抑制剂处理 BRD4-NUT 敲除细胞会严重干扰 p53 靶基因的诱导,这表明在 BRD4-NUT 敲除后需要 p300 活性来激活这些基因。总之,这些研究结果表明,p300螯合在BRD4-NUT病灶中主要是驱动肿瘤发生,导致p53失活,而敲除BRD4-NUT可释放p300,重新生成依赖于p53的调控机制,导致细胞分化和凋亡。

Expression of BioTAP [] -tagged BRD4-NUT causes the formation of hyperacetylated nuclear foci in 293T cells that are similar in number and appearance to those of endogenous BRD4-NUT in cultured NMC cells and in NMC tumor tissues []. ChIP-seq assays using chromatin obtained from 293T cells that express BioTAP-BRD4-NUT through tandem affinity purification of the BioTAP tag reveal more than 100 hyperacetylated chromatin domains reaching up to 2 Mb in size []. One of the long noncoding RNAs (lncRNAs), PVT1, is associated with prodigious domains that are commonly observed in all NMC cell lines and tissues examined. Treatment of NMC cells with siRNAs targeting PVT1 results in the expression of differentiation markers, morphological flattening, and decreased proliferation. Further, in these cells, PVT1 knockdown leads to reduction in c-MYC protein levels []. These observations raise the possibility that retention of c-MYC mediated by the large hyperacetylated domains blocks NMC cell differentiation.
表达 BioTAP [ 110] 标记的 BRD4-NUT 会在 293T 细胞中形成超乙酰化核病灶,其数量和外观与培养的 NMC 细胞和 NMC 肿瘤组织中的内源性 BRD4-NUT 类似[29]。利用通过串联亲和纯化 BioTAP 标记表达 BioTAP-BRD4-NUT 的 293T 细胞中的染色质进行 ChIP-seq 分析,发现了 100 多个超乙酰化染色质域,大小可达 2 Mb [ 29]。长非编码 RNA(lncRNA)之一的 PVT1 与在所有 NMC 细胞系和组织中普遍观察到的巨大结构域有关。用靶向 PVT1 的 siRNA 处理 NMC 细胞会导致分化标志物的表达、形态扁平化和增殖减少。此外,在这些细胞中,PVT1 基因敲除会导致 c-MYC 蛋白水平降低[29]。这些观察结果表明,由大的超乙酰化结构域介导的 c-MYC 保留可能会阻碍 NMC 细胞的分化。

6.2. BRD2 and BRD4 Interact with Viral Proteins and Contribute to Oncogenesis in Host Cells Infected with Viruses
6.2.BRD2 和 BRD4 与病毒蛋白相互作用,促进受病毒感染的宿主细胞的肿瘤发生

Kaposi’s sarcoma-associated herpesvirus (KSHV) causes Kaposi’s sarcoma (KS), a cancer commonly occurring in AIDS patients, as well as primary effusion lymphoma, and some types of multicentric Castleman’s disease. Its latent nuclear antigen (LANA), which is expressed in the nuclei of latently infected cells, mediates episomal replication and persistence of viral genomes []. Yeast two-hybrid screening using a carboxy-terminal fragment of LANA fused to the DNA binding domain of GAL4 (bait) and a human leukocyte cDNA library expressing proteins fused to the GAL4 activation domain (prey) identified the BRD2 protein as an activator of reporter gene expression, suggesting that LANA interacts with BRD2 []. Further, a pull-down assay of lysates from BCP-1 cells, a KSHV-infected B-cell lymphoma cell line, with an anti-BRD2 antibody results in the immunoprecipitation of both BRD2 and LANA, indicating interaction between BRD2 and LANA in vivo []. An immunoprecipitation assay using lysates from HEK 293T cells co-transfected with a series of LANA deletion constructs and a GFP-tagged BRD2 construct shows that deletions within the carboxy terminus prevent LANA from co-immunoprecipitating with an anti-GFP antibody, suggesting that the carboxy-terminal domain of LANA interacts with BRD2 []. Pull-down assays of lysates from SF9 insect cells expressing the recombinant LANA protein using glutathione beads coated with a series of GST-tagged BRD2 deletion proteins show that deletions within the ET domain interfere with the binding of BRD2 to LANA, suggesting that the ET domain of BRD2 interacts with LANA []. These results indicate that the carboxy-terminal domain of LANA interacts with a region in BRD2 that contains the ET domain. Like the interaction of LANA with BRD2, BRD4 short has been reported to interact directly with an element in the LANA carboxy-terminal domain through its carboxy-terminal region that contains the highly conserved ET domain [,]. Immunohistochemical staining of KSHV-infected BCLM cells shows clear colocalization of BRD4 with LANA in punctate speckles, wherein KSHV episomes are colocalized [] on both mitotic chromosomes and interphase nuclei [].
卡波西肉瘤相关疱疹病毒(KSHV)会导致卡波西肉瘤(KS)--一种常见于艾滋病患者的癌症,以及原发性渗出淋巴瘤和某些类型的多中心卡斯特曼病。它的潜伏核抗原(LANA)在潜伏感染细胞的细胞核中表达,介导外显子复制和病毒基因组的持续存在[ 111]。使用与 GAL4 DNA 结合域(诱饵)融合的 LANA 羧基末端片段和表达与 GAL4 激活域(猎物)融合的蛋白质的人类白细胞 cDNA 文库进行的酵母双杂交筛选发现,BRD2 蛋白是报告基因表达的激活剂,这表明 LANA 与 BRD2 相互作用[112]。此外,用抗 BRD2 抗体对受 KSHV 感染的 B 细胞淋巴瘤细胞系 BCP-1 细胞的裂解物进行下拉检测,结果发现 BRD2 和 LANA 都被免疫沉淀,表明 BRD2 和 LANA 在体内相互作用[112]。使用与一系列 LANA 缺失构建物和 GFP 标记的 BRD2 构建物共转染的 HEK 293T 细胞裂解物进行的免疫沉淀分析表明,羧基末端的缺失阻止 LANA 与抗 GFP 抗体共免疫沉淀,表明 LANA 的羧基末端结构域与 BRD2 相互作用[113]。使用涂有一系列GST标记的BRD2缺失蛋白的谷胱甘肽珠对表达重组LANA蛋白的SF9昆虫细胞裂解物进行的牵引检测表明,ET结构域内的缺失会干扰BRD2与LANA的结合,这表明BRD2的ET结构域与LANA相互作用[112]。这些结果表明,LANA 的羧基末端结构域与 BRD2 中包含 ET 结构域的区域相互作用。与 LANA 与 BRD2 的相互作用一样,据报道,短 BRD4 也通过其包含高度保守的 ET 结构域的羧基末端区域与 LANA 羧基末端结构域中的一个元件直接相互作用[114, 115]。对受 KSHV 感染的 BCLM 细胞进行免疫组化染色显示,BRD4 与 LANA 在点状斑点中明显共定位,而 KSHV 表位体则在有丝分裂染色体和间期细胞核上共定位[111][114]。

Papillomaviruses constitute a group of small DNA viruses that cause benign tumors in a variety of higher vertebrates. During the latent infection period, viral genomes persist as episomes in the nuclei of proliferating host cells. The papillomavirus genome includes an early region (E) encoding six (E1, E2, E4, E5, E6, and E7) open reading frames (ORF) that are expressed immediately after initial infection of the host cell. The E2 protein, which binds to the viral replication origin cooperatively with the E1 protein, plays a crucial role in long-term episomal maintenance and DNA replication of the viral genome [,]. The E6 protein mediates p53 degradation resulting in reduced ability to respond to DNA damage in host cells []. Because the E2 regulatory protein suppresses the enhancer and promoter activity that causes E6 and E7 transcription, integration of the papillomavirus DNA into cellular chromosomes in a manner that disrupts the E2 ORF, promotes oncogenesis in host cells [,]. The viral proteins need to interact with a variety of cellular proteins to efficiently execute their function.

Cellular E2-interacting proteins have been explored using the bovine papillomavirus (BPV) E2 protein. A proteomic analysis of nuclear lysates from human cervical carcinoma C33 cells transduced with a recombinant retrovirus expressing FLAG-HA-tagged BPV E2 shows that BRD4 is co-immunopurified with anti-FLAG and anti-HA antibodies, suggesting that BRD4 is a member of the cellular interacting partners of BPV E2 []. The overlap of E2 and BRD4 immunofluorescence images in E2-transfected C33 cells demonstrates that these two proteins colocalize on mitotic chromosomes []. In vitro binding assays of fragments from BRD4 covering different regions of the protein with the GST-E2 fusion protein immobilized on glutathione resin, show that deletion of the C-terminal region prevents BRD4 from binding to GST-E2, indicating that E2 binds to the BRD4 C-terminal domain []. Further, an immunohistochemical study of E2-transfected C33 cells stably expressing the BRD4 C-terminal domain shows disappearance of overlapping E2 and BRD4 staining, suggesting that expression of the BRD4 C-terminal domain blocks E2 interaction with BRD4 in a dominant-negative manner []. Collectively, these findings indicate that interaction of the BPV E2 protein with BRD4 is required to tether the viral genome to the host mitotic chromosomes.

The E2 protein encoded by human papillomaviruses (HPVs) has also been reported to be associated with BRD4. Using nuclear extracts of human embryonic kidney-derived 293 cells that express FLAG-tagged HPV E2, anti-FLAG immunoaffinity purification followed by mass spectrometry identified BRD4 as a cellular protein that is naturally associated with HPV E2 []. In vitro reconstituted chromatin transcription experiments illustrate that BRD4 confers the ability to silence HPV chromatin transcription on E2. BRD4 knockdown in C33 cells using an shRNA expressing retroviral vector causes a reduction in E2-mediated repression of E6 promoter activity, suggesting that BRD4 is a cellular co-repressor essential for E2-mediated repression of HPV E6 promoter activity []. Chromatin samples isolated from E2-expressing HeLa cells that harbor endogenous HPV genomes, using anti-TAF1 and Pol II antibodies, do not include DNA from the E6 promoter region, suggesting that E2 complexed with BRD4 blocks the recruitment of TAF1 (a subunit of TFIID) and RNA Pol II to the HPV E6 promoter region []. Further, a genome-wide siRNA screen using BPV E2-expressing C33 cells transfected with an E2-repressible reporter gene identified BRD4 as a cooperator contributing to E2-mediated transcriptional repression []. In contrast, both competitive inhibition of E2 binding to BRD4 by the C-terminal fragment of BRD4 and BRD4 knockdown by siRNA compromise transcriptional activation from an E2-responsive promoter, suggesting that BRD4 is required to mediate E2 transcriptional activation function [,]. Further, transfection of E2 fused with Cdk9, a subunit of P-TEFb, in C33 cells more efficiently enhances the activity of E2-responsive reporter genes, indicating that the recruitment of P-TEFb by BRD4 is important for E2-dependent transactivation []. Notably, BRD4 has dual effects on the transcriptional regulation of E2 in papillomaviruses.

6.3. BET Proteins Are Potential Therapeutic Targets in a Wide Range of Cancers

To identify and optimize therapeutic lead compounds for translation of small-molecule modulators of epigenetic targets as cancer therapeutics, high-throughput screening has been conducted. JQ1, a thienotriazolodiazepine, is identified as a potent and selective small-molecule inhibitor of BET proteins that competitively binds to the acetyl-lysine recognition pocket of their bromodomains []. FRAP assays with human osteosarcoma cells transfected with GFP-BRD4 and GFP-BRD4-NUT reveal accelerated fluorescence recovery in the presence of JQ1, indicating that JQ1 displaces BRD4 from nuclear chromatin and increases the levels of freely diffusing BRD4 []. Treatment of the NMC patient-derived cell line with JQ1 eliminates discrete nuclear foci composed of the BRD4-NUT oncoprotein, arrests proliferation at the G1 cell-cycle stage, and prompts terminal squamous differentiation. Analysis of NMC xenografts in mice by positron-emission tomography (PET) imaging of 18F-fluorodeoxyglucose (FDG) uptake shows that JQ1-treated mice exhibit marked reduction of FDG uptake, whereas vehicle-treated mice develop progressive cancer. In fact, remarkable tumor regression and prolonged survival are observed in mice treated with JQ1 compared to that in the vehicle control []. These observations highlight the immediate therapeutic potential of direct-acting inhibitors of BET proteins.

c-MYC is a transcription factor that regulates cell proliferation. Aberrant c-MYC expression leads to cancer by the coordinated activation of transcriptional pathways involved in cell division, metabolic adaptation, and survival. c-MYC is thus viewed as a promising target for anti-cancer drugs. To investigate whether BET inhibition specifically abrogates MYC-dependent transcription, global transcriptional profiling and unbiased gene set enrichment analysis (GSEA) [] was performed with human multiple myeloma (MM) cell lines that highly express BET proteins. The result showed that downregulation by JQ1 is strongly correlated with canonical transcriptional signatures of MYC-dependent genes, indicating that BET bromodomain inhibition by JQ1 gives rise to selective repression of the transcriptional network induced by c-MYC []. JQ1 treatment in tumor-bearing SCID mice orthotopically xenografted with an intravenous injection of MM cells significantly decreases the disease burden and results in marked prolongation of overall survival compared to that in vehicle-treated animals []. Likewise, small-molecule BET inhibitors (JQ1 and I-BET) show anticancer effects in vitro and in vivo on acute myeloid leukemia (AML) [,], mixed lineage leukemia (MLL) [], Burkitt’s lymphoma [], medulloblastoma, which is the most common brain tumor in childhood [], MYCN-amplified neuroblastoma [], castration-resistant prostate cancer [], Ewing’s sarcoma [], and colorectal cancer []. These results demonstrate the pre-clinical efficacy of BET inhibitors in a wide range of malignancies, which reinforces the therapeutic potential of these drugs. Currently, clinical trials are under way by means of small-molecule bromodomain inhibitors to treat some of the most common cancers, including lymphomas, leukemias, multiple myelomas and solid tumours (such as cancers of the pancreas and prostate) [].

To optimize the clinical efficacy of BET inhibition, mechanisms of drug resistance have been evaluated. Comparison between I-BET-resistant MLL cells and vehicle MLL cells by GSEA reveals the enrichment of leukemia stem cell signatures and significant upregulation of Wnt/β-catenin signaling in the resistant clones. Negative regulation of the Wnt/β-catenin pathway results in restoration of sensitivity to I-BET both in vitro and in vivo []. A chromatin-focused RNAi screen in mouse AML cells shows that suppression of PRC2 (Polycomb Repressive Complex 2) histone methyltransferase to transcriptionally silence chromatin, promotes JQ1 resistance in AML. GSEA with the transcriptomes of JQ1-resistant AML cells generated by PRC2 shRNA and JQ1-sensitive AML cells reveals that loss of PRC2 can facilitate transcriptional activation of Wnt signaling, which can drive MYC transcription []. These results identify and validate Wnt signaling as a driver and candidate biomarker of BET resistance in leukemia. Genome-wide shRNA “dropout screens” for functional genomic analyses on 77 breast cancer cell lines show that BRD4 is preferentially essential for cell viability in luminal/HER2 lines. Although many luminal/HER2 lines that are sensitive to BRD4 knockdown are JQ1-resistant, most basal lines sensitive to BRD4 knockdown are JQ1-sensitive. Further, integrative analysis reveals a strong correlation between JQ1 resistance and PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) mutation, which is supported by the fact that PIK3CA overexpression confers JQ1 resistance to JQ1-sensitive cells whereas a PIK3CA-specific inhibitor increases JQ1 sensitivity in resistant cells []. These findings highlight the identity of BRD4 as a potential therapeutic target and the significance of PIK3CA mutation leading to BET-inhibitor resistance in luminal breast cancer.

6.4. BRDT Is a Potential Target for Male Contraception

An ITC study, which has been performed to confirm the binding of a synthetic H4Kac4 peptide to human BRDT bromodomains in the presence and absence of JQ1, shows that the peptide binds to modules with sufficiently low Kd values and this protein-protein interaction is directly inhibited by JQ1 []. Intraperitoneal injection of JQ1 into male mice for several weeks reduces the seminiferous tubule area, testis size, and spermatozoa number and motility without affecting the hormone levels []. To define the consequences of BRDT inhibition by JQ1, genome-wide expression analysis and GSEA have been carried out with testes RNA from vehicle- and JQ1-treated mice. The result showed that genes downregulated by JQ1 are enriched with functionally defined gene sets reflecting pachytene spermatocyte and spermatid transcriptional signatures, suggesting that JQ1 inhibition selectively depletes germ cell transcripts. Although male mice treated with an appropriate dose of JQ1 for a suitable period mate normally and are completely infertile, fertility is restored after JQ1 treatment is stopped []. These findings provide evidence that small-molecule inhibitors of BRDT are potential lead compounds for male contraception.

7. Concluding Remarks

This review focuses on the basic functions of the four paralogous BET proteins, which are summarized in Table 1 together with the pathological functions of the proteins. These proteins have a common feature of epigenetic transcriptional regulators that recognize acetylated lysines in histones through their bromodomains and control the movement of RNA Pol II on chromatin. The four paralogous BET proteins are structurally classified into a group including BRD2 and BRD3 that does not possess the CTD and a group of BRD4 and BRDT that possesses the CTD. However, some splice variants of BRD4 and BRDT do not have the CTD. BRD2 and BRD3 facilitate RNA Pol II elongation in transcription through their histone chaperone activities that are attributed to the interaction between bromodomains and acetylated chromatin. BRD4 also has a histone chaperone activity. In addition, BRD4 enhances the recruitment of P-TEFb by interacting with the CTD, which causes Ser2 phosphorylation of the RNA Pol II CTM and leads to release of Pol II from a pause in transcription elongation in the promoter-proximal region. Further, BRD4 is associated with distal enhancers that play critical roles in developmental and transcriptional programs. BRDT also recruits P-TEFb interacting with its CTD; however, detailed roles of BRDT in transcription remain to be elucidated. BRDT is a key molecule participating in chromatin remodeling by interacting with hyperacetylated nucleosomes through its bromodomains and plays a pivotal role in the replacement of acetylated histones at the post-meioitic stages during spermatogenesis. To fully elucidate the exact processes of transcriptional regulation by BET family proteins, it is worthwhile to investigate how BET proteins “read and translate” histone modifications in cellular proliferation and differentiation during development and spermatogenesis.

Table 1

Functions of mammalian Bromodomain and Extra-Terminal Domain (BET) proteins. LANA, latent nuclear antigen; KSHV, Kaposi’s sarcoma-associated herpesvirus; INF, interferon; BPV, bovine papillomavirus; HPVs, human papillomaviruses.

BET ProteinFunctionsReferences
BRD2• Promotion of E2F-dependent cell cycle progression in HeLa and HEK293 cells[,]
• Closure of the neural tube in mouse embryos[,]
• Maintenance of the number of GABAergic neurons in the neocortex and the striatum of mice[]
• Assist of transcription in hyperacetylated chromatin (Property of histone-chaperone)[]
• Transcriptional activation of HOXA11and D11 in HEK293 cells[]
• Enhancement of GATA1-mediated erythroid gene activation[]
• Interaction with LANA of KSHV that mediates episomal replication and persistence of viral genomes[,]
BRD3• Assist of transcription in hyperacetylated chromatin (Property of histone-chaperone)[]
• Transcriptional activation of HOXB3, B4, B5, B6, C8, C9, C10, A3, A5, A6, and A7 in HEK293 cells[]
• Enhancement of GATA1-mediated erythroid gene activation[]
• Carcinogenesis induced by BRD3-NUT fusion protein[]
BRD4• Stimulation of G2/M transition in HeLa cells[]
• Cell cycle progression in P19 embryonic carcinoma cells[]
• Maintenance of inner cell mass in mouse blastocysts[]
• Transcriptional activation of Nanog required for maintaining the pluripotency of ES cells[]
• Release from a pause in transcription elongation [,]
• Assist of transcription in hyperacetylated chromatin (Property of histone-chaperone)[]
• Transcriptional activation of c-Myc and Klf4 in NIH3T3 cells[]
• Transcriptional activation of HOXB2, B3, B4, B5, B6, B7, B8, A4, and C5 in HEK293 cells[]
• Transcriptional regulation of genes involved in learning and memory in mice[]
• Enhancement of INF-induced gene transcription[]
• Signal transducer of the cellular response to oxidative stress[]
• Prevention of splicing inhibition in heat stress-induced cells[]
• A gene bookmark for transcriptional reactivation in post-mitotic cells[,]
• Carcinogenesis induced by BRD4-NUT fusion protein[,]
• Interaction with LANA of KSHV that mediates episomal replication and persistence of viral genomes[,]
• Tethering of BPV genome to host mitotic chromosomes[]
• Transcriptional regulation of E2 that mediates episomal maintenance and DNA replication of HPV genome[,,]
BRDT• Transcriptional regulation of genes responsible for meiotic progression during spermatogenesis[]
• Splicing machinery in testicular cells[]
• Chromatin remodeling in MEL, 3T3, and COS7 cells[,,]
• Histone replacement at post-meiotic stages during spermatogenesis[]

Secondly, the review focuses on the pathological functions of BET family proteins. BRD2 and BRD4-S (a BRD4 short variant) interact with the LANA of KSHV, which is required for episomal replication and persistence of viral genomes, through their ET domain. The association of the HPV E2 protein with BRD4 is required to tether the viral genome to host mitotic chromosomes, and BRD4 is essential for E2-mediated transcriptional regulation. The BRD4-NUT fusion protein, which is produced by a gene reconstructed by a chromosomal translocation, activates multiplication related genes by hyperacetylating their chromatin with recruited p300, which causes NUT midline carcinoma (NMC). Treatment of NMC-patient derived cells with JQ1, a potent and selective small-molecule inhibitor of BET proteins, arrests proliferation at the G1 cell-cycle stage and prompts terminal squamous differentiation. Global transcriptional profiling of human multiple myeloma cells treated with JQ1 reveals a strong correlation between the genes downregulated by JQ1 and the genes comprising MYC-dependent transcriptional pathways. Small-molecule BET inhibitors including JQ1 have immediate therapeutic potential for a wide range of malignancies. Although BET inhibitors have a dramatic effect on suppression of tumor growth, there is a possibility that they cause critical damage to normal cell proliferation that is controlled by the MYC-dependent transcriptional pathway and the Wnt signaling pathway. Furthermore, as revealed by the administration of JQ1 to mice, BET inhibitors might have deleterious effects on the transcriptional regulation underlying human learning and memory. Further basic studies should be required to investigate various effects of BET inhibitors. Of many derivatives of BET inhibitors, compounds without harmful effects should be strictly selected. For example, a compound that cannot cross the blood-brain barrier would be available as an anti-cancer drug. To further develop BET inhibitors as anti-cancer drugs towards clinical application, the biological pathway leading BET inhibitor resistance needs to be investigated through a detailed molecular study.

Acknowledgments

Financial support from Tokai University is gratefully acknowledged.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Haynes S.R., Mozer B.A., Bhatia-Dey N., Dawid I.B. The Drosophila fsh locus, a maternal effect homeotic gene, encodes apparent membrane proteins. Dev. Biol. 1989;134:246–257. doi: 10.1016/0012-1606(89)90094-8. [PubMed] [CrossRef] []
2. Beck S., Hanson I., Kelly A., Pappin D.J., Trowsdale J. A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC. DNA Seq. 1992;2:203–210. doi: 10.3109/10425179209020804. [PubMed] [CrossRef] []
3. Lygerou Z., Conesa C., Lesage P., Swanson R.N., Ruet A., Carlson M., Sentenac A., Seraphin B. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucleic Acids Res. 1994;22:5332–5340. doi: 10.1093/nar/22.24.5332. [PMC free article] [PubMed] [CrossRef] []
4. Chua P., Roeder G.S. Bdf1, a yeast chromosomal protein required for sporulation. Mol. Cell. Biol. 1995;15:3685–3696. doi: 10.1128/MCB.15.7.3685. [PMC free article] [PubMed] [CrossRef] []
5. Haynes S.R., Dollard C., Winston F., Beck S., Trowsdale J., Dawid I.B. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992;20:2603. doi: 10.1093/nar/20.10.2603. [PMC free article] [PubMed] [CrossRef] []
6. Ohno S., Wolf U., Atkin N.B. Evolution from fish to mammals by gene duplication. Hereditas. 1968;59:169–187. doi: 10.1111/j.1601-5223.1968.tb02169.x. [PubMed] [CrossRef] []
7. Thorpe K.L., Gorman P., Thomas C., Sheer D., Trowsdale J., Beck S. Chromosomal localization, gene structure and transcription pattern of the ORFX gene, a homologue of the MHC-linked RING3 gene. Gene. 1997;200:177–183. doi: 10.1016/S0378-1119(97)00415-0. [PubMed] [CrossRef] []
8. Dey A., Ellenberg J., Farina A., Coleman A.E., Maruyama T., Sciortino S., Lippincott-Schwartz J., Ozato K. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol. Cell. Biol. 2000;20:6537–6549. [PMC free article] [PubMed] []
9. Jones M.H., Numata M., Shimane M. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics. 1997;45:529–534. doi: 10.1006/geno.1997.5000. [PubMed] [CrossRef] []
10. Shiina T., Ando A., Suto Y., Kasai F., Shigenari A., Takishima N., Kikkawa E., Iwata K., Kuwano Y., Kitamura Y., et al. Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21–q22. Genome Res. 2001;11:789–802. doi: 10.1101/gr.175801. [PMC free article] [PubMed] [CrossRef] []
11. Abi-Rached L., Gilles A., Shiina T., Pontarotti P., Inoko H. Evidence of en bloc duplication in vertebrate genomes. Nat. Genet. 2002;31:100–105. doi: 10.1038/ng855. [PubMed] [CrossRef] []
12. Tamkun J.W., Deuring R., Scott M.P., Kissinger M., Pattatucci A.M., Kaufman T.C., Kennison J.A. Brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992;68:561–572. doi: 10.1016/0092-8674(92)90191-E. [PubMed] [CrossRef] []
13. Brownell J.E., Zhou J., Ranalli T., Kobayashi R., Edmondson D.G., Roth S.Y., Allis C.D. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84:843–851. doi: 10.1016/S0092-8674(00)81063-6. [PubMed] [CrossRef] []
14. Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–959. doi: 10.1016/S0092-8674(00)82001-2. [PubMed] [CrossRef] []
15. Bannister A.J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641–643. doi: 10.1038/384641a0. [PubMed] [CrossRef] []
16. Dhalluin C., Carlson J.E., Zeng L., He C., Aggarwal A.K., Zhou M.M. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–496. [PubMed] []
17. Winston F., Allis C.D. The bromodomain: A chromatin-targeting module? Nat. Struct. Biol. 1999;6:601–604. doi: 10.1038/10640. [PubMed] [CrossRef] []
18. Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature. 2000;403:41–45. doi: 10.1038/47412. [PubMed] [CrossRef] []
19. Dey A., Chitsaz F., Abbasi A., Misteli T., Ozato K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl. Acad. Sci. USA. 2003;100:8758–8763. doi: 10.1073/pnas.1433065100. [PMC free article] [PubMed] [CrossRef] []
20. Kanno T., Kanno Y., Siegel R.M., Jang M.K., Lenardo M.J., Ozato K. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell. 2004;13:33–43. doi: 10.1016/S1097-2765(03)00482-9. [PubMed] [CrossRef] []
21. Jang M.K., Mochizuki K., Zhou M., Jeong H.S., Brady J.N., Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell. 2005;19:523–534. doi: 10.1016/j.molcel.2005.06.027. [PubMed] [CrossRef] []
22. Yang Z., Yik J.H., Chen R., He N., Jang M.K., Ozato K., Zhou Q. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell. 2005;19:535–545. doi: 10.1016/j.molcel.2005.06.029. [PubMed] [CrossRef] []
23. LeRoy G., Rickards B., Flint S.J. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell. 2008;30:51–60. doi: 10.1016/j.molcel.2008.01.018. [PMC free article] [PubMed] [CrossRef] []
24. Liu W., Ma Q., Wong K., Li W., Ohgi K., Zhang J., Aggarwal A.K., Rosenfeld M.G. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell. 2013;155:1581–1595. doi: 10.1016/j.cell.2013.10.056. [PMC free article] [PubMed] [CrossRef] []
25. Kanno T., Kanno Y., LeRoy G., Campos E., Sun H.W., Brooks S.R., Vahedi G., Heightman T.D., Garcia B.A., Reinberg D., et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 2014;21:1047–1057. doi: 10.1038/nsmb.2912. [PMC free article] [PubMed] [CrossRef] []
26. LeRoy G., Chepelev I., DiMaggio P.A., Blanco M.A., Zee B.M., Zhao K., Garcia B.A. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol. 2012;13:R68. doi: 10.1186/gb-2012-13-8-r68. [PMC free article] [PubMed] [CrossRef] []
27. Gaucher J., Boussouar F., Montellier E., Curtet S., Buchou T., Bertrand S., Hery P., Jounier S., Depaux A., Vitte A.L., et al. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J. 2012;31:3809–3820. doi: 10.1038/emboj.2012.233. [PMC free article] [PubMed] [CrossRef] []
28. French C.A., Miyoshi I., Kubonishi I., Grier H.E., Perez-Atayde A.R., Fletcher J.A. BRD4-NUT fusion oncogene: A novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–307. [PubMed] []
29. Alekseyenko A.A., Walsh E.M., Wang X., Grayson A.R., His P.T., Kharchenko P.V., Kuroda M.I., French C.A. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507–1523. doi: 10.1101/gad.267583.115. [PMC free article] [PubMed] [CrossRef] []
30. Filippakopoulos P., Qi J., Picaud S., Shen Y., Smith W.B., Fedorov O., Morse E.M., Keates T., Hickman T.T., Felletar I., et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–1073. doi: 10.1038/nature09504. [PMC free article] [PubMed] [CrossRef] []
31. Delmore J.E., Issa G.C., Lemieux M.E., Rahl P.B., Shi J., Jacobs H.M., Kastritis E., Gilpatrick T., Paranal R.M., Qi J., et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–917. doi: 10.1016/j.cell.2011.08.017. [PMC free article] [PubMed] [CrossRef] []
32. Zuber J., Shi J., Wang E., Rappaport A.R., Herrmann H., Sison E.A., Magoon D., Qi J., Blatt K., Wunderlich M., et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–528. doi: 10.1038/nature10334. [PMC free article] [PubMed] [CrossRef] []
33. Mertz J.A., Conery A.R., Bryant B.M., Sandy P., Balasubramanian S., Mele D.A., Bergeron L., Sims R.J., III Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA. 2011;108:16669–16674. doi: 10.1073/pnas.1108190108. [PMC free article] [PubMed] [CrossRef] []
34. Korb E., Herre M., Zucker-Scharff I., Darnell R.B., Allis C.D. BET protein Brd4 activates transcription in neurons and BET inhibitor JQ1 blocks memory in mice. Nat. Neurosci. 2015;18:1464–1473. doi: 10.1038/nn.4095. [PMC free article] [PubMed] [CrossRef] []
35. Rhee K., Brunori M., Besset V., Trousdale R., Wolgemuth D.J. Expression and potential role of Fsrg1, a murine bromodomain-containing homologue of the Drosophila gene female sterile homeotic. J. Cell Sci. 1998;111:3541–3550. [PubMed] []
36. Taniguchi Y., Matsuzaka Y., Fujimoto H., Miyado K., Kohda A., Okumura K., Kimura M., Inoko H. Nucleotide sequence of the Ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells. Genomics. 1998;51:114–123. doi: 10.1006/geno.1998.5262. [PubMed] [CrossRef] []
37. Zeng L., Zhou M.M. Bromodomain: An acetyl-lysine binding domain. FEBS Lett. 2002;513:124–128. [PubMed] []
38. Wu S.Y., Chiang C.M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 2007;282:13141–13145. doi: 10.1074/jbc.R700001200. [PubMed] [CrossRef] []
39. Rahman S., Sowa M.E., Ottinger M., Smith J.A., Shi Y., Harper J.W., Howley P.M. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 2011;31:2641–2652. doi: 10.1128/MCB.01341-10. [PMC free article] [PubMed] [CrossRef] []
40. Bisgrove D.A., Mahmoudi T., Henklein P., Verdin E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl. Acad. Sci. USA. 2007;104:13690–13695. doi: 10.1073/pnas.0705053104. [PMC free article] [PubMed] [CrossRef] []
41. Schroder S., Cho S., Zeng L., Zhang Q., Kaehlcke K., Mak L., Lau J., Bisgrove D., Schnolzer M., Verdin E., et al. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. J. Biol. Chem. 2012;287:1090–1099. doi: 10.1074/jbc.M111.282855. [PMC free article] [PubMed] [CrossRef] []
42. Itzen F., Greifenberg A.K., Bosken C.A., Geyer M. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res. 2014;42:7577–7590. doi: 10.1093/nar/gku449. [PMC free article] [PubMed] [CrossRef] []
43. Taniguchi Y., Suzuki H., Ohtsuka M., Kikuchi N., Kimura M., Inoko H. Isolation and characterization of three genes paralogous to mouse Ring3. Nucleic Acids Res. Suppl. 2001;1:247–248. doi: 10.1093/nass/1.1.247. [PubMed] [CrossRef] []
44. Shang E., Salazar G., Crowley T.E., Wang X., Lopez R.A., Wang X., Wolgemuth D.J. Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Gene Expr. Patterns. 2004;4:513–519. doi: 10.1016/j.modgep.2004.03.002. [PubMed] [CrossRef] []
45. Denis G.V., Green M.R. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev. 1996;10:261–271. doi: 10.1101/gad.10.3.261. [PubMed] [CrossRef] []
46. Chang Y.L., King B., Lin S.C., Kennison J.A., Huang D.H. A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region. Mol. Cell. Biol. 2007;27:5486–5498. doi: 10.1128/MCB.00692-07. [PMC free article] [PubMed] [CrossRef] []
47. Denis G.V., Vaziri C., Guo N., Faller D.V. RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ. 2000;11:417–424. [PMC free article] [PubMed] []
48. Denis G.V., McComb M.E., Faller D.V., Sinha A., Romesser P.B., Costello C.E. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J. Proteome Res. 2006;5:502–511. doi: 10.1021/pr050430u. [PMC free article] [PubMed] [CrossRef] []
49. Shang E., Wang X., Wen D., Greenberg D.A., Wolgemuth D.J. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev. Dyn. 2009;238:908–917. doi: 10.1002/dvdy.21911. [PMC free article] [PubMed] [CrossRef] []
50. Gyuris A., Donovan D.J., Seymour K.A., Lovasco L.A., Smilowitz N.R., Halperin A.L., Klysik J.E., Freiman R.N. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim. Biophys. Acta. 2009;1789:413–421. doi: 10.1016/j.bbagrm.2009.03.005. [PMC free article] [PubMed] [CrossRef] []
51. Pal D.K., Evgrafov O.V., Tabares P., Zhang F., Durner M., Greenberg D.A. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am. J. Hum. Genet. 2003;73:261–270. doi: 10.1086/377006. [PMC free article] [PubMed] [CrossRef] []
52. Velisek L., Shang E., Veliskova J., Chachua T., Macchiarulo S., Maglakelidze G., Wolgemuth D.J., Greenberg D.A. GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: The role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS ONE. 2011;6:e23656. doi: 10.1371/journal.pone.0023656. [PMC free article] [PubMed] [CrossRef] []
53. Hochreiter B., Garcia A.P., Schmid J.A. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors. 2015;15:26281–26314. doi: 10.3390/s151026281. [PMC free article] [PubMed] [CrossRef] []
54. Siegel R.M., Chan F.K., Zacharias D.A., Swofford R., Holmes K.L., Tsien R.Y., Lenardo M.J. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE. 2000;38 doi: 10.1126/stke.2000.38.pl1. [PubMed] [CrossRef] []
55. Chan F.K., Siegel R.M., Zacharias D., Swofford R., Holmes K.L., Tsien R.Y., Lenardo M.J. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry. 2001;44:361–368. doi: 10.1002/1097-0320(20010801)44:4<361::AID-CYTO1128>3.0.CO;2-3. [PubMed] [CrossRef] []
56. Shah N., Sukumar S. The Hox genes and their roles in oncogenesis. Nat. Rev. Cancer. 2010;10:361–371. doi: 10.1038/nrc2826. [PubMed] [CrossRef] []
57. Taniguchi Y. Hox transcription factors: Modulators of cell–cell and cell-extracellular matrix adhesion. BioMed Res. Int. 2014;2014:591374. doi: 10.1155/2014/591374. [PMC free article] [PubMed] [CrossRef] []
58. Rezsohazy R., Saurin A.J., Maurel-Zaffran C., Graba Y. Cellular and molecular insights into Hox protein action. Development. 2015;142:1212–1227. doi: 10.1242/dev.109785. [PubMed] [CrossRef] []
59. Digan M.E., Haynes S.R., Mozer B.A., Dawid I.B., Forquignon F., Gans M. Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila. Dev. Biol. 1986;114:161–169. doi: 10.1016/0012-1606(86)90392-1. [PubMed] [CrossRef] []
60. Lamonica J.M., Deng W., Kadauke S., Campbell A.E., Gamsjaeger R., Wang H., Cheng Y., Billin A.N., Hardison R.C., Mackay J.P., et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl. Acad. Sci. USA. 2011;108:E159–E168. doi: 10.1073/pnas.1102140108. [PMC free article] [PubMed] [CrossRef] []
61. Gamsjaeger R., Webb S.R., Lamonica J.M., Billin A., Blobel G.A., Mackay J.P. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol. Cell. Biol. 2011;31:2632–2640. doi: 10.1128/MCB.05413-11. [PMC free article] [PubMed] [CrossRef] []
62. Zhang P., Zhang X., Iwama A., Yu C., Smith K.A., Mueller B.U., Narravula S., Torbett B.E., Orkin S.H., Tenen D.G. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96:2641–2648. [PubMed] []
63. Stonestrom A.J., Hsu S.C., Jahn K.S., Huang P., Keller C.A., Giardine B.M., Kadauke S., Campbell A.E., Evans P., Hardison R.C., et al. Functions of BET proteins in erythroid gene expression. Blood. 2015;125:2825–2834. doi: 10.1182/blood-2014-10-607309. [PMC free article] [PubMed] [CrossRef] []
64. Phair R.D., Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature. 2000;404:604–609. [PubMed] []
65. Phair R.D., Misteli T. Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2001;2:898–907. doi: 10.1038/35103000. [PubMed] [CrossRef] []
66. Houzelstein D., Bullock S.L., Lynch D.E., Grigorieva E.F., Wilson V.A., Beddington R.S. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 2002;22:3794–3802. doi: 10.1128/MCB.22.11.3794-3802.2002. [PMC free article] [PubMed] [CrossRef] []
67. Liu W., Stein P., Cheng X., Yang W., Shao N.Y., Morrisey E.E., Schultz R.M., You J. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos. Cell Death Differ. 2014;21:1950–1960. doi: 10.1038/cdd.2014.124. [PMC free article] [PubMed] [CrossRef] []
68. Wada T., Takagi T., Yamaguchi Y., Watanabe D., Handa H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 1998;17:7395–7403. doi: 10.1093/emboj/17.24.7395. [PMC free article] [PubMed] [CrossRef] []
69. Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999;97:41–51. doi: 10.1016/S0092-8674(00)80713-8. [PubMed] [CrossRef] []
70. Yamada T., Yamaguchi Y., Inukai N., Okamoto S., Mura T., Handa H. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell. 2006;21:227–237. doi: 10.1016/j.molcel.2005.11.024. [PubMed] [CrossRef] []
71. Chen R., Yang Z., Zhou Q. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J. Biol. Chem. 2004;279:4153–4160. doi: 10.1074/jbc.M310044200. [PubMed] [CrossRef] []
72. Yik J.H., Chen R., Nishimura R., Jennings J.L., Link A.J., Zhou Q. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell. 2003;12:971–982. doi: 10.1016/S1097-2765(03)00388-5. [PubMed] [CrossRef] []
73. Devaiah B.N., Lewis B.A., Cherman N., Hewitt M.C., Albrecht B.K., Robey P.G., Ozato K., Sims R.J., III, Singer D.S. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc. Natl. Acad. Sci. USA. 2012;109:6927–6932. doi: 10.1073/pnas.1120422109. [PMC free article] [PubMed] [CrossRef] []
74. Angrand P.O., Apiou F., Stewart A.F., Dutrillaux B., Losson R., Chambon P. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics. 2001;74:79–88. doi: 10.1006/geno.2001.6524. [PubMed] [CrossRef] []
75. Chang B., Chen Y., Zhao Y., Bruick R.K. JMJD6 is a histone arginine demethylase. Science. 2007;318:444–447. doi: 10.1126/science.1145801. [PubMed] [CrossRef] []
76. Heintzman N.D., Ren B. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 2009;19:541–549. doi: 10.1016/j.gde.2009.09.006. [PMC free article] [PubMed] [CrossRef] []
77. Patel M.C., Debrosse M., Smith M., Dey A., Huynh W., Sarai N., Heightman T.D., Tamura T., Ozato K. BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol. Cell. Biol. 2013;33:2497–2507. doi: 10.1128/MCB.01180-12. [PMC free article] [PubMed] [CrossRef] []
78. Frey U., Frey S., Schollmeier F., Krug M. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. 1996;490:703–711. doi: 10.1113/jphysiol.1996.sp021179. [PMC free article] [PubMed] [CrossRef] []
79. Messaoudi E., Ying S.W., Kanhema T., Croll S.D., Bramham C.R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 2002;22:7453–7461. [PMC free article] [PubMed] []
80. Antunes M., Biala G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012;13:93–110. doi: 10.1007/s10339-011-0430-z. [PMC free article] [PubMed] [CrossRef] []
81. Biamonti G., Caceres J.F. Cellular stress and RNA splicing. Trends Biochem. Sci. 2009;34:146–153. doi: 10.1016/j.tibs.2008.11.004. [PubMed] [CrossRef] []
82. Hussong M., Borno S.T., Kerick M., Wunderlich A., Franz A., Sultmann H., Timmermann B., Lehrach H., Hirsch-Kauffmann M., Schweiger M.R. The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Dis. 2014;5:e1195. doi: 10.1038/cddis.2014.157. [PMC free article] [PubMed] [CrossRef] []
83. Hussong M., Kaehler C., Kerick M., Grimm C., Franz A., Timmermann B., Welzel F., Isensee J., Hucho T., Krobitsch S., et al. The bromodomain protein BRD4 regulates splicing during heat shock. Nucleic Acids Res. 2016 doi: 10.1093/nar/gkw729. [PMC free article] [PubMed] [CrossRef] []
84. Axelrod D., Koppel D.E., Schlessinger J., Elson E., Webb W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976;16:1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [PMC free article] [PubMed] [CrossRef] []
85. Phair R.D., Scaffidi P., Elbi C., Vecerova J., Dey A., Ozato K., Brown D.T., Hager G., Bustin M., Misteli T. Global nature of dynamic protein-chromatin interactions in vivo: Three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 2004;24:6393–6402. doi: 10.1128/MCB.24.14.6393-6402.2004. [PMC free article] [PubMed] [CrossRef] []
86. Sprague B.L., McNally J.G. FRAP analysis of binding: Proper and fitting. Trends Cell Biol. 2005;15:84–91. doi: 10.1016/j.tcb.2004.12.001. [PubMed] [CrossRef] []
87. Dey A., Nishiyama A., Karpova T., McNally J., Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell. 2009;20:4899–4909. doi: 10.1091/mbc.E09-05-0380. [PMC free article] [PubMed] [CrossRef] []
88. Michelotti E.F., Sanford S., Levens D. Marking of active genes on mitotic chromosomes. Nature. 1997;388:895–899. doi: 10.1038/42282. [PubMed] [CrossRef] []
89. Zhao R., Nakamura T., Fu Y., Lazar Z., Spector D.L. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat. Cell Biol. 2011;13:1295–1304. doi: 10.1038/ncb2341. [PMC free article] [PubMed] [CrossRef] []
90. Janicki S.M., Tsukamoto T., Salghetti S.E., Tansey W.P., Sachidanandam R., Prasanth K.V., Ried T., Shav-Tal Y., Bertrand E., Singer R.H., et al. From silencing to gene expression: Real-time analysis in single cells. Cell. 2004;116:683–698. doi: 10.1016/S0092-8674(04)00171-0. [PMC free article] [PubMed] [CrossRef] []
91. Kumaran R.I., Spector D.L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 2008;180:51–65. doi: 10.1083/jcb.200706060. [PMC free article] [PubMed] [CrossRef] []
92. Shang E., Nickerson H.D., Wen D., Wang X., Wolgemuth D.J. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development. 2007;134:3507–3515. doi: 10.1242/dev.004481. [PubMed] [CrossRef] []
93. Liu D., Matzuk M.M., Sung W.K., Guo Q., Wang P., Wolgemuth D.J. Cyclin A1 is required for meiosis in the male mouse. Nat. Genet. 1998;20:377–380. [PubMed] []
94. Nickerson H.D., Joshi A., Wolgemuth D.J. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev. Biol. 2007;306:725–735. doi: 10.1016/j.ydbio.2007.04.009. [PMC free article] [PubMed] [CrossRef] []
95. Dhar S., Thota A., Rao M.R. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J. Biol. Chem. 2012;287:6387–6405. doi: 10.1074/jbc.M111.288167. [PMC free article] [PubMed] [CrossRef] []
96. Berkovits B.D., Wang L., Guarnieri P., Wolgemuth D.J. The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3′-UTR truncation in round spermatids. Nucleic Acids Res. 2012;40:7162–7175. doi: 10.1093/nar/gks342. [PMC free article] [PubMed] [CrossRef] []
97. Wang L., Wolgemuth D.J. BET protein BRDT complexes with HDAC1, PRMT5, and TRIM28 and functions in transcriptional repression during spermatogenesis. J. Cell. Biochem. 2016;117:1429–1438. doi: 10.1002/jcb.25433. [PMC free article] [PubMed] [CrossRef] []
98. Pivot-Pajot C., Caron C., Govin J., Vion A., Rousseaux S., Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell. Biol. 2003;23:5354–5365. doi: 10.1128/MCB.23.15.5354-5365.2003. [PMC free article] [PubMed] [CrossRef] []
99. Pierce M.M., Raman C.S., Nall B.T. Isothermal titration calorimetry of protein–protein interactions. Methods. 1999;19:213–221. doi: 10.1006/meth.1999.0852. [PubMed] [CrossRef] []
100. Moriniere J., Rousseaux S., Steuerwald U., Soler-Lopez M., Curtet S., Vitte A.L., Govin J., Gaucher J., Sadoul K., Hart D.J., et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature. 2009;461:664–668. doi: 10.1038/nature08397. [PubMed] [CrossRef] []
101. Sasaki K., Ito T., Nishino N., Khochbin S., Yoshida M. Real-time imaging of histone H4 hyperacetylation in living cells. Proc. Natl. Acad. Sci. USA. 2009;106:16257–16262. doi: 10.1073/pnas.0902150106. [PMC free article] [PubMed] [CrossRef] []
102. Rathke C., Baarends W.M., Awe S., Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta. 2014;1839:155–168. doi: 10.1016/j.bbagrm.2013.08.004. [PubMed] [CrossRef] []
103. Meistrich M.L., Trostle-Weige P.K., Lin R., Bhatnagar Y.M., Allis C.D. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol. Reprod. Dev. 1992;31:170–181. doi: 10.1002/mrd.1080310303. [PubMed] [CrossRef] []
104. French C.A., Miyoshi I., Aster J.C., Kubonishi I., Kroll T.G., Dal Cin P., Vargas S.O., Perez-Atayde A.R., Fletcher J.A. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19) Am. J. Pathol. 2001;159:1987–1992. doi: 10.1016/S0002-9440(10)63049-0. [PMC free article] [PubMed] [CrossRef] []
105. Ball A., Bromley A., Glaze S., French C.A., Ghatage P., Kobel M. A rare case of NUT midline carcinoma. Gynecol. Oncol. Case Rep. 2012;3:1–3. doi: 10.1016/j.gynor.2012.09.004. [PMC free article] [PubMed] [CrossRef] []
106. French C.A., Ramirez C.L., Kolmakova J., Hickman T.T., Cameron M.J., Thyne M.E., Kutok J.L., Toretsky J.A., Tadavarthy A.K., Kees U.R., et al. BRD-NUT oncoproteins: A family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27:2237–2242. doi: 10.1038/sj.onc.1210852. [PubMed] [CrossRef] []
107. Haruki N., Kawaguchi K.S., Eichenberger S., Massion P.P., Gonzalez A., Gazdar A.F., Minna J.D., Carbone D.P., Dang T.P. Cloned fusion product from a rare t(15;19)(q13.2;p13.1) inhibit S phase in vitro. J. Med. Genet. 2005;42:558–564. doi: 10.1136/jmg.2004.029686. [PMC free article] [PubMed] [CrossRef] []
108. Yan J., Diaz J., Jiao J., Wang R., You J. Perturbation of BRD4 protein function by BRD4-NUT protein abrogates cellular differentiation in NUT midline carcinoma. J. Biol. Chem. 2011;286:27663–27675. doi: 10.1074/jbc.M111.246975. [PMC free article] [PubMed] [CrossRef] []
109. Reynoird N., Schwartz B.E., Delvecchio M., Sadoul K., Meyers D., Mukherjee C., Caron C., Kimura H., Rousseaux S., Cole P.A., et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J. 2010;29:2943–2952. doi: 10.1038/emboj.2010.176. [PMC free article] [PubMed] [CrossRef] []
110. Alekseyenko A.A., Gorchakov A.A., Kharchenko P.V., Kuroda M.I. Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc. Natl. Acad. Sci. USA. 2014;111:2488–2493. doi: 10.1073/pnas.1400648111. [PMC free article] [PubMed] [CrossRef] []
111. Ballestas M.E., Chatis P.A., Kaye K.M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 1999;284:641–644. doi: 10.1126/science.284.5414.641. [PubMed] [CrossRef] []
112. Platt G.M., Simpson G.R., Mittnacht S., Schulz T.F. Latent nuclear antigen of Kaposi’s sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J. Virol. 1999;73:9789–9795. [PMC free article] [PubMed] []
113. Viejo-Borbolla A., Ottinger M., Bruning E., Burger A., Konig R., Kati E., Sheldon J.A., Schulz T.F. Brd2/RING3 interacts with a chromatin-binding domain in the Kaposi’s Sarcoma-associated herpesvirus latency-associated nuclear antigen 1 (LANA-1) that is required for multiple functions of LANA-1. J. Virol. 2005;79:13618–13629. doi: 10.1128/JVI.79.21.13618-13629.2005. [PMC free article] [PubMed] [CrossRef] []
114. You J., Srinivasan V., Denis G.V., Harrington W.J., Jr., Ballestas M.E., Kaye K.M., Howley P.M. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J. Virol. 2006;80:8909–8919. doi: 10.1128/JVI.00502-06. [PMC free article] [PubMed] [CrossRef] []
115. Ottinger M., Christalla T., Nathan K., Brinkmann M.M., Viejo-Borbolla A., Schulz T.F. Kaposi’s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J. Virol. 2006;80:10772–10786. doi: 10.1128/JVI.00804-06. [PMC free article] [PubMed] [CrossRef] []
116. Bastien N., McBride A.A. Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology. 2000;270:124–134. [PubMed] []
117. Howley P.M., Lowy D.R. Papillomaviruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. p. 2197. []
118. Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–1136. doi: 10.1016/0092-8674(90)90409-8. [PubMed] [CrossRef] []
119. Schwarz E., Freese U.K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114. doi: 10.1038/314111a0. [PubMed] [CrossRef] []
120. Thierry F., Howley P.M. Functional analysis of E2-mediated repression of the HPV18 P105 promoter. New Biol. 1991;3:90–100. [PubMed] []
121. You J., Croyle J.L., Nishimura A., Ozato K., Howley P.M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell. 2004;117:349–360. doi: 10.1016/S0092-8674(04)00402-7. [PubMed] [CrossRef] []
122. Wu S.Y., Lee A.Y., Hou S.Y., Kemper J.K., Erdjument-Bromage H., Tempst P., Chiang C.M. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev. 2006;20:2383–2396. doi: 10.1101/gad.1448206. [PMC free article] [PubMed] [CrossRef] []
123. Smith J.A., White E.A., Sowa M.E., Powell M.L., Ottinger M., Harper J.W., Howley P.M. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc. Natl. Acad. Sci. USA. 2010;107:3752–3757. doi: 10.1073/pnas.0914818107. [PMC free article] [PubMed] [CrossRef] []
124. Schweiger M.R., You J., Howley P.M. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J. Virol. 2006;80:4276–4285. doi: 10.1128/JVI.80.9.4276-4285.2006. [PMC free article] [PubMed] [CrossRef] []
125. McPhillips M.G., Oliveira J.G., Spindler J.E., Mitra R., McBride A.A. Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J. Virol. 2006;80:9530–9543. doi: 10.1128/JVI.01105-06. [PMC free article] [PubMed] [CrossRef] []
126. Helfer C.M., Yan J., You J. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses. 2014;6:3228–3249. doi: 10.3390/v6083228. [PMC free article] [PubMed] [CrossRef] []
127. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. [PMC free article] [PubMed] [CrossRef] []
128. Dawson M.A., Prinjha R.K., Dittmann A., Giotopoulos G., Bantscheff M., Chan W.I., Robson S.C., Chung C.W., Hopf C., Savitski M.M., et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–533. doi: 10.1038/nature10509. [PMC free article] [PubMed] [CrossRef] []
129. Henssen A., Thor T., Odersky A., Heukamp L., El-Hindy N., Beckers A., Speleman F., Althoff K., Schafers S., Schramm A., et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget. 2013;4:2080–2095. doi: 10.18632/oncotarget.1534. [PMC free article] [PubMed] [CrossRef] []
130. Puissant A., Frumm S.M., Alexe G., Bassil C.F., Qi J., Chanthery Y.H., Nekritz E.A., Zeid R., Gustafson W.C., Greninger P., et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3:308–323. doi: 10.1158/2159-8290.CD-12-0418. [PMC free article] [PubMed] [CrossRef] []
131. Asangani I.A., Dommeti V.L., Wang X., Malik R., Cieslik M., Yang R., Escara-Wilke J., Wilder-Romans K., Dhanireddy S., Engelke C., et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–282. doi: 10.1038/nature13229. [PMC free article] [PubMed] [CrossRef] []
132. Jacques C., Lamoureux F., Baud’huin M., Rodriguez Calleja L., Quillard T., Amiaud J., Tirode F., Redini F., Bradner J.E., Heymann D., et al. Targeting the epigenetic readers in Ewing sarcoma inhibits the oncogenic transcription factor EWS/Fli1. Oncotarget. 2016;7:24125–24140. doi: 10.18632/oncotarget.8214. [PMC free article] [PubMed] [CrossRef] []
133. Togel L., Nightingale R., Chueh A.C., Jayachandran A., Tran H., Phesse T., Wu R., Sieber O.M., Arango D., Dhillon A.S., et al. Dual targeting of bromodomain and extraterminal domain proteins, and WNT or MAPK signaling, inhibits c-MYC expression and proliferation of colorectal cancer cells. Mol. Cancer Ther. 2016;15:1217–1226. doi: 10.1158/1535-7163.MCT-15-0724. [PubMed] [CrossRef] []
134. Scott A.R. Chemical probes: A shared toolbox. Nature. 2016;533:S60–S61. doi: 10.1038/533S60a. [PubMed] [CrossRef] []
135. Fong C.Y., Gilan O., Lam E.Y., Rubin A.F., Ftouni S., Tyler D., Stanley K., Sinha D., Yeh P., Morison J., et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538–542. doi: 10.1038/nature14888. [PMC free article] [PubMed] [CrossRef] []
136. Rathert P., Roth M., Neumann T., Muerdter F., Roe J.S., Muhar M., Deswal S., Cerny-Reiterer S., Peter B., Jude J., et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525:543–547. doi: 10.1038/nature14898. [PMC free article] [PubMed] [CrossRef] []
137. Marcotte R., Sayad A., Brown K.R., Sanchez-Garcia F., Reimand J., Haider M., Virtanen C., Bradner J.E., Bader G.D., Mills G.B., et al. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164:293–309. doi: 10.1016/j.cell.2015.11.062. [PMC free article] [PubMed] [CrossRef] []
138. Matzuk M.M., McKeown M.R., Filippakopoulos P., Li Q., Ma L., Agno J.E., Lemieux M.E., Picaud S., Yu R.N., Qi J., et al. Small-molecule inhibition of BRDT for male contraception. Cell. 2012;150:673–684. doi: 10.1016/j.cell.2012.06.045. [PMC free article] [PubMed] [CrossRef] []

Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)