这是用户在 2024-12-28 23:13 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

毕业设计开题报告

学生姓名

王子豪

学 号

2021402010220

专业班级

化学工程与工艺

设计题目(中英文)

晶化温度对铜冶炼炉渣基分子筛材料制备过程影响Effect of crystallization temperature on the preparation process of slag-based zeolite materials for copper smelting
晶化温度对铜冶炼炉渣基分子筛材料制备过程的影响

一、选题依据和意义

高炉渣作为髙炉炼铁的主要副产品,其主要由铁矿石中的脉石、焦炭中的灰分、助熔剂和其他不能进入生铁中的杂质组成。随着我国钢铁工业的发展,高炉渣的排放量日益增大,高炉渣的大量排出和堆放,如果不加大力度对其进行资源化利用,不仅会造成大量的资源浪费,而且大量的堆积势必会造成大量土 地 资 源 的 侵 占 和 环 境 污 染 等 问 题。因此,高炉渣的排放和堆存已成为钢铁企业面临的重要难题,如何安全处置和高效利用这些“高炉渣山”成为一个亟待解决的问题。高 炉 渣 经 酸 溶 过 滤,其 滤 液可以合成类水滑石;其滤渣可以合成沸石,从而可以将其高价值化利用,不再产生二次废弃物。

沸石是一种复 杂 的 硅 酸 盐,其 晶 体 内 部 有 均 匀 的孔道及空穴,有 良 好 的 吸 附 和 筛 分 能 力,可 在 废 水处理中得到广泛的应用。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中有各种大小不同的空穴和通道,具有很大的开放性,工业上常将其作为分子筛,以净化或分离混合成分的物质,如气体分离、石油净化、处理工业污染等。因此,以高炉渣为原料制备高炉渣基沸石(BFSZ),可实现高炉渣中有用成分的综合利用
沸石是一种复 杂 的 硅 酸 盐,其 晶 体 内 部 有 均 匀 的孔道及空穴,有 良 好 的 吸 附 和 筛 分 能 力,可 在 废 水处理中得到广泛的应用。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中有各种大小不同的空穴和通道,具有很大的开放性,工业上常将其作为分子筛,以净化或分离混合成分的物质,如气体分离、石油净化、处理工业污染等。因此,以高炉渣为原料制备高炉渣基沸石(BFSZ),可实现高炉渣中有用成分的综合利用

材料特性角度:铜冶炼炉渣是铜冶炼过程中产生的固体废弃物,其成分含有大量的硅、铝等元素,这些元素是合成分子筛材料的重要成分。将炉渣作为原料合成分子筛,能够实现固体废弃物的资源化利用。而晶化温度是分子筛合成过程中的关键因素,它直接影响分子筛的结晶过程和最终结构。

现有研究启发:在分子筛材料的传统合成研究中,已经明确温度对分子筛结晶度、晶型等结构特征有重要影响。对于以炉渣为原料的新型分子筛合成,需要探索晶化温度如何影响这种特殊来源分子筛的结构,因为炉渣成分复杂,与传统合成原料有所不同。

性能提升需求:分子筛的性能(如吸附性能、离子交换性能等)与其结构紧密相关。合理的晶化温度有望优化炉渣基分子筛的结构,从而提升其性能,使其在气体吸附分离、催化等领域有更好的应用前景

环境意义:

铜冶炼炉渣的大量堆放会占用土地,还可能对土壤、水体等造成污染。将其转化为分子筛材料,能够有效减少炉渣废弃物的堆积,减轻环境压力。

从可持续发展角度看,这是一种典型的固体废弃物循环利用方式,符合资源循环和环境保护的理念。

经济意义:

以炉渣为原料合成分子筛材料,相比传统原料合成分子筛可以降低原料成本。如果通过控制晶化温度能得到高性能的分子筛,将提高产品的附加值,带来良好的经济效益。

这种新材料的开发和应用,还可以带动相关产业(如吸附剂、催化剂产业)的发展,促进经济结构优化。

科学意义:

深入研究晶化温度对炉渣基分子筛结构和性能的影响,可以丰富分子筛材料的合成理论。因为炉渣基分子筛的合成与传统分子筛合成在原料性质等方面存在差异,这为材料科学领域提供新的研究思路和方法。

研究成果有助于精准控制分子筛的合成条件,为制备具有特定结构和优异性能的分子筛材料提供科学依据,推动分子筛材料在更多领域的应用拓展。

二、主要特色和创新点

原料独特性:以铜冶炼炉渣为原料制备分子筛材料,实现了工业废弃物的资源化利用,为炉渣的高值化处理提供了新途径,区别于传统使用纯化学试剂制备分子筛的方法,具有鲜明的资源与环境特色。

多学科交叉性:研究涉及材料学、冶金学、化学工程等多学科知识,通过对晶化温度这一关键因素的探究,深入分析其在不同学科领域相关性能上的体现,如材料的微观结构(材料学)、炉渣元素的迁移与转化(冶金学)以及分子筛的吸附与催化性能(化学工程)等,体现了跨学科研究特色。

创新点

晶化温度调控机制创新:系统研究晶化温度对炉渣基分子筛结构与性能影响,揭示了在该特定体系下温度与分子筛结晶度、孔结构、元素分布等结构特征以及吸附、催化等性能之间的内在关联规律,填补了铜冶炼炉渣基分子筛材料在晶化温度影响方面的研究空白,为精准调控分子筛性能提供了新的理论依据和方法。

性能优化与拓展应用:通过优化晶化温度,有望制备出具有特定结构和优异性能的炉渣基分子筛,如高比表面积、良好热稳定性和选择性吸附催化性能等,从而拓展其在污水处理、气体分离、催化反应等领域的应用范围,为工业实际应用提供创新性的解决方案,这是以往对传统分子筛研究中未涉及的基于铜冶炼炉渣的性能优化与应用拓展方向。

三、重要参考文献

[1]李昌新,张庆武,李立.高炉渣基沸石分子筛材料的制备及其响应面优化[J].安全与环境学报,2023,23(02):521-529.DOI:10.13637/j.issn.1009-6094.2021.1990.
[1]李昌新,张庆武,李立.高炉渣基沸石分子筛材料的制备及其响应面优化[J].安全与环境学报,2023,23(02):521-529.DOI:10.13637/j.issn.1009-6094.2021.1990.

[2]高文艳,长山,赵斯琴.不同形貌高炉渣基沸石的合成及反应机理的探讨[J].功能材料,2019,50(08):8205-8211+8216.
[2]高文艳,长山,赵斯琴.不同形貌高炉渣基沸石的合成及反应机理的探讨[J].功能材料,2019,50(08):8205-8211+8216.

[3]高广磊,杨野,杨超,等.铜冶炼炉渣工艺的分析[J].世界有色金属,2021,(16):10-11.
[3]高广磊,杨野,杨超,等.铜冶炼炉渣工艺的分析[J].世界有色金属,2021,(16):10-11.

[4]刘宝蔓,初茉,白书霞,等.用油页岩灰制备沸石分子筛及响应面优化[J].硅酸盐学
[4]刘宝蔓,初茉,白书霞,等.用油页岩灰制备沸石分子筛及响应面优化[J].硅酸盐学

报,2020,48(08):1317-1324.DOI:10.14062/j.issn.0454-5648.20200002.
报,2020,48(08):1317-1324.DOI:10.14062/j.issn.0454-5648.20200002.

何茂成,张建良,国宏伟,等.高炉渣合成NaA沸石及影响因素[J].硅酸盐学报,2015,43(11):1617-1624.DOI:10.14062/j.issn.0454-5648.2015.11.15.
何茂成,张建良,国宏伟,等.高炉渣合成NaA沸石及影响因素[J].硅酸盐学报,2015,43(11):1617-1624.DOI:10.14062/j.issn.0454-5648.2015.11.15.

陈智民,冯允成.仿真与响应曲面法的结合及其在综合生产计划中的应用[J].航空学报,1988,(08):359-365.

[7] 王春峰,李健生,韩卫清,等.碱熔融法合成NaA和NaX型粉煤灰沸石的品质表征[J].环境工程学报, 2008, 2(6):814-819..
[7] 王春峰,李健生,韩卫清,等.碱熔融法合成NaA和NaX型粉煤灰沸石的品质表征[J].环境工程学报, 2008, 2(6):814-819..

[8] 汪飞,吴德意,何圣兵,等.水热法合成NaP1型粉煤灰沸石的性能表征[J].材料工程, 2005, 000(008):47-50.DOI:10.3969/j.issn.1001-4381.2005.08.012..
[8] 汪飞,吴德意,何圣兵,等.水热法合成NaP1型粉煤灰沸石的性能表征[J].材料工程, 2005, 000(008):47-50.DOI:10.3969/j.issn.1001-4381.2005.08.012..

[9] 邓慧;张启凯;白英芝.碱性活化法合成粉煤灰沸石的研究进展[J].硅酸盐通报, 2014, 33(7):1706-1714..
[9] 邓慧;张启凯;白英芝.碱性活化法合成粉煤灰沸石的研究进展[J].硅酸盐通报, 2014, 33(7):1706-1714..

[10] 杨文焕,陈阿辉,李卫平,等.碱熔融—微波晶化法合成粉煤灰沸石及其对Cd2+的吸附[J].期刊, 2016, 35(05)..
[10] 杨文焕,陈阿辉,李卫平,等.碱熔融—微波晶化法合成粉煤灰沸石及其对Cd2+的吸附[J].期刊, 2016, 35(05)..

[11] 张雪峰,郭俊温,贾晓林,等.粉煤灰沸石合成研究新进展[J].硅酸盐通报, 2011, 30(1):5.DOI:CNKI:SUN:GSYT.0.2011-01-026..
[11] 张雪峰,郭俊温,贾晓林,等.粉煤灰沸石合成研究新进展[J].硅酸盐通报, 2011, 30(1):5.DOI:CNKI:SUN:GSYT.0.2011-01-026..

[12] 刘艳,吕海亮,张振宇,等.粉煤灰沸石的微波合成[J].煤炭学报, 2009, 34(7):5.DOI:CNKI:SUN:MTXB.0.2009-07-022..
[12] 刘艳,吕海亮,张振宇,等.粉煤灰沸石的微波合成[J].煤炭学报, 2009, 34(7):5.DOI:CNKI:SUN:MTXB.0.2009-07-022..

[13] Ojha K , Pradhan N C , Samanta A N .Zeolite from fly ash: Synthesis and characterization[J].Bulletin of Materials Science, 2004, 27(6):555-564.DOI:10.1007/BF02707285..
[13] Ojha K , Pradhan NC , 萨曼塔 A N .粉煤灰分子筛的合成与表征[J].材料科学通报, 2004, 27(6):555-564.DOI:10.1007/BF02707285..

[14] Chen J , Kong H , Wu D ,et al.Removal of phosphate from aqueous solution by zeolite synthesized from fly ash[J].Journal of Colloid & Interface Science, 2006, 300(2):491-497.DOI:10.1016/j.jcis.2006.04.010..
[14] Chen J , Kong H , Wu D ,et al.粉煤灰合成沸石去除水溶液中磷酸盐[J].胶体与界面科学杂志, 2006, 300(2):491-497.DOI:10.1016/j.jcis.2006.04.010..

[15]Chen X ,Zhang P ,Wang Y , et al.Research progress on synthesis of zeolites from coal fly ash and environmental applications[J].Frontiers of Environmental Science & Engineering,2023,17(12):89-112.
[15]Chen X ,Zhang P ,Wang Y , et al.粉煤灰合成分子筛及环境应用研究进展[J].环境科学与工程前沿,2023,17(12):89-112.

[16]Zhang X ,Li C ,Zheng S , et al.A review of the synthesis and application of zeolites from coal-based solid wastes[J].International Journal of Minerals Metallurgy and Materials,2022,29(01):1-21.
[16]张 X ,李 C ,郑 S ,等.煤基固废分子筛的合成与应用研究进展[J].国际矿物冶金与材料学报,2022,29(01):1-21.

[17]J.C.Umaa ,X.Querol ,A.Lopez-Soler , et al.ZEOLITE SYNTHESIS FROM A HIGH SI-AL-FLY ASH FROM EAST CHINA[C]//中国科学院地质与地球物理研究所(Institute of Geology and Geophysics Chinese Academy of Sciences).中国科学院地质与地球物理研究所2002学术论文摘要汇编.Instittute of Earth Sciences,CSIC,Lluis Sole i Sabaris s/n.08028-Barcelona Spain;,2002:1.
[17]J.C.Umaa ,X.Querol ,A.Lopez-Soler , et al.华东高硅铝粉煤灰合成沸石[C]//中国科学院地质与地球物理研究所(Institute of Geology and Geophysics, Chinese Academy of Sciences).中国科学院地质与地球物理研究所2002学术论文摘要汇编.地球科学研究所,CSIC,Lluis Sole i Sabaris s/n.08028-西班牙巴塞罗那;,2002:1。

四.毕业设计纲要

本论文的主要研究内容为:

采用“碱融-水热”相结合的方式合成制备铜冶炼炉渣基分子筛材料,本论文主要研究晶化温度对铜冶炼炉渣基分子筛材料的结构与性能的影响。

在查阅相关文献的条件下,用“碱融-水热”相结合的方式合成制备铜冶炼炉渣基分子筛材料,并研究晶化温度对铜冶炼炉渣基分子筛材料的结构与性能的影响。

高炉渣基沸石分子筛X 射 线 衍 射 分 析扫描电镜( SEM) 进行分析
高炉渣基沸石分子筛X 射 线 衍射 分扫描电镜( SEM) 进行分析

高炉渣基沸石分子筛利用扫描电子显微镜对部分试验条件下得到的高炉渣基沸石分子筛进行X 射 线 衍 射 分 析 SEM 分析。
高炉渣基沸石分子筛利用扫描电子显微镜对部分试验条件下得到的高炉渣基沸石分子筛进行X 射 线 衍 射 分 析 SEM 分析。

本论文的研究方法

在制备高 炉 渣 基 沸 石 ( BFSZ) 前,先 将 高 炉 渣( BFS) 用 2. 0 mol / L HNO 3 溶液于 80 °C 下活化处理2. 0 h,过滤,得到活化浸出渣( LR BFS) ,本研究采用碱熔融 水热合成法制备 高 炉 渣 基 沸 石BFSZ其具体步骤如下:取质量比为 1 ∶ 1. 3 的浸出渣( LR BFS 与氢氧化钠颗粒在坩埚中均匀混合,在一定碱熔温度下焙烧 90 min。冷却后,称取一定质量的焙烧产物加入 25 mL 2. 0mol / L 氢氧化钠溶液,搅拌均匀后,继续加入 50 mL一定浓度的偏铝酸钠溶液,调整反应体系液固比后在反应釜中进行反应,反应结束后,将产品取出过滤,水洗滤饼至中性,80 °C 干燥 2 h,得到高 炉 渣 基 沸 石 ( BFSZ) 产品。基于 高 炉 渣 基 沸 石 ( BFSZ) 产品的 CEC,探究晶化温度对 高 炉 渣 基 沸 石 ( BFSZ) 产品的 CEC 的影响。
在制备高 炉 渣 基 沸石 ( BFSZ) 前,先 将 高 炉 渣( BFS) 用 2. 0 mol / L HNO 3 溶液于 80 °C 下活化处理2. 0 h,过滤,得到活化浸出渣( LR BFS) ,本研究采用碱熔融 水热合成法制备 高 炉 渣 基 沸石BFSZ)其具体步骤如下:取质量比为 1 ∶ 1. 3 的浸出渣( LR BFS 与氢氧化钠颗粒在坩埚中均匀混合,在一定碱熔温度下焙烧 90 min。冷却后,称取一定质量的焙烧产物加入 25 mL 2.0mol / L 氢氧化钠溶液,搅拌均匀后,继续加入 50 mL一定浓度的偏铝酸钠溶液,调整反应体系液固比后在反应釜中进行反应,反应结束后,将产品取出过滤,水洗滤饼至中性,80 °C 干燥 2 h,得到高炉 渣 基 沸石 ( BFSZ) 产品。基于 高 炉 渣 基 沸石 ( BFSZ) 产品的 CEC,探究晶化温度对 高 炉 渣 基 沸石 ( BFSZ) 产品的 CEC 的影响。

3.指出研究中存在的局限性,如实验条件的优化空间、研究体系的拓展方向等,对未来在该领域进一步深入研究提出建议,如探索多元复合掺杂、开发新的合成工艺、拓展材料的应用领域等,为后续研究提供参考思路和方向。

指导老师审批意见

签 名:

年 月 日

A review of the synthesis and application of zeolites from coal-based solid wastes
煤基固废分子筛的合成与应用研究进展

Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, Yonghao Di, and Zhiming Sun✉
Xiaoyu Zhang、Chunquan Li、Shuilin Zheng、Yonghao Di 和 Zhiming Sun✉

School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
中国矿业大学(北京)化学与环境工程学院, 北京 100083

(Received: 11 November 2020; revised: 18 January 2021; accepted: 20 January 2021)
(收稿日期:2020 年 11 月 11 日;修订日期:2021 年 1 月 18 日;录用日期:2021 年 1 月 20 日)

Abstract:
抽象:

Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash are intro-duced. The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are alsointroduced. The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized. Furthermore, the
从煤基固体废物(煤矸石和煤粉煤灰)中提取的沸石可以克服煤基固体废物带来的环境问题,实现有价值的利用。本文介绍了煤矸石和粉煤灰的物理化学性质。还介绍了煤基固废合成分子筛前处理工艺的机理和应用特点。总结了煤基固废沸石的合成工艺及其优缺点。此外,

application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated. Finally, we propose an
说明了各种煤基固废分子筛的应用特点及其常见的应用领域。最后,我们提出了一个

alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites. In ad-
碱性熔融辅助超临界水热结晶作为合成煤基固体废物沸石的有效方法。在广告中

dition, more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field
此外,应更加重视碱性废液的回收利用和煤基固体废物沸石在该领域的应用

of volatile organic compound adsorption removal.
挥发性有机化合物吸附去除。

Keywords: coal-based solid waste; coal fly ash; coal gangue; zeolite
关键词:煤基固废;粉煤灰;煤矸石;沸石

Introduction
介绍

Coal is the second-largest primary energy source in the world. Global coal reserves totaled 1069636 million tons and global coal production was 8129.39 million tons (167.58 EJ) in 2019. The share of coal production in main countries and regions is shown in Fig. 1(a). The global coal consumption in 2019 was 157.86 EJ, and its share in the consumption of primary energy was 27.04%. China, India, and the United
煤炭是世界第二大一次能源。2019 年全球煤炭储量总计 1069636 万吨,全球煤炭产量为 81.2939 亿吨(167.58 EJ)。主要国家和地区的煤炭生产份额如图 1(a) 所示。2019 年全球煤炭消费为 157.86 EJ,在一次能源消费中的份额为 27.04%。中国、印度和美国

States are the three major countries responsible for most of the coal consumption, with 51.74%, 11.80%, and 7.18% of the global coal consumption in 2019, respectively (Fig. 1(b)). China’s electricity generation was 7503.43 terawatt hours in
各邦是煤炭消费量大部分的三个主要国家分别占 2019 年全球煤炭消费量的 51.74%、11.80% 和 7.18%(图 1(b))。中国的发电量为 7503.43 太瓦时

2019 (Fig. 1(c)), and the coal proportion was 64.69% (Fig. 1(d)) [1–2]. By 2050, developing Asian countries (China, In- dia, and other Asian countries) will account for more than 80% of the total coal consumption [3].A large amount of coal-based solid wastes, mainly includ-ing coal gangue and coal fly ash, are produced in the coal mining and utilization process. The accumulative amount of coal gangue is primarily increasing because of coal mining and utilization activities, and currently, the coal gangue stock in China is approximately 5000 million tons [4]. More than 800 million tons of coal fly ash are generated worldwide perannum, and more than 500 million tons are produced in China [5–6].The accumulation of coal-based solid wastes occupies a lot of lands and has a detrimental impact on the environment and human body [7]. Therefore, several countries have been devoted to the resource utilization of coal-based solid waste over the past few decades [8]. Coal gangue has been used for power generation, filling of underground mined areas, and civil works [9]. Furthermore, coal fly ash has been used as a catalyst carrier, raw material for cement production,and valuable metal recovery[10].Notably,coal-based solid wastes contain a large amount of silicon and aluminum,which can be used as the silicon or/and aluminum sources of zeolites with high added value(Fig.2)[11].Zeolite is crystalline aluminosilicates composed of ex-changeable metal cations,[SiO4]4−and[AlO4]5−tetrahedral,three-dimensional spatial network structure,and abundantpore architecture[17].Zeolite has an excellent surface areaand pore structure performance,strong adsorption capacity,high cation exchange capacity(CEC),excellent hydrothermalstability,and Brønsted acid sites[11].Therefore,it is widelyused in environmental and industrial fields,including adsorb-ents[18],catalysts[19],ion exchangers[20],antibacterialmaterials[21],and other new frontiers[22].Fig.3 showscommon zeolite framework structures produced from coal-based solid wastes.The synthesis of zeolites with coal-based solid waste asthe raw material can reduce the environmental pollution ofcoal-based solid wastes and realize their valuable utilization.The synthetic zeolite products can also be used in the pollu-tion control of coal-related areas[24].Therefore,zeolites,which are synthesized from coal-based solid wastes,have
2019 [图 1(c)],煤炭比例为 64.69% [图 1(d)] [1–2]。到 2050 年,亚洲发展中国家(中国、印度和其他亚洲国家)将占煤炭消费总量的 80% 以上 [3]。煤炭开采和利用过程中会产生大量的煤基固体废物,主要包括煤矸石和粉煤灰。煤矸石的累计量主要由于煤炭开采和利用活动而增加,目前,中国的煤矸石存量约为 50 亿吨 [4]。全球每年产生超过 8 亿吨粉煤灰,中国生产超过 5 亿吨 [5–6]。煤基固体废弃物的积累占据了大量土地,对环境和人体产生了不利影响 [7]。因此,在过去的几十年里,一些国家一直致力于煤基固体废物的资源化利用 [8]。煤矸石已用于发电、地下矿区填充和土木工程 [9]。此外,粉煤灰已被用作催化剂载体、水泥生产原料和有价金属回收[10]。值得注意的是,煤基固体废弃物中含有大量的硅和铝,可作为高附加值的分子筛的硅或/和铝源(图 2)[11]。沸石是由可交换金属阳离子、[SiO4]4−和[AlO4]5−四面体、三维空间网络结构和丰富的孔隙结构组成的结晶铝硅酸盐[17]。沸石具有优异的比表面积和孔结构性能、强吸附能力、高阳离子交换能力 (CEC)、优异的水热稳定性和 Brønsted 酸位[11]。因此,它被广泛应用于环境和工业领域,包括吸附剂[18]、催化剂[19]、离子交换剂[20]、抗菌材料[21]和其他新领域[22]。图 3 显示了由煤基固体废物生产的常见沸石框架结构。以煤基固废为原料合成沸石,可以减少煤基固废对环境的污染,实现其有价值的利用。合成沸石产品还可用于煤炭相关区域的污染控制[24]。因此,从煤基固体废物合成的沸石具有

Fig.1.Distribution of coal production,consumption,and electricity generation in main countries:share of(a)coal production and(b)coal consumption;(c)electricity generation;(d)share of electricity generation from coal.The data are originated from Ref.[1].been widely studied by scholars all over the world.This review will summarize the synthesis processes ofzeolites from coal gangue and coal fly ash,as well as the ap-plication of zeolite products.We propose the challenges inthe research of coal-based solid waste zeolites and providescientific advice.The results have important implications forthe development of potential research areas in the synthesisof coal-based solid waste zeolites and the reuse of coal-basedsolid wastes.2.Coal-based solid wastes2.1.Coal gangueCoal gangue is a typical solid waste produced during coalmining and preparation.The chemical compositions of coalgangues mainly include SiO2,Al2O3,Fe2O3,Na2O,CaO,
图 1.主要国家煤炭生产、消费和发电量分布:(a) 煤炭生产和 (b) 煤炭消费的份额;(c) 发电;(d)煤炭发电量份额。数据来源于 Ref.[1].已被世界各地的学者广泛研究。本文将总结煤矸石和粉煤灰合成沸石的过程,以及沸石产品的应用。我们提出了煤基固体废物沸石研究中的挑战并提供科学建议。2.煤基固体废弃物合成和煤基固废再利用具有重要意义。2.煤基固废2.1.煤矸石煤矸石是煤矿开采和制备过程中产生的典型固体废弃物。煤矸石的化学成分主要有SiO2,Al2O3,Fe2O3,Na2O,CaO,
MgO,TiO2,K2O,and organic components(Table 1).Themain mineral compositions of coal gangues include quartz,kaolinite,and other clay minerals[25].However,the com-position of coal gangue has regional characteristics becauseof the different coal-forming environments and mining con-ditions[12,26].The mass ratio of Al2O3/SiO2 can reflect the mineral com-position of coal gangue and can be used as a basis for de-termining the utilization fields of coal gangue.When massratio of Al2O3/SiO2<0.30,the main mineral compositions ofcoal gangue are quartz and feldspar,while kaolinite and oth-er clay minerals are only a minority share.When 0.30<massratio of Al2O3/SiO2<0.50,the content of quartz and feldspardecreased.When mass ratio of Al2O3/SiO2>0.50,the mainmineral composition is kaolinite,which can be used as theraw materials for producing high-grade ceramic,calcined ka-olinite,and zeolite[4].2.2.Coal fly ashCoal fly ash is a powdery particulate material that is pro-duced in the process of coal combustion,and the chemicalcomposition of coal fly ash mainly include SiO2,Al2O3,Fe2O3,CaO,MgO,and K2O(Table 2).The main compon-ents of coal fly ash are amorphous aluminosilicate,mullite,α-quartz,hematite,and magnetite[29–30].The physicochemical properties of coal fly ash are closelyrelated to the type of fuel coal(i.e.,anthracite,bituminous,subbituminous,and lignite)[14].Based on the proportions ofcalcium,silicon,aluminum,and iron,the coal fly ash can beclassified as Class F and C.The total content of SiO2+Al2O3+Fe2O3 in Class F coal fly ash is greater than 70wt%,and thecontent of CaO is less than 10wt%,which is usually pro-duced by the combustion of anthracite and bituminous coal.Alternatively,Class C coal fly ash contains more than 20wt%CaO and the percentage of SiO2+Al2O3+Fe2O3 is between50wt%and 70wt%,which is produced by the combustion of
MgO、TiO2、K2O 和有机成分(表 1)。煤矸石的主要矿物成分包括石英、高岭石和其他粘土矿物[25]。然而,由于成煤环境和采矿条件不同,煤矸石的分布具有区域性特征[12,26]。Al2O3/SiO2 的质量比可以反映煤矸石的矿物构成,可以作为煤矸石利用领域脱粒的基础。当Al2O3/SiO2<0.30质量比时,煤矸石的主要矿物成分是石英和长石,而高岭石和其他粘土矿物仅占少数。当 Al2O3/SiO2<0.50 的 0.30<质量比时,石英和长石的含量下降。当Al2O3/SiO2>0.50的质量比时,主要矿物成分为高岭石,可用作生产高档陶瓷、煅烧ka-橄榄石和沸石的原料[4].2.2.煤粉煤灰是在燃煤过程中产生的一种粉状颗粒材料,粉煤灰的化学成分主要包括SiO2、Al2O3、Fe2O3、CaO、MgO 和 K2O(表 2)。粉煤灰的主要成分是无定形铝硅酸盐、莫来石、α石英、赤铁矿和磁铁矿[29–30]。粉煤灰的物理化学性质与燃料煤的类型(即无烟煤、烟煤、次烟煤和褐煤)密切相关[14]。根据钙、硅、铝和铁的比例,粉煤灰可分为F类和C类,F类粉煤灰中SiO2+Al2O3+Fe2O3的总含量大于70wt%,CaO含量小于10wt%,通常由无烟煤和烟煤燃烧产生。或者,C 类粉煤灰含有超过 20wt%CaO,SiO2+Al2O3+Fe2O3 的百分比在 50wt% 到 70wt% 之间,这是由

Fig.2.Scanning electron microscopy image of typical zeolites obtained from coal-based solid wastes:(a)faujasite;(b)Na–A zeolite;(c)Na–P zeolite;(d)Na–P1 zeolite;(e)sodalite;(f)analcime.(a)Reprinted from Adv.Powder Technol.,31,N.J.Bu,X.M.Liu,S.L.Song,J.H.Liu,Q.Yang,R.Li,F.Zheng,L.H.Yan,Q.Zhen,and J.F.Zhang,Synthesis of NaY zeolite from coal gangue and its char-acterization for lead removal from aqueous solution,2699–2710,Copyright 2020,with permission from Elsevier[12].(b)Reprintedfrom Powder Technol.,367,X.P.He,B.Yao,Y.Xia,H.Huang,Y.P.Gan,and W.K.Zhang,Coal fly ash derived zeolite for highly ef-ficient removal of Ni2+in waste water,40–46,Copyright 2020,with permission from Elsevier[13].(c)Reprinted from Prog.EnergyCombust.Sci.,65,C.Belviso,State-of-the-art applications of fly ash from coal and biomass:A focus on zeolite synthesis processes andissues,109–135,Copyright 2018,with permission from Elsevier[14].(d,f)Reprinted from Fuel,139,A.M.Cardoso,A.Paprocki,L.S.Ferret,C.M.N.Azevedo,and M.Pires,Synthesis of zeolite Na–P1 under mild conditions using Brazilian coal fly ash and its ap-plication in wastewater treatment,59–67,Copyright 2015,with permission from Elsevier[15].(e)Reprinted from Ultrason.Sono-chem.,43,C.Belviso,Ultrasonic vs hydrothermal method:Different approaches to convert fly ash into zeolite.How they affect thestability of synthetic products over time?9–14,Copyright 2018,with permission from Elsevier[16].
图 2.从煤基固体废物中获得的典型分子筛的扫描电子显微镜图像:(a)faujasite;(二)Na-A 沸石;(三)Na-P 沸石;(四)Na-P1 沸石;(e)方钠石;(f)analcime.(一)转载自 Adv.Powder Technol.,31,N.J.Bu,X.M.Liu,S.L.Song,J.H.Liu,Q.Yang,R.Li,F.Zheng,L.H.Yan,Q.Zhen,和 J.F.Zhang,煤矸石合成 NaY 沸石及其从水溶液中去除铅的特性化,2699–2710,版权所有 2020,经 Elsevier 许可[12]。(二)转载自 Powder Technol.,367,X.P.He,B.Yao,Y.Xia,H.Huang,Y.P.Gan,和 W.K.Zhang,煤粉煤灰衍生的沸石用于高效去除废水中的 Ni2+,40–46,版权所有 2020,经 Elsevier 许可[13]。(三)转载自 Prog.EnergyCombust.Sci.,65,C.Belviso,煤和生物质飞灰的先进应用:聚焦沸石合成工艺和问题,109–135,版权所有 2018,经 Elsevier 许可[14]。(d,f)转载自 Fuel,139,A.M.Cardoso,A.Paprocki,L.S.Ferret,C.M.N.Azevedo 和 M.Pires,在温和条件下使用巴西粉煤灰合成沸石 Na-P1 及其在废水处理中的应用,59-67,版权所有 2015,经 Elsevier 许可[15]。(五)转载自 Ultrason.Sono-chem.,43,C.Belviso,超声波与水热法:将飞灰转化为沸石的不同方法。它们如何随着时间的推移影响合成产品的稳定性?9–14,版权所有 2018,经 Elsevier 许可[16]。

subbituminous,lignite,or other low-quality coal[14].Class Fcoal fly ash has high chemical activity or the potential to bechemically activated and can easily react with alkaline mater-ials to form zeolites.However,Class C coal fly ash has a highcontent of CaO and carbon,resulting in a lower zeolitizationactivity,which is more difficult to be used as a raw materialfor synthetic zeolite[14,31].3.Zeolite synthesis from coal-based solid wastes3.1.PretreatmentZeolites can be obtained from a mixture of alkali,silicon,and aluminum raw materials,after a period of crystallizationin a closed reactor under high temperature and pressure.Coal-based solid wastes can especially be used as the mainraw materials to provide valuable silicon and aluminum com-ponents[11].However,many impurities exist in coal-based solidwastes,such as organic matter,iron,calcium,and magnesium.In addition,the reactivity of silicon and aluminum elementsin coal-based solid wastes needs to be improved.Therefore,coal-based solid wastes are usually pretreated before zeolitesynthesis[25,36].3.1.1.Granularity refinementGranularity refinement is mainly achieved by grinding,improving the physicochemical properties of coal-based sol-id wastes and playing a vital role in the subsequent utiliza-tion.Grinding can significantly decrease particle size,in-crease the surface area,and improve the surface structure ofcoal-based solid wastes,which is beneficial to the exposureand further removal of impurities.Additionally,grinding ac-tion can improve the chemical reactivity of coal-based solidwastes by producing defect sites and promoting the dissolu-tion of coal-based solid wastes[37–38].However,the effect of grinding on the zeolitization ofcoal-based solid wastes is insufficient and cannot completelydestroy the primary structure of kaolinite in coal-based solidwaste.Therefore,chemical activation is usually required after
次烟煤、褐煤或其他劣质煤[14]。F类煤粉煤灰具有高化学活性或化学活化的可能性,很容易与碱性物质反应形成沸石。然而,C类粉煤灰的CaO和碳含量高,导致沸石活性较低,更难用作合成沸石的原料[14,31].3.煤基固体废物合成沸石3.1.预处理沸石可由碱、硅和铝原料的混合物,在密闭反应器中,在高温高压下结晶一段时间后得到。煤基固体废物尤其可以作为主要原料,提供有价值的硅和铝成分[11]。然而,煤基固体废物中存在许多杂质,如有机物、铁、钙和镁。此外,硅和铝元素在煤基固体废物中的反应性有待提高。因此,煤基固废通常在分子筛合成前进行预处理[25,36].3.1.1.粒度细化主要通过研磨实现,改善煤基溶胶-ID 废物的物理化学性质,在后续利用中起着至关重要的作用。研磨可以显著降低颗粒尺寸,增加表面积,改善煤基固体废物的表面结构,有利于杂质的暴露和进一步去除。此外,研磨技术可以通过产生缺陷位点和促进煤基固体废物的溶解来提高煤基固体废物的化学反应性[37\u201238]。然而,研磨对煤基固废物分子筛的作用不足,不能完全破坏煤基固废物中高岭石的初级结构。因此,通常需要在

Fig.3.Zeolite framework structure of(a)SOD(sodalite),(b)LTA(Na–A zeolite),(c)KFI(ZK-5 zeolite),(d)GIS(Na–P,Na–P1zeolite),(e)PHI(phillipsite),(f)FAU(Na–X,Na–Y zeolite),(g)CHA(SSZ-13 zeolite),(h)MFI(ZSM-5 zeolite),and(i)CAN(cancrin-ite).Modified from the Structure Commission of the International Zeolite Association[23].
图 3.(a)SOD(方石)、(b)LTA(Na-A 沸石)、(c)KFI(ZK-5 沸石)、(d)GIS(Na-P,Na-P1沸石)、(e)PHI(十字石)、(f)FAU(Na-X,Na-Y 沸石)、(g)CHA(SSZ-13 沸石)、(h)MFI(ZSM-5 沸石)和 (i)CAN(坎克林石)的沸石骨架结构。修改自国际沸石协会结构委员会[23]。

grinding to provide the potential activity of coal fly ash
研磨以提供粉煤灰的潜在活性

[37–38].

3.1.2.Calcination
3.1.2.煅烧

Compared with grinding treatment,coal-based solidwastes can be more thoroughly activated by high-temperat-ure calcination,and organic impurities can be burned off[38].Kaolinite is converted to metakaolin during the calcina-tion process(>500°C).Further increasing the calcinationtemperature decomposes the other clay minerals and metaka-olin and leads to the formation of active SiO2 and Al2O3(>900°C).However,calcination requires more energy,andsome other mineral impurities(magnetite,hematite,lime,andanhydrite)cannot be effectively removed during the calcina-tion process[39].3.1.3.Acid treatmentCoal-based solid wastes contain undesirable alkali metaloxides(i.e.,Fe2O3,CaO,MgO,and TiO2)[25,40].The pres-ence of these impurities will affect the nucleation and crystal-lization of zeolites,and grinding and calcination cannot re-move these impurities[33].Therefore,acid treatment is usedin the pretreatment phase of coal-based solid wastes to elim-inate these impurities.Acids for treatment include hydrochloric acid,nitric acid,and sulfuric acid,of which hydrochloric acid is the mostcommonly used[25,34,41].The content of iron and alkalimetal oxides in coal-based solid wastes can be significantlyreduced by acid treatment,even reaching a trace level,thereby greatly improving the zeolitization performance ofcoal-based solid wastes[25,40–41].Concurrently,aciderosion and collapse occur on the surface of coal-based solidwastes,resulting in the partial dissolution of Al2O3 and an in-crease in the Si/Al molar ratio[25].Finally,the applicationperformance of zeolite products can be improved by acidtreatment[36,41].However,acid treatment requires acid withhigh concentration,which easily forms secondary pollution.3.2.Synthesis processesThe synthesis methods of zeolite with coal-based solidwastes as a raw material include hydrothermal crystallization,hydrothermal crystallization with a structure-directing agent,alkaline fusion-assisted hydrothermal crystallization,ultra-sonic or microwave-assisted hydrothermal crystallization,two-step method,molten-salt method,and solvent-freemethod.By using these synthesis methods and rationally adjustingthe preparation parameters,different zeolites(Na–X,Na–Y,Na–P,Na–P1,Na–A,sodalite,etc.)can be synthesized fromvarious coal-based solid wastes(coal gangue with differentSi/Al ratios,Class F coal fly ash,or Class C coal fly ash).However,some zeolites(ZSM-5,SSZ-13,ZK-5,etc.)withspecial structures are more likely to be synthesized by hydro-thermal crystallization with a structure-directing agent.In ad-dition,it is better to use one-step or two-step methods withadditional energy assistance(alkaline fusion,ultrasonic,mi-crowave)when coal gangue with a high content of quartz andfeldspar or Class C coal fly ash was used to synthesize zeolitebecause the zeolitization activity of raw material can be en-hanced.3.2.1.Hydrothermal crystallizationHydrothermal crystallization(Fig.4)is the earliest meth-od to synthesize zeolites from coal-based solid wastes.Hy-drothermal crystallization is carried out after the mixture ofcoal-based solid waste,and the alkaline solution is aged,andthen the zeolite product is obtained by filtration,washing,anddrying.The synthetic conditions and properties of coal-basedsolid waste zeolites synthesized by hydrothermal crystalliza-tion are listed in Table 3.Ageing Hydrothermalcrystallization ZeoliteAlkalinesolutionCoal-basedsolid wasteFiltrationWashingDryingFig.4.Flowchart of the hydrothermal crystallization.(1)Conventional hydrothermal crystallization.There are reports on the synthesis of zeolites from coal-based solid wastes by conventional hydrothermal crystalliza-tion,and many kinds of zeolite have been synthesized.Nev-ertheless,conventional hydrothermal crystallization for thesynthesis of zeolites is time-consuming with limited yields.In the 1980s,zeolites were synthesized from coal fly ashby hydrothermal crystallization[42].Various zeolites havesince been successfully synthesized based on Class F or Ccoal fly ash,including Na–Y,Na–X,Na–P1,K–G,ZK-19
与研磨处理相比,高温煅烧可以更彻底地活化煤基固体废物,并可以燃烧掉有机杂质[38]。高岭石在煅烧过程中转化为偏高岭土(>500°C)。进一步提高煅烧温度会分解其他粘土矿物和偏甲醇,并导致形成活性 SiO2 和 Al2O3(>900°C)。然而,煅烧需要更多的能量,并且在煅烧过程中无法有效去除一些其他矿物杂质(磁铁矿、赤铁矿、石灰、硬石膏)[39].3.1.3.酸处理煤基固体废物中含有不需要的碱金属氧化物(即Fe2O3、CaO、MgO和TiO2)[25,40]。这些杂质的存在会影响沸石的成核和结晶化,而研磨和煅烧不能使这些杂质重新移动[33]。因此,在煤基固废的预处理阶段采用酸处理来消除这些杂质。用于治疗的酸包括盐酸、硝酸和硫酸,其中盐酸是最常用的[25,34,41]。酸处理可以显著降低煤基固体废物中铁和碱金属氧化物的含量,甚至达到痕量水平,从而大大提高煤基固体废物的沸石化性能[25,40–41]。同时,煤基固体废物表面发生酸蚀和塌陷,导致 Al2O3 部分溶解,Si/Al 摩尔比增加[25]。最后,酸处理可以提高分子筛产品的应用性能[36,41]。然而,酸处理需要高浓度的酸,容易形成二次污染3.2.合成工艺以煤基固体废物为原料的沸石合成方法有水热结晶、用结构导向剂的水热结晶、碱性熔融辅助水热结晶、超声波或微波辅助水热结晶、两步法、熔盐法和无溶剂法。通过使用这些合成方法并合理调整制备参数,不同的沸石(Na-X、Na-Y、Na-P、Na-P1、Na-A、方钠矿等)可由各种煤基固废(不同Si/Al比的煤矸石、F类粉煤灰或C类粉煤灰)合成。然而,一些沸石(ZSM-5、SSZ-13、ZK-5 等)具有特殊结构的化合物更有可能通过与结构导向剂的水热结晶合成。3.2.1.水热结晶水热结晶(图4)是最早用煤基固体废弃物合成沸石的方法。煤基固废混合后进行氢热结晶,碱性溶液老化,再经过滤、洗涤、干燥得沸石产品。水热结晶法合成的煤基固体废物分子筛的合成条件和性质见表3.老化水热结晶沸石碱性溶解煤基固体废物过滤洗涤干燥图4.水热结晶流程图。(1)常规水热结晶。有关于常规水热结晶法从煤基固体废物中合成沸石的报道,已经合成了多种沸石。此外,用于合成沸石的常规水热结晶耗时且产量有限。1980 年代,由粉煤灰通过水热结晶合成沸石[42]。此后,基于 F 类或煤粉煤灰成功合成了各种沸石,包括 Na-Y、Na-X、Na-P1、K-G、ZK-19
,Na–A,Po,Pc,Pt,and Na–P zeolite[43–48].Zeolites have also been prepared from coal gangue byconventional hydrothermal crystallization,and the pretreat-ment of calcination is necessary to remove carbon.Hu et al.[49]synthesized 4A zeolite in a hydrothermal reaction kettlewith coal gangue calcined at 720°C for 1 h as raw material.Zhou et al.[50]reported the synthesis of cubic zeolite fromcalcined coal gangue(650°C,2 h)by a hydrothermal crystal-lization process,producing a product with 64.28 m2·g−1 sur-face area.Generally,coal-based solid waste zeolite product ob-tained by conventional hydrothermal crystallization is a mix-ture of multiple zeolites,e.g.,the product obtained by Tana-ka et al.[46]was a mixture of Po,Pc,and Pt zeolite.Izidoroet al.[51]prepared the product that contains hydroxysodalite,Na–P1,and Na–X zeolite.Additionally,the product has un-converted waste,and the proportion of target zeolite is usu-ally in the range of 45wt%–81wt%[44–45,52].The parameters of hydrothermal crystallization have dif-ferent effects on the zeolitization process of coal-based solidwastes.The composition of coal-based solid wastes affectsthe type of zeolites,e.g.,coal fly ash with high Ca contentwas beneficial to the formation of Na–P1 zeolite,while coalfly ash with high Al content was conducive to the formationof Na–X zeolite[51,53].Additionally,K in the coal fly ashresulted in the presence of Na–P zeolite or/and sodalite[44].
,Na-A,Po,Pc,Pt 和 Na-P 沸石[43–48]。此外,还通过常规水热结晶法从煤脉石中制备了沸石,煅烧的预处理是去除碳所必需的。胡 等[49]以煤矸石在 720°C 煅烧 1 h 为原料,在水热反应釜中合成了 4A 沸石。周 等[50]报道了通过水热结晶化工艺以煅烧煤脉石(650°C,2 h)合成立方沸石,生产出表面面积为 64.28 m2·g−1 的产品。通常,通过常规水热结晶获得的煤基固体废物沸石产品是多种沸石的混合物,例如,Tana-ka 等[46]获得的产品是 Po、Pc 和 Pt 沸石的混合物。Izidoroet al.[51] 制备了含有羟基方钠石、Na-P1 和 Na-X 沸石的产物。此外,该产品具有未转化的废物,目标沸石的比例通常在 45wt%–81wt% 范围内[44–45,52]。水热结晶的参数对煤基固体废物的沸石化过程有不同的影响。煤基固体废弃物的组成影响分子筛的类型,例如,高Ca含量的煤粉煤灰有利于Na-P1分子筛的形成,而高Al含量的煤粉煤灰有利于Na-X分子筛的形成[51,53]。此外,粉煤灰中的 K 导致 Na-P 沸石或/和方钠石的存在[44]。

Different zeolites have different SiO2/Al2O3 ratios;therefore,the ratio of SiO2/Al2O3 in the initial mixture affects the typeof synthetic zeolites[46,53].Alkali plays an important role inthe dissolution of Si and Al in coal-based solid wastes and theformation of zeolites.OH−contributes to the dissolution ofcoal-based solid wastes,and Na+is the main factor in thecrystallization of zeolites,while K+is the suppression factorfor zeolite synthesis.Additionally,the higher alkalinity of theinitial mixture is conducive to the synthesis of zeolites,whileexcessive alkalinity could inhibit the formation and growth ofzeolites[54–55].The higher temperature has a positive ef-fect on the extraction and utilization of Al and Si in coal-based solid wastes,while the excessive temperature will re-duce the crystallinity of zeolites and promote the formation ofsodalite[47–48].The mechanism of coal-based solid wastes into zeolites bythe traditional hydrothermal crystallization has been system-atically studied.There are three steps in the traditional hydro-thermal crystallization of zeolite synthesized from coal-basedsolid wastes,dissolution,condensation,and crystallization[47,54]:(1)Si4+and Al3+in coal-based solid wastes are ex-tracted under the action of alkali,(2)silicate ions and alumin-ate ions in the alkali solution condense to form relativelyordered aluminosilicate gel,(3)aluminosilicate gel graduallytransforms into zeolite crystals and grows continuously.More stable phases are formed with further reaction at the ex-pense of the initial metastable phases.(2)Unconventional hydrothermal crystallization.In dynamic hydrothermal crystallization,agitation is ad-ded to the hydrothermal crystallization process.For example,Koukouzas et al.[56]conducted the crystalline reaction in adynamic stainless steel reactor.The mixed product containedvarious zeolites.Dynamic hydrothermal crystallization wasalso used by Xie et al.[57]to synthesize Na–P1 zeolite.Moreover,increasing the reaction temperature of dynamichydrothermal crystallization in a certain temperature range isconducive to the formation of zeolite for the synthesis of po-tassium-zeolite[58].Supercritical hydrothermal crystallization can synthesizezeolites with coal-based solid wastes as the raw material in avery short reaction stage at high temperature,which compre-hensively utilizes the properties of gas–liquid transport andlow surface tension of supercritical water.Wang et al.[59]synthesized zeolite from coal fly ash by supercritical hydro-thermal crystallization in only 5 min at 400°C.In the range of5–30 min,the increase of reaction time was beneficial to im-proving the stability of zeolite.Pure cancrinite zeolite wasmainly produced when the reaction time was less than 10min,while sodalite was mainly produced when the reactiontime was greater than 15 min.At 380–420°C,zeolite with thehighest crystallization degree was obtained at 400°C;however,the temperature had no effect on the type of zeolite.Low temperature hydrothermal crystallization is usuallycarried out at low temperatures and requires a very long crys-tallization time.Grela et al.[60]placed the initial mixture atroom temperature(21°C)for 30 d,and shook it every day.The obtained product contains 50wt%Na–X zeolites,and thespecific surface area was 213 m2·g−1.Gross-Lorgouilloux[61–62]synthesized Na–X zeolite at 30°C and atmosphericpressure.The addition of soluble silica can improve the con-version of coal fly ash(26wt%–27wt%,increased by approx-imately 5wt%)and the content of octahedral zeolite(approx-imately 30wt%rather than 20wt%–25wt%);however,theformation of octahedral zeolite will be delayed(approxim-ately 50 d instead of approximately 20 d).The whole syn-thesis process can be divided into 3 or 4 steps.(1)Coal flyash was dissolved to form amorphous aluminum silicate in-termediates rich in silicon(Si/Al≈2 or higher).(2)The silic-on in the coal fly ash continued to be dissolved and cause fur-ther precipitation of Al to form a locally ordered Al-rich area,and faujasite crystals gradual
不同的沸石具有不同的 SiO2/Al2O3 比率;因此,初始混合物中 SiO2/Al2O3 的比例会影响合成沸石的类型[46,53]。碱在煤基固体废物中 Si 和 Al 的溶解和沸石的形成中起着重要作用。OH− 有助于煤基固体废物的溶解,Na+ 是沸石结晶的主要因子,而 K+ 是沸石合成的抑制因子。此外,初始混合物的较高碱度有利于分子筛的合成,而过高的碱度会抑制分子筛的形成和生长[54–55]。较高的温度对煤基固废中Al和Si的提取和利用有积极影响,而过高的温度会重新降低沸石的结晶度并促进方钠石的形成[47–48]。系统研究了传统水热结晶将煤基固体废物转化为沸石的机理。以煤基固废合成的沸石传统水热结晶有三个步骤,溶解、缩合和结晶[47,54]:(1)煤基固废中的Si4+和Al3+在碱的作用下被抽出,(2)碱溶液中的硅酸根离子和含铝离子缩合形成相对有序的硅铝酸盐凝胶,(3)硅铝酸盐凝胶逐渐转化为沸石晶体并不断生长。在初始亚稳相的代价下,进一步反应会形成更稳定的相。(2)非常规水热结晶。在动态水热结晶中,搅拌与水热结晶过程相辅相成。例如,Koukouzas 等人。[56]在非动态不锈钢反应器中进行结晶反应。混合产品包含各种沸石。Xie 等人[57] 还使用动态水热结晶合成 Na-P1 沸石。此外,在一定温度范围内提高动态水热结晶的反应温度有利于形成沸石,用于合成 po-tassium-沸石[58]。超临界水热结晶可以以煤基固废为原料,在高温下以极短的反应阶段合成沸石,充分利用了超临界水的气液传递和低表面张力的特性。Wang 等[59]在 400°C.In 5–30 min 的范围内,通过超临界水热结晶从粉煤灰中合成沸石,反应时间的增加有利于提高沸石的稳定性。纯坎克林石沸石主要在反应时间小于 10 min 时产生,而方钠石主要在反应时间大于 15 min 时产生。在 380–420°C 时,在 400°C 下获得结晶度最高的沸石;然而,温度对沸石的种类没有影响。低温水热结晶通常在低温下进行,并且需要很长的晶隙结晶时间。Grela 等[60] 将初始混合物在室温 (21°C) 下放置 30 d,并每天摇动。所得产物含有 50wt%Na–X 分子筛,比表面积为 213 m2·g−1。Gross-Lorgouilloux[61–62] 在 30°C 和大气压下合成了 Na-X 沸石。可溶性二氧化硅的添加可以提高粉煤灰的含量(26wt%–27wt%,增加约5wt%)和八面体沸石的含量(约30wt%而不是20wt%–25wt%);然而,八面体沸石的形成会延迟(大约 50 d 而不是大约 20 d)。整个合成过程可以分为 3 或 4 个步骤。(1)煤粉煤灰溶解,在富含硅(Si/Al≈2 或更高)的中间体中形成无定形硅酸铝。(2)粉煤灰中的硅离子继续溶解,导致Al进一步沉淀,形成局部有序的富Al区,方铜矿晶体逐渐形成
ly formed as the Si/Al molar ra-tio approached 1.5.(3)The crystallization reaction was inmetastable equilibrium,and the concentration of Si and Al inthe mother liquor was nearly constant.(4)The faujasite phasewould gradually dissolve and recrystallize into Na–P1 zeolitewith less solubility(only occurred in the reaction systemwithout soluble silicon).Advantages and disadvantages:Hydrothermal crystalliza-tion is as simple as the synthesis process of zeolite from pureagents.However,hydrothermal crystallization requires along reaction time.Moreover,the yield and purity of synthet-ic zeolites are less,which contains unreacted coal-based sol-id wastes because the activity and utilization ratio of silicaand aluminum in coal-based solid wastes are insufficient.3.2.2.Hydrothermal crystallization with a structure-direct-ing agentStructure-directing agents include hydrated alkali cations(e.g.,Na+,K+),organic templates(e.g.,organic amines,qua-ternary ammonium cations),and zeolite seeds.These agentsact as a structure template,structure-direction,space-filling,and framework charge-balance,and have been widely used toimprove the synthesis process,and the properties of zeoliteproducts[65].Hydration alkali cations are essential for thebalance of skeleton charges during zeolite synthesis;thus theprimary distinction in the structure-oriented process is the useof an organic template agent or zeolite seed.(1)Hydrothermal crystallization with organic template.The organic template has a significant structural guidanceeffect when mixed with other materials for hydrothermalcrystallization.The organic template must be removed byhigh-temperature calcination after the synthesis processes ofzeolites;thus,pores with different structural characteristicscan be formed in zeolite products[66–67].A typical processof hydrothermal crystallization with organic templates isshown in Fig.5.The organic template was mainly used to synthesize nov-
当 Si/Al 摩尔 ra-tio 接近 1.5 时形成。(3)结晶反应为非偏稳态平衡,母液中 Si 和 Al 的浓度几乎恒定。(4)铝榴石相会逐渐溶解并重新结晶成溶解度较低的 Na-P1 沸石(仅发生在没有可溶性硅的反应体系中)。的优点和缺点:水热结晶就像用纯剂合成沸石的过程一样简单。然而,水热结晶需要一定的反应时间。3.2.2.用结构导向剂进行水热结晶结构导向剂包括水合碱阳离子(如Na+,K+)、有机模板(如有机胺、季铵阳离子)和沸石种子。这些试剂充当结构模板、结构方向、空间填充和框架电荷平衡,并已被广泛用于改进合成过程和沸石产品的性能[65]。水合碱阳离子对于沸石合成过程中骨架电荷的平衡至关重要;因此,结构导向工艺的主要区别在于使用有机模板剂或沸石种子。(1)用有机模板进行水热结晶。有机模板与其他材料混合进行水热结晶时具有显著的结构导向作用。沸石合成过程后必须通过高温煅烧去除有机模板;因此,分子筛产品中可以形成具有不同结构特征的孔隙[66–67]。使用有机模板进行水热结晶的典型过程如图 5 所示。有机模板主要用于合成 nov-
el zeolite from coal-based solid waste,e.g.,SSZ-13 zeolitecan be synthesized from coal gangue with N,N,N-trimethyl-adamantammonium hydroxide as a structure-directing agent[66],HMAS zeolite can be obtained from coal fly ash withthe addition of cetyltrimethylammonium bromide[67],andboth tetrapropylammonium hydroxide and tetrapylammoni-um bromide can be used as the organic template of ZSM-5zeolite[68–69].Additionally,the organic template removaltemperature is usually 550°C[67,69].The addition of an or-ganic template agent can also optimize the zeolitization pro-cess of coal-based solid wastes.Han et al.[66]found thatN,N,N-trimethyl-adamantammonium hydroxide acceleratedthe formation of[AlO4]and SSZ-13 zeolite.Advantages and disadvantages:Specific zeolites with highpurity can be synthesized by hydrothermal crystallizationwith organic templates.However,the price of organic tem-plates is relatively high.Organic templates need to be re-moved by high temperature calcination after the synthesisprocesses of zeolites,which results in the production of toxicorganic pollutant gases.(2)Hydrothermal crystallization with zeolite seed.In this method,the mixture of zeolite seed and other ma-terials is used for hydrothermal crystallization,and then thezeolite product is obtained by filtration,washing,and drying.Zeolite seeds can induce the formation and efficient growthof target zeolite,and both the powder and precursory gel oftarget zeolite can be used as zeolite seed[15,70].A typicalprocess of hydrothermal crystallization with zeolite seed isshown in Fig.6.Cardoso et al.[15]synthesized Na–P1 zeolite from coalfly ash with pure Na–P1 zeolite as the crystallization seed.The yield of zeolite increased by 9wt%(from 60wt%to69wt%)after adding 4wt%pure Na–P1 zeolite;however,thehigher seed addition(8wt%)had no further effect on theformation of zeolite.In the synthesis process of Na–Y zeolitefrom coal fly ash,Ren et al.[70]added the seed guide liquid(molar composition:14Na2O:Al2O3:14SiO2:280H2O)intothe raw material of zeolitization.The synthesized single-phase submicron Na–Y zeolite showed ultrafine pure phaseand good thermal stability.
煤基固废物中含有沸石,例如SSZ-13分子筛可由煤矸石合成,以N,N,N-三甲基金刚烷铵为结构导向剂[66],添加十六烷基三甲基溴化铵可由煤粉煤灰合成HMAS分子筛[67],四丙基氢氧化铵和四吡铵-溴化um 均可用作ZSM-5分子筛的有机模板[68–69]。此外,有机模板去除温度通常为 550°C[67,69]。添加 or-ganic 模板剂还可以优化煤基固体废物的沸石化过程。Han 等[66]发现 N,N,N-三甲基氢氧化金正铵加速了 [AlO4] 和 SSZ-13 分子筛的形成。优缺点:用有机模板水热结晶可合成高纯度的特异性分子筛。然而,有机 tem 板的价格相对较高。有机模板在沸石合成过程后需要通过高温煅烧重新移动,导致有毒有机污染物气体的产生。(2)用沸石晶种进行水热结晶。该方法采用沸石种子和其他马的混合物进行水热结晶,然后经过滤、洗涤、干燥得到沸石产品。沸石种子可以诱导目标沸石的形成和高效生长,目标沸石的粉末和前驱体凝胶都可以用作沸石种子[15,70]。用沸石种子进行水热结晶的典型过程如图 6 所示.Cardoso 等人[15] 用纯 Na-P1 沸石作为结晶种子,从粉煤灰合成 Na-P1 沸石。添加 4wt%纯 Na–P1 沸石后,沸石收率增加了 9wt%(从 60wt%增加到 69wt%);然而,较高的晶种添加量 (8wt%) 对沸石的形成没有进一步的影响。在粉煤灰合成Na-Y沸石的过程中,任等[70]在沸石原料中加入了导晶液(摩尔成分:14Na2O:Al2O3:14SiO2:280H2O)。合成的单相亚微米 Na-Y 分子筛表现出超细纯相和良好的热稳定性。

Advantages and disadvantages:Zeolite seed can inducethe order of silicon–aluminum gel,promote the formationand growth of target zeolite,reduce the crystallization time,and increase the crystallinity of the product.Hydrothermalcrystallization with zeolite seed can avoid the use of the or-ganic template;however,not all zeolites with known skelet-on structures can be synthesized by this method.Moreover,the effect of zeolite seed is limited when coal-based solidwaste is not fully activated.3.2.3.Alkaline fusion-assisted hydrothermal crystallizationAlkaline fusion-assisted hydrothermal crystallization(Fig.7)is used for calcining the mixture of coal-based solid wasteand alkali and then add water for hydrothermal crystalliza-tion.The synthetic conditions and properties of coal-basedsolid waste zeolites synthesized by alkaline fusion-assistedhydrothermal crystallization are presented in Table 4.In 1993,Shigemoto et al.[71]reported the synthesis ofNa–X zeolite from two different coal fly ashes by fusing withNaOH before hydrothermal crystallization.Thereafter,re-searchers[72–73]obtained Na–A,Na–X,Na–Y,and Na–Pzeolite derived from high-silicon coal fly ash.Medina et al.[74]reported the synthesis of W zeolite(89wt%,fine needle)from Mexican high-activity coal fly ash.Sivalingam and Sen[40]obtained SSZ-31 zeolite with coal fly ash as raw material.Coal gangue can be used as the raw materials for the syn-thesis of zeolites by alkaline fusion-assisted hydrothermalcrystallization.Additionally,Ge et al.[75]synthesized Na–Xzeolite with physicochemical properties comparable to com-mercial Na–X zeolite from coal gangue.Qian and Li[26]re-ported the synthesis of Na–A zeolite from calcined coalgangue by a hydrothermal process after a NaOH-fusion treat-ment.The faujasite phase in the product of alkaline fusion-as-sisted hydrothermal crystallization was significantly en-hanced compared with hydrothermal crystallization.Belvisoet al.[76–77]obtained a product(a mixture of sodalite,Na–A,and Na–X zeolite)with Na–X zeolite as the maincrystalline phase using the alkaline fusion-assisted low tem-perature hydrothermal crystallization.Joseph et al.[78]alsoprepared the product with nearly pure phase faujasite,and themaximum specific surface area of the product was 432m2·g−1.
优缺点:沸石晶种可诱导硅-铝凝胶的有序,促进目标沸石的形成和生长,减少结晶时间,增加产品的结晶度。用沸石晶种进行水热结晶可以避免使用 or-ganic 模板;然而,并非所有具有已知骨架结构的沸石都可以用这种方法合成。3.2.3.碱性熔融辅助水热结晶碱性熔融辅助水热结晶(图 7)用于煅烧煤基固体废物与碱的混合物,然后加水进行水热结晶。1993 年,表 4.In 介绍了碱性熔融辅助水热结晶合成的煤基固体废物分子筛的合成条件和性质,Shigemoto 等人[71]报道了在水热结晶前与 NaOH 熔融从两种不同的飞煤灰中合成 Na-X 分子筛。此后,重新搜索者[72–73]从高硅粉煤灰中获得了 Na-A、Na-X、Na-Y 和 Na-Pzeolite 衍生的 Na-A、Na-X、Na-Y 和 Na-Pzeolite 来源。Medina 等[74]报道了从墨西哥高活性粉煤灰中合成 W 沸石(89wt%,细针)。Sivalingam 和 Sen[40] 以粉煤灰为原料获得了 SSZ-31 分子筛。煤矸石可用作碱性熔融辅助水热结晶合成沸石的原料。此外,Ge 等人[75] 合成了 Na-X沸石,其物理化学性质与煤脉石中的商用 Na-X 沸石相当。Qian 和 Li[26] 在 NaOH 熔融处理后通过水热法从煅烧煤矸石中合成 Na-A 沸石。与水热结晶相比,碱性熔融原样水热结晶产物中的方铜矿相显著增强。Belvisoet al.[76–77]使用碱性熔融辅助低温水热结晶获得了以 Na-X 分子筛为主晶相的产品(方石、Na-A 和 Na-X 沸石的混合物)。Joseph等[78]还制备了近纯相辉铜矿的产物,产物的最大比表面积为432m2·g−1。

Alkaline fusion in alkaline fusion-assisted hydrothermalcrystallization can promote the conversion of coal-based sol-id wastes into aluminosilicate,which is easily soluble in al-kaline solutions.Therefore,the solution with supersaturatedAl–Si can be produced rapidly in the hydrothermal crystal-lization stage,and zeolite with high crystallinity can beformed in a short time[36–37].The increase of alkali/coal-based solid waste weight ratios was conducive to the decom-position of coal-based solid wastes,and the increase of alka-linity in the hydrothermal reaction and zeolite quality[36–37,40,71].However,the higher ratio of alkali results inthe formation of stable zeolites:sodalite and cancrinite[79].The activation of silicon and aluminum in coal-based solidwastes and zeolites with higher crystalline can be obtainedwith the synergism of NaOH and Na2CO3[80].The yield andcrystallinity of zeolites increased with the fusion temperature,while a mass of sintered glassy aggregate was formed whenthe fusion temperature was too high,which had a negativeimpact on the synthesis of zeolites[36,71].The type of syn-thetic zeolite was also affected by alkali fusion temperature,Na–X zeolite(metastable phase)was produced first andstable zeolites are produced at higher temperatures[25].Inaddition,an increase in fusion time can lead to a higher de-composition of coal-based solid wastes[37].The parameters of hydrothermal crystallization also signi-ficantly affect the synthesis of zeolites.The type and crys-tallinity of zeolite were affected by the ratio of Si/Al,whichcan be adjusted by the addition of aluminum[25,72].Com-pared with Al(OH)3,AlCl3·6H2O,Al(NO3)3·9H2O,andAlF3·3H2O,the addition of NaAlO2 results in better crystal-lization performance of zeolites(enough Na+was provided atthe same time)[32].Moreover,alumina-rich coal-based sol-id wastes can be crystallized into Na–A zeolite rather thanNa–X zeolite[71].Similar to hydrothermal crystallization,the time,temperature,and alkalinity of the hydrothermalstage in alkaline fusion-assisted hydrothermal crystallizationplay an important role in the type and properties of zeolite[36,79].Advantages and disadvantages:Alkali fusion-assisted hy-drothermal crystallization can realize the efficient activationof coal-based solid wastes,and zeolites with high conversionand purity can be obtained.However,alkaline fusion treat-ment can also be regarded as a deficiency of this method be-cause the high temperature required for fusion increases thecost.3.2.4.Ultrasonic-assisted hydrothermal crystallizationIn the ultrasonic-assisted hydrothermal crystallizationmethod,ultrasonic irradiation is used in the hydrothermalcrystallization stage of zeolite.Ultrasonic treatment can formacoustic cavitation in liquid,which accelerates the dissolu-tion of coal-based solid wastes,leading to the hydrolysispolymerization of silicon and aluminum,increasing the nuc-leation rate of zeolites,and shortens the synthesis time ofzeolites(acoustic cavitation may lead to nucleation sites sim-ilar to surface imperfections)[87].A typical process of ultra-sonic-assisted hydrothermal crystallization is shown in Fig.8.
碱性熔融辅助水热结晶中的碱性熔融可促进煤基溶胶-id 废物转化为铝硅酸盐,易溶于烷-碱溶液。因此,在水热结晶阶段可以快速生成过饱和 Al-Si 的溶液,并且可以在短时间内形成高结晶度的沸石[36\u201237]。碱/煤基固废重量比的增加有利于煤基固废的分解位置,以及水热反应中碱化度的增加和沸石质量的增加[36–37,40,71]。然而,较高的碱比例导致形成稳定的沸石:方钠石和斜钠石[79]。在 NaOH 和 Na2CO3 的协同作用下,可以获得具有较高结晶度的煤基固体废物和沸石中硅和铝的活化[80]。沸石的产率和结晶度随熔融温度的增加而增加,而当熔融温度过高时会形成大量烧结玻璃状聚集体,这对沸石的合成产生了负面影响[36,71]。合成分子筛的类型也受碱熔温度的影响,首先产生 Na-X 分子筛(介稳相),在较高温度下产生稳定的分子筛[25]。此外,熔融时间的增加会导致煤基固体废物的分解速度更高[37]。水热结晶的参数也对沸石的合成产生重大影响。沸石的类型和晶粒-塔尔度受 Si/Al 比的影响,可以通过添加铝来调节[25,72]。与Al(OH)3、AlCl3·6H2O、Al(NO3)3·9H2O和AlF3·3H2O相比,NaAlO2的加入使沸石的晶体化性能更好(同时提供了足够的Na+)[32]。此外,富含氧化铝的煤基溶胶-id 废物可以结晶成 Na-A 分子筛,而不是 Na-X 分子筛[71]。与水热结晶类似,碱性熔融辅助水热结晶中热液阶段的时间、温度和碱度对分子筛的类型和性能起着重要作用[36,79]。优缺点:碱熔辅助 hy-drothermal 结晶可实现煤基固废的高效活化,可获得高转化率和高纯度的沸石。然而,碱熔处理也可以被认为是这种方法的不足——因为熔融所需的高温增加了成本.3.2.4.超声波辅助水热结晶在超声波辅助水热结晶法中,超声波照射用于沸石的水热结晶阶段。超声处理可在液体中形成声空化,加速煤基固体废物的溶解,导致硅和铝的水解聚合,提高沸石的成核速率,缩短沸石的合成时间(声空化可能导致成核位点与表面缺陷相似)[87]。超声波辅助水热结晶的典型过程如图 8 所示。

Generally,ultrasonic treatment expedites the formation ofzeolite and produces zeolite with a small size,high phasepurity,and high crystallinity at low temperatures[88–89].However,some researchers believed that zeolite could notbe synthesized if the hydrothermal crystallization processwas performed after ultrasonic treatment directly.Aldahriet al.[90]mixed coal fly ash with a NaOH solution to syn-thesize zeolite under conventional heating and ultrasonic ra-diation(125 W,20 kHz).According to the study,conven-tional heating was performed after ultrasonic irradiation,“early sonication,”the dissolution of coal fly ash was en-hanced while the zeolitization of amorphous silicon alumin-um gel intermediate was inhibited.In the“late sonication,”conventional heating followed by ultrasonic irradiation,thecavitation phenomenon of ultrasonic treatment acceleratedthe crystallization rate of zeolite,and the zeolite phase wassignificantly enhanced.Finally,the product with Na–Pzeolite as the main crystalline phase was synthesized after 1 hof conventional heating and 3 h of ultrasonic treatment.Toavoid the adverse effects of“early sonication,”Boychevaet al.[91]put the mixture after 15 min ultrasonic treatment atroom temperature for 4 h before hydrothermal crystallization,and a Na–X zeolite product with a yield of nearly 90wt%wasobtained.Belviso[16]revealed the mechanism difference betweenconventional hydrothermal crystallization and hydrothermalcrystallization with complete ultrasonic.Ultrasonic treat-ment promoted the dissolution of aluminosilicate and theformation of Al–Si supersaturated solution.Under the actionof ultrasonic,Na–A zeolite and faujasite(metastable phases)were formed and converted into sodalite(stable phase)in ashort time.In conventional hydrothermal crystallization,thecrystallization process and the conversion rate of Na–Azeolite and faujasite into sodalite were slow.Advantages and disadvantages:Ultrasonic-assisted hydro-thermal crystallization can reduce the synthesis time ofzeolite,improve the physicochemical properties of zeoliteproducts,and reduce energy consumption.However,ultra-sonic treatment may only promote the dissolution of theamorphous phase in coal-based solid wastes rather than thecrystalline phase.The mechanism of ultrasonic-assisted hy-drothermal crystallization is still not clear.3.2.5.Microwave-assisted hydrothermal crystallizationThe electromagnetic spectrum of the microwave is loc-ated between infrared waves and radio waves.The frequencyused in the experiment is usually 2450±15 MHz,which iswhy the microwave energy absorbed by liquid water is max-imal at this frequency.The unique heating mode(the interac-tions of polar molecules and ions with electromagnetic fields)makes the heating rate and uniformity of microwave heatingare better than that of conventional heating[29].A typical process of microwave-assisted hydrothermalcrystallization is shown in Fig.9.Microwave-assisted heat-ing is used in the hydrothermal crystallization phase to im-prove the zeolitization reaction of coal-based solid waste.In 1997,Querol et al.[92]conducted a comparative studyon traditional hydrothermal crystallization and hydrothermalcrystallization with microwave heating.The alkaline solu-
通常,超声处理会加速分子筛的形成,并在低温下生产出体积小、相纯度高、结晶度高的分子筛[88–89]。然而,一些研究人员认为,如果直接在超声处理后进行水热结晶过程,则无法合成沸石。Aldahriet al.[90]混合煤粉煤灰与 NaOH 溶液在常规加热和超声射线调节 (125 W,20 kHz) 下合成沸石。根据该研究,超声照射后进行召集加热,“早期超声处理”,加强了粉煤灰的溶解,同时抑制了非晶硅铝-um 凝胶中间体的沸石化。在“后期超声处理”中,常规加热后超声照射,超声处理的空化现象加速了沸石的结晶速率,沸石相明显增强。最后,经过 1 h的常规加热和 3 h 的超声处理,合成了以 Na-Pzeolite 为主晶相的产品。为避免“早期超声处理”的不利影响,Boychevaet 等[91]将混合物在室温下超声处理 15 min 后放置 4 h 后再进行水热结晶,得到收率接近 90wt% 的 Na-X 分子筛产品。Belviso[16] 揭示了常规水热结晶和完全超声水热结晶之间的机理差异。超声处理促进了铝硅酸盐的溶解和 Al-Si 过饱和溶液的形成。在超声波作用下,Na-A 沸石和方镁矿(亚稳相)形成并在短时间内转化为方钠石(稳相)。在常规水热结晶中,结晶过程以及 Na–Azeolite 和 faujastone 向方钠石的转化率较慢。优缺点:超声波辅助水热结晶可缩短沸石的合成时间,改善沸石制品的物理化学性质,降低能耗。然而,超声处理可能只会促进茶晶相在煤基固体废物中的溶解,而不是结晶相的溶解。3.2.5.微波辅助水热结晶微波的电磁波谱位于红外波和无线电波之间。实验中使用的频率通常为 2450±15 MHz,这就是为什么液态水吸收的微波能量在这个频率下是最大的。独特的加热方式(极性分子和离子与电磁场的相互作用)使微波加热的加热速率和均匀性优于常规加热[29]。微波辅助水热结晶的典型过程如图 9 所示,在水热结晶阶段使用微波辅助加热来改进煤基固体废物的沸石化反应。1997 年,Querol 等[92]对传统水热结晶和微波加热水热结晶进行了比较研究。碱性溶液
tion and coal fly ash were mixed into a 500 mL autoclave-type reactor,and the zeolites(Na–P1,hydroxysodalite,hy-droxycancrinite,analcime,tobermorite,nepheline hydrate,FLinde zeolite,kalsilite,and phillipsite-KM zeolite)were syn-thesized under microwave heating(MLS-1200MEGA)ortraditional heating.The microwave accelerated the dissolu-tion of silicon and aluminum and drastically reduced the re-quired activation time(from 24–48 h to 30 min)with respectto the conventional heating method.Thereafter,Na–A zeolitewas also synthesized from coal-based solid waste in a shorttime under complete microwave heating[93].Studies have demonstrated that the combination of con-ventional heating and microwave heating had a positive ef-fect on the synthesis of zeolites.More importantly,“zeolites(Na–A zeolite,Na–P,and Na–P1 zeolite)cannot be synthes-ized by microwave heating alone.”Inada et al.[94]mixedcoal fly ash with NaOH solution and then crystallized for 2 hin oil bath heating,microwave radiation,or both alternately.The combination of microwave heating(first)and conven-tional heating(second)could promote the conversion of coalfly ash into Na–P1 zeolite,and the best Na–P1 zeolite wasobtained by microwave irradiation for 15 min and then con-ventional heating for 105 min.The Na–P1 zeolite could notbe synthesized by microwave heating alone(only amorph-ous precipitation of aluminosilicate gel).Kim and Lee[95]found that conventional hydrothermal(1 h)followed by mi-crowave heating(1 h)had a positive effect on the synthesis of4A zeolite.Moreover,sodalite rather than 4A zeolite wassynthesized in a hydrothermal crystallization process withonly microwave heating.The positive effects of microwave treatment are related tothe type of target zeolite and synthesis process.Additionally,complete microwave treatment is not conducive to the syn-thesis of metastable coal-based solid waste zeolites.However,complete microwave irradiation is favorable forthe synthesis of sodalite and phillipsite[93].Advantages and disadvantages:In microwave-assisted hy-drothermal crystallization,the unique heating mode makesthe heating rate and uniformity of microwave heating betterthan that of conventional heating.Apparently,simple mi-crowave radiation can effectively improve the solubility ofcoal-based solid wastes and the zeolitization processes,suchthat the high purity zeolite products can be obtained quickly.However,this method also has some controversy in its ap-plication,and large-scale industrial application is lacking.3.2.6.Two-step methodThe two-step method(Fig.10)is based on the traditionalone-step method(i.e.,hydrothermal synthesis).The tradi-tional one-step method combines the alkali-soluble processof coal-based solid wastes with the crystallization process ofsilicon-aluminum gel,while the two-step method separatesthe alkali-soluble process from the crystallization process.Inthis method,silicon or/and aluminum in coal-based solidwaste are extracted into the filtrate,and then the filtrate with aregulated Si/Al ratio is used as the raw material for hydro-thermal crystallization.
将沸石和粉煤灰混合到500 mL高压釜式反应器中,在微波加热(MLS-1200MEGA)或传统加热下合成沸石(Na–P1、羟基钠石、氢晶石、酸钙石、酸钙石、酸钙石、霞石水合物、锭石-KM沸石)。与传统加热方法相比,微波加速了硅和铝的解解,并大大缩短了所需的活化时间(从 24-48 h 到 30 min)。此后,在完全微波加热下,还从煤基固体废物中短时间内合成了 Na-A 沸石[93]。研究表明,传统加热和微波加热的结合对沸石的合成产生了积极影响。更重要的是,“沸石(Na-A 沸石、Na-P 和 Na-P1 沸石)不能仅通过微波加热合成。Inada 等[94]将煤粉煤灰与 NaOH 溶液混合,然后结晶进行 2 hin 油浴加热、微波辐射或两者交替进行。微波加热(第一次)和二次加热(第二次)相结合可以促进煤粉煤灰转化为 Na–P1 分子筛,通过微波照射 15 min,然后加热 105 min,得到最好的 Na–P1 分子筛。Na-P1 分子筛不能单独通过微波加热合成(只能用铝硅酸盐凝胶的无定形沉淀)。Kim 和 Lee[95] 发现常规水热(1 h)后 mi-crowave 加热(1 h)对 4A 分子筛的合成有积极影响。此外,方钠石而不是 4A 沸石是在水热结晶过程中仅用微波加热合成的。微波处理的积极效果与目标沸石的类型和合成工艺有关。此外,完全微波处理不利于亚稳态煤基固体废物分子筛的合成。然而,完全微波照射有利于方钠石和十字石的合成[93]。优缺点:在微波辅助 hy-drothermal 结晶中,独特的加热方式使微波加热的加热速率和均匀性优于常规加热。显然,简单的微波辐射可以有效提高煤基固体废物的溶解度和沸石化过程,从而快速获得高纯度的沸石产品。然而,该方法在应用上也存在一些争议,缺乏大规模的工业应用.3.2.6.两步法(图10)是在传统的一步法(即水热合成)的基础上进行的。传统的一步法将煤基固体废物的碱溶过程与硅铝凝胶的结晶过程相结合,而两步法将碱溶过程与结晶过程分开。该方法将煤基固体废物中的硅或/和铝提取到滤液中,然后将 Si/Al 比例失调的滤液作为水热结晶的原料。
(1)Alkali dissolution extraction–hydrothermal crystalliz-ation.Alkali dissolution–hydrothermal crystallization is themost common two-step method,which extracts silicon andaluminum from coal-based solid wastes through the alkalidissolution process.In 1999,Hollman et al.[96]synthesized zeolites from coalfly ash by a two-step method,which includes alkali dissolu-tion and hydrothermal crystallization.Na–P1 zeolite andNa–X zeolite were synthesized with a purity of more than95wt%,and Na–A zeolite product containing partial sodaliteand amorphous materials was also prepared.Alternatively,the Na–P1 zeolite obtained by conventional hydrothermalcrystallization was only(40–45)wt%.In the work of Tanakaet al.[97],approximately 77wt%of amorphous SiO2 and41wt%of amorphous Al2O3 in coal fly ash were dissolved inthe solution by alkali dissolution extraction,and a single-phase Na–A zeolite was eventually obtained by hydrothermalcrystallization.Many countermeasures have been adopted to improve thedissolution of coal-based solid wastes,and a high utilizationrate of coal-based solid wastes had been achieved by stirring[98],microwave[99],regulation of crystallization temperature[100],or integrated conversion[101]in the two-step process.(2)Alkali fusion extraction–hydrothermal crystallization.Alkali fusion extraction–hydrothermal crystallization issimilar to alkaline fusion-assisted hydrothermal crystalliza-tionn;however,the slurry of alkaline fusion product in thetwo-step method is filtered,and only the filtrate is used tosynthesize zeolite.El-Naggar et al.[102]shook the alkali fusion product ofcoal fly ash and NaOH with deionized water,followed by afiltration process to obtain the filtrate containing silicon andaluminum.A blend of 4A and Na–X zeolite was prepared byhydrothermal crystallization.Bukhari et al.[103]performedultrasonic treatment in the hydrothermal crystallization stageof the two-step method,and a pure single-phase of A zeolitewith small size and high crystallinity was obtained.(3)Fractional extraction–hydrothermal crystallization.Fractional extraction can make full use of silicon and alu-minum in coal-based solid wastes;however,acid needs to beused in the process.Zhang et al.[104]used the stage treat-ment method in the extraction;silicon and aluminum wereextracted from coal fly ash successively.After alkali fusion(calcined at 800°C for 3 h,mass ratio of coal fly ash/Na2CO3is 1:1)and acid treatment(coal fly ash/HCl(3 mol·L−1)=1 g:10 mL),91.4wt%Si and 90.2wt%Al were extracted.Sub-sequently,Na–P zeolites with purity and yield of 90.57wt%,87.82wt%and 96.66wt%,94.24wt%were synthesized byhydrothermal crystallization with NaOH and NaBr as the so-dium sources,respectively.Advantages and disadvantages:In terms of improvingproduct purity,the two-step method may be more advantage-ous because it avoids the components other than silicon andaluminum in coal-based solid waste from participating in thezeolitization process.However,its process is complex andtime-consuming,and silicon and aluminum cannot be com-pletely extracted.Therefore,the utilization ratio of coal-based solid waste is low,and secondary solid waste andacid/alkali waste liquid may even be generated.3.2.7.Molten-salt methodIn the molten-salt method,the mixture of coal-based solidwaste,alkali,and salt is directly crystallized to form zeoliteunder the high temperature of salt melting and water is notused in the whole process.A typical process of the molten-salt method is shown in Fig.11.
(1)碱溶萃取 - 水热结晶。碱溶-水热结晶是最常见的两步法,通过碱溶工艺从煤基固体废物中提取硅和铝。1999 年,Hollman 等[96]用碱解和水热结晶两步法从煤粉灰中合成沸石。合成了纯度超过 95wt% 的 Na-P1 分子筛和 Na-X 分子筛,还制备了含有部分方钠石和非晶材料的 Na-A 分子筛产品。或者,通过常规水热结晶获得的 Na–P1 分子筛仅为 (40–45)wt%。在 Tanakaet al.[97] 的工作中,粉煤灰中约 77wt% 的无定形 SiO2 和 41wt%的无定形 Al2O3 通过碱溶萃取溶解在溶液中,最终通过水热结晶得到单相 Na-A 沸石。目前已采取许多对策来改善煤基固废的溶解性,通过搅拌[98]、微波[99]、调节结晶温度[100]或集成转化[101]两步法实现了煤基固废的高利用率。(2)碱熔萃取 - 水热结晶。碱熔萃取-水热结晶类似于碱熔融辅助水热结晶-tionn;但两步法中碱性熔融产物的浆料经过过滤,只用滤液合成沸石。El-Naggar 等[102]将粉煤灰和 NaOH 的碱熔融产物与去离子水摇动,然后进行过滤工艺,得到含硅和铝的滤液。通过水热结晶制备了 4A 和 Na-X 沸石的混合物。Bukhari 等[103]在两步法的水热结晶阶段进行了超声处理,获得了体积小、结晶度高的纯单相 A 沸石。(3)分馏萃取 - 水热结晶。分馏萃取可以充分利用煤基固废中的硅和铝渣;但是,在此过程中需要使用酸。Zhang 等[104]在提取中使用了阶段处理法;先后从粉煤灰中提取硅和铝。碱熔(800°C煅烧3 h,粉煤灰/Na2CO3质量比为1:1)和酸处理后(粉煤灰/HCl(3 mol·L−1)=1 g:10 mL),提取出 91.4wt%Si 和 90.2wt%Al。随后,以 NaOH 和 NaBr 为钠源,通过水热结晶分别合成了纯度和产率分别为 90.57wt%、87.82wt% 和 96.66wt%、94.24wt% 的 Na–P 分子筛。优缺点:在提高产品纯度方面,两步法可能更具优势,因为它避免了煤基固废中除硅和铝以外的成分参与沸石化过程。然而,其工艺复杂且耗时长,且无法完全提取硅和铝。因此,煤基固体废物的利用率低,甚至可能产生二次固体废物和酸/碱废液.3.2.7.熔盐法在熔盐法中,煤基固体废物、碱和盐的混合物在盐熔化的高温下直接结晶形成沸石,整个过程不使用水。熔盐法的典型过程如图 11 所示。
Park et al.[105–106]established a molten-salt method forthe synthesis of zeolite from coal-based solid wastes by fus-ing the mixture of coal fly ash with salt(KNO3,NaNO3,orNH4NO3)and alkali(KOH,NaOH,or NH4F)without water.During the synthesis process,molten hydroxide(NaOH)ac-ted as a mineralizer and structural stabilizer,while molten-salt species(NaNO3 or KNO3)seemed to act as a solvent andstructural stabilizer.The results also proved that the zeolitiz-ation ability of Na+was greater than that of K+,which may beattributed to the higher reactivity of smaller cations with rawmaterials,so the products of the NaOH–NaNO3 systemshowed better crystallinity than that of the NaOH–KNO3 sys-tem.Advantages and disadvantages:The process of the mol-ten-salt method has not been significantly explored.In thismethod,the water needed in the crystallization process can beeliminated,so the generation of alkaline liquid waste can beavoided,which may be extremely important for the utiliza-tion of coal-based solid waste in water-scarce areas.However,the conversion rate of coal-based solid waste tozeolite is low,and the morphology of zeolite product is irreg-ular because of insufficient contact of components in thecrystallization process.Moreover,the long-term mainten-ance of high temperatures increases the cost of energy con-sumption.3.2.8.Solvent-free methodThe solvent-free method(Fig.12)is a method of synthet-ic zeolite without water.Unlike the molten-salt method,thesolvent-free method does not require various salts that can beused as a“solvent,”as well as high-temperature calcination.
Park 等[105–106]建立了一种熔盐方法,通过将粉煤灰与盐(KNO3、NaNO3 或 NH4NO3)和碱(KOH、NaOH 或 NH4F)的混合物在没有水的情况下合成沸石。在合成过程中,熔融氢氧化物 (NaOH) 用作矿化剂和结构稳定剂,而熔盐种类 (NaNO3 或 KNO3) 似乎充当溶剂和结构稳定剂。结果还证明,Na+ 的沸石化能力大于 K+,这可能是由于较小的阳离子与原料的反应性较高,因此 NaOH-NaNO3 体系的产物表现出比 NaOH-KNO3 体系更好的结晶度。优点和缺点:mol-ten-salt 法的工艺尚未得到显著探索。该方法可以消除结晶过程中所需的水,从而避免碱性废液的产生,这对于缺水地区煤基固废的利用可能极为重要。然而,煤基固体废弃物陶沸石的转化率较低,并且由于结晶过程中成分接触不足,沸石产物的形貌不规则。此外,高温的长期维持增加了能源消耗成本.3.2.8.无溶剂法无溶剂法(图 12)是一种不含水的合成沸石的方法。与熔盐法不同,无溶剂法不需要可用作“溶剂”的各种盐,也不需要高温煅烧。
Liu et al.[107]synthesized Na–P1 zeolite without addingany NaOH and water.2 g of calcined coal fly ash and 3 gNa2SiO3·9H2O were mixed and ground for 10 min.The mix-ture was sealed in a Teflon-lined autoclave and cured in anoven at 80°C for 12–96 h.The synthesized product containsimpurities such as quartz,mullite,and anatase.Advantages and disadvantages:The solvent-free methodis similar to the molten-salt method;however,the formeravoids the use of salt and high-temperature calcination,which is a more energy-saving and low-cost method forzeolite synthesis.However,the activation degree and utiliza-tion rate of coal-based solid waste are low,as well as the con-version rate and purity of zeolite.4.Application of synthetic zeolitesCoal-based solid waste zeolite has excellent adsorptioncapacity,ion exchange capacity,specific surface area,andpore structure.Theoretically,coal-based solid waste zeolitescan be used in all application fields of commercial zeolites,and each kind of zeolite can be used in different fields.However,the low Si/Al ratio of zeolites(e.g.,Na–X,Na–Y,Na–A,Na–P1 zeolite,etc.)result in high CEC.Thesezeolites have a high potential for applications that requirestrong ion exchange capacity(e.g.,removal of heavy metalions in water and soil,application as the carrier of catalystand antimicrobial,etc.)[21,24].Zeolites with a high Si/Al ra-tio(e.g.,ZSM-series zeolites)have extraordinary lipophilicability,thermal and acid stabilities,resulting in prominent ad-vantages in some organic catalytic conversion processes[108].Another interesting point is the aperture effects ofzeolite ion exchange and adsorption capability,and only tar-get particles with a diameter smaller than zeolite aperture canenter into zeolite pores.Therefore,X zeolite with a largeaperture(0.73 nm)and high CEC(500 mmol·100 g−1)hasbeen widely used in fields involving adsorption and ion ex-change,while the pore size of sodalite(0.23 nm)limits its ap-plication[24].This section will focus on the application of coal-basedsolid waste zeolites in environmental pollution remediation,chemo-catalytic conversion,and energy storage materials.4.1.Water pollution remediationExtensive investigations concerning the application ofcoal-based solid waste zeolites in the field of water pollutionremediation have been conducted.Most of the research hasbeen conducted under laboratory conditions with the use ofactual waste liquids or simulated solutions containing specif-ic pollutants.Table 5 reports the comparison of water pollut-ant adsorptions on coal-based solid waste zeolites.4.1.1.Removal of heavy metalsHeavy metals can pose serious environmental problemsand the death of beneficial microorganisms.Heavy metalscan also accumulate in organisms because of their non-bio-degradability,resulting in disease and disorders[109].Syn-thesized zeolites from coal-based solid wastes have beenused to remediate heavy metal-contaminated water bodies.Coal gangue zeolites and coal fly ash zeolites are effectivein removing heavy metal ions from various simulatedwastewater.Ge et al.[75]treated Pb2+wastewater with Na–Xzeolite synthesized from coal gangue.Under optimized con-ditions,the maximum adsorption capacity of the syntheticzeolite for Pb2+was 457 mg·g−1,which was greater thanmany natural zeolites and synthetic zeolites.Chen and Lu[83]synthesized Na–X zeolite with Cd2+adsorption capacityfrom coal gangue,and the maximum adsorption capacity was38.61 mg·g−1.Lu et al.[110]used coal gangue zeolite to ad-sorb Cu2+and Co2+from simulated wastewater,with maxim-um adsorption capacities of 45.05 and 44.53 mg·g−1,respect-ively.Researchers[111–112]demonstrated that under thesynergistic effect of zeolite and non-zeolite components(Ca,Fe2O3),the adsorption capacity of coal fly ash zeoliteproducts containing Na–P1 zeolite(20–50)wt%to Cr3+was22.29–99.91 mg·g−1.Nascimento et al.[113]observed thatthe adsorption priority order of coal fly ash zeolite for metalions was Pb2+>Cu2+>Zn2+>Mn2+.Moreover,coal fly ashzeolite can be used to treat solutions with bi-and fi
Liu 等[107]合成了 Na-P1 分子筛,不添加任何 NaOH 和水,将 2 g 煅烧煤粉煤灰和 3 gNa2SiO3·9H2O 混合并研磨 10 min。将混合物密封在衬有特氟龙的高压釜中,并在 80°C 的低温下固化 12-96 小时,合成产物含有石英、莫来石和锐钛矿等杂质。优点和缺点:无溶剂法与熔盐法相似;但前者避免了使用盐和高温煅烧,是一种更节能、成本更低的分子筛合成方法。4.合成固体废物的应用煤基固体废物分子筛具有优异的吸附能力、离子交换能力、比表面积和孔隙结构。理论上,煤基固废分子筛可以用于商业分子筛的所有应用领域,每种分子筛都可以用于不同的领域。然而,沸石的低 Si/Al 比率(例如,Na-X、Na-Y、Na-A、Na-P1 沸石等)导致高 CEC。这些沸石在需要强离子交换能力的应用(例如,去除水和土壤中的重金属、用作催化剂和抗菌剂的载体等)方面具有很高的潜力。[21,24].具有高 Si/Al ra-tio 的沸石(例如 ZSM 系列沸石)具有非凡的亲脂性、热稳定性和酸稳定性,因此在一些有机催化转化过程中具有突出的优势[108]。另一个有趣的点是沸石离子交换和吸附能力的孔径效应,只有直径小于沸石孔径的焦油颗粒才能进入沸石孔隙。因此,具有大孔径(0.73 nm)和高 CEC(500 mmol·100 g−1)已广泛应用于吸附和离子交换领域,而方石的孔径 (0.23 nm) 限制了其应用[24]。本节将重点介绍煤基固体废物分子筛在环境污染修复、化学催化转化和储能材料中的应用.4.1.水污染修复已经对煤基固体废物分子筛在水污染修复领域的应用进行了广泛的调查。大多数研究是在实验室条件下进行的,使用实际的废液或含有特定污染物的模拟溶液。表 5 报告了水污染物-蚂蚁吸附对煤基固体废物沸石的比较.4.1.1.去除重金属重金属会造成严重的环境问题和有益微生物的死亡。由于重金属扫描的非生物降解性,它们也会在生物体中积累,从而导致疾病和紊乱[109]。从煤基固体废物中合成的沸石已被用于修复受重金属污染的水体。煤矸石沸石和煤粉煤灰沸石可有效去除各种模拟废水中的重金属离子。Ge 等人[75]用煤脉石合成的 Na-Xzeolite 处理 Pb2+废水。在优化条件下,合成沸石对 Pb2+ 的最大吸附量为 457 mg·g−1,大于许多天然沸石和合成沸石。Chen 和 Lu[83] 从煤矸石中合成了具有 Cd2+ 吸附能力的 Na–X 分子筛,最大吸附容量为 38.61 mg·g−1。Lu 等[110]使用煤脉石分子筛吸附模拟废水中的 Cu2+ 和 Co2+,最大吸附容量为 45.05 和 44。53 mg·g−1,尊重。研究人员[111–112]证明,在沸石和非沸石组分(Ca,Fe2O3)的协同作用下,含有Na–P1沸石(20–50)wt%对Cr3+的粉煤灰沸石产品的吸附能力为22.29–99.91 mg·g−1。Nascimento 等[113]观察到粉煤灰沸石对金属离子的吸附优先顺序为 Pb2+>Cu2+>Zn2+>Mn2+。此外,粉煤砂石可用于处理含 Bi 和 Fi 的溶液
ve cations(Cd2+,Ni2+,Cu2+,Zn2+,Pb2+);however,competitive adsorp-tion exists among various heavy metal ions[114–115].Metal modification can improve the adsorption capacity ofcoal-based solid waste zeolites for heavy metals.Tauanovet al.[116]found that both coal fly ash zeolite and nano-sil-ver-impregnated zeolite can be used for the removal of Hg2+from wastewater;however,the latter can remove up to99wt%of Hg2+(the former was 89wt%).The Hg2+removalmechanism of nano-silver-impregnated zeolite involved ad-sorption,surface precipitation,and amalgamation.Generally,the pseudo-second-order kinetic model andLangmuir isotherm model can be used to describe the kinet-ics and thermodynamics of the adsorption process of heavymetal ions on coal-based solid waste zeolites,which are wellfitted with the dynamic and equilibrium data of adsorption,respectively[75,83,110].SO2−4In addition to the effective treatment of laboratory simu-lated wastewater,coal-based solid waste zeolites are applic-able to the actual treatment of acid mine drainage containing,Cd,Al,Fe,Ca,Mg,Zn,Mn,Ni,Cu,and As,as well aslignite mine drainage containing Cd,Cr,Cu,Ni,Pb,and Zn[15,101,117].4.1.2.Removal of organic dyesThe wastewater discharged from textile industries con-tains organic dyes with complex composition,high harmful-ness,and high biological toxicity.Textile wastewater pro-duces visual pollution and has a harmful effect on water eco-systems,as it reduces light permeability and further affectsthe photosynthesis of water bodies[118–119].The coal-based solid waste zeolites can absorb a variety oforganic dyes.Zhou et al.[50]absorbed 95.1wt%of rhodam-ine B from a simulated waste solution with hierarchical por-ous zeolite synthesized from coal gangue.Atun et al.[120]successfully used coal fly ash zeolite(blend of Na–X zeolite,Na–Y zeolite,Na–P1 zeolite,analcime,and sodalite)for theadsorption of basic cationic dyes(thionine and safranine T)from a waste solution.Sivalingam and Sen[121]used coalfly ash zeolite(Na–X zeolite)to adsorb crystal violet.Underoptimized conditions,the highest removal rate of crystal viol-et from waste solution was 99.52%.Moreover,the syntheticzeolite can be regenerated by acid elution and achieved mul-tiple recycling.The removal rate was still exceeding 90.00%after five regeneration cycles and nearly 85.00%after tenconsecutive cycles.4.1.3.Removal of organic compounds and inorganic anions
ve 阳离子(Cd2+,Ni2+,Cu2+,Zn2+,Pb2+);然而,各种重金属离子之间存在竞争性吸附[114–115]。金属改性可以提高煤基固废分子筛对重金属的吸附能力。Tauanovet 等[116]发现粉煤灰沸石和纳米硅浸渍沸石都可用于去除废水中的 Hg2+;而后者可以去除高达 99wt%的 Hg2+(前者为 89wt%)。纳米银浸渍分子筛的 Hg2+去除机制包括吸附、表面沉淀和汞齐。通常,准二级动力学模型和 Langmuir 等温线模型可用于描述重金属离子在煤基固废分子筛上吸附过程的运动学和热力学,分别与吸附的动力学和平衡数据拟合良好[75,83,110]。SO2−4煤基固体废物沸石除了能有效处理实验室模拟废水外,还可用于实际处理含有Cd、Al、Fe、Ca、Mg、Zn、Mn、Ni、Cu和As的酸性矿井排水,以及含有Cd、Cr、Cu、Ni、Pb和Zn的褐煤矿排水[15,101,117].4.1.2.去除有机染料纺织工业排放的废水含有成分复杂的有机染料,高有害性,高生物毒性。纺织废水会产生视觉污染,对水生态系统产生有害影响,因为它会降低透光性并进一步影响水体的光合作用[118–119]。煤基固体废物沸石可以吸收多种有机染料。周 等[50]从煤矸石合成的多级多孔沸石的模拟废液中吸收了 95.1wt%的罗丹碱 B。Atun 等人。[120]成功使用粉煤灰沸石(Na-X 沸石、Na-Y 沸石、Na-P1 沸石、酸钙和方钠石的混合物)吸附废液中的碱性阳离子染料(硫氨酸和黄氨酸 T)。Sivalingam 和 Sen[121] 使用煤粉灰沸石 (Na-X 沸石) 吸附结晶紫。在未优化条件下,废液中结晶紫 et 的去除率最高为 99.52%。此外,合成沸石可以通过酸洗脱再生并实现多循环利用。5 次再生循环后去除率仍超过 90.00%,连续 10 次循环后去除率接近 85.00%。去除有机化合物和无机阴离子
Urban sewage,landfill leachate,and aquaculturewastewater have a high content of organic pollutants and alarge number of inorganic anions such as nitrogen and phos-phorus.Organic pollutants can increase the chemical oxygendemand of water,resulting in organic water pollution[122].While nitrogen and phosphorus can pose eutrophication ofwater bodies and promote algae and aquatic organisms[123].Regarding the removal of organic compounds from wasteliquid,Bandura et al.[124]removed approximately 35wt%of benzene,55wt%of toluene,77wt%of o-xylene,and99wt%of p-xylene with coal fly ash-synthesized Na–P1zeolite(0.50 g zeolite,10 mL waste liquid,and approxim-ately 5 mg·L−1 of each compound).Szala et al.[52]usedhexadecyl trimethyl ammonium bromide(1.00 CEC dosage)modified coal fly ash-synthesized Na–P1 zeolite to adsorbbenzene,toluene,and p-xylene,with the maximum adsorp-tion of 485,854,and 587 mg·g−1,correspondingly.NH+4Coal-based solid waste zeolites have great application po-tentiality in the remediation of different kinds of wastewaterwith nitrogen and phosphorus.Juan et al.[125]used coal flyash zeolites(Na–P1 zeolite,K–F zeolite,or K–chabazite/K–phillipsite)to treat tertiary wastewater containing.The methods of a continuous stirring batch test withpowdered zeolites and fixed packed bed of granular zeolitesin the column were adopted,and the adsorption rate wereabout 80%and 70%,respectively.Chen et al.[126]used coalfly ash-synthetic Na–P1 zeolite to adsorb ammonium(N)andphosphate(P)in swine wastewater after anaerobic digestion.Eight grams of synthetic zeolite was used to treat 100 mLwastewater,resulting in the 95%removal rate of N(reducedto 31.8 mg·L–1)and 98wt%removal rate of P(reduced to0.440 mg·L−1).Luna et al.[127]employed the coal fly ashzeolite consisting of Na–P1 zeolite,analcime,and chabaziteas an auxiliary agent for landfill leachate treatment.53wt%ammonium,82wt%suspended solids,and 43wt%chemicaloxygen demand could be reduced when used with coagulantand flocculant.4.2.Air pollution remediationClimate warming and air pollution have become globalproblems.Typical greenhouse gases and air pollutants in-clude volatile organic compounds(VOCs),CO2,NOx,andSOx[133].Coal-based solid waste zeolites or modifiedproducts enable the capture or catalytic degradation of VOCs,CO2,and NOx under various conditions.Verrecchia et al.[79]synthesized Na–X zeolite with aspecific surface area greater than 498 m2·g−1 from coal flyash.The adsorption capacity for CO2 was 330 mmol·100g−1,which was equivalent to 86mol%of commercial 13X.TheETS-10 zeolite obtained by Wang et al.[134]still main-tained an excellent CO2 absorption rate of 81 mmol·100 g−1 at323 K in the presence of water vapor.In addition,the adsorp-tion mechanism of CO2 on different zeolites may be phys-isorption or/and chemisorption[135],and the electrostaticbehavior and acid-base interaction of cations in zeolites canimprove their adsorption capacity for CO2[136].Ściubidło et al.[137]obtained the Na–X zeolite derivedfrom coal fly ash with maximum NO2 adsorption of 44.7mg·g−1,and the spent adsorbents could be regenerated byheating at 100°C.From coal fly ash,Li et al.[138]preparedFe–Mn/SBA-15 catalysts for the selective catalytic reductionof NOx with ammonia;synergies between Fe and Mn resul-ted in more than 90%conversion efficiency of NOx at200–250°C.VOCs have biological toxicity and can cause photochem-ical fumes and greenhouse effects,while coal-based solidwaste zeolites and their modified products can effectively re-move VOCs.Effective adsorption of VOCs can be easilyachieved by unmodified coal-based solid waste zeolites,e.g.,the adsorption rate of benzene vapor on coal fly ash zeolite(Na–P1)synthesized by Zhou et al.was 69.2%[64].Moreover,coal-based solid waste zeolites have good cyclicadsorption and desorption capacity for VOCs,e.g.,the coalfly ash zeolite(Na–Y)prepared by Ren et al.[70]had an ad-sorption capacity of 136.2 mg·g−1 for acetone,and the result-ing product still had 88.5%adsorption capacity after sixtimes of acetone adsorption
城市污水、垃圾渗滤液和水产养殖废水中有机污染物含量高,含有大量氮、磷等无机阴离子。有机污染物会增加水的化学需氧量,导致有机水污染[122]。而氮和磷可以造成水体的富营养化,并促进藻类和水生生物的生长[123]。关于废液中有机化合物的去除,Bandura 等[124]用粉煤灰合成的 Na-P1 分子筛(0.50 g 分子筛、10 mL 废液和约 5 mg·L−1 的 L 的 1 个)。Szala 等[52]使用十六烷基三甲基溴化铵(1.00 CEC 用量)改性粉煤灰合成的 Na-P1 沸石吸附苯、甲苯和对二甲苯,最大吸附量分别为 485,854 和 587 mg·g−1。NH+4煤基固废分子筛在氮、磷等不同种类废水的修复中具有很大的应用潜力。Juan 等人[125]使用煤粉煤灰沸石(Na-P1 沸石、K-F 沸石或 K-方沸石/K-十字石)处理含有的三级废水。采用粉末状沸石和颗粒沸石固定填充床柱连续搅拌批量试验的方法,吸附率分别为 80% 左右和 70% 左右。Chen 等[126]使用煤粉灰合成 Na-P1 分子筛吸附厌氧消化后猪废水中的铵 (N) 和磷酸盐 (P)。用 8 g 合成沸石处理 100 mL 废水,N(降低到 31.8 mg·L–1)和98wt%的磷去除率(降低至0.440 mg·L−1)。Luna 等人。[127]采用由 Na-P1 沸石、酸碱和夏巴齐茶组成的粉煤亚沸石作为垃圾渗滤液处理的辅助剂.53wt%铵、82wt%悬浮固体和 43wt%化学需氧量与混凝剂和絮凝剂一起使用时可降低.4.2.空气污染修复气候变暖和空气污染已成为全球性问题。典型的温室气体和空气污染物包括挥发性有机化合物 (VOCs)、CO2、NOx 和 SOx[133]。煤基固体废物沸石或改性产品能够在各种条件下捕获或催化降解 VOC、CO2 和 NOx。Verrecchia 等人[79] 从煤粉煤灰中合成了非特定表面积大于 498 m2·g−1 的 Na-X 沸石。对 CO2 的吸附容量为 330 mmol·100g−1,相当于商用 13X 的 86mol%。Wang 等[134] 获得的 ETS-10 分子筛在水蒸气存在下仍然保持着 81 mmol·100 g-1 的优异 CO2 吸收率,在 323 K 下。此外,CO2 在不同分子筛上的吸附机理可能是物理吸附或/和化学吸附[135],分子筛中阳离子的静电行为和酸碱相互作用可以提高其对 CO2 的吸附能力[136].Ściubidło 等[137]获得了粉煤灰衍生的 Na–X 分子筛,最大 NO2 吸附量为 44.7mg·g−1,废吸附剂可通过 100°C 加热再生。Li 等[138]制备了用于氨选择性催化还原 NOx 的 Fe-Mn/SBA-15 催化剂;在 200–250°C 时,Fe 和 Mn 的协同作用使 NOx 的转化效率超过 90%,VOCs 具有生物毒性,可引起光化学烟雾和温室效应,而煤基固体废沸石及其改性产物可有效再移动 VOCs。未改性的煤基固废分子筛可以很容易地实现对VOCs的有效吸附,例如,周等人合成的粉煤灰分子筛(Na-P1)上苯蒸气的吸附率为69.2%[64]。此外,煤基固废分子筛对VOCs具有良好的循环吸附和脱附能力,例如任等[70]制备的煤粉灰分子筛(Na-Y)对丙酮的吸附容量为136.2 mg·g−1,所得产物仍为88。5% 丙酮吸附 6 次后的吸附容量
and desorption.In addition,theefficient degradation of VOCs can be achieved using cata-lyst-loaded coal-based solid waste zeolites,e.g.,Researchers[139–140]used CuO or Co3O4 loaded coal fly ash zeolite toeffectively degrade VOC containing n-hexane,acetone,tolu-ene,and 1,2-dichlorobenzene,with degradation rates of morethan 80%and 100%,respectively.4.3.Remediation of heavy metal-contaminated soilThe saturation of heavy metals and harmful compounds inthe soil can affect the activity of microorganisms in soil andalso pollute the groundwater and be absorbed by plants[141].Furthermore,these contaminants can enter the food chain andpose a serious threat to human health[142].Coal-based solid waste zeolites are effective in the re-mediation of heavy metal-contaminated soil.Querol et al.[143]used Na–P1 zeolite synthesized from coal fly ash totreat soil contaminated by pyrite pulp in the Guadiamar Val-ley of SW Spain and reduce the leachability of heavy metalsduring phytoremediation.The ability to exchange ions andimproving the pH of soil make zeolites have obvious advant-ages in the remediation of polluted soil.Twenty-five thou-sand kg of zeolite were applied to 1.0 hectare of 25 cm sur-face soil,and the leaching rate of most metals(Cd,Co,Cu,Ni,Zn)in the soil decreased around(95–99)wt%after twoyears.Terzano et al.[144]added 10wt%coal fly ash to thesoil,and then synthesized 5wt%and 12wt%zeolite products(mixtures of Na–X zeolite and Na–P zeolite)in situ at 30 and60°C for six months,respectively.The synthesis of zeolitewas not affected by organic matter or mineral phases.Thismethod could be used as a new technology for the on-site re-mediation of polluted soil.4.4.Chemo-catalytic conversion and energy storage ma-terialsThe unique porous structure,abundant acidic sites,highsurface area,and excellent cation exchange performance arefavorable for the adsorption of specific molecules or cata-lysts[145].Therefore,coal-based solid waste zeolites can beused as catalysts or catalyst carriers and have shown poten-tial application in the field of energy storage materials.In the chemical industry,coal-based solid waste zeoliteshave produced good catalytic conversion effects.Hu et al.[49]loaded Ag nanoparticles on 4A zeolite prepared fromcoal gangue and obtained a catalyst for epoxidation ofstyrene.The results showed that the conversion of styrenewas 72.1%,and the selectivity of styrene oxide was 59.5%.Additionally,the combined selectivity of styrene oxide andbenzaldehyde reached 93.3%.Missengue et al.[69]preparedZSM-5 zeolite from coal fly ash and then treated it with oxal-ic acid to improve its ability to catalyze methanol into olefins.Czuma et al.[146]prepared Na–X zeolite containing 15wt%Ni from coal fly ash to catalyze CO2 hydrogenation intomethane.The CO2 conversion rate was approximately 50%at450°C.In addition,zeolites derived from coal-based solidwaste conversion can be used for the catalytic preparation ofbiodiesel[147].In the field of hydrogen storage and battery,Musyokaet al.[148]prepared a templated carbon derivative usingNa–X zeolite synthesized from coal fly ash.The specific sur-face area of the synthesized zeolite increased from 404 to1112 m2·g−1,and its hydrogen absorption capacity increasedfrom 0.7wt%to 1.2wt%(commercial Na–X zeolite was2.4wt%).Lim et al.[149]prepared zeolite from coal fly ashto prepare quasi-solid electrolytes for dye-sensitized solarcells.The zeolite electrolytes significantly enhanced the lighttrapping of the dye-sensitized solar cells,reduced the interfa-cial resistance and charge recombination.5.Conclusion and outlookCoal-based solid wastes,mainly coal gangue and coal flyash,are constantly produced with the massive utilization ofcoal,which seriously threatens eco-environmental security.This review mainly introduced the advances of zeolite syn-thesized from coal-based solid wastes and the application ofcoal-based solid waste zeolites in environmental pollution re-mediation,chemo-catalytic conversion,and energy storagematerials(Fig.13).
和解吸。此外,使用负载催化的煤基固体废物沸石可以实现 VOCs 的高效降解,例如,研究人员[139–140]使用负载 CuO 或 Co3O4 的粉煤灰沸石有效降解含有正己烷、丙酮、甲苯和 1,2-二氯苯的 VOC,降解率分别超过 80% 和 100%.4.3.重金属污染土壤中重金属和有害化合物的饱和会影响土壤中微生物的活性并且还会污染地下水并被植物吸收[141]。此外,这些污染物可以进入食物链,对人类健康构成严重威胁[142]。煤基固体废物沸石可有效修复受重金属污染的土壤。Querol 等[143]使用由粉煤灰合成的 Na-P1 分子筛处理西班牙西南瓜迪亚马尔山谷被黄铁矿浆污染的土壤,并在植物修复过程中降低重金属的浸出性。离子交换能力和提高土壤 pH 值使沸石在污染土壤的修复中具有明显的优势。在 1.0 公顷 25 cm 表面土壤中施用 25 千沙千克沸石,土壤中大多数金属(Cd、Co、Cu、Ni、Zn)的浸出速率两年后降低约 (95–99)wt%。Terzano 等[144]在土壤中添加了 10wt%的粉煤灰,然后在 30°C 和 60°C 下分别原位合成了 5wt% 和 12wt%的沸石产品(Na-X 沸石和 Na-P 沸石的混合物)六个月。沸石的合成不受有机物或矿物相的影响。这种方法可以用作污染土壤现场修复的新技术4.4.化学催化转化和储能马独特的多孔结构、丰富的酸性位点、高表面积和优异的阳离子交换性能有利于特异性分子或催化物的吸附[145]。因此,煤基固废分子筛可用作催化剂或催化剂载体,并在储能材料领域显示出潜在的应用。在化工行业,煤基固废沸石产生了良好的催化转化效果。胡 等[49]在煤矸石制备的 4A 沸石上负载 Ag 纳米颗粒,获得苯乙烯环氧化催化剂。结果表明,苯乙烯的转化率为72.1%,氧化苯乙烯的选择性为59.5%。此外,苯乙烯氧化物和苯甲醛的综合选择性达到 93.3%。Missengue 等人[69]从粉煤灰中制备 ZSM-5 分子筛,然后用草酸处理,以提高其催化甲醇生成烯烃的能力。Czuma 等人[146]从粉煤灰中制备了含有 15wt%Ni 的 Na-X 沸石,以催化 CO2 加氢成甲烷。在 450°C.In 时,CO2 转化率约为 50%此外,煤基固体废物转化得到的沸石可用于生物柴油的催化制备[147]。在储氢和电池领域,Musyokaet al.[148] 使用粉煤灰合成的 Na–X 分子筛制备了模板碳衍生物。合成沸石的比表面面积从 404 增加到 1112 m2·g−1,其吸氢能力从 0.7wt% 增加到 1.2wt%(商业 Na-X 沸石为 2.4wt%)。Lim 等人[149]从粉煤灰中制备沸石,为染料敏化太阳能电池制备准固体电解质。沸石电解质显著增强了染料敏化太阳能电池的光捕获性,降低了表面电阻和电荷复合.5.结论与展望随着煤炭的大量利用,不断产生以煤矸石和煤粉煤灰为主的煤基固体废物,严重威胁生态环境安全。本文主要介绍了煤基固废合成分子筛的研究进展,以及煤基固废分子筛在环境污染再修复、化学催化转化和储能材料中的应用(图 13)。
Regarding the dominant position of coal in energy,a sub-stantial increase in the utilization rate of coal-based solidwastes is still the focus of many countries and regions.Hence,the improvement of the conversion rate of coal-basedsolid wastes remains one of the main targets of research oncoal-based solid waste zeolites.Meanwhile,coal gangue hasshown great potential as the raw material of zeolite synthesis;however,the research on the preparation and application ofcoal gangue zeolites has not been improved.The mechanismof some zeolitization processes of coal-based solid wastes isstill unclear.Secondary hazardous wastes emissions in thezeolitization processes of coal-based solid wastes deservemore attention as well.Moreover,coal-based solid wastezeolite products are generally mixtures of multiple zeolites,and even low purity products contain a lot of undesirablewaste,which directly deteriorates their physicochemicalproperties and applicability.Finally,the application potentialof coal-based solid waste zeolites in various fields has notbeen fully explored.Optimizing the zeolitization process of coal-based solidwastes is an effective way to improve its research and applic-ation performance.Alternatively,the optimal use of existingzeolitization processes should be studied in-depth,and newzeolitization processes should be developed to improve theconversion rate and performance of zeolite products.For ex-ample,(1)the zeolitization process with auxiliary technolo-gies or/and novel energies is still the primary research direc-tion,especially the rational application of new energy sources(ultrasonic and microwave)in various synthesis processesbecause new energy sources have shown the potential to op-timize the zeolitization processes.(2)Supercritical hydro-thermal crystallization has a simple and rapid crystallizationprocess and deserves more attention.It can be combined withalkali fusion to increase the reactivity of the raw materials.The coal-based solid waste activated by alkali fusion can beused as a raw material to synthesize zeolite in a short time bysupercritical hydrothermal crystallization.(3)The develop-ment of synthesis processes with low energy consumptionand recyclable raw materials are also necessary.Typically,the recycling of alkaline waste liquid produced in the syn-thesis process should be highly valued.Alternatively,moreeffort is needed to study the mechanism of zeolitization indifferent synthesis processes to determine the precise syn-thesis of target zeolite.Moreover,the adaptability and optim-ization of coal gangue in different zeolite processes should bestudied extensively.Furthermore,it is necessary to carry out large-scale exper-iments on the basis of cost for various synthesis processes.Taking the application field of commercial zeolite as the ref-erence,the application research of coal-based solid wastezeolite in various industries should also be conducted.Inter-estingly,commercial zeolite has been widely used in the ad-sorption removal of VOCs,and coal-based solidified zeolitehas preliminarily shown application potential in the adsorp-tion removal of VOCs;therefore,it is worthy of more atten-tion.Overall,future research on zeolites from coal-based solidwastes should focus on the large-scale application of synthet-ic zeolite products in different fields,which is important tosolve the problem of the substantial output of coal-based sol-id wastes in the world
就煤炭在能源领域的主导地位而言,煤基固体废弃物利用率的大幅提升仍是许多国家和地区关注的焦点。因此,提高煤基固废转化率仍然是煤基固废分子筛研究的主要目标之一。同时,煤矸石作为沸石合成的原料显示出巨大的潜力;然而,煤矸石分子筛的制备和应用研究尚未得到改进。煤基固体废物的一些沸石化过程的机制尚不清楚。煤基固体废物分子筛化过程中的二次危险废物排放也值得更多关注。而且,煤基固体废渣沸石产品一般是多种沸石的混合物,即使是低纯度的产品也含有大量不良废料,直接恶化了其理化性质和适用性。最后,煤基固废分子筛在各个领域的应用潜力尚未得到充分探索。优化煤基固体废料的分子筛化过程是提高其研究和应用性能的有效途径。或者,深入研究现有沸石化工艺的最佳使用,开发沸石工艺以提高沸石产品的转化率和性能。例如,(1) 具有辅助技术或/和新能源的沸石化过程仍然是主要的研究方向,尤其是新能源(超声波和微波)在各种合成过程中的合理应用,因为新能源已经显示出优化沸石化过程的潜力。(2)超临界水热结晶具有简单快速的结晶过程,值得更多关注。可与碱熔结合,增加原料的反应性。碱熔活化的煤基固废可作为原料,经超临界水热结晶在短时间内合成沸石。(3)开发低能耗和可回收原材料的合成工艺也是必要的。通常,应高度重视合成过程中产生的碱性废液的回收利用。或者,需要更多的努力来研究分子筛无差别合成过程的机制,以确定目标分子筛的精确合成体。此外,应广泛研究煤矸石在不同分子筛工艺中的适应性和优化性。此外,还需要对各种合成工艺进行基于成本的大规模实验。以商业沸石的应用领域为参考,还应开展煤基固体废渣沸石在各行业的应用研究。其中,商用分子筛在吸附去除 VOCs 方面得到了广泛的应用,煤基固化分子筛在吸附去除 VOCs 方面已初步显示出应用潜力;因此,值得多加重视。总体而言,未来对煤基固体废料分子筛的研究应集中在合成 ic 分子筛产品在不同领域的大规模应用,这对解决世界煤基溶胶-ID 废物大量产出的问题具有重要意义
.

Acknowledgements
确认

This work was financially supported by the National KeyR&D Program of China(Nos.2020YFC1806504 and2019YFC1904903)and the Yue Qi Young Scholar Project,China University of Mining&Technology(Beijing)(No.2017QN12).
这项工作得到了国家重点研发计划(Nos.2020YFC1806504 和 2019YFC1904903)和中国矿业大学(北京)岳琦青年学者项目(No.2017QN12)的资助。

Conflict of Interest
利益冲突

The authors declare that they have no conflict of interest.
作者声明他们没有利益冲突

References
引用

[1] 微波加热和传统加热方式对高岭土热活化性能影响的比较(英文)[J]. 张良静;和媛;吕鹏;彭金辉;李世伟;陈楷华;尹少华;张利波.Journal of Central South University,2020(09)
[1] 微波加热和传统加热方式对高岭土热活化性能影响的比较(英文)[J]。张良静;和媛;吕鹏;彭金辉;李世伟;陈楷华;尹少华;张利波.中南大学学报2020(09)

[2] Exploring relationships of gross calorific value and valuable elements with conventional coal properties for North Korean coals[J]. Saeed Chehreh Chelgani.International Journal of Mining Science and Technology,2019(06)
[2] 探讨朝鲜煤炭总热值和有价元素与常规煤矿价格的关系[J].赛义德·切赫雷·切尔加尼。国际矿业科学与技术杂志2019(06)

[3] H-ZSM-5分子筛在H_2O-四氢呋喃/2-丁醇/2-甲基四氢呋喃反应体系中催化葡萄糖转化制备5-羟甲基糠醛(英文)[J]. 徐思泉;潘东辉;肖国民.Journal of Central South University,2019(11)
[3] H-ZSM-5分子筛在H_2O-四氢呋喃/2-丁醇/2-甲基四氢呋喃反应体系中催化葡萄糖转化制备5-羟甲基糠醛(英文)[J].徐思泉;潘东辉;肖国民.中南大学学报2019(11)

[4] Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects[J]. Guofa Wang;Yongxiang Xu;Huaiwei Ren.International Journal of Mining Science and Technology,2019(02)
[4] 中国煤炭智能化、生态化开采与清洁利用技术综述与展望[J].王国发;徐永祥;任怀伟.国际矿业科学与技术杂志2019(02)

[5] Zeolite P synthesis based on fly ash and its removal of Cu(Ⅱ) and Ni(Ⅱ) ions[J]. Yong Liu;Guodong Wang;Lu Wang;Xianlong Li;Qiong Luo;Ping Na.Chinese Journal of Chemical Engineering,2019(02)
[5] 基于飞灰的沸石 P 合成及其对 Cu(II.) 和 Ni(II.) 离子的去除[J].刘勇;王国栋;王璐;李先龙;罗琼;平纳。化工学报2019(02)

[6] Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors[J]. Meng Ren;Cheng-yun Zhang;Yue-lin Wang;Jin-jun Cai.International Journal of Minerals Metallurgy and Materials,2018(12)
[6] 沸石模板路线 N 掺杂碳作为对称超级电容器的电位电极材料的发展[J].孟任;张成云;王月林;蔡金军.国际矿物冶金与材料杂志2018(12)

[7] Leaching behavior of V,Pb,Cd,Cr,and As from stone coal waste rock with different particle sizes[J]. Ying-bo Dong;Yue Liu;Hai Lin.International Journal of Minerals Metallurgy and Materials,2018(08)
[7] 不同粒径石煤废石中V、Pb、Cd、Cr和As的浸出行为[J].董英波;刘玥;海林.国际矿物冶金与材料学报2018(08)

[8] 粉煤灰微波碱熔辅助水热合成沸石及其对水溶液中Cd(Ⅱ)的强化吸附作用(英文)[J]. 李显波;叶军建;刘志红;邱跃琴;李龙江;卯松;王贤晨;张覃.Journal of Central South University,2018(01)
[8] 粉煤灰微波碱熔辅助水热合成沸石及其对水溶液中Cd(II.)的强化吸附作用(英文)[J].李显波;叶军建;刘志红;邱跃琴;李龙江;卯松;王贤晨;张覃.中南大学学报2018(01)

[9] 由飞灰合成的沸石吸附废水中染料的动态平衡(英文)[J]. 王春峰;李健生;王连军;孙秀云;黄佳佳.Chinese Journal of Chemical Engineering,2009(03)
[9] 由飞灰合成的沸石吸附废水中染料的动态平衡(英文)[J].王春峰;李健生;王连军;孙秀云;黄佳佳.化工学报2009(03)

[10] Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals[J]. .Journal of Environmental Sciences,2009(01)
[10] 粉煤灰合成的分子筛作为含重金属废水潜在吸附剂的评价[J]. .环境科学学报2009(01)

[11] Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment[J]. .Journal of Environmental Sciences,2007(05)
[11] 酸处理影响粉煤灰合成沸石同时去除铵和磷酸盐[J]. .环境科学学报2007(05)