这是用户在 2024-3-18 10:49 为 https://pubs.acs.org/doi/full/10.1021/acs.estlett.4c00155 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
How Do Metal Oxides Mislead Spin-Trapping Electron Paramagnetic Resonance Analysis?
金属氧化物如何误导自旋捕获电子顺磁共振分析?
 我的活动出版物
CONTENT TYPES

Figure 1Loading Img
RETURN TO ARTICLES ASAPPREVPhysico-Chemical Tre...Physico-Chemical Treatment and Resource RecoveryNEXT
返回文章 ASAPPREV 物理化学 Tre...下一个

How Do Metal Oxides Mislead Spin-Trapping Electron Paramagnetic Resonance Analysis?
金属氧化物如何误导自旋捕获电子顺磁共振分析?
IF 10.9SCIEJCI 1.42Q1环境科学与生态学2区

  • Jing-Hang Wu 吴静航
    Jing-Hang Wu
    CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
    More by Jing-Hang Wu
  •  and 
  • Han-Qing Yu* 于寒青*
    Han-Qing Yu 俞寒青
    CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
    中国科学技术大学环境科学与工程系, 中国科学院城市污染物转化重点实验室, 安徽 合肥230026
    *Email: hqyu@ustc.edu.cn *电子邮件:hqyu@ustc.edu.cn
    More by Han-Qing Yu 更多Han-Qing Yu的产品
Cite this: Environ. Sci. Technol. Lett. 2024, XXXX, XXX, XXX-XXX
引用: Environ.Sci. Technol. Lett.2024, XXXX, XXX, XXX-XXX
Publication Date (Web):March 14, 2024
出版日期 :2024年3月14日
https://doi.org/10.1021/acs.estlett.4c00155
© 2024 American Chemical Society
© 2024 美国化学学会
  • Subscribed

Article Views 文章浏览量

16

Altmetric

3

Citations 引文

-
PDF (3 MB)  PDF格式 (3 MB)
Supporting Info (1)» 配套信息 (1)»
SUBJECTS: 科目:

Abstract 抽象

Limited by the detection techniques, the reactive species involved in catalytic water purification processes are difficult to be clarified. Spin-trapping electron paramagnetic resonance (EPR) analysis is recognized as a reliable tool for radical identification, in which 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) is usually used as the radical trapper. However, it is questioned that the detection of adducts of DMPO definitively indicates the generation of radicals. In this work, the DMPO transformation caused by transition metal oxides is monitored by EPR, and abundant spin signals are observed. MnO2, Mn2O3, and NiO could oxidize DMPO into DMPOX through direct oxygen transfer. Besides, the dissolved transition metal ions could transform DMPO into misleading DMPO–OH and DMPO–R. The findings in this work, e.g., the interactions between DMPO and different metal oxides and the quenching behavior of the different pathways, would help with reliable identifications of reactive species in both engineered systems and natural environments.
受制于检测技术,催化水净化过程中涉及的反应性物质难以明确。自旋捕获电子顺磁共振(EPR)分析被认为是自由基鉴定的可靠工具,其中5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)通常用作自由基捕获器。然而,对DMPO加合物的检测明确表明自由基的产生受到质疑。本文通过EPR监测过渡金属氧化物引起的DMPO转变,并观察到丰富的自旋信号。MnO 2 、MnO 2 3 和NiO可以通过直接的氧转移将DMPO氧化成DMPO。此外,溶解的过渡金属离子可以将DMPO转化为误导性的DMPO-OH和DMPO-R。这项工作的发现,例如DMPO与不同金属氧化物之间的相互作用以及不同途径的淬灭行为,将有助于可靠地鉴定工程系统和自然环境中的反应性物质。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据机构订阅条款获得许可。请求重用权限。

Introduction 介绍

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

Oxidative radicals play pivotal roles in various environmental processes, including geochemical cycles and the natural degradation of pollutants. (1,2) This significance is further underscored by their increasing utilization in engineered catalytic oxidation processes for water treatment. (3,4) Conventional techniques for detecting these transient, highly reactive radicals include (i) probes, (ii) quenching experiments, and (iii) spin-trapping electron paramagnetic resonance (EPR) analysis. (5,6) However, as the recognition of oxidative species broadens, the selectivity and dependability of both radical probes and quenching experiments have been extensively questioned. (7−9) For instance, false positives have been observed in the spin-trapping processes for identifying singlet oxygen (1O2), which could be distinguished by in situ kinetic EPR analysis. (10) Nevertheless, when identifying radicals, typically using 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a trapper, a comprehensive understanding of potential false positives has not yet been completely achieved.
氧化自由基在各种环境过程中起着举足轻重的作用,包括地球化学循环和污染物的自然降解。(1,2)它们在工程催化氧化工艺中越来越多地用于水处理,进一步强调了这一重要性。(3,4)检测这些瞬态高反应性自由基的常规技术包括(i)探针,(ii)淬灭实验和(iii)自旋捕获电子顺磁共振(EPR)分析。(5,6) 然而,随着对氧化物质的识别范围的扩大,自由基探针和淬灭实验的选择性和可靠性受到广泛质疑。(7−9) 例如,在识别单线态氧 ( 1 O 2 ) 的自旋捕获过程中观察到假阳性,这可以通过原位动力学 EPR 分析来区分。(10)然而,在识别自由基时,通常使用5-二甲基-1-吡咯啉-N-氧化物(DMPO)作为捕获器,尚未完全实现对潜在假阳性的全面了解。
DMPO-radical adducts are reported to produce characteristic EPR signals that facilitate the sensitive identification of radicals from EPR spectra. (11) However, a false DMPO–OH signal has been demonstrated to be originated from direct oxidation in electrocatalytic process. (12) In addition, the DMPO–OH formation caused by the nucleophilic dosing of water to DMPO has been observed in the presence of transition metal ions such as Cu2+ and Fe3+. (13,14) These ions are well-known for catalyzing the oxidation of organic compounds by peroxides, leading to Fenton and Fenton-like reactions. (15−18) Consequently, as transition metal-based heterogeneous catalysts are developed for radical-dominant catalytic oxidation processes, (19−21) the possibility of nonradical transformations of DMPO warrants investigations. Given the tendency of metal ions to dissolve into aqueous environments from solid phases, (22,23) we propose that nanomaterials containing transition metals could be significant sources of unrecognized false-positive EPR signals in radical identification. If confirmed, the current understanding of catalytic oxidation mechanisms might be partially misled.
据报道,DMPO 自由基加合物可产生特征性 EPR 信号,有助于从 EPR 谱图中灵敏地鉴定自由基。(11) 然而,错误的 DMPO-OH 信号已被证明是源于电催化过程中的直接氧化。(12)此外,在Cu 2+ 和Fe等过渡金属离子存在下,还观察到水对DMPO的亲核加量引起的DMPO-OH形成 3+ 。(13,14) 众所周知,这些离子通过过氧化物催化有机化合物的氧化,导致芬顿和芬顿样反应。(15−18)因此,随着过渡金属基非均相催化剂被开发用于自由基主导的催化氧化过程,(19−21)DMPO非自由基转化的可能性值得研究。鉴于金属离子从固相溶解到水环境中的趋势,(22,23)我们提出,含有过渡金属的纳米材料可能是自由基鉴定中未识别的假阳性EPR信号的重要来源。如果得到证实,目前对催化氧化机制的理解可能会被部分误导。
In this work, we examined the EPR response of DMPO in the suspensions of different commercially available nanosized metal oxides (MOs). Herein, we uncovered two distinct pathways of DMPO transformations, i.e., on the surface and in the solution, and revealed the effects of solution conditions and quenching strategies on these unexpected DMPO transformations. Our findings highlighted the urgent need to recognize transition metal species as potential contributors to spin-trapping signals in EPR studies, thereby necessitating methodology refinements in exploring catalytic oxidation system mechanisms.
在这项工作中,我们研究了DMPO在不同市售纳米金属氧化物(MOs)悬浮液中的EPR响应。本文揭示了DMPO转化的两种不同途径,即表面和溶液中,并揭示了溶液条件和淬灭策略对这些意想不到的DMPO转化的影响。我们的研究结果强调了迫切需要在EPR研究中认识到过渡金属物种是自旋捕获信号的潜在贡献者,因此有必要在探索催化氧化系统机制时改进方法。

Methods and Materials 方法和材料

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

Materials 材料

All reagents, including buffers, MOs (i.e., MnO2, Mn2O3, MnO, Fe2O3, Fe3O4, NiO, CuO, Cu2O, and Co3O4), alcohols, and other organics used in this work, were purchased from Aladdin Reagent Co., China. The spin trapper DMPO was purchased from DOJINDO Molecular Technologies, Inc., China.
所有试剂,包括缓冲液、MO(即 MnO 2 、Mn 2 O 3 、MnO、Fe 2 3 O、Fe 3 O 4 、NiO、CuO、Cu 2 O 和 Co 3 O 4 )、醇和本工作中使用的其他有机物,均购自中国阿拉丁试剂有限公司。自旋捕集器DMPO购自中国DOJINDO Molecular Technologies, Inc.。

Experimental Procedures 实验程序

To explore the transformation of DMPO in the presence of various MOs, we directly measured the EPR responses of their mixtures. The MOs were suspended in different solutions with or without organic quenchers. After ultrasonic dispersion, the MO suspension was mixed with the DMPO solution in a 2 mL vial and immediately transferred into an EPR capillary tube (1 mm inner diameter). This tube was immediately placed into the cavity of an EPR spectrometer for spectra acquisition. To obtain MO-free filtrates, the suspensions were filtered using a 0.22-μm polytetrafluoroethylene syringe filter.
为了探索DMPO在各种MO存在下的转变,我们直接测量了其混合物的EPR响应。将MO悬浮在含有或不含有机淬灭剂的不同溶液中。超声分散后,将MO悬浮液与DMPO溶液混合在2 mL小瓶中,并立即转移到EPR毛细管(内径1 mm)中。该试管立即放入EPR光谱仪的腔中进行光谱采集。为了获得无MO滤液,使用0.22μm聚四氟乙烯针头过滤器过滤悬浮液。

EPR Analysis 生产者责任延伸分析

The EPR spectra were acquired by an EPR spectrometer (EMX Plus, Bruker Co., Germany). The modulation amplitude, microwave power, and microwave frequency were set at 2.0 G, 2.0 mW, and 9.8422 GHz, respectively. Spectral simulations were performed in Matlab 2022b (Mathworks) with an Easyspin 5.2.35 toolkit (Text S2). (24)
EPR光谱由EPR光谱仪(EMX Plus,Bruker Co.,Germany)获取。调制幅度、微波功率和微波频率分别设定为2.0 G、2.0 mW和9.8422 GHz。在 Matlab 2022b (Mathworks) 中使用 Easyspin 5.2.35 工具包(文本 S2)进行频谱模拟。(24)

Results and Discussion 结果与讨论

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

Reactions between DMPO and MOs
DMPO和MO之间的反应

Oxidants commonly used in catalytic systems, such as peroxymonosulfate (PMS), peroxydisulfate (PDS), and peracetic acid (PAA), were found to affect the solution pH (Table S1), thus potentially promoting metal dissolution. To examine the radical-independent transformation of DMPO in the presence of metal oxide MOs in actual catalytic systems, we acquired the EPR spectra both at pH 7.0 and at pH 3.0 (Figure 1a). The results reveal a pronounced effect of aqueous acidity on the DMPO transformation, raising concerns that misleading EPR signals might predominantly occur in such acidic systems.
催化体系中常用的氧化剂,如过氧单硫酸盐(PMS)、过氧二硫酸盐(PDS)和过氧乙酸(PAA),被发现会影响溶液的pH值(表S1),从而可能促进金属溶解。为了研究在实际催化系统中金属氧化物MO存在下DMPO的自由基非依赖性转变,我们获得了pH 7.0和pH 3.0下的EPR谱图(图1a)。结果揭示了水性酸度对DMPO转化的显着影响,这引起了人们的担忧,即误导性的EPR信号可能主要发生在这种酸性系统中。

Figure 1 图1

Figure 1. (a) EPR spectra of DMPO-trapping products in the MO suspensions and the corresponding filtrates. (b) Two pathways for DMPO transformation. (c) The effects of different buffers on the DMPO-trapping products in the presence of MOs. (d) The experimental and simulated EPR spectra of DMPO in the presence of copper oxides (i.e., CuO and Cu2O). (e) First-order mass spectra (inner) and second-order mass spectra for product identification of DMPO–R using LC-MS/MS analysis. Conditions: [DMPO] = 100 mM, [metal oxides] = 1 g·L–1, [buffers] = 10 mM. “Blank” denotes samples solely containing MO and DMPO.
图 1.(a) MO悬浮液和相应滤液中DMPO捕获产物的EPR谱图。(b) DMPO转化的两种途径。(c) 在存在MOs的情况下,不同缓冲液对DMPO捕获产物的影响。 (d) DMPO在氧化铜(即CuO和Cu 2 O)存在下的实验和模拟EPR谱图。(e) 使用LC-MS/MS分析对DMPO-R进行产物鉴定的一阶质谱(内部)和二阶质谱。条件:[DMPO]=100 mM,[金属氧化物]=1 g·L –1 ,[缓冲液]=10mM。“空白”表示仅含有 MO 和 DMPO 的样品。

More specifically, MnO2 and Mn2O3 could directly oxidize DMPO to 5,5-dimethyl-1-pyrrolidone-N-oxyl (DMPOX) at low pHs, (25) while NiO-induced DMPOX generation could be feasible at neutral pH but was slightly suppressed as pH increased. Notably, the NiO filtrate could not catalyze the transformation of DMPO into DMPOX, indicating that DMPO oxidation relied on the MO surfaces. Conversely, suspensions of Fe2O3, Fe3O4, CuO, and Cu2O exhibited similar behaviors on DMPO transformation with the corresponding filtrates, mainly generating DMPO–OH and DMPO–R (addition product of DMPO by carbon-centered radical). (26) Therefore, their formations were mediated by dissolved metal ions.
更具体地说,MnO 2 和 Mn 2 O 3 可以在低 pH 值下直接将 DMPO 氧化为 5,5-二甲基-1-吡咯烷酮-N-氧基 (DMPOX) (25),而 NiO 诱导的 DMPOX 生成在中性 pH 值下是可行的,但随着 pH 值的增加而略微抑制。值得注意的是,NiO滤液不能催化DMPO转化为DMPO,表明DMPO氧化依赖于MO表面。相反,Fe 2 O 3 、Fe 3 O 4 、CuO和Cu 2 O的悬浮液在DMPO转化过程中表现出相似的行为,主要生成DMPO-OH和DMPO-R(碳心自由基对DMPO的加成产物)。(26)因此,它们的形成是由溶解的金属离子介导的。
Subsequently, distinct transformation pathways of DMPO in the presence of MOs were identified (Figure 1b). Pathway I involved the direct oxidation of DMPO into DMPOX via an oxygen atom transfer mechanism. Such a DMPOX generation has been previously attributed to 1O2, excess HO, and high-valent metal species. (27−30) However, the direct DMPO transformation without oxidant on the MO surfaces has received little attention. (31,32) Moreover, the direct oxygen transfer process on the MO surfaces might be the initial step of the catalytic cycle for oxidative metal species-dominated oxidation of organic pollutants. Pathway II enabled MOs to transform DMPO into EPR-active adducts through dissolved metal ions, which could also contribute to the homogeneous catalytic oxidation processes. Interestingly, in CuO suspensions, the coexistence of these two pathways was observed. At neutral pH, DMPO was directly oxidized, while at a lower pH (<3.0), an increase in dissolved Cu2+ dominated the DMPO transformation to DMPO–OH and DMPO–R. Moreover, after dosing the metal ions at the detected concentration, we facilitated the reoccurrence of the EPR signals (Figure S1), demonstrating that Pathway II was mediated by the dissolved metal ions.
随后,确定了存在MO的DMPO的不同转化途径(图1b)。途径 I 涉及通过氧原子转移机制将 DMPO 直接氧化为 DMPOX。这种DMPOX的产生以前被归因于 1 O 2 、过量的 HO和高价金属物种。(27−30)然而,在MO表面不使用氧化剂的直接DMPO转化很少受到关注。(31,32) 此外,MO表面的直接氧转移过程可能是氧化金属物种主导的有机污染物氧化催化循环的第一步。通路II使MOs能够通过溶解的金属离子将DMPO转化为EPR活性加合物,这也有助于均匀的催化氧化过程。有趣的是,在CuO悬浮液中,观察到这两种途径的共存。在中性pH值下,DMPO被直接氧化,而在较低的pH值(<3.0)下,溶解Cu的增加 2+ 主导了DMPO向DMPO-OH和DMPO-R的转化。此外,在以检测到的浓度加药金属离子后,我们促进了 EPR 信号的再次出现(图 S1),表明通路 II 是由溶解的金属离子介导的。

Effects of Buffer and pH on DMPO Transformation
缓冲液和pH值对DMPO转化的影响

Buffers are frequently utilized to stabilize pH levels in the exploration of catalytic oxidation mechanisms. However, these buffers could interact with the dominate oxidative species or activate the oxidants through different pathways. (33−36) In addition, these buffers could alter the solubility equilibrium of metal ions in MO suspensions, which might further change the transformation pathway of DMPO. Thus, we examined the effects of different buffers, including acetate buffer solution (ABS, pH 4.00), potassium hydrogen phthalate (KHP, pH 4.01), phosphate buffer solution (PBS, pH 6.86), and borate buffer solution (BBS, pH 9.18), on the DMPO-trapping signals (Figure 1c).
缓冲液经常用于稳定催化氧化机制的pH值。然而,这些缓冲液可以与主要氧化物种相互作用或通过不同的途径激活氧化剂。(33−36)此外,这些缓冲液还能改变金属离子在MO悬浮液中的溶解度平衡,从而进一步改变DMPO的转化途径。因此,我们检查了不同缓冲液的影响,包括乙酸盐缓冲溶液(ABS,pH 4.00)、邻苯二甲酸氢钾(KHP,pH 4.01)、磷酸盐缓冲溶液(PBS,pH 6.86)和硼酸盐缓冲溶液(BBS,pH 9.18),对DMPO捕获信号的影响(图1c)。
In high-pH buffers, such as PBS and BBS, the formation of DMPOX on MnO2 and Mn2O3 was completely inhibited. Such a suppression was consistent across acetate- and phosphate-buffered solutions at different pH levels (Figure S3), indicating a pH dependency of the direct oxygen atom transfer reactions. (37) Nevertheless, DMPOX generation on NiO was partially inhibited by PBS and BBS, yet remained unaffected by pH changes from 3.0 to 8.0 within individual buffer systems or an unbuffered system (Figure S4). These results suggest the broader formations for NiO-induced DMPOX generation in spin-trapping EPR analysis, which might be ascribed to the mechanism difference with MnxOy-induced DMPOX generation (Text S6). Also, interactions between the buffers and MOs, rather than pH variations alone, primarily affected DMPOX formation.
在PBS和BBS等高pH缓冲液中,完全抑制了MnO 2 和MnO 2 3 上DMPOX的形成。在不同pH值下,这种抑制在醋酸盐和磷酸盐缓冲溶液中是一致的(图S3),表明直接氧原子转移反应的pH依赖性。(37) 然而,PBS 和 BBS 部分抑制了 NiO 上 DMPOX 的产生,但不受单个缓冲系统或无缓冲系统中 pH 值从 3.0 到 8.0 变化的影响(图 S4)。这些结果表明,在自旋捕获 EPR 分析中,NiO 诱导的 DMPOX 生成的形成范围更广,这可能归因于与 Mn x O y 诱导的 DMPOX 生成的机制差异(文本 S6)。此外,缓冲液和 MO 之间的相互作用,而不是单独的 pH 值变化,主要影响了 DMPOX 的形成。
Furthermore, the buffer conditions greatly changed both the release of Cu species and their complexation states, consequently affecting the signals observed upon dosing DMPO. (38) Notably, BBS effectively suppressed EPR signals in the CuO/DMPO system while exhibiting minimal effect on DMPO adducts in the Cu2O/DMPO system. These results indicate that the observed effects of BBS were primarily governed by pH change rather than by masking the dissolved Cu2+. In the presence of MOs, phosphate buffer largely affected the transformation of DMPO. When the pH values in different buffer systems, such as acetate and phosphate buffers, were varied, the pH change caused different influences on EPR signals (Figure S3). These results suggest the significant role of phosphate complexation in modulating the interaction between DMPO and Cu2+.
此外,缓冲条件极大地改变了Cu物质的释放及其络合状态,从而影响了DMPO加药时观察到的信号。(38)值得注意的是,BBS有效抑制了CuO/DMPO体系中的EPR信号,而对Cu 2 O/DMPO体系中的DMPO加合物的影响最小。这些结果表明,观察到的BBS效应主要受pH值变化的控制,而不是通过掩盖溶解的Cu 2+ 。在MOs存在下,磷酸盐缓冲液对DMPO的转化有很大影响。当不同缓冲液体系(如醋酸盐和磷酸盐缓冲液)的pH值发生变化时,pH值变化对EPR信号的影响不同(图S3)。这些结果表明,磷酸盐络合在调节DMPO和Cu之间的相互作用中起着重要作用 2+
The effects of buffers on the DMPO transformation in suspensions of MnO, Fe2O3, Fe3O4, or Co3O4 were relatively insignificant. However, the presence of phosphate efficiently reduced the concentration of free Mn2+, (39) thus weakening its strong EPR signal while enhancing the DMPO–R signal. In acetate-buffered systems, a decrease in the pH level led to more dissolution of Co species, resulting in an increased DMPO–R signal. These findings reveal that buffer selection could greatly affect the results of spin-trapping experiments by affecting the DMPO transformation via altering metal ion solubility and interaction pathways. Also, pH control played a crucial role in modulating metal ion release and complexation, altering the formation of DMPO–OH and DMPO–R. To elucidate the catalytic mechanisms in buffered systems or other more complex matrices more accurately, the baseline spin-trapping signal should be taken into consideration in the EPR analysis.
缓冲液对MnO、Fe 2 O 3 、Fe 3 O 4 或Co 3 O 4 悬浮液DMPO转化的影响相对较小。然而,磷酸盐的存在有效地降低了游离Mn 2+ 的浓度(39),从而削弱了其强大的EPR信号,同时增强了DMPO-R信号。在醋酸盐缓冲系统中,pH值的降低导致Co物种的更多溶解,从而导致DMPO-R信号增加。这些发现表明,缓冲液的选择可以通过改变金属离子溶解度和相互作用途径来影响DMPO转化,从而极大地影响自旋捕获实验的结果。此外,pH控制在调节金属离子释放和络合方面起着至关重要的作用,改变了DMPO-OH和DMPO-R的形成。为了更准确地阐明缓冲系统或其他更复杂基质中的催化机制,在EPR分析中应考虑基线自旋捕获信号。

Identification of DMPO–R DMPO-R的鉴定

In the systems containing MOs and DMPO only, the DMPO–R signal was detected. In previous studies, such DMPO–R signals were attributed to the degradation of DMPO–OH through ion-mediated pathways involving ions such as Cu2+ or Fe3+. (13) However, the results of the detailed EPR analysis indicate the potential for DMPO–R to be the exclusive spin-trapping product in certain systems without the simultaneous presence of a DMPO–OH signal (Figure S3). Thus, DMPO–R might be generated before the formation of DMPO–OH, rather than as the degradation product of DMPO–OH.
在仅包含MO和DMPO的系统中,检测到DMPO-R信号。在以前的研究中,这种 DMPO-R 信号归因于 DMPO-OH 通过涉及 Cu 2+ 或 Fe 等离子的离子介导的途径降解 3+ 。(13) 然而,详细的 EPR 分析结果表明,DMPO-R 有可能成为某些系统中的独家自旋捕获产物,而不会同时存在 DMPO-OH 信号(图 S3)。因此,DMPO-R可能在DMPO-OH形成之前产生,而不是作为DMPO-OH的降解产物。
The EPR spectra obtained in the CuO/DMPO and Cu2O/DMPO systems were successfully simulated as a sum of DMPO–OH and DMPO–R signals (Figure 1d). The dominant component was simulated with AN = 14.78 G and AH = 14.78 G and assigned to the DMPO–OH adduct. Another component, simulated with AN = 15.48 G and AH = 22.53 G, was assigned to a DMPO adduct with a C-centric radical (Tables S2 and S3). These systems were specifically chosen for determining the chemical formula of the DMPO–R adduct. Subsequent LC-MS/MS analysis shows an ion of m/z 226.16 corresponding in mass to the DMPO dimer (C12H22N2O2•+, theoretical mass = 226.17), which was identified at a retention time of 6.48 min in both the CuO/DMPO and the Cu2O/DMPO systems. This finding suggests that the prevalent DMPO–R formation in DMPO/MO systems could be attributed to DMPO dimerization catalyzed by leached transition metal ions. Usually, such a signal could not be readily identified and poses challenges for attributed to its formation. Moreover, the formation of DMPO–R in spin-trapping systems using alcohols or DMSO as quenchers is a crucial indicator for the generation of HO radicals. (13,40) Thus, in spin-trapping studies involving transition metal-based catalytic oxidations, such an interfered signal caused by the commonly occurring DMPO dimerization should be carefully examined.
在CuO/DMPO和Cu 2 O/DMPO系统中获得的EPR谱图被成功模拟为DMPO-OH和DMPO-R信号的总和(图1d)。用 A N = 14.78 G 和 A H = 14.78 G 模拟主要成分,并将其分配给 DMPO-OH 加合物。另一种组分,用 A N = 15.48 G 和 A H = 22.53 G 模拟,分配给具有 C 中心自由基的 DMPO 加合物(表 S2 和 S3)。这些系统是专门用于确定DMPO-R加合物的化学式而选择的。随后的LC-MS/MS分析显示,在CuO/DMPO和Cu O/DMPO系统中,该离子的质量值为m/z 226.16,其质量 12 22 2 2 •+ 值为226.17,在CuO/DMPO和Cu O/DMPO系统中均以6.48 min的保留时间鉴定。 2 这一发现表明,DMPO/MO体系中普遍存在的DMPO-R可归因于浸出过渡金属离子催化的DMPO二聚化。通常,这种信号不容易识别,并且对其形成提出了挑战。此外,在使用醇或DMSO作为淬灭剂的自旋捕获系统中DMPO-R的形成是HO 自由基生成的关键指标。(13,40) 因此,在涉及基于过渡金属的催化氧化的自旋捕获研究中,应仔细检查由常见发生的 DMPO 二聚化引起的这种干扰信号。

Quenching Effects on the DMPO Transformation
对DMPO转变的淬灭效应

Quenching experiments are essential for identifying reactive species in catalytic water purification processes. (41) However, the interaction of these alcohols with reactive species exhibits complex behaviors, governed by both quenching and solvent effects. Thus, the selectivity of quenchers, such as methanol (MeOH) and ethanol (EtOH) for both HO and SO4•–, and tert-butyl alcohol (tBuOH) and isopropanol (iPrOH) for HO, has been questioned due to the expanding diversity of recognized reactive species. (8) We have previously demonstrated that the EPR signal could be generated via nonradical pathways on the MO surfaces, further challenging the conventional views of radical involvement based on quencher selectivity. Therefore, comprehensive quenching experiments, combined with detailed EPR analysis, are essential to enhancing our understanding of the reactive species and their roles in complex oxidation processes.
淬灭实验对于识别催化水净化过程中的反应性物质至关重要。(41) 然而,这些醇与反应性物质的相互作用表现出复杂的行为,受淬灭和溶剂效应的控制。因此,由于公认的反应性物种的多样性不断扩大 ,淬灭剂的选择性受到质疑,例如甲醇(MeOH)和乙醇(EtOH)对HO 和SO 4 •– 的选择性,以及叔丁醇(tBuOH)和异丙醇(iPrOH)对HO的选择性。(8) 我们之前已经证明 EPR 信号可以通过 MO 表面上的非自由基途径产生,进一步挑战了基于淬灭剂选择性的自由基参与的传统观点。因此,全面的淬灭实验,结合详细的EPR分析,对于增强我们对活性物质及其在复杂氧化过程中的作用的理解至关重要。
MeOH exhibited distinguishable quenching effects on DMPOX generation on the MO surfaces, particularly in the DMPO/NiO system, where it entirely suppressed the strong DMPOX signal (Figure 2a). This result indicates that MeOH, different from other alcohols, exhibited a unique effectiveness in interrupting direct oxygen transfer on MO surfaces. After recognizing the possible misleading results, a comparative analysis of its quenching performance with other quenchers could provide new insights into the role of direct oxygen transfer in catalytic oxidations. Conversely, other alcohols had a negligible influence on DMPOX generation but caused DMPOX generation in the DMPO/Co3O4 system, implying a solvent-dependent oxygen transfer mechanism. Besides, these alcohols did not affect the generated DMPO adducts, including DMPO–OH and DMPO–R. Consequently, the nonquenchable signal observed in EPR analysis might be attributable to the DMPO transformation catalyzed by metal ions rather than the generation of HO or R. The comparison between different alcohols indicates that the complex interactions between alcohols and reactive species affect radical identification and mechanistic understanding in catalytic processes.
MeOH 对 MO 表面的 DMPOX 生成表现出明显的猝灭作用,特别是在 DMPO/NiO 系统中,它完全抑制了强烈的 DMPOX 信号(图 2a)。该结果表明,与其他醇不同,MeOH在阻断MO表面的直接氧转移方面表现出独特的有效性。在认识到可能的误导性结果后,对其与其他淬火剂的淬火性能进行比较分析可以为直接氧转移在催化氧化中的作用提供新的见解。相反,其他醇类对DMPOX生成的影响可以忽略不计,但在DMPO/Co 3 O 4 系统中引起DMPOX的产生,这意味着溶剂依赖性氧转移机制。此外,这些醇类不会影响生成的DMPO加合物,包括DMPO-OH和DMPO-R。因此,在EPR分析中观察到的不可熄灭信号可能归因于金属离子催化的DMPO转化,而不是HO 或R的产生 。不同醇类之间的比较表明,醇类和反应性物质之间的复杂相互作用会影响催化过程中的自由基鉴定和机理理解。

Figure 2 图2

Figure 2. Quenching effects of different (a) alcohols and (b) organics on the DMPO-trapping products in the presence of transition metal oxides. Conditions: pH 3.0, [DMPO] = 100 mM, [metal oxides] = 1 g·L–1, φ(alcohols) = 1%, [organics] = 1 g·L–1. “Blank” denotes samples solely containing MO and DMPO.
图2.在过渡金属氧化物存在下,不同(a)醇和(b)有机物对DMPO捕获产物的淬灭作用。条件:pH 3.0,[DMPO]=100 mM,[金属氧化物]=1 g·L,φ –1 (醇类)=1%,[有机物]=1 g·L –1 .“空白”表示仅含有 MO 和 DMPO 的样品。

In addition, the quenching effects of common aromatic organics were explored, revealing their preference on involving in these nonradical transformation pathways. The oxygen transfer process exhibited high selectivity in oxidizing phenol (PhOH) and aniline (PhNH2), thus inhibiting the transformation of DMPO into DMPOX (Figure 2b). Such a process has recently been identified as a precursor stage of surface polymerization, implying that nonradical catalysis could be tracked through spin-trapping EPR analysis. (42) Establishing a catalytic cycle with an external oxidant would enable the efficient removal of organic pollutants through surface polymerization, without generating harmful byproducts.
此外,还探讨了常见芳香族有机物的猝灭作用,揭示了它们参与这些非自由基转化途径的偏好。氧转移过程在氧化苯酚(PhOH)和苯胺(PhNH)中表现出高选择性 2 ,从而抑制DMPO转化为DMPO(图2b)。这种过程最近被确定为表面聚合的前体阶段,这意味着可以通过自旋捕获EPR分析来跟踪非自由基催化。(42) 用外部氧化剂建立催化循环将能够通过表面聚合有效地去除有机污染物,而不会产生有害的副产物。
Interestingly, although Ni in NiO was at low valence with limited oxidability, it exhibited a high efficiency in obtaining electrons from DMPO, PhOH, and PhNH2. Moreover, it could react with p-benzoquinone (pBQ), and the subsequent semiquinone radical was also trapped by DMPO (Figure 2b). These features suggest a potential role of NiO in the selective transformation of organic pollutants, paving the way for future applications in water purification. Selecting PMS as the external oxidant, we have successfully achieved a highly efficient polymerization degradation of PhOH at a ratio (direct oxidative transfer process ratio) of 92.9% (Figure S10 and Text S8). (42) Therefore, the signals detected in spin-trapping EPR analysis without oxidant dosing should not be prematurely disregarded as false positives but rather considered as an insight into nonradical pathway mechanisms. The ion-mediated pathways have not shown remarkable reflection on the organic dosing, in accordance with the fact that these ions cannot directly remove organic pollutants. Such misleading signals can be effectively differentiated through kinetic EPR analysis. (10)
有趣的是,尽管NiO中的Ni价较低,氧化性有限,但它在从DMPO、PhOH和PhNH中获取电子方面表现出很高的效率 2 。此外,它可能与对苯醌(pBQ)反应,随后的半醌自由基也被DMPO捕获(图2b)。这些特征表明NiO在有机污染物的选择性转化中具有潜在作用,为未来在水净化中的应用铺平了道路。选择PMS作为外部氧化剂,我们成功地实现了PhOH的高效聚合降解,比例(直接氧化转移过程比)为92.9%(图S10和文本S8)。(42) 因此,在未添加氧化剂的自旋捕获 EPR 分析中检测到的信号不应过早地被视为假阳性,而应被视为对非自由基途径机制的洞察。离子介导的途径对有机物投加没有表现出显著的反射,因为这些离子不能直接去除有机污染物。这种误导性信号可以通过动力学EPR分析得到有效区分。(10)

Implications 影响

In this work, we conducted a thorough examination to understand the interactions between radical trap DMPO and various MOs. We identified two oxidant-independent pathways for DMPO transformation: (i) a direct oxygen transfer mechanism transforming DMPO into DMPOX and (ii) a process mediated by dissolved transition metal ions, resulting in the conversion of DMPO to either DMPO–OH or DMPO–R. These DMPO transformations, which have been insufficiently recognized, have led to numerous misleading results in the radical identification in catalytic water purification processes. Furthermore, transition metal-based catalysts have found widespread applications, implying that the spin-trapping EPR signals induced by dissolved metal ions might mislead the radical identifications in various fields. As a result, the conventional spin-trapping EPR analysis for definitive evidence of radical presence must be re-evaluated. Instead, we advocate for a more comprehensive approach via combining kinetic EPR analysis (Figure S11 and Text S9) with systematic quenching strategies, for a deeper mechanistic insight. Furthermore, the direct interactions between DMPO and MOs shed new light on the processes of surface accumulation and polymerization of organic pollutants, thereby enriching our understanding of EPR analyses in nonradical oxidations. Since the crucial role surface catalysis plays in engineered systems and natural environments, the catalytic mechanisms of oxidations in complex matrices should be thoroughly investigated.
在这项工作中,我们进行了彻底的检查,以了解自由基陷阱DMPO与各种MO之间的相互作用。我们确定了两种与氧化剂无关的DMPO转化途径:(i)将DMPO转化为DMPOX的直接氧转移机制,以及(ii)由溶解的过渡金属离子介导的过程,导致DMPO转化为DMPO-OH或DMPO-R。这些DMPO转化没有得到充分的认可,导致了催化水净化过程中自由基鉴定中的许多误导性结果。此外,过渡金属基催化剂得到了广泛的应用,这意味着溶解金属离子诱导的自旋捕获EPR信号可能会误导各个领域的自由基鉴定。因此,必须重新评估传统的自旋捕获 EPR 分析,以寻找自由基存在的明确证据。相反,我们提倡通过将动力学EPR分析(图S11和文本S9)与系统淬灭策略相结合来采用更全面的方法,以获得更深入的机理见解。此外,DMPO和MOs之间的直接相互作用为有机污染物的表面积累和聚合过程提供了新的视角,从而丰富了我们对非自由基氧化中EPR分析的理解。由于表面催化在工程系统和自然环境中起着至关重要的作用,因此应深入研究复杂基质中氧化的催化机理。

Supporting Information 支持信息

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.estlett.4c00155.
支持信息可在 https://pubs.acs.org/doi/10.1021/acs.estlett.4c00155 免费获得。

  • More details regarding the methodology including LC-MS/MS analysis and EPR spectra simulation, pH value of oxidant solutions, simulation parameter, total ion current in LC-MS analysis, and effect of pH on DMPO-trapping signals (PDF)
    有关该方法的更多详细信息,包括 LC-MS/MS 分析和 EPR 谱图模拟、氧化剂溶液的 pH 值、模拟参数、LC-MS 分析中的总离子电流以及 pH 值对 DMPO 捕获信号的影响 ( PDF)

How Do Metal Oxides Mislead Spin-Trapping Electron Paramagnetic Resonance Analysis?
金属氧化物如何误导自旋捕获电子顺磁共振分析?

1 views  视图

0 shares  股票

0 downloads  下载

S
upporting Information 支持信息
for
How Do Metal Oxides Mislead Spin
金属氧化物如何误导自旋
-
Trapping Electron Paramagnetic Resonance
捕获电子顺磁共振
Analysis? 分析?
Jing 
-
Hang Wu 吴航
, Han 
-
Qing Yu 俞青
†,*
†CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental
†中科院环境系城市污染物转化重点实验室
Science and  科学和
Engineering, University of Science and Technology of China, Hefei,
中国科学技术大学(合肥)工学系
230026, China 230026, 中国
T
his
supporting 配套
information contains a
信息包含
26
-
page document, including
页面文档,包括
8
-
page  
experimental description 实验描述
s
,
4
tables,  
11
figures, references, and this cover page.
图、参考文献和本封面。
S
1
Text  发短信
S
1.
Analytical  分析
M
ethods 埃索德斯
The
spin 
-
trapping products of DMPO
DMPO捕集产物
were analyzed by a liquid chromatography
通过液相色谱法分析
coupled with a mass spectrometer (LC
与质谱仪(LC
-
MS, AB Triple TOF 5600+, AB Sciex, USA)
MS, AB Triple TOF 5600+, AB Sciex, 美国)
for detection and an Xbridge BEH
用于检测和 Xbridge BEH
C18 column (2.5  C18 列 (2.5
μ
m, 2.1 mm× 100 mm, Waters Inc.,
m, 2.1 mm× 100 mm, 沃特世公司,
USA) was used. The eluent consisted of acetonitrile (eluent A) and 0.1% formic acid in
USA)被使用。洗脱液由乙腈(洗脱液A)和0.1%甲酸组成
water (eluent B) at a flow rate of 0.3 mL·min
水(淋洗液 B),流速为 0.3 mL·min
-
1
. The gradient program for the volume
.卷的渐变程序
ratios was as follows: 0
比率如下:0
-
3 min, 95 3 分钟, 95
% A; 3 % A;3
-
8 min, 95 to 50% A; 8
8 分钟,95 至 50% A;8
-
10 min, 50%; 10 10分钟,50%;10
-
11
min, 50 to 5%; 11
最低,50%至5%;11
-
17 min, 5%; 17 17分钟,5%;17
-
18 min, 5 to 95%; 18
18 分钟,5% 至 95%;18
-
20 min, 95%. A scan range of
20分钟,95%。扫描范围
m/z 50 男/中型 50
-
600 was selected in both positive and negative modes.
600 在正和负模式下均被选中。
Text  发短信
S
2
.
Preparing  准备
Buffers 缓冲区
at Different pHs 在不同的pH值下
The effects of pH buffers on DMPO transformations are determined by both their
pH缓冲液对DMPO转化的影响取决于它们的
ability to coordinate with metal ions and the pH conditions. To investigate the effect of
能够与金属离子和 pH 条件协调。调查
buffer coordination on the MO
MO 上的缓冲区协调
-
induced DMPO transformations, we compared the EPR
诱导的DMPO转化,我们比较了EPR
spectra 光谱
obtained at the same pH levels in different buffer systems,
在不同的缓冲液体系中以相同的pH值获得,
i.e. 
, acetate and  、醋酸纤维和
phosphate systems. 磷酸盐系统。
Specifically, acetic acid (CH
具体而言,乙酸(CH
3
COOH), sodium acetate
COOH)、醋酸钠
(CH
3
COONa), phosphoric acid (H
COONa)、磷酸(H
3
PO
4
), and disodium phosphate (Na
)和磷酸二钠(Na
2
HPO
4
) was  ) 是
dissolved in deionized water to
溶于去离子水至
a concentration of 10 mM, ensuring a consistent buffer
浓度为 10 mM,确保缓冲液的一致性
concentration. Subsequently, H
浓度。 随后,H
3
PO
4
was gradually dosed into Na
逐渐给药到Na中
2
HPO
4
, and  
CH
3
COOH was gradually dosed into CH
COOH逐渐给药到CH中
3
COONa to prepare two different buffer
COONa制备两种不同的缓冲液
solutions at pH 4.0, 5.0, 6.0, 7.0, and 8.0.
pH 值为 4.0、5.0、6.0、7.0 和 8.0 的溶液。

Terms & Conditions  条款及细则

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web Editions 即可获得。此类文件可以按文章下载用于研究用途(如果有与相关文章相关的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求从 ACS 获得用于其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

  • Corresponding Author 通讯作者
    • Han-Qing Yu - CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, ChinaOrcidhttps://orcid.org/0000-0001-5247-6244 Email: hqyu@ustc.edu.cn
      俞汉青 - 中国科学技术大学环境科学与工程系,中国科学院城市污染物转化重点实验室,合肥230026; Orcid https://orcid.org/0000-0001-5247-6244;电子邮件: hqyu@ustc.edu.cn
  • Author 作者
    • Jing-Hang Wu - CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, ChinaOrcidhttps://orcid.org/0000-0002-8087-8440
      吴静航 - 中国科学技术大学环境科学与工程系,中国科学院城市污染物转化重点实验室,安徽 230026; Orcid https://orcid.org/0000-0002-8087-8440
  • Notes 笔记
    The authors declare no competing financial interest.
    作者声明没有相互竞争的经济利益。

Acknowledgments 确认

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

The authors thank the National Natural Science Foundation of China (52192684, 51821006, and 52027815), for supporting this work. The authors also thank Ms. Haiyan Zhang at USTC for helping with the LC-MS analysis. Jing-Hang Wu acknowledges the financial support from Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation (STGEF), China.
作者感谢中国国家自然科学基金(52192684、51821006和52027815)对这项工作的支持。作者还感谢中国科学技术大学的张海燕女士对LC-MS分析的帮助。吴静航感谢中国上海同济高廷遥环境科技发展基金会(STGEF)的资助。

This article references 42 other publications.
本文引用了其他 42 篇出版物。

  1. 1
    He, F.; Zhao, W.; Liang, L.; Gu, B. Photochemical oxidation of dissolved elemental mercury by carbonate radicals in water. Environ. Sci. Technol. Lett.
    IF 10.9SCIEJCI 1.42Q1环境科学与生态学2区
    2014, 1, 499503,  DOI: 10.1021/ez500322f

    1他,F.;赵,W.;梁,L.;Gu, B.水中碳酸盐自由基对溶解元素汞的光化学氧化.环境。Sci. Technol. Lett.2014, 1, 499– 503, DOI: 10.1021/ez500322f
  2. 2
    Pan, Y.; Zheng, X.; Zhao, G.; Rao, Z.; Yu, W.; Chen, B.; Chu, C. Water vapor condensation on iron minerals spontaneously produces hydroxyl radical. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57, 86108616,  DOI: 10.1021/acs.est.3c01379

    2潘,Y.;郑旭;赵国;饶,Z.;俞,W.;陈,B.;Chu, C.水蒸气在铁矿物上凝结自发产生羟基自由基。环境。Sci. Technol.2023, 57, 8610– 8616, DOI: 10.1021/acs.est.3c01379
  3. 3
    Sun, M.; Chu, C.; Geng, F.; Lu, X.; Qu, J.; Crittenden, J.; Elimelech, M.; Kim, J.-H. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation. Environ. Sci. Technol. Lett.
    IF 10.9SCIEJCI 1.42Q1环境科学与生态学2区
    2018, 5, 186191,  DOI: 10.1021/acs.estlett.8b00065

    3孙,M.;朱,C.;耿,F.;卢,X.;曲军;克里滕登,J.;以利米勒,M.;Kim, J.-H.Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH insensitive H 2 O 2 activation.环境。Sci. Technol. Lett.2018, 5, 186– 191, DOI: 10.1021/acs.estlett.8b00065
  4. 4
    Domingues, E.; Silva, M. J.; Vaz, T.; Gomes, J.; Martins, R. C. Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton’s peroxidation. Sci. Total Environ.
    IF 9.8SCIEJCI 1.68Q1环境科学与生态学1区Top
    2022, 832, 155029,  DOI: 10.1016/j.scitotenv.2022.155029

    4多明格斯,E.;席尔瓦,MJ;瓦兹,T.;戈麦斯,J.;Martins, R. C.基于硫酸盐自由基的先进氧化工艺用于农用工业废水处理:与芬顿过氧化的比较综述。Sci. Total Environ.2022, 832, 155029, DOI: 10.1016/j.scitotenv.2022.155029
  5. 5
    Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (OH). Chem. Rev.
    IF 62.1SCIEJCI 4.2Q1化学1区Top
    2015, 115, 1305113092,  DOI: 10.1021/cr500310b

    5格利戈罗夫斯基,S.;斯特雷科夫斯基,R.;巴尔巴蒂,S.;Vione, D.羟基自由基( OH)的环境影响。Chem. Rev.2015, 115, 13051– 13092, DOI: 10.1021/cr500310b
  6. 6
    Lee, J.; von Gunten, U.; Kim, J.-H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54, 30643081,  DOI: 10.1021/acs.est.9b07082

    6李,J.;von Gunten,美国;Kim, J.-H.基于过硫酸盐的先进氧化:对机会和障碍的批判性评估。环境。Sci. Technol.2020, 54, 3064– 3081, DOI: 10.1021/acs.est.9b07082
  7. 7
    Chae, S. H.; Kim, M. S.; Kim, J.-H.; Fortner, J. D. Nanobubble reactivity: Evaluating hydroxyl radical generation (or lack thereof) under ambient conditions. ACS EST Engg. 2023, 3, 1504,  DOI: 10.1021/acsestengg.3c00124

    7蔡,S.H.;金,M.S.;金,J.-H.;Fortner, J. D.纳米气泡反应性:评估环境条件下羟基自由基的产生(或缺乏羟基自由基)。ACS EST Engg.2023, 3, 1504, DOI: 10.1021/acsestengg.3c00124
  8. 8
    Liu, W.; Lu, Y.; Dong, Y.; Jin, Q.; Lin, H. A critical review on reliability of quenching experiment in advanced oxidation processes. Chem. Eng. J.
    IF 15.1SCIEJCI 1.99Q1工程技术1区Top
    2023, 466, 143161,  DOI: 10.1016/j.cej.2023.143161

    8刘文;卢,Y.;董Y.;金Q.;Lin, H.A critical review on reliability of quenching experiment in advanced oxidation processes.化学工程 J.2023, 466, 143161, DOI: 10.1016/j.cej.2023.143161
  9. 9
    Jing, Y.; Chaplin, B. P. Mechanistic study of the validity of using hydroxyl radical probes to characterize electrochemical advanced oxidation processes. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2017, 51, 23552365,  DOI: 10.1021/acs.est.6b05513

    9静,Y.;卓别林,B.P.使用羟基自由基探针表征电化学高级氧化过程的有效性的机理研究。环境。Sci. Technol.2017, 51, 2355– 2365, DOI: 10.1021/acs.est.6b05513
  10. 10
    Wu, J.-H.; Chen, F.; Yang, T.-H.; Yu, H.-Q. Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis. Proc. Natl. Acad. Sci. U.S.A.
    IF 11.1SCIEJCI 2.52Q1综合性期刊1区Top
    2023, 120, e2305706120,  DOI: 10.1073/pnas.2305706120

    10吴俊华;陈,F.;杨太华;Yu, H.-Q.使用原位动力学EPR分析揭示催化氧化过程中的单线态氧自旋捕获。美国国家科学院院刊 2023, 120, e2305706120, DOI: 10.1073/pnas.2305706120
  11. 11
    Saito, K.; Sail, D.; Yamamoto, K.; Matsumoto, S.; Blackman, B.; Kishimoto, S.; Brender, J. R.; Swenson, R. E.; Mitchell, J. B.; Krishna, M. C. Synthesis and evaluation of 13C-labeled 5–5-dimethyl-1-pyrroline-N-oxide aimed at in vivo detection of reactive oxygen species using hyperpolarized 13C-MRI. Free Radic. Biol. Med.
    IF 7.4SCIEJCI 1.47Q1生物学2区Top
    2019, 131, 1826,  DOI: 10.1016/j.freeradbiomed.2018.11.013

    11斋藤,K.;赛尔,D.;山本,K.;松本,S.;布莱克曼,B.;岸本,S.;布伦德,J.R.;斯文森,RE;米切尔,JB;Krishna, M. C.C-C-标记的 13 5-5-二甲基-1-吡咯啉-N-氧化物的合成和评估,旨在使用超极化 13 C-MRI进行活性氧的体内检测。免费 Radic。Biol. Med.2019, 131, 18– 26, DOI: 10.1016/j.freeradbiomed.2018.11.013
  12. 12
    Pei, S.; You, S.; Ma, J.; Chen, X.; Ren, N. Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54, 1333313343,  DOI: 10.1021/acs.est.0c05287

    12贝,S.;你,S.;马,J.;陈旭;任,N.电生成羟基自由基的电子自旋共振证据。环境。Sci. Technol.2020, 54, 13333– 13343, DOI: 10.1021/acs.est.0c05287
  13. 13
    Wang, L.; Fu, Y.; Li, Q.; Wang, Z. EPR evidence for mechanistic diversity of Cu(II)/peroxygen oxidation systems by tracing the origin of DMPO spin adducts. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2022, 56, 87968806,  DOI: 10.1021/acs.est.2c00459

    13王L.;傅彦;李琦;Wang, Z.通过追踪DMPO自旋加合物的起源,为Cu(II)/过氧氧化体系的机理多样性提供EPR证据。环境。Sci. Technol.2022, 56, 8796– 8806, DOI: 10.1021/acs.est.2c00459
  14. 14
    Takahashi, M.; Shirai, Y.; Sugawa, S. Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water. Langmuir
    IF 3.9SCIEJCI 0.67Q2化学2区
    2021, 37, 50055011,  DOI: 10.1021/acs.langmuir.1c00469

    14高桥,M.;白井,Y.;Sugawa, S.水性电解质溶液中块状纳米气泡产生的自由基:微气泡处理水的ESR自旋阱观察。朗缪尔2021, 37, 5005– 5011, DOI: 10.1021/acs.langmuir.1c00469
  15. 15
    Kim, J.; Wang, J.; Ashley, D. C.; Sharma, V. K.; Huang, C.-H. Picolinic acid-mediated catalysis of Mn(II) for peracetic acid oxidation processes: Formation of high-valent Mn species. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57, 1892918939,  DOI: 10.1021/acs.est.3c00765

    15金,J.;王军;阿什利,哥伦比亚特区;夏尔马,VK;Huang, C.-H.吡啶甲酸介导的 Mn(II) 催化过氧乙酸氧化过程:高价 Mn 物种的形成。环境。Sci. Technol.2023, 57, 18929– 18939, DOI: 10.1021/acs.est.3c00765
  16. 16
    Zong, Y.; Guan, X.; Xu, J.; Feng, Y.; Mao, Y.; Xu, L.; Chu, H.; Wu, D. Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54, 1623116239,  DOI: 10.1021/acs.est.0c06808

    16宗Y.;关晓 X.;徐军;冯,Y.;毛,Y.;徐玲;朱,H.;揭开钴(II)活化的过氧单硫酸盐工艺产生的高价钴氧基物质被忽视的参与。环境。Sci. Technol.2020, 54, 16231– 16239, DOI: 10.1021/acs.est.0c06808
  17. 17
    Hu, C.-H.; Kim, S.-T.; Baik, M.-H.; Mirica, L. M. Nickel–carbon bond oxygenation with green oxidants via high-valent nickel species. J. Am. Chem. Soc.
    IF 15.0SCIEJCI 2.63Q1化学1区Top
    2023, 145, 1116111172,  DOI: 10.1021/jacs.3c01012

    17胡,C.-H.;金,S.-T.;白克,M.-H.;Mirica, L. M.通过高价镍物种与绿色氧化剂进行镍-碳键氧化。化学学报.2023, 145, 11161– 11172, DOI: 10.1021/jacs.3c01012
  18. 18
    Walling, S. A.; Um, W.; Corkhill, C. L.; Hyatt, N. C. Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. npj Mater. Degrad.
    IF 5.1SCIEJCI 0.85Q2材料科学2区
    2021, 5, 50,  DOI: 10.1038/s41529-021-00192-3

    18Walling, S.A.;嗯,W.;科克希尔,CL;Hyatt, N. C.Fenton 和 Fenton 类湿氧化用于降解和破坏有机放射性废物。npj Mater.Degrad.2021, 5, 50, DOI: 10.1038/s41529-021-00192-3
  19. 19
    Shang, Y.; Xu, X.; Gao, B.; Wang, S.; Duan, X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev.
    IF 46.2SCIEJCI 3.41Q1化学1区Top
    2021, 50, 52815322,  DOI: 10.1039/D0CS01032D

    19尚,Y.;徐旭;高,B.;王,S.;Duan, X.单原子催化在高级氧化工艺中的环境修复.Chem. Soc. Rev.2021, 50, 5281– 5322, DOI: 10.1039/D0CS01032D
  20. 20
    Li, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J.; Xiao, S.; Zeng, G. Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2021, 192, 116850,  DOI: 10.1016/j.watres.2021.116850

    20李Y.;董,H.;李,L.;唐,L.;田,R.;李,R.;陈军;谢清;金,Z.;肖,J.;肖,S.;Zeng, G.基于过渡金属硫化物的先进氧化工艺处理废水的最新进展.水资源研究 2021, 192, 116850, DOI: 10.1016/j.watres.2021.116850
  21. 21
    Huang, M.; Han, Y.; Xiang, W.; Zhong, D.; Wang, C.; Zhou, T.; Wu, X.; Mao, J. In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2021, 55, 1536115370,  DOI: 10.1021/acs.est.1c03758

    21黄,M.;韩Y.;向,W.;钟博士;王,C.;周,T.;吴X.;毛,CuO 表面 J.In 原位形成的苯氧基自由基会触发有效的过硫酸盐活化以降解苯酚。环境。Sci. Technol.2021, 55, 15361– 15370, DOI: 10.1021/acs.est.1c03758
  22. 22
    Vencalek, B. E.; Laughton, S. N.; Spielman-Sun, E.; Rodrigues, S. M.; Unrine, J. M.; Lowry, G. V.; Gregory, K. B. In situ measurement of CuO and Cu(OH)2 nanoparticle dissolution rates in quiescent freshwater mesocosms. Environ. Sci. Technol. Lett.
    IF 10.9SCIEJCI 1.42Q1环境科学与生态学2区
    2016, 3, 375380,  DOI: 10.1021/acs.estlett.6b00252

    22文卡莱克,B.E.;劳顿,S.N.;斯皮尔曼-孙,E.;罗德里格斯,SM;安莱恩,JM;洛瑞,G.V.;Gregory, K. B.In 静态淡水中层中 CuO 和 Cu(OH) 2 纳米颗粒溶解速率的原位测量。环境。Sci. Technol. Lett.2016, 3, 375– 380, DOI: 10.1021/acs.estlett.6b00252
  23. 23
    Zhao, Z.; Peng, S.; Ma, C.; Yu, C.; Wu, D. Redox behavior of secondary solid iron species and the corresponding effects on hydroxyl radical generation during the pyrite oxidation process. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2022, 56, 1263512644,  DOI: 10.1021/acs.est.2c04624

    23赵志强;彭,S.;马,C.;俞,C.;二次固体铁物种的氧化还原行为及其对黄铁矿氧化过程中羟基自由基生成的相应影响.环境。Sci. Technol.2022, 56, 12635– 12644, DOI: 10.1021/acs.est.2c04624
  24. 24
    Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson.
    IF 2.2SCIEJCI 0.74Q3化学3区
    2006, 178, 4255,  DOI: 10.1016/j.jmr.2005.08.013

    24斯托尔,S.;Schweiger, A.EasySpin,用于 EPR 光谱模拟和分析的综合软件包。J.马格。Reson.2006, 178, 42– 55, DOI: 10.1016/j.jmr.2005.08.013
  25. 25
    Huang, M.; Li, Y.-S.; Zhang, C.-Q.; Cui, C.; Huang, Q.-Q.; Li, M.; Qiang, Z.; Zhou, T.; Wu, X.; Yu, H.-Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. U.S.A.
    IF 11.1SCIEJCI 2.52Q1综合性期刊1区Top
    2022, 119, e2202682119,  DOI: 10.1073/pnas.2202682119

    25黄,M.;李永胜;张志清;崔,C.;黄Q.-Q.;李,M.;强,Z.;周,T.;吴X.;Yu, H.-Q.Facilely tuneting the intrinsic catalytic sites of the spinelic oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration.美国国家科学院院刊 2022, 119, e2202682119, DOI: 10.1073/pnas.2202682119
  26. 26
    Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 221, 118747,  DOI: 10.1016/j.watres.2022.118747

    26陈,L.;段杰;杜,P.;孙,W.;赖,B.;Liu, W.在紫外线均相高级氧化过程中通过原位电子顺磁共振准确识别自由基.水资源研究 2022, 221, 118747, DOI: 10.1016/j.watres.2022.118747
  27. 27
    Dou, J.; Cheng, J.; Lu, Z.; Tian, Z.; Xu, J.; He, Y. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process. Appl. Catal., B
    IF 22.1SCIEJCI 3.14Q1化学1区Top
    2022, 301, 120832,  DOI: 10.1016/j.apcatb.2021.120832

    27窦,J.;程杰;卢志强;田志强;徐军;He, Y.Biochar 与氮和硼共掺杂,将基于自由基的过氧二硫酸盐活化转变为电子转移主导的非自由基过程。应用催化, B2022, 301, 120832, DOI: 10.1016/j.apcatb.2021.120832
  28. 28
    Zhu, L.; Ji, J.; Liu, J.; Mine, S.; Matsuoka, M.; Zhang, J.; Xing, M. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem., Int. Ed.
    IF 16.6SCIEJCI 2.6Q1化学1区Top
    2020, 59, 1396813976,  DOI: 10.1002/anie.202006059

    28朱玲玲;姬军;刘军;我的,S.;松冈,M.;张军;Xing, M.设计3D-MoS 2 海绵作为高级氧化工艺中用于污染物控制的优良助催化剂。昂热。Chem., Int. Ed.2020, 59, 13968– 13976, DOI: 10.1002/anie.202006059
  29. 29
    Yi, Q.; Li, X.; Li, Y.; Dai, R.; Wang, Z. Unraveling the Co(IV)-mediated oxidation mechanism in a Co3O4/PMS-based hierarchical reactor: Toward efficient catalytic degradation of aromatic pollutants. ACS EST Engg. 2022, 2, 18361846,  DOI: 10.1021/acsestengg.2c00087

    29易Q.;李旭;李勇;戴,R.;Unraveling the Co(IV)-mediadated oxidation mechanism in a Co 3 O 4 /PMS-based hierarchical rearchical reactorants: Towards efficient catalytic degradation of aromatic pollutants.ACS EST Engg.2022, 2, 1836– 1846, DOI: 10.1021/acsestengg.2c00087
  30. 30
    Niu, L.; Lin, J.; Chen, W.; Zhang, Q.; Yu, X.; Feng, M. Ferrate(VI)/periodate system: Synergistic and rapid oxidation of micropollutants via periodate/iodate-modulated Fe(IV)/Fe(V) intermediates. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57, 70517062,  DOI: 10.1021/acs.est.2c08965

    30牛,L.;林杰;陈,W.;张琦;俞旭;Feng, M.Ferrate(VI)/Oxiate System:通过高碘酸盐/碘酸盐调节的Fe(IV)/Fe(V)中间体对微污染物进行协同和快速氧化。环境。Sci. Technol.2023, 57, 7051– 7062, DOI: 10.1021/acs.est.2c08965
  31. 31
    Cai, P.; Zhao, J.; Zhang, X.; Zhang, T.; Yin, G.; Chen, S.; Dong, C.-L.; Huang, Y.-C.; Sun, Y.; Yang, D.; Xing, B. Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Appl. Catal., B
    IF 22.1SCIEJCI 3.14Q1化学1区Top
    2022, 306, 121091,  DOI: 10.1016/j.apcatb.2022.121091

    31蔡,P.;赵杰;张X.;张T.;尹国;陈,S.;董,C.-L.;黄永昌;孙,Y.;杨博士;钴和镍在NiCo 2 O 4 纳米片上的协同作用促进了过氧单硫酸盐的活化,从而有效地降解了诺氟沙星。应用催化, B2022, 306, 121091, DOI: 10.1016/j.apcatb.2022.121091
  32. 32
    Wang, Y.; Sun, H.; Ang, H. M.; Tadé, M. O.; Wang, S. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal., B
    IF 22.1SCIEJCI 3.14Q1化学1区Top
    2015, 164, 159167,  DOI: 10.1016/j.apcatb.2014.09.004

    32王永;孙,H.;洪,HM;塔德,M.O.;Wang,S.3D分层结构的MnO 2 通过活化过氧单硫酸盐催化氧化苯酚溶液:结构依赖性和机理。应用催化, B2015, 164, 159– 167, DOI: 10.1016/j.apcatb.2014.09.004
  33. 33
    Kottapurath Vijay, A.; Marks, V.; Mizrahi, A.; Wen, Y.; Ma, X.; Sharma, V. K.; Meyerstein, D. Reaction of FeaqII with peroxymonosulfate and peroxydisulfate in the presence of bicarbonate: Formation of FeaqIV and carbonate radical anions. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57, 67436753,  DOI: 10.1021/acs.est.3c00182

    33科塔普拉斯·维杰(Kottapurath Vijay),A.;马克斯,V.;米兹拉希,A.;温,Y.;马,X.;夏尔马,VK;Meyerstein,D.Fe aq 在碳酸氢盐存在下 II 与过氧单硫酸盐和过氧二硫酸盐的反应:Fe aq IV 和碳酸盐自由基阴离子的形成。环境。Sci. Technol.2023, 57, 6743– 6753, DOI: 10.1021/acs.est.3c00182
  34. 34
    Li, N.; Wang, Y.; Cheng, X.; Dai, H.; Yan, B.; Chen, G.; Hou, L. a.; Wang, S. Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 222, 118896,  DOI: 10.1016/j.watres.2022.118896

    34李,N.;王勇;程X.;戴,H.;闫,B.;陈,G.;侯,洛杉矶;磷酸根离子对水处理中过硫酸盐活化和有机降解的影响及其机制研究进展.水资源研究 2022, 222, 118896, DOI: 10.1016/j.watres.2022.118896
  35. 35
    Chen, Z.; Wan, Q.; Wen, G.; Luo, X.; Xu, X.; Wang, J.; Li, K.; Huang, T.; Ma, J. Effect of borate buffer on organics degradation with unactivated peroxymonosulfate: Influencing factors and mechanisms. Sep. Purif. Technol.
    IF 8.6SCIEJCI 1.37Q1工程技术1区Top
    2021, 256, 117841,  DOI: 10.1016/j.seppur.2020.117841

    35陈志强;万Q.;温,G.;罗X.;徐旭;王军;李杭;黄,T.;马,J.硼酸盐缓冲液对未活化过氧单硫酸盐有机物降解的影响:影响因素和机制。9月普里夫。Technol.2021, 256, 117841, DOI: 10.1016/j.seppur.2020.117841
  36. 36
    Li, B.; Cheng, X.; Zou, R.; Yong, X.; Pang, C.; Su, Y.; Zhang, Y. Simple modulation of Fe-based single atoms/clusters catalyst with acidic microenvironment for ultrafast Fenton-like reaction. Appl. Catal., B
    IF 22.1SCIEJCI 3.14Q1化学1区Top
    2022, 304, 121009,  DOI: 10.1016/j.apcatb.2021.121009

    36李,B.;程X.;邹,R.;杨,X.;庞,C.;苏,Y.;Fe基单原子/团簇催化剂在酸性微环境中的简单调控超快Fenton类反应.应用催化, B2022, 304, 121009, DOI: 10.1016/j.apcatb.2021.121009
  37. 37
    Gao, Y.; Zhou, Y.; Pang, S.-Y.; Jiang, J.; Yang, Z.; Shen, Y.; Wang, Z.; Wang, P.-X.; Wang, L.-H. New insights into the combination of permanganate and bisulfite as a novel advanced oxidation process: Importance of high valent manganese-oxo species and sulfate radical. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2019, 53, 36893696,  DOI: 10.1021/acs.est.8b05306

    37高Y.;周,Y.;彭淑娟;江 J.;杨振;沈永;王志强;王,P.-X.;高锰酸盐和亚硫酸氢盐结合作为新型高级氧化过程的新见解:高价锰氧基和硫酸盐自由基的重要性。环境。Sci. Technol.2019, 53, 3689– 3696, DOI: 10.1021/acs.est.8b05306
  38. 38
    Pan, X.-Q.; Zhang, X.-Y.; Huang, G.-X.; Mei, S.-C.; Huang, J.-W.; Chen, J.-J.; Liu, W.-J.; Yu, H.-Q. Promoting electrocatalytic hydrogenation of 5-hydroxymethylfurfural using buffer electrolytes as proton-donating motifs: Theoretical predictions and experimental validations. Appl. Catal., B
    IF 22.1SCIEJCI 3.14Q1化学1区Top
    2023, 323, 122191,  DOI: 10.1016/j.apcatb.2022.122191

    38潘,X.-Q.;张旭彦;黄国旭;梅,S.-C.;黄建伟;陈建军;刘伟杰;使用缓冲电解质作为质子供体基序促进5-羟甲基糠醛的电催化氢化:理论预测和实验验证。应用催化, B2023, 323, 122191, DOI: 10.1016/j.apcatb.2022.122191
  39. 39
    Litvinov, A.; Feintuch, A.; Un, S.; Goldfarb, D. Triple resonance EPR spectroscopy determines the Mn2+ coordination to ATP. J. Magn. Reson.
    IF 2.2SCIEJCI 0.74Q3化学3区
    2018, 294, 143152,  DOI: 10.1016/j.jmr.2018.07.007

    39利特维诺夫,A.;Feintuch,A.;联合国,S.;Goldfarb, D.三重共振EPR波谱法确定了Mn 2+ 与ATP的配位。J.马格。Reson.2018, 294, 143– 152, DOI: 10.1016/j.jmr.2018.07.007
  40. 40
    Gao, H.-Y.; Huang, C.-H.; Mao, L.; Shao, B.; Shao, J.; Yan, Z.-Y.; Tang, M.; Zhu, B.-Z. First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54, 1404614056,  DOI: 10.1021/acs.est.0c04410

    40高晟;黄振华;毛,L.;邵,B.;邵杰;闫志英;唐,M.;Zhu, B.-Z.第一个直接和明确的电子自旋共振自旋捕获证据,用于从硫酸盐自由基依赖性地产生羟基自由基的pH依赖性证据。环境。Sci. Technol.2020, 54, 14046– 14056, DOI: 10.1021/acs.est.0c04410
  41. 41
    Ren, W.; Cheng, C.; Shao, P.; Luo, X.; Zhang, H.; Wang, S.; Duan, X. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2022, 56, 7897,  DOI: 10.1021/acs.est.1c05374

    41任,W.;程,C.;邵,P.;罗X.;张,H.;王,S.;Duan, X.基于过硫酸盐的非自由基氧化过程中电子转移机制的起源。环境。Sci. Technol.2022, 56, 78– 97, DOI: 10.1021/acs.est.1c05374
  42. 42
    Zhang, Y.-J.; Chen, J.-J.; Huang, G.-X.; Li, W.-W.; Yu, H.-Q.; Elimelech, M. Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation. Proc. Natl. Acad. Sci. U.S.A.
    IF 11.1SCIEJCI 2.52Q1综合性期刊1区Top
    2023, 120, e2302407120,  DOI: 10.1073/pnas.2302407120

    42张永俊;陈建军;黄国旭;李,W.-W.;俞汉清;Elimelech, M.区分散装水中的均质高级氧化过程与有机氧化中的非均相表面反应。美国国家科学院院刊 2023, 120, e2302407120, DOI: 10.1073/pnas.2302407120

Cited By 施引文献

ARTICLE SECTIONS
Jump To

文章章节 跳转到

This article has not yet been cited by other publications.
本文尚未被其他出版物引用。

Pair your accounts. 配对您的帐户。

Export articles to Mendeley
将文章导出到 Mendeley

Get article recommendations from ACS based on references in your Mendeley library.
根据 Mendeley 库中的参考文献从 ACS 获取文章推荐。

Pair your accounts. 配对您的帐户。

Export articles to Mendeley
将文章导出到 Mendeley

Get article recommendations from ACS based on references in your Mendeley library.
根据 Mendeley 库中的参考文献从 ACS 获取文章推荐。

You’ve supercharged your research process with ACS and Mendeley!
您已经通过ACS和Mendeley增强了您的研究过程!

STEP 1: 步骤1:
Click to create an ACS ID
单击以创建 ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

MENDELEY PAIRING EXPIRED MENDELEY 配对已过期
Your Mendeley pairing has expired. Please reconnect
您的 Mendeley 配对已过期。请重新连接