Different seasonal dynamics, ecological drivers, and assembly mechanisms of algae in southern and northern drinking water reservoirs 南方和北方饮用水水库中藻类的不同季节动态、生态驱动力和聚集机制
Haihan Zhang ^(a,b,^(**)){ }^{\mathrm{a}, \mathrm{b},{ }^{*}}, Yue Xu ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Xiang Liu ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Ben Ma ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Tinglin Huang ^(a,b,^(**)", "){ }^{\mathrm{a}, \mathrm{b},{ }^{*} \text {, }} Dmitry B. Kosolapov ^(c){ }^{\mathrm{c}}, Hanyan Liu ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Honghong Guo ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Tao Liu ^(a,b){ }^{\mathrm{a}, \mathrm{b}}, Tongchao Ni^(a,b)\mathrm{Ni}^{\mathrm{a}, \mathrm{b}}, Xiaoli Zhang ^("a,b "){ }^{\text {a,b }} 张海涵 ^(a,b,^(**)){ }^{\mathrm{a}, \mathrm{b},{ }^{*}} , 徐玥 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} , 刘翔 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} , 马犇 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} , 黄庭琳 ^(a,b,^(**)", "){ }^{\mathrm{a}, \mathrm{b},{ }^{*} \text {, }} Dmitry B. Kosolapov ^(c){ }^{\mathrm{c}} , 刘海燕 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} , 郭红红 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} , 刘涛 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} .科索拉波夫 ^(c){ }^{\mathrm{c}} 、刘海燕 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} 、郭红红 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} 、刘涛 ^(a,b){ }^{\mathrm{a}, \mathrm{b}} 、童超 Ni^(a,b)\mathrm{Ni}^{\mathrm{a}, \mathrm{b}} 、张晓丽 ^("a,b "){ }^{\text {a,b }}^(a){ }^{a} Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China ^(a){ }^{a} 陕西省水污染控制与水质安全保障协同创新中心,西安建筑科技大学,西安,710055^("b "){ }^{\text {b }} Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China ^("b "){ }^{\text {b }} 陕西省秦岭水质野外科学观测研究站,西安建筑科技大学,西安,710055^(c){ }^{\mathrm{c}} Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia ^(c){ }^{\mathrm{c}} 俄罗斯科学院帕潘宁内陆水域生物学研究所(IBIW RAS),地址:109, Borok, Nekouz, Yaroslavl 152742, Russia
H I G H L I G H T S
The algal community structure varied with seasons in reservoirs. 水库中的藻类群落结构随季节而变化。
Algal diversity was higher in southern reservoirs than in northern reservoirs. 南部水库的藻类多样性高于北部水库。
Temperature and nitrogen significantly affected the algal community in reservoirs. 温度和氮对水库中的藻类群落有很大影响。
Interaction between algal communities was dominated by co-existence. 藻类群落之间的相互作用以共存为主。
Algal community in southern reservoirs was more affected by stochastic processes. 南部水库的藻类群落受随机过程的影响更大。
ARTICLE INFO 文章信息
Editor: Beatrice Opeolu 编辑:Beatrice Opeolu
Keywords: 关键词:
Algal community structure 藻类群落结构
Drinking water reservoirs 饮用水水库
Seasonal dynamics 季节动态
Assembly mechanism 装配机制
Ecological drivers 生态驱动因素
GR A P H I C A L A B S T R A C T 训研所
degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs. 与北方水库相比,南方水库的解释程度更高。本研究初步探索了藻类群落的聚集机制,为饮用水水库富营养化控制提供了理论依据。
1. Introduction 1.导言
The issue of water body eutrophication was becoming increasingly severe with the rapid progress of urbanization and industrialization (Ayele and Atlabachew, 2021; Glibert et al., 2005). 随着城市化和工业化的快速发展,水体富营养化问题日益严重(Ayele 和 Atlabachew,2021 年;Glibert 等人,2005 年)。 The accelerated eutrophication resulted in the frequent occurrence of cyanobacterial blooms(Chapra et al., 2017), which were particularly severe in reservoirs due to their slow flow rate and long renewal time. 富营养化的加速导致蓝藻水华频繁发生(Chapra 等人,2017 年),由于水流速度慢、更新时间长,水库中的蓝藻水华尤为严重。 The situation posed a significant threat to the biodiversity and stability of aquatic ecosystems, as well as the safety of water supply and human health (Gilbert, 2017; Glibert et al., 2005; Ho et al., 2019). 这种情况对生物多样性和水生生态系统的稳定性以及供水安全和人类健康构成了重大威胁(Gilbert,2017 年;Glibert 等人,2005 年;Ho 等人,2019 年)。
Phytoplankton was the main producer in the aquatic environment, participated in the aquatic environment food web and food chain, and was the basis of the energy cycle and material cycle in the aquatic environment(Sun et al., 2023). 浮游植物是水生环境中的主要生产者,参与水生环境的食物网和食物链,是水生环境能量循环和物质循环的基础(Sun 等,2023 年)。 Previous research has demonstrated that the algal community’s diversity and structure varied with the seasons and were influenced by environmental factors(Chen et al., 2023a; Sammartino et al., 2015). 以往的研究表明,藻类群落的多样性和结构随季节变化,并受到环境因素的影响(Chen 等人,2023a;Sammartino 等人,2015)。 The dominance of cyanobacteria in summer and autumn has been observed in various studies, with the seasonal succession being significantly influenced by nitrogen concentration(Cai and Kong, 2013; Wei et al., 2023). 各种研究都观察到蓝藻在夏秋季占优势,季节演替受氮浓度的显著影响(Cai 和 Kong,2013 年;Wei 等,2023 年)。 The growth of diatoms was restricted by water temperature and silicate availability, primarily occurring during the winter and early spring seasons (Jung et al., 2009). 硅藻的生长受到水温和硅酸盐供应的限制,主要发生在冬季和早春季节(Jung 等人,2009 年)。 In addition, the algal community was also influenced by precipitation and hydraulic conditions(Qin et al., 2020). The succession of algae was significantly influenced by environmental factors. 此外,藻类群落还受到降水和水力条件的影响(Qin 等人,2020 年)。藻类的演替受环境因素的影响很大。 Therefore, the investigation of environmental factors influencing the seasonal dynamics of algal community was crucial in elucidating the mechanisms underlying algal bloom. 因此,调查影响藻类群落季节动态的环境因素对于阐明藻类大量繁殖的机制至关重要。
Elucidating the mechanisms of microbial community assembly was considered one of the fundamental and important objectives in environmental microbiology research(Battin et al., 2016). 阐明微生物群落的聚集机制被认为是环境微生物学研究的基本和重要目标之一(Battin 等人,2016 年)。 The change in microbial community was the outcome of a combination of stochastic process (e.g. random birth, death, and diffusion) and deterministic process (e.g. environmental selection), which collectively upheld the diversity and stability of the microbial community(Alonso et al., 2006; Hong et al., 2024). 微生物群落的变化是随机过程(如随机出生、死亡和扩散)和确定过程(如环境选择)共同作用的结果,它们共同维持了微生物群落的多样性和稳定性(Alonso 等人,2006 年;Hong 等人,2024 年)。 Previous study generally believed that the assembly of microbial communities was mainly dominated by deterministic process(Fierer and Jackson, 2006), but a recent study found that the algal communities in rivers and lakes was mainly dominated by stochastic process(Caruso et al., 2011). 以往的研究普遍认为,微生物群落的形成主要由确定性过程主导(Fierer 和 Jackson,2006 年),但最近的一项研究发现,河流和湖泊中的藻类群落主要由随机过程主导(Caruso 等人,2011 年)。 At a relatively small spatial scale, stochastic factors exerted a more pronounced influence on the fluctuations of microbial communities, whereas at a larger spatial scale, deterministic factors played a more significant role(Shi et al., 2018). 在相对较小的空间尺度上,随机因素对微生物群落波动的影响更为明显,而在较大的空间尺度上,确定性因素则发挥着更重要的作用(Shi 等,2018)。 The relative contribution of stochastic process and deterministic process to microbial community dynamics was a subject of ongoing debate(Zhou and Ning, 2017). 随机过程和确定过程对微生物群落动力学的相对贡献一直是一个争论不休的话题(Zhou and Ning,2017)。 The utilization of co-occurrence microbial networks has gained significant traction in recent years for elucidating the interrelationships among microorganisms(Araujo et al., 2011). 近年来,利用共生微生物网络来阐明微生物之间的相互关系已获得了极大的关注(Araujo 等人,2011 年)。 The topological structural characteristics of microbial networks could also provide additional insights into the complexity and stability of these networks(Chaffron et al., 2010; Freilich et al., 2018). 微生物网络的拓扑结构特征还能让人们进一步了解这些网络的复杂性和稳定性(Chaffron 等人,2010 年;Freilich 等人,2018 年)。 The key taxa exhibiting high connectivity in the network also played a crucial role in upholding the stability of the microbial network(Berry and Widder, 2014). 在网络中表现出高度连通性的关键类群在维护微生物网络的稳定性方面也发挥了至关重要的作用(Berry 和 Widder,2014 年)。
Prior research has mostly looked into how environmental factors affect the algal community structure, while limited attention has been given to understanding the community assembly mechanism in reservoirs. 以往的研究大多关注环境因素如何影响藻类群落结构,而对水库中群落集结机制的了解却很有限。 Therefore, this study employed the normalized stochasticity ratio (NST) model, neutral community model (NCM), niche breadth analysis, and C -score assessment to elucidate the dominant roles played by 因此,本研究采用了归一化随机比率(NST)模型、中性群落模型(NCM)、生态位广度分析和 C - score 评估,以阐明
deterministic process and stochastic process in forming the algal community. Meanwhile, a co-occurrence network analysis was employed to examine the microorganism network structure. 在形成藻类群落的过程中,采用了确定性过程和随机过程。同时,还采用了共生网络分析来研究微生物网络结构。 Analyzing the assembly mechanism of the algal community in the reservoirs combined with the key drivers of community structure of algae, offered a fresh perspective on the formation pattern of the algal community in the reservoirs. 结合藻类群落结构的关键驱动因素,分析水库藻类群落的聚集机制,为研究水库藻类群落的形成模式提供了新的视角。
In this paper, northern and southern reservoirs were monitored for one year to investigate the changes in algal community structure in different seasons and its primary driving factors, along with the assembly mechanism. 本文对北部和南部水库进行了为期一年的监测,以研究不同季节藻类群落结构的变化及其主要驱动因素和组装机制。 The objectives of the study were as follows: 1) to analyze the changes in the structure and diversity of the algal community in different seasons; 2) to investigate the major environmental factors of the variation of the community structure of algae, and 3) to explore the assembly mechanism of the algal community. 研究目标如下1)分析不同季节藻类群落结构和多样性的变化;2)研究藻类群落结构变化的主要环境因素;3)探索藻类群落的组装机制。 These findings will offer a fresh direction on the correlation between the algal community structure and environmental factors, as well as the pattern of the community structure formation of algae, and offer the management of eutrophication in reservoirs on a theoretical basis. 这些发现将为藻类群落结构与环境因素的相关性以及藻类群落结构的形成模式提供新的研究方向,并为水库富营养化的治理提供理论依据。
2. Materials and methods 2.材料和方法
2.1. Sampling point 2.1.取样点
Jinpen (JP) reservoir, Lijiahe (LJH) reservoir, Tiegang (TG) reservoir, Shiyan (SY) reservoir, and Xili (XL) reservoir were selected for the study to conduct one-year water quality and algal monitoring. The basic information on the reservoirs was presented in Table S1. 研究选择了金盆水库、李家河水库、铁岗水库、石堰水库和西里水库进行为期一年的水质和藻类监测。各水库的基本信息见表 S1。 The reservoirs were divided into the northern reservoirs and the southern reservoirs according to the Qinling-Huai River boundary. The southern regions comprised TG, SY, and XL reservoirs, while the northern regions consisted of JP and LJH reservoirs. 根据秦岭-淮河分界线,水库分为北部水库和南部水库。南部地区包括 TG、SY 和 XL 水库,北部地区包括 JP 和 LJH 水库。 Details of the sampling points were shown in Fig. S1. From September 2022 to August 2023, the collection of water samples took place during the 20th of each month and was analyzed seasonally. 2 L of water was taken at 0.5-1m0.5-1 \mathrm{~m} from each site using a vertical plexiglass water extractor and then stored in polyethylene bottles, transported refrigerated at 4^(@)C4^{\circ} \mathrm{C}. 采样点详情见图 S1。从 2022 年 9 月至 2023 年 8 月,每月 20 日采集水样,并按季节进行分析。在 0.5-1m0.5-1 \mathrm{~m} 处使用立式有机玻璃取水器采集 2 L 水样,然后装入聚乙烯瓶中,在 4^(@)C4^{\circ} \mathrm{C} 处冷藏运输。
2.2. Measurement of water physical and chemical indicators 2.2.测量水的物理和化学指标
The physical parameters, such as pH , water temperature (WT), dissolved oxygen (DO), and Spcond, were measured using the Multiparameter water quality analyzer (HACH, USA)(Chen et al., 2020b). 使用多参数水质分析仪(美国 HACH 公司)测量 pH 值、水温(WT)、溶解氧(DO)和 Spcond 等物理参数(Chen 等,2020b)。 The water chemical parameters were determined by spectrophotometer (UV2600A, UNICO, USA), following the previously described method (Zhang et al., 2022b). 10 mL of water samples were filtered for the determination of iron (Fe) and manganese (Mn)(Zhang et al., 2022a). 按照之前描述的方法(Zhang 等人,2022b),用分光光度计(UV2600A,UNICO,美国)测定水的化学参数。过滤 10 毫升水样以测定铁(Fe)和锰(Mn)(Zhang 等人,2022a)。 The total organic carbon (TOC) was determined by 30 mL of water samples(Zhao et al., 2022b). 用 30 毫升水样测定总有机碳(TOC)(Zhao 等人,2022b)。
2.3. Algae cell enumerating and identification 2.3.藻细胞计数和鉴定
Algal abundance and community structure were determined using the microscopic enumerating method. After 500 mL of water samples were filtered, the membranes on which algae were enriched were collected and fixed to 10 mL , to which 1%1 \% acidic Lugol’s reagent was added to immobilize the algae. Add 100 muL100 \mu \mathrm{~L} of the mixture to the plankton enumeration frame to classify and enumerate using an optical microscope (Nikon, Kyoto, Japan)(Zhang et al., 2021). Each sample was enumerated in 2,5 , and 8 rows. 藻类丰度和群落结构的测定采用显微计数法。将 500 mL 水样过滤后,收集富集藻类的滤膜,并将其固定到 10 mL 中,加入 1%1 \% 酸性鲁戈尔试剂固定藻类。将 100 muL100 \mu \mathrm{~L} 混合物加入浮游生物计数框中,用光学显微镜(尼康,日本京都)进行分类和计数(Zhang 等,2021 年)。每个样本按 2、5 和 8 行计数。
2.4. Statistical analysis 2.4.统计分析
Box plot was used to analyze the seasonal variations in different environment variables, and algal density, which was plotted using Origin software (Version 2018). 箱形图用于分析不同环境变量和藻类密度的季节性变化,使用 Origin 软件(2018 版)绘制。 The circos and heatmap were plotted using the online tool OmicStudio and TBtools software (Version 2.0.0.0), respectively, to analyze alterations in the phylum and genus levels of algal community structure(Chen et al., 2020a; Chen et al., 2023b). 利用在线工具 OmicStudio 和 TBtools 软件(2.0.0.0 版)分别绘制了环状图和热图,以分析藻类群落结构的门和属水平的变化(Chen 等,2020a;Chen 等,2023b)。 Rstudio (Version 4.1.0) could be utilized to perform the Mantel test and PLS-PM, exploring the key drivers of algal community structure(Yang et al., 2022). 可利用 Rstudio(4.1.0 版)进行 Mantel 检验和 PLS-PM,探索藻类群落结构的关键驱动因素(Yang 等,2022 年)。 The network analysis was calculated with Rstudio (Version 4.1.0) and visualized with Gephi (Version 0.9.3) to delineate the interspecific interactions within the algal community structure (Barberan et al., 2012). 网络分析用 Rstudio(4.1.0 版)计算,并用 Gephi(0.9.3 版)可视化,以描述藻类群落结构中的种间相互作用(Barberan 等人,2012 年)。 The algal community assembly mechanism was analyzed using various ecological models, including the normalized stochasticity ratio (NST) model, the neutral community model (NCM) model, niche breadth, and C-score, which were calculated with Rstudio (Version 4.1.0). 使用各种生态模型分析了藻类群落的集结机制,包括归一化随机比(NST)模型、中性群落模型(NCM)模型、生态位广度和 C-score,这些模型都是用 Rstudio(4.1.0 版)计算得出的。
3. Results 3.成果
3.1. Spatio-temporal variations in water quality 3.1.水质的时空变化
Seasonal changes in water quality parameters of different reservoirs were shown in Fig. S2. The maximum, minimum, and average values of environmental factors in different seasons of the northern and southern reservoirs were exhibited in Table S2 and Table S3 respectively. 不同水库水质参数的季节变化见图 S2。表 S2 和表 S3 分别显示了北部和南部水库不同季节环境因子的最大值、最小值和平均值。 The TN concentration in the southern and northern reservoirs exhibited minimal variation across the four seasons, yet the concentration in the northern reservoirs was significantly elevated compared to that in the southern reservoirs. The variation trend of NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} concentration was consistent with TN concentration. In comparison to the southern reservoirs, the NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} concentration in the northern reservoirs was noticeably higher. The NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} concentration in the northern reservoirs significantly decreased in spring, while the southern reservoir significantly decreased in autumn, and the NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} concentration between the northern and southern reservoirs in the other seasons had no discernible variation. The TP concentration reached the highest in autumn (northern reservoirs: 0.036mg//L0.036 \mathrm{mg} / \mathrm{L}, southern reservoirs: 0.041mg//L0.041 \mathrm{mg} / \mathrm{L} ), and was notably greater than those in summer and winter. The TN/TP reached its peak during summer (327.32) in the northern reservoirs, exhibiting a significant difference from other seasons, whereas the southern reservoirs showed no notable variation across all four seasons. 南部水库和北部水库的 TN 浓度在四个季节中的变化极小,但北部水库的 TN 浓度明显高于南部水库。 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 浓度的变化趋势与 TN 浓度一致。与南部水库相比,北部水库的 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 浓度明显偏高。北部水库的 NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 浓度在春季明显下降,而南部水库则在秋季明显下降,其他季节北部水库和南部水库的 NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 浓度无明显变化。秋季 TP 浓度最高(北部水库: 0.036mg//L0.036 \mathrm{mg} / \mathrm{L} ,南部水库: 0.041mg//L0.041 \mathrm{mg} / \mathrm{L} ),且明显高于夏季和冬季。北部水库的 TN/TP 在夏季达到峰值(327.32),与其他季节相比差异显著,而南部水库在所有四个季节中均无明显变化。 The concentrations of both Fe and Mn reached their lowest levels in autumn (northern reservoirs: 0.009mg//L0.009 \mathrm{mg} / \mathrm{L}, southern reservoirs: 0.006mg//L0.006 \mathrm{mg} / \mathrm{L} ), while they peaked in spring (northern reservoirs: 0.178mg//L0.178 \mathrm{mg} / \mathrm{L} southern reservoirs: 0.159mg//L0.159 \mathrm{mg} / \mathrm{L} ). Compared to the southern reservoirs, The DOC concentration was significantly higher in autumn and winter in the northern reservoirs. 铁和锰的浓度在秋季达到最低水平(北部水库: 0.009mg//L0.009 \mathrm{mg} / \mathrm{L} ,南部水库: 0.006mg//L0.006 \mathrm{mg} / \mathrm{L} ),而在春季达到峰值(北部水库: 0.178mg//L0.178 \mathrm{mg} / \mathrm{L} ,南部水库: 0.159mg//L0.159 \mathrm{mg} / \mathrm{L} )。与南部水库相比,北部水库秋季和冬季的 DOC 浓度明显较高。 In terms of water temperature, there were significant differences between the southern and northern reservoirs in each season, and the water temperature of the northern reservoirs was lower than that of the southern reservoirs in all seasons. 在水温方面,南部水库和北部水库在每个季节都存在显著差异,北部水库的水温在所有季节都低于南部水库。 In the northern reservoirs, the DO concentration during spring was significantly higher than in other seasons, whereas no significant difference was found in DO concentration across all four seasons in the southern reservoirs. 在北部水库,春季的溶解氧浓度明显高于其他季节,而在南部水库,四个季节的溶解氧浓度均无明显差异。 In autumn and winter, the pH of the northern reservoirs decreased significantly, while the pH of the southern reservoirs increased in autumn and then decreased in winter. The Spcond of the northern reservoirs was considerably higher than that of the southern reservoirs. 在秋季和冬季,北部水库的 pH 值明显下降,而南部水库的 pH 值在秋季上升,冬季下降。北部水库的 Spcond 值大大高于南部水库。
3.2. Changes in algal cell density 3.2.藻细胞密度的变化
Fig. 1 illustrated the seasonal variations in algal cell density in different reservoirs. As depicted in Fig. 1, the algal cell density in the northern reservoirs showed no significant variation during spring, summer, and autumn. In contrast, the southern reservoirs experienced a 图 1 显示了不同水库藻细胞密度的季节性变化。如图 1 所示,北部水库的藻细胞密度在春季、夏季和秋季没有明显变化。相比之下,南部水库的藻细胞密度在春、夏、秋三季变化不大。
Fig. 1. Seasonal variation of algal cell density. 图 1.藻细胞密度的季节性变化。
substantial increase in algal cell density during autumn, reaching its peak value of 25.32 xx10^(6)25.32 \times 10^{6} cells/L. Additionally, the algal cell density decreased significantly during winter (northern reservoirs: 1.60 xx10^(6)1.60 \times 10^{6} cells/L; southern reservoirs: 5.60 xx10^(6)5.60 \times 10^{6} cells/L). In general, the algal cell density in the southern reservoirs was significantly higher than that in the northern reservoirs only in winter, about 2.74 times higher than that in the northern reservoirs. 秋季藻细胞密度大幅增加,达到 25.32 xx10^(6)25.32 \times 10^{6} 细胞/升的峰值。此外,藻细胞密度在冬季显著下降(北部水库: 1.60 xx10^(6)1.60 \times 10^{6} 细胞/升;南部水库: 1.60 xx10^(6)1.60 \times 10^{6} 细胞/升;北部水库: 1.60 xx10^(6)1.60 \times 10^{6} 细胞/升): 1.60 xx10^(6)1.60 \times 10^{6} 细胞/升;南部水库: 5.60 xx10^(6)5.60 \times 10^{6} 细胞/升: 5.60 xx10^(6)5.60 \times 10^{6} 细胞/升)。总体而言,仅在冬季,南部水库的藻细胞密度明显高于北部水库,约为北部水库的 2.74 倍。
3.3. Variations of algal community structure 3.3.藻类群落结构的变化
Fig.2(a) showed the changes in algal community structure in different seasons at the phylum level in different reservoirs. 图 2(a)显示了不同季节不同水库藻类群落结构在门一级的变化。 The common algae species (at the phylum level) found in the southern and northern reservoirs include Bacillariophyta, Pyrrophyta, Cyanophyta, Chrysophyta, Euglenophyta, Chlorophyta, and Cryptophyta throughout the year except for winter. 南部和北部水库中常见的藻类(门级)包括芽孢藻门(Bacillariophyta)、稚藻门(Pyrrophyta)、蓝藻门(Cyanophyta)、菊藻门(Chrysophyta)、优藻门(Euglenophyta)、绿藻门(Chlorophyta)和隐藻门(Cryptophyta),除冬季外全年都有分布。 The presence of Pyrrophyta and Chrysophyta was not detected during the winter. Bacillariophyta, Cyanophyta, and Chlorophyta were the main algae species in the reservoirs, which accounted for > 95%>95 \% of all the species of algae present in the reservoirs. In the northern reservoirs, Chlorophyta was the dominant species, with an annual range of 41.17%41.17 \% - 49.95%49.95 \%. The proportion of Cyanophyta increased to nearly equal that of Chlorophyta in autumn and winter, while Bacillariophyta experienced a decrease. The proportions of Bacillariophyta and Cyanophyta remained relatively stable in spring, accounting for 21.38%21.38 \% and 25.45%25.45 \% respectively. The proportion of Chlorophyta in the southern reservoirs ranged from 43.94%43.94 \% to 46.45%46.45 \% in spring, summer, and winter, among which the proportions of Bacillariophyta and Cyanophyta were stable in spring and summer, ranging from 19.46%19.46 \% to 21.37%21.37 \% and 33.55%33.55 \% to 35.10%35.10 \%, respectively. In winter, the proportion of Bacillariophyta increased to 31.87%31.87 \%, while the proportion of Cyanophyta decreased to 21.33%21.33 \%. The composition of dominant algae in southern reservoirs exhibited seasonal variation, with Cyanophyta emerging as the predominant species during autumn, while the proportion of Chlorophyta declined. 在冬季,未发现有藻类植物(Pyrrophyta)和藻类植物(Chrysophyta)的存在。水库中的主要藻类有枯叶藻类(Bacillariophyta)、蓝藻类(Cyanophyta)和叶绿藻类(Chlorophyta),占水库中所有藻类的 > 95%>95 \% 。在北部水库中,叶绿藻属是主要藻类,年分布范围为 41.17%41.17 \% - 49.95%49.95 \% 。秋冬季节,蓝藻类的比例增加,几乎与叶绿藻类持平,而枯叶藻类则有所减少。春季,枯叶叶藻和蓝藻的比例相对稳定,分别占 21.38%21.38 \% 和 25.45%25.45 \% 。春季、夏季和冬季,南部水库的叶绿体比例在 43.94%43.94 \% 到 46.45%46.45 \% 之间,其中芽孢叶绿体和藻蓝体的比例在春季和夏季比较稳定,分别在 19.46%19.46 \% 到 21.37%21.37 \% 和 33.55%33.55 \% 到 35.10%35.10 \% 之间。冬季,枯叶藻类的比例上升到 31.87%31.87 \% ,而蓝藻类的比例下降到 21.33%21.33 \% 。南部水库的优势藻类组成呈现季节性变化,秋季以青叶藻类为主,叶绿藻类所占比例下降。
Fig.2(b) showed the changes in the algal community structure in the genus level of the community structure of algae in different seasons in different reservoirs. Throughout the year, Chlorella sp. 图 2(b)显示了不同季节不同水库藻类群落结构属级的变化。全年,小球藻(Chlorella sp. consistently exhibited dominance in the northern reservoirs, accounting for a proportion ranging from 22.89%22.89 \% to 39.78%39.78 \%. The proportion of Microcystis sp. increased and surpassed that of Chlorella sp. except for the first two seasons, reaching its peak at 40.68%40.68 \% in autumn. Moreover, the Synedra sp. exhibited a significant increase solely during the summer months, 在北部水库中始终占优势,所占比例从 22.89%22.89 \% 到 39.78%39.78 \% 不等。除前两个季节外,微囊藻的比例不断增加并超过小球藻,在秋季达到 40.68%40.68 \% 的峰值。此外,Synedra sp. 仅在夏季有显著增加、
Fig. 2. (a) Circos representation of algal community structure in reservoirs at phylum level and (b) heatmap showed the algal community at genus level from September 2022 to August 2023. 图 2:(a) 水库藻类群落结构的门级环形图;(b) 2022 年 9 月至 2023 年 8 月藻类群落的属级热图。 And A, B, C, D, E, F, G represent Bacillariophyta, Pyrrophyta, Chrysophyta, Cyanophyta, Euglenophyta, Chlorophyta, Cryptophyta. NR : northern reservoirs, SR: southern reservoirs. 而 A、B、C、D、E、F、G 分别代表枯叶植物界(Bacillariophyta)、稚叶植物界(Pyrrophyta)、菊叶植物界(Chrysophyta)、蓝藻界(Cyanophyta)、优藻界(Euglenophyta)、叶绿藻界(Chlorophyta)、隐藻界(Cryptophyta)。NR:北部水库,SR:南部水库。
peaking at 22.44%22.44 \%. For the southern reservoirs, Chlorella sp. remained the predominant species of algae in all seasons except autumn, accounting for proportions ranging from 22.56%22.56 \% to 33.28%33.28 \%, with the lowest proportion observed in autumn being 11.18%11.18 \%. The abundance of Cylindrospermopsis raciborskii remained relatively stable during spring, summer, and autumn ( 17.53%17.53 \% - 30.14%30.14 \% ), but significantly decreased to 3.55%3.55 \% in winter. Cyclotella sp. was the dominant species in autumn, accounting for 20.40 %, followed by Cylindrospermopsis raciborskii and Microcystis sp. 达到 22.44%22.44 \% 峰值。在南部水库,除秋季外,小球藻在所有季节都是最主要的藻类,所占比例从 22.56%22.56 \% 到 33.28%33.28 \% 不等,秋季所占比例最低,为 11.18%11.18 \% 。Cylindrospermopsis raciborskii 的丰度在春、夏、秋三个季节保持相对稳定( 17.53%17.53 \% - 30.14%30.14 \% ),但在冬季显著下降到 3.55%3.55 \% 。秋季的主要物种是 Cyclotella sp.,占 20.40%,其次是 Cylindrospermopsis raciborskii 和 Microcystis sp.
3.4. Alpha diversity of the algal community 3.4.藻类群落的α多样性
Fig.3(a) showed the alpha diversity index of the algal communities in the northern and southern reservoirs in different seasons. Except for the winter season, the alpha diversity index of the southern reservoirs was 图 3(a)显示了南北水库不同季节藻类群落的阿尔法多样性指数。除冬季外,南部水库藻类群落的α多样性指数为
significantly higher compared to those of the northern reservoirs. However, throughout all four seasons, no statistically significant variation in the alpha diversity index was seen within the same reservoir. 明显高于北部水库。不过,在所有四个季节中,同一水库的阿尔法多样性指数都没有出现统计学意义上的明显变化。 The average coverage of all samples was 0.97 , indicating that the results covered the vast majority of algae. The correlation between the alpha diversity index and water quality was illustrated in Fig. 3(b). 所有样本的平均覆盖率为 0.97,表明结果覆盖了绝大多数藻类。图 3(b)显示了阿尔法多样性指数与水质之间的相关性。 It demonstrated that the Richness index, Sobs index, and Shannon index were all significantly correlated with TN,NO_(3)^(-)-N\mathrm{TN}, \mathrm{NO}_{3}^{-}-\mathrm{N}, and water temperature. The main motivating elements impacting the alpha diversity index were found to be water temperature and NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N}, with water temperature exhibiting a positive association while NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} was the opposite. The alpha diversity index exhibited a positive correlation with DO, pH , and NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N}, while it demonstrated a negative correlation with TN, TP, and DOC. However, this phenomenon was not universally observed in all reservoirs (Fig. S3). For the JP and XL reservoir, the diversity of the algal 研究表明,丰富度指数、Sobs 指数和香农指数都与 TN,NO_(3)^(-)-N\mathrm{TN}, \mathrm{NO}_{3}^{-}-\mathrm{N} 和水温有显著相关性。研究发现,影响阿尔法多样性指数的主要因素是水温和 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} ,其中水温呈正相关,而 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 则相反。α多样性指数与溶解氧、pH 值和 NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 呈正相关,而与 TN、TP 和 DOC 呈负相关。但这一现象并非在所有水库中都能普遍观察到(图 S3)。在 JP 和 XL 水库中,藻类多样性与 TN、TP 和 DOC 呈负相关(图 S3)。
(a)
Fig. 3. (a) Alpha diversity of algal communities in different seasons and (b) correlation between alpha diversity and water quality in reservoirs. 图 3:(a)不同季节藻类群落的α多样性;(b)α多样性与水库水质的相关性。
community was significantly influenced by NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N}, whereas for the LJH and TG reservoir, NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} emerged as the primary determinant. The presence of Fe and Mn was found to exert significant influences on the diversity of the algal community in the SY and XL reservoir. 而在 LJH 和 TG 水库中, NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 则是主要的决定因素。研究发现,铁和锰的存在对 SY 和 XL 水库藻类群落的多样性有重大影响。
3.5. Influence of environmental parameters on algal community structure 3.5.环境参数对藻类群落结构的影响
The connection between environmental parameters and the algal community structure was illustrated by using the Mantel test analysis 使用曼特尔检验分析说明了环境参数与藻类群落结构之间的联系
Fig. 4. (a) Mantel test exhibited the correlations of environmental factors with algal community structure and the correlations among different water quality parameters. 图 4 (a) 曼特尔检验显示了环境因素与藻类群落结构的相关性以及不同水质参数之间的相关性。 (b) Partial Least Squares Path Modeling (PLS-PM) revealed the direct effects of environmental variables on algal community structure based on temperature. (b) 部分最小二乘法路径模型(PLS-PM)显示了环境变量对基于温度的藻类群落结构的直接影响。
and the PLS-PM model (Fig. 4), while detailed information could be found in Table S4 and Table S5. According to Fig. 4(a), a noteworthy positive association was observed between water temperature in the northern reservoirs and DOC ( r=0.492,p < 0.05r=0.492, p<0.05 ), DO and TN ( r=r=0.487,p < 0.05)0.487, p<0.05), DO and NO_(3)^(-)-N(r=0.473,p < 0.05)\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.473, p<0.05), TN and NO_(3)^(-)-N(r\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.851,p < 0.001=0.851, p<0.001 ), NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} and DOC (r=0.472,p < 0.05(r=0.472, p<0.05 ). Additionally, there was a notable inverse relationship between TP and TN/TP ( rr=-0.766,p < 0.001=-0.766, p<0.001 ) while DOC had a noteworthy inverse relationship with Fe ( r=-0.487,p < 0.05r=-0.487, p<0.05 ). The algal community structure in northern reservoirs exhibited significant correlations with water temperature, pH,TN\mathrm{pH}, \mathrm{TN}, and DOC. Water temperature was positively correlated with DOC ( r=0.495,p < 0.05r=0.495, p<0.05 ), DO and pH(r=0.618,p < 0.01\mathrm{pH}(r=0.618, p<0.01 ), TN and NO_(3)^(-)-N(r=0.842,p < 0.001)\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.842, p<0.001), TN and NH_(4)^(+)-N(r=0.461,p <\mathrm{NH}_{4}^{+}-\mathrm{N}(r=0.461, p< 0.05 ), TN and TN/TP ( r=0.416,p < 0.05r=0.416, p<0.05 ), Mn and NH4-N (r=0.419,p(r=0.419, p< 0.05<0.05 ), Fe and Mn(r=0.687,p < 0.001\mathrm{Mn}(r=0.687, p<0.001 ) in the southern reservoirs. However, it revealed significant negative correlations between NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} and DOC (r=-0.520,p < 0.05),NO_(3)^(-)-N(r=-0.520, p<0.05), \mathrm{NO}_{3}^{-}-\mathrm{N} and Mn(r=-0.435,p < 0.05)\mathrm{Mn}(r=-0.435, p<0.05), as well as TP and TN/TP ( r=-0.627,p < 0.01r=-0.627, p<0.01 ). The community structure of algae in the southern reservoirs was significantly influenced by both water temperature and NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N}, with water temperature 图 4(a)显示,北部水库水温与 DOC( r=0.492,p < 0.05r=0.492, p<0.05 )、DO 和 TN( r=r= )之间存在明显的正相关。图 4(a)显示,北部水库水温与 DOC( r=0.492,p < 0.05r=0.492, p<0.05 )、DO 与 TN( r=r=0.487,p < 0.05)0.487, p<0.05) 、DO 与 NO_(3)^(-)-N(r=0.473,p < 0.05)\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.473, p<0.05) 、TN 与 NO_(3)^(-)-N(r\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.851,p < 0.001=0.851, p<0.001 )、 NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 与 DOC( (r=0.472,p < 0.05(r=0.472, p<0.05 )之间存在明显的正相关关系。此外,TP 与 TN/TP 呈明显的反比关系( rr=-0.766,p < 0.001=-0.766, p<0.001 ),而 DOC 与 Fe 呈明显的反比关系( r=-0.487,p < 0.05r=-0.487, p<0.05 )。北部水库的藻类群落结构与水温、 pH,TN\mathrm{pH}, \mathrm{TN} 和 DOC 呈显著相关。南部水库的水温与 DOC ( r=0.495,p < 0.05r=0.495, p<0.05 ) 、DO 与 pH(r=0.618,p < 0.01\mathrm{pH}(r=0.618, p<0.01 ) 、TN 与 NO_(3)^(-)-N(r=0.842,p < 0.001)\mathrm{NO}_{3}^{-}-\mathrm{N}(r=0.842, p<0.001) 、TN 与 NH_(4)^(+)-N(r=0.461,p <\mathrm{NH}_{4}^{+}-\mathrm{N}(r=0.461, p< 0.05 ) 、TN 与 TN/TP ( r=0.416,p < 0.05r=0.416, p<0.05 ) 、Mn 与 NH4-N (r=0.419,p(r=0.419, p< 0.05<0.05 ) 、Fe 与 Mn(r=0.687,p < 0.001\mathrm{Mn}(r=0.687, p<0.001 ) 呈正相关。然而,研究发现 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 与 DOC (r=-0.520,p < 0.05),NO_(3)^(-)-N(r=-0.520, p<0.05), \mathrm{NO}_{3}^{-}-\mathrm{N} 和 Mn(r=-0.435,p < 0.05)\mathrm{Mn}(r=-0.435, p<0.05) 以及 TP 和 TN/TP ( r=-0.627,p < 0.01r=-0.627, p<0.01 ) 之间存在明显的负相关。南部水库的藻类群落结构受水温和 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 的显著影响,其中水温
identified as the primary factor impacting algal community structure. 被确定为影响藻类群落结构的主要因素。
Therefore, a PLS-PM model was developed based on water temperature to elucidate the direct and indirect impacts of water temperature, nutrients, physical parameters, and metals on the community structure of algae (Fig. 4(b)). 因此,建立了一个基于水温的 PLS-PM 模型,以阐明水温、营养物质、物理参数和金属对藻类群落结构的直接和间接影响(图 4(b))。 In the northern reservoirs, the algal community structure was significantly impacted by water temperature and metals, whereas in the southern reservoirs, water temperature had a significant negative effect on nutrients but did not affect the algal community structure. 在北部水库,藻类群落结构受到水温和金属的明显影响,而在南部水库,水温对营养物质有明显的负面影响,但对藻类群落结构没有影响。 Generally, the effect of temperature on the algal community structure in the northern and southern reservoirs differed. 总体而言,温度对北部和南部水库藻类群落结构的影响是不同的。 Temperature served as the primary influencing factor for the algal community structure in the northern reservoirs, whereas it had little effect on shaping the algal community structure in the southern reservoirs. 温度是北部水库藻类群落结构的主要影响因素,而温度对南部水库藻类群落结构的影响很小。 The direct and indirect effects of various environmental factors were different (Fig. S4), which ultimately affected the community structure of algae. 各种环境因素的直接和间接影响各不相同(图 S4),最终影响了藻类的群落结构。 Therefore, the comprehensive effect of water temperature, nutrients, physical parameters, metals, and other environmental factors contributed to the variations in the community structure of algae. 因此,水温、营养物质、物理参数、金属和其他环境因素的综合影响导致了藻类群落结构的变化。
The interaction between algae in the southern and northern reservoirs was investigated using co-occurrence network analysis (Fig. 5a), while the additional specifics were presented in Table S6. The northern reservoirs had 33 edges ( 93.94%93.94 \% positive and 6.06%6.06 \% negative), and the southern reservoirs had 43 edges ( 97.67%97.67 \% positive and 2.33%2.33 \% negative), which indicated that the co-evolution between microorganisms and environmental factors in the reservoirs was the main driving force. 利用共现网络分析研究了南部水库和北部水库藻类之间的相互作用(图 5a),其他具体情况见表 S6。北部水库有 33 条边( 93.94%93.94 \% 为正, 6.06%6.06 \% 为负),南部水库有 43 条边( 97.67%97.67 \% 为正, 2.33%2.33 \% 为负),这表明水库微生物与环境因素的共同进化是主要的驱动力。 In a co-occurrence network, the topological characteristics (e.g., nudes, edges, graph density (D), and clustering coefficient (CC))and modular structure could reflect the stability(Freilich et al., 2018). D/CC could also serve as an indicator of network stability. 在共现网络中,拓扑特征(如裸体、边、图密度(D)和聚类系数(CC))和模块结构可以反映网络的稳定性(Freilich等人,2018)。D/CC 也可以作为网络稳定性的指标。 The D/CC value of the northern reservoirs was 0.098 , slightly higher than that of the southern reservoirs ( 0.090 ), indicating that the algal community structure in the northern reservoirs was more stable and had higher resistance to external environmental pressure. 北部水库的 D/CC 值为 0.098,略高于南部水库的 D/CC 值(0.090),表明北部水库的藻类群落结构更稳定,对外部环境压力的抵抗力更强。 Through co-occurrence network analysis, 10 modules were identified in the northern reservoirs, while 12 modules were discovered in the southern reservoirs, slightly surpassing the number observed in the northern reservoirs. 通过共现网络分析,在北部水库中发现了 10 个模块,而在南部水库中发现了 12 个模块,略高于在北部水库中观察到的数量。 This suggested that the algal community structure exhibited a higher level of complexity in the southern reservoirs. The application of network analysis could also facilitate the identification and examination of key taxa within intricate network structures. 这表明,南部水库的藻类群落结构具有更高的复杂性。网络分析的应用还有助于识别和研究复杂网络结构中的关键分类群。 The size of the circle represented the degree to which the algae species was closely related to other species. The key taxa in the northern reservoirs was Aphanizomenon sp., which exhibited the highest number of edges, whereas Coelosphaerium sp. 圆圈的大小代表了藻类物种与其他物种的密切相关程度。北部水库的关键类群是 Aphanizomenon sp.,其边缘数最多,而 Coelosphaerium sp. emerged as the key taxa in the southern reservoirs. 成为南部水库的主要分类群。
4.1. Seasonal variation promoting algal diversity and community variation 4.1.促进藻类多样性和群落变化的季节性变化
Seasonal variations were observed in the microbial community diversity and community in response to environmental changes, including River Xin’an(Zhao et al., 2022a), the northern Baltic Sea (Rinne and Kostamo, 2022), Jinghai Bay(Chen et al., 2023a), and a coastal area of Dongchong(Zhou et al., 2020). 在新安江(Zhao 等人,2022a)、波罗的海北部(Rinne 和 Kostamo,2022)、静海湾(Chen 等人,2023a)和东涌沿海地区(Zhou 等人,2020)等地,观察到微生物群落多样性和群落随环境变化的季节性变化。 The present study revealed a seasonal pattern in the occurrence of Cyanophyta, with their dominance replacing Chlorophyta in both the northern and southern reservoirs during autumn. However, their proportion gradually declined during winter. 本研究揭示了藻青类出现的季节性规律,在秋季,藻青类在北部和南部水库中的优势地位取代了叶绿体。但在冬季,它们的比例逐渐下降。 The blooming of Bacillariophyta occurred in summer in the northern reservoirs and in winter in the southern reservoirs. However, the algal community outbreak exhibited distinct patterns. For instance, Microcystis sp. 北部水库的夏季和南部水库的冬季都会出现藻华。然而,藻类群落的爆发呈现出不同的模式。例如,微囊藻(Microcystis sp. of Cyanophyta proliferated during autumn in the northern reservoirs, whereas Cylindrospermopsis raciborskii of Cyanophyta thrived during summer in the southern reservoirs. 秋季,北部水库中的蓝藻属植物大量繁殖,而南部水库中的蓝藻属植物 Cylindrospermopsis raciborskii 则在夏季大量繁殖。 These variations might be attributed to fluctuations in the water environment (especially the water temperature and nutrients)(Shi et al., 2023; Wang et al., 2020; Xu et al., 2024; Zhang et al., 2023). 这些变化可能归因于水环境(尤其是水温和营养物质)的波动(Shi 等人,2023 年;Wang 等人,2020 年;Xu 等人,2024 年;Zhang 等人,2023 年)。 The alpha diversity index also demonstrated the seasonal fluctuation in the algal community. α多样性指数也显示了藻类群落的季节性波动。 The Chao1 index, Shannon index, and Simpson index all reached their lowest levels in the northern reservoirs during autumn, which could potentially be attributed to the occurrence of Microcystis sp. outbreak in autumn. 北部水库的 Chao1 指数、Shannon 指数和 Simpson 指数均在秋季达到最低水平,这可能与微囊藻在秋季爆发有关。 An abrupt and dramatic surge in the abundance of a single species of algae could lead to the displacement of other species by occupying their living space, thereby engaging in competition for shared environmental resources (Zhong et al., 2010). 单一藻类物种数量的突然剧增可能导致其他物种因占据其生存空间而被取代,从而参与对共享环境资源的竞争(Zhong 等人,2010 年)。 It was important to pay attention to the seasonal changes in the reservoirs will lead to changes in the physical and chemical water quality parameters(Wang et al., 2023). 重要的是要注意水库的季节性变化会导致物理和化学水质参数的变化(Wang 等人,2023 年)。 The correlation between variations in the algal community and alterations in environmental factors has been extensively demonstrated by numerous studies (Aktan et al., 2014). 藻类群落的变化与环境因素的变化之间的相关性已被大量研究证实(Aktan 等人,2014 年)。
4.2. Environmental factors driving the algal community structure 4.2.影响藻类群落结构的环境因素
Temperature(Huo et al., 2022), pH(Munk and Faure, 2004), and nutrient ratio(Savichtcheva et al., 2015) exerted significant influences on the community structure of algae. 温度(Huo 等,2022 年)、pH 值(Munk 和 Faure,2004 年)和营养比率(Savichtcheva 等,2015 年)对藻类群落结构有显著影响。 In this research, water temperature significantly positively influenced the algal community structure within both the southern and northern reservoirs. 在这项研究中,水温对南部和北部水库中的藻类群落结构都有明显的积极影响。 The observed phenomenon might be attributed to the impact of temperature fluctuations on the alterations in nutrient composition within the aquatic environment (Savichtcheva et al., 2015), which aligned with the findings obtained through the PLS-PM analysis conducted in this study. 观察到的现象可能归因于温度波动对水生环境中营养成分变化的影响(Savichtcheva et al. However, in the northern reservoirs, water temperature had a greater impact on the algal community structure than it did in the southern reservoirs, possibly due to the inhibitory effect of lower temperature in winter (minimum: 6.13^(@)C6.13{ }^{\circ} \mathrm{C} ) on enzymatic reactions involved in phytoplankton photosynthesis and respiration intensity(Rost et al., 2008). However, the higher water temperature (minimum value: 16.98^(@)C16.98^{\circ} \mathrm{C} ) in the southern reservoirs in winter had a weaker inhibitory effect on the growth of phytoplankton (Ras et al., 2013). Consequently, this study revealed that Cyanophyta blooms in the northern and southern reservoirs predominantly transpire during autumn rather than summer. 然而,北部水库的水温对藻类群落结构的影响要大于南部水库,这可能是由于冬季较低的温度(最低值: 6.13^(@)C6.13{ }^{\circ} \mathrm{C} )对浮游植物光合作用和呼吸强度所涉及的酶反应具有抑制作用(Rost 等人,2008 年)。然而,南方水库冬季较高的水温(最低值: 16.98^(@)C16.98^{\circ} \mathrm{C} )对浮游植物生长的抑制作用较弱(Ras 等,2013 年)。因此,这项研究表明,北部和南部水库的蓝藻水华主要发生在秋季,而不是夏季。 In addition, the impacts of nutrients on metals varied between the southern and northern reservoirs. 此外,南部水库和北部水库的营养物质对金属的影响也各不相同。 The higher phosphorus concentration in the northern reservoir inhibited the mobility of heavy metal ions in the sediments(Chen et al., 2017; Liu et al., 2023), while the higher temperature in the southern reservoir promoted the release of heavy metal ions in the sediments(Schuck and Greger, 2023). 北部水库较高的磷浓度抑制了沉积物中重金属离子的迁移(Chen 等,2017;Liu 等,2023),而南部水库较高的温度则促进了沉积物中重金属离子的释放(Schuck 和 Greger,2023)。
Nitrogen and phosphorus were the key drivers for the growth of algae(Reynolds, 2006). The growth of algae was facilitated by their ability to absorb inorganic nutrients from the aquatic environment and 氮和磷是藻类生长的主要驱动力(Reynolds,2006 年)。藻类能从水生环境中吸收无机营养物质,从而促进其生长。
convert them into organic nutrients. The results of the alpha diversity and Mantel test revealed that the algal community variation was significantly negatively correlated with nitrogen content, which was in accordance with previous research results(Zhu et al., 2016). 将其转化为有机养分。α多样性和Mantel检验结果表明,藻类群落变异与氮含量呈显著负相关,这与之前的研究结果一致(Zhu等人,2016)。 The rise in temperature during spring facilitated the enrichment of nutrients. The growth of plants necessitated a supply of inorganic nitrogen(Cardinale, 2011; Stockenreiter et al., 2016), thereby facilitating the proliferation of Bacillariophyta (Krause et al., 2021). 春季气温的升高促进了养分的富集。植物的生长需要无机氮的供应(Cardinale,2011 年;Stockenreiter 等人,2016 年),从而促进了芽生藻的繁殖(Krause 等人,2021 年)。 The negative correlation between nitrogen and algal community diversity in JP, LJH, and XL reservoir may be attributed to it. The rise in nitrogen concentration was not accompanied by a corresponding increase in the algal community diversity. JP、LJH 和 XL 水库中氮与藻类群落多样性之间的负相关关系可能就是由此造成的。氮浓度的增加并没有伴随着藻类群落多样性的相应增加。 The concentration of TN in the JP reservoir exhibited a rapid increase, reaching its peak ( 1.83mg//L1.83 \mathrm{mg} / \mathrm{L} ) in May, while concurrently observing the lowest value for Shannon and Simpson index. This could be attributed to the proliferation of Achnanthes sp. and Navicula sp., which rapidly became the dominant species from April to May. Similarly, the concentration of NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} in the XL reservoir reached its peak ( 1.45mg//L1.45 \mathrm{mg} / \mathrm{L} ) in April, while its Shannon, Simpson, and Pielou index reached its lowest level. This could be attributed to the significant proliferation of Cymbella sp. from March to April. The annual total nitrogen concentration in TG and SY reservoir (TG reservoir: 0.40-1.18mg//L,SY0.40-1.18 \mathrm{mg} / \mathrm{L}, \mathrm{SY} reservoir: 0.45-0.88 mg//L\mathrm{mg} / \mathrm{L} ) was comparatively lower than that in other reservoirs, which could potentially contributed to Bacillariophyta outbreak during spring (Baumann et al., 2014). Water temperature exhibited a negative correlation with TN and NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} while displaying a positive correlation with NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N}, which was similar to previous studies(Reynolds, 2006). JP 水库中 TN 的浓度呈快速上升趋势,在 5 月份达到峰值( 1.83mg//L1.83 \mathrm{mg} / \mathrm{L} ),同时香农指数和辛普森指数达到最低值。这可能是由于 Achnanthes sp.和 Navicula sp.的大量繁殖,它们在 4 月至 5 月期间迅速成为优势物种。同样,XL 水库中 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 的浓度在 4 月份达到最高值( 1.45mg//L1.45 \mathrm{mg} / \mathrm{L} ),而其香农指数、辛普森指数和皮鲁指数则达到最低值。这可能是由于 3 月至 4 月期间蚬子大量繁殖的缘故。TG 和 SY 水库(TG 水库: 0.40-1.18mg//L,SY0.40-1.18 \mathrm{mg} / \mathrm{L}, \mathrm{SY} 水库:0.45-0.88 mg//L\mathrm{mg} / \mathrm{L} )的年总氮浓度相对低于其他水库,这可能是春季芽胞藻爆发的潜在原因(Baumann 等人,2014 年)。水温与 TN 和 NO_(3)^(-)-N\mathrm{NO}_{3}^{-}-\mathrm{N} 呈负相关,而与 NH_(4)^(+)-N\mathrm{NH}_{4}^{+}-\mathrm{N} 呈正相关,这与之前的研究结果类似(Reynolds,2006 年)。 Thermal stratification caused by rising water temperature usually leads to an anoxic state at the bottom of the reservoirs, which caused dissolved phosphorus and ammonia nitrogen in sediments to be released into the water body, and nitrate in the water body was reduced by denitrification at the same time(Farrell et al., 2020). 水温升高引起的热分层通常会导致水库底部缺氧,从而使沉积物中的溶解磷和氨氮释放到水体中,同时水体中的硝酸盐也会通过反硝化作用而减少(Farrell 等人,2020 年)。 The growth rate of phytoplankton and nutrient uptake would be enhanced by water temperature increase, thereby leading to a subsequent decrease in nutrient concentration (Reynolds, 2006). 水温升高会提高浮游植物的生长速度和养分吸收率,从而导致养分浓度随之下降(Reynolds,2006 年)。
In addition, the study found that DOC, pH , and metals also had a notable effect on the algal community structure. 此外,研究还发现 DOC、pH 值和金属对藻类群落结构也有显著影响。 Alkaline water would promote the liberation of metal ions involved in Fe and Mn from sediments, which would be released into the water and have a certain impact on the community structure of algae(Munk and Faure, 2004). 碱性水会促进沉积物中铁和锰金属离子的释放,这些金属离子会释放到水中,并对藻类群落结构产生一定影响(Munk 和 Faure,2004 年)。 The growth and metabolism of algae were supported by the utilization of DOC in water, thus establishing a negative correlation between the algal community structure and DOC. 藻类的生长和新陈代谢依赖于对水中 DOC 的利用,因此藻类群落结构与 DOC 之间存在负相关。
4.3. Ecological model analyzing assembly mechanism 4.3.分析组装机制的生态模型
Co-occurrence networks could reveal complex relationships among microorganisms in reservoirs(Faust and Raes, 2012). 共生网络可以揭示水库中微生物之间的复杂关系(Faust 和 Raes,2012 年)。 The number of positive edges in the reservoirs significantly exceeded that of negative edges, suggesting that the predominant interactions between microorganisms in these reservoirs were cooperative or mutualistic. 水库中正边的数量大大超过负边,这表明这些水库中微生物之间的相互作用主要是合作或互利的。 In terms of the topological structure, in the northern reservoirs, the stability of the network structure was marginally higher than that in the southern reservoirs. However, its complexity did not reach the same level as that found in the southern reservoirs. 在拓扑结构方面,北部水库网络结构的稳定性略高于南部水库。但是,其复杂程度却没有达到南部水库的水平。 Microorganisms did not exist in isolation but interacted with each other to form a complex ecological network. For community network structure, the presence of key taxa was crucial for stability(Coux et al., 2016). The key taxa differed in different reservoirs. 微生物不是孤立存在的,而是相互影响,形成复杂的生态网络。对于群落网络结构而言,关键类群的存在对其稳定性至关重要(Coux 等人,2016 年)。不同水库的关键类群各不相同。 In the northern reservoirs, Aphanizomenon sp. was identified as the key taxa, while Coelosphaerium sp. was found to be the predominant taxa in the southern reservoirs. The findings implied that varying ecological environments may give rise to distinct key taxa. 在北部水库中,Aphanizomenon sp.被确定为关键类群,而在南部水库中,Coelosphaerium sp.则是主要类群。研究结果表明,不同的生态环境可能会产生不同的关键类群。
There were two types of mechanisms that could affect the community assembly: deterministic and stochastic. The comprehension of the prevalence of stochastic and deterministic processes in microbial communities was crucial for elucidating how microbial communities were assembled. 有两类机制可能影响群落的形成:确定性机制和随机机制。了解微生物群落中随机过程和确定过程的普遍性对于阐明微生物群落是如何形成的至关重要。 The majority of studies examined environmental influences 大多数研究审查了环境影响因素
on the microbial community structure, which was studied from the deterministic perspective(Bååth, 1996; Torsvik et al., 2002). Bååth, 1996; Torsvik et al. The results of this research, however, indicated that the assembly mechanism of algal communities in the reservoirs primarily followed a stochastic process. 但研究结果表明,水库中藻类群落的集结机制主要遵循随机过程。 Compared to the northern reservoirs, The explanatory power of the stochastic process was greater in the southern reservoirs, while niche breadth revealed a significantly lower ecological niche breadth in the northern reservoirs than in the southern reservoirs. 与北部水库相比,南部水库的随机过程解释力更强,而生态位广度显示北部水库的生态位广度明显低于南部水库。 This indicated reduced environmental adaptability and increased susceptibility to environmental impacts, which aligned with previous findings. 这表明环境适应能力下降,更容易受到环境影响,这与之前的研究结果一致。 The study of the assembly mechanism of the algal community was of great significance for clarifying the correlation between species and maintaining species diversity(Chen et al., 2022; Ji et al., 2020). 藻类群落组装机制的研究对于阐明物种之间的相关性和维持物种多样性具有重要意义(Chen 等,2022;Ji 等,2020)。 The assembly of microbial community was primarily influenced by environmental selection and diffusion limitations(Ma et al., 2023). The findings of our study indicated that the algal community in the northern reservoirs was significantly influenced by diffusion limitation. 微生物群落的形成主要受环境选择和扩散限制的影响(Ma 等,2023 年)。我们的研究结果表明,北部水库的藻类群落受扩散限制的影响很大。 In contrast, the algal community in the southern reservoirs experienced relatively less diffusion limitation. Diffusion limitation is related to geographical isolation (Heino et al., 2014). 相比之下,南部水库的藻类群落受到的扩散限制相对较少。扩散限制与地理隔离有关(Heino 等人,2014 年)。 In this study, the three reservoirs in the southern region were interconnected, facilitating continuous migration of phytoplankton with water and mitigating diffusion limitation. 在这项研究中,南部地区的三个水库相互连接,有利于浮游植物随水不断迁移,缓解了扩散限制。 However, the selected reservoirs in the northern region lacked interconnectivity, resulting in spatial isolation and exacerbating diffusion obstacle. 然而,北部地区选定的水库缺乏互联互通,造成了空间上的隔离,加剧了扩散障碍。 According to the C-score results, the community co-occurrence patterns of both the northern and southern reservoirs tended to be stochastic. Previous studies had shown similar results(Caruso et al., 2011). 根据 C 评分结果,北部和南部水库的群落共现模式都趋于随机。之前的研究也显示了类似的结果(Caruso 等人,2011 年)。 In this study, the formation of the algal community was largely influenced by stochastic processes. However, the influence of environmental factors on the algal community could not be disregarded. 在这项研究中,藻类群落的形成主要受随机过程的影响。然而,环境因素对藻类群落的影响也不容忽视。 A hypothesis: Most of the initial formation of the microbial community was governed by stochastic processes, while deterministic processes became dominant in the later stage as environmental heterogeneity increased. 一个假设:微生物群落最初形成的大部分过程是由随机过程控制的,而后期随着环境异质性的增加,确定性过程成为主导。 Eventually, a stable level of deterministic processes was reached when the environment stabilized(Dini-Andreote et al., 2015). The interaction between processes that were deterministic and stochastic gave rise to the occurrence of this phenomenon. 最终,当环境趋于稳定时,确定性过程达到了稳定水平(Dini-Andreote 等人,2015 年)。确定性过程和随机过程之间的相互作用导致了这一现象的发生。 The dynamic variation in the algal community was the outcome of the interplay between stochastic processes and environmental factors. 藻类群落的动态变化是随机过程和环境因素相互作用的结果。
5. Conclusion 5.结论
This study investigated the changes in algal community structure in different seasons, examined the impact of environmental factors on it, and explored the assembly mechanism of northern and southern reservoirs. 本研究调查了不同季节藻类群落结构的变化,研究了环境因素对其的影响,并探讨了南北水库的组装机制。 During the survey, there were notable seasonal fluctuations observed in environmental parameters in the reservoirs. Cyanophyta, Chlorophyta, and Bacillariophyta were the main algae in reservoirs. 调查期间,水库的环境参数出现了明显的季节性波动。水库中的主要藻类是蓝藻、叶绿藻和芽孢藻。 The dominant species of Chlorophyta consistently prevailed throughout most seasons, whereas the occurrences of Cyanophyta and Bacillariophyta exhibited seasonal variability. Compared to the northern reservoirs, the southern reservoirs had a greater diversity of algae. 在大多数季节里,叶绿藻类的优势物种始终占主导地位,而青叶藻类和枯叶藻类的出现则表现出季节性变化。与北部水库相比,南部水库的藻类多样性更高。 The diversity and algal community structure were significantly influenced by water temperature and nitrogen concentration, with the northern reservoirs exhibiting greater susceptibility to environmental factors compared to the southern reservoirs. 多样性和藻类群落结构受水温和氮浓度的显著影响,与南部水库相比,北部水库更容易受到环境因素的影响。 The interactions between algal communities in the reservoirs primarily involved mutualism. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. 水库中藻类群落之间的相互作用主要涉及互生作用。北部水库中的关键类群是 Aphanizomenon sp.,而南部水库中的爆发类群是 Coelosphaerium sp. The formation of the algal communities in the reservoirs was dominated by the stochastic process, with a greater degree of dominance in the southern reservoirs compared to the northern reservoirs. 水库中藻类群落的形成以随机过程为主,与北部水库相比,南部水库的随机过程占主导地位。 The variations in algal community structure between the two reservoirs were attributed to deterministic and stochastic processes. 两个水库之间藻类群落结构的变化可归因于确定性和随机过程。 The present study employed ecological models to preliminarily investigate the algal community assembly mechanism in both southern and northern reservoirs. 本研究采用生态模型对南部和北部水库的藻类群落集结机制进行了初步研究。
Subsequently, the community can be further categorized for a classified examination of the algal community formation pattern. 随后,可以对群落进行进一步分类,以便对藻类群落的形成模式进行分类检查。
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 作者声明,他们没有任何可能会影响本文所报告工作的已知经济利益或个人关系。
Data availability 数据可用性
The authors do not have permission to share data. 作者未获准共享数据。
Acknowledgments 致谢
This study was funded by the National Key Research and Development Program of China (No. 2022YFC3203604), National Natural Science Foundation of China (Nos. 本研究得到国家重点研发计划(2022YFC3203604)、国家自然科学基金(No. 52270168, 51978561, 52170012, and 52300012), Youth Innovation Team of Shaanxi Universities (20202023), Grant from Youth Innovation Team of Shaanxi Universities in 2021 and 2023 (No. 21JP061, and No. 52270168、51978561、52170012、52300012)、陕西省高校青年创新团队(20202023)、陕西省高校青年创新团队 2021、2023 年度资助(编号:21JP061、编号:21JP061)、陕西省高校青年创新团队 2021、2023 年度资助(编号:21JP061、编号:21JP061)。 23JP084), and Scientific Research Program Funded by Education Department of Shaanxi Provincial Government (No. 22JY034). 23JP084)和陕西省政府教育厅科学研究资助项目(编号:22JY034)。
Appendix A. Supplementary data 附录 A.补充数据
Supplementary data to this article can be found online at https://doi. org/10.1016/j.scitotenv.2024.171285. 本文的补充数据可在https://doi. org/10.1016/j.scitotenv.2024.171285.
References 参考资料
Aktan, Y., Balkis, N., Balkis, N., 2014. Seasonal variations of epipelic algal community in relation to environmental factors in the Istanbul Strait (the Bosphorus), Turkey. Mar. Pollut. Bull. 81, 268-275. https://doi.org/10.1016/j.marpolbul.2014.01.027. Aktan, Y., Balkis, N., Balkis, N., 2014.土耳其伊斯坦布尔海峡(博斯普鲁斯海峡)附生藻群落与环境因素的季节变化。Mar.Pollut.Bull.81, 268-275.https://doi.org/10.1016/j.marpolbul.2014.01.027.
Alonso, D., Etienne, R.S., McKane, A.J., 2006. The merits of neutral theory. Trends Ecol. Evol. 21, 451-457. https://doi.org/10.1016/j.tree.2006.03.019. Alonso, D., Etienne, R.S., McKane, A.J., 2006.The merits of neutral theory.Trends Ecol.21, 451-457.https://doi.org/10.1016/j.tree.2006.03.019.
Araujo, M.B., Rozenfeld, A., Rahbek, C., Marquet, P.A., 2011. Using species cooccurrence networks to assess the impacts of climate change. Ecography 34, 897-908. https://doi.org/10.1111/j.1600-0587.2011.06919.x. Araujo, M.B., Rozenfeld, A., Rahbek, C., Marquet, P.A., 2011.使用物种共生网络评估气候变化的影响。生态学》34,897-908。https://doi.org/10.1111/j.1600-0587.2011.06919.x.
Ayele, H.S., Atlabachew, M., 2021. Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia. Environ. Sci. Pollut. Res. Int. 28, 14233-14252. https://doi.org/10.1007/s11356-020-12081-4. Ayele, H.S., Atlabachew, M., 2021.Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia.Environ.Sci.Res. Int. 28, 14233-14252.https://doi.org/10.1007/s11356-020-12081-4.
Bååth, E., 1996. Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiol. Ecol. 19, 227-237. https://doi.org/10.1111/j.15746941.1996.tb00215.x. Bååth, E., 1996.土壤细菌群落对不同土壤pH值的适应性。FEMS Microbiol.Ecol.19, 227-237.https://doi.org/10.1111/j.15746941.1996.tb00215.x.
Barberan, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343-351. https://doi.org/10.1038/ismej.2011.119. Barberan, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012.使用网络分析探索土壤微生物群落中的共生模式。6, 343-351.https://doi.org/10.1038/ismej.2011.119.
Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A.M., Packmann, A.I., 2016. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251-263. https://doi.org/10.1038/nrmicro.2016.15. Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A.M., Packmann, A.I., 2016.溪流生物膜的生态学与生物地球化学。Nat.Rev. Microbiol.14, 251-263.https://doi.org/10.1038/nrmicro.2016.15.
Baumann, M.S., Moran, S.B., Lomas, M.W., Kelly, R.P., Bell, D.W., Krause, E.W., 2014. Diatom control of the autotrophic community and particle export in the eastern Bering Sea during the recent cold years(2008-2010). J. Mar. Res. 72, 405-444. https://doi.org/10.1357/002224014815540679. Baumann, M.S., Moran, S.B., Lomas, M.W., Kelly, R.P., Bell, D.W., Krause, E.W., 2014.最近寒冷年份(2008-2010 年)白令海东部硅藻对自养群落和颗粒输出的控制。J. Mar.72, 405-444.https://doi.org/10.1357/002224014815540679.
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219. https://doi.org/ 10.3389/fmicb.2014.00219. Berry, D., Widder, S., 2014.利用共生网络解密微生物相互作用并检测关键物种。Front.Microbiol.5, 219.https://doi.org/ 10.3389/fmicb.2014.00219.
Cai, Y., Kong, F., 2013. Diversity and dynamics of picocyanobacteria and the bloomforming cyanobacteria in a large shallow eutrophic lake (Lake Chaohu, China). J. Limnol. 72 https://doi.org/10.4081/jlimnol.2013.e38. Cai, Y., Kong, F., 2013.大型浅表富营养化湖泊(中国巢湖)中微囊藻和水华蓝藻的多样性与动态。J. Limnol.72 https://doi.org/10.4081/jlimnol.2013.e38.
Cardinale, B.J., 2011. Biodiversity improves water quality through niche partitioning. Nature 472, 86-99. https://doi.org/10.1038/nature09904. Cardinale, B.J., 2011.生物多样性通过生态位分配改善水质。Nature 472, 86-99.https://doi.org/10.1038/nature09904.
Caruso, T., Chan, Y., Lacap, D.C., Lau, M.C.Y., McKay, C.P., Pointing, S.B., 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406-1413. https://doi.org/10.1038/ ismej.2011.21. Caruso, T., Chan, Y., Lacap, D.C., Lau, M.C.Y., McKay, C.P., Pointing, S.B., 2011.全球范围内沙漠微生物群落组装过程中的随机和确定过程相互作用。5, 1406-1413.https://doi.org/10.1038/ ismej.2011.21.
Chaffron, S., Rehrauer, H., Pernthaler, J., von Mering, C., 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947-959. https://doi.org/10.1101/gr.104521.109. Chaffron, S., Rehrauer, H., Pernthaler, J., von Mering, C., 2010.来自环境和全基因组序列数据的共存微生物全球网络。Genome Res. 20, 947-959.https://doi.org/10.1101/gr.104521.109.
Chapra, S.C., Boehlert, B., Fant, C., Victor, J., Bierman, J., Henderson, J., Mills, D., et al., 2017. Climate change impacts on harmful algal blooms in US freshwaters a screening-level assessment. Environ. Sci. Technol. 51, 8933-8943. https://doi.org/ 10.1021/acs.est.7b01498. Chapra, S.C., Boehlert, B., Fant, C., Victor, J., Bierman, J., Henderson, J., Mills, D., et al., 2017.气候变化对美国淡水有害藻华的影响筛选级评估。Environ.Sci. Technol.51, 8933-8943.https://doi.org/ 10.1021/acs.est.7b01498.
Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.H., et al., 2020a. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009. Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.H., et al., 2020a.TBtools: an integrative toolkit developed for interactive analyses of big biological data.Mol. Plant 13, 1194-1202.Plant 13, 1194-1202.https://doi.org/10.1016/j.molp.2020.06.009.
Chen, C.Z., Li, P., Yin, M.H., Wang, J.X., Sun, Y.J., Ju, W.M., et al., 2023a. Deciphering characterization of seasonal variations in microbial communities of marine ranching: diversity, co-occurrence network patterns, and assembly processes. Mar. Pollut. Bull. 197, 115739 https://doi.org/10.1016/j.marpolbul.2023.115739. Chen, C.Z., Li, P., Yin, M.H., Wang, J.X., Sun, Y.J., Ju, W.M., et al., 2023a.Deciphering characterization of seasonal variations in microbial communities of marine ranching: diversity, co-occurrence network patterns, and assembly processes.Mar.Pollut.Bull.197, 115739 https://doi.org/10.1016/j.marpolbul.2023.115739.
Chen, K., Meng, Z.H., Li, X.M., Hu, F.F., Du, H.C., Liu, L., et al., 2022. Community structure and functional diversity of fishes in Zhelin reservoir. Jiangxi Province. Acta Ecol. Sin. 42, 4592-4602. https://doi.org/10.5846/stxb202106031466. Chen, K., Meng, Z.H., Li, X.M., Hu, F.F., Du, H.C., Liu, L., et al., 2022.柘林水库鱼类群落结构与功能多样性》。江西省。Acta Ecol.Sin.42, 4592-4602.https://doi.org/10.5846/stxb202106031466.
Chen, M.S., Ding, S.M., Zhang, L.P., Li, Y.Y., Sun, Q., Zhang, C.S., 2017. An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Sci. Total Environ. 575, 330-337. https://doi.org/ 10.1016/j.scitotenv.2016.10.063. Chen, M.S., Ding, S.M., Zhang, L.P., Li, Y.Y., Sun, Q., Zhang, C.S., 2017.水中磷含量升高对沉积物中重金属释放的高分辨率影响研究.总环境科学》,575, 330-337.575, 330-337.https://doi.org/ 10.1016/j.scitotenv.2016.10.063.
Chen, S.N., He, H.Y., Zong, R.R., Liu, K.W., Miao, Y.T., Yan, M.M., et al., 2020b. Geographical patterns of algal communities associated with different urban lakes in China. Int. J. Environ. Res. Public Health 17, 1009. https://doi.org/10.3390/ ijerph17031009. Chen, S.N., He, H.Y., Zong, R.R., Liu, K.W., Miao, Y.T., Yan, M.M., et al., 2020b.中国不同城市湖泊相关藻类群落的地理模式。Int. J. Environ.环境。Res. Public Health 17, 1009.https://doi.org/10.3390/ ijerph17031009.
Chen, S.N., Liu, H.Y., Zhang, H.H., Li, K., Wang, N., Sun, W.M., et al., 2023b. Temporal patterns of algae in different urban lakes and their correlations with environment-al variables in Xi’an, China. J. Environ. Sci. (China) 133, 138-151. https://doi.org/ 10.1016/j.jes.2022.07.036. Chen, S.N., Liu, H.Y., Zhang, H.H., Li, K., Wang, N., Sun, W.M., et al., 2023b.中国西安不同城市湖泊藻类的时间模式及其与环境变量的相关性。J. Environ.中国)133,138-151。https://doi.org/ 10.1016/j.jes.2022.07.036.
Coux, C., Rader, R., Bartomeus, I., Tylianakis, J.M., 2016. Linking species functional roles to their network roles. Ecol. Lett. 19, 762-770. https://doi.org/10.1111/ ele. 12612. Coux, C., Rader, R., Bartomeus, I., Tylianakis, J.M., 2016.将物种的功能作用与其网络作用联系起来。Ecol.Lett.19, 762-770.https://doi.org/10.1111/ ele.12612.
Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. USA 112, E1326-E1332. https://doi.org/10.1073/pnas. 1414261112. Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015.微生物演替中介导随机过程与确定过程之间平衡的机制。Proc.Natl.USA 112, E1326-E1332.https://doi.org/10.1073/pnas.1414261112.
Farrell, K.J., Ward, N.K., Krinos, A.I., Hanson, P.C., Daneshmand, V., Figueiredo, R.J., et al., 2020. Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state. Ecol. Model. 430, 109134 https://doi.org/ 10.1016/j.ecolmodel.2020.109134. Farrell, K.J., Ward, N.K., Krinos, A.I., Hanson, P.C., Daneshmand, V., Figueiredo, R.J., et al., 2020.生态系统尺度营养循环对气温升高的响应随湖泊营养状态而变化。Ecol.Model.430, 109134 https://doi.org/ 10.1016/j.ecolmodel.2020.109134.
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538-550. https://doi.org/10.1038/nrmicro2832. Faust, K., Raes, J., 2012.微生物相互作用:从网络到模型。Nat.Rev. Microbiol.10, 538-550.https://doi.org/10.1038/nrmicro2832.
Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626-631. https://doi.org/10.1073/ pnas. 0507535103. Fierer, N., Jackson, R.B., 2006.土壤细菌群落的多样性和生物地理学。Proc.Natl.USA 103, 626-631.https://doi.org/10.1073/ pnas. 0507535103.
Freilich, M.A., Wieters, E., Broitman, B.R., Marquet, P.A., Navarrete, S.A., 2018. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690-699. https://doi.org/10.1002/ecy.2142. Freilich, M.A., Wieters, E., Broitman, B.R., Marquet, P.A., Navarrete, S.A., 2018.物种共生网络:它们能揭示生态群落中的营养与非营养相互作用吗?生态学》99,690-699。https://doi.org/10.1002/ecy.2142.
Gilbert, P.M., 2017. Eutrophication, harmful algae and biodiversity - challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591-606. https://doi.org/10.1016/j.marpolbul.2017.04.027. Gilbert, P.M., 2017.富营养化、有害藻类和生物多样性--复杂营养物质变化世界中的挑战范式。Mar.Pollut.Bull.124, 591-606.https://doi.org/10.1016/j.marpolbul.2017.04.027.
Glibert, P.M.S., Seitzinger, C.A., Heil, J.M., Burkholder, M.W., Parrow, L.A., Codispoti, V. K., 2005. The role of eutrophication in the global proliferation of harmful algal blooms. Oceanography 18, 198-209. https://doi.org/10.5670/oceanog.2005.54. Glibert, P.M.S., Seitzinger, C.A., Heil, J.M., Burkholder, M.W., Parrow, L.A., Codispoti, V. K., 2005.The role of eutrophication in the global proliferation of harmful algal blooms.Oceanography 18, 198-209.https://doi.org/10.5670/oceanog.2005.54.
Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., Bini, L.M., 2014. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845-869. https://doi.org/10.1111/ fwb. 12533. Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., Bini, L.M., 2014.Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects.Freshw.60, 845-869.https://doi.org/10.1111/ fwb. 12533.
Ho, J.C., Michalak, A.M., Pahlevan, N., 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667. https://doi.org/10.1038/ s41586-019-1648-7. Ho, J.C., Michalak, A.M., Pahlevan, N., 2019.20世纪80年代以来全球湖泊浮游植物密集繁殖的广泛增长。Nature 574, 667.https://doi.org/10.1038/ s41586-019-1648-7.
Hong, W.Q., Mei, H., Shi, X.Y., Lin, X.X., Wang, S.J., Ni, R.J., et al., 2024. Viral community distribution, assembly mechanism, and associated hosts in an industrial park wastewater treatment plant. Environ. Res. 247, 118156 https://doi.org/ 10.1016/j.envres.2024.118156. Hong, W.Q., Mei, H., Shi, X.Y., Lin, X.X., Wang, S.J., Ni, R.J., et al., 2024.工业园区污水处理厂病毒群落分布、聚集机制及相关宿主。环境。247, 118156 https://doi.org/ 10.1016/j.envres.2024.118156.
Huo, S.L., Zhang, H.X., Wang, J.F., Chen, J.G., Wu, F.C., 2022. Temperature and precipitation dominates millennium changes of eukaryotic algal communities in Lake Yamzhog Yumco, Southern Tibetan Plateau. Sci. Total Environ. 829, 154636 https://doi.org/10.1016/j.scitotenv.2022.154636. Huo, S.L., Zhang, H.X., Wang, J.F., Chen, J.G., Wu, F.C., 2022.温度与降水主导青藏高原南部山卓雍错湖真核藻类群落的千年变化.Sci.829, 154636 https://doi.org/10.1016/j.scitotenv.2022.154636.
Ji, M., Kong, W., Stegen, J., Yue, L., Wang, F., Dong, X., et al., 2020. Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan plateau grassland soils. Environ. Microbiol. 22, 2261-2272. https://doi. org/10.1111/1462-2920.14993. Ji, M., Kong, W., Stegen, J., Yue, L., Wang, F., Dong, X., et al., 2020.青藏高原草地土壤中稀有细菌和丰富细菌相似生物地理格局的不同组装机制。Environ.Microbiol.22, 2261-2272.https://doi. org/10.1111/1462-2920.14993.
Jung, S.W., Kwon, O.Y., Lee, J.H., Han, M.-S., 2009. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyc-eae) growing in eutrophic conditions in the lower Han River, South Korea. J. Freshw. Ecol. 24, 219-226. https://doi.org/10.1080/02705060.2009.9664286. Jung, S.W., Kwon, O.Y., Lee, J.H., Han, M.-S., 2009.水温和硅酸盐对韩国汉江下游富营养化条件下生长的冬季开花硅藻 Stephanodiscus hantzschii(Bacillariophyc-eae)的影响。J. Freshw.Ecol.24, 219-226.https://doi.org/10.1080/02705060.2009.9664286.
Krause, J.W., Lomas, M.W., Danielson, S.L., 2021. Diatom growth, biogenic silica production, and grazing losses to microzooplankton during spring in the northern Ber-ing and Chukchi Seas. Deep-Sea Res. II Top. Stud. Oceanogr. 191, 104950 https://doi.org/10.1016/j.dsr2.2021.104950. Krause, J.W., Lomas, M.W., Danielson, S.L., 2021.Diatom growth, biogenic silica production, and grazing losses to microzooplankton during spring in the northern Ber-ing and Chukchi Seas.Deep-Sea Res.深海研究》II Top.191, 104950 https://doi.org/10.1016/j.dsr2.2021.104950.
Liu, X.Z., Liu, Q.Q., Sheng, Y.Q., 2023. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. Environ. Res. 238, 117135 https://doi.org/10.1016/j.envres.2023.117135. Liu, X.Z., Liu, Q.Q., Sheng, Y.Q., 2023.上覆水体中的营养物质影响沿岸沉积物中重金属的环境行为。环境。Res. 238, 117135 https://doi.org/10.1016/j.envres.2023.117135.
Ma, C., Cui, R.B., Duan, Y.X., Zhang, N.N., Liu, Y., Sui, F.Y., et al., 2023. Differences in biodiversity and assembly mechanisms between planktonic and benthic diatom communities in riverine ecosystems: a case study in the Ashi river. Ecol. Indic. 157, 111258 https://doi.org/10.1016/j.ecolind.2023.111258. Ma, C., Cui, R.B., Duan, Y.X., Zhang, N.N., Liu, Y., Sui, F.Y., et al., 2023.河流生态系统中浮游硅藻群落与底栖硅藻群落的生物多样性及组装机制差异--以芦溪为例.Ecol.Indic.157, 111258 https://doi.org/10.1016/j.ecolind.2023.111258.
Munk, L., Faure, G., 2004. Effects of pH fluctuations on potentially toxic metals in the water and sediment of the Dillon reservoir, Summit County, Colorado. Appl. Geochem. 19, 1065-1074. https://doi.org/10.1016/j.apgeochem.2004.01.006. Munk, L., Faure, G., 2004.pH 值波动对科罗拉多州高峰县狄龙水库水和沉积物中潜在有毒金属的影响。Appl.19, 1065-1074.https://doi.org/10.1016/j.apgeochem.2004.01.006.
Qin, B.Q., Zhang, Y.L., Zhu, G.W., Gong, Z.J., Deng, J.M., Hamilton, D.P., et al., 2020. Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? Proc. Natl. Acad. Sci. USA 117, 21000-21002. https://doi.org/10.1073/pnas. 2013445117. Qin, B.Q., Zhang, Y.L., Zhu, G.W., Gong, Z.J., Deng, J.M., Hamilton, D.P., et al., 2020.中国湖泊的氮磷比是否真的在增加?Proc.Natl.USA 117, 21000-21002.https://doi.org/10.1073/pnas.2013445117.
Ras, M., Steyer, J.-P., Bernard, O., 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 12, 153-164. https:// doi.org/10.1007/s11157-013-9310-6. Ras, M., Steyer, J.-P., Bernard, O., 2013.温度对微藻的影响:室外生产的关键因素。Rev. Environ.Sci. Biotechnol.12, 153-164. https:// doi.org/10.1007/s11157-013-9310-6.
Reynolds, C.S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge. Reynolds, C.S., 2006.浮游植物生态学》。剑桥大学出版社,剑桥。
Rinne, H., Kostamo, K., 2022. Distribution and species composition of red algal communities in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 269, 107806 https://doi.org/10.1016/j.ecss.2022.107806. Rinne, H., Kostamo, K., 2022.波罗的海北部红藻群落的分布和物种组成。Estuar.Coast.Shelf Sci. 269, 107806 https://doi.org/10.1016/j.ecss.2022.107806.
Rost, B., Zondervan, I., Wolf-Gladrow, D., 2008. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 373, 227-237. https://doi.org/10.3354/ meps07776. Rost, B., Zondervan, I., Wolf-Gladrow, D., 2008.Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions.Mar.Ecol.Prog.373, 227-237.https://doi.org/10.3354/ meps07776.
Sammartino, M., Di Cicco, A., Marullo, S., Santoleri, R., 2015. Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satel-lite ocean colour data of SeaWiFS. Ocean Sci. 11, 759-778. https://doi.org/10.5194/os-11-759-2015. Sammartino, M., Di Cicco, A., Marullo, S., Santoleri, R., 2015.从 SeaWiFS 卫星海洋颜色数据看地中海微、纳、皮浮游植物的时空变异性。Ocean Sci. 11, 759-778.https://doi.org/10.5194/os-11-759-2015.
Savichtcheva, O., Debroas, D., Perga, M.E., Arnaud, F., Villar, C., Lyautey, E., et al., 2015. Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshw. Biol. 60, 31-49. https://doi.org/10.1111/fwb.12465. Savichtcheva, O., Debroas, D., Perga, M.E., Arnaud, F., Villar, C., Lyautey, E., et al., 2015.养分和气候变暖对 Planktothrix 动态和多样性的影响:基于沉积 DNA 和 RNA 的古环境学观点。Freshw.60, 31-49.https://doi.org/10.1111/fwb.12465.
Schuck, M., Greger, M., 2023. Salinity and temperature influence removal levels of heavy metals and chloride from water by wetland plants. Environ. Sci. Pollut. Res. Int. 30, 58030-58040. https://doi.org/10.1007/s11356-023-26490-8. Schuck, M., Greger, M., 2023.盐度和温度对湿地植物去除水中重金属和氯化物水平的影响。Environ.30, 58030-58040.30, 58030-58040.https://doi.org/10.1007/s11356-023-26490-8.
Shi, J.H., Ni, L.X., Liu, J.M., Xu, C., Zhang, J.H., Chen, X.Q., 2023. Spatiotemporal distribution of phytoplankton community structure and its relationship with environ-mental factors in Hongze Lake, China. Urban Clim. 52, 101746 https://doi. org/10.1016/j.uclim.2023.101746. Shi, J.H., Ni, L.X., Liu, J.M., Xu, C., Zhang, J.H., Chen, X.Q., 2023.中国洪泽湖浮游植物群落结构时空分布及其与环境因子的关系.Urban Clim.52, 101746 https://doi. org/10.1016/j.uclim.2023.101746.
Shi, Y., Li, Y.T., Xiang, X.J., Sun, R.B., Yang, T., He, D., et al., 2018. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6, 1-12. https://doi.org/ 10.1186/s40168-018-0409-4. Shi, Y., Li, Y.T., Xiang, X.J., Sun, R.B., Yang, T., He, D., et al., 2018.空间尺度影响华北平原麦田土壤细菌群落随机性与决定性的相对作用。微生物组 6, 1-12.https://doi.org/ 10.1186/s40168-018-0409-4.
Stockenreiter, M., Haupt, F., Seppälä, J., Tamminen, T., Spilling, K., 2016. Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Res. 15, 77-82. https://doi.org/10.1016/j.algal.2016.02.013. Stockenreiter, M., Haupt, F., Seppälä, J., Tamminen, T., Spilling, K., 2016.在废水中生长的多种微藻群落的营养吸收和脂质产量。Algal Res. 15, 77-82.https://doi.org/10.1016/j.algal.2016.02.013.
Sun, K., Deng, W.Q., Jia, J.J., Gao, Y., 2023. Spatiotemporal patterns and drivers of phytoplankton primary productivity in China’s lakes and reservoirs at a national scale. Glob. Planet. Chang. 228, 104215 https://doi.org/10.1016/j. gloplacha.2023.104215. Sun, K., Deng, W.Q., Jia, J.J., Gao, Y., 2023.中国全国湖库浮游植物初级生产力的时空格局与驱动因素。Glob.Planet.Chang.228, 104215 https://doi.org/10.1016/j. gloplacha.2023.104215.
Torsvik, V., Ovreas, L., Thingstad, T.F., 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296, 1064-1066. https://doi.org/ 10.1126/science. 1071698. Torsvik, V., Ovreas, L., Thingstad, T.F., 2002.原核生物多样性--数量、动态和控制因素。Science 296, 1064-1066.https://doi.org/ 10.1126/science.1071698.
Wang, K.Y., Huang, L., He, G.J., Fang, H.W., Chen, M.H., Wang, D.C., et al., 2023. Spatial-temporal evolution of sediment transport in the upper Yangtze River basin considering the cumulative impacts of mega reservoirs. Catena 232, 107370. https://doi.org/10.1016/j.catena.2023.107370. Wang, K.Y., Huang, L., He, G.J., Fang, H.W., Chen, M.H., Wang, D.C., et al., 2023.考虑特大型水库累积影响的长江上游流域泥沙输移时空演变.Catena 232, 107370.https://doi.org/10.1016/j.catena.2023.107370.
Wang, R., Liu, X.W., Wu, J.J., Wai, T.-C., Shen, P.P., Lam, P.K.S., 2020. Long-term variations of phytoplankton community in relations to environmental factors in Deep Bay, China, from 1994 to 2016. Mar. Pollut. Bull. 153, 111010 https://doi.org/ 10.1016/j.marpolbul.2020.111010. Wang, R., Liu, X.W., Wu, J.J., Wai, T.-C., Shen, P.P., Lam, P.K.S., 2020.1994-2016年后海湾浮游植物群落与环境因子的长期变化.Mar.Pollut.Bull.153, 111010 https://doi.org/ 10.1016/j.marpolbul.2020.111010.
Wei, J., Li, Q., Liu, W., Zhang, S., Xu, H., Pei, H., 2023. Changes of phytoplankton and water environment in a highly urbanized subtropical lake during the past ten years. Sci. Total Environ. 879, 162985 https://doi.org/10.1016/j.scitotenv.2023.162985. Wei, J., Li, Q., Liu, W., Zhang, S., Xu, H., Pei, H., 2023.过去十年高度城市化亚热带湖泊浮游植物与水环境的变化.Sci.879, 162985 https://doi.org/10.1016/j.scitotenv.2023.162985.
Xu, S.N., Xiao, Y.Y., Xu, Y.W., Su, L., Cai, Y.C., Qi, Z.H., et al., 2024. Effects of season-al variations and environmental factors on phytoplankton community structure a-nd abundance in Beibu gulf, China. Ocean Coast. Manag. 248, 106982 https://doi.org/ 10.1016/j.ocecoaman.2023.106982. Xu, S.N., Xiao, Y.Y., Xu, Y.W., Su, L., Cai, Y.C., Qi, Z.H., et al., 2024.季节变化和环境因子对中国北部湾浮游植物群落结构和丰度的影响。Ocean Coast.管理。248, 106982 https://doi.org/ 10.1016/j.ocecoaman.2023.106982.
Yang, Y.G., Chen, H.H., Mamun, A., Ndayishimiye, J.C., Yang, J.R., Isabwe, A., et al., 2022. Urbanization reduces resource use efficiency of phytoplankton community by altering the environment and decreasing biodiversity. J. Environ. Sci. 112, 140-151. https://doi.org/10.1016/j.jes.2021.05.001. Yang, Y.G., Chen, H.H., Mamun, A., Ndayishimiye, J.C., Yang, J.R., Isabwe, A., et al., 2022.城市化通过改变环境和减少生物多样性降低浮游植物群落的资源利用效率。J. Environ.112, 140-151.https://doi.org/10.1016/j.jes.2021.05.001.
Zhang, H.H., Zong, R.R., He, H.Y., Liu, K.W., Yan, M.M., Miao, Y.T., et al., 2021. Biogeographic distribution patterns of algal community in different urban lakes in China: insights into the dynamics and co-existence. J. Environ. Sci. 100, 216-227. https://doi.org/10.1016/j.jes.2020.07.024. Zhang, H.H., Zong, R.R., He, H.Y., Liu, K.W., Yan, M.M., Miao, Y.T., et al., 2021.中国不同城市湖泊藻类群落的生物地理学分布模式:动态与共生的启示。J. Environ.100, 216-227.https://doi.org/10.1016/j.jes.2020.07.024.
Zhang, H.H., Ma, M.L., Huang, T.L., Miao, Y.T., Li, H.Y., Liu, K.W., et al., 2022a. Spatial and temporal dynamics of actinobacteria in drinking water reservoirs: novel insights into abundance, community structure, and co-existence model. Sci. Total Environ. 814, 152804 https://doi.org/10.1016/j.scitotenv.2021.152804. Zhang, H.H., Ma, M.L., Huang, T.L., Miao, Y.T., Li, H.Y., Liu, K.W., et al., 2022a.饮用水水库放线菌的时空动态:关于丰度、群落结构和共存模型的新见解。Sci.814, 152804 https://doi.org/10.1016/j.scitotenv.2021.152804.
Zhang, H.H., Yang, Y.S., Liu, X., Huang, T.L., Ma, B., Li, N., et al., 2023. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological m-odel. Sci. Total Environ. Zhang, H.H., Yang, Y.S., Liu, X., Huang, T.L., Ma, B., Li, N., et al., 2023.中国西北饮用水水库浮游植物与微真核细胞季节动态及共存模式的新见解:DNA 数据与生态 m 模型.科学。 857, 159160 https://doi.org/10.1016/j.scitotenv.2022.159160.
Zhang, S., Ali, A., Su, J.F., Huang, T.L., Li, M., 2022b. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. Water Res. 209, 117899 https://doi.org/10.1016/j. watres.2021.117899. Zhang, S., Ali, A., Su, J.F., Huang, T.L., Li, M., 2022b.氧化还原介质在微生物占优势的固定化生物反应器中去除硝酸盐的性能和增强机制。Water Res. 209, 117899 https://doi.org/10.1016/j. watres.2021.117899.
Zhao, F., Xu, H., Kang, L.J., Zhao, X.C., 2022a. Spatial and seasonal change in algal community structure and its interaction with nutrient dynamics in a gravel-bed urb-an river. J. Hazard. Mater. 425, 127775 https://doi.org/10.1016/j. jhazmat. 2021.127775. Zhao, F., Xu, H., Kang, L.J., Zhao, X.C., 2022a.一条砾石床城市河流中藻类群落结构的空间和季节变化及其与营养动态的相互作用。J. Hazard.Mater.425, 127775 https://doi.org/10.1016/j. jhazmat.2021.127775.
Zhao, L.Y., Li, N., Huang, T.L., Zhang, H.H., Si, F., Li, K., et al., 2022b. Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir. J. Environ. Sci. 111, 130-140. https://doi.org/10.1016/j. jes.2021.03.024. Zhao, L.Y., Li, N., Huang, T.L., Zhang, H.H., Si, F., Li, K., et al., 2022b.人工诱导完全混合对分层源水库中溶解有机物的影响。J. Environ.111, 130-140.https://doi.org/10.1016/j. jes.2021.03.024.
Zhong, L.P., Cao, Y., Li, W.Y., Pan, W.P., Xie, K.C., 2010. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants. J. Fuel Chem. Technol. 38, 641-646. https://doi.org/10.1016/S1872-5813(11)60001-7. Zhong, L.P., Cao, Y., Li, W.Y., Pan, W.P., Xie, K.C., 2010.现有大气污染物控制装置对燃煤电厂汞排放的影响。J. Fuel Chem.Technol.38, 641-646.https://doi.org/10.1016/S1872-5813(11)60001-7.
Zhou, J., Lao, Y.M., Song, J.T., Jin, H., Zhu, J.M., Cai, Z.H., 2020. Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. Water Res. 183, 116020 https://doi.org/10.1016/j. watres.2020.116020. Zhou, J., Lao, Y.M., Song, J.T., Jin, H., Zhu, J.M., Cai, Z.H., 2020.天然藻华期间微生物群落和代谢活动的时间异质性。Water Res. 183, 116020 https://doi.org/10.1016/j. watres.2020.116020.
Zhou, J.Z., Ning, D.L., 2017. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002-17 https://doi.org/10.1128/MMBR. Zhou, J.Z., Ning, D.L., 2017.随机群落组装:它在微生物生态学中重要吗?Microbiol.Mol.Biol.Rev. 81, e00002-17 https://doi.org/10.1128/MMBR.
Zhu, W., Zhou, X.H., Chen, H.M., Gao, L., Xiao, M., Li, M., 2016. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: evidence from field investigations and laboratory experiments. Water Res. 101, 167-175. https://doi.org/10.1016/j.watres.2016.05.080. Zhu, W., Zhou, X.H., Chen, H.M., Gao, L., Xiao, M., Li, M., 2016.高营养浓度和温度可减轻微囊藻大菌落的形成:来自现场调查和实验室实验的证据。Water Res. 101, 167-175.https://doi.org/10.1016/j.watres.2016.05.080.
Corresponding authors at: Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi’an University of Architecture and Technology, Xi’an 710055, China. 通讯作者:陕西省水污染控制与水质安全保障协同创新中心,西安建筑科技大学,中国西安,710055陕西省水污染控制与水质安全保障协同创新中心,西安建筑科技大学,中国西安 710055。