- Journal List 期刊列表
- Antioxid Redox Signal 抗氧化氧化还原信号
-
PMC5962337IF: 5.9 Q1 B2
PMC5962337如果:5.9 Q1 B2
作为一个图书馆,NLM 提供科学文献的访问。纳入 NLM 数据库并不意味着认可或同意, NLM 或国立卫生研究院的内容。
Learn more: PMC Disclaimer | PMC Copyright Notice
了解更多: 免责声明 | PMC版权声明
Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress
与金属离子稳态功能失调和异生金属暴露相关的神经毒性:氧化还原信号和氧化应激
Carla Garza-Lombo , 1,, 2, * Yanahi Posadas , 3,, 4, * Liliana Quintanar , 4玛丽亚·E·贡斯巴特 2 、罗德里戈·弗朗哥 1
Carla Garza-Lombó
1Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska.
2Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.
Yanahi Posadas
3Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, México.
4Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, México.
Liliana Quintanar
4Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, México.
María E. Gonsebatt
2Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.
Rodrigo Franco
1Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska.
作者信息文章注释版权和许可信息PMC 免责声明
E-mail:Email: xm.manu@negram
E-mail:Email: xm.vatsevnic@qanailil
Associated Data 相关数据
- Supplementary Materials 补充材料
- Supp_Table1.pdf (204K)GUID: E09AC305-83CA-45CF-9B1D-A5D5B63CA225Supp_Fig1.pdf (150K)GUID: DE56D270-6DB1-4131-A655-55E90138417E
Abstract 抽象的
Significance: Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations.
意义:铜、铁、锰和锌等必需金属在涉及细胞稳态和生存以及器官和组织发育的多种过程的活动中发挥着辅助因子的作用。在我们的一生中,人类还接触来自天然和人为来源的外来金属,包括铝、砷、镉、铅和汞。众所周知,必需金属稳态的改变和外源金属环境/职业暴露的增加与多种神经系统疾病有关,包括神经变性和神经发育改变。
Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated.
最新进展:必需金属的氧化还原活性是神经元稳态和大脑功能的关键。氧化还原稳态和信号传导的改变是金属离子稳态功能失调和外源金属暴露增加的病理后果的核心。氧化还原活性和氧化还原非活性金属都会引发中枢神经系统的氧化应激和损伤,并且所涉及的确切机制已开始被阐明。
Critical Issues: In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems.
关键问题:在这篇综述中,我们的目的是评估必需金属在确定大脑氧化还原平衡中的作用,以及必需金属稳态的改变和外源金属的暴露扰乱细胞氧化还原平衡和信号传导的机制。我们重点关注有关它们在神经系统中的运输、代谢和毒性机制的最新文献。
Future Directions: Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669–1703.
未来方向:描述金属改变氧化还原稳态的具体机制是理解神经退行性和神经发育障碍中慢性神经元功能障碍的病理过程的关键。抗氧化剂。氧化还原信号。 28, 1669–1703。
关键词: :神经退行性变, 氧化还原, 必需金属, 重金属, 神经毒性
Introduction 介绍
Most elements in the periodic table are considered metals due to their propensity to lose electrons and react with molecular oxygen (O2) to form oxides. Metals in biological systems may be broadly divided into four groups: alkali and alkaline-earth metals, such as sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca); essential transition metals, such as copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn); and xenobiotic heavy metals such as mercury (Hg), lead (Pb), and cadmium (Cd). In addition, metalloids such as arsenic (As) are present in the environment and have chemical and physical properties of both metal and nonmetal elements. Some authors include aluminum (Al) and selenium (Se) as metalloids. For simplicity, herein we will refer to metalloids as metals. Importantly, while essential metals participate in normal biological functions, alterations in their handling or their increased accumulation are well reported to exert neurotoxicity (Supplementary Table S1; Supplementary Data are available online at www.liebertpub.com/ars).
元素周期表中的大多数元素都被认为是金属,因为它们倾向于失去电子并与分子氧 (O 2 ) 反应形成氧化物。生物系统中的金属可大致分为四类:碱金属和碱土金属,例如钠(Na)、钾(K)、镁(Mg)和钙(Ca);必需的过渡金属,如铜 (Cu)、锰 (Mn)、铁 (Fe) 和锌 (Zn);以及外源性重金属,例如汞 (Hg)、铅 (Pb) 和镉 (Cd)。此外,环境中还存在砷(As)等准金属,它们同时具有金属和非金属元素的化学和物理性质。一些作者将铝 (Al) 和硒 (Se) 列为准金属。为了简单起见,本文中我们将类金属称为金属。重要的是,虽然必需金属参与正常的生物功能,但据报道,改变其处理方式或增加积累会产生神经毒性(补充表 S1 ;补充数据可在线获取www.liebertpub.com/ars )。
Prospective epidemiological studies have associated cognitive, motor, and behavioral alterations to environmental exposure to metals and metalloids (153, 158, 250, 371), effects that are exacerbated when environmental exposures occur chronically and during development (153, 158, 250). Long-term effects of either environmental metal exposure or alterations in metal homeostasis in the central nervous system (CNS) and peripheral nervous system (PNS) have been proposed to play a role in neurodegenerative disorders (379). Importantly, alterations in the cellular redox environment of the cell are central to the toxic effects of metals.
前瞻性流行病学研究表明,认知、运动和行为改变与金属和类金属环境暴露有关( 153、158、250、371 ),当环境暴露长期发生和发育过程中时,这种影响会加剧( 153、158、250 )。环境金属暴露或中枢神经系统(CNS)和周围神经系统(PNS)金属稳态改变的长期影响已被认为在神经退行性疾病中发挥作用( 379 )。重要的是,细胞氧化还原环境的改变是金属毒性作用的核心。
Previous reviews address the general role of metals in neurodegeneration, or the mechanisms by which metals produce oxidative stress or neurotoxicity (85, 86, 89, 163, 355). In this work, we present an integrated review on recent advances in (a) the metabolism of both essential and xenobiotic metals; (b) the mechanisms by which distinct metals determine or modify the cellular redox homeostasis; (c) the link between metal redox activity and function in neural systems; and (d) how alterations in metal homeostasis or intracellular/extracellular levels participate in neurotoxicity and neurodegeneration.
以前的评论讨论了金属在神经变性中的一般作用,或金属产生氧化应激或神经毒性的机制( 85、86、89、163、355 )。在这项工作中,我们对以下方面的最新进展进行了综合综述:(a)必需金属和外源金属的代谢; (b) 不同金属决定或改变细胞氧化还原稳态的机制; (c) 金属氧化还原活性与神经系统功能之间的联系; (d)金属稳态或细胞内/细胞外水平的改变如何参与神经毒性和神经变性。
Overview of Oxidative Stress and Redox Homeostasis
氧化应激和氧化还原稳态概述
Reactive species is a term used to describe compounds that can receive or provide a couple of electrons or one electron participating in nucleophilic, electrophilic, or redox metabolic reactions, respectively. Reactive oxygen species (ROS) are molecules derived from O2, an obligate component of aerobic organisms. The reduction of O2 is one of the primary reactions that sustain aerobic life, yet it is also the main source for ROS. ROS include free (•) and nonfree radical species such as hydroxyl radicals (•OH), superoxide anion radicals (O2•−), and hydrogen peroxide (H2O2). Reactive nitrogen species (RNS) contain both nitrogen (N) and O (oxygen atom), and thus can be categorized as ROS. RNS include nitric oxide (NO•), nitrogen dioxide radical (NO2), and peroxynitrite (OONO−) (120, 252).
反应性物质是一个术语,用于描述可以接收或提供一对电子或一个电子分别参与亲核、亲电或氧化还原代谢反应的化合物。活性氧 (ROS) 是源自 O 2的分子,O 2 是需氧生物体的必需成分。 O 2的还原是维持有氧生命的主要反应之一,也是ROS的主要来源。 ROS包括自由基( • )和非自由基物质,例如羟基自由基( • OH)、超氧阴离子自由基(O 2 •− )和过氧化氢(H 2 O 2 )。活性氮(RNS)同时含有氮(N)和O(氧原子),因此可以归类为ROS。 RNS包括一氧化氮(NO · )、二氧化氮自由基(NO 2 )和过氧亚硝酸盐(OONO - )( 120、252 )。
A major source of intracellular ROS production are the mitochondrial electron transport complexes, primarily the one-electron reduction of O2 to O2•− by complex I (ubiquinone: NADH oxidoreductase), by the semiquinone of ubiquinone (coenzyme Q), and by complex III (cytochrome bc1 complex or CoQH2-cytochrome c reductase). O2•− undergoes rapid dismutation into H2O2 through the action of superoxide dismutases (SODs). Three types of SODs exist in mammalian cells that use an essential metal as cofactor. Cu/Zn-dependent SOD1 and 3 are localized in the cytosol (SOD1), the extracellular space (SOD3) and to a lesser extent, in the inner membrane space of the mitochondria (SOD1). MnSOD (SOD2) is solely localized in the mitochondrial matrix. The transition metal (Cu or Mn) in the active site of SODs is required for the breakdown of O2•− by catalyzing both the one-electron oxidation and one-electron reduction of separate O2•− to give the overall disproportionation reaction that produces O2 and H2O2. Binding of Zn to SOD1 or 3 is not essential for O2•− dismutation reaction but confers higher thermal stability to the proteins (64).
细胞内 ROS 产生的主要来源是线粒体电子传递复合物,主要是通过复合物 I(泛醌:NADH 氧化还原酶)、泛醌的半醌(辅酶 Q)和通过单电子将 O 2还原为 O 2 •−复合物 III(细胞色素 bc1 复合物或 CoQH2-细胞色素 c 还原酶)。 O 2 •−通过超氧化物歧化酶 (SOD) 的作用快速歧化为 H 2 O 2 。哺乳动物细胞中存在三种类型的 SOD,它们使用必需金属作为辅助因子。 Cu/Zn 依赖性 SOD1 和 3 位于细胞质 (SOD1)、细胞外空间 (SOD3) 中,并在较小程度上位于线粒体内膜空间 (SOD1) 中。 MnSOD (SOD2) 仅位于线粒体基质中。 SOD 活性位点中的过渡金属(Cu 或 Mn)是 O 2 •−分解所必需的,通过催化单独的 O 2 •−的单电子氧化和单电子还原来产生整体歧化反应:产生O 2和H 2 O 2 。 Zn 与 SOD1 或 3 的结合对于 O 2 •−歧化反应不是必需的,但赋予蛋白质更高的热稳定性 ( 64 )。
One to 2% of the total mitochondrial O2 consumed is leaked and contributes to the formation of ROS. Usually, this occurs at a slow rate and can be counteracted by mitochondrial antioxidant systems, but in damaged or aged mitochondria, increased ROS formation occurs. O2•− and H2O2 fuel •OH formation through Fenton/Haber–Weiss reactions, where H2O2 oxidizes a redox-active metal (Fe or Cu) leading to the formation of •OH. Then, the oxidized metal is reduced back by O2•− or other cellular reductants promoting metal-catalyzed free radical chain reactions (100, 120, 252).
线粒体 O 2消耗总量的 1% 到 2% 被泄漏,并有助于 ROS 的形成。通常,这种情况发生的速度很慢,并且可以被线粒体抗氧化系统抵消,但在受损或老化的线粒体中,ROS 形成会增加。 O 2 •−和H 2 O 2通过Fenton/Haber-Weiss 反应生成• OH,其中H 2 O 2氧化氧化还原活性金属(Fe 或Cu),从而形成• OH。然后,被氧化的金属被O 2 -或其他细胞还原剂还原,从而促进金属催化的自由基链式反应(100、120、252 ) 。
Other sources of ROS are the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidases (NOX), enzymes whose principal function is to generate O2•− or H2O2. The formation of RNS begins with the synthesis of NO•, catalyzed by nitric oxide synthases (NOSs), which are Fe dependent. Zn is an important structural element of NOS enzymes and is also known to inhibit their activity. NO• reacts with O2•− to produce OONO−, which is a strong oxidizing agent. Microsomes and peroxisomes are important sources of ROS due to the presence of NOX and NOS (302). In addition, ROS production can be mediated by the activity of enzymes such as xanthine oxidase (that contains an Fe-sulfur [S] cluster), the heme proteins cyclooxygenases, cytochrome P450 enzymes, lipoxygenases, and myeloperoxidases, as well as the protein folding machinery in the endoplasmic reticulum (ER) (96, 120, 252).
ROS 的其他来源是烟酰胺腺嘌呤二核苷酸磷酸 (NADPH) 依赖性氧化酶 (NOX),这些酶的主要功能是产生 O 2 •−或 H 2 O 2 。 RNS 的形成始于 NO •的合成,由一氧化氮合酶 (NOS) 催化,一氧化氮合酶 (NOS) 是 Fe 依赖性的。 Zn 是 NOS 酶的重要结构元素,并且还可以抑制其活性。 NO •与O 2 •−反应生成强氧化剂OONO - 。由于 NOX 和 NOS 的存在,微粒体和过氧化物酶体是 ROS 的重要来源 ( 302 )。此外,ROS 的产生可以通过酶的活性介导,例如黄嘌呤氧化酶(含有铁硫 [S] 簇)、血红素蛋白环氧合酶、细胞色素 P450 酶、脂氧合酶和髓过氧化物酶以及蛋白质折叠内质网 (ER) 中的机器 ( 96 , 120 , 252 )。
ROS/RNS act as signaling molecules affecting the stability, expression, function, and activity of a multiplicity of proteins controlling almost all cellular functions, including proliferation, cell survival, metabolism, and signaling. An adequate balance between the formation and elimination of ROS/RNS facilitates the signaling role of these reactive species. However, an imbalance between an increase in the steady-state levels of ROS/RNS and the ability of the cell to metabolize/detoxify them leads to a nonhomeostatic state referred to as oxidative stress. Oxidative stress results in the irreversible oxidative modification of biomolecules with the concomitant loss of function of proteins, damage to cellular organelles, and eventual cell death (96, 100, 252, 282). Polyunsaturated fatty acids are one of the preferred oxidation targets for ROS; particularly, free radicals that are potent initiators of lipid peroxidative chain reactions. Lipid peroxidation products, including malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), can react further with DNA bases and proteins (83). DNA bases are also susceptible to direct oxidation by free radicals that can cause mutations as well as deletions in both nuclear and mitochondrial DNA (328).
ROS/RNS 作为信号分子,影响多种蛋白质的稳定性、表达、功能和活性,控制几乎所有细胞功能,包括增殖、细胞存活、代谢和信号传导。 ROS/RNS 的形成和消除之间的充分平衡有利于这些活性物质的信号传导作用。然而,ROS/RNS 稳态水平的增加与细胞代谢/解毒能力之间的不平衡会导致称为氧化应激的非稳态状态。氧化应激会导致生物分子发生不可逆的氧化修饰,同时导致蛋白质功能丧失、细胞器受损以及最终细胞死亡(96、100、252、282 ) 。多不饱和脂肪酸是 ROS 的首选氧化靶标之一;特别是,自由基是脂质过氧化链反应的有效引发剂。脂质过氧化产物,包括丙二醛 (MDA) 和 4-羟基-2-壬烯醛 (HNE),可以与 DNA 碱基和蛋白质进一步反应 ( 83 )。 DNA 碱基还容易受到自由基的直接氧化,从而导致核 DNA 和线粒体 DNA 突变和缺失 ( 328 )。
Protein oxidation can be a reversible or irreversible phenomenon depending on the type of modification, ROS involved, and the extent of oxidation. Tyrosine (Tyr) nitration, protein carbonylation, and protein crosslinkage generated by adduct formation between oxidized proteins, lipid peroxides, or glycative products are irreversible modifications that promote a loss of function, aggregation, and degradation of the targeted protein, and in some cases, the formation of toxic by-products (71). In contrast, reversible oxidative modifications in the sulfur-containing amino acids methionine (Met) and cysteine (Cys) act as sensors and transducers of ROS/RNS-mediated signaling. Thiol-based oxidoreductases thioredoxins (Trxs), glutaredoxins (Grxs), and Met sulfoxide reductases reduce such modifications acting as the OFF-switch for redox signaling processes (101, 160). On the contary, both Trxs and peroxiredoxins (Prxs) have been proposed to act as redox sensors, buffers, and relays for H2O2- and NO•-mediated signal transduction (46, 195, 268, 323). Cys are also targeted by electrophiles generating irreversible modifications, which are thought to be a primary mechanism of toxicity by xenobiotics (193).
蛋白质氧化可以是可逆或不可逆的现象,具体取决于修饰的类型、涉及的 ROS 以及氧化的程度。酪氨酸 (Tyr) 硝化、蛋白质羰基化以及氧化蛋白质、脂质过氧化物或糖化产物之间形成加合物而产生的蛋白质交联是不可逆的修饰,会促进目标蛋白质的功能丧失、聚集和降解,并且在某些情况下,形成有毒副产品( 71 )。相比之下,含硫氨基酸蛋氨酸 (Met) 和半胱氨酸 (Cys) 中的可逆氧化修饰充当 ROS/RNS 介导的信号传导的传感器和转导器。硫醇基氧化还原酶硫氧还蛋白 (Trxs)、谷氧还蛋白 (Grxs) 和 Met 亚砜还原酶可减少此类修饰,充当氧化还原信号传导过程的关闭开关 ( 101 , 160 )。相反,Trxs 和过氧化还原蛋白(Prxs) 均被提议充当H 2 O 2和NO •介导的信号转导的氧化还原传感器、缓冲器和中继器( 46 , 195 , 268 , 323 )。 Cys 还被亲电子试剂靶向,产生不可逆的修饰,这被认为是异生物质毒性的主要机制 ( 193 )。
Cells are equipped with enzymatic and nonenzymatic antioxidant systems to counteract the toxic effects of ROS/RNS and maintain redox homeostasis (96, 100, 120, 252). The reducing power of glutathione (GSH) is essential for the detoxification of peroxides by GSH peroxidases (GPX) with the resultant conversion of GSH to GSH disulfide (GSSG). GSSG is reduced back by GSH reductase (GR) in an NADPH-dependent manner (105). Catalases also detoxify peroxides but their localization is primarily restricted to peroxisomes. Other endogenous nonenzymatic antioxidants include uric acid, lipoic acid, and ubiquinol (or reduced coenzyme Q), and those obtained from the diet, such as vitamins and flavonoids (96, 100, 120, 252).
细胞配备有酶和非酶抗氧化系统,以抵消 ROS/RNS 的毒性作用并维持氧化还原稳态 ( 96 , 100 , 120 , 252 )。谷胱甘肽 (GSH) 的还原能力对于 GSH 过氧化物酶 (GPX) 对过氧化物的解毒以及将 GSH 转化为 GSH 二硫化物 (GSSG) 至关重要。 GSSG 被 GSH 还原酶 (GR) 以 NADPH 依赖性方式还原 ( 105 )。过氧化氢酶也能解毒过氧化物,但其定位主要限于过氧化物酶体。其他内源性非酶抗氧化剂包括尿酸、硫辛酸和泛醇(或还原型辅酶 Q),以及从饮食中获得的抗氧化剂,例如维生素和类黄酮 ( 96 , 100 , 120 , 252 )。
The CNS is particularly sensitive to oxidative damage, from which neurons and oligodendrocytes seem to be more susceptible than astrocytes and microglia. The basis for this increased sensitivity is linked to the high levels of O2 consumption (and electron leakage as a consequence), the low levels of antioxidant defenses when compared to other cells, and the abundance of lipids or fatty acids (262, 295).
中枢神经系统对氧化损伤特别敏感,神经元和少突胶质细胞似乎比星形胶质细胞和小胶质细胞更容易受到氧化损伤的影响。这种敏感性增加的基础与高水平的 O 2消耗(以及由此产生的电子泄漏)、与其他细胞相比低水平的抗氧化防御以及丰富的脂质或脂肪酸有关 ( 262 , 295 ) 。
Higher levels of endogenous antioxidants and antioxidant systems in astrocytes are explained by the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor (314). Nrf2 recognizes antioxidant response elements to trigger the transcription of antioxidant systems. The ubiquitin ligase Kelch-like ECH-associated protein 1 (Keap1) negatively regulates Nrf2 signaling by inducing its ubiquitination and degradation. Upon modification of specific Cys residues within Keap1 by oxidants or electrophiles (including metals), Nrf2 is released from Keap1 and translocates to the nucleus to induce gene expression dependent on antioxidant response elements (ARE). Nrf2 signaling in neurons has been reported to be epigenetically silenced (27), and induction of the Nrf2 pathway does not seem to be able to promote antioxidant protection (148). Astrocytes also have higher levels of NADPH and glucose 6-phosphate dehydrogenase (G6PD) (109). In contrast, antioxidant genes in neurons seem to be transcriptionally regulated, independent from Nrf2 by synaptic activity, through the triggering of the activating transcription factor 4 (ATF4) and the activator protein 1 (AP-1) (23, 177). Furthermore, while both neurons and astrocytes can synthesize GSH, neurons depend on the supply of GSH precursors via GSH efflux (13, 26).
星形胶质细胞中内源性抗氧化剂和抗氧化系统水平较高的原因是核因子红细胞 2 相关因子 2 (Nrf2) 转录因子的激活 ( 314 )。 Nrf2 识别抗氧化反应元件以触发抗氧化系统的转录。泛素连接酶 Kelch 样 ECH 相关蛋白 1 (Keap1) 通过诱导 Nrf2 泛素化和降解来负向调节 Nrf2 信号传导。当氧化剂或亲电子试剂(包括金属)修饰 Keap1 内的特定 Cys 残基时,Nrf2 从 Keap1 中释放出来并转位至细胞核,诱导依赖于抗氧化反应元件 (ARE) 的基因表达。据报道,神经元中的 Nrf2 信号传导在表观遗传上被沉默 ( 27 ),并且 Nrf2 通路的诱导似乎无法促进抗氧化保护 ( 148 )。星形胶质细胞还具有较高水平的 NADPH 和葡萄糖 6-磷酸脱氢酶 (G6PD) ( 109 )。相比之下,神经元中的抗氧化基因似乎通过激活转录因子 4 (ATF4) 和激活蛋白 1 (AP-1) 的触发,通过突触活动独立于 Nrf2 进行转录调节 ( 23 , 177 )。此外,虽然神经元和星形胶质细胞都可以合成 GSH,但神经元依赖于通过GSH 外流提供的 GSH 前体 ( 13 , 26 )。
Neurotoxicity of Metals and Metalloids
金属和类金属的神经毒性
Neurotoxicity is defined as a damaging effect on the nervous system caused by a biological or chemical agent. The neurotoxic effects of chemicals are the result of a series of events that include the following: the entry and/or changes in the distribution of a chemical into the brain, interactions with specific cellular targets (neurons and glia), and the initiation of biochemical changes, resulting in structural and functional changes of the nervous system (270). Environmental neurotoxicants include organic and inorganic chemical compounds, such as heavy metals, organic solvents, and cytotoxic substances that can also contain heavy metal mixtures (e.g., pesticides, cigarette smoke, diesel exhaust particles,). The neurotoxic effect of environmental agents is determined by their chemical composition, metabolic function, and pathologican consequence, differing widely according to the brain region targeted and the mechanism(s) of action (270).
神经毒性被定义为生物或化学制剂对神经系统造成的损害作用。化学物质的神经毒性作用是一系列事件的结果,包括以下内容:化学物质进入大脑和/或分布变化、与特定细胞靶标(神经元和神经胶质细胞)的相互作用以及生化反应的启动。变化,导致神经系统的结构和功能变化( 270 )。环境神经毒物包括有机和无机化合物,例如重金属、有机溶剂和也可能含有重金属混合物的细胞毒性物质(例如杀虫剂、香烟烟雾、柴油机尾气颗粒)。环境因素的神经毒性作用由其化学成分、代谢功能和病理后果决定,根据目标大脑区域和作用机制的不同而有很大差异( 270 )。
Essential Metals 基本金属
Micronutrients are defined by their essentiality and very limited quantity in humans, where their deficiency results in the impairment of biological functions (103, 205). Some metals are essential for the maintenance of cellular homeostasis. Essential metals display important roles as signaling agents or cofactors and, in particular, as activators or redox system components (Supplementary Table S1) (103, 205). Traditionally, cellular osmotic balance and signaling (including synaptic communication and excitability) are associated with nontransition metal ions, such as Na+, K+, and Ca2+, which form complexes with proteins using low-affinity binding sites, are found at high concentrations, and move quickly across cellular compartments. On the contrary, transition metal ions are known as catalytic cofactors or structural elements in enzymes. Transition metals are present in lower concentration (“trace elements”) and are usually coordinated to proteins at high-affinity binding sites. In the last decade, a role for Zn2+ ion as a second messenger has been recognized; however, the role of redox-active metals, such as Cu, Fe, and Mn, in cellular signaling is less explored.
微量营养素的定义是其重要性和对人体的数量非常有限,其缺乏会导致生物功能受损( 103、205 )。一些金属对于维持细胞稳态至关重要。必需金属作为信号剂或辅助因子,特别是作为激活剂或氧化还原系统成分,显示出重要的作用(补充表S1 )( 103、205 )。传统上,细胞渗透平衡和信号传导(包括突触通讯和兴奋性)与非过渡金属离子(例如 Na + 、K +和 Ca 2+ )相关,这些离子使用低亲和力结合位点与蛋白质形成复合物,被发现在高浓度。浓度,并快速穿过细胞区室。相反,过渡金属离子被称为酶中的催化辅因子或结构元素。过渡金属以较低浓度(“微量元素”)存在,通常在高亲和力结合位点与蛋白质配位。在过去的十年中,Zn 2+离子作为第二信使的作用已得到认识。然而,氧化还原活性金属(例如铜、铁和锰)在细胞信号传导中的作用却鲜为人知。
Cu, Fe, and Mn are cofactors of many enzymes that catalyze redox reactions. Although the high reactivity of these metals is essential for life, they can also be involved in uncontrolled redox reactions associated with oxidative stress and cellular damage. Hence, a highly conserved network of proteins strictly regulates the homeostasis of redox-active metal ions, by controlling their uptake, intracellular distribution, storage, and export (205). In the following sections, we describe how brain homeostasis of redox reactive metal ions requires close communication between the blood-brain barrier (BBB), neurons, astrocytes, oligodendrocytes, and microglia. The cases where metal trafficking is tightly linked to the cellular redox environment are highlighted, while the potential role of metal redox cycling in redox signaling is also discussed. Finally, for each essential metal ion, we review how the disruption of its homeostasis may cause two major features associated with neurodegenerative diseases: dysfunction of metalloproteins and aberrant metal-protein interactions that can lead to protein aggregation and uncontrolled ROS production.
Cu、Fe 和 Mn 是许多催化氧化还原反应的酶的辅助因子。尽管这些金属的高反应性对于生命至关重要,但它们也可能参与与氧化应激和细胞损伤相关的不受控制的氧化还原反应。因此,高度保守的蛋白质网络通过控制氧化还原活性金属离子的摄取、细胞内分布、储存和输出来严格调节氧化还原活性金属离子的稳态( 205 )。在以下部分中,我们将描述氧化还原活性金属离子的大脑稳态如何需要血脑屏障(BBB)、神经元、星形胶质细胞、少突胶质细胞和小胶质细胞之间的密切沟通。强调了金属运输与细胞氧化还原环境紧密相关的情况,同时还讨论了金属氧化还原循环在氧化还原信号传导中的潜在作用。最后,对于每种必需金属离子,我们回顾了其稳态的破坏如何导致与神经退行性疾病相关的两个主要特征:金属蛋白功能障碍和异常金属-蛋白质相互作用,可导致蛋白质聚集和不受控制的活性氧产生。
Copper 铜
Cu is present in biological systems as Cu+ (cuprous ion) and Cu2+ (cupric ion) (Supplementary Table S1). Cu is a redox-active metal and a cofactor of many enzymes involved in cellular respiration, radical detoxification, as well as biosynthesis of neurotransmitters, neuropeptides, and hormones. For example, Cu is required as cofactor of several important enzymes in the brain, such as peptidylglycine monooxygenase (PHM), dopamine β-monooxygenase (DBM), tyrosinase (TYR), and cytochrome C oxidase (COX). Cu can activate O2 for reduction and although its high reactivity with O2 is essential for life, if uncontrolled it can promote oxidative stress and cellular damage. Cu+ can react with H2O2 to produce highly reactive •OH. Cu also induces microglial activation and mitochondrial ROS formation (137).
Cu 在生物系统中以 Cu + (亚铜离子)和 Cu 2+ (铜离子)的形式存在(补充表 S1 )。 Cu 是一种氧化还原活性金属,也是许多参与细胞呼吸、自由基解毒以及神经递质、神经肽和激素生物合成的酶的辅助因子。例如,铜是大脑中几种重要酶的辅因子,如肽基甘氨酸单加氧酶 (PHM)、多巴胺 β-单加氧酶 (DBM)、酪氨酸酶 (TYR) 和细胞色素 C 氧化酶 (COX)。 Cu 可以激活 O 2进行还原,虽然它与 O 2的高反应性对于生命至关重要,但如果不加控制,它会促进氧化应激和细胞损伤。 Cu +能与H 2 O 2反应生成高活性的· OH。 Cu 还诱导小胶质细胞激活和线粒体 ROS 形成 ( 137 )。
The control of Cu homeostasis in the brain requires a close interrelationship between the BBB, neurons, and astrocytes (300) (Fig. 1). Astrocytes regulate the properties of the BBB, which is the entry point for Cu into the brain from the blood stream, where Cu is bound to albumin or ceruloplasmin (Cp) (58) (Fig. 1a). At the same time, neurons require Cu as a cofactor and neuromodulator, while astrocytes are key players in synaptic transmission and Cu homeostasis (58). The Cu trafficking machineries of the BBB endothelial cells, neurons, and astrocytes resemble those of other extensively studied mammalian cells (Fig. 1a–c). Extracellular Cu is primarily transported into cells as Cu+
via the Cu transporter 1 (CTR1) (58). Cu2+ reduction to Cu+, and Cu uptake from Cp via CTR1, has been proposed to involve a reduction step but no Cu2+ reductase has been identified (281). CTR1-independent mechanisms have also been proposed. The divalent metal transporter 1 (DMT1) seems to play a compensatory role for Cu uptake under certain conditions such as in the absence of CTR1 or under low Fe conditions (147, 231). Interestingly, DMT1 loss promotes brain Cu accumulation and oxidative stress (122). Other potential candidates recently proposed to mediate Cu uptake are the Zrt (Zn-regulated transporter)- or Irt (Fe-regulated transporter)-like protein 4 (ZIP4) (11, 29).
大脑中铜稳态的控制需要 BBB、神经元和星形胶质细胞之间密切的相互关系 ( 300 )(图 1 )。星形胶质细胞调节 BBB 的特性,BBB 是 Cu 从血流进入大脑的入口点,其中 Cu 与白蛋白或铜蓝蛋白 (Cp) 结合 ( 58 )(图 1a )。同时,神经元需要铜作为辅助因子和神经调节剂,而星形胶质细胞是突触传递和铜稳态的关键参与者( 58 )。 BBB内皮细胞、神经元和星形胶质细胞的铜运输机制与其他广泛研究的哺乳动物细胞类似(图1a-c )。细胞外 Cu 主要通过Cu 转运蛋白 1 (CTR1) 以 Cu +形式转运到细胞内 ( 58 )。 Cu 2+还原为 Cu +以及通过CTR1 从 Cp 摄取 Cu 已被提议涉及还原步骤,但尚未鉴定出 Cu 2+还原酶 ( 281 )。还提出了独立于 CTR1 的机制。二价金属转运蛋白 1 (DMT1) 似乎在某些条件下(例如缺乏 CTR1 或低 Fe 条件下)对 Cu 吸收发挥补偿作用 ( 147 , 231 )。有趣的是,DMT1 缺失会促进大脑铜积累和氧化应激 ( 122 )。最近提出的介导铜吸收的其他潜在候选蛋白是 Zrt(锌调节转运蛋白)或 Irt(铁调节转运蛋白)样蛋白 4 (ZIP4) ( 11 , 29 )。
Intracellular Cu distribution depends on the relative concentration and metal affinity of chaperones or chelators (18) (Fig. 1b, c). The antioxidant protein 1 (Atox1), the Cu chaperone for superoxide dismutase 1 (CCS1), and GSH have been proposed to take Cu+ from CTR1 (197). Chaperones not only bind Cu but they also deliver it to specific targets. CCS1 transfers Cu to SOD1, where its reactivity with O2 is required for SOD1 maturation via the formation of a disulfide bridge (17). Copper chaperones COX19 and COX17 deliver Cu to the COX assembly proteins (SCO1 and SCO2) and COX11. Finally, Atox1 transports Cu to the ATPase copper transporting alpha (ATP7A) and beta (ATP7B) in the secretory pathway, where cuproenzymes such as SOD3 are metalized (Fig. 1b, c). Upon an excess in cytosolic Cu levels, vesicles in the secretory pathway are loaded with Cu and trafficked to the plasma membrane, where Cu is released into the extracellular space (196, 197).
细胞内 Cu 分布取决于分子伴侣或螯合剂的相对浓度和金属亲和力 ( 18 )(图 1b、c )。抗氧化蛋白 1 (Atox1)、超氧化物歧化酶 1 (CCS1) 的 Cu 分子伴侣和 GSH 已被提议从 CTR1 中获取 Cu + ( 197 )。分子伴侣不仅能结合铜,还能将其递送至特定目标。 CCS1 将 Cu 转移至 SOD1,其中其与 O 2的反应是 SOD1通过形成二硫桥成熟所必需的 ( 17 )。铜伴侣 COX19 和 COX17 将铜递送至 COX 组装蛋白(SCO1 和 SCO2)和 COX11。最后,Atox1在分泌途径中将Cu转运至ATP酶铜转运α(ATP7A)和β(ATP7B),其中SOD3等铜酶被金属化(图1b,c )。当胞质铜水平过量时,分泌途径中的囊泡会装载铜并运输到质膜,其中铜被释放到细胞外空间 ( 196 , 197 )。
Strikingly, although GSH has a lower affinity for Cu, compared to Atox1 and CCS1, the rate of Cu entry into the cell via CTR1 is affected by GSH, but not by Atox1 or CCS1 depletion, likely due to the higher concentration of GSH (208). Thus, GSH is the most important cytosolic first acceptor of Cu from CTR1, providing a tight link between cellular Cu uptake and cellular redox homeostasis. GSH in turn is known to transfer Cu ions to metallothioneins (MTs), small Cys-rich proteins that play a major role as scavengers for metal ions (93) (Fig. 1b, c). Three distinct isoforms of MTs are expressed in the human brain. MT-I, MT-II, and MT-III are found in astrocytes, while MT-III is the main isoform expressed in neurons. MTs can be secreted, playing a crucial role in modulating Cu homeostasis and protecting the cell from oxidative damage (299).
引人注目的是,尽管与 Atox1 和 CCS1 相比,GSH 对 Cu 的亲和力较低,但 Cu通过CTR1 进入细胞的速率受 GSH 影响,但不受 Atox1 或 CCS1 消耗的影响,这可能是由于 GSH 浓度较高( 208 )。因此,GSH 是 CTR1 最重要的 Cu 胞质第一受体,在细胞 Cu 摄取和细胞氧化还原稳态之间提供紧密联系。众所周知,GSH 又可将 Cu 离子转移至金属硫蛋白 (MT),这是一种富含 Cys 的小蛋白质,在金属离子清除剂中发挥着重要作用 ( 93 )(图 1b、c )。人脑中表达三种不同的 MT 亚型。 MT-I、MT-II 和 MT-III 存在于星形胶质细胞中,而 MT-III 是神经元中表达的主要异构体。 MT 可以被分泌,在调节铜稳态和保护细胞免受氧化损伤方面发挥着至关重要的作用 ( 299 )。
Chaperones use Cys residues to coordinate Cu+ in their reduced state. Thus, Cys oxidation affects Cu dynamics. Atox1 coordinates Cu using a CysXXCys motif that can form a disulfide bond, which can be reduced directly by GSH or by Grx1 in a GSH-dependent manner (Fig. 1d) (41, 127). During neuronal differentiation, the GSH/GSSG ratio increases promoting a more reductive environment, which in turn reduces Cys residues at the Cu binding site of Atox1. These events enable Cu transport from Atox1 to ATP7A/B and enhance Cu availability to load the active sites of newly synthetized cuproenzymes (128) (Fig. 1d). After neuronal differentiation, both Cu and MT-III levels increase (249).
伴侣分子使用 Cys 残基来协调还原态的 Cu + 。因此,Cys 氧化会影响 Cu 动力学。 Atox1 使用可以形成二硫键的 CysXXCys 基序来配位 Cu,该二硫键可以直接被 GSH 或以 GSH 依赖性方式被 Grx1 还原(图 1d )( 41 , 127 )。在神经元分化过程中,GSH/GSSG 比率增加,促进还原性更强的环境,从而减少 Atox1 Cu 结合位点的 Cys 残基。这些事件使铜能够从 Atox1 转运到 ATP7A/B,并增强铜的可用性以装载新合成的铜酶的活性位点 ( 128 )(图 1d )。神经元分化后,Cu 和 MT-III 水平都会增加 ( 249 )。
The recent development of fluorescent sensors has revealed new important roles of intracellular Cu in neuronal activity (78); for example, in the spine neck of hippocampal neurons, Cu is essential for the control of the dendritic actin cytoskeleton (269). Cu export by ATP7A has been reported to be triggered by the activation of glutamate (Glu)/N-methyl-d-aspartate receptors (NMDARs) (301) (Fig. 2a). At the synapse, Cu can modulate many neurotransmitter receptors (66). For example, Cu inhibits NMDAR activity by Cys nitros(yl)ation, a neuroprotective mechanism associated with neuronal plasticity that requires the participation of the cellular prion protein (PrPC) (110) (Fig. 2b). Accordingly, selective depletion of ATP7A in neurons and glia increases the susceptibility to NMDA seizures (132).
荧光传感器的最新发展揭示了细胞内铜在神经元活动中新的重要作用( 78 );例如,在海马神经元的脊柱颈中,Cu 对于控制树突状肌动蛋白细胞骨架至关重要 ( 269 )。据报道,ATP7A 的 Cu 输出是由谷氨酸 (Glu)/N-甲基-d-天冬氨酸受体 (NMDAR) 的激活触发的 ( 301 ) (图 2a )。在突触处,铜可以调节许多神经递质受体( 66 )。例如,Cu 通过 Cys 亚硝基(基)化作用抑制 NMDAR 活性,这是一种与神经元可塑性相关的神经保护机制,需要细胞朊病毒蛋白( PrPC )的参与( 110 )(图 2b )。因此,神经元和神经胶质细胞中 ATP7A 的选择性消耗会增加 NMDA 癫痫发作的易感性 ( 132 )。
Cu trafficking at the synapse is complex and involves several Cu binding proteins, such as the membrane-bound PrPC, the amyloid precursor protein (APP), and the amyloid beta (Aβ) peptide from neurons, or the neurokinin B (NKB) peptide from astrocytes (Fig. 2). PrPC has several Cu binding sites and it might be involved in Cu sensing and transport into neurons (Fig. 3a). During synaptic transmission, the extracellular Cu concentration may reach ∼100 μM. Cu binding to PrPC induces its endocytosis, possibly contributing to Cu delivering into the cytosol (263). APP has been reported to regulate Cu efflux, as the APP knockout mice display higher levels of Cu in the brain and in neurons, while APP overexpression leads to decreased intracellular Cu concentrations (28, 330, 375). In contrast, Aβ peptides produced from the proteolytic cleavage of APP have been proposed to act as Cu scavengers (264), particularly those cleaved to yield 4–40 peptides that have higher affinity for Cu and make up to 50% of the Aβ in plaques (374). NKB has been suggested to compete for Cu from PrPC and transport it into astrocytes by endocytosis (Fig. 2c) (308). PrPC and Aβ contain intrinsically disordered regions with Cu binding sites that have the capacity to adopt different Cu coordination modes, some of which have been proposed to activate O2 and produce ROS (Fig. 3a) (184, 350).
突触处的 Cu 运输非常复杂,涉及多种 Cu 结合蛋白,例如膜结合PrPC 、淀粉样前体蛋白 (APP) 和来自神经元的淀粉样 β (Aβ) 肽或神经激肽 B (NKB) 肽来自星形胶质细胞(图2 )。 PrP C有几个 Cu 结合位点,它可能参与 Cu 传感和转运到神经元中(图 3a )。在突触传递过程中,细胞外铜浓度可能达到~100 μM 。 Cu 与 PrP C结合诱导其内吞作用,可能有助于 Cu 输送到细胞质中 ( 263 )。据报道,APP 可以调节铜的流出,因为 APP 敲除小鼠的大脑和神经元中的铜含量较高,而 APP 过度表达会导致细胞内铜浓度降低 ( 28 , 330 , 375 )。相比之下,APP 蛋白水解裂解产生的 Aβ 肽可作为 Cu 清除剂 ( 264 ),特别是那些裂解产生 4-40 个肽的肽,这些肽对 Cu 具有更高的亲和力,占斑块中 Aβ 的 50% ( 374 )。有人建议 NKB 与 PrP C竞争 Cu 并通过内吞作用将其转运到星形胶质细胞中(图 2c )( 308 )。 PrP C和 Aβ 含有具有 Cu 结合位点的本质无序区域,这些区域能够采用不同的 Cu 配位模式,其中一些已被提议激活 O 2并产生 ROS(图 3a )( 184 , 350 )。
A dysfunction in Cu homeostasis is reported to alter neuronal function and lead to disease progression, including neurodegeneration (Supplementary Table S1). Menkes disease and Wilson disease are caused by mutations or partial deletions in ATP7A and ATP7B, respectively. These Cu transporters have different patterns of expression in the CNS, explaining the distinct pathological features of each disease. ATP7B is found in the visual cortex, anterior cingulate cortex, caudate, putamen, substantia nigra (SN), and cerebellum. ATP7A is detected in astrocytes and neurons from the hippocampus and cerebellum, the BBB and choroid plexus, and during neural development (338). Wilson patients display parkinsonism, underscoring the importance of Cu homeostasis in the motor controlling systems. On the contrary, the ubiquitous expression of ATP7A has challenged mechanistic investigations in Menkes disease. However, a recent study shows that depleting ATP7A in neurons and glia does not lead to neurodegeneration, but to an increased susceptibility to NMDA seizures (132), underscoring its neuroprotective role as described above (Fig. 2a,b). Although neurodegeneration is clearly linked to alterations in Cu homeostasis in Menkes and Wilson diseases, the mechanisms are still unknown.
据报道,铜稳态功能障碍会改变神经元功能并导致疾病进展,包括神经变性(补充表S1 )。门克斯病和威尔逊病分别由ATP7A和ATP7B的突变或部分缺失引起。这些铜转运蛋白在中枢神经系统中具有不同的表达模式,解释了每种疾病的独特病理特征。 ATP7B 存在于视觉皮层、前扣带皮层、尾状核、壳核、黑质 (SN) 和小脑中。 ATP7A 在海马和小脑、血脑屏障和脉络丛的星形胶质细胞和神经元中以及神经发育过程中被检测到 ( 338 )。威尔逊患者表现出帕金森症,强调了铜稳态在运动控制系统中的重要性。相反,ATP7A 的普遍表达对门克斯病的机制研究提出了挑战。然而,最近的一项研究表明,消耗神经元和神经胶质细胞中的 ATP7A 不会导致神经退行性变,而是会增加对 NMDA 癫痫发作的易感性( 132 ),这强调了其如上所述的神经保护作用(图 2a,b )。尽管神经变性显然与门克斯病和威尔逊病中铜稳态的改变有关,但其机制仍不清楚。
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD) have been associated with alterations in Cu homeostasis, but a link to specific genetic alterations in Cu transport or handling is missing (Supplementary Table S1). These neurodegenerative diseases are associated with the formation of amyloid aggregates composed of proteins that are either a Cu-dependent antioxidant enzyme, such as SOD1 in ALS, or Cu-binding proteins, such as Aβ and α-synuclein in AD and PD, respectively.
肌萎缩侧索硬化症 (ALS)、亨廷顿病 (HD)、帕金森病 (PD) 和阿尔茨海默病 (AD) 等神经退行性疾病与铜稳态的改变有关,但与铜转运或处理的特定基因改变有关缺失(补充表S1 )。这些神经退行性疾病与淀粉样蛋白聚集体的形成有关,淀粉样蛋白聚集体由铜依赖性抗氧化酶蛋白(例如 ALS 中的 SOD1)或铜结合蛋白(例如 AD 和 PD 中的 Aβ 和 α-突触核蛋白)组成。
ALS is characterized by the degeneration of motor neurons, and mouse models show increased intracellular Cu levels and the formation of protein aggregates composed of SOD1 and Cu transport proteins such as Ctr1, CCS, Atox1, and Cox17 (344, 346). SOD1 aggregation has been associated with an alteration in protein stability, which is impacted by metallation and Cu-dependent dimerization. Although SOD1 plays an important role in clearing O2•−, studies have demonstrated that the mechanism is likely other than the alteration in the antioxidant capacity of SOD1 (312). Increased intracellular Cu levels have been reported in ALS models (346). Consistently, Cu chelators or MT-I overexpression extend the life span and slow disease progression of the SOD1 (G93A) ALS mouse model (345).
ALS 的特点是运动神经元变性,小鼠模型显示细胞内 Cu 水平增加以及由 SOD1 和 Cu 转运蛋白(如 Ctr1、CCS、Atox1 和 Cox17)组成的蛋白质聚集体的形成 ( 344 , 346 )。 SOD1 聚集与蛋白质稳定性的改变有关,而蛋白质稳定性的改变受到金属化和 Cu 依赖性二聚化的影响。尽管SOD1 在清除O 2 •− 方面发挥着重要作用,但研究表明该机制很可能与SOD1 抗氧化能力的改变不同( 312 )。据报道,ALS 模型中细胞内铜水平增加 ( 346 )。一致地,Cu 螯合剂或 MT-I 过表达可延长SOD1 (G93A) ALS 小鼠模型的寿命并减缓疾病进展 ( 345 )。
HD is an autosomal dominant genetic disorder caused by polyglutamine (polyQ) repeat expansions near the N-terminus of the huntingtin (Htt) protein. HD is characterized by movement dysfunction, psychiatric and cognitive alterations linked to the degeneration of striatal spiny neurons. Cu accumulation in the striatum of HD transgenic mice has been reported (102). Mutant Htt forms toxic aggregates, but the mechanisms of toxicity are still unclear. A putative Cu binding site in Htt involving Met8 and His82 has been identified, and this interaction promotes polyQ aggregate formation (102, 381), which is reduced by MT-III overexpression (123).
HD 是一种常染色体显性遗传性疾病,由亨廷顿蛋白 (Htt) 蛋白 N 末端附近的聚谷氨酰胺 (polyQ) 重复扩增引起。 HD 的特点是运动功能障碍、精神和认知改变,这些改变与纹状体棘神经元的退化有关。据报道,HD 转基因小鼠的纹状体中存在 Cu 积累 ( 102 )。突变体Htt形成有毒聚集体,但毒性机制仍不清楚。已鉴定出 Htt 中涉及 Met8 和 His82 的推定 Cu 结合位点,这种相互作用促进了 polyQ 聚集体的形成 ( 102 , 381 ),而 MT-III 过表达可减少这种聚集体的形成 ( 123 )。
PD is characterized by the degeneration of dopaminergic neurons in the SN, which are rich in Cu. PD patients show decreased Cu content in the SN (70) without changes in Cu levels in serum, plasma, and cerebrospinal fluid (CSF) (203). Accordingly, decreased levels of CTR1 (70) have been reported in the SN, while MT-I and MT-II levels in active astrocytes are increased, reflecting a glial response to the loss of Cu homeostasis in PD (226). In contrast, occupational exposure to Cu has been linked to an increased risk to develop PD (115).
PD 的特征是 SN 中富含铜的多巴胺能神经元变性。 PD患者表现出SN( 70 )中的Cu含量降低,而血清、血浆和脑脊液(CSF)中的Cu水平没有变化( 203 )。因此,据报道,SN 中 CTR1 水平降低 ( 70 ),而活性星形胶质细胞中 MT-I 和 MT-II 水平升高,反映了神经胶质细胞对 PD 中铜稳态丧失的反应 ( 226 )。相比之下,职业接触铜与患帕金森病的风险增加有关( 115 )。
The accumulation of intracellular protein inclusions (Lewy bodies), where α-synuclein is the main protein component, is another hallmark of PD (362). α-Synuclein is a small intrinsically disordered protein (IDP) enriched in presynaptic terminals and nucleus that can interact with cytoskeleton components and lipid membranes (170). IDPs are proteins that can adopt different conformations, and thus respond to changes in their biochemical environment. This property allows them to engage in interactions with multiple protein targets (23). Cu2+ and Cu+ ions are capable of binding to α-synuclein at three different sites (20, 33, 228, 361) (Fig. 3a). Interestingly, the H50Q SNCA/α-synuclein mutation linked to hereditary PD abolishes one Cu binding site altering Cu-induced α-synuclein aggregation (361). Moreover, Cu binding to the high-affinity Cu-binding site at the N-terminal region of α-synuclein accelerates its amyloid aggregation in vitro (20, 33); although this effect is abolished in acetylated α-synuclein (234), which is found in Lewy bodies (10).
细胞内蛋白质内含物(路易体)的积累(其中 α-突触核蛋白是主要蛋白质成分)是 PD 的另一个标志 ( 362 )。 α-突触核蛋白是一种小的本质无序蛋白 (IDP),富含突触前末梢和细胞核,可以与细胞骨架成分和脂质膜相互作用 ( 170 )。 IDP 是可以采用不同构象的蛋白质,从而对其生化环境的变化做出反应。这一特性使它们能够与多个蛋白质靶标相互作用( 23 )。 Cu 2+和Cu +离子能够在三个不同位点(20、33、228、361 )结合α-突触核蛋白(图3a ) 。有趣的是,与遗传性 PD 相关的 H50Q SNCA /α-突触核蛋白突变消除了一个铜结合位点,改变了铜诱导的 α-突触核蛋白聚集 ( 361 )。此外,Cu 与 α-突触核蛋白 N 末端区域的高亲和力 Cu 结合位点的结合加速了其体外淀粉样蛋白的聚集 ( 20 , 33 );尽管这种效应在乙酰化 α-突触核蛋白 ( 234 ) 中被消除,而乙酰化 α-突触核蛋白存在于路易体 ( 10 ) 中。
While several studies have suggested that Cu-induced aggregation of α-synuclein is directly linked to its neurotoxicity, recent studies suggest a lack of correlation between protein aggregation and cytotoxicity (361); in fact, it has been demonstrated that α-synuclein potentiates the toxicity of Cu in dopaminergic cells in the absence of enhanced accumulation of protein aggregates (8). Clearly, further investigations are needed to completely understand the structural impact of Cu-α-synuclein interactions and their role in PD. On the contrary, acetylation and Cu+ binding to α-synuclein are two synergistic events that turn the intrinsically disordered N-terminal region into an α-helix conformation (228) (Fig. 2d), which displays higher affinity for membranes (75). These observations suggest a potential link between Cu+-α-synuclein interactions and the proposed function of α-synuclein in vesicle trafficking; a link that might be perturbed in PD.
虽然一些研究表明铜诱导的 α-突触核蛋白聚集与其神经毒性直接相关,但最近的研究表明蛋白质聚集和细胞毒性之间缺乏相关性 ( 361 );事实上,已经证明,在不增加蛋白质聚集体积累的情况下,α-突触核蛋白会增强多巴胺能细胞中铜的毒性 ( 8 )。显然,需要进一步研究才能完全了解 Cu-α-突触核蛋白相互作用的结构影响及其在 PD 中的作用。相反,乙酰化和 Cu +与 α-突触核蛋白结合是两个协同事件,将本质上无序的 N 末端区域转变为 α-螺旋构象 ( 228 )(图 2d ),这对膜表现出更高的亲和力 ( 75 ) 。这些观察结果表明 Cu + -α-突触核蛋白相互作用与 α-突触核蛋白在囊泡运输中的拟议功能之间存在潜在联系; PD 中可能受到干扰的链接。
Different redox modifications of α-synuclein are found in Lewy bodies, including Met oxidation, Tyr nitration (67), and formation of di-Tyr-linked α-synuclein dimers. Cu+-α-synuclein complexes have been implicated in these modifications, as they are capable of activating O2, leading to Met oxidation and di-Tyr bond formation (5, 227) (Fig. 3a). In contrast, a recent report suggests that Cu+ complexes with oligomeric or fibrillar α-synuclein reduce metal-catalyzed ROS formation (264). Cu has also been shown to potentiate oxidative damage induced by the dopamine (DA) analog 6-hydroxydopamine (63). Cu also interacts with the early-onset PD recessive genes (protein) PARK7 (DJ-1) and PARK2(Parkin). Cu binding to DJ-1 protects against metal toxicity, possibly acting as a chaperone for SOD1 (35, 114); while Parkin mutations have been reported to increase the cytotoxic effect of heavy metals, including Cu (1).
在路易体中发现了 α-突触核蛋白的不同氧化还原修饰,包括 Met 氧化、Tyr 硝化 ( 67 ) 以及二-Tyr 连接的 α-突触核蛋白二聚体的形成。 Cu + -α-突触核蛋白复合物参与了这些修饰,因为它们能够激活 O 2 ,导致 Met 氧化和二-Tyr 键形成 ( 5 , 227 )(图 3a )。相反,最近的一份报告表明,Cu +与寡聚或纤维状 α-突触核蛋白的复合物可减少金属催化的 ROS 形成 ( 264 )。 Cu 还被证明可以增强多巴胺 (DA) 类似物 6-羟基多巴胺 ( 63 ) 引起的氧化损伤。 Cu 还与早发性 PD 隐性基因(蛋白质) PARK7 (DJ-1) 和PARK2 (Parkin) 相互作用。 Cu 与 DJ-1 结合可防止金属毒性,可能充当 SOD1 的伴侣 ( 35 , 114 );据报道,Parkin 突变会增加重金属(包括 Cu)的细胞毒性作用 ( 1 )。
AD is a neurodegenerative disease associated with the degeneration of hippocampal and cortical neurons and eventual loss of memory and progressive dementia (326). Decreased levels of Cu are found in AD brains (42), while the total Cu content and labile nonprotein-bound Cu fraction are increased in the plasma of AD patients (325). Interestingly, polymorphisms in ATP7B have been linked to AD (326). AD is associated with the formation of extracellular amyloid plaques composed of Cu bound to Aβ peptides 1–40 and 1–42 fragments produced by cleavage of the APP, as well as N-truncated forms 4–40 and 4–42, and to a lesser extent 11–40/42 (210, 273, 364). The Cu binding features of Aβ 4–40/42 and 11–40/42 are different from those of 1–40/42, leading to the formation of Cu-Aβ complexes with distinct redox properties (Fig. 3a) (229). Different aggregation properties have also been described, as illustrated by the faster fiber assembly rate of Aβ 11–40/42 when compared with 1–40/42 (21). Substoichiometric Cu2+ concentrations trigger Aβ aggregation through a different pathway that involves the formation of oligomers more neurotoxic than those generated by the peptide alone (25, 204). On the contrary, the redox activity of Cu-Aβ complexes has also been proposed to lead to the generation of ROS (52, 214), but contradictory results exist as well (264). Interestingly, interaction of Cu with N-truncated 4–40 and 4–42 peptides yields redox-inactive Cu-Aβ complexes (229, 350). A dysfunction in Cu homeostasis in AD is also evidenced by decreased levels of MT-III (390). MTs are capable of exchanging Cu2+ with Aβ1–40/42, reducing Cu and stabilizing it. This Cu exchange by MTs has been proposed as a redox-silencing mechanism that prevents ROS formation by Cu-Aβ complexes (223).
AD 是一种神经退行性疾病,与海马和皮质神经元退化以及最终记忆丧失和进行性痴呆相关( 326 )。 AD 大脑中铜的水平降低 ( 42 ),而 AD 患者血浆中的总铜含量和不稳定的非蛋白质结合铜分数则增加 ( 325 )。有趣的是, ATP7B的多态性与 AD 相关( 326 )。 AD 与细胞外淀粉样斑块的形成有关,该斑块由与 APP 裂解产生的 Aβ 肽 1-40 和 1-42 片段以及 N-截短形式 4-40 和 4-42 以及与较小范围 11–40/42 ( 210 , 273 , 364 )。 Aβ 4–40/42 和 11–40/42 的 Cu 结合特征与 1–40/42 不同,导致形成具有不同氧化还原性质的 Cu-Aβ 复合物(图 3a )( 229 )。还描述了不同的聚集特性,如与 1-40/42 相比,Aβ 11-40/42 的纤维组装速率更快 ( 21 )。亚化学计量的 Cu 2+浓度通过不同的途径触发 Aβ 聚集,该途径涉及形成比单独肽产生的寡聚物更具神经毒性的寡聚物 ( 25 , 204 )。相反,Cu-Aβ复合物的氧化还原活性也被认为会导致ROS的产生( 52 , 214 ),但也存在矛盾的结果( 264 )。有趣的是,Cu 与 N 截短的 4-40 和 4-42 肽相互作用产生氧化还原无活性的 Cu-Aβ 复合物 ( 229 , 350 )。 MT-III 水平降低也证明了 AD 中铜稳态的功能障碍 ( 390 )。 MT 能够将 Cu 2+与 Aβ1–40/42 交换,还原 Cu 并使其稳定。 MT 的这种 Cu 交换被认为是一种氧化还原沉默机制,可防止 Cu-Aβ 复合物形成 ROS ( 223 )。
The impact of dysfunctional Cu homeostasis in AD might go beyond the neurotoxicity of Cu-Aβ complexes. APP, whose mutations are associated with AD, is a type 1 transmembrane protein that displays three Cu binding sites in its extracellular domain (22, 140). One Cu-binding site is located in the growth factor-like domain, and has been implicated in Cu-induced dimerization of APP, a process that would be important in cell adhesion and signaling (22). Cu was found to induce APP phosphorylation at Thr668 promoting its localization to the axonal membrane, suggesting an important link between Cu and APP functions at the synapse that might be perturbed in AD. Aβ peptides can also interfere with Cu-PrPC interactions implicated in the regulation of NMDAR activity (Fig. 2b) (389). In addition, Cu has been reported to promote the degradation of the low-density lipoprotein receptor-related protein 1 (LRP1) via Tyr nitration and proteasomal degradation, which was linked to a decrease of Aβ clearance and its resultant accumulation in brain vasculature (319). Clearly, Cu plays important roles in neuromodulation and signaling processes, which would be perturbed in AD.
AD 中 Cu 稳态功能失调的影响可能超出 Cu-Aβ 复合物的神经毒性。 APP 的突变与 AD 相关,是一种 1 型跨膜蛋白,在其胞外结构域中显示三个 Cu 结合位点 ( 22 , 140 )。一个 Cu 结合位点位于生长因子样结构域中,并且与 Cu 诱导的 APP 二聚化有关,这一过程对于细胞粘附和信号转导非常重要 ( 22 )。研究发现 Cu 可诱导 APP 在 Thr668 处磷酸化,促进其定位至轴突膜,这表明 Cu 与突触处 APP 功能之间的重要联系可能在 AD 中受到干扰。 Aβ 肽还可以干扰与 NMDAR 活性调节有关的 Cu-PrP C相互作用(图 2b )( 389 )。此外,据报道,Cu 可通过Tyr 硝化和蛋白酶体降解促进低密度脂蛋白受体相关蛋白 1 (LRP1) 的降解,这与 Aβ 清除率降低及其在脑血管系统中的积累有关( 319 )。显然,铜在神经调节和信号传导过程中发挥着重要作用,而这些过程在 AD 中会受到干扰。
Iron 铁
Fe is found in biological systems primarily as ferrous (2+) and ferric (3+) ions (Supplementary Table S1). Fe is a redox-active metal involved in several redox reactions that catalyze the formation of ROS. Fe is tightly bound to Fe storage and transport proteins, while <5% is present as labile redox-active Fe bound to low-affinity molecules. Fe is required as cofactor of several important enzymes for respiration and synthesis of neurotransmitters, including tryptophan hydroxylase (serotonin) and Tyr hydroxylase (norepinephrine and DA), cholesterol, and fatty acids; the latter particularly important for nerve myelination (161, 342). Electron transfer in many Fe enzymes, including the mitochondrial respiratory complexes, is facilitated by heme and Fe/S clusters (291). Fe is also important as cofactor for peroxidases and catalases, which are important for cellular redox homeostasis (6).
Fe 在生物系统中主要以亚铁 (2+) 和三价铁 (3+) 离子的形式存在(补充表 S1 )。 Fe 是一种氧化还原活性金属,参与多种催化 ROS 形成的氧化还原反应。 Fe与Fe储存和运输蛋白紧密结合,而<5 id=453>161, 342 )。许多铁酶(包括线粒体呼吸复合物)中的电子转移是由血红素和铁/硫簇促进的( 291 )。 Fe 作为过氧化物酶和过氧化氢酶的辅助因子也很重要,这对于细胞氧化还原稳态很重要 ( 6 )。
Fe is heterogeneously distributed in the brain; it is highly concentrated in the SN, hippocampus, striatum, interpeduncular nuclei (125), and myelin (329) (Supplementary Table S1). Fe homeostasis is regulated by communication between the BBB and astrocytes. In the blood stream, Fe3+ is found coordinated to transferrin (Tf) or ferritin (Ft), and as heme. Fe uptake into the BBB can occur by two pathways: (a) by direct transport of Fe2+ into the cytosol via DMT1; or (b) by endocytosis of Tf-bound Fe3+
via the Tf receptor (TfR), where the low pH of the endosome causes the release of Fe3+ from Tf. In both cases, Fe3+ is reduced to Fe2+ by the duodenal cytochrome b (Dcytb) or by the six transmembrane epithelial antigen of the prostate 2 (Steap2) ferrireductases and then transported by DMT1 (Fig. 4a) (215, 218).
Fe在大脑中的分布不均匀;它高度集中在 SN、海马、纹状体、脚间核 ( 125 ) 和髓磷脂 ( 329 )(补充表 S1 )。 Fe 稳态由血脑屏障和星形胶质细胞之间的通讯调节。在血流中,Fe 3+与转铁蛋白 (Tf) 或铁蛋白 (Ft) 配位,并形成血红素。 Fe 吸收到 BBB 中可以通过两种途径发生: (a)通过DMT1 将 Fe 2+直接转运到细胞质中;或(b)通过Tf受体(TfR)内吞Tf结合的Fe 3+ ,其中内体的低pH导致Tf释放Fe 3+ 。在这两种情况下,Fe 3+均被十二指肠细胞色素 b (Dcytb) 或前列腺六跨膜上皮抗原 2 (Steap2) 铁还原酶还原为 Fe 2+ ,然后由 DMT1 转运(图 4a )( 215 , 218) )。
Fe efflux from endothelial cells to the interstitial space occurs via the coordinated activity of the Fe2+ transporter ferroportin (Fpn) and the Cu-dependent ferroxidases hephaestin (Hp) and soluble ceruloplasmin (sCp), which oxidize Fe2+ to Fe3+. Astrocytes regulate the release of Fe from BBB by either secretion of sCp, which stimulates Fe release, or by production of hepcidin, a peptide that induces internalization and ubiquitination of Fpn and thus, decreased Fe efflux (216). Astrocytes also express a glycosylphosphatidylinositol (GPI)-anchored form of Cp, which interacts with Fpn and participates in Fe efflux (Fig. 4a) (144). In general, oligodendrocytes, astrocytes, microglia, and neurons have the same machinery for Fe efflux, involving the concerted action of Fpn with Cp or Hp (60).
Fe 从内皮细胞流出到间质空间是通过Fe 2+转运蛋白铁转运蛋白 (Fpn) 和 Cu 依赖性亚铁氧化酶铁菲蛋白 (Hp) 和可溶性铜蓝蛋白 (sCp) 的协调活性发生的,这些酶将 Fe 2+氧化为 Fe 3+ 。星形胶质细胞通过分泌 sCp(刺激 Fe 释放)或通过产生铁调素(一种诱导 Fpn 内化和泛素化的肽,从而减少 Fe 流出)来调节 BBB 中 Fe 的释放 ( 216 )。星形胶质细胞还表达糖基磷脂酰肌醇(GPI)锚定形式的 Cp,它与 Fpn 相互作用并参与 Fe 流出(图 4a )( 144 )。一般来说,少突胶质细胞、星形胶质细胞、小胶质细胞和神经元具有相同的 Fe 流出机制,涉及 Fpn 与 Cp 或 Hp 的协同作用 ( 60 )。
The mechanisms of Fe uptake differ between brain cell types. Fe, Tf, and Ft are primarily found in oligodendrocytes (61). Most Tf in the brain is synthesized and secreted by oligodendrocytes as Fe-free Tf or apo-Tf and is required for Fe mobilization within the interstitial fluid brain (87). Although oligodendrocytes and astrocytes can accumulate high levels of Fe, they do not express TfR. Fe uptake into oligodendrocytes has been recently proposed to involve the internalization of H-Ft by a mucin-domain containing protein (Tim-2) (343). In astrocytes, ascorbate-dependent Fe2+ uptake is mediated by DMT1 (167) and transient-receptor potential channels (265).
不同类型的脑细胞吸收铁的机制有所不同。 Fe、Tf 和 Ft 主要存在于少突胶质细胞中 ( 61 )。大脑中的大多数 Tf 由少突胶质细胞合成并分泌为无铁 Tf 或 apo-Tf,并且是脑间质液内铁动员所必需的 ( 87 )。尽管少突胶质细胞和星形胶质细胞可以积累高水平的 Fe,但它们不表达 TfR。最近有人提出,少突胶质细胞对 Fe 的吸收涉及含有粘蛋白结构域的蛋白质 (Tim-2) 对 H-Ft 的内化 ( 343 )。在星形胶质细胞中,抗坏血酸依赖性 Fe 2+摄取由 DMT1 ( 167 ) 和瞬时受体电位通道 ( 265 ) 介导。
In neurons, the mechanisms involved in Fe uptake are still unclear. DMT1 is found in human neurons and its expression levels are negatively regulated by Fe exposure via ubiquitination and degradation (134). However, DMT1 seems to colocalize in cytoplasmic vesicles with TfR and to primarily contribute to Tf-bound Fe uptake (232, 266). The ZIP8 and ZIP14 members of the ZIP family of metal transporters have also been demonstrated to mediate Fe2+ uptake (188) and to be expressed in the brain (113). A recent report demonstrates that ZIP8 at the plasma membrane is the primary transporter involved in non-Tf-bound Fe into neurons (145).
在神经元中,铁吸收的机制仍不清楚。 DMT1 存在于人类神经元中,其表达水平通过泛素化和降解受到 Fe 暴露的负调节 ( 134 )。然而,DMT1 似乎与 TfR 共定位于细胞质囊泡中,并且主要促进 Tf 结合的 Fe 吸收 ( 232 , 266 )。金属转运蛋白 ZIP 家族的 ZIP8 和 ZIP14 成员也已被证明可以介导 Fe 2+吸收 ( 188 ) 并在大脑中表达 ( 113 )。最近的一份报告表明,质膜上的 ZIP8 是参与非 Tf 结合 Fe 进入神经元的主要转运蛋白 ( 145 )。
In brain cells, the ferrireductases Dcytb and stromal cell-derived receptor, SDR2, are expressed in astrocytes (192, 351), while SDR2 and Steap2 are found in neurons (145). In all cases, it is important to note that Fe uptake and efflux always require redox cycling between Fe2+ and Fe3+ oxidation states.
在脑细胞中,铁还原酶 Dcytb 和基质细胞衍生受体 SDR2 在星形胶质细胞中表达 ( 192 , 351 ),而 SDR2 和 Steap2 在神经元中表达 ( 145 )。在所有情况下,重要的是要注意 Fe 的吸收和流出始终需要 Fe 2+和 Fe 3+氧化态之间的氧化还原循环。
Cytosolic Fe is stored by Ft, which is a protein complex formed by 24 subunits of heavy-ferritin (H-Ft) and light-ferritin (L-Ft) chains. Ft genes are regulated by Nrf2 (272). While H-subunits have ferroxidase activity and participate in Fe uptake, L-subunits are involved in Fe mineralization and long-term storage. Ft can store ∼4500 Fe ions in its core. However, the mechanism by which Fe is released from Ft remains unclear (47). Although Fe is mainly stored in the cytosol, mitochondria are the organelles with the highest Fe demand, as they require Fe-S clusters and heme groups for electron transfer during respiration. Similarly, mitochondria are also considered the main sources of ROS under physiological conditions. Therefore, mitochondrial Fe homeostasis must be tightly regulated to prevent uncontrolled ROS production.
胞质铁由 Ft 储存,Ft 是由重铁蛋白 (H-Ft) 和轻铁蛋白 (L-Ft) 链的 24 个亚基形成的蛋白质复合物。 Ft 基因受 Nrf2 调节 ( 272 )。 H 亚基具有亚铁氧化酶活性并参与铁的吸收,而 L 亚基则参与铁的矿化和长期储存。 Ft 的核心可储存 ∼4500 个 Fe 离子。然而,Fe 从 Ft 中释放的机制仍不清楚 ( 47 )。虽然Fe主要储存在细胞质中,但线粒体是Fe需求量最高的细胞器,因为它们需要Fe-S簇和血红素基团在呼吸过程中进行电子传递。同样,线粒体也被认为是生理条件下ROS的主要来源。因此,必须严格调节线粒体 Fe 稳态,以防止不受控制的 ROS 产生。
The mechanism(s) involved in mitochondrial Fe uptake are still unclear. Fe is delivered by a direct “kiss and run” interaction between the endosomes containing Tf-bound Fe and mitochondria (69). Subsequently, the metal crosses the inner membrane via the Fe importer mitoferrin-2 (Mfrn2) (Fig. 4b). In the mitochondrial matrix, Fe is either used for the biogenesis of prosthetic groups, Fe-S clusters, or heme, or it is stored by mitochondrial ferritin (FtMt), which is homologous to H-Ft, and it displays the same Fe uptake efficiency but lower ferroxidase activity. Fe distribution between mitochondria and cytosol depends on FtMt expression and the export of Fe prosthetic groups (106, 176).
线粒体铁吸收的机制仍不清楚。 Fe 通过含有 Tf 结合 Fe 的内体与线粒体之间的直接“亲吻和奔跑”相互作用来传递 ( 69 )。随后,金属通过Fe 输入端线粒体铁蛋白-2 (Mfrn2) 穿过内膜(图 4b )。在线粒体基质中,Fe 要么用于假体基团、Fe-S 簇或血红素的生物合成,要么由线粒体铁蛋白 (FtMt) 储存,FtMt 与 H-Ft 同源,并且表现出相同的 Fe 吸收效率较高,但亚铁氧化酶活性较低。线粒体和细胞质之间的 Fe 分布取决于 FtMt 表达和 Fe 辅基的输出 ( 106 , 176 )。
Heme is a component of globins, a superfamily of heme-containing proteins involved in binding and/or transporting O2, and a cofactor for cytochromes, catalase, NOX, NOS, and myeloperoxidase, which is also found in microglia (59, 151, 198). Hemoglobin (Hb) is involved in O2, NO, and carbon dioxide (CO2) transport in cells of erythroid lineage, but Hbα and β transcripts have been found in dopaminergic neurons, oligodendrocytes, and cortical or hippocampal astrocytes as well (32). Brain Hb levels are altered during neurodegeneration (94), but their functional consequences are unclear. Neuroglobin is another globin expressed in the CNS and PNS and found in both neurons and astrocytes. Neuroglobin has a higher affinity for O2 than Hb and exerts a protective effect against oxidative and ischemic insults (7, 43, 81, 179, 331, 368). Oxidative stress has the potential to release heme from Hb, and labile heme can induce oxidative damage via Fenton reactions or NOX activation (165, 239). Heme oxygenases (HOs) catalyze heme degradation. HO-1 transcription is induced by oxidative stress, inflammation, hypoxia, and metal exposure, while HO-2 is constitutively expressed. HO activity has both antioxidant and pro-oxidant effects that relate to the ability of the cell to detoxify labile Fe released from heme (286, 369).
血红素是球蛋白的组成部分,球蛋白是参与结合和/或运输 O 2的含血红素蛋白的超家族,也是细胞色素、过氧化氢酶、NOX、NOS 和髓过氧化物酶的辅助因子,也存在于小胶质细胞中 ( 59 , 151 , 198 )。血红蛋白 (Hb) 参与红系细胞中的 O 2 、NO 和二氧化碳 (CO 2 ) 转运,但在多巴胺能神经元、少突胶质细胞以及皮质或海马星形胶质细胞中也发现了 Hbα 和 β 转录本 ( 32 ) 。大脑 Hb 水平在神经退行性变期间发生改变 ( 94 ),但其功能后果尚不清楚。神经球蛋白是另一种在 CNS 和 PNS 中表达的球蛋白,在神经元和星形胶质细胞中都有发现。神经球蛋白对 O 2 的亲和力比 Hb 更高,并且对氧化和缺血性损伤发挥保护作用 ( 7 , 43 , 81 , 179 , 331 , 368 )。氧化应激有可能从 Hb 中释放血红素,而不稳定的血红素可以通过芬顿反应或 NOX 活化诱导氧化损伤 ( 165 , 239 )。血红素加氧酶 (HO) 催化血红素降解。 HO-1 转录由氧化应激、炎症、缺氧和金属暴露诱导,而 HO-2 则持续表达。 H2O 活性具有抗氧化和促氧化作用,与细胞解毒血红素释放的不稳定铁的能力有关 ( 286 , 369 )。
Cellular Fe trafficking is controlled by the iron regulatory proteins (IRP) IRP1 and IRP2 which regulate translation of proteins involved in Fe storage (H-Ft and L-Ft), Fe uptake (TfR), and Fe efflux (Fpn). Under conditions of Fe depletion, IRPs can bind to messenger RNAs (mRNAs), decreasing the levels of Ft and Fpn and promoting the translation of TfR via the stabilization of its mRNA. Conversely, Fe overload prevents mRNA binding to IRPs, promoting Ft and Fpn translation while reducing TfR levels. The ability of IRP1 and IRP2 to bind mRNAs exerts an important redox control via two distinct mechanisms. IRP1 has two conformations: (a) a closed one, triggered via an Fe-S cluster that prevents mRNA binding and has aconitase activity; and (b) an open conformation that is favored when NO•, O2, and H2O2 cause dissociation of the Fe-S cluster. In contrast, the ability of IRP2 to bind mRNAs is controlled by proteasomal degradation, involving the ubiquitin ligase F-box/LRR-repeat protein (FBXL5), which is also an Fe and O2 sensing protein. FBXL5 has a binuclear nonheme Fe site, and it is stabilized on Fe and O2 binding, promoting IRP2 degradation. Together, these two mechanisms illustrate the redox control of cellular Fe trafficking (164).
细胞铁运输由铁调节蛋白 (IRP) IRP1 和 IRP2 控制,它们调节参与铁储存(H-Ft 和 L-Ft)、铁吸收(TfR)和铁流出(Fpn)的蛋白质的翻译。在 Fe 耗尽的条件下,IRP 可以与信使 RNA (mRNA) 结合,降低 Ft 和 Fpn 的水平,并通过稳定其 mRNA 来促进 TfR 的翻译。相反,Fe 超载会阻止 mRNA 与 IRP 结合,促进 Ft 和 Fpn 翻译,同时降低 TfR 水平。 IRP1 和 IRP2 结合 mRNA 的能力通过两种不同的机制发挥重要的氧化还原控制作用。 IRP1 有两种构象:(a) 闭合构象,通过Fe-S 簇触发,阻止 mRNA 结合并具有乌头酸酶活性; (b)当NO · 、O 2和H 2 O 2导致Fe-S簇解离时有利的开放构象。相比之下,IRP2 结合 mRNA 的能力受到蛋白酶体降解的控制,涉及泛素连接酶 F-box/LRR 重复蛋白 (FBXL5),该蛋白也是一种 Fe 和 O 2传感蛋白。 FBXL5 具有双核非血红素 Fe 位点,它在 Fe 和 O 2结合上稳定,促进 IRP2 降解。这两种机制共同说明了细胞 Fe 运输的氧化还原控制 ( 164 )。
In neurons, Fe uptake is induced by a redox signaling cascade that starts with the activation of the NMDAR (Fig. 4c). Increased intracellular Ca2+ induces NO• production by the neuronal (n) NOS, leading to S-nitros(yl)ation of the small GTPase Dexras1 (Ras-related dexamethasone induced 1), which in turn induces Fe uptake through DMT1 and TfR (51). In hippocampal neurons, NMDAR activation increases intracellular Fe and H2O2 production, which activates the redox-sensitive ryanodine receptor (RyR) and promotes Ca2+ release from the ER (237) (Fig. 4d). Thus, Fe uptake is clearly part of a redox signaling mechanism that might be important for neuronal plasticity.
在神经元中,Fe 的吸收是由氧化还原信号级联诱导的,该级联始于 NMDAR 的激活(图 4c )。细胞内 Ca 2+增加诱导神经元 (n) NOS 产生 NO • ,导致小 GTP 酶 Dexras1(Ras 相关的地塞米松诱导 1)发生 S-亚硝基(基)化,进而通过 DMT1 和 TfR 诱导 Fe 摄取( 51 )。在海马神经元中,NMDAR 激活增加细胞内 Fe 和 H 2 O 2的产生,从而激活氧化还原敏感的兰尼碱受体(RyR)并促进 Ca 2+从 ER 释放( 237 )(图 4d )。因此,铁的吸收显然是氧化还原信号机制的一部分,可能对神经元可塑性很重要。
Cell death induced by an increase in the labile Fe pool within cells has been defined as a specific entity named ferroptosis. Ferroptotic cell death is a necrotic-like cell death characterized by Fe-dependent lipid peroxidation due to either the formation of •OH and H2O2
via Fenton-like reactions or the activation of lipoxygenases. As such, ferroptosis is counteracted by Fe-chelators and the GSH/GPX4 system. GPX4 knockout in neurons induces motor neuron degeneration, paralysis (53), and cognitive impairment (121). During ferroptosis, Tf-dependent Fe uptake and release of Fe from lysosomal compartments have been shown to act as important sources for Fe. Interestingly, lysosomal permeabilization is a common phenomenon observed in a number of neurodegenerative disorders, including PD (40, 73). However, during pathological conditions such as neurodegeneration and hemorrhagic stroke, cell death is likely to involve a combination of different pathways and a complex balance between them, including apoptosis, necrosis, autophagic cell death, and ferroptosis as well (77, 143, 357, 398).
由细胞内不稳定铁池增加引起的细胞死亡被定义为一种称为铁死亡的特定实体。铁死亡细胞死亡是一种类似坏死的细胞死亡,其特征是由于通过类芬顿反应形成· OH 和H 2 O 2或脂氧合酶的激活而导致Fe 依赖性脂质过氧化。因此,Fe 螯合剂和 GSH/GPX4 系统可以抵消铁死亡。神经元中的GPX4敲除会导致运动神经元变性、瘫痪 ( 53 ) 和认知障碍 ( 121 )。在铁死亡过程中,Tf依赖性铁的吸收和溶酶体区室中铁的释放已被证明是铁的重要来源。有趣的是,溶酶体通透是在许多神经退行性疾病中观察到的常见现象,包括 PD ( 40 , 73 )。然而,在神经退行性疾病和出血性中风等病理情况下,细胞死亡可能涉及不同途径的组合以及它们之间的复杂平衡,包括细胞凋亡、坏死、自噬性细胞死亡和铁死亡( 77、143、357 、 398 )。
During aging, accumulation of Fe in the frontal lobes and striatum is associated with motor dysfunction, loss of myelin sheaths, and memory decline (2, 327). Inflammation, a common hallmark of many brain disorders, increases the expression of DMT1 and hepcidin (354).
在衰老过程中,额叶和纹状体中铁的积累与运动功能障碍、髓鞘损失和记忆力下降有关 ( 2 , 327 )。炎症是许多脑部疾病的常见标志,会增加 DMT1 和铁调素的表达 ( 354 )。
Abnormal accumulation of Fe is a common feature of many neurodegenerative diseases, including a group of twelve diseases known as neurodegeneration with brain iron accumulation (NBIA) (225). The most common clinical features of NBIA are movement disorders, such as ataxia, parkinsonism, and dystonia. Although in NBIA Fe is usually accumulated in the globus pallidus, and in some cases in the SN and cerebellum, only two types of NBIA involve the dysfunction of a protein that participates in Fe trafficking: aceruloplasminemia (lack of Cp) and neuroferritinopathy (loss of function mutations in L-Ft) (65, 261, 290, 360). Another neurodegenerative disease associated with disturbed Fe homeostasis is Friederich ataxia, which is linked to mutations in frataxin, an Fe-chaperone involved in Fe-S cluster biogenesis (55).
Fe 的异常积累是许多神经退行性疾病的共同特征,其中包括 12 种称为脑铁积累神经退行性疾病 (NBIA) 的疾病 ( 225 )。 NBIA 最常见的临床特征是运动障碍,例如共济失调、帕金森症和肌张力障碍。尽管在 NBIA 中,Fe 通常积聚在苍白球中,在某些情况下积聚在 SN 和小脑中,但只有两种类型的 NBIA 涉及参与 Fe 运输的蛋白质功能障碍:铜蓝蛋白血症(缺乏 Cp)和神经铁蛋白病(缺乏 Cp)。 L-Ft的功能突变) ( 65、261、290、360 )。另一种与 Fe 稳态紊乱相关的神经退行性疾病是 Friederich 共济失调,它与 frataxin 的突变有关,frataxin 是一种参与 Fe-S 簇生物发生的 Fe 伴侣 ( 55 )。
Altered Fe homeostasis and mitochondrial dysfunction are also hallmarks of PD. While no significant differences in Fe levels have been found in the blood, serum, and CSF (203), Fe is increased in the SN of PD patients (365). Neuromelanin is an Fe-rich pigment found in the dopaminergic neurons targeted in PD (A9) and it has been suggested that its presence makes this neuronal population vulnerable to oxidative damage (91). Decreased levels of serum Cp or its oxidation has also been proposed to exacerbate Fe accumulation in PD (149, 251). DMT1 is found increased in the SN of PD brains (294). Interestingly, Parkin regulates DMT1 expression levels via ubiquitination and proteasomal degradation (289).
Fe 稳态改变和线粒体功能障碍也是 PD 的标志。虽然血液、血清和脑脊液中的 Fe 水平没有发现显着差异 ( 203 ),但 PD 患者的 SN 中的 Fe 却增加了 ( 365 )。神经黑色素是在 PD (A9) 靶向的多巴胺能神经元中发现的一种富含铁的色素,有人认为它的存在使该神经元群体容易受到氧化损伤 ( 91 )。血清 Cp 水平降低或其氧化水平也被认为会加剧 PD 中 Fe 的积累 ( 149 , 251 )。发现 PD 大脑 SN 中的 DMT1 增加 ( 294 )。有趣的是,Parkin通过泛素化和蛋白酶体降解调节 DMT1 表达水平 ( 289 )。
Fe accumulation in SN might be associated with a dysfunctional delivery of Fe to mitochondria through the “kiss and run” interaction mentioned above (Fig. 4b) (69). Indeed, a Tf/TfR2-dependent mechanism for Fe transport into the mitochondria of dopaminergic neurons has been described (211), while a role for Tf and TfR2 genes in Fe accumulation and mitochondrial dysfunction in PD has been implicated as well (285).
SN 中 Fe 的积累可能与通过上述“亲吻和奔跑”相互作用向线粒体输送 Fe 的功能失调有关(图 4b )( 69 )。事实上,已经描述了铁转运到多巴胺能神经元线粒体中的 Tf/TfR2 依赖性机制 ( 211 ),同时也涉及Tf和TfR2基因在 PD 铁积累和线粒体功能障碍中的作用 ( 285 )。
Mitochondrial dysfunction in PD might lead to decreased synthesis of Fe-S clusters, which in turn would activate IRP1 binding to mRNAs, resulting in augmented Fe accumulation (142). Accordingly, knockdown of mitochondrial Grx2 impairs Fe-S cluster biogenesis in dopaminergic cells, decreases the activity of Complex I and aconitase, and increases the activation of IRP1 (171). Loss of PINK1/PARK6, another autosomal early-onset PD-related gene, has also been reported to inactivate Fe-S clusters via O2•− formation. As such, overexpression of FtMt exerts a protective effect on mitochondrial dysfunction and oxidative stress induced by loss of PINK1 (88).
PD 中的线粒体功能障碍可能导致 Fe-S 簇合成减少,进而激活 IRP1 与 mRNA 的结合,导致 Fe 积累增加 ( 142 )。因此,线粒体 Grx2 的敲低会损害多巴胺能细胞中 Fe-S 簇的生物发生,降低复合物 I 和乌头酸酶的活性,并增加 IRP1 的激活 ( 171 )。据报道,PINK1/ PARK6 (另一种常染色体早发性PD相关基因)的缺失也会通过O 2 •− 的形成使Fe-S簇失活。因此,FtMt 的过度表达对 PINK1 缺失引起的线粒体功能障碍和氧化应激具有保护作用 ( 88 )。
HO-1 protects against neuronal cell death induced by PD-related mitochondrial toxins and α-synuclein, suggesting a role of heme in dopaminergic cell loss. However, HO-1 becomes toxic at high levels, but this effect is counteracted by FtMt (391). Interestingly, the pathogenic PINK1 mutation G309D impairs the induction of HO-1 on oxidative stress (56).
HO-1 可防止 PD 相关线粒体毒素和 α-突触核蛋白诱导的神经元细胞死亡,表明血红素在多巴胺能细胞损失中发挥作用。然而,HO-1 在高浓度时会变得有毒,但这种效应会被 FtMt 抵消 ( 391 )。有趣的是,致病性 PINK1 突变 G309D 会损害 HO-1 对氧化应激的诱导 ( 56 )。
Fe2+ can interact with the negatively charged C-terminal region of α-synuclein, accelerating its amyloid aggregation (34). Conversely, α-synuclein overexpression also enables Fe accumulation (254). In PD, oxidative stress has been linked to intracellular Fe levels due to the redox activity of Fe-DA and Fe-neuromelanin complexes (400). Furthermore, overexpression of FtMt protects against neuronal cell death induced by 6-hydroxydopamine (313). Interestingly, a recent report demonstrates that depletion of Fpn has no consequence on the survival of dopaminergic neurons. In contrast, loss of TfR causes Fe deficiency and a PD-like neurodegeneration in mice (212). Previous findings have also suggested a link between Fe deficiency and predisposition to PD, while Fe overload seems to be protective (157, 190, 271). Thus, the exact role of Fe homeostasis in PD is still far from being understood.
Fe 2+可以与 α-突触核蛋白带负电荷的 C 末端区域相互作用,加速其淀粉样蛋白聚集 ( 34 )。相反,α-突触核蛋白过度表达也会促进 Fe 积累 ( 254 )。在 PD 中,由于 Fe-DA 和 Fe-神经黑色素复合物的氧化还原活性,氧化应激与细胞内 Fe 水平有关 ( 400 )。此外,FtMt 的过度表达可防止 6-羟基多巴胺诱导的神经元细胞死亡 ( 313 )。有趣的是,最近的一份报告表明,Fpn 的消耗对多巴胺能神经元的存活没有影响。相反,TfR 的缺失会导致小鼠缺铁和 PD 样神经变性 ( 212 )。先前的研究结果还表明,铁缺乏与帕金森病易感性之间存在联系,而铁过载似乎具有保护作用( 157、190、271 )。因此,Fe 稳态在 PD 中的确切作用尚不清楚。
A role of Fe in AD has also been proposed based on observations showing that Fe levels are decreased in the serum of AD patients (324), and increased in AD-related brain areas such as the hippocampus, neocortex, and basal ganglia (168). Mitochondrial dysfunction is also observed in AD, which might be related to a disruption in Fe homeostasis. Accordingly, overexpression of FtMt protects against the toxicity of Aβ (380). Fe is accumulated in amyloid plaques in the AD brain (38, 194), consistent with the observation that Aβ is able to bind Fe2+
in vitro (Fig. 3b) (39). Fe bound to Aβ plaques catalyzes H2O2 formation (321).
Fe 在 AD 中的作用也被提出,基于观察结果显示 AD 患者血清中的 Fe 水平降低 ( 324 ),而在与 AD 相关的大脑区域,如海马体、新皮质和基底神经节中 Fe 水平升高 ( 168 ) 。 AD 中也观察到线粒体功能障碍,这可能与铁稳态的破坏有关。因此,FtMt 的过度表达可以防止 Aβ 的毒性 ( 380 )。 Fe 积聚在 AD 大脑中的淀粉样斑块中 ( 38 , 194 ),这与 Aβ 能够在体外结合 Fe 2+的观察结果一致 (图 3b ) ( 39 )。与 Aβ 斑块结合的 Fe 催化 H 2 O 2的形成 ( 321 )。
A novel mechanism for controlling Fe efflux from the BBB was recently discovered, involving the soluble fragment of APP (sAPP), which interacts with Fpn, stabilizing its membrane location (219) and counteracting the effects of hepcidin (216). APP expression is also negatively regulated by IRP1 (57), and production of sAPP and Aβ is increased in AD. Thus, the proposed role of sAPP in Fe movement from BBB into the brain is consistent with the accumulation of Fe in AD brains and the observation of higher levels of Aβ plaques surrounding the brain blood vessels. Indeed, BBB damage is a common feature in AD (217).
最近发现了一种控制 Fe 从 BBB 流出的新机制,涉及 APP (sAPP) 的可溶性片段,它与 Fpn 相互作用,稳定其膜位置 ( 219 ) 并抵消铁调素 ( 216 ) 的影响。 APP 表达也受到 IRP1 ( 57 ) 的负向调节,并且 AD 中 sAPP 和 Aβ 的产生增加。因此,sAPP 在 Fe 从 BBB 移动到大脑中的作用与 AD 大脑中 Fe 的积累以及脑血管周围 Aβ 斑块水平较高的观察结果一致。事实上,BBB 损伤是 AD 的一个常见特征( 217 )。
Heme metabolism also contributes to AD. APP binds and inhibits HO-1 activity and this effect is enhanced by pathogenic APP mutations (334). In addition, Aβ can form a complex with heme that displays peroxidase activity (16, 112). Conversely, neuroglobin has been proposed to protect against the toxicity of 1–42 Aβ peptides (180). Overall, disruption of Fe homeostasis in AD is likely linked to oxidative stress, and it may also impair NMDAR- and Fe- dependent redox signaling mechanisms (Fig. 4d) impacting neuronal plasticity and memory.
血红素代谢也有助于 AD。 APP 结合并抑制 HO-1 活性,致病性 APP 突变会增强这种效应 ( 334 )。此外,Aβ 可以与血红素形成复合物,显示出过氧化物酶活性 ( 16 , 112 )。相反,神经球蛋白被认为可以防止 1-42 Aβ 肽的毒性 ( 180 )。总体而言,AD 中 Fe 稳态的破坏可能与氧化应激有关,并且还可能损害 NMDAR 和 Fe 依赖性氧化还原信号机制(图 4d ),从而影响神经元可塑性和记忆。
Manganese 锰
Mn is an essential metal required for the activity of a plethora of enzymes, including hydrolases, isomerases, ligases, lyases, oxidoreductases, and transferases, involved in diverse metabolic functions such as amino acid (arginase and glutamine synthetase [GS]), lipid, protein, and carbohydrate metabolism (phosphoenolpyruvate decarboxylase), as well as protein glycosylation, energy production, and redox homeostasis (SOD2). The main source for Mn intake is food, but occupational/environmental exposures also occur associated with mining, smelting, welding, alloy, battery, pesticide, and electrical industries. Ingestion and inhalation are the primary routes of Mn exposure. Importantly, inhalation can transfer Mn directly to the brain. The brain is a major target for chronic Mn intoxication (manganism) where Mn is accumulated in nonheme Fe-rich regions. Manganism is defined as a parkinsonism that results in dystonia, hypokinesia, and rigidity as a consequence of impaired neurotransmitter function (133, 352).
锰是多种酶活性所需的必需金属,包括水解酶、异构酶、连接酶、裂合酶、氧化还原酶和转移酶,参与多种代谢功能,如氨基酸(精氨酸酶和谷氨酰胺合成酶 [GS])、脂质、蛋白质和碳水化合物代谢(磷酸烯醇丙酮酸脱羧酶),以及蛋白质糖基化、能量产生和氧化还原稳态 (SOD2)。锰摄入的主要来源是食物,但职业/环境暴露也发生在采矿、冶炼、焊接、合金、电池、农药和电气行业。摄入和吸入是锰暴露的主要途径。重要的是,吸入可以将锰直接转移到大脑。大脑是慢性锰中毒(锰中毒)的主要目标,其中锰积聚在非血红素铁丰富的区域。锰中毒被定义为一种帕金森病,由于神经递质功能受损而导致肌张力障碍、运动功能减退和强直( 133、352 )。
Mn can be transported via Tfr and DMT1 as it competes with Fe for its binding sites (333). Other proposed Mn transporters include the Zn carriers ZIP-8 and ZIP-14, voltage-regulated, store-operated, and ionotropic Glu receptor Ca2+ channels, and the Mn-citrate complex shuttle (Fig. 5a) (352). Mn is efficiently detoxified by Fpn at the plasma membrane. In addition, Mn is also detoxified by sequestration in the Golgi via the solute carrier family 30 member 10 or human Zn transporter 1 (SLC30A10/hZnT1) transporter whose mutations are directly associated with manganism (178). Alternatively, the Ca2+/Mn2+ ATPases SPCA1 and SPCA2 also detoxify Mn via the secretory pathway (356). Finally, the autosomal recessive early-onset PD-related gene ATP13A2/PARK9 mediates sequestration of Mn in lysosomes (Fig. 5b) (336). Recently, direct comparison of different detoxification proteins demonstrated that hZnT1 and SPCA1, but not ATP13A2, are involved in Mn detoxification and resistance (246).
Mn 可以通过Tfr 和 DMT1 运输,因为它与 Fe 竞争其结合位点 ( 333 )。其他提出的 Mn 转运蛋白包括 Zn 载体 ZIP-8 和 ZIP-14、电压调节、存储操作和离子型 Glu 受体 Ca 2+通道,以及 Mn-柠檬酸复合物穿梭(图 5a )( 352 )。 Mn 在质膜上被 Fpn 有效解毒。此外,Mn 还通过溶质载体家族 30 成员 10 或人锌转运蛋白 1 ( SLC30A10 /hZnT1) 转运蛋白在高尔基体中隔离而解毒,其突变与锰中毒直接相关 ( 178 )。或者,Ca 2+ /Mn 2+ ATP酶SPCA1和SPCA2也通过分泌途径使Mn解毒( 356 )。最后,常染色体隐性早发性 PD 相关基因 ATP13A2/ PARK9介导溶酶体中 Mn 的隔离(图 5b )( 336 )。最近,不同解毒蛋白的直接比较表明,hZnT1 和 SPCA1,而不是 ATP13A2,参与锰解毒和抵抗 ( 246 )。
Mn2+ is the predominant species found in cells that can be oxidized to the more reactive and toxic species Mn3+. Neither Mn2+ nor Mn3+ can generate free radicals via Fenton-type reactions. However, it has been proposed that Mn enhances ROS generation via the Mn-catalyzed autoxidation of DA that involves the redox cycling of Mn2+ and Mn3+ and the generation of ROS and DA-o-quinone (Fig. 5c) (79, 89). Mn accumulates in the mitochondria via the mitochondrial Ca2+ uniporter (MCU) (111) and increases the accumulation of labile Fe. Both mitochondrial dysfunction and Fe lead to ROS formation and oxidative damage (Fig. 5d) (54, 206). Mn specifically generates H2O2 but not O2•− in the mitochondria via complex II (92, 186, 322). Furthermore, Mn impairs oxidative phosphorylation and ATP production.
Mn 2+是细胞中发现的主要物质,可以被氧化成更具活性和毒性的物质Mn 3+ 。 Mn 2+和Mn 3+都不能通过芬顿反应产生自由基。然而,有人提出,Mn通过Mn 催化的 DA 自氧化来增强 ROS 的生成,其中涉及 Mn 2+和 Mn 3+的氧化还原循环以及 ROS 和 DA-o-醌的生成(图 5c )( 79 , 89 )。 Mn通过线粒体 Ca 2+单向转运蛋白 (MCU) ( 111 ) 在线粒体中积累,并增加不稳定 Fe 的积累。线粒体功能障碍和 Fe 都会导致 ROS 形成和氧化损伤(图 5d )( 54 , 206 )。 Mn通过复合物 II 在线粒体中专门生成 H 2 O 2但不生成 O 2 •− ( 92 , 186 , 322 )。此外,Mn 还会损害氧化磷酸化和 ATP 的产生。
Astrocytes seem to have a high capacity to accumulate Mn (14). Mn-induced neurotoxicity has been linked to a decrease in Glu uptake by astrocytes (156) leading to excitotoxicity in neurons, as well as the induction of inflammation and increased activity of NOS (Fig. 5e) (95, 185).
星形胶质细胞似乎具有很高的积累 Mn 的能力 ( 14 )。 Mn 诱导的神经毒性与星形胶质细胞 ( 156 ) 摄取 Glu 的减少有关,导致神经元兴奋性毒性,以及诱导炎症和 NOS 活性增加 (图 5e ) ( 95 , 185 )。
Zinc 锌
Zn is a redox-inactive transition metal ion with an oxidation state of +2. The majority of intracellular Zn is bound to proteins and is distributed in the cytoplasm (∼50%) and nucleus (∼40%) (304) (Supplementary Table S1). The function of Zn as enzyme cofactor is limited to structural roles (e.g., SOD1) (312), or as a Lewis acid that activates substrates for nucleophilic attack (e.g., carbonic anhydrase, where Zn2+ catalyzes the hydration of CO2 to form bicarbonate [HCO3−]) (138). Enzymes with Zn-dependent catalytic activity control many cellular processes, including DNA synthesis and brain development. Zn also plays an important role in cell signaling associated with development and learning. In the brain, Zn is highly concentrated in the hippocampus and cortex (304).
Zn 是一种氧化还原惰性过渡金属离子,氧化态为+2。大部分细胞内锌与蛋白质结合,分布在细胞质(~50%)和细胞核(~40%)( 304 )(补充表S1 )。 Zn 作为酶辅因子的功能仅限于结构作用(例如SOD1)( 312 ),或作为路易斯酸激活亲核攻击底物(例如碳酸酐酶,其中 Zn 2+催化 CO 2水合形成碳酸氢盐[HCO 3 - ])( 138 )。具有锌依赖性催化活性的酶控制许多细胞过程,包括 DNA 合成和大脑发育。锌还在与发育和学习相关的细胞信号传导中发挥着重要作用。在大脑中,锌高度集中在海马体和皮质中( 304 )。
The key players in Zn homeostasis are the ZIP transporters that mediate Zn uptake into the cytosol, the zinc transporters (ZnT) that participate in Zn efflux, and MTs involved in Zn chelation. ZIP1 is expressed in astrocytes and microglia (303). In neurons Zn uptake is mediated by, voltage-gated Ca2+ channels, ZIP1 and 3 transporters, as well as Ca2+ and the Zn2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) (146, 278, 335). Interestingly, Zn has been reported to be transported into postsynaptic neurons through a complex formed by PrPC, which is evolutionary linked to ZIP proteins, and the AMPAR (Fig. 6b) (373). ZnT1 is expressed in astrocytes, microglia, and oligodendrocytes, and its expression levels are directly modulated by Zn (247). Hypoxia decreases the levels of ZnT1 in astrocytes inducing the accumulation of cytosolic Zn (257). At the postsynaptic density, the ZnT1 transporter interacts with NMDAR and this complex is regulated during synaptic plasticity (Fig. 6c) (222, 373).
锌稳态的关键参与者是介导锌吸收到细胞质中的 ZIP 转运蛋白、参与锌流出的锌转运蛋白 (ZnT) 以及参与锌螯合的 MT。 ZIP1 在星形胶质细胞和小胶质细胞中表达 ( 303 )。在神经元中,Zn 的摄取由电压门控 Ca 2+通道、ZIP1 和 3 转运蛋白以及 Ca 2+和 Zn 2+可渗透的 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯受体介导( AMPAR )(146、278、335 ) 。有趣的是,据报道,Zn 通过 PrP C形成的复合物转运到突触后神经元中,该复合物与 ZIP 蛋白和 AMPAR 进化相关(图 6b )( 373 )。 ZnT1 在星形胶质细胞、小胶质细胞和少突胶质细胞中表达,其表达水平直接受 Zn 调节 ( 247 )。缺氧会降低星形胶质细胞中 ZnT1 的水平,从而诱导胞质 Zn 的积累 ( 257 )。在突触后密度,ZnT1 转运蛋白与 NMDAR 相互作用,并且该复合物在突触可塑性期间受到调节(图 6c )( 222 , 373 )。
Cytosolic Zn is distributed to different organelles, including synaptic vesicles, Golgi, ER, and mitochondria. Similarly, Zn uptake by these organelles is performed by ZnTs, while ZIPs participate in Zn efflux into the cytosol (155). Zn modulates cellular signaling pathways and acts as a neuromodulator. ZnT3 participates in the transport and accumulation of Zn within synaptic vesicles of glutamatergic terminals (Fig. 6a) (125). During synaptic transmission, Zn is released with Glu, where it inhibits the activity of NMDAR and AMPAR (9, 154), modulating neuronal excitability and long-term synaptic plasticity (long-term potentiation [LTP] and long-term depression). In addition, Zn regulates the activation of the tropomyosin kinase receptor B (TrkB) (304). A metabotropic Zn-sensing receptor (mZnR) has also been reported (31). At the synapse, Zn can also bind to MTs, Aβ, and PrPC (Figs. 3c and and66).
胞质锌分布到不同的细胞器,包括突触小泡、高尔基体、内质网和线粒体。类似地,这些细胞器对锌的吸收是由 ZnT 完成的,而 ZIP 则参与锌流入细胞质的过程 ( 155 )。锌调节细胞信号传导途径并充当神经调节剂。 ZnT3 参与谷氨酸末端突触小泡内 Zn 的转运和积累(图 6a )( 125 )。在突触传递过程中,Zn 与 Glu 一起释放,抑制 NMDAR 和 AMPAR 的活性 ( 9 , 154 ),调节神经元兴奋性和长期突触可塑性(长时程增强 [LTP] 和长期抑制)。此外,Zn 调节原肌球蛋白激酶受体 B (TrkB) 的激活 ( 304 )。还报道了代谢型锌敏感受体(mZnR)( 31 )。在突触处,Zn 还可以与 MT、Aβ 和 PrP C结合(图 3c和and6 6 )。
Although Zn2+ is a nonredox-active metal ion, it participates in redox signaling through several mechanisms. MTs bind about a fifth of the intracellular Zn with a stoichiometry of 1:7. MTs and proteins containing Zn-finger domains use Cys residues to bind to Zn2+ ions. Zn coordination stabilizes the reduced state of Cys thiol groups preventing their oxidation and subsequent formation of disulfide bonds. Transcription of MTs is induced by oxidative stress via Nrf2, and by heavy metal exposure via metal-response elements (MREs). MREs are recognized by the Zn-finger domain containing protein metal-responsive transcription factor-1 (MTF1, also known as MRE-binding transcription factor-1 or metal regulatory transcription factor-1). MTF1 senses Zn levels. Furthermore, via Zn displacement from MTs or Cys oxidation, MTF1 also senses heavy metal toxicity (Cd) and oxidative stress. In addition to MTs, MTF1 regulates the transcription of a number of genes involved in redox homeostasis and metal ion detoxification, including Zn transporters, Fr, Fpn, ATP7(A/B), Trx, selenoproteins, and γ-glutamate-cysteine ligase (GCL), a rate-limiting enzyme in GSH synthesis (119). The role of MTF1 in brain function and redox homeostasis is unclear. MTF1 has been shown to regulate the expression of β-synuclein (220), which is thought to act as a negative regulator of its homologue α-synuclein (126). Interestingly, deletion of MTF1 induces lethality in Parkin-deficient flies (Drosophila melanogaster) (293).
尽管Zn 2+是一种非氧化还原活性金属离子,但它通过多种机制参与氧化还原信号传导。 MT 结合约五分之一的细胞内 Zn,化学计量比为 1:7。含有 Zn 指结构域的 MT 和蛋白质使用 Cys 残基与 Zn 2+离子结合。 Zn 配位稳定了 Cys 硫醇基团的还原态,防止其氧化和随后形成二硫键。 MT 的转录是由氧化应激通过Nrf2 诱导的,以及重金属暴露通过金属反应元件 (MRE) 诱导的。 MRE 被含有蛋白质金属响应转录因子 1(MTF1,也称为 MRE 结合转录因子 1 或金属调节转录因子 1)的锌指结构域识别。 MTF1 感测锌水平。此外,通过MT 中的 Zn 置换或 Cys 氧化,MTF1 还可以感知重金属毒性 (Cd) 和氧化应激。除了 MT 之外,MTF1 还调节许多参与氧化还原稳态和金属离子解毒的基因的转录,包括 Zn 转运蛋白、Fr、Fpn、ATP7(A/B)、Trx、硒蛋白和 γ-谷氨酸-半胱氨酸连接酶。 GCL),GSH 合成中的限速酶( 119 )。 MTF1 在脑功能和氧化还原稳态中的作用尚不清楚。 MTF1 已被证明可以调节 β-突触核蛋白 ( 220 ) 的表达,而β-突触核蛋白被认为是其同源物 α-突触核蛋白 ( 126 ) 的负调节因子。有趣的是, MTF1的缺失会导致 Parkin 缺陷的果蝇(果蝇)致死 ( 293 )。
Altered Zn levels have been reported to promote neuronal injury. Upon Cys oxidation, Zn is released from MTs (255). Cellular acidification also releases intracellular Zn in neurons (159). In a recent report, AMPA-induced oligodendrocyte cell death was shown to be linked to Zn mobilization from mitochondria and protein-bound pools that were mediated by cytosolic acidification, independently from ROS (213). Exposure of mitochondria to Zn promotes increased ROS formation (305). While no specific mitochondrial Zn transporter(s) has been identified, potential candidates include the MCU, ZIP8, and Znt2 transporters (30, 199, 307). Zn also increases NOX-derived ROS formation and NOS activity (162). High extracellular Zn enhances microglia activation and ROS formation (130). Zn deficiency also induces oxidative stress via a reduction in the activity of SOD1 (378), and an impairment in the transcriptional regulation of GCL by Nrf2 (253).
据报道,改变锌水平会促进神经元损伤。 Cys 氧化后,Zn 从 MT 中释放出来 ( 255 )。细胞酸化还会释放神经元细胞内的锌 ( 159 )。在最近的一份报告中,AMPA 诱导的少突胶质细胞死亡被证明与线粒体和蛋白质结合库中的锌动员有关,这些锌动员是由胞质酸化介导的,与 ROS 无关( 213 )。线粒体暴露于 Zn 会促进 ROS 形成增加 ( 305 )。虽然尚未鉴定出特定的线粒体锌转运蛋白,但潜在的候选蛋白包括 MCU、 ZIP8和Znt2转运蛋白 ( 30、199、307 )。 Zn 还能增加 NOX 衍生的 ROS 形成和 NOS 活性 ( 162 )。高细胞外锌可增强小胶质细胞活化和 ROS 形成 ( 130 )。缺锌还会通过SOD1 活性降低 ( 378 ) 以及 Nrf2 对 GCL 转录调节的损害来诱导氧化应激 ( 253 )。
Alterations in Zn homeostasis are associated to neurodegenerative diseases. Serum levels of Zn are decreased in AD patients (358), while Zn is enriched in Aβ plaques (364). Furthermore, a decrease in the levels of Znt3 and MT-III (390) is found in AD. Importantly, the predominant localization of Aβ plaques in Zn-containing glutamatergic synapses might explain why they are primarily found in the neocortex (304). Zn promotes a rapid, but reversible, aggregation of Aβ that is different to the aggregation of Aβ or Aβ-Cu complexes (25). Zn also reduces the toxicity of Cu-induced Aβ aggregates (214). ZnT3 knockout increases soluble Aβ in transgenic APP mice corroborating the role of extracellular Zn in plaque formation (172).
锌稳态的改变与神经退行性疾病有关。 AD 患者的血清锌水平降低 ( 358 ),而 Aβ 斑块中锌含量丰富 ( 364 )。此外,AD 中 Znt3 和 MT-III ( 390 ) 水平降低。重要的是,Aβ斑块在含锌谷氨酸突触中的主要定位可能解释了为什么它们主要存在于新皮质中( 304 )。 Zn 促进 Aβ 快速但可逆的聚集,这与 Aβ 或 Aβ-Cu 复合物的聚集不同 ( 25 )。 Zn 还可以降低 Cu 诱导的 Aβ 聚集体的毒性 ( 214 )。 ZnT3敲除增加了转基因 APP 小鼠中的可溶性 Aβ,证实了细胞外锌在斑块形成中的作用 ( 172 )。
Elevated Zn levels have been found in the SN of PD brains (74), while reduced levels of Zn in serum and plasma have been linked to an increased risk for PD (80). Zn has been shown to potentiate the toxicity of DA as well (189). Furthermore, Zn chelation reduces the toxicity of mitochondrial PD-related toxins (310). Recently, ATP13A2 was identified as a Zn transporter localized to multivesicular bodies. Loss of function mutations of ATP13A2 induces alterations in Zn homeostasis and mitochondrial dysfunction (259).
研究发现,PD 大脑 SN 中的 Zn 水平升高 ( 74 ),而血清和血浆中的 Zn 水平降低则与 PD 风险增加有关 ( 80 )。 Zn 也被证明会增强 DA 的毒性 ( 189 )。此外,锌螯合可降低线粒体 PD 相关毒素的毒性 ( 310 )。最近,ATP13A2 被鉴定为定位于多泡体的锌转运蛋白。 ATP13A2功能缺失突变会导致 Zn 稳态改变和线粒体功能障碍 ( 259 )。
Xenobiotic Metals 异生金属
Measurable concentrations of xenobiotic metals with no physiological functions are present in humans (Supplementary Table S1) (103). In addition, environmental or occupational exposures to xenobiotic metals may take place by inhalation, ingestion, or skin penetration and are often linked to the development of toxicity and pathological conditions (Supplementary Table S1). Metals can reach the CNS from the vascular lumen affecting neuronal and glial function. Metals hijack transport systems of essential metals to pass through the BBB and enter neuronal tissues (molecular mimicry). Metal toxicity is largely attributable to their physicochemical properties, which mediate their interference with cellular biochemical systems, including redox-related processes (205, 355).
人体中存在可测量浓度的不具有生理功能的异生金属(补充表S1 )( 103 )。此外,环境或职业接触异生金属可能通过吸入、摄入或皮肤渗透发生,并且通常与毒性和病理状况的发生有关(补充表S1 )。金属可以从血管腔到达中枢神经系统,影响神经元和神经胶质的功能。金属劫持必需金属的运输系统,使其穿过血脑屏障并进入神经元组织(分子拟态)。金属毒性很大程度上归因于它们的理化特性,这些特性介导它们对细胞生化系统的干扰,包括氧化还原相关过程( 205 , 355 )。
Environmental or occupational exposure to xenobiotic metals has been reported to contribute to neuronal dysfunction (cognitive, motor, and behavioral) and in some cases, neurodegeneration. However, the mechanisms involved are largely unclear. We next review the sources and routes of exposure to xenobiotic metals; the metabolic pathways involved in their transport and activation, and the mechanisms by which they alter cellular redox balance to promote neurotoxicity.
据报道,环境或职业接触异生金属会导致神经元功能障碍(认知、运动和行为),在某些情况下还会导致神经变性。然而,所涉及的机制在很大程度上尚不清楚。接下来我们回顾一下异生金属的来源和暴露途径;参与其运输和激活的代谢途径,以及它们改变细胞氧化还原平衡以促进神经毒性的机制。
Arsenic 砷
As is naturally present in air, water, and soil and is the 20th most abundant element in the earth's crust and 12th in the human body. This metal is named inorganic As (iAs) when found combined with other elements such as O2, chlorine (Cl), and sulfur (S). Combined with carbon (C) and hydrogen (H) is referred to as organic As. In the environment and within the human body, iAs predominantly exists in two oxidation states: arsenite +3 (or AsIII, found as arsenic trioxide [As2O3], sodium arsenite [NaAsO2], and arsenic trichloride [AsCl3]), and arsenate +5 (or AsV found as arsenic pentoxide [As2O5], arsenic acid [H3AsO4], and arsenates [PbHAsO4, Ca3(AsO4)2]).
天然存在于空气、水和土壤中,是地壳中第 20 位最丰富的元素,在人体中排名第 12 位。当这种金属与 O 2 、氯 (Cl) 和硫 (S) 等其他元素结合时,被称为无机砷 (iAs)。与碳(C)和氢(H)结合称为有机As。在环境和人体内,iAs 主要以两种氧化态存在:亚砷酸盐 +3(或 AsIII,以三氧化二砷 [As 2 O 3 ]、亚砷酸钠 [NaAsO 2 ] 和三氯化砷 [AsCl 3 ] 形式存在) ,和砷酸盐+5(或以五氧化二砷[As 2 O 5 ]、砷酸[H 3 AsO 4 ]和砷酸盐[PbHAsO 4 , Ca 3 (AsO 4 ) 2 ]形式发现的AsV)。
iAs has been widely used as a therapeutic agent to treat leukemia. Currently, iAs compounds are predominantly used in pesticides, herbicides, cotton desiccants, wood preservatives, alloys for batteries, and in semiconductors and light-emitting diodes. Millions of individuals are currently exposed to iAs across the world due to natural groundwater contamination. Fish and crustaceans contain very high levels of organic arsenobetaine but no toxicity has been reported in vivo (382). The concentration of iAs in natural surface and groundwater is generally about 1 parts per billion (ppb) of water but it may exceed 1000 ppb in contaminated areas or where iAs soil levels are high (118, 200) (Supplementary Table S1).
iAs已被广泛用作治疗白血病的治疗剂。目前,砷化合物主要用于杀虫剂、除草剂、棉花干燥剂、木材防腐剂、电池合金、半导体和发光二极管。由于天然地下水污染,目前全世界有数百万人暴露于无机砷。鱼类和甲壳类动物含有非常高水平的有机砷甜菜碱,但尚未有体内毒性的报道( 382 )。天然地表和地下水中 iAs 的浓度通常约为十亿分之 1 (ppb),但在受污染地区或 iAs 土壤含量较高的地方可能会超过 1000 ppb ( 118 , 200 )(补充表 S1 )。
While As is considered a carcinogen, in the brain, acute exposure to iAs can induce encephalopathy, with symptoms such as confusion, hallucinations, reduced memory, and emotional lability (exaggerated changes in mood or affect). Long-term exposure to lower levels of iAs can lead to the development of peripheral neuropathies.
虽然砷被认为是一种致癌物质,但在大脑中,急性接触砷会诱发脑病,症状包括精神错乱、幻觉、记忆力下降和情绪不稳定(情绪或情感的过度变化)。长期接触较低水平的 iAs 可导致周围神经病变的发生。
There are reports of neurobehavioral alterations (cognitive function, verbal abilities, long-term memory, and motor skills) in children exposed to As concentrations ranging from 5 to 50 ppb in water, in Bangladesh (260), Mexico (45, 287), and in the United States (370). Although scientific understanding of the developmental neurotoxicity of As is still evolving, epidemiological and toxicological studies clearly show that As is a developmental neurotoxicant that affects intellectual function. Moreover, exposures even below current safety guidelines are associated with decrements in full-scale intelligence quotient (IQ) and memory (90, 347). Evidence in experimental models, including mice, rats, Caenorhabditis elegans (worm), and Danio rerio (zebrafish), has replicated many of the observations in humans supporting the notion that As can lead to cognitive, locomotor, and neurological impairment (85). Gestational exposure to NaAsO2 leads to a significant iAs accumulation in the mice offspring's brain (280). As neurotoxicity has been linked to changes in neurotransmitter metabolism and synaptic transmission (85, 276, 280). However, the mechanisms involved remain unclear.
有报告称,孟加拉国 ( 260 )、墨西哥 ( 45 , 287 )、墨西哥 (45, 287) 的儿童接触砷浓度为 5 至 50 ppb 的水中,神经行为发生改变(认知功能、语言能力、长期记忆和运动技能)。以及美国( 370 )。尽管对砷的发育神经毒性的科学认识仍在不断发展,但流行病学和毒理学研究清楚地表明砷是一种影响智力功能的发育神经毒物。此外,即使低于当前安全准则的暴露也会导致全面智商 (IQ) 和记忆力的下降 ( 90 , 347 )。实验模型(包括小鼠、大鼠、秀丽隐杆线虫(线虫)和斑马鱼)中的证据已经在人体中复制了许多观察结果,支持砷可导致认知、运动和神经功能障碍的观点( 85 )。妊娠期接触NaAsO 2会导致小鼠后代大脑中iAs 大量积累( 280 )。因为神经毒性与神经递质代谢和突触传递的变化有关(85、276、280 ) 。然而,所涉及的机制仍不清楚。
In the environment, oxygenated water contains iAsV species, while in reducing environments iAsIII species are prevalent. iAsV enters cells through phosphate transporters to be subsequently reduced to iAsIII, while iAsIII is transported via aqua(glycerol)porins (AQP), organic anion transporters, and glucose transporters (GLUT) (Fig. 7a) (44, 187, 348). Once in the cytoplasm, iAsIII is methylated by different mechanisms. Oxidative methylation (Fig. 7b) is mediated by arsenite methyltransferase (AS3MT) that uses S-adenosylmethionine (AdoMet) as a cosubstrate. AS3MT methylates iAsIII to monomethylarsonic acid or arsonate (MMAV) that is reduced to monomethylarsonous acid (MMAIII) before being methylated again to dimethylarsinic acid (DMAV) by AS3MT (353, 372). Finally, DMAV is reduced generating dimethylarsinous acid (DMAIII). The reduction of pentavalent arsenicals (iAsV, MMAV, and DMAV) in this pathway is now well recognized to be mediated by the Trx/TR system, but GSH seems to increase the methylation rates by an unknown mechanism (76).
在环境中,含氧水含有 iAsV 物种,而在还原环境中 iAsIII 物种普遍存在。 iAsV 通过磷酸盐转运蛋白进入细胞,随后被还原为 iAsIII,而 iAsIII通过水(甘油)孔蛋白(AQP)、有机阴离子转运蛋白和葡萄糖转运蛋白( GLUT )转运(图 7a )( 44,187,348 )。一旦进入细胞质,iAsIII 就会通过不同的机制被甲基化。氧化甲基化(图7b )由亚砷酸甲基转移酶(AS3MT)介导,该酶使用S-腺苷甲硫氨酸(AdoMet)作为共底物。 AS3MT将iAsIII甲基化为一甲基胂酸或胂酸盐(MMAV),其在被AS3MT再次甲基化为二甲基胂酸(DMAV)之前还原为一甲基胂酸( MMAIII )( 353、372 )。最后,DMAV 被还原生成二甲基胂酸 (DMAIII)。现在人们普遍认为该途径中五价砷(iAsV、MMAV 和 DMAV)的减少是由 Trx/TR 系统介导的,但 GSH 似乎通过未知机制增加甲基化率 ( 76 )。
Developmental exposure to As alters the methylation patterns of genes involved in neuroplasticity likely due to changes in AdoMet, but its long-term implications are unclear (207). Recent in vivo studies demonstrated that the alterations in synaptic plasticity (LTP), memory, and learning induced by gestational exposure to iAs were associated with an increase in extracellular Glu levels and downregulation of AMPAR subunits (244).
发育过程中接触 As 会改变神经可塑性相关基因的甲基化模式,这可能是由于 AdoMet 的变化所致,但其长期影响尚不清楚 ( 207 )。最近的体内研究表明,妊娠期暴露于 iAs 引起的突触可塑性 (LTP)、记忆和学习的改变与细胞外 Glu 水平的增加和 AMPAR 亚基的下调相关 ( 244 )。
As methylation via the GSH conjugation mechanism is based on the formation of GSH complexes with iAsIII resulting in arsenic triglutathione [As(SG)3] (Fig. 7c). Conjugation of iAsIII with GSH has been proposed to occur nonenzymatically, but enzymatically as well by the activity of glutathione-S transferases (GST isoforms GSTO1, GSTM1, or GSTP1) (173, 372). As(GS)3 is subsequently methylated by AS3MT to form monomethylarsinic diglutathione [MMA(GS)2] and then again to generate dimethylarsinic GSH [DMA(GS)]. At low GSH levels, As(GS) conjugates are hydrolyzed and then oxidized to generate MMAV and DMAV (372). A third mechanism for iAsIII methylation has been recently proposed, where instead of As(GS) conjugate formation, iAsIII binds to protein-Cys (thiol) and is methylated while still being conjugated to proteins (Fig. 7d). This hypothesis is supported by the preferential binding of iAsIII to protein-Cys when compared to GSH (284).
因为通过GSH缀合机制的甲基化是基于GSH与iAsIII复合物的形成,从而产生砷三谷胱甘肽[As(SG) 3 ](图7c )。 iAsIII 与 GSH 的结合被认为是非酶促地发生,但也通过谷胱甘肽-S 转移酶(GST 同工型 GSTO1、GSTM1 或 GSTP1)的活性以酶促方式发生( 173 , 372 )。 As(GS) 3随后被 AS3MT 甲基化,形成单甲基胂二谷胱甘肽 [MMA(GS) 2 ],然后再次生成二甲基胂 GSH [DMA(GS)]。在低 GSH 水平下,As(GS) 缀合物被水解,然后被氧化生成 MMAV 和 DMAV ( 372 )。最近提出了 iAsIII 甲基化的第三种机制,其中 iAsIII 与蛋白质-Cys(硫醇)结合,而不是形成 As(GS)缀合物,并在仍与蛋白质缀合的同时被甲基化(图 7d )。与 GSH 相比,iAsIII 优先与蛋白质-Cys 结合支持了这一假设 ( 284 )。
Methylated (and maybe unmethylated) As metabolites are exported through the multidrug resistance proteins (MRP1, MRP2, or MRP4) (173, 317, 388) (Fig. 7e). AS3MT is ubiquitously expressed in all brain regions, and animal studies have shown that the iAs that crosses the BBB is methylated and accumulated across the brain, with the highest accumulation observed in the pituitary gland (297). Interestingly, knockout mouse for P-glycoprotein accumulates more As in the brain (183). Endothelial cells and astrocytes feet surrounding capillaries are the first barrier of detoxification of xenobiotics entering from the circulation. We (unpublished data) and others have observed that the resistance of astrocytes to iAsIII is mediated by MRPs (332).
甲基化(并且可能未甲基化)作为代谢物通过多药耐药蛋白(MRP1、 MRP2或MRP4 )输出( 173、317、388 )(图7e )。 AS3MT 在所有大脑区域中普遍表达,动物研究表明,穿过 BBB 的 iAs 被甲基化并在整个大脑中积累,其中在垂体中观察到积累量最高 ( 297 )。有趣的是,P-糖蛋白基因敲除小鼠的大脑中积累了更多的 As ( 183 )。毛细血管周围的内皮细胞和星形胶质细胞是从循环中进入的外源物质解毒的第一道屏障。我们(未发表的数据)和其他人观察到星形胶质细胞对 iAsIII 的抵抗是由 MRP 介导的( 332 )。
iAs generates ROS and dimethylarsenic or peroxyl radicals that in turn lead to lipid peroxidation and the accumulation of oxidized by-products (MDA and HNE) (Fig. 7f). Importantly, MMAIII and DMAIII are proposed to be more potent toxicants than iAsIII due to their increased ability to generate radicals (392). Oxidative stress has been reported in brain regions of different animal models and in neurons and glial cell cultures exposed to As compounds (48, 107, 108, 243, 394).
iAs 产生 ROS 和二甲基砷或过氧自由基,进而导致脂质过氧化和氧化副产物(MDA 和 HNE)的积累(图 7f )。重要的是,MMAIII 和 DMAIII 被认为是比 iAsIII 更有效的毒物,因为它们产生自由基的能力更强 ( 392 )。据报道,不同动物模型的大脑区域以及暴露于砷化合物的神经元和神经胶质细胞培养物中存在氧化应激( 48,107,108,243,394 )。
Mitochondria have been proposed to be a primary source for ROS formation by iAs (Fig. 7g) (97, 150). Chronic iAs exposure generates mitochondrial oxidative stress in the rat brain by impairment of mitochondrial complexes I, II, and IV activities followed by increased ROS generation, lipid peroxidation, and protein carbonylation (275). Mitochondrial pyruvate dehydrogenase is also directly inhibited by iAs (136). In addition, iAs reduces the levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), downstream targets Nrf1 and Nrf2, and the mitochondrial transcription factor A (TFAM) decreasing mitochondrial biogenesis (274). ER stress has also been shown to contribute to iAs toxicity, but the mechanisms involved remain unclear (Fig. 7h) (182).
线粒体被认为是 iAs 形成 ROS 的主要来源(图 7g )( 97 , 150 )。慢性 iAs 暴露会损害线粒体复合物 I、II 和 IV 活性,进而导致 ROS 生成、脂质过氧化和蛋白质羰基化增加,从而在大鼠大脑中产生线粒体氧化应激 ( 275 )。线粒体丙酮酸脱氢酶也直接被 iAs 抑制 ( 136 )。此外,iAs 降低过氧化物酶体增殖物激活受体 γ 共激活剂 1-α (PGC-1α)、下游靶标 Nrf1 和 Nrf2 以及线粒体转录因子 A (TFAM) 的水平,从而减少线粒体生物发生 ( 274 )。 ER 应激也已被证明会导致 iAs 毒性,但所涉及的机制仍不清楚(图 7h )( 182 )。
iAs toxicity has also been attributed to the ability of AsV to replace phosphate in several metabolic pathways (arsenylation) where the end product is the reduction of AsV to AsIII, because the arsenylated by-product is more readily reduced than AsV itself (Fig. 7g). AsV uncouples oxidative phosphorylation and ATP formation in the mitochondria by binding to ADP via ATP synthase. Replacement of phosphate in glycolysis also impairs carbon flux and ATP production. Reaction of AsV with glucose generates glucose 6-arsenate, an analog of glucose 6-phosphate that is suggested to act as an inhibitor of hexokinase. AsV is also arsenylated by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to produce the unstable product 1-arsenato-3-phospho-D-glycerate (iAsV-3-P-glycerate). Purine nucleoside phosphorylase, glycogen phosphorylase, and mitochondrial ornithine carbamoyl transferase (OCT) have also been shown to arsenylate AsV (139, 245, 340). Thus, energy failure, alterations in central carbon metabolism, and mitochondrial dysfunction are consequences of AsV toxicity.
iAs 毒性也归因于 AsV 在几种代谢途径(砷化)中取代磷酸盐的能力,其中最终产物是将 AsV 还原为 AsIII,因为砷化副产物比 AsV 本身更容易被还原(图 7g) )。 AsV通过ATP 合酶与 ADP 结合,解开线粒体中的氧化磷酸化和 ATP 形成。糖酵解中磷酸盐的替代也会损害碳通量和 ATP 产生。 AsV 与葡萄糖反应生成葡萄糖 6-砷酸盐,这是葡萄糖 6-磷酸盐的类似物,被认为可作为己糖激酶的抑制剂。 AsV 还可被甘油醛 3-磷酸脱氢酶 (GAPDH) 砷化,产生不稳定的产物 1-砷酸-3-磷酸-D-甘油酸酯 (iAsV-3-P-甘油酸酯)。嘌呤核苷磷酸化酶、糖原磷酸化酶和线粒体鸟氨酸氨基甲酰基转移酶 (OCT) 也已被证明可使 AsV 砷化 ( 139 , 245 , 340 )。因此,能量衰竭、中心碳代谢的改变和线粒体功能障碍是 AsV 毒性的后果。
AsIII binds to thiol containing molecules (coenzyme A, GSH, and dihydrolipoamide also known as dihydrolipoic acid [DLA]) and protein-Cys thiols inactivating enzyme function (Fig. 7d, i). AsIII has higher affinity for dithiols than monothiols as demonstrated by the transfer of AsIII from the GSH-adduct to 2,3-dimercaptosuccinic acid (DMSA) a sulfhydryl-containing metal chelator used to treat heavy metal toxicity. In addition, AsIII conjugated with GSH has the ability to bind protein thiols, which highlights the importance of detoxification of GSH-As adducts from the cell (230). Dithiol molecules such as the cofactor DLA and dithiol oxidoreductases Trxs, Trx reductase (TrxR), Prxs (except for monothiol Prx6), Grx, and GR, as well as proteins with adjacent Cys (MT), have been reported to avidly bind AsIII (Fig. 7d, j) (50, 279, 311, 393, 397). In addition to binding AsIII, Zn finger domains have been shown to be oxidized upon As binding (396). Binding of AsIII to DLA (Fig. 7i) is expected to interfere with the TCA cycle and energy production as DLA is a cofactor for the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes that catalyze the synthesis of acetyl-CoA and succinyl-CoA, respectively. DLA reverses protein oxidation and loss of protein-SHs in the brains of rats exposed to high levels of iAs (82, 296, 315, 316).
AsIII与含有硫醇的分子(辅酶A、GSH和二氢硫辛酰胺,也称为二氢硫辛酸[DLA])和蛋白质-Cys硫醇结合,使酶功能失活(图7d,i )。 AsIII 对二硫醇的亲和力比单硫醇更高,这一点通过 AsIII 从 GSH 加合物转移到 2,3-二巯基丁二酸 (DMSA)(一种用于治疗重金属毒性的含巯基金属螯合剂)来证明。此外,与 GSH 缀合的 AsIII 具有结合蛋白质硫醇的能力,这凸显了细胞中 GSH-As 加合物解毒的重要性 ( 230 )。据报道,二硫醇分子,例如辅因子 DLA 和二硫醇氧化还原酶 Trxs、Trx 还原酶 (TrxR)、Prxs(单硫醇 Prx6 除外)、Grx 和 GR,以及具有相邻 Cys (MT) 的蛋白质,可强烈结合 AsIII。图7d、j ) ( 50、279、311、393、397 ) 。除了结合 AsIII 之外,Zn 指结构域已被证明在 As 结合时被氧化 ( 396 )。 AsIII与DLA的结合(图7i )预计会干扰TCA循环和能量产生,因为DLA是丙酮酸脱氢酶和2-酮戊二酸脱氢酶复合物的辅助因子,分别催化乙酰辅酶A和琥珀酰辅酶A的合成。 DLA 可逆转暴露于高水平 iAs 的大鼠大脑中的蛋白质氧化和蛋白质-SH 的损失 ( 82 , 296 , 315 , 316 )。
As activates the cystine/Glu exchanger system (xCT) in microglia to increase extracellular Glu levels (320), while in astrocytes it decreases the expression levels and activity of GS and Glu transporters (GLAST/excitatory amino acid transporter (EAAT) 1 and GLT-1/EAAT2) (48, 395). Importantly, these effects were linked to an increase in GSH levels and Nrf2 activity (Fig. 7i), but not oxidative stress (48). Accordingly, activation of Nrf2 by As seems to involve a noncanonical pathway where inhibition of autophagy leads to the accumulation of the ubiquitin-binding protein/adaptor p62 that sequesters Keap1 (169). iAsIII toxicity is also counteracted by the transcriptional regulation of MT via MTF1 (Fig. 7j) (129).
As 激活小胶质细胞中的胱氨酸/Glu 交换系统 (xCT),以增加细胞外 Glu 水平 ( 320 ),而在星形胶质细胞中,它会降低 GS 和 Glu 转运蛋白(GLAST/兴奋性氨基酸转运蛋白 (EAAT) 1 和 GLT)的表达水平和活性-1/EAAT2) ( 48 , 395 )。重要的是,这些效应与 GSH 水平和 Nrf2 活性的增加有关(图 7i ),但与氧化应激无关( 48 )。因此,As 激活 Nrf2 似乎涉及一种非经典途径,其中自噬的抑制导致泛素结合蛋白/接头 p62 的积累,从而隔离 Keap1 ( 169 )。 iAsIII 毒性还可以通过MTF1 的 MT 转录调节来抵消(图 7j )( 129 )。
Lead 带领
Inorganic Pb remains one of the most studied toxic elements due to several reasons. To begin with, human contact with Pb started very early in human civilization, and its toxic effects were also known since then. However, more importantly, Pb is neurotoxic leading to lower IQ even at lower doses than those recommended by the World Health Organization (10 ppb in drinking water). Human exposure to Pb not only occurs occupationally but also environmentally. The presence of Pb in the environment has multiple sources such as gasoline, industrial processes, paint, water pipes, and solder in canned food. It is present in air, household dust, soil, water, and food (Supplementary Table S1). Environmental Pb levels have fortunately decreased, especially in those countries where the Pb addition to gasoline and paints was banned. This prohibition was enforced after several studies associated the presence of high blood levels of Pb with impaired or diminished cognitive functions. Epidemiological studies have clearly shown that exposure to Pb in early stages of development is associated with significant deficits in neurobehavioral performance, including lower IQ, attention deficits, and aggressiveness later in life. Despite all the enforced restrictions, Pb contamination is still a major public health concern. For example, in November 2000 in Washington DC, there was a “lead drinking water crisis” triggered by a change in the disinfectant used to clean the water, this contamination affected hundreds of kids for 3 years. The health consequences of the recent crisis of Pb-contaminated water in Flint Michigan (United States, 2015) are still to be revealed in the future (68, 84, 124, 298).
由于多种原因,无机铅仍然是研究最多的有毒元素之一。首先,人类在人类文明的早期就开始接触铅,并且从那时起人们就知道了铅的毒性作用。然而,更重要的是,铅具有神经毒性,即使在低于世界卫生组织建议的剂量(饮用水中 10 ppb)的情况下也会导致智商降低。人类接触铅不仅发生在职业中,而且发生在环境中。环境中存在的铅有多种来源,例如汽油、工业过程、油漆、水管和罐头食品中的焊料。它存在于空气、家庭灰尘、土壤、水和食物中(补充表S1 )。幸运的是,环境中的铅含量已经下降,特别是在那些禁止在汽油和油漆中添加铅的国家。这项禁令是在多项研究将血液中高浓度铅与认知功能受损或减弱联系起来之后实施的。流行病学研究清楚地表明,在发育早期接触铅与神经行为表现的显着缺陷相关,包括智商较低、注意力缺陷和晚年的攻击性。尽管有所有强制限制,铅污染仍然是一个主要的公共卫生问题。例如,2000年11月,华盛顿特区因清洁水所用消毒剂的变化引发了一场“铅饮用水危机”,这种污染影响了数百名儿童长达3年。最近密歇根州弗林特铅污染水危机(美国,2015)的健康后果仍有待未来揭晓( 68,84,124,298 )。
Inhalation and ingestion of Pb and Pb-containing particles or products are the main routes of Pb entry into the body. Young children are especially vulnerable because they show higher gastrointestinal absorption than adults. Inhaled Pb particles are quickly absorbed in alveoli and distributed to other organs through the circulation. Thus, blood lead levels (BLL) are reliable biomarkers of exposure and risk. However, BLL do not reflect the total Pb body burden because Pb is absorbed in bones where it can be stored for several years (68). Currently, the acceptable BLL for children is lower than 10 μg/dl (0.48 μM) (49, 376), but due to the devastating effects that might occur later in life, there is a consensus to recommend efficient surveillance methods for children protection to reduce BLL to the lowest possible level (141). Pb binds with high affinity to erythrocytes' δ-aminolevulinic acid dehydratase (ALAD) that catalyzes the second step in the porphyrin and heme biosynthetic pathway, causing the accumulation of aminolevulinic acid (ALA) in both plasma and urine, which is used as a biomarker of exposure (248).
吸入和摄入铅及含铅颗粒或制品是铅进入体内的主要途径。幼儿尤其容易受到伤害,因为他们的胃肠吸收能力比成人更高。吸入的铅颗粒很快被肺泡吸收,并通过循环分布到其他器官。因此,血铅水平(BLL)是暴露和风险的可靠生物标志物。然而,BLL 并不反映体内铅的总负荷,因为铅被吸收在骨骼中,可以储存数年 ( 68 )。目前,儿童可接受的 BLL 低于 10 μg/dl (0.48 μM ) ( 49 , 376 ),但由于可能在以后的生活中发生破坏性影响,人们一致认为推荐有效的监测方法来保护儿童将BLL降低到尽可能低的水平( 141 )。 Pb 以高亲和力与红细胞的 δ-氨基乙酰丙酸脱水酶 (ALAD) 结合,催化卟啉和血红素生物合成途径的第二步,导致血浆和尿液中氨基乙酰丙酸 (ALA) 的积累,可用作生物标志物曝光量( 248 )。
Pb can cross the BBB and cell membrane because of its ability to mimic Ca2+ and Fe2+ ions (Fig. 8a) (205, 298). In children, due to a more permeable BBB and a lower bone storage capacity for Pb, the amount of Pb passing into the nervous system is higher than in adults. The highest accumulation of Pb has been reported in the hippocampus, amygdala (116), and choroids plexus (201). The PNS may accumulate considerably more Pb than the CNS. Animals chronically exposed to Pb had impaired dendritic spines and synapse formation (306). Developmental exposure to Pb impacts the prefrontal cerebral cortex, hippocampus, and cerebellum regions, which can lead to neurological disorders, mental retardation, behavioral problems, and nerve damage (242). Early life exposure to Pb has also been linked to neurodegenerative diseases such as AD and PD (62, 209).
Pb 可以穿过 BBB 和细胞膜,因为它能够模拟 Ca 2+和 Fe 2+离子(图 8a )( 205 , 298 )。在儿童中,由于血脑屏障的渗透性更强,骨铅储存能力较低,因此进入神经系统的铅量比成人更高。据报道,海马体、杏仁核 ( 116 ) 和脉络丛 ( 201 ) 中铅的积累量最高。 PNS 可能比 CNS 积累更多的 Pb。长期接触铅的动物树突棘和突触形成受损( 306 )。发育过程中接触铅会影响前额叶大脑皮层、海马体和小脑区域,从而导致神经系统疾病、智力障碍、行为问题和神经损伤( 242 )。生命早期接触铅也与 AD 和 PD 等神经退行性疾病有关 ( 62 , 209 )。
The mechanisms of Pb toxicity include the ability of Pb to bind SH groups of proteins Cys and to mimic or compete with Ca2+, Fe2+, and Zn2+ (Fig. 8b, c, e, f) (99, 283). Zn deficiency increases the toxicity of Pb (4). The generation of oxidative damage by Pb in vitro and in vivo suggests that ROS also participate in Pb toxicity. For example, Pb acetate induces the opening of the mitochondrial permeability transition pore in human neuroblastoma SH-SY5Y cells via ROS (384). Pb can form a Pb2+–O2•− complex with higher oxidizing capacity than O2•− (3). In addition, accumulated δ-ALA by Pb-induced ALAD inhibition can be subsequently oxidized to generate O2•−, •OH, and H2O2. Pb per se has been reported to stimulate Fe2+-initiated lipid peroxidation (Fig. 8b) (337). Early postnatal exposure of rats to Pb leads to a higher accumulation of oxidative DNA damage in the cerebral cortical tissue when compared with aged controls or aged mice exposed acutely to Pb (36).
Pb 毒性的机制包括 Pb 结合蛋白质 Cys 的 SH 基团以及模拟或竞争 Ca 2+ 、 Fe 2+和 Zn 2+的能力(图 8b、c、e 、f)( 99 , 283 )。缺锌会增加铅的毒性 ( 4 )。 Pb在体外和体内产生的氧化损伤表明,ROS 也参与了 Pb 毒性。例如,乙酸铅通过ROS 诱导人神经母细胞瘤 SH-SY5Y 细胞中线粒体通透性转换孔的打开 ( 384 )。 Pb可形成Pb 2+ –O 2 •−络合物,其氧化能力高于O 2 •− ( 3 )。此外,通过Pb诱导的ALAD抑制而积累的δ-ALA随后可以被氧化生成O 2 •− 、 • OH和H 2 O 2 。据报道,Pb本身会刺激 Fe 2+引发的脂质过氧化(图 8b )( 337 )。与老年对照或急性暴露于 Pb 的老年小鼠相比,出生后早期暴露于 Pb 的大鼠会导致大脑皮质组织中氧化 DNA 损伤的积累更高( 36 )。
Perinatal exposure to Pb acetate inhibits the activity of brain acid and alkaline phosphatases, catalase, acetylcholinesterase, and ATPases (12). Similar observations have been made for the activities/levels of SOD1, GPX1, and GPX4 in the hippocampus, and for mitochondrial SOD2 and GSH, both in the cortex and hippocampus (19). Antioxidant nutrients such as vitamin E, vitamin C, vitamin B6, β-carotene, and DLA, as well as metal chelators such as DMSA, or replenishment of displaced metals has been shown to be beneficial against Pb-induced oxidative stress in the brain (98, 236, 256, 258, 277, 367). Diet supplementation with Zn and Se, which participates in the regulation of the GSH and Trx antioxidant systems, can effectively outcompete Pb binding to Zn- and Se-binding sites (Fig. 8e) (135).
围产期接触醋酸铅会抑制脑酸性和碱性磷酸酶、过氧化氢酶、乙酰胆碱酯酶和 ATP 酶的活性 ( 12 )。对于海马中 SOD1、GPX1 和 GPX4 的活性/水平,以及皮层和海马中线粒体 SOD2 和 GSH 的活性/水平也进行了类似的观察 ( 19 )。维生素 E、维生素 C、维生素 B6、β-胡萝卜素和 DLA 等抗氧化营养素以及 DMSA 等金属螯合剂或补充置换金属已被证明有助于对抗铅引起的大脑氧化应激。 98、236、256、258、277、367 ) 。饮食中补充锌和硒参与 GSH 和 Trx 抗氧化系统的调节,可以有效地竞争 Pb 与 Zn 和 Se 结合位点的结合(图 8e )( 135 )。
Pb interferes with and disrupts Ca2+ signaling and homeostasis leading to excitotoxicity. In addition, Glu potentiates Pb-induced cell death in PC12 cells (267). Recently, oxidative stress induced by Pb has been shown to be linked to changes in the levels of MCU (Fig. 8d) (383). Other important intracellular targets of Pb in the brain are both neural NOS and endothelial NOS due to an impairment in their Ca2+/calmodulin (CaM)-dependent activation (Fig. 8f) (241). Importantly, Pb amplifies Glu-induced oxidative stress in a Ca2+-independent manner, but neither Ca2+ nor ROS seem to be essential for the enhanced cytotoxicity of combined exposure to Glu and Pb (191, 238).
Pb 干扰并破坏 Ca 2+信号传导和稳态,导致兴奋性毒性。此外,Glu 还可增强 PC12 细胞中 Pb 诱导的细胞死亡 ( 267 )。最近,Pb 诱导的氧化应激已被证明与 MCU 水平的变化有关(图 8d )( 383 )。大脑中 Pb 的其他重要细胞内靶标是神经 NOS 和内皮 NOS,因为它们的 Ca 2+ /钙调蛋白 (CaM) 依赖性激活受损(图 8f )( 241 )。重要的是,Pb 以不依赖 Ca 2+的方式放大 Glu 诱导的氧化应激,但 Ca 2+和 ROS 似乎对于联合暴露于 Glu 和 Pb 增强的细胞毒性都不是必需的 ( 191 , 238 )。
Mercury 汞
Hg is a transition metal that exists as elemental, inorganic, and organic Hg (Fig. 9a). Hg is ubiquitously found in the environment as sulfide compounds generated from volcanic activity and erosion, or released by anthropogenic sources such as fuel combustion, waste disposal, and industrial activities (Supplementary Table S1). Elemental or metallic Hg (Hg0) used in thermometers and amalgams is primarily absorbed via inhalation, while inorganic mercury (Hg1+ or 2+) used in medicine and everyday life products is partially absorbed through the gut. Organic Hg (ethylmercury [EtHg or C2H5Hg] and methylmercury [MeHg or CH3Hg]) is originated from atmospheric sources that are deposited in water body surfaces to be biomethylated and magnified in the food chain (Fig. 9a). Around 95% of MeHg is absorbed by the gastrointestinal tract making it the most toxic Hg species. Neurotoxic signs of Hg intoxication are vast and include ataxia, dizziness, insomnia, speech impairment, arthralgia, cognitive and behavioral changes, seizures, fatigue, and sensory disruption. While there has been an association between Hg exposure and neurodegeneration or autism, the neurological effects of chronic exposure to Hg are largely unclear. However, research has clearly demonstrated that Hg impairs neuronal development, communication, and myelination (89).
Hg 是一种过渡金属,以元素汞、无机汞和有机汞的形式存在(图 9a )。汞在环境中普遍存在,以火山活动和侵蚀产生的硫化物形式存在,或由燃料燃烧、废物处理和工业活动等人为来源释放(补充表S1 )。温度计和汞合金中使用的元素或金属汞 (Hg 0 ) 主要通过吸入吸收,而药物和日常生活用品中使用的无机汞 (Hg 1+ 或 2+ ) 部分通过肠道吸收。有机汞(乙基汞[EtHg或C 2 H 5 Hg]和甲基汞[MeHg或CH 3 Hg])源自大气源,沉积在水体表面,被生物甲基化并在食物链中放大(图9a )。大约 95% 的甲基汞被胃肠道吸收,使其成为毒性最强的汞种类。汞中毒的神经毒性症状多种多样,包括共济失调、头晕、失眠、言语障碍、关节痛、认知和行为改变、癫痫发作、疲劳和感觉障碍。虽然汞暴露与神经退行性疾病或自闭症之间存在关联,但长期暴露于汞对神经系统的影响尚不清楚。然而,研究清楚地表明汞会损害神经元发育、交流和髓鞘形成 ( 89 )。
Most of the studies regarding the mechanisms involved in Hg neurotoxicity have been done using MeHg. MeHg and EtHg are potent electrophiles that form a complex with Cys (CH3HgCys or C2H5HgCys), and then transported across the BBB and into neuronal cells via L-type neutral amino acid transporters (LAT1 and 2) (Fig. 9a) (318, 385, 399).
大多数有关汞神经毒性机制的研究都是使用甲基汞进行的。 MeHg 和 EtHg 是有效的亲电子试剂,它们与 Cys(CH 3 HgCys 或 C 2 H 5 HgCys)形成复合物,然后通过L 型中性氨基酸转运蛋白(LAT1 和 2)穿过 BBB 转运到神经元细胞中(图 1)。 9a )(318、385、399 ) 。
A high percentage of Hg in individuals intoxicated with MeHg is found as Hg2+, suggesting that dealkylation of MeHg is an important mechanism for the high persistence of Hg in the brain (Fig. 9b) (72). Thiol exchange from CH3HgCys to low-molecular-weight thiols (GSH) and protein thiols has been proposed to be central mechanisms by which MeHg induces GSH depletion, inhibition of thiol-dependent antioxidant systems, and alters the activity or function of proteins with redox-sensitive Cys (signaling proteins, metabolic enzymes, neurotransmitter receptors, and transporters) (Fig. 9c) (89). MeHg also has a stronger affinity for selenol groups (selenohydryl groups in selenocysteines) compared with thiol groups. As such, selenoproteins are important targets for direct electrophilic attack of MeHg or transfer from thiol adducts (CH3HgCys, CH3HgGS, or CH3HgPS [protein-Cys adduct]) (Fig. 9c) (104, 221). GSTs have been proposed to mediate the formation of CH3HgGS adducts, which are detoxified by MRP1-mediated transport (Fig. 9d). GSH synthesis, GST, and MRP1 levels are regulated transcriptionally by the Nrf2 antioxidant system (152, 292, 349).
在甲基汞中毒个体中,高比例的汞以 Hg 2+形式存在,这表明甲基汞的脱烷基化是汞在大脑中高持久性的重要机制(图 9b )( 72 )。从 CH 3 HgCys 到低分子量硫醇 (GSH) 和蛋白质硫醇的硫醇交换已被认为是 MeHg 诱导 GSH 消耗、抑制硫醇依赖性抗氧化系统以及改变蛋白质活性或功能的核心机制。氧化还原敏感的半胱氨酸(信号蛋白、代谢酶、神经递质受体和转运蛋白)(图 9c )( 89 )。与硫醇基团相比,MeHg 对硒醇基团(硒代半胱氨酸中的硒氢基团)也具有更强的亲和力。因此,硒蛋白是MeHg直接亲电攻击或从硫醇加合物(CH 3 HgCys、CH 3 HgGS或CH 3 HgPS [蛋白质-Cys加合物])转移的重要靶标(图9c ) ( 104、221 )。已提出GST介导CH 3 HgGS加合物的形成,其通过MRP1介导的运输解毒(图9d )。 GSH 合成、GST 和 MRP1 水平由 Nrf2 抗氧化系统进行转录调节 ( 152 , 292 , 349 )。
MeHg induces mitochondrial ROS and energy failure (175, 233). Neurotoxicity induced by MeHg has also been ascribed to its inhibitory effect on Glu uptake by astrocytes, triggering neuronal excitotoxicity (15, 235) (Fig. 9e).
MeHg 会诱导线粒体 ROS 和能量衰竭 ( 175 , 233 )。 MeHg 引起的神经毒性也归因于其对星形胶质细胞摄取 Glu 的抑制作用,从而引发神经元兴奋性毒性 ( 15 , 235 ) (图 9e )。
Hg0 absorbed through the respiratory tract is oxidized to inorganic mercurous (Hg1+) and mercuric ions (Hg2+) (Fig. 9a). While inorganic Hg ions have limited access to the CNS, they induce profound neurotoxic alterations that seem to be mediated as well by their binding to thiol groups (89). Accordingly, MTs exert protective effects against Hg0-induced neurotoxicity (387) (Fig. 9b).
通过呼吸道吸收的Hg 0被氧化成无机汞(Hg 1+ )和汞离子(Hg 2+ )(图9a )。虽然无机汞离子进入中枢神经系统的机会有限,但它们会引起深刻的神经毒性改变,而这种改变似乎也是通过它们与硫醇基团的结合来介导的( 89 )。因此,MT对Hg 0诱导的神经毒性发挥保护作用( 387 )(图9b )。
Other xenobiotic metals 其他异生金属
Aluminum 铝
Al is one of the most abundant metals in the earth's crust (8.1%). Al has a plethora of uses in industry and manufacturing, as well as in food additives. As such, human exposure is primarily originated from food and drinking water. Importantly, pharmaceuticals have higher levels of Al compared to food. Occupational exposures to Al are related to mining, processing, and welding (359) (Supplementary Table S1). While Al is poorly absorbed in the gut, inhalation mediates direct transfer to the brain via the olfactory system (341). Importantly, ∼85% of Al in blood is bound to Tf, which is considered to mediate its transport across the BBB (Fig. 10a) (288), but Tf-independent Al transport also exists. Interestingly, monocarboxylate and xCT transporters have also been proposed to mediate the transport of Al-citrate complexes (240, 386). Acute Al toxicity occurs as a result of occupational exposure or chronic renal failure and is known to target the nervous system. Al is neurotoxic in animal models triggering the accumulation of neurofibrillary tangles and impairment of cognitive, behavioral, and motor functions. Al promotes Aβ aggregation, mitochondrial dysfunction, and triggers neuroinflammation (Fig. 10b, c) (24, 202, 309). However, conflicting results exist regarding the association of Al with any human disease, including AD (37, 359, 377).
铝是地壳中最丰富的金属之一(8.1%)。铝在工业和制造业以及食品添加剂中有着广泛的用途。因此,人类接触主要来自食物和饮用水。重要的是,与食品相比,药品的铝含量更高。铝的职业暴露与采矿、加工和焊接有关 ( 359 )(补充表 S1 )。虽然铝在肠道中的吸收很差,但吸入会通过嗅觉系统直接转移到大脑( 341 )。重要的是,血液中〜85%的Al与Tf结合,这被认为介导其跨BBB的运输(图10a )( 288 ),但不依赖于Tf的Al运输也存在。有趣的是,单羧酸盐和 xCT 转运蛋白也被提议介导柠檬酸铝复合物的转运 ( 240 , 386 )。急性铝中毒是由于职业接触或慢性肾功能衰竭而发生的,并且已知以神经系统为目标。 Al 在动物模型中具有神经毒性,会引发神经原纤维缠结的积累并损害认知、行为和运动功能。 Al 促进 Aβ 聚集、线粒体功能障碍,并引发神经炎症(图 10b、c )(24、202、309 ) 。然而,关于 Al 与任何人类疾病(包括 AD )的关联,存在相互矛盾的结果( 37、359、377 )。
Al exists primarily in a trivalent state (Al3+). While Al has no redox capacity, Al toxicity is linked to oxidative damage. Al3+ has been proposed to react with H2O2 to produce Al superoxide radicals (AlO2•−) that can deplete mitochondrial Fe and promote generation of ROS (Fig. 10d) (166). However, because of its high reactivity, Al is primarily found forming insoluble oxides whose toxicity seem to be related with the displacement of other biological cations (Ca2+, Fe2+, or Mg2+) (Fig. 10e) (377).
Al主要以三价状态(Al 3+ )存在。虽然铝没有氧化还原能力,但铝毒性与氧化损伤有关。 Al 3+已被提议与H 2 O 2反应产生Al超氧自由基(AlO 2 •− ),其可以消耗线粒体Fe并促进ROS的产生(图10d )( 166 )。然而,由于其高反应性,Al 主要形成不溶性氧化物,其毒性似乎与其他生物阳离子(Ca 2+ 、Fe 2+或 Mg 2+ )的置换有关(图 10e )( 377 ) 。
Cadmium
Cd is a transition metal whose use in industry has increased dramatically in the recent years. Cd is widely used in batteries, alloys, and pigments, and produced as a by-product from the extraction of other metals from ores. Food is the major source for Cd exposure as both animals and plants accumulate high levels of Cd. Inhalation is the prevalent route of Cd exposure due to industrial emissions and occupational activities (tobacco) (Supplementary Table S1). Cd neurotoxicity seems to occur only during development, before complete BBB formation, or in association with BBB dysfunction. Cd transport across membranes is thought to be mediated by molecular mimicry via several transporters and receptors for essential metals such as Cu/Zn transporters, DMT1, and Ca2+-channels (Fig. 10f) (117, 131, 174, 224, 339). Importantly, at high concentrations, Cd also has the ability to block Ca2+ currents (Fig. 10g).
镉 Cd 是一种过渡金属,近年来其在工业中的使用急剧增加。镉广泛用于电池、合金和颜料,是从矿石中提取其他金属的副产品。食物是镉暴露的主要来源,因为动物和植物都积累了高含量的镉。由于工业排放和职业活动(烟草),吸入是镉暴露的普遍途径(补充表S1)。镉的神经毒性似乎只发生在发育过程中、血脑屏障完全形成之前,或与血脑屏障功能障碍有关。 Cd 跨膜转运被认为是通过分子模拟介导的,通过一些必需金属的转运蛋白和受体,例如 Cu/Zn 转运蛋白、DMT1 和 Ca2+ 通道(图 10f)(117、131、174、224、339)。重要的是,在高浓度下,Cd 还具有阻断 Ca2+ 电流的能力(图 10g)。
Cd toxicity is linked to its ability to bind thiol containing molecules such as GSH, and protein-Cys (Trxs and MT) and as a consequence, displacement of redox-active metals and mitochondrial and metabolic dysfunction (Fig. 10h) (363). Cd detoxification of cells is facilitated by the activity of GST and the detoxification of GSH-Cd adducts via MRPs (Fig. 10h) (181, 339). Accordingly, resistance to Cd-toxicity is directly associated with the Nrf2-mediated antioxidant response (366).
Cd 毒性与其结合含硫醇分子(例如 GSH 和蛋白质-Cys(Trxs 和 MT))的能力有关,从而导致氧化还原活性金属的置换以及线粒体和代谢功能障碍(图 10h )( 363 )。 GST 的活性和 GSH-Cd 加合物通过MRP 的解毒促进了细胞的 Cd 解毒(图 10h )( 181 , 339 )。因此,对 Cd 毒性的抵抗力与 Nrf2 介导的抗氧化反应直接相关 ( 366 )。
Conclusions and Perspectives
结论和观点
Metals are important for brain function and human health. Thus, alterations in their content and/or distribution are expected to exert neurotoxicity. Both alterations in the homeostasis of essential metals and environmental exposure to xenobiotic metals can have silent chronic effects leading to neurodegeneration and neurological dysfunction (behavioral and cognitive alterations). The neurotoxic mechanisms by which metals impact neuronal or glial function are starting to become elucidated.
金属对大脑功能和人类健康很重要。因此,其含量和/或分布的改变预计会产生神经毒性。必需金属稳态的改变和环境中外源金属的暴露都会产生慢性影响,导致神经退行性变和神经功能障碍(行为和认知改变)。金属影响神经元或神经胶质功能的神经毒性机制开始得到阐明。
In this review, we have summarized how essential metals are trafficked in the brain. It is interesting to note that the mechanisms involved in metal transport and homeostasis are strongly linked to the chemical properties of each metal ion, while their coordination chemistry preferences also allow them to share some metal transport routes. For instance, Cu and Fe go through several redox cycles during their transport, while Mn and Zn remain in the same oxidation state. Metal trafficking in the cell is tightly regulated to control the high reactivity toward O2 of some metal ions, such as Fe2+ and Cu+, or to keep in solution otherwise insoluble species such as Cu+ and Fe3+. Moreover, while similar O-based ligand coordination preferences of Mn2+, Fe2+, and Fe3+ allow them to share some transport systems, the affinity of Zn2+ and Cu+ for Cys ligands makes MTs important players in their homeostasis. In fact, a close relationship between cellular redox environment and metal transport has been recently demonstrated for Cu and Fe (Figs. 1D and and4C4C).
在这篇综述中,我们总结了必需金属如何在大脑中运输。有趣的是,涉及金属运输和稳态的机制与每种金属离子的化学性质密切相关,而它们的配位化学偏好也使它们能够共享一些金属运输路线。例如,铜和铁在运输过程中经历几个氧化还原循环,而锰和锌保持相同的氧化态。细胞中的金属运输受到严格调节,以控制某些金属离子(例如 Fe 2+和 Cu + )对 O 2的高反应性,或将其他不溶性物质(例如 Cu +和 Fe 3+ )保留在溶液中。此外,虽然 Mn 2+ 、Fe 2+和 Fe 3+类似的 O 基配体配位偏好允许它们共享一些运输系统,但 Zn 2+和 Cu +对 Cys 配体的亲和力使 MT 在其体内平衡中发挥重要作用。事实上,最近已证明 Cu 和 Fe 的细胞氧化还原环境与金属传输之间存在密切关系(图 1D和和4C 4C )。
Since metal trafficking machineries in neurons and astrocytes resemble those of other extensively studied mammalian cells, our understanding of intracellular metal homeostasis has advanced significantly. In contrast, metal trafficking at the synapse and the role in neuromodulation have just begun to be revealed, and point to a close inter-relationship among Zn, Cu, and Fe. For example, the synaptic release of Zn and Glu ultimately leads to the activation of NMDAR and the activation of signaling pathways that lead to postsynaptic Cu release and Fe uptake. Clearly, the close interplay between these metals at the synapse must play an important role in neuromodulation, while disturbed metal trafficking in neurodegenerative diseases would impact these processes.
由于神经元和星形胶质细胞中的金属运输机制与其他广泛研究的哺乳动物细胞的金属运输机制相似,因此我们对细胞内金属稳态的理解有了显着的进步。相比之下,突触的金属运输和神经调节的作用才刚刚开始被揭示,并表明锌、铜和铁之间存在密切的相互关系。例如,突触释放 Zn 和 Glu 最终导致 NMDAR 激活以及信号通路激活,从而导致突触后 Cu 释放和 Fe 摄取。显然,突触处这些金属之间的密切相互作用必定在神经调节中发挥重要作用,而神经退行性疾病中金属运输的紊乱会影响这些过程。
We have also illustrated the differential alteration of metal homeostasis that occurs in neurodegenerative disorders as well as the key metal-protein interactions that might be involved in protein aggregation and metal-mediated oxidative damage. Understanding these interactions at the molecular level will shed light into the role of essential metals in neurodegenerative diseases.
我们还说明了神经退行性疾病中金属稳态的差异变化,以及可能参与蛋白质聚集和金属介导的氧化损伤的关键金属-蛋白质相互作用。在分子水平上了解这些相互作用将有助于揭示必需金属在神经退行性疾病中的作用。
Metals are transported across the BBB and into brain cells by selective transport systems for essential metals, while xenobiotic metals hijack those transporters via molecular mimicry (Supplementary Fig. S1a). The ability of xenobiotic metals to be transported and/or react with cellular targets is strongly determined by their metabolism via reduction/oxidation reactions, methylation, or adduct formation (Mt0→Mt1→Mt2). Phase II enzyme systems, GSH/GST, and MTs are essential for the detoxification of metals (Supplementary Fig. S1b). Metals induce or enhance ROS and RNS formation leading to oxidative stress (Supplementary Fig. S1c). While oxidative damage is one of the causative mechanisms involved in cellular damage induced by metals, it is now clear that other redox processes participate as well. The intrinsic reactivity of xenobiotic metals with thiol and selenol groups (Supplementary Fig. S1d) and their capacity to displace essential metals (Supplementary Fig. S1e) are also central to their capacity to promote energy failure (mitochondrial dysfunction), protein damage/aggregation, and metabolic alterations that challenge neuro/glial function and survival and trigger excitotoxic and inflammatory processes (Supplementary Fig. S1f). Cells have the capacity to respond by activating redox- or metal-dependent transcriptional regulation of antioxidant and anti-inflammatory responses (Supplementary Fig. S1g).
金属通过必需金属的选择性转运系统穿过血脑屏障进入脑细胞,而异生金属通过分子拟态劫持这些转运蛋白(补充图S1a )。外源金属的转运和/或与细胞靶标反应的能力很大程度上取决于它们通过还原/氧化反应、甲基化或加合物形成(Mt0→Mt1→Mt2)的代谢。 II 期酶系统、GSH/GST 和 MT 对于金属解毒至关重要(补充图 S1b )。金属诱导或增强 ROS 和 RNS 的形成,导致氧化应激(补充图 S1c )。虽然氧化损伤是金属引起的细胞损伤的致病机制之一,但现在清楚的是,其他氧化还原过程也参与其中。外源金属与硫醇和硒醇基团的内在反应性(补充图S1d )及其置换必需金属的能力(补充图S1e )也是其促进能量衰竭(线粒体功能障碍)、蛋白质损伤/聚集、以及挑战神经/胶质细胞功能和存活并引发兴奋性毒性和炎症过程的代谢改变(补充图S1f )。细胞有能力通过激活抗氧化和抗炎反应的氧化还原或金属依赖性转录调节来做出反应(补充图S1g )。
The aim of this review was to provide an integrated overview of the recent advances regarding how dysfunctional metal ion homeostasis of essential metals and exposure to xenobiotic metals alter cellular function to promote chronic neurodegeneration and neurotoxicity. Although the mechanisms involved in these processes are still being elucidated, the studies highlighted here are a starting point toward a better understanding of the pathological consequences of alterations in metal ion homeostasis, justifying the need of further studies regarding their metabolism and its impact on cellular homeostasis, function, and survival.
本综述的目的是提供有关必需金属金属离子稳态功能失调和外源金属暴露如何改变细胞功能以促进慢性神经退行性变和神经毒性的最新进展的综合概述。尽管这些过程涉及的机制仍有待阐明,但这里强调的研究是更好地理解金属离子稳态改变的病理后果的起点,证明需要进一步研究其代谢及其对细胞稳态的影响、功能和生存。
Abbreviations Used 使用的缩写
Aβ | amyloid beta β淀粉样蛋白 |
AD | Alzheimer's disease 阿尔茨海默病 |
AdoMet 阿多梅特 | S-adenosylmethionine S-腺苷甲硫氨酸 |
Al 铝 | aluminum 铝 |
ALA | aminolevulinic acid 氨基乙酰丙酸 |
ALAD | δ-aminolevulinic acid dehydratase δ-氨基乙酰丙酸脱水酶 |
AlO2•− Al2O 2 •− | aluminum superoxide radicals 铝超氧自由基 |
ALS | amyotrophic lateral sclerosis 肌萎缩侧索硬化症 |
AMPAR | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor α-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯受体 |
APP | amyloid precursor protein 淀粉样前体蛋白 |
AQP | aqua(glycerol)porin 水(甘油)孔蛋白 |
As 作为 | arsenic 砷 |
AS3MT | arsenite methyltransferase 亚砷酸甲基转移酶 |
AsIII 砷Ⅲ | arsenite +3 亚砷酸盐+3 |
As(SG)3 砷(SG) 3 | arsenic triglutathione 砷三谷胱甘肽 |
AsV 阿斯V | arsenate +5 砷酸盐+5 |
Atox1 阿托克斯1 | antioxidant protein 1 抗氧化蛋白1 |
ATP7A | ATPase copper transporting alpha ATP酶铜转运α |
ATP7B | ATPase copper transporting beta ATP酶铜转运β |
BBB | blood-brain barrier 血脑屏障 |
BLL | blood lead levels 血铅水平 |
Ca 钙 | calcium 钙 |
CaM 钙调蛋白 | Ca2+/calmodulin Ca 2+ /钙调蛋白 |
CCS1 | copper chaperone for superoxide dismutase 1 超氧化物歧化酶 1 的铜伴侣 |
Cd 光盘 | cadmium 镉 |
CNS | central nervous system 中枢神经系统 |
CO2 | carbon dioxide 二氧化碳 |
COX | cytochrome C oxidase 细胞色素C氧化酶 |
Cp | ceruloplasmin 铜蓝蛋白 |
CSF | cerebrospinal fluid 脑脊液 |
CTR1 | copper transporter 1 铜转运蛋白1 |
Cu 铜 | copper 铜 |
Cu+ 铜+ | cuprous ion 亚铜离子 |
Cu2+ 铜2+ | cupric ion 铜离子 |
Cys 半胱氨酸 | cysteine 半胱氨酸 |
DA | dopamine 多巴胺 |
Dcytb 细胞色素B | duodenal cytochrome b 十二指肠细胞色素b |
Dexras1 地塞米松1 | Ras-related dexamethasone induced 1 Ras相关地塞米松诱导1 |
DLA | dihydrolipoamide or dihydrolipoic acid 二氢硫辛酰胺或二氢硫辛酸 |
DMAIII | dimethylarsinous acid 二甲基胂酸 |
DMAV | dimethylarsinic acid 二甲基胂酸 |
DMSA | 2,3-dimercaptosuccinic acid 2,3-二巯基丁二酸 |
DMT1 | divalent metal transporter 1 二价金属转运蛋白1 |
EAAT | excitatory amino acid transporter 兴奋性氨基酸转运蛋白 |
ER | endoplasmic reticulum 内质网 |
EtHg or C2H5Hg EtHg 或 C 2 H 5 Hg | ethylmercury 乙基汞 |
FBXL5 | F-box/LRR-repeat protein F-box/LRR-重复蛋白 |
Fe 铁 | iron 铁 |
Fe2+ 铁2+ | ferrous 含铁的 |
Fe3+ 铁3+ | ferric 三价铁 |
Fpn | ferroportin 铁转运蛋白 |
Ft 英尺 | ferritin 铁蛋白 |
FtMt 福特 | mitochondrial ferritin 线粒体铁蛋白 |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase 3-磷酸甘油醛脱氢酶 |
GCL | γ-glutamate-cysteine ligase γ-谷氨酸-半胱氨酸连接酶 |
Glu 谷氨酸 | glutamate 谷氨酸盐 |
GLUT | glucose transporters 葡萄糖转运蛋白 |
GPX | glutathione peroxidases 谷胱甘肽过氧化物酶 |
GR | glutathione reductase 谷胱甘肽还原酶 |
Grxs 格鲁克斯 | glutaredoxins 谷氧还蛋白 |
GS | glutamine synthetase 谷氨酰胺合成酶 |
GSH | glutathione 谷胱甘肽 |
GSSG | glutathione disulfide 谷胱甘肽二硫化物 |
GST | glutathione-S transferase 谷胱甘肽-S转移酶 |
H2O2 | hydrogen peroxide 过氧化氢 |
Hb 血红蛋白 | hemoglobin 血红蛋白 |
HD | Huntington's disease 亨廷顿病 |
H-Ft 氢氟酸 | heavy-ferritin 重铁蛋白 |
Hg 汞 | mercury 汞 |
Hg0 汞0 | elemental or metallic Hg 单质或金属汞 |
Hg1+ 汞1+ | inorganic mercurous ions 无机汞离子 |
Hg2+ 汞2+ | inorganic mercuric ions 无机汞离子 |
HNE | 4-hydroxy-2-nonenal 4-羟基-2-壬烯醛 |
HO | heme oxygenase 血红素加氧酶 |
Hp 马力 | hephaestin 火铁黄素 |
Htt 赫特 | huntingtin 亨廷顿 |
iAs 砷 | inorganic As 无机砷 |
iAsV-3-P-glycerate iAsV-3-P-甘油酸酯 | 1-arsenato-3-phospho-Dglycerate 1-砷酸-3-磷酸-D甘油酸酯 |
IDP | intrinsically disordered protein 本质上无序的蛋白质 |
IQ | intelligence quotient 智商 |
IRP | iron regulatory proteins 铁调节蛋白 |
K | potassium 钾 |
Keap1 凯普1 | kelch-like ECH-associated protein 1 kelch样ECH相关蛋白1 |
LAT | L-type neutral amino acid transporter L型中性氨基酸转运蛋白 |
L-Ft 左旋Ft | light-ferritin 轻铁蛋白 |
LTP | long-term potentiation 长时程增强 |
MCU | mitochondrial Ca2+ uniporter 线粒体 Ca 2+单转运蛋白 |
MDA | malondialdehyde 丙二醛 |
MeHg or CH3Hg 甲基汞或CH 3 Hg | methylmercury 甲基汞 |
Met 蛋氨酸 | methionine 蛋氨酸 |
Mfrn2 制造商2 | mitoferrin-2 线粒体铁蛋白-2 |
Mg 镁 | magnesium 镁 |
MMAIII | monomethylarsonous acid 一甲基胂酸 |
MMAV | monomethylarsonic acid or arsonate 一甲基胂酸或胂酸盐 |
Mn 锰 | manganese 锰 |
MRE | metal response element 金属反应元件 |
mRNA 信使RNA | messenger RNA 信使核糖核酸 |
MRPs 物料需求计划 | multidrug resistance proteins 多药耐药蛋白 |
MT | metallothionein 金属硫蛋白 |
MTF1 | metal-responsive transcription factor-1 金属反应转录因子-1 |
Na 钠 | sodium 钠 |
NaAsO2 砷酸钠2 | sodium arsenite 亚砷酸钠 |
NADPH | nicotinamide adenine dinucleotide phosphate 烟酰胺腺嘌呤二核苷酸磷酸 |
NBIA | neurodegeneration with brain iron accumulation 脑铁积累引起的神经退行性变 |
NKB | neurokinin B 神经激肽B |
NMDAR | glutamate/N-methyl-d-aspartate receptor 谷氨酸/N-甲基-d-天冬氨酸受体 |
NO• 不• | nitric oxide 一氧化氮 |
NOS | nitric oxide synthase 一氧化氮合酶 |
NOX | NADPH oxidases NADPH氧化酶 |
Nrf1/2 核磁共振1/2 | nuclear factor erythroid-2-related factor 1 or 2 核因子红细胞2相关因子1或2 |
O2 | molecular oxygen 分子氧 |
O2•− O 2 •− | superoxide anion radical 超氧阴离子自由基 |
•OH •哦 | hydroxyl radical 羟基自由基 |
OONO− 奥诺- | peroxynitrite 过氧亚硝酸盐 |
Pb 铅 | lead 带领 |
PD | Parkinson's disease 帕金森病 |
PNS | peripheral nervous system 周围神经系统 |
polyQ 聚Q | polyglutamine 聚谷氨酰胺 |
ppb | parts per billion 十亿分之一 |
PrPC 朊蛋白C | cellular prion protein 细胞朊病毒蛋白 |
Prxs 普鲁克斯 | peroxiredoxins 过氧化还原蛋白 |
RNS | reactive nitrogen species 活性氮 |
ROS | reactive oxygen species 活性氧 |
RyR 瑞尔 | ryanodine receptor 兰尼碱受体 |
S | sulfur 硫 |
sAPP 应用程序 | soluble fragment of APP APP的可溶性片段 |
SCO | cytochrome c oxidase assembly protein 细胞色素c氧化酶组装蛋白 |
sCp CP | soluble ceruloplasmin 可溶性铜蓝蛋白 |
SDR2 | stromal cell-derived receptor 基质细胞源性受体 |
Se 硒 | selenium 硒 |
SLC30A10/hZnT1 | solute carrier family 30 member 10 or human Zn transporter 1 溶质载体家族 30 成员 10 或人类锌转运蛋白 1 |
SN | substantia nigra 黑质 |
SOD | superoxide dismutase 超氧化物歧化酶 |
SPCA | secretory pathway Ca2+ ATPase 分泌途径Ca 2+ ATP酶 |
Steap2 阶梯2 | six transmembrane epithelial antigen of the prostate 2 前列腺六跨膜上皮抗原2 |
Tf | transferrin 转铁蛋白 |
TfR 转铁蛋白受体 | transferrin receptor 转铁蛋白受体 |
Trxs 特克斯 | thioredoxins 硫氧还蛋白 |
Tyr 提尔 | tyrosine 酪氨酸 |
xCT | cystine/glutamate exchanger system 胱氨酸/谷氨酸交换系统 |
ZIP | Zrt-(Zn-regulated transporter)- or Irt (Fe-regulated transporter)-like proteins Zrt(锌调节转运蛋白)或 Irt(铁调节转运蛋白)样蛋白 |
Zn 锌 | zinc 锌 |
ZnT 氧化锌 | zinc transporters 锌转运蛋白 |
Acknowledgments 致谢
This work was supported by the National Institutes of Health Grant P20RR17675, Centers of Biomedical Research Excellence (COBRE), the Interdisciplinary Grant from the Research Council, the Life Sciences Grant Program of the University of Nebraska-Lincoln, the Mexican Academy of Sciences (AMC) (R.F.), and the National Council for Science and Technology in Mexico (CONACYT) via grant 221134 (L.Q.). PhD fellowships to Y.P. (308512) and C.G.-L. (290116) were from CONACYT. This work was performed in partial fulfillment of the requirements for the PhD degree in the posgrado en Ciencias Biomédicas at the Universidad Nacional Autónoma de México.
这项工作得到了美国国立卫生研究院拨款 P20RR17675、生物医学研究卓越中心 (COBRE)、研究委员会的跨学科拨款、内布拉斯加大学林肯分校生命科学拨款计划、墨西哥科学院 (AMC) 的支持) (RF) 和墨西哥国家科学技术委员会 (CONACYT)通过拨款 221134 (LQ)。 YP (308512) 和 CG-L 的博士奖学金。 (290116) 来自 CONACYT。这项工作是为了部分满足墨西哥国立自治大学生物医学科学博士学位的要求而进行的。
References 参考
1.Aboud AA、Tidball AM、Kumar KK、Neely MD、Han B、Ess KC、Hong CC、Erikson KM、Hedera P 和 Bowman AB。 PARK2患者的神经祖细胞表现出线粒体对铜的敏感性增加。 Neurobiol Dis 73 : 204–212, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
2.阿科斯塔-卡布罗内罗 J、贝茨 MJ、卡德纳斯-布兰科 A、杨 S 和内斯特 PJ。成人一生中脑铁沉积的体内 MRI 绘图。 J Neurosci 36 : 364–374, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
3.阿多纳洛越南。和奥泰萨 PI。 Pb 2+促进脂质氧化和膜物理性质的改变。毒理学132 : 19–32, 1999 [ PubMed ] [ Google Scholar ]
4. Aimo L. 和 Oteiza PI。缺锌会增加人神经母细胞瘤细胞对铅诱导的激活蛋白 1 激活的敏感性。毒理学91 : 184–191, 2006 [ PubMed ] [ Google Scholar ]
5. Al-Hilaly YK、Biasetti L、Blakeman BJ、Pollack SJ、Zibaee S、Abdul-Sada A、Thorpe JR、Xue WF 和 Serpell LC。二酪氨酸交联参与帕金森病路易体中α-突触核蛋白的组装和沉积。 Sci Rep 6 : 39171, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
6. Alfonso-Prieto M、Vidossich P 和 Rovira C。血红素过氧化氢酶的反应机制:从头开始分子动力学的原子论观点。 Arch Biochem Biophys 525 :121–130,2012 [ PubMed ] [ Google Scholar ]
7. Amri F、Ghouili I、Amri M、Carrier A 和 Masmoudi-Kouki O。神经球蛋白可保护星形胶质细胞免受过氧化氢诱导的氧化应激和细胞凋亡。 J Neurochem 140 :151–169,2017 [ PubMed ] [谷歌学术]
8. Anandhan A、Rodriguez-Rocha H、Bohovych I、Griggs AM、Zavala-Flores L、Reyes-Reyes EM、Seravalli J、Stanciu LA、Lee J、Rochet JC、Khalimonchuk O 和 Franco R。α-突触核蛋白的过度表达在无毒水平下,通过调节蛋白质降解途径,增加铜暴露诱导的多巴胺能细胞死亡。 Neurobiol Dis 81 : 76–92, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
9. Anderson CT、Radford RJ、Zastrow ML、Zhang DY、Apfel UP、Lippard SJ 和 Tzounopoulos T。突触锌和强补锌对突触外 NMDA 受体的调节。 Proc Natl Acad Sci USA 112 :E2705–E2714,2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
10. Anderson JP、Walker DE、Goldstein JM、de Laat R、Banducci K、Caccavello RJ、Barbour R、Huang J、Kling K、Lee M、Diep L、Keim PS、Shen X、Chataway T、Schlossmacher MG、Seubert P 、Schenk D、Sinha S、Gai WP 和 Chilcote TJ。 Ser-129 磷酸化是家族性和散发性路易体病中 α-突触核蛋白的主要病理修饰。 J Biol Chem 281 :29739–29752, 2006 [ PubMed ] [ Google Scholar ]
11. Antala S. 和 Dempski RE。人类 ZIP4 转运蛋白具有两种不同的结合亲和力并介导多种过渡金属的转运。生物化学51 :963–973,2012 [ PubMed ] [ Google Scholar ]
12.Antonio MT、Corredor L 和 Leret ML。研究几种脑酶的活性,例如围产期接触铅和/或镉引起的神经毒性标记物。 Toxicol Lett 143 :331–340, 2003 [ PubMed ] [ Google Scholar ]
13. Aoyama K、Watabe M 和 Nakaki T。神经元谷胱甘肽合成的调节。 J Pharmacol Sci 108 :227–238,2008 [ PubMed ] [ Google Scholar ]
14. Aschner M、Gannon M 和 Kimelberg HK。培养的大鼠星形胶质细胞中锰的摄取和流出。 J Neurochem 58 :730–735,1992 [ PubMed ] [谷歌学术]
15. Aschner M、Yao CP、Allen JW 和 Tan KH。甲基汞改变星形胶质细胞中的谷氨酸转运。 Neurochem Int 37 :199–206, 2000 [ PubMed ] [谷歌学术]
16. Atamna H. 和 Boyle K.淀粉样蛋白-β 肽与血红素结合形成过氧化物酶:与阿尔茨海默病细胞病理学的关系。 Proc Natl Acad Sci USA 103 : 3381–3386, 2006 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
17. Banci L、Bertini I、Cantini F、Kozyreva T、Massagni C、Palumaa P、Rubino JT 和 Zovo K。通过与 SOD1 的人铜伴侣 (hCCS) 相互作用,人超氧化物歧化酶 1 (hSOD1) 成熟。 Proc Natl Acad Sci USA 109 :13555–13560,2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
18. Banci L、Bertini I、Ciofi-Baffoni S、Kozyreva T、Zovo K 和 Palumaa P。亲和力梯度驱动铜到达细胞目的地。自然465 :645–648,2010 [ PubMed ] [谷歌学术]
19. Baranowska-Bosiacka I、Gutowska I、Marchlewicz M、Marchetti C、Kurzawski M、Dziedziejko V、Kolasa A、Olszewska M、Rybicka M、Safranow K、Nowacki P、Wiszniewska B 和 Chlubek D.破坏亲抗氧化剂平衡作为围产期铅暴露引起的神经毒性的机制。脑研究1435 :56–71,2012 [ PubMed ] [ Google Scholar ]
20. Barnes N、Tsivkovskii R、Tsivkovskaia N 和 Lutsenko S。铜转运 ATP 酶、Menkes 和 Wilson 病蛋白在成人和发育中小脑中具有独特的作用。 J Biol Chem 280 :9640–9645,2005 [ PubMed ] [ Google Scholar ]
21.巴里特 JD。和维尔斯·JH。阿尔茨海默病的截短淀粉样蛋白-β (11–40/42) 以飞摩尔亲和力结合 Cu 2+并影响纤维组装。 J Biol Chem 290 : 27791–27802, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
22. Baumkotter F、Schmidt N、Vargas C、Schilling S、Weber R、Wagner K、Fiedler S、Klug W、Radzimanowski J、Nickolaus S、Keller S、Eggert S、Wild K 和 Kins S。淀粉样蛋白前体蛋白二聚化和突触发生功能取决于铜与生长因子样结构域的结合。 J Neurosci 34 : 11159–11172, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
23.巴克斯特 PS。和哈丁汉姆通用电气。神经元和星形胶质细胞对大脑抗氧化防御的适应性调节。 Free Radic Biol Med 100 : 147–152, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
24. Becaria A、Lahiri DK、Bondy SC、Chen D、Hamadeh A、Li H、Taylor R 和 Campbell A。饮用水中的铝和铜会增强大脑中的炎症或氧化事件。 J Neuroimmunol 176 : 16–23, 2006 [ PubMed ] [谷歌学术]
25. Beck MW、Oh SB、Kerr RA、Lee HJ、Kim SH、Kim S、Jang M、Ruotolo BT、Lee JY 和 Lim MH。一种合理设计的小分子,用于鉴定金属-淀粉样蛋白-[小β]复合物与阿尔茨海默病发病机制之间的体内联系。 Chem Sci 6 : 1879–1886, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
26. Belanger M、Allaman I 和 Magistretti PJ。脑能量代谢:关注星形胶质细胞-神经元代谢配合。细胞代谢14 :724–738,2011 [ PubMed ] [ Google Scholar ]
27.贝尔 KF、阿尔-穆巴拉克 B、马特尔 MA、麦凯 S、惠兰 N、哈塞尔 P、马库斯 NM、巴克斯特 P、戴顿 RF、塞里奥 A、比利坎 B、乔杜里 S、梅金 PJ、阿什福德 ML、威利 DJ、斯坎内文RH、Chandran S、Hayes JD 和 Hardingham GE。 Nrf2 的表观遗传抑制导致内在抗氧化防御减弱,从而促进神经元发育。 Nat Commun 6 : 7066, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
28. Bellingham SA、Ciccotosto GD、Needham BE、Fodero LR、White AR、Masters CL、Cappai R 和 Camakaris J。淀粉样前体蛋白和淀粉样前体样蛋白 2 的基因敲除增加了原代小鼠皮质神经元中的细胞铜水平和胚胎成纤维细胞。 J Neurochem 91 :423–428,2004 [ PubMed ] [ Google Scholar ]
29. Belloni-Olivi L、Marshall C、Laal B、Andrews GK 和 Bressler J。成年大鼠大脑中 zip1 和 zip4 mRNA 的定位。 J Neurosci Res 87 : 3221–3230, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
30.Besecker B、Bao S、Bohacova B、Papp A、Sadee W 和 Knoell DL。人锌转运蛋白 SLC39A8 (Zip8) 对于锌介导的肺上皮细胞保护至关重要。 Am J Physiol Lung Cell Mol Physiol 294 :L1127–L1136,2008 [ PubMed ] [ Google Scholar ]
31. Besser L、Chorin E、Sekler I、Silverman WF、Atkin S、Russell JT 和 Hershfinkel M。突触释放的锌通过海马中的锌敏感受体触发代谢信号传导。 J Neurosci 29 : 2890–2901, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
32. Biagioli M、平托 M、塞塞利 D、扎尼内洛 M、拉扎雷维奇 D、龙卡利亚 P、西蒙娜 R、弗拉霍利 C、普莱西 C、贝尔廷 N、贝尔特拉米 A、小林 K、加洛 V、桑托罗 C、费雷尔 I、里维拉 S、 Beltrami CA、Carninci P、Raviola E 和 Gustincich S。中脑多巴胺能神经元和神经胶质细胞中α-和β-珠蛋白的意外表达。 Proc Natl Acad Sci USA 106 :15454–15459,2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
33. Binolfi A、Quintanar L、Bertoncini CW、Griesinger C 和 Fernández CO。铜与 α-突触核蛋白配位的生物无机化学:与帕金森病的相关性。协调化学修订版256 :2188–2201,2012 [谷歌学术]
34. Binolfi A、Rasia RM、Bertoncini CW、Ceolin M、Zweckstetter M、Griesinger C、Jovin TM 和 Fernandez CO。α-突触核蛋白与二价金属离子的相互作用揭示了关键差异:结构、结合特异性和纤维颤动增强之间的联系。 J Am Chem Soc 128 :9893–9901,2006 [ PubMed ] [ Google Scholar ]
35. Bjorkblom B、Adilbayeva A、Maple-Grodem J、Piston D、Okvist M、Xu XM、Brede C、Larsen JP 和 Moller SG。帕金森病蛋白 DJ-1 与金属结合并防止金属诱导的细胞毒性。 J Biol Chem 288 : 22809–22820, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
36. Bolin CM、Basha R、Cox D、Zawia NH、Maloney B、Lahiri DK 和 Cardozo-Pelaez F。铅暴露和衰老大脑中氧化 DNA 损伤的发育起源。 FASEB J 20 :788–790, 2006 [ PubMed ] [谷歌学术]
37.邦迪SC。低含量的铝会导致与阿尔茨海默病和年龄相关的神经退行性疾病相关的行为和形态变化。神经毒理学52 :222–229, 2016 [ PubMed ] [ Google Scholar ]
38. Bourassa MW、Leskovjan AC、Tappero RV、Farquhar ER、Colton CA、Van Nostrand WE 和 Miller LM。在表现出神经变性的阿尔茨海默病小鼠模型中观察到淀粉样斑块中的铜含量升高和皮质中的铁含量升高。 Biomed Spectrosc Imaging 2 : 129–139, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
39. Bousejra-ElGarah F、Bijani C、Coppel Y、Faller P 和 Hureau C。铁 (II) 与淀粉样蛋白 - β(阿尔茨海默病肽)的结合。无机化学50 :9024–9030,2011 [ PubMed ] [谷歌学术]
40. Bove J、Martinez-Vicente M、Dehay B、Perier C、Recasens A、Bombrun A、Antonsson B 和 Vila M。BAX通道活性介导与帕金森病相关的溶酶体破坏。自噬10 : 889–900, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
41. Brose J、La Fontaine S、Wedd AG 和 Xiao Z。铜伴侣 Atox1 的氧化还原硫化学受谷氧还蛋白 1 酶、谷胱甘肽对 GSSG/2GSH 的还原电位以及 Cu(I) 的可用性的调节。金属组学6 : 793–808, 2014 [ PubMed ] [ Google Scholar ]
42. Bucossi S、Ventriglia M、Panetta V、Salustri C、Pasqualetti P、Mariani S、Siotto M、Rossini PM 和 Squitti R。铜在阿尔茨海默病中的作用:血清、血浆和脑脊液研究的荟萃分析。 J 阿尔茨海默病 Dis 24 :175–185,2011 [ PubMed ] [ Google Scholar ]
43. Burmester T、Weich B、Reinhardt S 和 Hankeln T。在大脑中表达的脊椎动物珠蛋白。自然407 :520–523,2000 [ PubMed ] [谷歌学术]
44. Calatayud M、Barrios JA、Velez D 和 Devesa V。参与无机砷肠道吸收的转运蛋白的体外研究。 Chem Res Toxicol 25 :446–453,2012 [ PubMed ] [ Google Scholar ]
45. Calderon J、Navarro ME、Jimenez-Capdeville ME、Santos-Diaz MA、Golden A、Rodriguez-Leyva I、Borja-Aburto V 和 Diaz-Barriga F。墨西哥儿童的砷和铅暴露与神经心理发育。环境研究85 :69–76,2001 [ PubMed ] [ Google Scholar ]
46. Calvo IA、Boronat S、Domenech A、Garcia-Santamarina S、Ayte J 和 Hidalgo E。氧化还原继电器的剖析:转录因子 Pap1 通过过氧化 Tpx1-硫氧还蛋白循环的 H 2 O 2依赖性激活。细胞代表5 :1413–1424,2013 [ PubMed ] [ Google Scholar ]
47.Carmona F、Palacios Ò、Gálvez N、Cuesta R、Atrian S、Capdevila M 和 Domínguez-Vera JM。铁蛋白在金属和金属蛋白存在下的铁吸收和释放:大脑中的化学影响。协调化学修订版257 :2752–2764,2013 [谷歌学术]
48. Castro-Coronel Y、Del Razo LM、Huerta M、Hernandez-Lopez A、Ortega A 和 Lopez-Bayghen E。亚砷酸盐暴露下调胶质细胞中 EAAT1/GLAST 转运蛋白的表达。毒理学122 :539–550,2011 [ PubMed ] [ Google Scholar ]
49. Chandran L. 和 Cataldo R.铅中毒:基础知识和新发展。儿科修订版31 :399–405;测验 406, 2010 [ PubMed ] [ Google Scholar ]
50. Chang YY、Kuo TC、Hsu CH、Hou DR、Kao YH 和 Huang RN。蛋白质半胱氨酸残基在与亚砷酸钠结合中的作用的表征。 Arch Toxicol 86 :911–922,2012 [ PubMed ] [ Google Scholar ]
51. Cheah JH、Kim SF、Hester LD、Clancy KW、Patterson SE、3rd、Papadopoulos V 和 Snyder SH。 NMDA 受体-一氧化氮传递通过 GTPase Dexras1 介导神经元铁稳态。 Neuron 51 : 431–440, 2006 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
52. Cheignon C、Jones M、Atrian-Blasco E、Kieffer I、Faller P、Collin F 和 Hureau C。鉴定在阿尔茨海默病中产生 ROS 的难以捉摸的 Cu-A[小 β] 复合物的关键结构特征。 Chem Sci 8 : 5107–5118, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
53. Chen L、Hambright WS、Na R 和 Ran Q。神经元中铁死亡抑制剂谷胱甘肽过氧化物酶 4 的消除会导致运动神经元快速变性和麻痹。 J Biol Chem 290 : 28097–28106, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
54. Chen P、Chakraborty S、Mukhopadhyay S、Lee E、Paoliello MM、Bowman AB 和 Aschner M。神经系统中的锰稳态。 J Neurochem 134 : 601–610, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
55.Chiang S、Kovacevic Z、Sahni S、Lane DJ、Merlot AM、Kalinowski DS、Huang ML 和 Richardson DR。 Frataxin 和弗里德赖希共济失调线粒体铁负荷的分子机制。临床科学(伦敦) 130 :853–870,2016 [ PubMed ] [ Google Scholar ]
56.Chien WL、Lee TR、Hung SY、Kang KH、Lee MJ 和 Fu WM。帕金森相关基因 PINK1 缺陷导致氧化应激诱导的血红素加氧酶 1 表达受损。 J Neurochem 117 :643–653,2011 [ PubMed ] [谷歌学术]
57. Cho HH、Cahill CM、Vanderburg CR、Scherzer CR、Wang B、Huang X 和 Rogers JT。铁调节蛋白-1 对阿尔茨海默病淀粉样蛋白前体蛋白转录物的选择性翻译控制。 J Biol Chem 285 : 31217–31232, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
58.崔BS。和郑W。铜通过血脑屏障和血脑脊液屏障转运至大脑。 Brain Res 1248 : 14–21, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
59. Choi DK、Pennathur S、Perier C、Tieu K、Teismann P、Wu DC、Jackson-Lewis V、Vila M、Vonsattel JP、Heinecke JW 和 Przedborski S。消融炎症酶髓过氧化物酶可减轻帕金森病的特征老鼠。 J Neurosci 25 : 6594–6600, 2005 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
60. Codazzi F、Pelizzoni I、Zacchetti D 和 Grohovaz F。神经元和星形胶质细胞中的铁进入:与突触活动的联系。 Front Mol Neurosci 8 : 18, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
61.Connor JR、Menzies SL、St Martin SM 和 Mufson EJ。正常和老年人大脑中转铁蛋白、铁蛋白和铁的细胞分布。 J Neurosci Res 27 :595–611,1990 [ PubMed ] [ Google Scholar ]
62. Coon S、Stark A、Peterson E、Gloi A、Kortsha G、Pounds J、Chettle D 和 Gorell J。全身终生职业铅暴露和帕金森病风险。环境健康视角114 :1872–1876,2006 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
63. Cruces-Sande A、Mendez-Alvarez E 和 Soto-Otero R。铜增加 6-羟基多巴胺产生氧化应激的能力以及抗坏血酸和谷胱甘肽增强这种作用的能力:对帕金森病的潜在影响。 J Neurochem 141 :738–749,2017 [ PubMed ] [谷歌学术]
64. Culotta VC、Yang M 和 O'Halloran TV。激活超氧化物歧化酶:将金属踩在踏板上。 Biochim Biophys Acta 1763 : 747–758, 2006 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
65.柯蒂斯 AR、费伊 C、莫里斯 CM、宾多夫 LA、因斯 PG、钦纳里 PF、库特哈德 A、杰克逊 MJ、杰克逊 AP、麦克海尔 DP、海伊 D、巴克 WA、马卡姆 AF、贝茨 D、柯蒂斯 A 和伯恩 J编码铁蛋白轻链多肽的基因突变导致显性成人发病的基底神经节疾病。 Nat Genet 28 :350–354,2001 [ PubMed ] [谷歌学术]
66. D'Ambrosi N. 和 Rossi L.突触处的铜:神经传递的释放、结合和调节。 Neurochem Int 90 :36–45,2015 [ PubMed ] [谷歌学术]
67.丹尼尔森SR。和安徒生 JK。帕金森病中的氧化和硝化蛋白质修饰。 Free Radic Biol Med 44 : 1787–1794, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
68. Dapul H. 和 Laraque D.儿童铅中毒。 Adv Pediatr 61 :313–333,2014 [ PubMed ] [ Google Scholar ]
69. Das A、Nag S、Mason AB 和 Barroso MM。内体-线粒体相互作用受转铁蛋白释放的铁的调节。 J Cell Biol 214 : 831–845, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
70. Davies KM、Bohic S、Carmona A、Ortega R、Cottam V、Hare DJ、Finberg JP、Reyes S、Halliday GM、Mercer JF 和 Double KL。帕金森病中脆弱大脑区域的铜病理学。神经生物学衰老35 :858–866,2014 [ PubMed ] [ Google Scholar ]
71.戴维斯·MJ。蛋白质氧化和过氧化。 Biochem J 473 : 805–825, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
72. Davis LE、Kornfeld M、Mooney HS、Fiedler KJ、Haaland KY、Orrison WW、Cernichiari E 和 Clarkson TW。甲基汞中毒:对受影响家庭的长期临床、放射学、毒理学和病理学研究。安·神经罗尔35 :680–688,1994 [ PubMed ] [谷歌学术]
73. Dehay B、Bove J、Rodriguez-Muela N、Perier C、Recasens A、Boya P 和 Vila M。帕金森病的致病性溶酶体耗竭。 J Neurosci 30 : 12535–12544, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
74. Dexter DT、Carayon A、Javoy-Agid F、Agid Y、Wells FR、Daniel SE、Lees AJ、Jenner P 和 Marsden CD。帕金森病和影响基底神经节的其他神经退行性疾病中铁、铁蛋白和其他微量金属水平的变化。 Brain 114 (第 4 部分):1953–1975,1991 [ PubMed ] [ Google Scholar ]
75. Dikiy I. 和 Eliezer D. N 末端乙酰化稳定了脂质和胶束结合的 α-突触核蛋白的 N 末端螺旋性,并增加了其对生理膜的亲和力。 J Biol Chem 289 : 3652–3665, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
76. Ding L、Saunders RJ、Drobna Z、Walton FS、Xun P、Thomas DJ 和 Styblo M。重组人野生型砷(+3 氧化态)甲基转移酶及其蛋氨酸 287 苏氨酸 (M287T) 多晶型物对砷的甲基化:谷胱甘肽的作用。 Toxicol Appl Pharmacol 264 : 121–130, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
77. Do Van B、Gouel F、Jonneaux A、Timmerman K、Gele P、Petrault M、Bastide M、Laloux C、Moreau C、Bordet R、Devos D 和 Devedjian JC。铁死亡是帕金森病中一种新的细胞死亡形式,受 PKC 调节。神经生物学 Dis 94 :169–178,2016 [ PubMed ] [ Google Scholar ]
78. Dodani SC、Firl A、Chan J、Nam CI、Aron AT、Onak CS、Ramos-Torres KM、Paek J、Webster CM、Feller MB 和 Chang CJ。铜是神经回路自发活动的内源性调节剂。 Proc Natl Acad Sci USA 111 :16280–16285,2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
79. Donaldson J、McGregor D 和 LaBella F。锰神经毒性:自由基介导的神经变性模型? Can J Physiol Pharmacol 60 :1398–1405,1982 [ PubMed ] [ Google Scholar ]
80.杜克,刘梅,钟X,魏美杰。帕金森病中循环锌水平降低:一项荟萃分析研究。 Sci Rep 7 : 3902, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
81. Duong TT、Witting PK、Antao ST、Parry SN、Kennerson M、Lai B、Vogt S、Lay PA 和 Harris HH。神经球蛋白对暴露于缺氧复氧损伤的培养神经元细胞的多重保护活性。 J Neurochem 108 :1143–1154,2009 [ PubMed ] [谷歌学术]
82.Dwivedi N、Flora G、Kushwaha P 和 Flora SJ。 α-硫辛酸可保护大鼠同时暴露于砷-敌敌畏期间的氧化应激、胆碱能系统和组织病理学的变化。环境毒理学 Pharmacol 37 : 7–23, 2014 [ PubMed ] [ Google Scholar ]
83.埃克尔PM。和Bresgen N.脂质氧化化合物的基因毒性。自由基生物医学111 :244–252,2017 [ PubMed ] [谷歌学术]
84. Edwards M、Triantafyllidou S 和 Best D。由于饮用水受铅污染导致幼儿血铅升高:华盛顿特区,2001-2004 年。环境科学技术43 :1618–1623, 2009 [ PubMed ] [ Google Scholar ]
85. Escudero-Lourdes C.与神经退行性疾病和认知障碍共有的砷毒性机制:氧化应激和炎症反应的作用。神经毒理学53 : 223–235, 2016 [ PubMed ] [ Google Scholar ]
86. Eskici G. 和 Axelsen PH。阿尔茨海默病发病机制中的铜和氧化应激。生物化学51 :6289–6311,2012 [ PubMed ] [谷歌学术]
87. Espinosa de los Monteros A、Chiapelli F、Fisher RS 和 de Vellis J。转铁蛋白:培养物中少突胶质细胞的早期标记物。 Int J Dev Neurosci 6 :167–175,1988 [ PubMed ] [ Google Scholar ]
88. Esposito G、Vos M、Vilain S、Swerts J、De Sousa Valadas J、Van Meensel S、Schaap O 和 Verstreken P。乌头酸酶在果蝇 Pink1 突变体中引起铁毒性。 PLoS Genet 9 : e1003478, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
89. Farina M、Avila DS、da Rocha JB 和 Aschner M。金属、氧化应激和神经变性:关注铁、锰和汞。 Neurochem Int 62 :575–594,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
90. Farzan SF、Karagas MR 和 Chen Y。子宫内和生命早期砷暴露与长期健康和疾病的关系。 Toxicol Appl Pharmacol 272 : 384–390, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
91. Faucheux BA、Martin ME、Beaumont C、Hauw JJ、Agid Y 和 Hirsch EC。帕金森病患者黑质中神经黑色素相关的氧化还原活性铁增加。 J Neurochem 86 :1142–1148,2003 [ PubMed ] [谷歌学术]
92. Fernandes J、Hao L、Bijli KM、Chandler JD、Orr M、Hu X、Jones DP 和 Go YM。封面:锰在生理和毒理学范围内刺激 SH-SY5Y 人神经母细胞瘤细胞中线粒体 H 2 O 2 的产生。 Toxicol Sci 155 : 213–223, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
93. Ferreira AM、Ciriolo MR、Marcocci L 和 Rotilio G。铜 (I) 转变成由谷胱甘肽介导的金属硫蛋白。 Biochem J 292 ( Pt 3 ): 673–676, 1993 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
94. Ferrer I、Gomez A、Carmona M、Huesa G、Porta S、Riera-Codina M、Biagioli M、Gustincich S 和 Aso E。神经元血红蛋白在阿尔茨海默病、嗜银颗粒病、帕金森病和痴呆中减少路易体。 J 阿尔茨海默病 Dis 23 :537–550,2011 [ PubMed ] [ Google Scholar ]
95.Filipov NM、Seegal RF 和 Lawrence DA。锰通过核因子 kappa B 依赖性机制增强小胶质细胞在体外产生促炎细胞因子和一氧化氮。毒理学84 :139–148,2005 [ PubMed ] [ Google Scholar ]
96.Finkel T.活性氧的信号转导。 J Cell Biol 194 : 7–15, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
97.弗洛拉·SJ。砷诱导的氧化应激及其可逆性。自由基生物医学51 :257–281,2011 [ PubMed ] [谷歌学术]
98. Flora SJ、Pande M 和 Mehta A。联合使用一些天然抗氧化剂(维生素)和硫醇螯合剂治疗慢性铅中毒的有益效果。化学生物相互作用145 :267–280, 2003 [ PubMed ] [ Google Scholar ]
99. Flora SJ、Saxena G 和 Mehta A。通过螯合治疗逆转大鼠铅诱导的神经元凋亡:活性氧和细胞内 Ca(2+) 的作用。 J Pharmacol Exp Ther 322 :108–116,2007 [ PubMed ] [ Google Scholar ]
100.福尔曼·HJ。氧化还原信号:从自由基到衰老的演变。 Free Radic Biol Med 97 : 398–407, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
101. Forman HJ、Davies MJ、Kramer AC、Miotto G、Zaccarin M、Zhang H 和 Ursini F。氧化还原信号传导中的蛋白质半胱氨酸氧化:关于次磺酸检测和定量的注意事项。 Arch Biochem Biophys 617 : 26–37, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
102. Fox JH、Kama JA、Lieberman G、Chopra R、Dorsey K、Chopra V、Volitakis I、Cherny RA、Bush AI 和 Hersch S。铜离子介导亨廷顿病进展的机制。 PLoS One 2 : e334, 2007 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
103.弗拉加CG。微量元素与人类健康的相关性、必要性和毒性。 Mol Aspects Med 26 :235–244,2005 [ PubMed ] [ Google Scholar ]
104. Franco JL、Posser T、Dunkley PR、Dickson PW、Mattos JJ、Martins R、Bainy AC、Marques MR、Dafre AL 和 Farina M。甲基汞神经毒性与抗氧化酶谷胱甘肽过氧化物酶的抑制有关。自由基生物医学47 :449–457,2009 [ PubMed ] [谷歌学术]
105.Franco R.和Cidlowski JA。谷胱甘肽外流和细胞死亡。抗氧化氧化还原信号17 : 1694–1713, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
106.高G.和张YZ。线粒体铁蛋白调节脑铁稳态和神经退行性疾病。 Front Pharmacol 5 : 19, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
107. Garcia-Chavez E、Jimenez I、Segura B 和 Del Razo LM。亚砷酸盐暴露后大鼠神经系统中的脂质氧化损伤和无机砷及其代谢物的分布:补充α生育酚的影响。神经毒理学27 :1024–1031, 2006 [ PubMed ] [ Google Scholar ]
108.加西亚-查韦斯 E、桑塔玛丽亚 A、迪亚兹-巴里加 F、曼德维尔 P、华雷斯 BI 和希门尼斯-卡普德维尔 ME。亚砷酸盐诱导清醒大鼠纹状体中羟基自由基的形成。脑研究976 :82–89, 2003 [ PubMed ] [ Google Scholar ]
109. Garcia-Nogales P、Almeida A 和 Bolanos JP。过氧亚硝酸盐可保护神经元免受一氧化氮介导的细胞凋亡的影响。葡萄糖-6-磷酸脱氢酶活性在神经保护中的关键作用。 J Biol Chem 278 :864–874, 2003 [ PubMed ] [ Google Scholar ]
110. Gasperini L、Meneghetti E、Pastore B、Benetti F 和 Legname G。朊病毒蛋白和铜通过 S-亚硝基化调节 NMDA 受体协同保护神经元。抗氧化氧化还原信号22 : 772–784, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
111.Gavin CE、Gunter KK 和 Gunter TE。 Mn 2+通过线粒体螯合并抑制氧化磷酸化。 Toxicol Appl Pharmacol 115 :1-5,1992 [ PubMed ] [ Google Scholar ]
112. Ghosh C、Seal M、Mukherjee S 和 Ghosh Dey S。阿尔茨海默病:血红素-abeta 观点。 Acc Chem Res 48 :2556–2564,2015 [ PubMed ] [ Google Scholar ]
113.Girijashanker K、He L、Soleimani M、Reed JM、Li H、Liu Z、Wang B、Dalton TP 和 Nebert DW。 Slc39a14 基因编码 ZIP14,一种金属/碳酸氢盐同向转运蛋白:与 ZIP8 转运蛋白相似。 Mol Pharmacol 73 : 1413–1423, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
114. Girotto S、Cendron L、Bisaglia M、Tessari I、Mammi S、Zanotti G 和 Bubacco L。DJ -1 是一种作用于 SOD1 激活的铜伴侣。 J Biol Chem 289 : 10887–10899, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
115. Gorell JM、Johnson CC、Rybicki BA、Peterson EL、Kortsha GX、Brown GG 和 Richardson RJ。职业接触锰、铜、铅、铁、汞和锌以及患帕金森病的风险。神经毒理学20 :239–247,1999 [ PubMed ] [ Google Scholar ]
116. Grandjean P.铅在人脑中的区域分布。 Toxicol Lett 2 :65–69,1978 [谷歌学术]
117. Gu C,Chen S,Xu X,Zheng L,Li Y,Wu K,Liu J,Qi Z,Han D,Chen G,and Huo X。铅和镉协同增强二价金属转运蛋白 1 蛋白的表达发育中的老鼠的中枢神经系统。 Neurochem Res 34 :1150–1156, 2009 [ PubMed ] [ Google Scholar ]
118.Gundert -Remy U、Damm G、Foth H、Freyberger A、Gebel T、Golka K、Rohl C、Schupp T、Wollin KM 和 Hengstler JG。食物中无机砷的高暴露:需要降低风险。 Arch Toxicol 89 :2219–2227,2015 [ PubMed ] [ Google Scholar ]
119. Gunther V、Lindert U 和 Schaffner W。重金属的味道:MTF-1 的基因调控。 Biochim Biophys Acta 1823 :1416–1425,2012 [ PubMed ] [ Google Scholar ]
120.Halliwell B.和Cross CE。氧衍生物种:它们与人类疾病和环境压力的关系。 Environ Health Perspect 102 ( Suppl 10 ): 5–12, 1994 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
121. Hambright WS、Fonseca RS、Chen L、Na R 和 Ran Q。前脑神经元中铁死亡调节剂谷胱甘肽过氧化物酶 4 的消融会促进认知障碍和神经变性。 Redox Biol 12 : 8–17, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
122. Han M、Chang J 和 Kim J。二价金属转运蛋白 1 功能的丧失会促进脑铜积累并增加冲动。 J Neurochem 138 : 918–928, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
123. Hands SL、Mason R、Sajjad MU、Giorgini F 和 Wyttenbach A。金属硫蛋白和铜代谢是亨廷顿病的候选治疗靶点。 Biochem Soc Trans 38 :552–558,2010 [ PubMed ] [ Google Scholar ]
124.Hanna -Attisha M.和Kuehn BM。儿科医生认为,在铅中毒危机之后,燧石治疗还有很长的路要走。 JAMA 315 :967–969,2016 [ PubMed ] [谷歌学术]
125. Hare DJ、Lee JK、Beavis AD、van Gramberg A、George J、Adlard PA、Finkelstein DI 和 Doble PA。小鼠大脑和脑干中铁、铜和锌的三维图谱。肛门化学84 :3990–3997,2012 [ PubMed ] [ Google Scholar ]
126. Hashimoto M、Rockenstein E、Mante M、Mallory M 和 Masliah E。β-突触核蛋白抑制 α-突触核蛋白聚集:可能作为抗帕金森病因子发挥作用。神经元32 :213–223,2001 [ PubMed ] [ Google Scholar ]
127. Hatori Y、Clasen S、Hasan NM、Barry AN 和 Lutsenko S。人体细胞中铜输出机制和谷胱甘肽平衡的功能伙伴关系。 J Biol Chem 287 : 26678–26687, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
128. Hatori Y、Yan Y、Schmidt K、Furukawa E、Hasan NM、Yang N、Liu CN、Sockanathan S 和 Lutsenko S。神经元分化与氧化还原调节的铜流向分泌途径的增加有关。 Nat Commun 7 : 10640, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
129. He X. 和 Ma Q.砷通过金属激活转录因子 1 诱导金属硫蛋白 I:C 端半胱氨酸残基在砷传感中的关键作用。 J Biol Chem 284 : 12609–12621, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
130. Higashi Y、Aratake T、Shimizu S、Shimizu T、Nakamura K、Tsuda M、Yawata T、Ueba T 和 Saito M。细胞外锌对 M1 小胶质细胞活化的影响。 Sci Rep 7 : 43778, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
131. Hinkle PM、Kinsella PA 和 Osterhoudt KC。通过电压敏感钙通道的镉吸收和毒性。 J Biol Chem 262 :16333–16337, 1987 [ PubMed ] [ Google Scholar ]
132.Hodgkinson VL、Zhu S、Wang Y、Ladomersky E、Nickelson K、Weisman GA、Lee J、Gitlin JD 和 Petris MJ。门克斯病神经系统对蛋白质的自主需求。 Am J Physiol Cell Physiol 309 :C660–C668,2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
133. Horning KJ、Caito SW、Tipps KG、Bowman AB 和 Aschner M。锰对于神经元健康至关重要。 Annu Rev Nutr 35 : 71–108, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
134.Howitt J、Putz U、Lackovic J、Doan A、Dorstyn L、Cheng H、Yang B、Chan-Ling T、Silke J、Kumar S 和 Tan SS。 Ndfip1 调节二价金属转运蛋白 1 (DMT1) 可防止人类神经元中的金属毒性。 Proc Natl Acad Sci USA 106 :15489–15494,2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
135.许PC。和郭永禄。抗氧化营养素和铅毒性。毒理学180 : 33–44, 2002 [ PubMed ] [ Google Scholar ]
136.Hu Y、Su L 和 Snow ET。砷的毒性是酶特异性的,其对连接的影响不是由DNA修复酶的直接抑制引起的。 Mutat Res 408 :203–218,1998 [ PubMed ] [ Google Scholar ]
137. Hu Z、Yu F、Gong P、Qiu Y、Zhou W、Cui Y、Li J 和 Chen H。亚神经毒性铜 (II) 诱导的 NF-κB 依赖性小胶质细胞激活与线粒体 ROS 相关。 Toxicol Appl Pharmacol 276 :95–103,2014 [ PubMed ] [ Google Scholar ]
138. Huang CC、Lesburg CA、Kiefer LL、Fierke CA 和 Christianson DW。与锌配体 Histidine-119 的氢键反转会显着降低碳酸酐酶 II 中的催化作用并增强金属平衡动力学。生物化学35 :3439–3446,1996 [ PubMed ] [ Google Scholar ]
139.休斯 MF。砷的毒性和潜在的作用机制。 Toxicol Lett 133 : 1–16, 2002 [ PubMed ] [ Google Scholar ]
140. Hureau C.氧化还原活性金属离子与淀粉样前体蛋白和淀粉样β肽的配位参与阿尔茨海默病。第 1 部分:概述。协调化学修订版256 :2164–2174,2012 [谷歌学术]
141.国际铅管理中心。 1999 年。经合组织关于减少铅风险的宣言。利德集团有限公司; 2016.www.lead.org.au/lanv7n1/L71–L79.html(2016年11月28日) [谷歌学术]
142. Isaya G.神经退行性疾病中的线粒体铁硫簇功能障碍。 Front Pharmacol 5 : 29, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
143. Ito K、Eguchi Y、Imakawa Y、Akai S、Mochizuki H 和 Tsujimoto Y。MPP + 诱导神经元 SH-SY5Y 细胞的 necrostatin-1 和 ferostatin-1 敏感坏死性死亡。细胞死亡 Discov 3 : 17013, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
144.郑西元。和 David S.糖基磷脂酰肌醇锚定的铜蓝蛋白是中枢神经系统细胞中铁流出所必需的。 J Biol Chem 278 :27144–27148, 2003 [ PubMed ] [ Google Scholar ]
145.Ji C.和Kosman DJ。原代海马神经元非转铁蛋白结合和转铁结合铁摄取的分子机制。 J Neurochem 133 : 668–683, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
146. Jia Y、Jeng JM、Sensi SL 和 Weiss JH。 Zn 2+电流由培养的小鼠海马神经元中的钙渗透性 AMPA/红藻氨酸通道介导。 J Physiol 543 : 35–48, 2002 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
147.Jiang L、Garrick MD、Garrick LM、Zhao L 和 Collins JF。二价金属转运蛋白 1 (Dmt1) 在缺铁大鼠的十二指肠中以及在缺铁 HEK-293 细胞中过度表达时介导铜转运。 J Nutr 143 :1927–1933,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
148. Jimenez-Blasco D、Santofimia-Castano P、Gonzalez A、Almeida A 和 Bolanos JP。星形胶质细胞 NMDA 受体的活性通过 Cdk5-Nrf2 途径维持神经元存活。细胞死亡差异22 :1877–1889,2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
149. Jin L,Wang J,Zhao L,Jin H,Fei G,Zhang Y,Zeng M,和Zhong C。血清铜蓝蛋白水平降低通常会加重帕金森病的黑质铁沉积。大脑134 :50–58,2011 [ PubMed ] [谷歌学术]
150. Jomova K、Jenisova Z、Feszterova M、Baros S、Liska J、Hudecova D、Rhodes CJ 和 Valko M。砷:毒性、氧化应激和人类疾病。 J Appl Toxicol 31 :95–107,2011 [ PubMed ] [ Google Scholar ]
151. Jucaite A、Svenningsson P、Rinne JO、Cselenyi Z、Varnas K、Johnstrom P、Amini N、Kirjavainen A、Helin S、Minkwitz M、Kugler AR、Posener JA、Budd S、Halldin C、Varrone A 和 Farde L髓过氧化物酶抑制剂 AZD3241 对小胶质细胞的影响:帕金森病的 PET 研究。大脑138 :2687–2700,2015 [ PubMed ] [谷歌学术]
152. Julvez J. 和 Grandjean P。甲基汞发育神经毒性的遗传易感性很重要。 Front Genet 4 : 278, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
153.Jusko TA、Henderson CR、Lanphear BP、Cory-Slechta DA、Parsons PJ 和 Canfield RL。血铅浓度<10 microg/dL 与6 岁时儿童智力。 Environ Health Perspect 116 : 243–248, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
154. Kalappa BI、Anderson CT、Goldberg JM、Lippard SJ 和 Tzounopoulos T.突触释放的锌对 AMPA 受体的抑制。 Proc Natl Acad Sci USA 112 :15749–15754,2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
155. Kambe T、Tsuji T、Hashimoto A 和 Itsumura N。锌转运蛋白在锌稳态和代谢中的生理、生化和分子作用。生理学修订版95 :749–784,2015 [ PubMed ] [谷歌学术]
156. Karki P、Webb A、Smith K、Johnson J, Jr.、Lee K、Son DS、Aschner M 和 Lee E。Yin Yang 1 是谷氨酸转运蛋白 EAAT2 的阻遏物,它介导锰诱导的 EAAT2 减少星形胶质细胞中的表达。 Mol Cell Biol 34 : 1280–1289, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
157.Kasten M、Tadic V、Klein C、Rocca WA、Savica R、Eric Ahlskog J 和 Grossardt BR。帕金森病之前的贫血或低血红蛋白水平:病例对照研究。神经病学74 :1655;作者回复 1655–1656, 2010 [ PubMed ] [ Google Scholar ]
158. Khan K、Wasserman GA、Liu X、Ahmed E、Parvez F、Slavkovich V、Levy D、Mey J、van Geen A、Graziano JH 和 Factor-Litvak P。饮用水中的锰暴露和儿童的学业成绩。神经毒理学33 : 91–97, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
159. Kiedrowski L.海马神经元中的胞质酸化和细胞内锌释放。 J Neurochem 121 : 438–450, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
160.Kim G、Weiss SJ 和 Levine RL。蛋氨酸的氧化和蛋白质的还原。 Biochim Biophys Acta 1840 : 901–905, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
161. Kim J. 和 Wessling-Resnick M. Iron 和情绪行为机制。 J Nutr Biochem 25 : 1101–1107, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
162.金玉华。和许JY。 NADPH 氧化酶和神经元一氧化氮合酶在皮质培养物中锌诱导的聚(ADP-核糖)聚合酶激活和细胞死亡中的作用。 Exp Neurol 177 :407–418,2002 [ PubMed ] [ Google Scholar ]
163. Koskenkorva-Frank TS、Weiss G、Koppenol WH 和 Burckhardt S。铁代谢、活性氧和活性氮的复杂相互作用:深入了解各种铁疗法诱导氧化和亚硝化应激的潜力。自由基生物医学65 :1174–1194,2013 [ PubMed ] [谷歌学术]
164.库恩LC。铁调节蛋白及其在控制铁代谢中的作用。金属组学7 :232–243,2015 [ PubMed ] [ Google Scholar ]
165. Kumar S. 和 Bandyopadhyay U.人体游离血红素毒性及其解毒系统。 Toxicol Lett 157 :175–188, 2005 [ PubMed ] [ Google Scholar ]
166.库马尔·V.和吉尔·KD。铝神经毒性及其改善中的氧化应激和线粒体功能障碍:综述。神经毒理学41 :154–166,2014 [ PubMed ] [ Google Scholar ]
167. Lane DJ、Robinson SR、Czerwinska H、Bishop GM 和 Lawen A。星形胶质细胞中铁积累的两种途径:通过二价金属转运蛋白 (DMT1) 的抗坏血酸依赖性亚铁吸收以及三价铁的独立途径。生物化学 J 432 :123–132,2010 [ PubMed ] [谷歌学术]
168. Langkammer C、Ropele S、Pirpamer L、Fazekas F 和 Schmidt R。 MRI 用于阿尔茨海默氏病的铁图谱。 Neurodegene Dis 13 :189–191,2014 [ PubMed ] [ Google Scholar ]
169.刘A、郑Y、陶S、王H、惠特曼SA、怀特E和张DD。砷抑制自噬流,以 p62 依赖性方式激活 Nrf2-Keap1 通路。 Mol Cell Biol 33 : 2436–2446, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
170.Lautenschlager J、Kaminski CF 和 Kaminski Schierle GS。 α-突触核蛋白——胞吐作用、内吞作用或两者的调节剂?细胞生物学趋势27 :468–479,2017 [ PubMed ] [ Google Scholar ]
171.Lee DW、Kaur D、Chinta SJ、Rajagopalan S 和 Andersen JK。通过抑制线粒体二硫醇谷氧还蛋白 2 来破坏铁硫中心生物合成可能会导致哺乳动物谷胱甘肽耗尽的多巴胺能细胞中线粒体和细胞铁失调:对帕金森病的影响。抗氧化氧化还原信号11 : 2083–2094, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
172.Lee JY、Cole TB、Palmiter RD、Suh SW 和 Koh JY。突触锌对人类瑞典突变 APP 转基因小鼠中性别不同斑块形成的贡献。 Proc Natl Acad Sci USA 99 : 7705–7710, 2002 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
173. Leslie EM、Haimeur A 和 Waalkes MP。人类多药耐药蛋白 1 (MRP1/ABCC1) 转运砷。需要三谷胱甘肽缀合物的证据。 J Biol Chem 279 :32700–32708, 2004 [ PubMed ] [ Google Scholar ]
174. Leslie EM、Liu J、Klaassen CD 和 Waalkes MP。金属硫蛋白-I/II(-/-) 敲除细胞获得性镉耐药性:T 型钙通道 Cacnalpha1G 在镉摄取中的作用。 Mol Pharmacol 69 : 629–639, 2006 [ PubMed ] [谷歌学术]
175.莱维斯克个人电脑。和艾奇逊WD。甲基汞破坏脑线粒体钙隔离。 J Pharmacol Exp Ther 256 :236–242,1991 [ PubMed ] [ Google Scholar ]
176. Levi S、Corsi B、Bosisio M、Invernizzi R、Volz A、Sanford D、Arosio P 和 Drysdale J。由无内含子基因编码的人线粒体铁蛋白。 J Biol Chem 276 :24437–24440, 2001 [ PubMed ] [ Google Scholar ]
177. Lewerenz J. 和 Maher P. eIF2α 磷酸化的基础水平通过调节 ATF4 和 xCT 表达来决定细胞抗氧化状态。 J Biol Chem 284 : 1106–1115, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
178. Leyva-Illades D、Chen P、Zogzas CE、Hutchens S、Mercado JM、Swaim CD、Morrisett RA、Bowman AB、Aschner M 和 Mukhopadhyay S。SLC30A10是一种细胞表面局部锰外排转运蛋白,可导致帕金森病突变阻止其细胞内运输和外排活动。 J Neurosci 34 : 14079–14095, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
179. Li RC、Guo SZ、Lee SK 和 Gozal D。神经球蛋白在整体缺血中保护神经元免受氧化应激。 J Cereb Blood Flow Metab 30 : 1874–1882, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
180. Li RC、Pouranfar F、Lee SK、Morris MW、Wang Y 和 Gozal D。神经球蛋白保护 PC12 细胞免受 β-淀粉样蛋白诱导的细胞损伤。 Neurobiol Aging 29 :1815–1822,2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
181. Li ZS、Szczypka M、Lu YP、Thiele DJ 和 Rea PA。酵母镉因子蛋白 (YCF1) 是一种液泡谷胱甘肽 S-结合泵。 J Biol Chem 271 :6509–6517,1996 [ PubMed ] [ Google Scholar ]
182.Lin AM、Chao PL、Fang SF、Chi CW 和 Yang CH。内质网应激参与亚砷酸盐诱导的大鼠脑氧化损伤。 Toxicol Appl Pharmacol 224 :138–146,2007 [ PubMed ] [ Google Scholar ]
183.Liu J、Liu Y、Powell DA、Waalkes MP 和 Klaassen CD。多重耐药mdr1a/1b双敲除小鼠比野生型小鼠对急性砷毒性更敏感,组织中砷积累更高。毒理学170 : 55–62, 2002 [ PubMed ] [ Google Scholar ]
184. Liu L、Jiang D、McDonald A、Hao Y、Millhauser GL 和 Zhou F。朊病毒蛋白中的铜氧化还原循环关键取决于结合模式。 J Am Chem Soc 133 : 12229–12237, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
185.Liu X、Sullivan KA、Madl JE、Legare M 和 Tjalkens RB。锰引起的神经毒性:星形胶质细胞来源的一氧化氮在纹状体中间神经元变性中的作用。毒理学91 : 521–531, 2006 [ PubMed ] [ Google Scholar ]
186. Liu Y、Barber DS、Zhang P 和 Liu B。线粒体呼吸链复合物 II 是小胶质细胞中二价锰诱导的过氧化氢产生的关键介质。毒理学132 :298–306, 2013 [ PubMed ] [ Google Scholar ]
187.Liu Z、Shen J、Carbrey JM、Mukhopadhyay R、Agre P 和 Rosen BP。哺乳动物水甘油孔蛋白 AQP7 和 AQP9 转运亚砷酸盐。 Proc Natl Acad Sci USA 99 : 6053–6058, 2002 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
188.Liuzzi JP、Aydemir F、Nam H、Knutson MD 和 Cousins RJ。 Zip14 (Slc39a14) 介导细胞对非转铁蛋白结合的铁的摄取。 Proc Natl Acad Sci USA 103 : 13612–13617, 2006 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
189.Lo HS、Chiang HC、Lin AM、Chiang HY、Chu YC 和 Kao LS。多巴胺和 Zn 2+对诱导 PC12 细胞死亡和纹状体多巴胺耗竭的协同作用:可能与帕金森病的发病机制有关。 Neurobiol Dis 17 : 54–61, 2004 [ PubMed ] [ Google Scholar ]
190. Logroscino G、Chen H、Wing A 和 Ascherio A。献血、铁储备和帕金森病风险。 Mov Disord 21 :835–838,2006 [ PubMed ] [谷歌学术]
191.Loikkanen JJ、Naarala J 和 Savolainen KM。铅对谷氨酸诱导的氧化应激的修饰:细胞外钙的作用。自由基生物医学24 :377–384,1998 [ PubMed ] [谷歌学术]
192.Loke SY、Siddiqi NJ、Alhomida AS、Kim HC 和 Ong WY。红藻氨酸诱导的兴奋性毒性后大鼠海马十二指肠细胞色素b的表达和定位。神经科学245 : 179–190, 2013 [ PubMed ] [ Google Scholar ]
193.洛帕钦 RM。和德卡普里奥美联社。蛋白质加合物形成作为神经毒性的分子机制。毒理学86 :214–225, 2005 [ PubMed ] [ Google Scholar ]
194.Lovell MA、Robertson JD、Teesdale WJ、Campbell JL 和 Markesbery WR。阿尔茨海默病老年斑中的铜、铁和锌。 J Neurol Sci 158 :47–52,1998 [ PubMed ] [ Google Scholar ]
195. Lu J. 和 Holmgren A.氧化蛋白折叠中的硫氧还蛋白超家族。抗氧化剂氧化还原信号21 :457–470, 2014 [ PubMed ] [ Google Scholar ]
196. Lutsenko S.人类铜稳态:互连路径网络。 Curr Opin Chem Biol 14 : 211–217, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
197. Lutsenko S.铜贩运到分泌途径。 Metallomics 8 : 840–852, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
198.Maki RA、Tyurin VA、Lyon RC、Hamilton RL、DeKosky ST、Kagan VE 和 Reynolds WF。星形胶质细胞中髓过氧化物酶的异常表达会促进阿尔茨海默病小鼠模型中的磷脂氧化和记忆缺陷。 J Biol Chem 284 : 3158–3169, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
199.Malaiyandi LM、Vergun O、Dineley KE 和 Reynolds IJ。线粒体锌积累的直接可视化揭示了单向转运蛋白依赖和独立的转运机制。 J Neurochem 93 :1242–1250,2005 [ PubMed ] [谷歌学术]
200.曼达尔BK。和铃木KT。世界砷:回顾。 Talanta 58 :201–235,2002 [ PubMed ] [谷歌学术]
201.威斯康星州曼顿 (Manton WI)、JB 柯克帕特里克 (Kirkpatrick JB) 和 JD 库克 (Cook JD)。脉络丛真的能保护大脑免受铅侵害吗?柳叶刀2 :351,1984 [ PubMed ] [谷歌学术]
202.Mantyh PW、Ghilardi JR、Rogers S、DeMaster E、Allen CJ、Stimson ER 和 Maggio JE。铝、铁和锌离子促进生理浓度的β-淀粉样肽的聚集。 J Neurochem 61 :1171–1174,1993 [ PubMed ] [谷歌学术]
203. Mariani S、Ventriglia M、Simonelli I、Donno S、Bucossi S、Vernieri F、Melgari JM、Pasqualetti P、Rossini PM 和 Squitti R。Fe和 Cu 在帕金森病中没有差异:重复研究加荟萃分析。神经生物学衰老34 :632–633,2013 [ PubMed ] [ Google Scholar ]
204.Marquez M、Blancas-Mejia LM、Campos A、Rojas L、Castaneda-Hernandez G 和 Quintanar L。双功能非天然四肽在 Cu(ii) 存在下调节淀粉样蛋白-β 肽聚集。金属组学6 : 2189–2192, 2014 [ PubMed ] [ Google Scholar ]
205. Martinez-Finley EJ、Chakraborty S、Fretham SJ 和 Aschner M。必需和非必需金属的细胞运输和稳态。 Metallomics 4 : 593–605, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
206.Martinez -Finley EJ、Gavin CE、Aschner M 和 Gunter TE。锰的神经毒性和活性氧的作用。 Free Radic Biol Med 62 : 65–75, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
207. Martinez L、Jimenez V、Garcia-Sepulveda C、Ceballos F、Delgado JM、Nino-Moreno P、Doniz L、Saavedra-Alanis V、Castillo CG、Santoyo ME、Gonzalez-Amaro R 和 Jimenez-Capdeville ME。早期发育砷暴露对神经元可塑性相关基因启动子 CpG 岛甲基化的影响。 Neurochem Int 58 :574–581,2011 [ PubMed ] [谷歌学术]
208. Maryon EB、Molloy SA 和 Kaplan JH。细胞谷胱甘肽在人类铜转运蛋白介导的铜吸收中发挥关键作用 1 。 Am J Physiol Cell Physiol 304 :C768–C779,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
209.Masoud AM、Bihaqi SW、Machan JT、Zawia NH 和 Renehan WE。生命早期接触铅 (Pb) 会改变针对与阿尔茨海默病相关的蛋白质的微小RNA的表达。 J 阿尔茨海默病 Dis 51 :1257–1264,2016 [ PubMed ] [ Google Scholar ]
210.Masters CL、Simms G、Weinman NA、Multhaup G、McDonald BL 和 Beyreuther K。阿尔茨海默病和唐氏综合症中的淀粉样蛋白斑核心蛋白。 Proc Natl Acad Sci USA 82 :4245–4249,1985 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
211. Mastroberardino PG、Hoffman EK、Horowitz MP、Betarbet R、Taylor G、Cheng D、Na HM、Gutekunst CA、Gearing M、Trojanowski JQ、Anderson M、Chu CT、Peng J 和 Greenamyre JT。一种新型转铁蛋白/TfR2 介导的线粒体铁转运系统在帕金森病中被破坏。 Neurobiol Dis 34 : 417–431, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
212.Matak P、Matak A、Moustafa S、Aryal DK、Benner EJ、Wetsel W 和 Andrews NC。铁稳态的破坏会导致小鼠多巴胺能神经变性。 Proc Natl Acad Sci USA 113 :3428–3435,2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
213. Mato S、Sanchez-Gomez MV、Bernal-Chico A 和 Matute C。胞质锌积累导致兴奋性毒性少突胶质细胞死亡。胶质细胞61 :750–764,2013 [ PubMed ] [谷歌学术]
214. Mayes J、Tinker-Mill C、Kolosov O、Zhang H、Tabner BJ 和 Allsop D。阿尔茨海默病中的 β-淀粉样原纤维与铜离子结合时不是惰性的,但可以降解过氧化氢并产生活性氧。 J Biol Chem 289 : 12052–12062, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
215.麦卡锡RC。和科斯曼 DJ。 BBB内皮细胞铁积累的机制分析。 Biometals 25 : 665–675, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
216.麦卡锡RC。和科斯曼 DJ。神经胶质细胞铜蓝蛋白和铁调素对脑微血管内皮细胞的铁流出有不同的调节作用。 PLoS One 9 :e89003,2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
217.麦卡锡RC。和科斯曼 DJ。铁穿过血脑屏障的转运:发育、神经血管调节和脑淀粉样血管病。 Cell Mol Life Sci 72 : 709–727, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
218.麦卡锡RC。和科斯曼 DJ。铁穿过血脑屏障毛细血管内皮细胞运输的机制和调节。 Front Mol Neurosci 8 : 31, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
219.麦卡锡 RC、帕克 YH 和科斯曼 DJ。 sAPP 通过稳定二价铁输出蛋白铁转运蛋白来调节脑微血管内皮细胞的铁流出。 EMBO Rep 15 : 809–815, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
220.麦克休 PC、赖特 JA 和布朗 DR。金属转录因子 1 对 β-突触核蛋白 5'-启动子金属反应元件的转录调节。 PLoS One 6 :e17354,2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
221. Meinerz DF、Branco V、Aschner M、Carvalho C 和 Rocha JB。二苯基二硒化物可防止人神经母细胞瘤细胞中甲基汞诱导的硫氧还蛋白还原酶和谷胱甘肽过氧化物酶的抑制:与依布硒啉的比较。 J Appl Toxicol 37 :1073–1081,2017 [ PubMed ] [ Google Scholar ]
222.Mellone M、Pelucchi S、Alberti L、Genazzani AA、Di Luca M 和 Gardoni F。锌转运蛋白 1:突触后密度的一种新型 NMDA 受体结合蛋白。 J Neurochem 132 :159–168,2015 [ PubMed ] [谷歌学术]
223. Meloni G、Sonois V、Delaine T、Guilloeau L、Gillet A、Teissie J、Faller P 和 Vasak M。Zn7-金属硫蛋白-3 和淀粉样蛋白-β-Cu 之间的金属交换可防止淀粉样蛋白-β 毒性。 Nat Chem Biol 4 :366–372, 2008 [ PubMed ] [ Google Scholar ]
224.Menon AV、Chang J 和 Kim J。情感障碍中二价金属毒性的机制。毒理学339 : 58–72, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
225.Meyer E、Kurian MA 和 Hayflick SJ。脑铁积累的神经退行性变:遗传多样性和病理生理机制。 Annu Rev Genomics Hum Genet 16 :257–279,2015 [ PubMed ] [ Google Scholar ]
226.Michael GJ、Esmailzadeh S、Moran LB、Christian L、Pearce RK 和 Graeber MB。帕金森星形胶质细胞中金属硫蛋白基因表达的上调。神经遗传学12 :295–305,2011 [ PubMed ] [ Google Scholar ]
227. Miotto MC、Rodriguez EE、Valiente-Gabioud AA、Torres-Monserrat V、Binolfi A、Quintanar L、Zweckstetter M、Griesinger C 和 Fernandez CO。α-突触核蛋白的位点特异性铜催化氧化:加强之间的联系帕金森病中的金属结合和蛋白质氧化损伤。无机化学53 :4350–4358,2014 [ PubMed ] [谷歌学术]
228. Miotto MC、Valiente-Gabioud AA、Rossetti G、Zweckstetter M、Carloni P、Selenko P、Griesinger C、Binolfi A 和 Fernandez CO。铜与 N 端乙酰化、天然存在的 α-突触核蛋白结合可诱导局部螺旋折叠。 J Am Chem Soc 137 :6444–6447,2015 [ PubMed ] [ Google Scholar ]
229.Mital M、Wezynfeld NE、Fraczyk T、Wiloch MZ、Wawrzyniak UE、Bonna A、Tumpach C、Barnham KJ、Haigh CL、Bal W 和 Drew SC。 abeta 在金属稳态中的功能作用? N-截断和高亲和力铜结合。 Angew Chem Int Ed Engl 54 :10460–10464,2015 [ PubMed ] [ Google Scholar ]
230. Mizumura A、Watanabe T、Kobayashi Y 和 Hirano S。人肝癌细胞中亚砷酸盐和砷二谷胱甘肽结合蛋白的鉴定。 Toxicol Appl Pharmacol 242 :119–125,2010 [ PubMed ] [ Google Scholar ]
231. Monnot AD、Zheng G 和 Cheng W。血脑脊液屏障铜转运机制:体外模型中缺铁的影响。 Exp Biol Med (Maywood) 237 : 327–333, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
232. Moos T.成年小鼠中枢神经系统神经元内转铁蛋白受体免疫反应性的免疫组织化学定位。 J Comp Neurol 375 :675–692,1996 [ PubMed ] [ Google Scholar ]
233. Mori N、Yasutake A 和 Hirayyama K。大鼠脑和肝脏线粒体中活性氧产生/防御系统的活性及其对甲基汞毒性的敏感性的比较研究。 Arch Toxicol 81 :769–776,2007 [ PubMed ] [ Google Scholar ]
234. Moriarty GM、Minetti CA、Remeta DP 和 Baum J。Cu (II)-α-突触核蛋白复合物的修订图:N 末端乙酰化的作用。生物化学53 :2815–2817,2014 [ PubMed ] [ Google Scholar ]
235. Morken TS、Sonnewald U、Aschner M 和 Syversen T。甲基汞对单一培养和共培养中原代脑细胞的影响。毒理学87 :169–175, 2005 [ PubMed ] [ Google Scholar ]
236. Moshtaghie AA、Ani M、Aghadavod E 和 Fazilati M。硒和锌对铅中毒大鼠脑区儿茶酚胺水平变化的保护作用。 Pak J Biol Sci 10 :2964–2967,2007 [ PubMed ] [ Google Scholar ]
237.Munoz P、Humeres A、Elgueta C、Kirkwood A、Hidalgo C 和 Nunez MT。铁介导 N-甲基-d-天冬氨酸受体依赖性钙诱导途径刺激和海马突触可塑性。 J Biol Chem 286 : 13382–13392, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
238.Naarala JT、Loikkanen JJ、Ruotsalainen MH 和 Savolainen KM。铅会放大谷氨酸诱导的氧化应激。自由基生物医学19 :689–693,1995 [ PubMed ] [谷歌学术]
239.Nagababu E.和Rifkind JM。血红素被活性氧降解。抗氧化剂氧化还原信号6 :967–978, 2004 [ PubMed ] [ Google Scholar ]
240. Nagasawa K、Ito S、Kakuda T、Nagai K、Tamai I、Tsuji A 和 Fujimoto S。柠檬酸铝在血脑屏障的转运机制:动力学证据表明 Xc- 系统参与永生化大鼠脑内皮细胞。 Toxicol Lett 155 :289–296, 2005 [ PubMed ] [ Google Scholar ]
241. Nava-Ruiz C、Mendez-Armenta M 和 Rios C。铅神经毒性:对脑一氧化氮合酶的影响。 J Mol Histol 43 :553–563,2012 [ PubMed ] [ Google Scholar ]
242.尼尔美联社。和吉拉特·TR。铅 (Pb(2+)) 的分子神经生物学:对突触功能的影响。 Mol Neurobiol 42 : 151–160, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
243. Negishi T、Takahashi M、Matsunaga Y、Hirano S 和 Tashiro T。二苯胂酸增加大鼠小脑星形胶质细胞中神经活性和血管活性肽的合成和释放。 J Neuropathol Exp Neurol 71 :468–479,2012 [ PubMed ] [ Google Scholar ]
244.纳尔逊-莫拉 J、埃斯科瓦尔 ML、罗德里格斯-杜兰 L、马修 L、蒙蒂尔 T、罗德里格斯 VM、埃尔南德斯-梅尔卡多 K 和贡斯巴特 ME。妊娠期接触无机砷 (iAs3+) 会改变小鼠海马中谷氨酸的分布和离子型谷氨酸受体的表达,导致记忆障碍。 Arch Toxicol 92 :1037–1048,2018 [ PubMed ] [ Google Scholar ]
245. Nemeti B、Regonesi ME、Totora P 和 Gregus Z。多核苷酸磷酸化酶和线粒体 ATP 合酶通过形成 ADP 和 ATP 的砷化类似物介导砷酸盐还原为毒性更强的亚砷酸盐。毒理学117 :270–281,2010 [ PubMed ] [ Google Scholar ]
246. Nishito Y、Tsuji N、Fujishiro H、Takeda TA、Yamazaki T、Teranishi F、Okazaki F、Matsunaga A、Tuschl K、Rao R、Kono S、Miyajima H、Narita H、Himeno S 和 Kambe T。直接比较锰解毒/外排蛋白的研究和 ZnT10 蛋白作为锰转运蛋白的分子表征。 J Biol Chem 291 : 14773–14787, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
247. Nolte C、Gore A、Sekler I、Kresse W、Hershfinkel M、Hoffmann A、Kettenmann H 和 Moran A。星形胶质细胞中的 ZnT-1 表达可防止锌毒性并减缓细胞内锌的积累。神经胶质细胞48 :145–155,2004 [ PubMed ] [ Google Scholar ]
248. Nordberg G、Fowler BA 和 Nordberg M。金属毒理学手册。阿姆斯特丹:学术出版社,2014 年,第 14 页。 1 在线资源[谷歌学术]
249. Ogra Y、Tejima A、Hatakeyama N、Shiraiwa M、Wu S、Ishikawa T、Yawata A、Anan Y 和 Suzuki N。PC12分化为神经元后细胞内铜浓度和铜调节基因表达的变化。 Sci Rep 6 : 33007, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
250.奥肯·E.和贝林格·DC。鱼类消费、甲基汞和儿童神经发育。 Curr Opin Pediatr 20 : 178–183, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
251. Olivieri S、Conti A、Iannaccone S、Cannistraci CV、Campanella A、Barbariga M、Codazzi F、Pelizzoni I、Magnani G、Pesca M、Franciotta D、Cappa SF 和 Alessio M。铜蓝蛋白氧化,帕金森病的一个特征CSF,抑制亚铁氧化酶活性并促进细胞铁保留。 J Neurosci 31 :18568–18577,2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
252. Olsen LF、Issinger OG 和 Guerra B。氧化还原调节的阴和阳。 Redox Rep 18 : 245–252, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
253.Omata Y、萨尔瓦多 GA、Supasai S、Keenan AH 和 Oteiza PI。锌供应量的减少会影响神经元细胞和发育中的大脑中的谷胱甘肽代谢。 Toxicol Sci 133 : 90–100, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
254. Ortega R、Carmona A、Roudeau S、Perrin L、Ducic T、Carboni E、Bohic S、Cloetens P 和 Lingor P。α-突触核蛋白过度表达会诱导铁暴露神经元中铁积累和重新分布的增加。 Mol Neurobiol 53 :1925–1934,2016 [ PubMed ] [ Google Scholar ]
255.奥泰萨 PI。锌与氧化还原稳态的调节。 Free Radic Biol Med 53 : 1748–1759, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
256.Pachauri V、Saxena G、Mehta A、Mishra D 和 Flora SJ。联合螯合疗法可消除铅引起的大鼠神经变性。 Toxicol Appl Pharmacol 240 :255–264,2009 [ PubMed ] [ Google Scholar ]
257.潘R.和刘KJ。 ZNT-1 表达减少可增强缺血性中风后星形胶质细胞中游离锌的积累。 Acta Neurochir Suppl 121 :257–261,2016 [ PubMed ] [ Google Scholar ]
258.Pande M.和Flora SJ。铅诱导的大鼠氧化损伤及其对α-硫辛酸和琥珀酸联合给药的反应。毒理学177 :187–196, 2002 [ PubMed ] [ Google Scholar ]
259. Park JS、Koentjoro B、Veivers D、Mackay-Sim A 和 Sue CM。帕金森病相关的人类 ATP13A2 (PARK9) 缺乏会导致锌稳态失调和线粒体功能障碍。 Hum Mol Genet 23 : 2802–2815, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
260.Parvez F、Wasserman GA、Factor-Litvak P、Liu X、Slavkovich V、Siddique AB、Sultana R、Sultana R、Islam T、Levy D、Mey JL、van Geen A、Khan K、Kline J、Ahsan H,和格拉齐亚诺·JH。孟加拉国儿童的砷暴露和运动功能。环境健康视角119 :1665–1670,2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
261. Patel BN、Dunn RJ、Jeong SY、Zhu Q、Julien JP 和 David S。铜蓝蛋白调节中枢神经系统中的铁水平并防止自由基损伤。 J Neurosci 22 : 6578–6586, 2002 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
262. Patel M.针对中枢神经系统疾病的氧化应激。 Trends Pharmacol Sci 37 : 768–778, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
263.保利个人电脑。和哈里斯地方检察官。铜刺激朊病毒蛋白的内吞作用。 J Biol Chem 273 :33107–33110,1998 [ PubMed ] [ Google Scholar ]
264. Pedersen JT、Chen SW、Borg CB、Ness S、Bahl JM、Heegaard NH、Dobson CM、Hemmingsen L、Cremades N 和 Teilum K。淀粉样蛋白-β 和 α-突触核蛋白降低金属催化活性氧的水平通过自由基清除和氧化还原沉默。 J Am Chem Soc 138 : 3966–3969, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
265. Pelizzoni I、Zacchetti D、Campanella A、Grohovaz F 和 Codazzi F。静止和炎症激活星形胶质细胞中的铁摄取:对铁负荷的潜在神经保护控制。 Biochim Biophys Acta 1832 : 1326–1333, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
266. Pelizzoni I、Zacchetti D、Smith CP、Grohovaz F 和 Codazzi F。原代海马神经元中二价金属转运蛋白 1 的表达:重新考虑其在非转铁蛋白结合铁流入中的作用。 J Neurochem 120 :269–278,2012 [ PubMed ] [谷歌学术]
267. Penugonda S、Mare S、Lutz P、Banks WA 和 Ercal N。谷氨酸对 PC12 细胞中铅诱导的细胞死亡的增强:N-乙酰半胱氨酸酰胺 (NACA)(一种新型硫醇抗氧化剂)的保护。 Toxicol Appl Pharmacol 216 :197–205,2006 [ PubMed ] [ Google Scholar ]
268.帕金斯 A、纳尔逊 KJ、牧师 D、普尔 LB 和卡普拉斯 PA。过氧化还原蛋白:氧化应激的守护者和过氧化物信号的调节剂。 Trends Biochem Sci 40 : 435–445, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
269. Perrin L、Roudeau S、Carmona A、Domart F、Petersen JD、Bohic S、Yang Y、Cloetens P 和 Ortega R。锌和铜对海马神经元树突和棘中微管蛋白和肌动蛋白网络稳定性的影响。 ACS Chem Neurosci 8 :1490–1499,2017 [ PubMed ] [ Google Scholar ]
270.Philbert MA、Billingsley ML 和 Reuhl KR。中枢神经系统损伤机制。 Toxicol Pathol 28 :43–53, 2000 [ PubMed ] [ Google Scholar ]
271.皮克勒一世、德尔格列柯 MF、戈格勒 M、里尔 CM、伯特伦 L、Do CB、埃里克森 N、福鲁德 T、迈尔斯 RH、纳尔斯 M、凯勒 MF、本雅明 B、惠特菲尔德 JB、普拉姆斯塔勒 PP、希克斯 AA、汤普森 JR ,和 Minelli C.血清铁水平和帕金森病的风险:孟德尔随机研究。 PLoS Med 10 :e1001462,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
272.Pietsch EC、Chan JY、Torti FM 和 Torti SV。 Nrf2 介导铁蛋白 H 的诱导,以响应异生素和癌症化学预防二硫代硫酮。 J Biol Chem 278 :2361–2369, 2003 [ PubMed ] [ Google Scholar ]
273. Portelius E、Bogdanovic N、Gustavsson MK、Volkmann I、Brinkmalm G、Zetterberg H、Winblad B 和 Blennow K。家族性和散发性阿尔茨海默病中脑淀粉样蛋白 β 同种型特征的质谱表征。 Acta Neuropathol 120 : 185–193, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
274. Prakash C. 和 Kumar V.砷诱导的线粒体氧化损伤是由大鼠脑中 PGC-1α 表达及其下游靶点减少介导的。化学生物相互作用256 :228–235,2016 [ PubMed ] [谷歌学术]
275. Prakash C、Soni M 和 Kumar V。砷诱导的大鼠脑氧化应激和线粒体功能障碍后的生化和分子变化。 Biol Trace Elem Res 167 :121–129,2015 [ PubMed ] [ Google Scholar ]
276. Prakash C、Soni M 和 Kumar V。砷神经毒性中的线粒体氧化应激和功能障碍:综述。 J Appl Toxicol 36 :179–188,2016 [ PubMed ] [ Google Scholar ]
277.Prasanthi RP、Devi CB、Basha DC、Reddy NS 和 Reddy GR。补充钙和锌可以保护发育中的小鼠大脑中铅 (Pb) 引起的抗氧化酶和脂质过氧化的扰动。 Int J Dev Neurosci 28 :161–167,2010 [ PubMed ] [ Google Scholar ]
278.Qian J、Xu K、Yoo J、Chen TT、Andrews G 和 Noebels JL。敲除锌转运蛋白 Zip-1 和 Zip-3 可减轻癫痫发作引起的 CA1 神经变性。 J Neurosci 31 : 97–104, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
279.Qu W.和Waalkes MP。金属硫蛋白可阻止急性无机砷暴露引起的氧化性 DNA 损伤。 Toxicol Appl Pharmacol 282 : 267–274, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
280.Ramos -Chavez LA、Rendon-Lopez CR、Zepeda A、Silva-Adaya D、Del Razo LM 和 Gonsebatt ME。无机砷暴露的神经系统影响:半胱氨酸/谷氨酸转运改变、NMDA 表达和空间记忆障碍。 Front Cell Neurosci 9 : 21, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
281.Ramos D、Mar D、Ishida M、Vargas R、Gaite M、Montgomery A 和 Linder MC。哺乳动物细胞从血浆铜蓝蛋白摄取铜的机制。 PLoS One 11 :e0149516,2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
282.雷泽克CR。和钱德尔·NS。 ROS 依赖性信号转导。 Curr Opin Cell Biol 33 : 8–13, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
283.雷迪GR。和扎维亚NH。铅暴露会改变新生大鼠大脑中 Egr-1 DNA 的结合。 Int J Dev Neurosci 18 :791–795, 2000 [ PubMed ] [ Google Scholar ]
284. Rehman K. 和 Naranmandura H.砷代谢和硫砷化合物。金属组学4 :881–892,2012 [ PubMed ] [ Google Scholar ]
285. Rhodes SL、Buchanan DD、Ahmed I、Taylor KD、Loriot MA、Sinsheimer JS、Bronstein JM、Elbaz A、Mellick GD、Rotter JI 和 Ritz B。帕金森病铁相关基因的汇总分析:与转铁蛋白的关联。 Neurobiol Dis 62 : 172–178, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
286.Rogers B、Yakopson V、Teng ZP、Guo Y 和 Regan RF。血红素加氧酶 2 敲除神经元不易受到血红蛋白毒性的影响。自由基生物医学35 : 872–881, 2003 [ PubMed ] [ Google Scholar ]
287. Rosado JL、Ronquillo D、Kordas K、Rojas O、Alatorre J、Lopez P、Garcia-Vargas G、Del Carmen Caamano M、Cebrian ME 和 Stoltzfus RJ。墨西哥学童的砷暴露和认知表现。环境健康视角115 : 1371–1375, 2007 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
288.罗斯卡姆斯AJ。和小康纳。铝进入大脑:转铁蛋白及其受体的作用。 Proc Natl Acad Sci USA 87 : 9024–9027, 1990 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
289.Roth JA、Singleton S、Feng J、Garrick M 和 Paradkar PN。 Parkin 通过二价金属转运蛋白 1 的 1B 同工型的蛋白酶体降解来调节金属转运。 J Neurochem 113 :454–464,2010 [ PubMed ] [谷歌学术]
290.鲁奥TA。中枢神经系统中的铁代谢:对神经退行性疾病的影响。 Nat Rev Neurosci 14 :551–564,2013 [ PubMed ] [ Google Scholar ]
291.鲁奥TA。哺乳动物铁硫蛋白:对生物发生和功能的新见解。 Nat Rev Mol Cell Biol 16 :45–55,2015 [ PubMed ] [ Google Scholar ]
292. Rush T、Liu X、Nowakowski AB、Petering DH 和 Lobner D。皮层培养中谷胱甘肽介导的针对甲基汞神经毒性的神经保护依赖于 MRP1 。神经毒理学33 : 476–481, 2012 [ PubMed ] [ Google Scholar ]
293. Saini N、Georgiev O 和 Schaffner W。果蝇中的 Parkin 突变表型很大程度上是由金属响应转录因子 (MTF-1) 拯救的。 Mol Cell Biol 31 : 2151–2161, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
294.Salazar J、Mena N、Hunot S、Prigent A、Alvarez-Fischer D、Arredondo M、Duyckaerts C、Sazdovitch V、Zhao L、Garrick LM、Nunez MT、Garrick MD、Raisman-Vozari R 和 Hirsch EC。二价金属转运蛋白 1 (DMT1) 会导致帕金森病动物模型中的神经变性。 Proc Natl Acad Sci USA 105 :18578–18583,2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
295. Salim S.氧化应激和中枢神经系统。 J Pharmacol Exp Ther 360 : 201–205, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
296. Samuel S、Kathirvel R、Jaayavelu T 和 Chinnakkannu P。砷诱导的大鼠脑中蛋白质氧化损伤:dl-α-硫辛酸的影响。 Toxicol Lett 155 : 27–34, 2005 [ PubMed ] [ Google Scholar ]
297.Sanchez -Pena LC、Petrosyan P、Morales M、Gonzalez NB、Gutierrez-Ospina G、Del Razo LM 和 Gonsebatt ME。亚砷酸盐暴露小鼠不同脑区的砷形态、AS3MT量和AS3MT基因表达。环境研究110 :428–434,2010 [ PubMed ] [谷歌学术]
298.Sanders T、Liu Y、Buchner V 和 Tchounwou PB。铅暴露的神经毒性作用和生物标志物:综述。 Rev Environ Health 24 : 15–45, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
299. Santos CR、Martinho A、Quintela T 和 Goncalves I。金属硫蛋白的神经保护和神经再生特性。 IUBMB Life 64 :126–135,2012 [ PubMed ] [ Google Scholar ]
300.沙伊伯如果。和 Dringen R.星形胶质细胞在大脑铜稳态中发挥作用。 Neurochem Int 62 :556–565,2013 [ PubMed ] [谷歌学术]
301.Schlief ML、Craig AM 和 Gitlin JD。 NMDA 受体激活介导海马神经元中的铜稳态。 J Neurosci 25 : 239–246, 2005 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
302.施拉德·M.和法希米·HD。过氧化物酶体和氧化应激。 Biochim Biophys Acta 1763 :1755–1766,2006 [ PubMed ] [ Google Scholar ]
303. Sekawa S、Tatsumi N、Ohishi A、Nishida K 和 Nagasawa K。小鼠原代培养的星形胶质细胞和小胶质细胞锌摄取的表征。金属组学7 :1067–1077, 2015 [ PubMed ] [ Google Scholar ]
304. Sensi SL、Paoletti P、Koh JY、Aizenman E、Bush AI 和 Hershfinkel M。脑锌的神经生理学和病理学。 J Neurosci 31 :16076–16085,2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
305. Sensi SL、Ton-That D、Sullivan PG、Jonas EA、Gee KR、Kaczmarek LK 和 Weiss JH。内源性 Zn 2+库对线粒体功能的调节。 Proc Natl Acad Sci USA 100 : 6157–6162, 2003 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
306. Senut MC、Cingolani P、Sen A、Kruger A、Shaik A、Hirsch H、Suhr ST 和 Ruden D。生命早期铅暴露的表观遗传学及其对大脑发育的影响。 Epigenomics 4 : 665–674, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
307. Seo YA、洛佩兹 V 和凯莱赫 SL。富含组氨酸的基序介导 ZnT2 的线粒体定位,从而调节线粒体功能。 Am J Physiol Cell Physiol 300 :C1479–C1489,2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
308.Shahzad R、Jones MR、Viles JH 和 Jones CE。星形胶质细胞中速激肽神经肽、神经激肽 B 的内吞作用及其在细胞铜摄取中的作用。 J Inorg Biochem 162 :319–325,2016 [ PubMed ] [谷歌学术]
309.Sharma DR、Sunkaria A、Wani WY、Sharma RK、Kandimalla RJ、Bal A 和 Gill KD。铝诱导的氧化应激通过调节 PGC-1α 表达导致线粒体生物合成减少。 Toxicol Appl Pharmacol 273 :365–380,2013 [ PubMed ] [ Google Scholar ]
310.Sheline CT、Zhu J、Zhang W、Shi C 和 Cai AL。亨廷顿病和帕金森病的线粒体抑制剂模型会诱导锌积累,并通过在体外或体内抑制锌的神经毒性来减弱锌的积累。 Neurodegene Dis 11 :49–58,2013 [ PubMed ] [ Google Scholar ]
311. Shen S、Li XF、Cullen WR、Weinfeld M 和 Le XC。砷与蛋白质结合。 Chem Rev 113 : 7769–7792, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
312.Sheng Y、Abreu IA、Cabelli DE、Maroney MJ、Miller AF、Teixeira M 和 Valentine JS。超氧化物歧化酶和超氧化物还原酶。 Chem Rev 114 : 3854–3918, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
313.石ZH,聂G,段XL,鲁奥T,吴WS,宁B,张N,常YZ,和赵BL。线粒体铁蛋白对 6-羟基多巴胺诱导的多巴胺能细胞损伤的神经保护机制:帕金森病神经保护的意义。抗氧化氧化还原信号13 : 783–796, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
314.Shih AY、Johnson DA、Wong G、Kraft AD、Jiang L、Erb H、Johnson JA 和 Murphy TH。表达 Nrf2 的神经胶质细胞对谷胱甘肽生物合成和释放的协调调节可有效保护神经元免受氧化应激。 J Neurosci 23 : 3394–3406, 2003 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
315. Shila S、Kokilavani V、Subathra M 和 Panneerselvam C。砷中毒大鼠抗氧化系统对 α-硫辛酸的大脑区域反应。毒理学210 :25–36, 2005 [ PubMed ] [ Google Scholar ]
316. Shila S、Subathra M、Devi MA 和 Panneerselvam C。砷中毒诱导大鼠脑区谷胱甘肽水平和相关酶活性降低:dl-α-硫辛酸逆转。 Arch Toxicol 79 :140–146,2005 [ PubMed ] [ Google Scholar ]
317. Shukalek CB、Swanlund DP、Rousseau RK、Weigl KE、Marensi V、Cole SP 和 Leslie EM。多药耐药蛋白 1 (MRP1/ABCC1) 的砷三谷胱甘肽 [As(GS)3] 转运可通过 Tyr920/Ser921 磷酸化和 Asn19/Asn23 糖基化选择性修饰。 Mol Pharmacol 90 : 127–139, 2016 [ PubMed ] [谷歌学术]
318. Simmons-Willis TA、Koh AS、Clarkson TW 和 Ballatori N。通过分子拟态转运神经毒剂:甲基汞-L-半胱氨酸复合物是人 L 型大中性氨基酸转运蛋白 (LAT) 1 和拉特2 。 Biochem J 367 : 239–246, 2002 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
319. Singh I、Sagare AP、Coma M、Perlmutter D、Gelein R、Bell RD、Deane RJ、Zhong E、Parisi M、Ciszewski J、Kasper RT 和 Deane R。低水平的铜通过以下方式破坏脑淀粉样蛋白-β 稳态改变其生产和清关。 Proc Natl Acad Sci USA 110 :14771–14776,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
320. Singh V、Gera R、Kushwaha R、Sharma AK、Patnaik S 和 Ghosh D。无机砷劫持小胶质细胞谷胱甘肽通过细胞外胱氨酸/谷氨酸失衡促使未成熟神经元的旁观者死亡。 Sci Rep 6 : 30601, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
321. Smith MA、Harris PL、Sayre LM 和 Perry G。阿尔茨海默病中的铁积累是氧化还原产生的自由基的来源。 Proc Natl Acad Sci USA 94 : 9866–9868, 1997 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
322.史密斯 MR、费尔南德斯 J、Go YM 和琼斯 DP。锰的氧化还原动力学作为线粒体生死开关。 Biochem Biophys Res Commun 482 :388–398,2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
323.Sobotta MC、Liou W、Stocker S、Talwar D、Oehler M、Ruppert T、Scharf AN 和 Dick TP。 Peroxiredoxin-2 和 STAT3 形成 H 2 O 2信号传导的氧化还原中继。 Nat Chem Biol 11 :64–70,2015 [ PubMed ] [ Google Scholar ]
324.Squitti R、Salustri C、Siotto M、Ventriglia M、Vernieri F、Lupoi D、Cassetta E 和 Rossini PM。阿尔茨海默病中铜蓝蛋白/转铁蛋白比率的变化。 Int J Alzheimers Dis 2011 : 231595, 2010 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
325.Squitti R、Simonelli I、Ventriglia M、Siotto M、Pasqualetti P、Rembach A、Doecke J 和 Bush AI。阿尔茨海默病血清非铜蓝蛋白铜的荟萃分析。 J 阿尔茨海默病 Dis 38 :809–822,2014 [ PubMed ] [ Google Scholar ]
326. Squitti R、Ventriglia M、Gennarelli M、Colabufo NA、El Idrissi IG、Bucossi S、Mariani S、Rongioletti M、Zanetti O、Congiu C、Rossini PM 和 Bonvicini C。阿尔茨海默病中的非铜蓝蛋白铜不同亚型: ATP7B 频率的遗传学研究。 Mol Neurobiol 54 :671–681,2017 [ PubMed ] [ Google Scholar ]
327.Steiger TK、Weiskopf N 和 Bunzeck N。腹侧纹状体中的铁水平和髓磷脂含量可预测衰老大脑的记忆表现。 J Neurosci 36 :3552–3558,2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
328.Storr SJ、Woolston CM、Zhang Y 和 Martin SG。氧化还原环境、自由基和氧化DNA损伤。抗氧化剂氧化还原信号18 :2399–2408, 2013 [ PubMed ] [ Google Scholar ]
329.Stuber C、Morawski M、Schafer A、Labadie C、Wahnert M、Leuze C、Streicher M、Barapatre N、Reimann K、Geyer S、Spemann D 和 Turner R。人脑中的髓磷脂和铁浓度:定量MRI 对比研究。 Neuroimage 93 (第 1 部分):95–106,2014 [ PubMed ] [ Google Scholar ]
330. Suazo M、Hodar C、Morgan C、Cerpa W、Cambiazo V、Inestrosa NC 和 Gonzalez M。淀粉样前体蛋白的过度表达增加 HEK293 细胞中的铜含量。 Biochem Biophys Res Commun 382 :740–744,2009 [ PubMed ] [ Google Scholar ]
331.孙Y,金K,毛XO,朱Y,和格林伯格DA。神经球蛋白上调并保护神经元免受缺氧缺血性损伤。 Proc Natl Acad Sci USA 98 : 15306–15311, 2001 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
332. Tadepalle N、Koehler Y、Brandmann M、Meyer N 和 Dringen R。亚砷酸盐刺激存活的原代大鼠脑星形胶质细胞中的谷胱甘肽输出和糖酵解通量。 Neurochem Int 76 :2014 年 1–11 [ PubMed ] [ Google Scholar ]
333.Tai YK、Chew KC、Tan BW、Lim KL 和 Soong TW。铁通过 ASK1-JNK 信号轴减轻 DMT1 介导的锰细胞毒性:补充铁对锰毒性的影响。 Sci Rep 6 : 21113, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
334. Takahashi M、Dore S、Ferris CD、Tomita T、Sawa A、Wolosker H、Borchelt DR、Iwatsubo T、Kim SH、Thinakaran G、Sisodia SS 和 Snyder SH。淀粉样前体蛋白抑制血红素加氧酶活性并增加阿尔茨海默病的神经毒性。神经元28 :461–473, 2000 [ PubMed ] [ Google Scholar ]
335. Takeda A、Fuke S、Minami A 和 Oku N。通过 AMPA/红藻氨酸受体激活锌流入在代谢型谷氨酸受体介导的钙释放中的作用。 J Neurosci Res 85 :1310–1317,2007 [ PubMed ] [ Google Scholar ]
336. Tan J,Zhang T,Jiang L,Chi J,Hu D,Pan Q,Wang D,和Zhang Z。Kufor -Rakeb综合征相关的ATP13A2蛋白对细胞内锰稳态的调节。 J Biol Chem 286 : 29654–29662, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
337.唐L,张Y,钱Z,沉X。脂质体中Fe(2+)引发的脂质过氧化的机制:亚铁离子的双重功能,预先存在的脂质过氧化物和脂质过氧化氢的作用激进的。 Biochem J 352 ( Pt 1 ): 27–36, 2000 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
338.Telianidis J、Hung YH、Materia S 和 Fontaine SL。 P 型 ATP 酶、ATP7A 和 ATP7B 在脑铜稳态中的作用。 Front Aging Neurosci 5 : 44, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
339. Thevenod F.如果可以的话,抓住我!哺乳动物细胞中镉转运的新方面。生物金属23 :857–875,2010 [ PubMed ] [ Google Scholar ]
340.托马斯·DJ。砷解作用和硫醇依赖性砷酸盐还原。毒理学117 :249–252,2010 [ PubMed ] [ Google Scholar ]
341. Tjalve H. 和 Henriksson J。通过嗅觉途径在大脑中摄取金属。神经毒理学20 :181–195, 1999 [ PubMed ] [ Google Scholar ]
342.Todorich B、Pasquini JM、Garcia CI、Paez PM 和 Connor JR。少突胶质细胞和髓鞘形成:铁的作用。神经胶质细胞57 :467–478, 2009 [ PubMed ] [ Google Scholar ]
343.Todorich B、Zhang X、Slagle-Webb B、Seaman WE 和 Connor JR。 Tim-2 是少突胶质细胞上 H-铁蛋白的受体。 J Neurochem 107 :1495–1505,2008 [ PubMed ] [谷歌学术]
344. Tokuda E、Okawa E 和 Ono S。突变型铜/锌超氧化物歧化酶相关家族性肌萎缩侧索硬化症小鼠模型中细胞内铜运输途径的失调。 J Neurochem 111 :181–191,2009 [ PubMed ] [ Google Scholar ]
345. Tokuda E、Okawa E、Watanabe S 和 Ono S。金属硫蛋白-I(一种铜调节蛋白)的过度表达可减弱由突变型超氧化物歧化酶-1 引起的肌萎缩侧索硬化症小鼠模型的细胞内铜稳态失调并延长寿命。 Hum Mol Genet 23 :1271–1285,2014 [ PubMed ] [ Google Scholar ]
346.Tokuda E、Okawa E、Watanabe S、Ono S 和 Marklund SL。细胞内铜稳态失调对于表达人类突变型超氧化物歧化酶-1 的转基因小鼠来说很常见,无论其铜结合能力如何。 Neurobiol Dis 54 :308–319,2013 [ PubMed ] [ Google Scholar ]
347. Tolins M、Ruchirawat M 和 Landrigan P。砷的发育神经毒性:早期生活暴露的认知和行为后果。 Ann Glob Health 80 :303–314,2014 [ PubMed ] [ Google Scholar ]
348.托雷斯-阿维拉 M、莱尔-加利西亚 P、桑切斯-佩纳 LC、德尔拉佐 LM 和贡斯巴特 ME。亚砷酸盐诱导小鼠肝脏中水甘油孔蛋白 9 的表达。环境研究110 :443–447,2010 [ PubMed ] [ Google Scholar ]
349. Toyama T、Shinkai Y、Yasutake A、Uchida K、Yamamoto M 和 Kumagai Y。在小鼠暴露于甲基汞期间,异硫氰酸盐通过 Nrf2 依赖性机制减少汞积累。环境健康视角119 : 1117–1122, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
350. Trujano-Ortiz LG、Gonzalez FJ 和 Quintanar L。铜-淀粉样蛋白 β 1-16 肽复合物的氧化还原循环高度依赖于配位模式。 Inorg Chem 54 :4-6,2015 [ PubMed ] [ Google Scholar ]
351. Tulpule K、Robinson SR、Bishop GM 和 Dringen R。培养的大鼠星形胶质细胞对亚铁的摄取。 J Neurosci Res 88 :563–571,2010 [ PubMed ] [ Google Scholar ]
352.Tuschl K、米尔斯 PB 和克莱顿 PT。锰与大脑。 Int Rev Neurobiol 110 :277–312,2013 [ PubMed ] [ Google Scholar ]
353.美国。有毒物质和疾病登记局。砷的毒理学概况。佐治亚州亚特兰大:美国卫生与公众服务部、公共卫生服务部、有毒物质和疾病登记局,2007 年,第 14 页。 1 个在线资源(xx,500 页) [ Google 学术搜索]
354.Urrutia P、Aguirre P、Esparza A、Tapia V、Mena NP、Arredondo M、Gonzalez-Billault C 和 Nunez MT。炎症会改变 DMT1、FPN1 和铁调素的表达,并导致中枢神经系统细胞铁积累。 J Neurochem 126 :541–549,2013 [ PubMed ] [谷歌学术]
355. Valko M、Jomova K、Rhodes CJ、Kuca K 和 Musilek K。氧化还原和非氧化还原金属诱导的自由基形成及其在人类疾病中的作用。 Arch Toxicol 90 :1-37,2016 [ PubMed ] [ Google Scholar ]
356. Vanoevelen J、Dode L、Van Baelen K、Fairclough RJ、Missiaen L、Raeymaekers L 和 Wuytack F。分泌途径 Ca 2+ /Mn 2+ -ATPase 2 是一种高尔基体局部泵,对 Ca 2具有高亲和力+离子。 J Biol Chem 280 :22800–22808, 2005 [ PubMed ] [ Google Scholar ]
357.Venderova K.和Park DS。帕金森病中的程序性细胞死亡。 Cold Spring Harb Perspect Med 2 :a009365,2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
358. Ventriglia M、Brewer GJ、Simonelli I、Mariani S、Siotto M、Bucossi S 和 Squitti R。锌在阿尔茨海默病中的作用:血清、血浆和脑脊液研究的荟萃分析。 J 阿尔茨海默病 Dis 46 :75–87,2015 [ PubMed ] [ Google Scholar ]
359.Verstraeten SV、Aimo L 和 Oteiza PI。铝和铅:脑毒性的分子机制。 Arch Toxicol 82 :789–802,2008 [ PubMed ] [ Google Scholar ]
360. Vidal R、Miravalle L、Gao X、Barbeito AG、Baraibar MA、Hekmatyar SK、Widel M、Bansal N、Delisle MB 和 Ghetti B。铁蛋白轻链基因突变形式的表达诱导神经变性和铁超载转基因小鼠。 J Neurosci 28 : 60–67, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
361.维拉-皮克A、洛佩斯达丰塞卡T、圣安娜R、塞戈EM、丰塞卡-奥内拉斯L、皮尼奥R、卡里贾A、格哈特E、马萨拉基亚C、阿巴德冈萨雷斯E、罗塞蒂G、卡洛尼P、费尔南德斯CO,福格尔 D、米洛舍维奇 I、Zweckstetter M、文图拉 S 和奥泰罗 TF。环境和遗传因素支持α-突触核蛋白聚集和毒性之间的分离。 Proc Natl Acad Sci USA 113 :E6506–E6515,2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
362. Wakabayashi K、Tanji K、Mori F 和 Takahashi H。帕金森病中的路易体:参与 α-突触核蛋白聚集体形成和降解的分子。神经病理学27 :494–506, 2007 [ PubMed ] [ Google Scholar ]
363. Wang B. 和 Du Y.镉及其神经毒性作用。 Oxid Med Cell Longev 2013 : 898034, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
364. Wang H、Wang M、Wang B、Li M、Chen H、Yu X、Yang K、Chai Z、Zhao Y 和 Feng W。免疫金标记和 X 射线荧光显微镜揭示了 Cu 和 Zn 的富集比、代谢阿尔茨海默病小鼠模型中 APP 和淀粉样蛋白斑块形成的影响。金属组学4 :1113–1118,2012 [ PubMed ] [ Google Scholar ]
365.王 JY、庄 QQ、朱 LB、朱 H、李 T、李 R、陈 SF、黄 CP、张 X 和朱 JH。通过尸检和 MRI 测量确定的帕金森病患者脑铁水平的荟萃分析。 Sci Rep 6 : 36669, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
366.王L.和加拉格尔EP。 Nrf2 抗氧化防御在减轻斑马鱼嗅觉系统中镉诱导的氧化应激中的作用。 Toxicol Appl Pharmacol 266 :177–186,2013 [ PubMed ] [ Google Scholar ]
367. Wang Q、Luo W、Zhang W、Dai Z、Chen Y 和 Chen J。补铁可通过断奶大鼠皮质中的 MAPK 途径防止铅诱导的细胞凋亡。神经毒理学28 :850–859, 2007 [ PubMed ] [ Google Scholar ]
368. Wang X、Liu J、Zhu H、Tejima E、Tsuji K、Murata Y、Atochin DN、Huang PL、Zhang C 和 Lo EH。神经球蛋白过度表达对急性脑损伤和局灶性脑缺血后长期结局的影响。中风39 :1869–1874,2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
369.王X、森T、Sumii T和Lo EH。血红蛋白诱导的大鼠大脑皮层神经元细胞毒性:半胱天冬酶激活和氧化应激。中风33 :1882–1888,2002 [ PubMed ] [ Google Scholar ]
370. Wasserman GA、Liu X、Loiacono NJ、Kline J、Factor-Litvak P、van Geen A、Mey JL、Levy D、Abramson R、Schwartz A 和 Graziano JH。缅因州学童井水砷与儿童智商的横断面研究。 Environ Health 13 : 23, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
371.Wasserman GA、Liu X、Parvez F、Ahsan H、Factor-Litvak P、Kline J、van Geen A、Slavkovich V、Loiacono NJ、Levy D、Cheng Z 和 Graziano JH。孟加拉国阿拉伊哈扎尔 6 岁儿童的水砷暴露和智力功能。 Environ Health Perspect 115 : 285–289, 2007 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
372. Watanabe T. 和 Hirano S.砷的代谢及其毒理学相关性。 Arch Toxicol 87 :969–979,2013 [ PubMed ] [ Google Scholar ]
373.Watt NT、Taylor DR、Kerrigan TL、Griffiths HH、Rushworth JV、Whitehouse IJ 和 Hooper NM。朊病毒蛋白促进神经元细胞吸收锌。 Nat Commun 3 : 1134, 2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
374. Wezynfeld NE、Stefaniak E、Stachucy K、Drozd A、Plonka D、Drew SC、Krezel A 和 Bal W。Cu (Abeta4-16) 对金属硫蛋白-3 捕获铜的抵抗力支持 abeta4-42 的功能肽作为突触 Cu(II) 清除剂。 Angew Chem Int Ed Engl 55 : 8235–8238, 2016 [ PubMed ] [ Google Scholar ]
375. White AR、Reyes R、Mercer JF、Camakaris J、Zheng H、Bush AI、Multhaup G、Beyreuther K、Masters CL 和 Cappai R。APP和 APLP2 敲除小鼠的大脑皮层和肝脏中的铜水平增加。脑研究842 :439–444,1999 [ PubMed ] [ Google Scholar ]
376.世界卫生组织。童年铅中毒。世界卫生组织出版社,2010 年。http ://www.who.int/ceh/publications/leadguidance.pdf [ Google Scholar ]
377. Willhite CC、Karyakina NA、Yokel RA、Yenugadhati N、Wisniewski TM、Arnold IM、Momoli F 和 Krewski D。对制药、职业和消费者接触金属和纳米级铝、氧化铝、氢氧化铝及其可溶性盐。 Crit Rev Toxicol 44 ( Suppl 4 ): 1–80, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
378.吴 CY、史蒂芬 J 和艾德 DJ。胞质超氧化物歧化酶 (SOD1) 对于酵母耐受缺锌的氧化应激至关重要。 PLoS One 4 : e7061, 2009 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
379. Wu J、Basha MR、Brock B、Cox DP、Cardozo-Pelaez F、McPherson CA、Harry J、Rice DC、Maloney B、Chen D、Lahiri DK 和 Zawia NH。老年猴子在婴儿期接触环境金属铅 (Pb) 后出现类似阿尔茨海默病 (AD) 的病理变化:AD 发育起源和环境联系的证据。 J Neurosci 28 : 3–9, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
380.吴 WS、赵 YS、石 ZH、常 SY、聂 GJ、段 XL、赵 SM、吴 Q、杨 ZL、赵 BL 和常 YZ。线粒体铁蛋白可减弱 β-淀粉样蛋白诱导的神经毒性:通过 Erk/P38 丝裂原激活蛋白激酶途径减少氧化损伤。抗氧化剂氧化还原信号18 :158–169, 2013 [ PubMed ] [ Google Scholar ]
381.肖G,范Q,王X,和周B。亨廷顿病由聚谷氨酰胺和铜结合的组合毒性引起。 Proc Natl Acad Sci USA 110 :14995–15000,2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
382. Yamauchi H、Kaise T 和 Yamamura Y。仓鼠口服砷甜菜碱的代谢和排泄。 Bull Environ Contam Toxicol 36 :350–355,1986 [ PubMed ] [ Google Scholar ]
383. Yang X,Wang B,Zeng H,Cai C,Hu Q,Cai S,Xu L,Meng X,and Zou F。线粒体 Ca(2)(+) 单向转运蛋白在 Pb(2)(+) 中的作用人神经母细胞瘤细胞中诱导的氧化应激。 Brain Res 1575 :2014 年 12-21 日 [ PubMed ] [ Google Scholar ]
384. Ye F、Li X、Li F、Li J、Chang W、Yuan J 和 Chen J。环孢素 A 通过抑制神经细胞中线粒体通透性过渡孔开放来防止铅神经毒性。神经毒理学57 :203–213,2016 [ PubMed ] [ Google Scholar ]
385. Yin Z、Jiang H、Syversen T、Rocha JB、Farina M 和 Aschner M。甲基汞-L-半胱氨酸缀合物是 L 型大中性氨基酸转运蛋白的底物。 J Neurochem 107 : 1083–1090, 2008 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
386. Yokel RA、Wilson M、Harris WR 和 Halestrap AP。永生化脑内皮细胞摄取柠檬酸铝:对其血脑屏障运输的影响。 Brain Res 930 :101–110, 2002 [ PubMed ] [ Google Scholar ]
387. Yoshida M、Watanabe C、Horie K、Satoh M、Sawada M 和 Shimada A。产前暴露于汞蒸气的金属硫蛋白缺失小鼠的神经行为变化。 Toxicol Lett 155 :361–368,2005 [ PubMed ] [ Google Scholar ]
388. Yoshino Y、Yuan B、Kaise T、Takeichi M、Tanaka S、Hirano T、Kroetz DL 和 Toyoda H。水通道蛋白 9 和多药耐药相关蛋白 2 对原代培养的绒毛膜和羊膜细胞之间对亚砷酸盐的敏感性差异的贡献由人胎膜制备而成。 Toxicol Appl Pharmacol 257 : 198–208, 2011 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
389. You H、Ttsutsui S、Hameed S、Kannanaayakal TJ、Chen L、Xia P、Engbers JD、Lipton SA、Stys PK 和 Zamponi GW。 Abeta 神经毒性取决于铜离子、朊病毒蛋白和 N-甲基-d-天冬氨酸受体之间的相互作用。 Proc Natl Acad Sci USA 109 :1737–1742,2012 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
390.Yu WH、Lukiw WJ、Bergeron C、Niznik HB 和 Fraser PE。阿尔茨海默病中金属硫蛋白 III 减少。 Brain Res 894 :37–45,2001 [ PubMed ] [ Google Scholar ]
391. Yu X、Song N、Guo X、Jiang H、Zhang H 和 Xie J。神经元和星形胶质细胞对血红素加氧酶 1 调节的脆弱性差异:对线粒体铁蛋白的影响。 Sci Rep 6 : 24200, 2016 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
392.萨莫拉 PL、罗肯鲍尔 A 和维拉梅纳 FA。砷 (III) 毒性的激进模型:理论和 EPR 自旋捕获研究。 Chem Res Toxicol 27 :765–774, 2014 [ PubMed ] [ Google Scholar ]
393.张 HN、杨 L、Ling JY、Czajkowsky DM、Wang JF、Zhang XW、Zhou YM、Ge F、Yang MK、Xiong Q、Guo SJ、Le HY、Wu SF、Yan W、Liu B、Zhu H,陈Z,陶SC。砷结合蛋白的系统鉴定表明己糖激酶-2 受到砷的抑制。 Proc Natl Acad Sci USA 112 :15084–15089,2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
394.Zhang Y,Duan X,Li J,Zhao S,Li W,Zhao L,Li W,Nie H,Sun G和Li B。无机砷在体内诱导大脑皮层和海马中NRF2调节的抗氧化防御。 Neurochem Res 41 :2119–2128,2016 [ PubMed ] [ Google Scholar ]
395.赵F,廖Y,金Y,李G,吕X,和孙G。亚砷酸盐对原代培养星形胶质细胞谷氨酸代谢的影响。体外毒理学26 :24-31,2012 [ PubMed ] [ Google Scholar ]
396.周X、库珀KL、孙X、刘KJ和哈德森LG。活性氧通过砷结合选择性敏化锌指蛋白氧化。 J Biol Chem 290 : 18361–18369, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
397.周X、孙X、Mobarak C、Gandolfi AJ、Burchiel SW、Hudson LG 和Liu KJ。与亚砷酸盐和三氧化二砷相比,一甲基胂酸与锌指肽和蛋白质的结合有差异。 Chem Res Toxicol 27 : 690–698, 2014 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
398.Zille M、Karuppagounder SS、Chen Y、Gough PJ、Bertin J、Finger J、Milner TA、Jonas EA 和 Ratan RR。出血性中风后神经元的体外和体内死亡具有铁死亡和坏死性凋亡的共同特征。中风48 :1033–1043,2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
399. Zimmermann LT、Santos DB、Naime AA、Leal RB、Dorea JG、Barbosa F, Jr.、Aschner M、Rocha JB 和 Farina M。甲基和乙基汞诱导的 C6 胶质瘤细胞毒性的比较研究及其潜力LAT-1 在介导汞硫醇复合物摄取中的作用。 Neuro毒理学38 : 1–8, 2013 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
400. Zucca FA、Segura-Aguilar J、Ferrari E、Munoz P、Paris I、Sulzer D、Sarna T、Casella L 和 Zecca L。铁、多巴胺和神经黑色素途径在大脑衰老和帕金森病中的相互作用。 Prog Neurobiol 155 : 96–119, 2017 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
此处提供的抗氧化剂和氧化还原信号的文章由Mary Ann Liebert, Inc.提供。
396.周X、库珀KL、孙X、刘KJ和哈德森LG。活性氧通过砷结合选择性敏化锌指蛋白氧化。 J Biol Chem 290 : 18361–18369, 2015 [ PMC 免费文章] [ PubMed ] [ Google Scholar ] [参考列表]