关键词:北极;海冰;不稳定性;非线性动力学;气候模型;季节循环
1. Introduction 1. 引言
Arctic sea ice is undergoing a striking, closely monitored, and highly publicized decline. A recurring theme in the debate surrounding this decline is the question of how stable the ice cover is, and specifically whether it can become unstable. This question is often linked to the ice–albedo feedback, which is expected to play a key role in the observed sea ice retreat.
北极海冰正经历显著、受到密切监测和高度宣传的下降。在围绕这一下降的辩论中,一个反复出现的主题是冰盖的稳定性问题,特别是它是否会变得不稳定。这个问题通常与冰—反照率反馈相关联,预计在观察到的海冰退缩中发挥关键作用。
The ice–albedo feedback has been studied since at least the nineteenth century, when Croll (1875) investigated its importance for the climate system, and it has had a major role in climate science since then. The feedback is associated with a nonlinearity in the climate system due to the jump in local albedo between ice-free and ice-covered surface conditions. This nonlinearity has long been expected to affect the stability of the climate system in the sense that it can potentially trigger abrupt transitions between ice-free and ice-covered regimes (e.g., Budyko 1966). The bifurcations associated with such abrupt transitions are often referred to as “tipping points.”
冰-反照率反馈自至少十九世纪以来就已被研究,当时 Croll(1875)探讨了其对气候系统的重要性,从那时起它在气候科学中发挥了重要作用。该反馈与气候系统中的非线性相关,这种非线性是由于无冰和有冰表面条件之间局部反照率的跳跃所引起的。长期以来,人们预计这种非线性会影响气候系统的稳定性,因为它可能会触发无冰和有冰状态之间的突变过渡(例如,Budyko 1966)。与这种突变过渡相关的分岔通常被称为“临界点”。
The idea of an irreversible jump from one stable state to another gained momentum when studies using idealized latitudinally varying diffusive energy balance models (EBMs) of the annual-mean equilibrium state of the global climate (Budyko 1969; Sellers 1969) encountered such bistability in realistic parameter regimes (Budyko 1972; Held and Suarez 1974). These early studies were primarily concerned with the possibility of a catastrophic transition to a completely ice-covered planet, typically called the “snowball earth instability.” In addition, however, many studies have shown that small polar ice covers that terminated poleward of about 75° latitude are also typically unstable in EBMs, a feature referred to as the “small ice cap instability” (SICI) [see review in North (1984)]. More recent studies of the SICI in EBMs have, for example, compared this behavior with global climate model (GCM) results (Winton 2008) and identified additional bifurcations when a more complex representation of energy transport is used (Rose and Marshall 2009).
不可逆跃迁从一个稳定状态到另一个稳定状态的想法在使用理想化的经度变化扩散能量平衡模型(EBMs)研究全球气候年均平衡状态时获得了动力(Budyko 1969;Sellers 1969),并在现实参数范围内遇到了这种双稳态(Budyko 1972;Held 和 Suarez 1974)。这些早期研究主要关注于向完全冰盖行星的灾难性转变的可能性,通常称为“雪球地球不稳定性”。此外,许多研究表明,终止于大约 75°纬度以北的小极地冰盖在 EBMs 中通常也是不稳定的,这一特征被称为“小冰盖不稳定性”(SICI)[参见 North(1984)的综述]。最近对 EBMs 中 SICI 的研究,例如,将这种行为与全球气候模型(GCM)结果进行了比较(Winton 2008),并在使用更复杂的能量传输表示时识别出额外的分岔(Rose 和 Marshall 2009)。
A bistability analogous to the SICI was found by Thorndike (1992) in an idealized single-column model (SCM) of Arctic sea ice and climate. In contrast with EBMs, this model had no representation of spatial variations, but it included seasonal variations. Modeling the sea ice seasonal cycle required representations of thermodynamic processes associated with sea ice thickness changes. More recently, a number of studies using a range of similar SCMs identified bistability and bifurcations associated with the loss of the sea ice cover (Flato and Brown 1996; Björk and Söderkvist 2002; Eisenman 2007; Eisenman and Wettlaufer 2009; Müller-Stoffels and Wackerbauer 2011; Abbot et al. 2011; Moon and Wettlaufer 2011; Eisenman 2012; Moon and Wettlaufer 2012; Müller-Stoffels and Wackerbauer 2012; Björk et al. 2013).
Thorndike(1992)在一个理想化的单柱模型(SCM)中发现了类似于 SICI 的双稳态,该模型用于研究北极海冰和气候。与能量平衡模型(EBMs)相比,该模型没有空间变化的表示,但包含了季节变化。模拟海冰季节循环需要对与海冰厚度变化相关的热力学过程进行表示。最近,许多使用各种相似 SCM 的研究识别出了与海冰覆盖丧失相关的双稳态和分岔现象(Flato 和 Brown 1996;Björk 和 Söderkvist 2002;Eisenman 2007;Eisenman 和 Wettlaufer 2009;Müller-Stoffels 和 Wackerbauer 2011;Abbot 等人 2011;Moon 和 Wettlaufer 2011;Eisenman 2012;Moon 和 Wettlaufer 2012;Müller-Stoffels 和 Wackerbauer 2012;Björk 等人 2013)。
The results of these EBMs and SCMs stand in contrast with results from most comprehensive GCMs, which typically have found no evidence of bistability (e.g., Armour et al. 2011) and simulate a smooth transition from modern conditions to a seasonally ice-free Arctic (Winton 2006; Ridley et al. 2008; Winton 2008; Tietsche et al. 2011; Ridley et al. 2012). In these simulations, the Arctic and Antarctic sea ice areas typically scale approximately linearly with global-mean temperature (Gregory et al. 2002; Winton 2011; Armour et al. 2011), displaying no indication of instability. The loss of the wintertime-only sea ice cover in a very warm climate (i.e., the transition from seasonally ice-free to perennially ice-free conditions) also typically occurs in a smooth and linear fashion in GCMs (Ridley et al. 2008; Winton 2008; Armour et al. 2011). One GCM showed some evidence of nonlinearity during this transition (Winton 2008), but further analysis suggests that the nonlinearity is not sufficient to cause bistability in this case (Li et al. 2013). In other words, even though the ice–albedo feedback is operating in comprehensive GCMs, they simulate strikingly linear sea ice changes. In contrast to comprehensive GCMs, an atmosphere-only GCM with no seasonal cycle was found to simulate bistability resembling the SICI (Langen and Alexeev 2004), and a GCM with simplified atmospheric physics and idealized ocean geometries was found to simulate bistability with the ice edge of the cold state located at considerably lower latitudes than the SICI (Ferreira et al. 2011).
这些 EBMs 和 SCMs 的结果与大多数综合 GCMs 的结果形成对比,后者通常没有发现双稳态的证据(例如,Armour 等,2011 年),并模拟了从现代条件到季节性无冰北极的平滑过渡(Winton 2006;Ridley 等,2008 年;Winton 2008;Tietsche 等,2011 年;Ridley 等,2012 年)。在这些模拟中,北极和南极的海冰面积通常与全球平均温度大致呈线性缩放关系(Gregory 等,2002 年;Winton 2011;Armour 等,2011 年),没有显示出不稳定的迹象。在非常温暖的气候中,冬季仅有的海冰覆盖的消失(即从季节性无冰到永久性无冰条件的过渡)在 GCMs 中通常也以平滑和线性的方式发生(Ridley 等,2008 年;Winton 2008;Armour 等,2011 年)。一项 GCM 在这一过渡期间显示出一些非线性的证据(Winton 2008),但进一步分析表明,这种非线性不足以在这种情况下导致双稳态(Li 等,2013 年)。换句话说,尽管冰-反照率反馈在综合 GCMs 中发挥作用,但它们模拟的海冰变化却显得异常线性。 与综合气候模型(GCM)相比,发现一个没有季节循环的仅大气 GCM 能够模拟出类似于 SICI 的双稳态(Langen 和 Alexeev 2004),而一个具有简化大气物理和理想化海洋几何形状的 GCM 则发现能够模拟出双稳态,其冷态的冰缘位于比 SICI 低得多的纬度(Ferreira 等,2011)。
The discrepancy between the instabilities found in idealized models and the smooth ice retreat found in most comprehensive GCMs raises a conundrum: Is the disagreement between the two approaches the result of a fundamental misrepresentation of the underlying physics in GCMs, or is it rather the result of some aspect of the simplifications used in the idealized models? In more general terms, what physical processes dictate whether there are multiple sea ice states under a given forcing? These questions are the focus of this study.
理想化模型中发现的不稳定性与大多数综合气候模型(GCMs)中观察到的平滑冰层退缩之间的差异引发了一个难题:这两种方法之间的不一致是 GCMs 在基础物理上的根本性误表述所致,还是理想化模型中所使用的某些简化方面的结果?更一般地说,哪些物理过程决定在给定强迫下是否存在多种海冰状态?这些问题是本研究的重点。
Our approach is essentially to add a standard SCM representation of seasonally varying sea ice thickness to a standard EBM, thereby combining the two classes of modeling approaches. We therefore study a system that is akin to the idealized models discussed above, but it incorporates both spatial and seasonal variations, taking a small step from conventional idealized models toward comprehensive GCMs and ultimately nature. We investigate how the inclusion of both variations influences the stability of the ice cover, focusing specifically on whether or not unstable solutions occur such that warming and cooling the climate leads to a hysteresis loop.
我们的方法本质上是将季节性变化的海冰厚度的标准 SCM 表示添加到标准 EBM 中,从而结合这两类建模方法。因此,我们研究的系统类似于上述讨论的理想化模型,但它结合了空间和季节变化,向传统的理想化模型迈出了小一步,朝着综合 GCMs 及最终的自然发展。我们调查了这两种变化的纳入如何影响冰盖的稳定性,特别关注不稳定解是否会出现,从而导致气候变暖和变冷形成滞后回路。
Note that seasonally varying EBMs have been employed previously to study how idealized land–ocean configurations dictate the glaciation of polar regions (North and Coakley 1979; North et al. 1983; Lin and North 1990; Huang and Bowman 1992). Furthermore, several EBM studies have included some representation of a seasonal cycle and sea ice thickness changes (Suarez and Held 1979; Morales Maqueda et al. 1998; Bendtsen 2002; Bitz and Roe 2004). However, these previous studies have not considered how the inclusion of a seasonal cycle affects the stability of the system.
请注意,季节性变化的能量平衡模型(EBMs)之前已被用于研究理想化的陆地-海洋配置如何决定极地地区的冰川化(North 和 Coakley 1979;North 等人 1983;Lin 和 North 1990;Huang 和 Bowman 1992)。此外,一些 EBM 研究已包含季节循环和海冰厚度变化的某种表现(Suarez 和 Held 1979;Morales Maqueda 等人 1998;Bendtsen 2002;Bitz 和 Roe 2004)。然而,这些先前的研究并未考虑季节循环的纳入如何影响系统的稳定性。
The article is structured as follows: in section 2 we formulate the diffusive energy balance sea ice model. The simulated climate in the default parameter regime and its response to forcing are presented in section 3. Section 4 discusses how the model reduces to a standard EBM and a standard SCM as limiting cases in the parameter space. Section 5 investigates the presence of bistability as parameters are varied. Conclusions are presented in section 6.
本文的结构如下:在第二节中,我们构建了扩散能量平衡海冰模型。默认参数范围内的模拟气候及其对强迫的响应在第三节中呈现。第四节讨论了模型如何在参数空间的极限情况下简化为标准的能量平衡模型(EBM)和标准的气候模型(SCM)。第五节研究了在参数变化时双稳态的存在。结论在第六节中给出。
2. Model of sea ice and climate
2. 海冰与气候模型
Here we derive the model used in this study, which is an idealized representation of sea ice and climate with seasonal and latitudinal variations in a global domain. The surface is an aquaplanet with an ocean mixed layer that includes sea ice when conditions are sufficiently cold. We consider only zonally uniform climates (Fig. 1).
在这里,我们推导了本研究中使用的模型,该模型是对海冰和气候的理想化表征,具有全球范围内的季节性和纬度变化。表面是一个水面行星,具有一个混合层的海洋,当条件足够寒冷时包括海冰。我们仅考虑纬向均匀的气候(图 1)。
a. Representation of model state
模型状态的表示
SCM 通常将季节性变化的海冰厚度 h(t) 计算为预报变量。冰的表面温度 T 是基于 h 和表面能量通量进行诊断计算的。当冰厚度达到零时,SCM 通常会演变为固定深度的海洋混合层的温度(Thorndike 1992 及后续研究)。该温度在海洋混合层中被视为垂直均匀,因此等于表面温度 T。为了简洁地考虑冰存在时的冰厚度和冰不存在时的海洋混合层温度,SCM 可以演变表面焓 E(t),其定义为(Eisenman 和 Wettlaufer 2009)。
其中 L 是海冰的潜热,c w 是海洋混合层的热容,等于海洋混合层比热容、密度和深度的乘积。熔点 T m 被近似为其淡水值的常数。所有模型参数的默认值在第 2d 节中讨论,并在表 1 中总结。
Default parameter values.
默认参数值。
In contrast to SCMs, standard EBMs compute the equilibrium value of the spatially varying surface temperature T(x). Here, x ≡ sinθ with latitude θ, such that x = 0 at the equator and x = 1 at the North Pole.
与标准的 EBM 相比,SCM 计算空间变化的表面温度 T(x)的平衡值。在这里,x ≡ sinθ,其中θ为纬度,因此在赤道时 x = 0,在北极时 x = 1。
The model developed here evolves the surface enthalpy as a function of both time and latitude E(t, x). A standard SCM is represented in each latitudinal grid box, and the grid boxes are coupled via latitudinal diffusion of T, as is done in standard EBMs. The temperature T represents either (i) the temperature of the ocean mixed layer in the absence of ice or (ii) the ice surface temperature when ice is present. Below, we begin by discussing the seasonally varying EBM formulation that will be used to give spatial dependence, and then we add an SCM representation at each latitudinal grid box to evolve sea ice thickness. The reader who is primarily interested in the model results may skip to section 3.
这里开发的模型将表面焓作为时间和纬度 E(t, x) 的函数进行演变。每个纬度网格箱中都表示一个标准的 SCM,并且通过 T 的纬度扩散将网格箱耦合,正如标准的 EBM 所做的那样。温度 T 代表 (i) 在没有冰的情况下海洋混合层的温度,或 (ii) 在存在冰的情况下冰面温度。下面,我们首先讨论将用于提供空间依赖性的季节性变化 EBM 公式,然后在每个纬度网格箱中添加一个 SCM 表示,以演变海冰厚度。主要对模型结果感兴趣的读者可以跳到第 3 节。
b. EBM formulation with seasonal variations
b. 具有季节变化的 EBM 配方
E(t, x)的时间演变在每个纬度上由进入大气柱和下面表面的净能量通量决定:
包括来自大气顶层的净太阳辐射通量 aS、外辐射长波辐射 (OLR) L、大气中的经向热输送 D∇ 2 T,以及来自下方海洋进入模型域的热通量 F b (见图 1)。下面将讨论这些项。最后,方程 (2) 中的 F 代表一个空间均匀、季节性恒定的气候强迫,在某些模型运行中有所变化。增加 F 可以被解释为大气中 CO 2 的增加,例如,类似于全球气候模型 (GCM) 模拟中的全球变暖情景。
Note that most EBMs compute only the equilibrium climate state, ∂E/∂t = 0 in Eq. (2), whereas here we consider the time evolution of the system. Since we are considering an aquaplanet, and the ocean mixed layer has an effective heat capacity that is more than an order of magnitude higher than the atmosphere (North and Coakley 1979), we neglect the heat capacity of the atmospheric column. This implies that the vertical temperature profile in the atmosphere at a given time and latitude is fully determined by T.
请注意,大多数 EBM 仅计算平衡气候状态,即在方程(2)中∂E/∂t = 0,而在这里我们考虑系统的时间演变。由于我们考虑的是一个水星球,并且海洋混合层的有效热容比大气高出一个数量级(North 和 Coakley 1979),我们忽略了大气柱的热容。这意味着在给定时间和纬度下,大气中的垂直温度分布完全由 T 决定。
1) Solar radiation 1) 太阳辐射
根据 North 和 Coakley(1979)的研究,我们使用辐射强度的近似表示
其中 S 0 是赤道的年均辐射量,S 1 决定季节性辐射变化的幅度,ω = 2π yr −1 是年频率,S 2 决定赤道到极地的辐射梯度(表 1)。请注意,S(t, x) 的空间依赖性在这里没有使用勒让德多项式,后者在 EBM 文献中经常被使用,因为它们能够提供解析解。我们选择这种等效的简单表示法,因为这里所呈现的模型是通过数值方法求解的。
一些入射辐射被反射回太空,其余部分被吸收。被吸收的入射太阳辐射的比例称为行星反照率或大气顶反照率(TOA),即一减去反照率。它依赖于包括太阳天顶角、云层以及表面反射冰的存在等因素(Lian 和 Cess 1977)。与 North(1975b)类似,我们将行星反照率表示为
在这里, 0 、 2 和一个是经验参数(见表 1)。在冰缘处,a(x, E)的离散跳跃引入了非线性,因此可能出现多种状态。然而,在下一节中加入冰厚度演变将进一步增加非线性。一些研究考虑了冰与水之间的各种平滑反照率过渡(例如,Cahalan 和 North 1979;Eisenman 和 Wettlaufer 2009),但为了简化,我们在此避免讨论。
2) OLR
根据 Budyko(1969)的研究,我们将地表温度的外向长波辐射(OLR)表示为线性函数
其中 A 和 B 是经验参数(表 1)。
3) Heat transport 热传输
根据 North(1975b)的观点,气候系统中的经向热通量被近似为与表面温度的经向梯度成正比,从而像具有恒定扩散率 D 的扩散过程一样影响表面温度的演变。由于在球形地球上经线的汇聚,经向扩散呈现出以下形式(North 1975b)。
季节循环引入了一个小的季节性变化的赤道热传输。为了概念上的透明性和计算的便利性,我们将这种赤道跨越热通量近似为零,从而使我们能够将模型域限制在单个半球。忽略这一点在本节描述的能量平衡模型中导致任何纬度在任何季节的温度变化不超过 0.3 K。在 x = 0 处将 E > 0(开水)代入方程(1)到方程(6)中,得到赤道边界条件。
在极点(x = 1),由于经线汇聚,方程(6)中的热传输对于任何温度分布都趋于零,因此不需要边界条件。
4) Ocean heat flux 4) 海洋热通量
The upward heat flux (Fb) from the deep ocean into the base of the sea ice or ocean mixed layer, which is associated with heat flux convergence within the ocean column below the mixed layer, is crudely approximated to be constant in space and time. We choose a value of Fb appropriate for the Arctic Ocean, where there is net horizontal ocean heat flux convergence (see section 2d). Note that while this choice helps to accurately simulate conditions in the Arctic Ocean, and treating Fb as constant retains simplicity in the model formulation, this makes the global ocean a heat source, albeit a weak one. This heating is ultimately compensated by increasing the default value of A to get an observationally consistent default climate.
从深海到海冰或海洋混合层底部的向上热通量(F b ),与混合层下的海洋柱内的热通量汇聚相关,粗略地近似为在空间和时间上是恒定的。我们选择一个适合北冰洋的 F b 值,在那里存在净水平海洋热通量汇聚(见第 2d 节)。请注意,虽然这个选择有助于准确模拟北冰洋的条件,并且将 F b 视为常数保持了模型公式的简单性,但这使得全球海洋成为一个热源,尽管是一个微弱的热源。这种加热最终通过增加默认值 A 来补偿,以获得与观测一致的默认气候。
Note that in the absence of sea ice, ∂E/∂t = cw∂T/∂t on the left-hand side of Eq. (2). Hence the model so far is a fairly standard EBM with the addition of time dependence, seasonally varying forcing, and specified ocean heat flux convergence.
请注意,在没有海冰的情况下,方程(2)左侧的 ∂E/∂t = c w ∂T/∂t。因此,到目前为止,该模型是一个相当标准的能量平衡模型,增加了时间依赖性、季节性变化的强迫和指定的海洋热通量收敛。
c. Addition of SCM physics
c. SCM 物理的添加
Next, we add a representation of sea ice thickness evolution to the model and compute the resulting effect on the surface temperature. This is done by coupling Eq. (2) to an SCM representation of thermodynamic sea ice growth and melt (Fig. 1). Note that energy fluxes are represented in the present model at the top of the atmosphere, as in typical EBMs, in contrast to typical SCMs, which consider surface fluxes.
接下来,我们将海冰厚度演变的表征添加到模型中,并计算其对表面温度的影响。这是通过将方程(2)与热力学海冰生长和融化的 SCM 表征耦合来实现的(图 1)。请注意,当前模型中的能量通量是在大气顶部表示的,类似于典型的能量平衡模型(EBMs),而与典型的 SCMs 相反,后者考虑的是表面通量。
We approximately follow the SCM developed in Eisenman (2012). This SCM can be directly derived (cf. Eisenman and Wettlaufer 2009) as an approximate representation of the SCM of Maykut and Untersteiner (1971), which represents processes including vertical energy flux between the ice and the atmosphere, vertical conduction of heat within the ice, vertical heat flux between the ice and the ocean below (Fb), basal congelation during the winter growth season, and surface and basal ablation during the summer season.
我们大致遵循 Eisenman(2012)中开发的 SCM。该 SCM 可以直接推导(参见 Eisenman 和 Wettlaufer 2009),作为 Maykut 和 Untersteiner(1971)SCM 的近似表示,表示包括冰与大气之间的垂直能量通量、冰内部的垂直热传导、冰与下面海洋之间的垂直热通量(F b )、冬季生长季节的基底凝结,以及夏季的表面和基底消融等过程。
Vertical heat conduction within the ice is governed by a diffusion equation for the internal ice temperature. Here we assume that the energy associated with phase changes is much larger than the energy associated with temperature changes within the ice. Equivalently, the relevant Stefan number NS ≡ (LfΔh)(cihΔT)−1 (Eisenman 2012), satisfies NS ≫ 1, where ci is the specific heat of the ice. In this approximation, the vertical diffusion gives a linear temperature profile, with temperature varying from T ≤ Tm at the top surface to Tm at the bottom surface. The heat flux upward through the ice is then equal to k(Tm − T)/h, where k is the ice thermal conductivity, which we treat as constant.
冰内的垂直热传导由内部冰温度的扩散方程控制。在这里,我们假设与相变相关的能量远大于与冰内温度变化相关的能量。等效地,相关的斯特凡数 N S ≡ (LΔh)(chΔT) −1 (Eisenman 2012) 满足 N S ≫ 1,其中 c 是冰的比热。在这个近似中,垂直扩散给出了线性温度分布,温度从顶部表面的 T ≤ T m 变化到底部表面的 T m 。通过冰向上的热流量等于 k(T m − T)/h,其中 k 是冰的热导率,我们将其视为常数。
If the ocean mixed layer cools to Tm, ice begins to grow. As long as ice is present, the temperature of the ocean mixed layer is set to remain constant at Tm. In this regime, the ocean heat flux Fb goes directly into the bottom of the ice without losing heat to the ocean mixed layer.
如果海洋混合层降温至 T m ,冰开始形成。只要冰存在,海洋混合层的温度将保持在 T m 。在这种情况下,海洋热通量 F b 直接传递到冰底部,而不会向海洋混合层散失热量。
Hence, when ice is present, the change in energy per unit area is equal to the change in E, and the ice thickness (h = −E/Lf) evolves according to Eq. (2). In other words, Eq. (2) applies equivalently for both ice-covered and ice-free conditions. In the model results, we identify the ice edge latitude θi as the latitude where E changes sign, and we similarly define xi ≡ sinθi.
因此,当冰存在时,单位面积的能量变化等于 E 的变化,冰厚度(h = -E/L)根据公式(2)演变。换句话说,公式(2)在冰覆盖和无冰条件下同样适用。在模型结果中,我们将冰缘纬度θ定义为 E 变化符号的纬度,并同样定义 x ≡ sinθ。
当冰存在时,有两种可能的状态,由表面融化阈值分隔:要么 (i) T < T m ,在这种情况下,净表面通量必须为零;要么 (ii) T = T m ,在这种情况下,表面融化与净表面通量成比例发生。我们通过计算表面温度 T 0 来确定适用的情况,该温度将平衡表面能量通量,并确定它是否高于或低于融化点。由于我们将大气的热容视为与海洋混合层相比可以忽略不计,净表面能量通量等于大气顶层能量通量加上大气中的水平能量汇聚。然后从以下公式计算 T 0 :
如果 T 0 < T m ,则表面通量由低于冰点的表面温度平衡,适用冻结状态 (i),此时 T = T 0 。另一方面,T 0 > T m 表明表面通量无法由低于冰点的表面温度平衡,发生表面融化 (ii)。在这种情况下,表面温度保持在熔点 T = T m ,表面融化的计算使用 Stefan 条件,该条件指出,表面融化导致的冰层变薄等于净表面通量除以 L。请注意,这里某一位置的 T 0 值依赖于其他位置的 T 值,因为存在 ∇ 2 T 项,使得该模型的求解比典型的 SCM 要复杂得多。
无冰表面条件可以通过为表面温度添加第三种状态来简洁地包含
Equations (2), (8), and (9) determine the model, which represents the meridionally and seasonally varying global surface temperature and allows sea ice of varying thickness to form when the ocean mixed layer temperature reaches the melting point.
方程(2)、(8)和(9)确定了模型,该模型表示经度和季节变化的全球表面温度,并允许在海洋混合层温度达到融化点时形成不同厚度的海冰。
d. Default parameter values
d. 默认参数值
The default values of all model parameters are given in Table 1. Values for D, B, and cw are adopted from North and Coakley (1979), where cw corresponds to a 75-m ocean mixed layer depth. The values of D typically used in the literature range from D = 0.4 (Lin and North 1990) to 0.66 W m−2 K−1 (Rose and Marshall 2009). The insolation parameters S0 and S2 are adopted from the Legendre polynomial coefficients in North and Coakley (1979). Here we set the parameter dictating the seasonal amplitude of the solar forcing S1 to be 25% larger than the astronomically based value used in North and Coakley (1979) in order to better match the observed seasonal range of sea ice thickness in the central Arctic. Note that this increase in S1 may help account for factors such as seasonally varying cloud cover and water vapor that are not included in the model. Since North and Coakley (1979) do not consider an explicit albedo jump, we adopt coalbedo parameter values (a0, a2, and ai) from North (1975b), converting the Legendre polynomial coefficients into our formalism.
所有模型参数的默认值见表 1。D、B 和 c w 的值采用自 North 和 Coakley(1979),其中 c w 对应于 75 米的海洋混合层深度。文献中通常使用的 D 值范围为 D = 0.4(Lin 和 North 1990)到 0.66 W m −2 K −1 (Rose 和 Marshall 2009)。日照参数 S 0 和 S 2 采用自 North 和 Coakley(1979)中的勒让德多项式系数。这里我们将决定太阳强迫季节振幅的参数 S 1 设置为比 North 和 Coakley(1979)中使用的天文基础值大 25%,以更好地匹配观察到的中央北极海冰厚度的季节范围。请注意,S 1 的增加可能有助于解释模型中未包含的季节性变化的云覆盖和水蒸气等因素。由于 North 和 Coakley(1979)未考虑显式的反照率跃迁,我们采用自 North(1975b)的煤反照率参数值(a 0 、a 2 和 a),将勒让德多项式系数转换为我们的形式。
For the heat flux upward from the ocean Fb, Maykut and Untersteiner (1971) use a value of Fb = 2 W m−2 based on central Arctic observations. Thorndike (1992) adopts a possible range for Fb of 0–10 W m−2. Other observations suggest an annual-mean value of Fb = 5 W m−2 (Maykut and McPhee 1995). We adopt a value within the range of these previous estimates, Fb = 4 W m−2.
对于来自海洋的向上热通量 F b ,Maykut 和 Untersteiner (1971) 基于中央北极观测使用了 F b = 2 W m −2 的值。Thorndike (1992) 采用了 F b 的可能范围为 0–10 W m −2 。其他观测结果表明年均值 F b = 5 W m −2 (Maykut 和 McPhee 1995)。我们采用了这些先前估计范围内的一个值,F b = 4 W m −2 。
We use values for the thermal conductivity k and latent heat of fusion Lf corresponding to pure ice.
我们使用与纯冰相对应的热导率 k 和熔化潜热 L 的值。
Last, we let A = 193 W m−2, similar to the value in Mengel et al. (1988), in order to simulate an annual-mean hemispheric-mean temperature consistent with the observed present-day climate when F = 0.
最后,我们设定 A = 193 W m −2 ,与 Mengel 等人(1988)中的值相似,以便在 F = 0 时模拟与观察到的现代气候一致的年均半球均温。
In the model simulations presented in this study, we vary the climate forcing F, as well as D and S1. For notational convenience, we denote the default values of the latter two parameters as D* and
在本研究中呈现的模型模拟中,我们改变了气候强迫 F,以及 D 和 S 1 。为了方便记号,我们将后两个参数的默认值表示为 D*和 (表 1)。
e. Numerical solution 数值解法
Numerically solving the system of Eqs. (2), (8), and (9) is not straightforward because of the implicit representation of T0 in Eqs. (8) and (9). This represents a nonlinear ordinary differential equation in x that involves a free boundary between melting and freezing ice surfaces that would need to be solved at each time step in a standard forward Euler time-stepping routine. Furthermore, using forward Euler time-stepping for this diffusive system would require very high temporal resolution for numerical stability.
数值求解方程 (2)、(8) 和 (9) 的系统并不简单,因为方程 (8) 和 (9) 中 T 0 的隐式表示。这表示一个关于 x 的非线性常微分方程,涉及融化和冻结冰面之间的自由边界,需要在标准的前向欧拉时间步进过程中在每个时间步上进行求解。此外,对于这个扩散系统,使用前向欧拉时间步进需要非常高的时间分辨率以确保数值稳定性。
To efficiently integrate the model, we instead employ a numerical approach that solves a system of equations that can be visualized in terms of two separate layers. Horizontal diffusion occurs in a “ghost layer” with heat capacity cg, all other processes occur in the main layer, and the temperature of the ghost layer is relaxed toward the temperature of the main layer with time scale τg. This method bypasses the need to solve a differential equation in x at each time step and allows us to use an implicit time-stepping routine with coarse time resolution in the ghost layer. We emphasize that the ghost layer does not represent a separate physical layer such as the atmosphere, which would add physical complexity to the model. This “two layer” system reduces to the system of Eqs. (2), (8), and (9) above in the limit that cg → 0 and τg → 0. In the model simulations, cg and τg are chosen to be sufficiently small that further reducing their values does not substantially influence the numerical solution (values given in Table 1). Further details are given in appendix A.
为了有效地整合模型,我们采用了一种数值方法,解决可以用两个独立层可视化的方程组。水平扩散发生在一个“幽灵层”中,其热容量为 c g ,所有其他过程发生在主层中,幽灵层的温度随着时间尺度 τ g 向主层的温度放松。该方法绕过了在每个时间步长中在 x 方向上求解微分方程的需要,并允许我们在幽灵层中使用隐式时间步进例程,具有粗略的时间分辨率。我们强调,幽灵层并不代表一个独立的物理层,例如大气层,这会给模型增加物理复杂性。这个“两层”系统在 c g → 0 和 τ g → 0 的极限下简化为上述方程 (2)、(8) 和 (9) 的系统。在模型模拟中,c g 和 τ g 被选择为足够小,以至于进一步减小它们的值不会对数值解产生实质性影响(值见表 1)。更多细节见附录 A。
The model is solved numerically in 0 ≤ x ≤ 1 using 400 meridional grid boxes that are equally spaced in x and 1000 time steps per year. The spatial resolution is required to sufficiently resolve the evolution of the sea ice cover, especially in parameter regimes where the SICI region is small. The temporal resolution is chosen to ensure numerical stability of the solution.
该模型在 0 ≤ x ≤ 1 的范围内通过 400 个在 x 方向上均匀分布的经度网格箱和每年 1000 个时间步长进行数值求解。空间分辨率要求足以解析海冰覆盖的演变,特别是在 SICI 区域较小的参数范围内。时间分辨率的选择旨在确保解的数值稳定性。
Code to numerically solve the present model, as well as the standard EBM described in section 2b but with S1 = 0, is available online at http://eisenman.ucsd.edu/code.html.
用于数值求解当前模型的代码,以及在第 2b 节中描述的标准 EBM(但 S 1 = 0),可在线获取,网址为 http://eisenman.ucsd.edu/code.html。
3. Model results in the default parameter regime
3. 默认参数范围内的模型结果
In this section we discuss the simulated climate in the parameter regime (D = D* and S1 =
在本节中,我们讨论在参数范围(D = D* 和 S 1 = )下的模拟气候,首先在 F = 0 的情况下,然后在通过增加 F 来加热气候的情况下,最后在 F 降回时。
a. Simulated modern climate (F = 0)
模拟现代气候 (F = 0)
The simulated climate with all parameters at their default values (Table 1) and F = 0 is illustrated in Fig. 2, where the seasonal cycle of the equilibrated climate is plotted. Figure 2a shows the seasonal cycle of E(t, x), which fully represents the model state since E is the only prognostic variable and the forcing varies seasonally. The associated surface temperature (Fig. 2b) and ice thickness (Fig. 2c) are roughly consistent with present-day climate observations in the Northern Hemisphere. The simulated surface temperature varies approximately parabolic with x from an equatorial temperature of about 30°C throughout the year to a polar temperature of −10°C in winter and −3°C in summer (Fig. 2d). There is perennial sea ice around the pole (Fig. 2e) with ice thickness at the pole varying seasonally between 3.1 and 3.4 m (Fig. 2f). The edge of the sea ice cover ranges from θi = 58° in winter to 76° in summer (Fig. 2g), which can be compared with the observed zonal-mean ice edge latitude in the Northern Hemisphere (Eisenman 2010).
模拟气候在所有参数为默认值(表 1)且 F = 0 的情况下如图 2 所示,其中绘制了平衡气候的季节循环。图 2a 显示了 E(t, x)的季节循环,完全代表了模型状态,因为 E 是唯一的预报变量,强迫因子随季节变化。相关的表面温度(图 2b)和冰厚(图 2c)与北半球当前的气候观测大致一致。模拟的表面温度在 x 方向上大致呈抛物线变化,从赤道温度约 30°C 到冬季极地温度−10°C 和夏季−3°C(图 2d)。极地周围存在常年海冰(图 2e),极地的冰厚在季节间变化,介于 3.1 和 3.4 米之间(图 2f)。海冰覆盖的边缘在冬季为θ = 58°,夏季为 76°(图 2g),这可以与北半球观测到的纬向平均冰缘纬度进行比较(Eisenman 2010)。
The presence of a substantial seasonal sea ice cover in the simulated climate (Fig. 2c), which is qualitatively consistent with observations, stands in contrast with typical SCM results. It has been a conundrum in SCM studies that they have often struggled to simulate a stable seasonal sea ice cover. The SCM in Thorndike (1992) was forced by a square-wave seasonal cycle, with insolation and longwave radiation switching between a constant summer value for half the year and a constant winter value for the other half. It did not feature any stable seasonal ice. The SCM in Eisenman and Wettlaufer (2009), which had smoothly varying insolation and longwave radiation, did feature stable seasonal ice, but only in a relatively small range of climate forcings. In Eisenman and Wettlaufer (2009, see their Fig. S5), this stable seasonal ice was hypothesized to arise because of a larger seasonal amplitude in the longwave forcing than was used by Thorndike (1992). Moon and Wettlaufer (2012) proposed the contrasting hypothesis that the square-wave seasonal cycle in solar forcing was the essential factor preventing the Thorndike (1992) SCM from simulating a stable seasonal ice cover. They suggested that resolving the seasonal cycle in solar forcing with at least two different values during summer was necessary for stable seasonal ice.
在模拟气候中,存在显著的季节性海冰覆盖(图 2c),其定性与观测结果一致,这与典型的单层气候模型(SCM)结果形成对比。在 SCM 研究中,稳定的季节性海冰覆盖的模拟一直是一个难题。Thorndike(1992)中的 SCM 是通过方波季节循环强迫的,日照和长波辐射在一年中的一半时间内切换为恒定的夏季值,而在另一半时间内切换为恒定的冬季值。该模型没有表现出任何稳定的季节性冰。Eisenman 和 Wettlaufer(2009)中的 SCM 具有平滑变化的日照和长波辐射,确实表现出稳定的季节性冰,但仅在相对较小的气候强迫范围内。在 Eisenman 和 Wettlaufer(2009,见其图 S5)中,假设这种稳定的季节性冰是由于长波强迫的季节振幅大于 Thorndike(1992)所使用的值。Moon 和 Wettlaufer(2012)提出了相反的假设,认为太阳强迫中的方波季节循环是阻止 Thorndike(1992)SCM 模拟稳定季节性冰覆盖的关键因素。 他们建议,在夏季使用至少两个不同的值来解决太阳强迫的季节循环是实现稳定季节性冰层所必需的。
The results presented here suggest an alternative resolution, namely that the inclusion of a horizontal dimension is an essential ingredient for accurately simulating a stable seasonal ice cover. In contrast with Moon and Wettlaufer (2012), who found that square-wave solar forcing did not allow seasonal ice, the model developed here still simulates a large seasonal migration of the ice edge when the cos ωt factor in Eq. (3) is replaced with a square wave (not shown). In contrast with Eisenman and Wettlaufer (2009), who found a narrow SCM forcing range that allowed for stable seasonal ice, seasonal ice occurs in this spatially varied model over a wide range of latitudes.
这里呈现的结果表明了一种替代解决方案,即引入一个横向维度是准确模拟稳定季节性冰盖的一个重要因素。与 Moon 和 Wettlaufer(2012)发现的方波太阳强迫不允许季节性冰的结论相反,本文开发的模型在将方程(3)中的 cos ωt 因子替换为方波时,仍然模拟出冰缘的大规模季节性迁移(未显示)。与 Eisenman 和 Wettlaufer(2009)发现的允许稳定季节性冰的狭窄 SCM 强迫范围相反,在这个空间变化的模型中,季节性冰在广泛的纬度范围内出现。
b. Forced warming (increasing F)
强制加热(增加 F)
Next, we numerically simulate the equilibrium response of the model to changes in the climate forcing by slowly ramping up F. Beginning with a 200-yr spinup simulation at the initial forcing value (F = −10 W m−2), we increase F in increments of 0.2 W m−2 and integrate the system for 40 years at each value of F. This approach is used in all of the following simulations of the model response to increasing or decreasing climate forcing.
接下来,我们通过缓慢增加 F 来数值模拟模型对气候强迫变化的平衡响应。从初始强迫值(F = -10 W m −2 )开始进行 200 年的预热模拟,我们以 0.2 W m −2 的增量增加 F,并在每个 F 值下集成系统 40 年。这种方法在以下所有模型对气候强迫增加或减少的响应模拟中均被使用。
As shown in Fig. 3, the climate steadily warms and the seasonally varying sea ice cover steadily recedes until the pole is ice free throughout the year. The summer ice disappears at F = 2.5 W m−2 and the winter ice at F = 11 W m−2 (see also Fig. 4a).
如图 3 所示,气候持续变暖,季节性变化的海冰覆盖稳步减少,直到极地全年无冰。夏季冰在 F = 2.5 W m −2 时消失,冬季冰在 F = 11 W m −2 时消失(另见图 4a)。
c. Test for hysteresis c. 滞后测试
It is noteworthy that the sea ice declines smoothly, with no jumps occurring during the transition from perennial sea ice to seasonally ice-free conditions and then to perennially ice-free conditions. Rather, the summer and winter sea ice edges both respond fairly linearly to F (dashed lines in Fig. 3). This can similarly be considered in terms of the ice area, given by Ai = AH(1 − xi), where AH is the surface area of the hemisphere (Fig. 4a).
值得注意的是,海冰的减少是平滑的,在从多年冰到季节性无冰条件再到永久无冰条件的过渡过程中没有发生跳跃。相反,夏季和冬季海冰边缘对 F 的响应都相当线性(图 3 中的虚线)。从冰面积的角度来看,这也可以类似地考虑,冰面积由 A = A H (1 − x)给出,其中 A H 是半球的表面积(图 4a)。
Figure 4b shows that the loss of summer and winter ice also relates linearly to the annual-mean hemispheric-mean temperature. The model becomes seasonally ice free at 2°C of warming, and it becomes perennially ice free at 6°C (Fig. 4b). These values compare with comprehensive GCM results from Armour et al. (2011), who find the complete loss of summer and winter ice to occur at 4° and 7°C, respectively.
图 4b 显示,夏季和冬季冰的损失与年均半球平均温度也呈线性关系。模型在升温 2°C 时季节性无冰,而在升温 6°C 时则全年无冰(图 4b)。这些数值与 Armour 等人(2011)的综合 GCM 结果相比较,他们发现夏季和冬季冰的完全消失分别发生在 4°C 和 7°C。
After the climate has become perennially ice free, we slowly ramp F back down again. We find that the ice recovers during cooling along the same trajectory as the ice retreat during warming, with no hysteresis (Fig. 4). The linearity and reversibility of the response in the present model is consistent with results from most comprehensive GCMs (e.g., Winton 2006; Armour et al. 2011; Winton 2011), and it is in contrast with previous results from EBMs and SCMs.
在气候变得永久无冰后,我们慢慢将 F 降低。我们发现冰在降温过程中以与升温期间冰退缩相同的轨迹恢复,没有滞后现象(图 4)。当前模型中响应的线性和可逆性与大多数综合气候模型(例如,Winton 2006;Armour 等,2011;Winton 2011)的结果一致,这与之前的能量平衡模型和单层模型的结果形成对比。
4. Reduction to EBM and SCM
4. 减少到 EBM 和 SCM
The two standard types of idealized models discussed above, EBMs and SCMs, both exhibit bistability of the sea ice cover in ostensibly realistic parameter regimes. These results can both be reproduced in the present model. As we show in this section below, the present model reduces to a standard EBM in the limit of no seasonal cycle (S1 = 0), and the present model reduces to standard SCMs at each spatial grid point in the limit of no horizontal heat transport (D = 0).
上述讨论的两种理想化模型的标准类型,EBMs 和 SCMs,在表面上看似现实的参数范围内均表现出海冰覆盖的双稳态。这些结果在当前模型中也可以重现。正如我们在下面的这一部分所示,当前模型在没有季节循环的极限下(S 1 = 0)简化为标准 EBM,而在没有水平热传输的极限下(D = 0),当前模型在每个空间网格点上简化为标准 SCM。
a. EBM regime (S1 = 0)
EBM 体制 (S 1 = 0)
当当前模型中的季节幅度设置为零时(S 1 = 0),稳态解等同于标准年均能量平衡模型的解。在这个极限情况下,系统的平衡状态变得与时间无关,方程(2)简化为
Here, the time evolution of the enthalpy E is no longer included, so the surface temperature can be determined directly from this ordinary differential equation in x, without consideration of the vertical heat conduction within the ice.
在这里,焓 E 的时间演变不再被考虑,因此可以直接从这个关于 x 的常微分方程中确定表面温度,而无需考虑冰内的垂直热传导。
Equation (10) is equivalent to the formulation of a standard annual-mean EBM [e.g., Eq. (22) in North et al. (1981)]. Analytical solutions can be found by making use of the property that Legendre polynomials are eigenfunctions of the diffusion operator Eq. (6). They are, however, complicated by the dependence of the coalbedo on T. Following Held and Suarez (1974), we approximately solve Eq. (10) for F as a function of xi [e.g., Eqs. (28), (29), and (37) in North et al. (1981)], rather than vice versa. The approximate analytical solution involves a sum of even Legendre polynomials, and we retain terms up to the 40th degree, similar to previous studies (e.g., Mengel et al. 1988).
方程(10)等同于标准年均能量平衡模型的公式 [例如,North 等人(1981)中的方程(22)]。通过利用勒让德多项式是扩散算子方程(6)的特征函数的性质,可以找到解析解。然而,煤反照率对温度的依赖性使得问题变得复杂。遵循 Held 和 Suarez(1974)的研究,我们将方程(10)近似求解为 F 关于 x 的函数 [例如,North 等人(1981)中的方程(28)、(29)和(37)],而不是反过来。近似解析解涉及偶数勒让德多项式的和,我们保留高达 40 次的项,类似于之前的研究(例如,Mengel 等人 1988)。
Figure 5a shows both the analytical solution and numerical model results. It illustrates the evolution of the sea ice edge xi under varied climate forcing F with S1 = 0 and D = D*. The figure illustrates sea ice retreat in the numerical simulation as F is increased (red) until an ice-free state is reached, followed by the onset and advance of the sea ice cover when F is subsequently decreased (blue).
图 5a 显示了分析解和数值模型结果。它展示了在不同气候强迫 F 下,海冰边缘 x 的演变,其中 S 1 = 0 且 D = D*。该图展示了在数值模拟中,随着 F 的增加(红色),海冰的退缩,直到达到无冰状态,随后当 F 再次降低时(蓝色),海冰覆盖的出现和扩展。
The hysteresis loop corresponds to the SICI. Note that a second hysteresis loop corresponding to the snowball earth instability occurs in substantially colder climates, as in standard EBMs. Figure 5a highlights the close agreement between numerical results (blue/red) and the analytical solution (black). It can be shown that the climates indicated in Fig. 5 are stable where the slope is positive (solid black) and unstable where the slope is negative (dashed black) (North 1975a). The system therefore does not support an ice cover with an equilibrium ice edge poleward of xi = 0.98, or 79° latitude.
滞后回路对应于 SICI。请注意,第二个滞后回路对应于雪球地球不稳定性,发生在显著更冷的气候中,如标准 EBM 所示。图 5a 突出了数值结果(蓝色/红色)与解析解(黑色)之间的密切一致性。可以证明,图 5 中所示的气候在斜率为正(实线黑色)时是稳定的,而在斜率为负(虚线黑色)时是不稳定的(North 1975a)。因此,该系统不支持在 x = 0.98 或 79°纬度以北的冰盖与平衡冰缘。
系统中双稳态程度的量度可以通过考虑滞回环的宽度来获得。我们定义了两个强迫 F 的临界值:(i) F w 是系统在变暖情景下首次过渡到永久无冰极点的值,(ii) F c 是系统在变冷情景下冬季冰盖首次重新出现的值。这两个 F 的值分别在图 5 中用红色方块和蓝色方块表示。在图 5 所示的参数范围内,这两个值处发生鞍结分岔。滞回环的宽度定义为
请注意,ΔF 可以被视为一个与社会相关的不稳定性和相关不可逆性的度量,因为它表明在全球变暖过程中,海冰在越过临界点后需要减少多少辐射强迫才能恢复,尽管需要指出的是,这需要气候系统在较长时间尺度上达到平衡。
It is useful to also consider the hysteresis loop in terms of the enthalpy at the pole Ep. Computing Fc and Fw from Ep (as defined in Fig. 5b) gives equivalent results to using xi (as defined in Fig. 5a), since the bifurcations are associated with a transition between an ice-covered pole and an ice-free pole. Here we use both methods interchangeably to compute the bifurcation points, for example using Ep in the numerical results when D = 0.
考虑极点 E p 的焓的滞回回路也是有用的。从 E p 计算 F c 和 F w (如图 5b 所定义)得到的结果与使用 x(如图 5a 所定义)相当,因为分岔与冰盖极和无冰极之间的转变相关。在这里,我们交替使用这两种方法来计算分岔点,例如在 D = 0 时在数值结果中使用 E p 。
b. SCM regime (D = 0)
b. SCM 体制 (D = 0)
The present model reduces to an array of independent SCMs when meridional heat transport is turned off by setting D = 0. In this case no communication occurs between individual locations and the state of each grid point is determined by the balance of vertical heat fluxes alone. For a given value of x, Eq. (2) reduces to an ordinary differential equation in time representing a standard SCM [e.g., Eq. (2) in Eisenman (2012)]. As in typical SCMs, we find bistability in the parameter regime (D = 0, S1 =
当前模型在关闭经向热输送(设置 D = 0)时简化为一系列独立的气候模型(SCMs)。在这种情况下,各个位置之间没有通信,每个网格点的状态仅由垂直热通量的平衡决定。对于给定的 x 值,方程(2)简化为一个关于时间的常微分方程,表示一个标准的气候模型 [例如,Eisenman (2012) 中的方程(2)]。与典型的气候模型一样,我们在参数范围 (D = 0, S 1 = ) 中发现了双稳态,ΔF = 7.0 W m −2 。
5. Dependence of bistability on parameter values
5. 双稳态对参数值的依赖性
In the previous section, we showed that the present model reduces to an EBM when S1 = 0 and to an SCM when D = 0, exhibiting bistability during global warming in both regimes. However, the results in section 3b show that there is no such bistability when D = D* and S1 =
在前一节中,我们展示了当前模型在 S 1 = 0 时简化为 EBM,在 D = 0 时简化为 SCM,在这两种情况下都表现出全球变暖期间的双稳态。然而,第 3b 节的结果表明,当 D = D* 和 S 1 = 时并不存在这种双稳态。这引发了一个问题,即当模型中包含不同量的空间和季节变化时,它们如何影响系统的稳定性。
a. Full (D, S1) parameter space
完整的 (D, S 1 ) 参数空间
To address this, we performed 441 model simulations that explore how the hysteresis width ΔF varies in the (D, S1) parameter space. We use 21 evenly spaced values for D in the range [0, 0.76] W m−2 K−1 and 21 evenly spaced values for S1 in the range [0, 351] W m−2. In each simulation, F is ramped up and then down, and ΔF is computed. The results are shown in Fig. 6.
为了解决这个问题,我们进行了 441 次模型模拟,探讨滞后宽度ΔF 在(D, S 1 )参数空间中的变化。我们在[0, 0.76] W m −2 K −1 范围内使用 21 个均匀分布的 D 值,在[0, 351] W m −2 范围内使用 21 个均匀分布的 S 1 值。在每次模拟中,F 先上升再下降,并计算ΔF。结果如图 6 所示。
Figure 6 indicates how the inclusion of both spatial and seasonal variations influences the presence of bistability. Beginning in the EBM regime (D = 0, S1 =
图 6 显示了空间和季节变化的结合如何影响双稳态的存在。从 EBM 状态开始(D = 0,S 1 = ),仅添加 D = 0.1D*的扩散性就足以消除模型中的任何滞后。从 SCM 状态开始(D = D*,S 1 = 0),仅添加 S 1 = 0.2 的季节性同样消除了任何滞后。最后,如果两个参数都从其默认值(D = D*,S 1 = )按相同的比例减少,双稳态直到(D, S 1 ) < 0.3(D*, )时才会出现。换句话说,即使是相对较小的经向和季节变化的结合也会破坏 SCM 和 EBM 中发生的双稳态。
The results in Fig. 6 summarize the main finding of this study. In the following subsections we discuss the underlying mechanisms. We begin by considering the value of ΔF at the origin in Fig. 6, followed by the limiting cases along the horizontal axis (S1 = 0) and vertical axis (D = 0).
图 6 中的结果总结了本研究的主要发现。在接下来的小节中,我们讨论潜在的机制。我们首先考虑图 6 中原点处的ΔF 值,然后讨论沿水平轴(S 1 = 0)和垂直轴(D = 0)的极限情况。
b. No seasonal cycle and no heat transport (D = 0, S1 = 0)
b. 无季节循环且无热量输送(D = 0,S 1 = 0)
在模型的最简单版本中,没有季节循环(S 1 = 0)和热量传输(D = 0)。在这种情况下,F c 是与极地在 T = T m 时无冰状态相关的强迫,F w 是与极地在 T = T m 时有冰覆盖状态相关的强迫。因此,滞回环的宽度(ΔF)等于极地在有冰覆盖和无冰状态之间的太阳强迫的跳跃。
如方程(2)至(4)所示。在图 6 中有趣的是,双稳态区域如何连接这个点(D = 0, S 1 = 0)、标准的 EBM 状态(D = D*, S 1 = 0)和标准的 SCM 状态(D = 0, S 1 = )。这可以被理解为这三种双稳态的极限情况实际上都有效地代表了相同的物理过程,即由于冰-反照率反馈导致的多重稳定状态。
c. Stabilization from horizontal transport (S1 = 0)
c. 来自水平运输的稳定性 (S 1 = 0)
Here we consider how ΔF varies along the horizontal axis of Fig. 6 (i.e., in the EBM regime). Polar temperatures are typically higher for larger meridional heat transport. As D increases, the sea ice cover therefore disappears and also reappears at lower values of F (i.e., Fw and Fc both decrease). This is illustrated in Fig. 7a, where the critical forcings, Fw and Fc, are plotted versus D for both the numerical solution and the analytical solution discussed in section 4a. For the range of forcings F < Fc, the model does not feature SICI bistability, with the only stable state being a finite ice cover. Similarly, the range F > Fw only allows stable states with an ice-free pole. In the range Fc < F < Fw both ice-covered and ice-free conditions are stable, resulting in SICI bistability. These three regimes are illustrated in the inset of Fig. 7a.
在这里,我们考虑ΔF 在图 6 的水平轴上如何变化(即在 EBM 状态下)。极地温度通常在较大的经向热输送下较高。随着 D 的增加,海冰覆盖因此消失,并且在较低的 F 值(即 F w 和 F c 均减少)时重新出现。这在图 7a 中得到了说明,其中临界强迫 F w 和 F c 相对于 D 的数值解和在 4a 节中讨论的解析解进行了绘制。在强迫范围 F < F c 内,模型不具有 SICI 双稳态,唯一的稳定状态是有限的冰覆盖。同样,范围 F > F w 仅允许无冰极的稳定状态。在范围 F c < F < F w 内,冰覆盖和无冰条件均为稳定,导致 SICI 双稳态。这三个状态在图 7a 的插图中得到了说明。
The dependence of ΔF on D is shown in Fig. 7b. Note that the numerical results approach the analytical results when the spatial resolution increases. We find that ΔF typically decreases with increasing D, with the greatest sensitivity of ΔF occurring when D is small. This indicates that the introduction of diffusive communication between different latitudes has a stabilizing effect on the polar sea ice cover.
ΔF 对 D 的依赖关系如图 7b 所示。注意,当空间分辨率增加时,数值结果接近于解析结果。我们发现,ΔF 通常随着 D 的增加而减小,ΔF 对 D 的敏感性在 D 较小时最为显著。这表明,不同纬度之间引入扩散通信对极地海冰覆盖具有稳定作用。
At a critical diffusivity Dmax (marked by a solid vertical line in Fig. 7), the small ice cap instability merges with the snowball earth instability. For D > Dmax, there is no stable climate with 0 < xi < 1. This property of EBMs for large values of D has been noted previously (Lindzen and Farrell 1977). For these values of D the global surface temperature becomes relatively isothermal, allowing stable solutions only with T < Tm everywhere or T > Tm everywhere.
在临界扩散率 D max (在图 7 中用实线垂直线标记)处,小冰盖不稳定性与雪球地球不稳定性合并。对于 D > D max ,在 0 < x < 1 的情况下没有稳定气候。EBMs 在大值 D 下的这一特性之前已被注意到(Lindzen 和 Farrell 1977)。对于这些 D 值,全球表面温度变得相对等温,仅在 T < T m 或 T > T m 的情况下允许稳定解。
The stabilizing effect of increased diffusivity when D < Dmax can be visualized by considering a potential V associated with the model evolution. We identify the model state by the surface temperature at the pole Tp and we define the potential such that dTp/dt = −dV/dTp. Hence valleys in V are stable equilibria and peaks in V are unstable equilibria. The computation of V is described in appendix C.
当 D < D max 时,增加扩散率的稳定效应可以通过考虑与模型演化相关的势能 V 来可视化。我们通过极地的表面温度 T p 来识别模型状态,并定义势能,使得 dT p /dt = −dV/dT p 。因此,V 的谷底是稳定的平衡点,而 V 的峰值是不稳定的平衡点。V 的计算在附录 C 中进行了描述。
We compare two potentials in Fig. 8. One has a smaller diffusivity (D = 0.12 W m−2 K−1) and the other has a larger diffusivity (D = 0.14 W m−2 K−1). We choose values of F such that the unstable equilibria occur at the same value of Tp, using F = 55 and 51 W m−2, respectively. As one might expect intuitively from the effect of diffusion, the higher diffusivity is associated with a smoother potential. In other words, there is a smaller barrier between the two stable equilibria, which suggests that a smaller change in forcing is necessary to transition between the states (i.e., ΔF is reduced).
我们在图 8 中比较了两个势能。一个具有较小的扩散率(D = 0.12 W m −2 K −1 ),另一个具有较大的扩散率(D = 0.14 W m −2 K −1 )。我们选择 F 的值,使得不稳定平衡在相同的 T p 值下发生,分别使用 F = 55 和 51 W m −2 。正如人们从扩散的影响中直观地预期的那样,较高的扩散率与更平滑的势能相关。换句话说,两个稳定平衡之间的障碍较小,这表明在状态之间过渡所需的强迫变化较小(即,ΔF 减少)。
Note that explanations involving the diffusive length scale associated with Eq. (10) have also been suggested for the influence of D on the extent of the SICI (Lindzen and Farrell 1977; North 1984). Furthermore, the qualitative relationship we find between D and ΔF is consistent with the conclusion in Eisenman (2012) that that parameter changes in climate models that give rise to thinner ice and warmer ice-free ocean surface temperatures make the system less prone to bistability.
请注意,涉及与方程(10)相关的扩散长度尺度的解释也被提出用于 D 对 SICI 范围影响的研究(Lindzen 和 Farrell 1977;North 1984)。此外,我们发现 D 与ΔF 之间的定性关系与 Eisenman(2012)中的结论一致,即气候模型中导致冰层变薄和无冰海洋表面温度升高的参数变化使系统更不容易出现双稳态。
d. Stabilization from seasonal cycle (D = 0)
d. 来自季节循环的稳定性 (D = 0)
季节循环幅度(S 1 )在 SCM 模式(D = 0)中的影响如图 9 所示。在该模式下,F c 可以通过解析方法轻松获得,因为这是从永久无冰状态过渡的点,在这种情况下,模型方程是线性的。我们发现
其中 κ ≡ [1 + (ωc w /B) 2 ] −1/2 (图 9a 中的蓝线)。
F w 和 S 1 之间的类比关系是非线性的,因为 F w 代表了从冰覆盖状态的过渡,在该状态下方程是非线性的。然而,我们可以考虑在第 2a 节中开发的模型,忽略在第 2b 节中添加的非线性冰厚度演变。在这种情况下,当 T 下降到 T m 以下时,只有表面反照率发生变化,F w (图 9a 中的红线)呈现出类似于 F c 的形式。这导致了滞后宽度(图 9b 中的黑线)为
因此,我们发现即使在没有冰厚度演变的简单情况下,增加 S 1 也会减少不稳定性的存在。方程 (13) 和 (14) 的推导见附录 B。
Including the ice thickness evolution enhances this stabilizing effect. In this case Fw, and hence ΔF, is more sensitive overall to S1 (red squares in Fig. 9a and black squares in Figs. 9b). Note that the diminished slope when S1 > 220 W m−2 in Figs. 9a and 9b is associated with the onset of seasonally ice-free conditions, analogous to Fig. 9d of Eisenman (2012). Since there is no smoothing of the albedo transition in the present model, further bifurcations associated with the transitions to and from seasonally ice-free conditions also occur (not shown), as in Fig. 9h of Eisenman (2012). There the presence of such bifurcations was suggested to be an artifact of a single-column representation. Consistent with this, they cease to occur when D > 0.05 W m−2 K−1 (not shown). However, since Fc and Fw are defined in terms of the presence of ice in winter, seasonally ice-free conditions do not influence the analysis here.
包括冰厚度演变增强了这种稳定效应。在这种情况下,F w ,因此ΔF,对 S 1 (图 9a 中的红色方块和图 9b 中的黑色方块)整体上更为敏感。注意,当 S 1 > 220 W m −2 时,图 9a 和 9b 中的斜率减小与季节性无冰条件的出现有关,类似于 Eisenman(2012)图 9d。由于当前模型中没有对反照率过渡进行平滑,因此与季节性无冰条件的过渡相关的进一步分岔也会发生(未显示),如 Eisenman(2012)图 9h 所示。那里建议这种分岔的存在是单列表示法的伪影。与此一致的是,当 D > 0.05 W m −2 K −1 时,它们停止发生(未显示)。然而,由于 F c 和 F w 是根据冬季冰的存在来定义的,季节性无冰条件并不影响此处的分析。
Equation (13) indicates that Fc increases linearly with S1 (Fig. 9a). This can be understood by considering that F = Fc is defined to be the point during a cooling scenario when ice first appears at the pole. This occurs when the winter minimum surface temperature crosses the freezing point (i.e., when ice appears on the coldest day of the year), at which point the ice–albedo feedback causes an abrupt transition to a perennially ice-covered state. In the perennially ice-free regime, the annual-mean value of E is linearly related to F and the seasonal amplitude of E is linearly related to S1 because the governing equations are linear. The larger the seasonal amplitude of E, the warmer the annual-mean value of E can be and still have the winter minimum satisfy E < 0. Hence, larger values of S1 are associated with larger values of Fc. This point is illustrated schematically in Fig. 10 (blue shading).
方程(13)表明 F c 随着 S 1 线性增加(图 9a)。可以理解为 F = F c 被定义为在冷却情景中冰首次出现在极地的时刻。这发生在冬季最低表面温度穿越冰点时(即在一年中最冷的一天出现冰的时候),此时冰-反照率反馈导致状态突然转变为永久冰覆盖状态。在永久无冰的状态下,E 的年均值与 F 线性相关,E 的季节振幅与 S 1 线性相关,因为控制方程是线性的。E 的季节振幅越大,E 的年均值可以越暖,仍然满足冬季最低值 E < 0。因此,较大的 S 1 值与较大的 F c 值相关联。这个观点在图 10 中以示意图的形式展示(蓝色阴影)。
An analogous argument applies to Fw (red shading in Fig. 10), which indicates the transition point when an initially ice-covered pole is subjected to increasing F. When the seasonal amplitude (S1) increases, the warmest day of summer becomes ice free at an earlier point, that is, at a smaller value of F (red shading in Fig. 10). This argument for Fw applies exactly when ice thickness evolution is neglected. When it is included, the relationship becomes more complicated but the monotonic dependence remains (red squares in Fig. 9a).
类似的论点适用于 F w (图 10 中的红色阴影),它表示当一个最初被冰覆盖的极点受到增加的 F 时的过渡点。当季节振幅 (S 1 ) 增加时,夏季最温暖的一天在更早的时刻变得无冰,即在更小的 F 值时(图 10 中的红色阴影)。当忽略冰厚度演变时,F w 的论点完全适用。当考虑冰厚度时,关系变得更加复杂,但单调依赖性仍然存在(图 9a 中的红色方块)。
Thinking in terms of the potential as in Fig. 8, one can visualize that a larger seasonal amplitude in forcing causes the system to climb higher onto either side of the well around a stable equilibrium. If the seasonal amplitude is sufficiently large, then the system will cross back and forth over the hump that separates the two stable equilibria during the course of each year, thereby having only a single seasonally varying equilibrium solution. A caveat with this explanation, however, is that the potential well associated with the time evolution of the system actually varies seasonally when S1 > 0 and cannot strictly be visualized as remaining constant throughout the year.
从图 8 中考虑潜力的角度,可以想象更大的季节性强迫幅度使系统在稳定平衡的井的两侧爬升得更高。如果季节性幅度足够大,那么系统将在每年的过程中跨越分隔两个稳定平衡的隆起,从而仅具有一个季节性变化的平衡解。然而,这种解释的一个警告是,当 S 1 > 0 时,与系统时间演化相关的势阱实际上是季节性变化的,不能严格地被视为在全年保持不变。
Another feature of the climate system that is represented in comprehensive GCMs but not in idealized models is high-frequency weather variability, which could be viewed as noise in the context of the model presented here. Although not included in this analysis (cf. Moon and Wettlaufer 2013), it is likely that the addition of a simple representation of noise would stabilize the model in a manner similar to increasing S1, further diminishing the presence of bistability.
气候系统的另一个特征是在综合气候模型(GCMs)中体现但在理想化模型中未体现的高频天气变异性,这可以在此模型的背景下视为噪声。尽管在本分析中未包含(参见 Moon 和 Wettlaufer 2013),但很可能添加一个简单的噪声表示会以类似于增加 S 1 的方式稳定模型,进一步减少双稳态的存在。
e. Constructing full ΔF(D, S1) space from limiting cases
e. 从极限情况构建完整的 ΔF(D, S 1 ) 空间
We can consider the influence of both D > 0 and S1 > 0 together by visualizing the combined influence of D and S1 on the potential, adopting the crude approximation that the potential remains constant throughout the year when S1 > 0, as discussed above. In this picture, larger values of S1 will remove bistability in the presence of a larger hump in the potential well. This indicates that the influence of increasing D (decreasing the height of the hump) and increasing S1 (increasing how large a hump the system can cross seasonally) can be added together to estimate ΔF. Hence we simply add the dependence on D shown in Fig. 7b to the dependence on S1 shown in Fig. 9b to create a conceptually more tractable estimate of the main result of Fig. 6.
我们可以通过可视化 D > 0 和 S 1 > 0 的综合影响来考虑它们的共同作用,采用粗略的近似,即当 S 1 > 0 时,势能在全年保持不变,如上所述。在这种情况下,较大的 S 1 值将在势阱中存在更大隆起的情况下消除双稳态。这表明,增加 D(降低隆起的高度)和增加 S 1 (增加系统季节性跨越隆起的能力)的影响可以相加来估计 ΔF。因此,我们简单地将图 7b 中对 D 的依赖性与图 9b 中对 S 1 的依赖性相加,以创建一个在概念上更易处理的图 6 主要结果的估计。
换句话说,使用函数符号 ΔF(D, S 1 ) 作为简写,我们近似地认为
ΔF 0 的负值被视为零,因为它们意味着 S 1 对于系统跨越潜在的峰值是足够大的,因此不会发生双稳态。方程 (15) 右侧的第一项由方程 (10) 的解析解给出,第二项是数值结果,因为对于 D = 0 的 F w 没有获得非线性冰厚演化的解析解,第三项是解析表达式方程 (12)。结果如图 11 所示。
It is not surprising that Fig. 11 does not exactly match Fig. 6, giving the approximation that was made by adding the two limiting cases, but the resemblance between the two suggests that the dependence of ΔF on D and S1 can be qualitatively explained by considering the EBM and SCM limiting cases in isolation. Note that this approximation to ΔF (Fig. 11) is smaller than the full numerical solution for ΔF (Fig. 6) at all (D, S1) points, which suggests that the two effects reinforce each other in reducing the bistability.
图 11 与图 6 不完全匹配并不令人惊讶,因为这是通过将两个极限情况相加而得出的近似值,但两者之间的相似性表明,ΔF 对 D 和 S 1 的依赖性可以通过单独考虑 EBM 和 SCM 的极限情况进行定性解释。请注意,这个对ΔF 的近似(图 11)在所有(D, S 1 )点上都小于ΔF 的完整数值解(图 6),这表明这两种效应在减少双稳态方面相互增强。
6. Conclusions 6. 结论
Previous studies using seasonally varying SCMs and spatially varying EBMs have found instabilities in the sea ice cover associated with the ice–albedo feedback. Studies using comprehensive GCMs, however, have typically not found such instabilities. Here we developed a model of climate and sea ice that includes both seasonal and spatial variations. The model accounts for the evolution of a spatially varying surface temperature and sea ice thickness as well as a diffusive representation of meridional heat transport. The governing equation is a partial differential equation in time and latitude.
先前使用季节性变化的气候模式(SCMs)和空间性变化的能量平衡模型(EBMs)进行的研究发现,海冰覆盖与冰-反照率反馈相关的失稳现象。然而,使用综合气候模型(GCMs)的研究通常没有发现这种失稳现象。在这里,我们开发了一个气候和海冰模型,该模型同时考虑了季节性和空间性变化。该模型考虑了空间变化的表面温度和海冰厚度的演变,以及经向热量输送的扩散表示。控制方程是一个关于时间和纬度的偏微分方程。
When the diffusivity was removed (D = 0), we showed that the model reduced to a standard SCM represented as an ordinary differential equation in time with no spatial dimension. When seasonality was removed (S1 = 0), we showed that the model reduced to a standard EBM represented as an ordinary differential equation in latitude with no temporal dimension. When we varied the parameters, we found that including representations of both seasonal and spatial variations causes the stability of the system to substantially increase; that is, any instability and associated bistability was removed (Fig. 6).
当去除扩散性(D = 0)时,我们展示了该模型简化为一个标准的 SCM,表示为一个没有空间维度的时间常微分方程。当去除季节性(S 1 = 0)时,我们展示了该模型简化为一个标准的 EBM,表示为一个没有时间维度的纬度常微分方程。当我们改变参数时,我们发现同时包含季节性和空间变化的表示会显著增加系统的稳定性;也就是说,任何不稳定性和相关的双稳态被消除(图 6)。
Understanding of the underlying physical mechanisms was developed by considering the effects of spatial and temporal variations separately. To this end, we studied the parameter regimes for which the model reduces to a traditional EBM and SCM, respectively. We constructed a potential for the system with two wells separated by a hump, and we showed that horizontal diffusion smooths the potential, reducing the height of the hump. Meanwhile, we argued that the seasonal cycle in the forcing can be approximately visualized as periodically pushing the system up the sides of the well. The larger the seasonal cycle, the higher the system is pushed, and at a critical value of the seasonal amplitude the ball will pass over the hump and seasonally transition between the two wells, thus creating a single seasonally varying stable equilibrium. The combination of smoothed potential wells and seasonal variations eliminates the possibility of any bistability when both parameters are increased to even relatively small values.
通过分别考虑空间和时间变化的影响,发展了对潜在物理机制的理解。为此,我们研究了模型分别简化为传统的能量平衡模型(EBM)和简单气候模型(SCM)的参数范围。我们构建了一个具有两个井的系统的势能,两个井之间由一个隆起分隔,并且我们展示了水平扩散平滑了势能,降低了隆起的高度。同时,我们认为强迫中的季节循环可以近似地视为周期性地将系统推向井的侧面。季节循环越大,系统被推得越高,在季节振幅的临界值下,球体将越过隆起,在两个井之间季节性地过渡,从而形成一个单一的季节性变化的稳定平衡。平滑的势能井和季节变化的结合消除了在两个参数都增加到相对较小值时任何双稳态的可能性。
This result may help to reconcile the discrepancy between low-order models and comprehensive GCMs in previous studies. Specifically, it suggests that the low-order models overestimate the likelihood of a sea ice “tipping point.”
这一结果可能有助于调和先前研究中低阶模型与综合气候模型之间的差异。具体而言,它表明低阶模型高估了海冰“临界点”的可能性。
It is worth emphasizing that the present model contains substantial nonlinearity, including the ice–albedo effect and factors associated with sea ice thickness changes. Such nonlinearity has been shown in SCMs to lead to both accelerating sea ice loss and bifurcations. Nonetheless, the present model simulates sea ice loss that is not only reversible but also has a strikingly linear relationship with the climate forcing as well as with the global-mean temperature. This is in contrast with SCMs and EBMs, and it is consistent with GCMs. The results presented here indicate that the nonlinearities in the model are essentially smoothed out when latitudinal and seasonal variations are included.
值得强调的是,目前的模型包含了显著的非线性,包括冰—反照率效应和与海冰厚度变化相关的因素。研究表明,这种非线性在简单气候模型(SCMs)中会导致海冰损失加速和分岔。然而,目前的模型模拟的海冰损失不仅是可逆的,而且与气候强迫以及全球平均温度之间具有显著的线性关系。这与简单气候模型和能量平衡模型(EBMs)形成对比,并且与全球气候模型(GCMs)一致。这里呈现的结果表明,当考虑纬度和季节变化时,模型中的非线性基本上被平滑化。
These results may have bearing on other processes in the climate system. Previous studies have found other phenomena that feature bifurcations in low-order models but not in most comprehensive GCMs, such as the Atlantic Ocean meridional overturning circulation (e.g., Stommel 1961; Stouffer et al. 2006). The findings presented here raise the possibility that these disparities may be reconciled by similar mechanisms.
这些结果可能与气候系统中的其他过程有关。先前的研究发现了其他现象,这些现象在低阶模型中表现出分叉,但在大多数综合气候模型中并不存在,例如大西洋经向翻转环流(例如,Stommel 1961;Stouffer 等,2006)。这里提出的发现提出了一个可能性,即这些差异可能通过类似的机制得到调和。
Acknowledgments 致谢
We are grateful to Kyle Armour and two anonymous reviewers for helpful comments on an earlier version of this article. The authors acknowledge ONR Grant N00014-13-1-0469 and NSF Grant ARC-1107795.
我们感谢凯尔·阿莫尔和两位匿名评审对本文早期版本的有益评论。作者感谢海军研究办公室的资助(ONR Grant N00014-13-1-0469)和国家科学基金会的资助(NSF Grant ARC-1107795)。
APPENDIX A 附录 A
Numerical Integration of Model
模型的数值积分
Here we discuss the numerical approach that we employ to solve the model described by Eqs. (2), (8), and (9). As mentioned above in section 2e, in order to address the issue of diffusive heat transport between different surface temperature regimes in Eq. (9), we create a system of equations that can be visualized as representing two separate layers.
在这里,我们讨论我们用来解决由方程(2)、(8)和(9)描述的模型的数值方法。如上文第 2e 节所提到的,为了解决方程(9)中不同表面温度区域之间的扩散热传输问题,我们创建了一个方程组,可以视为表示两个独立的层。
扩散发生在一个温度为 T g 的“幽灵”层中,该层的演变遵循
其中 c g 是幽灵层的热容,右侧的第一项使 T g 随时间尺度 τ g 向 T 进行弛豫。所有其他过程发生在主层,其表面焓的演变为
主层的温度 T 如公式 (9) 所定义,公式 (8) 被替换为
请注意,与涉及 ∇ 2 T 的方程 (8) 不同,方程 (A3) 可以很容易地求解 T 0 。
To demonstrate the approximate equivalence between this two-layer system and the model described in section 2a, we begin by defining a diffusive length scale associated with the diffusion operator in Eq. (A1), δxD (cf. Lindzen and Farrell 1977; North 1984), and a time scale associated with changes in T, δtT. If τg ≪ cg
为了证明这个双层系统与第 2a 节中描述的模型之间的近似等价性,我们首先定义与方程(A1)中的扩散算子相关的扩散长度尺度δx D (参见 Lindzen 和 Farrell 1977;North 1984),以及与 T 变化相关的时间尺度δt T 。如果τ g ≪ c g D −1 ,那么方程(A1)右侧的第二项可以忽略;此外,如果τ g ≪ δt T ,则弛豫时间尺度足够短,以至于方程(A1)可以近似为 T g = T。
接下来,我们将方程 (A1) 和 (A2) 相加得到
插入 T g = T 和来自方程 (1) 的 E 定义,我们可以看到,只要在无冰区域 c g ≪ c w ,以及在有冰区域 c g ≪ Lδh/δT g ,方程 (A4) 左侧的第二项可以忽略,其中 δh 和 δT g 是 h 和 T g 的变化尺度。然而,对 τ g 的第一个约束对 c g 施加了下限,当约束重写为 τ g /c g ≪ D −1 时,这一点更加明显。因此,在小 c g 、小 τ g 和小 τ g /c g 的极限下,本节描述的双层系统简化为由方程 (2)、(8) 和 (9) 组成的模型。
The two-layer system is considerably more amenable to numerical integration, so we use this for numerical solutions of the model after verifying that our values of τg and cg (see Table 1) are sufficiently small that reducing them does not substantially influence the solution.
双层系统更适合数值积分,因此我们在验证τ g 和 c g (见表 1)的值足够小,以至于减少它们不会对解产生实质性影响后,使用此方法进行模型的数值解。
We solve the two-layer system by integrating Eq. (A1) using the implicit Euler method, since it is effective for solving the diffusion equation, and integrating Eq. (A2) using the forward Euler method, since it is more straightforward for nonlinear systems. We use the same time step Δt for both equations, which simplifies the coupling.
我们通过使用隐式欧拉方法对方程 (A1) 进行积分来求解双层系统,因为该方法在求解扩散方程时效果显著,并使用显式欧拉方法对方程 (A2) 进行积分,因为它对于非线性系统更为直接。我们对两个方程使用相同的时间步长 Δt,这简化了耦合。
数值上,T g 被表示为长度为 n 的向量,在定义域 x = [Δx/2, 3Δx/2, …, 1 − Δx/2] 的每个点上计算,其中 Δx = 1/n。扩散项 D∇ 2 T g 是使用有限差分算子 计算的,用于拉普拉斯算子,其中 是一个具有非零元素的矩阵。
与 和 ≡ [0, Δx, …, 1 − Δx](Bitz 和 Roe 2001)。注意 是一个三对角矩阵,因此可以快速求逆,这使得 Eq. (A1) 的隐式欧拉时间步进变得高效。注意,用于求解 Eq. (A1) 的逆矩阵 T g 不仅包含 ,还包含 T,因此需要在每个时间步中进行计算。
We further verified the numerical validity of this two-layer approach by removing the melting ice condition from Eq. (9). This creates an unphysical situation where the ice surface temperature is allowed to be greater than Tm, but it makes the system of Eqs. (2), (8), and (9) more amenable to numerical integration. In this case, the one-layer system of Eqs. (2), (8), and (9) can be directly solved by a single equation that represents an implicit Euler time stepping of T where E > 0 and a forward Euler time stepping of h where E < 0 (cf. Bitz and Roe 2001). We found that numerical integrations of the one-layer and two-layer representations of the system with this adjustment to Eq. (9) were consistent.
我们进一步通过从方程(9)中去除融化冰条件来验证这种双层方法的数值有效性。这创造了一个不物理的情况,即冰面温度可以大于 T m ,但这使得方程(2)、(8)和(9)的系统更易于数值积分。在这种情况下,方程(2)、(8)和(9)的单层系统可以通过一个单一方程直接求解,该方程表示 T 的隐式欧拉时间步进,其中 E > 0,以及 h 的显式欧拉时间步进,其中 E < 0(参见 Bitz 和 Roe 2001)。我们发现,对该调整后的方程(9)进行的单层和双层表示的数值积分是一致的。
APPENDIX B 附录 B
Analytic Solution for Fc when D = 0
当 D = 0 时 F c 的解析解
在这里,我们推导出解析表达式方程(13),给出了在无热传输(D = 0)极限下,冰首次出现在极地的临界强迫。在极地(x = 1),在无冰条件下,方程(2)、(8)和(9)系统的演变如下所示:
请注意,在这种情况下没有空间导数,因为热传输被设定为零。该线性系统的解是
κ ≡ [1 + (ωc w /B) 2 ] −1/2 和 ϕ ≡ tan −1 (ωc w /B) = 2.94 个月。与初始条件相关的瞬态项未包含在解 Eq. (B2) 中,因为我们关注的是加速模型的行为。当冬季 T 的最小值降到 T m 之下时,冰开始出现。这个最小值发生在 t = ϕ/ω。将其代入 Eq. (B2),设定 T = T m ,并求解临界强迫 F = F c ,得到第 4 节中的 Eq. (13)。在没有冰厚度演变的模型中,F w 以相同的方式获得,但 A 1 = a(S 0 − S 2 ) − A + F b + F,且 A 2 = aS 1 。然后从 F w − F c 得到 Eq. (14)。
APPENDIX C 附录 C
Calculation of Potential Wells
势阱的计算
The potential (V) in the EBM regime is calculated from the definition dV/dTp = −dTp/dt. Since we are considering the EBM regime, we consider solutions of the time-varying system discussed in section 2b, in which Tp is proportional to Ep. A complication is that the state of the EBM requires the full temperature field T(x), rather than just Tp ≡ T(1), to be uniquely determined. Here we take the crude approach of considering only temperature fields T(x) that are the equilibrium solution for some value of the forcing F.
在 EBM(能量平衡模型)范畴中,势能(V)是根据定义 dV/dT p = −dT p /dt 计算的。由于我们考虑的是 EBM 范畴,我们考虑第 2b 节中讨论的时变系统的解,其中 T p 与 E p 成正比。一个复杂之处在于,EBM 的状态需要完整的温度场 T(x),而不仅仅是 T p ≡ T(1),以便唯一确定。在这里,我们采取粗略的方法,仅考虑作为某个强迫值 F 的平衡解的温度场 T(x)。
为了方便记号,我们定义当 F = 0 时在极点 (x = 1) 的净能量通量为
根据方程(1)、(2)和(C1),由于我们不考虑冰厚度,因此我们有
潜力取决于瞬态或初始值 T p = 以给定的 F 值向平衡状态放松的速率。将 F 定义为 T 为平衡温度场时的强迫,其中 在极点,我们可以写成 0 = F + f p (T),或者
当这个温度场受到强迫 F 作用时,极地温度最初演变为
给定强迫 F 的潜在 V(T p ) 通过积分计算得出
在一系列初始值 及其相关的平衡强迫值 F 的范围内。这给出了
其中 T r 是一个任意参考温度,c 是相关的积分常数。主文中讨论的解析 EBM 解 [方程 (10)] 以 F 作为 x 的函数表示,使用到 40 次的勒让德多项式。与 x 相关的场 T(x) 可以计算 [北等人 (1981) 的方程 (25)–(31)]。在这里,我们仅考虑极点的值 T p ≡ T(1),并使用解析解来表示 F(T p ) 的复杂函数。我们将其插入方程 (C6) 中的 F = F( ) 并进行数值积分。得到的势能 V(T p ) 在图 8 中显示了 D 和 F 的两个不同值。
REFERENCES 参考文献
Abbot, D. S., M. Silber, and R. T. Pierrehumbert, 2011: Bifurcations leading to summer Arctic sea ice loss. J. Geophys. Res.,116, D19120, doi:10.1029/2011JD015653.
阿博特,D. S.,M. 西尔伯,和 R. T. 皮埃尔亨伯特,2011:导致夏季北极海冰损失的分叉现象。《地球物理研究杂志》,116,D19120,doi:10.1029/2011JD015653。Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett.,38, L16705, doi:10.1029/2011GL048739.
Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, 和 C. M. Bitz, 2011: 在一款先进气候模型中海冰损失的可逆性. 地球物理研究快报, 38, L16705, doi:10.1029/2011GL048739.Bendtsen, J., 2002: Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dyn., 18, 595–609, doi:10.1007/s00382-001-0198-4.
Bendtsen, J., 2002:简单耦合气候模型中气候对太阳辐射变化的敏感性。气候动力学,18,595–609,doi:10.1007/s00382-001-0198-4。Bitz, C. M., and G. H. Roe, 2001: Ice and climate modeling: Course notes. [Available online at http://www.atmos.washington.edu/~bitz/.]
Bitz, C. M. 和 G. H. Roe, 2001: 冰与气候建模:课程笔记。[在线可用,网址:http://www.atmos.washington.edu/~bitz/.]Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 3623–3632, doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.
Bitz, C. M. 和 G. H. Roe, 2004:北极海洋海冰变薄速率高的机制。气候学杂志, 17, 3623–3632, doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2。Björk, G., and J. Söderkvist, 2002: Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere. J. Geophys. Res., 107, 3173, doi:10.1029/2000JC000723.
Björk, G. 和 J. Söderkvist, 2002:北极海冰厚度分布对大气中向极能量通量的依赖性。地球物理研究杂志, 107, 3173, doi:10.1029/2000JC000723。Björk, G., C. Stranne, and K. Borenäs, 2013: The sensitivity of the Arctic Ocean sea ice thickness and its dependence on the surface albedo parameterization. J. Climate, 26, 1355–1370, doi:10.1175/JCLI-D-12-00085.1.
Björk, G., C.Stranne, 和 K.Borenäs, 2013: 北极海洋海冰厚度的敏感性及其对表面反照率参数化的依赖性. 气候学杂志, 26, 1355–1370, doi:10.1175/JCLI-D-12-00085.1.Budyko, M. I., 1966: Polar ice and climate (in Russian). Gidrometeoizdat, 32 pp.
布季科,M. I.,1966:极地冰和气候(俄文)。水文气象出版社,32 页。Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21A, 611–619, doi:10.1111/j.2153-3490.1969.tb00466.x.
布季科,M. I.,1969:太阳辐射变化对地球气候的影响。《地球》,21A,611–619,doi:10.1111/j.2153-3490.1969.tb00466.x。Budyko, M. I., 1972: The future climate. Eos, Trans. Amer. Geophys. Union, 53, 868–874, doi:10.1029/EO053i010p00868.
布季科,M. I.,1972:未来气候。Eos,美国地球物理联盟会刊,53,868–874,doi:10.1029/EO053i010p00868。Cahalan, R. F., and G. R. North, 1979: A stability theorem for energy-balance climate models. J. Atmos. Sci., 36, 1178–1188, doi:10.1175/1520-0469(1979)036<1178:ASTFEB>2.0.CO;2.
Cahalan, R. F., 和 G. R. North, 1979: 能量平衡气候模型的稳定性定理。大气科学杂志, 36, 1178–1188, doi:10.1175/1520-0469(1979)036<1178:ASTFEB>2.0.CO;2.Croll, J., 1875: Climate and Time in their Geological Relations. Cambridge University Press, 577 pp.
克罗尔,J.,1875 年:《气候与时间在其地质关系中的作用》。剑桥大学出版社,577 页。Eisenman, I., 2007: Arctic catastrophes in an idealized sea ice model. WHOI Tech. Rep. 2007-2, Woods Hole Oceanographic Institution, 161 pp.
艾森曼, I., 2007: 理想化海冰模型中的北极灾难. WHOI 技术报告 2007-2, 伍兹霍尔海洋研究所, 161 页.Eisenman, I., 2010: Geographic muting of changes in the Arctic sea ice cover. Geophys. Res. Lett.,37, L16501, doi:10.1029/2010GL043741.
艾森曼, I., 2010: 北极海冰覆盖变化的地理静音. 地球物理研究快报, 37, L16501, doi:10.1029/2010GL043741.Eisenman, I., 2012: Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res.,117, D01111, doi:10.1029/2011JD016164.
艾森曼, I., 2012: 控制海冰退缩分叉结构的因素. 地球物理研究杂志, 117, D01111, doi:10.1029/2011JD016164.Eisenman, I., and J. S. Wettlaufer, 2009: Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA, 106, 28–32, doi:10.1073/pnas.0806887106.
艾森曼, I. 和 J. S. 韦特劳费尔, 2009: 北极海冰消失过程中的非线性阈值行为. 美国国家科学院院刊, 106, 28–32, doi:10.1073/pnas.0806887106.Ferreira, D., J. Marshall, and B. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 992–1012, doi:10.1175/2010JCLI3580.1.
费雷拉,D.,J. 马歇尔,和 B. 罗斯,2011:气候决定论的再探:复杂气候模型中的多重平衡。《气候学杂志》,24,992–1012,doi:10.1175/2010JCLI3580.1。Flato, G. M., and R. D. Brown, 1996: Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res., 101, 25 767–25 777, doi:10.1029/96JC02431.
Flato, G. M., 和 R. D. Brown, 1996:陆地固定的北极海冰的变异性和气候敏感性。地球物理研究杂志,101,25 767–25 777,doi:10.1029/96JC02431。Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.
格雷戈里, J. M., P. A. 斯托特, D. J. 克雷斯韦尔, N. A. 雷纳, C. 戈登, 和 D. M. H. 塞克斯顿, 2002: 由 HadCM3 AOGCM 模拟的北极海冰的近期和未来变化. 地球物理研究快报, 29, 2175, doi:10.1029/2001GL014575.Held, I. M., and M. J. Suarez, 1974: Simple albedo feedback models of the icecaps. Tellus, 26A, 613–629, doi:10.1111/j.2153-3490.1974.tb01641.x.
Held, I. M. 和 M. J. Suarez, 1974:冰盖的简单反照率反馈模型。Tellus, 26A, 613–629, doi:10.1111/j.2153-3490.1974.tb01641.x。Huang, J., and K. P. Bowman, 1992: The small ice cap instability in seasonal energy balance models. Climate Dyn., 7, 205–215, doi:10.1007/BF00206862.
黄, J., 和 K. P. Bowman, 1992: 季节能量平衡模型中的小冰盖不稳定性. 气候动力学, 7, 205–215, doi:10.1007/BF00206862.Langen, P. L., and V. A. Alexeev, 2004: Multiple equilibria and asymmetric climates in the CCM3 coupled to an oceanic mixed layer with thermodynamic sea ice. Geophys. Res. Lett.,31, L04201, doi:10.1029/2003GL019039.
Langen, P. L. 和 V. A. Alexeev, 2004:在与热力学海冰耦合的海洋混合层中,CCM3 的多重平衡和非对称气候。地球物理研究快报,31,L04201,doi:10.1029/2003GL019039。Li, C., D. Notz, S. Tietsche, and J. Marotzke, 2013: The transient versus the equilibrium response of sea ice to global warming. J. Climate, 26, 5624–5636, doi:10.1175/JCLI-D-12-00492.1.
李, C., D. Notz, S. Tietsche, 和 J. Marotzke, 2013: 海冰对全球变暖的瞬态响应与平衡响应. 气候学报, 26, 5624–5636, doi:10.1175/JCLI-D-12-00492.1.Lian, M. S., and R. D. Cess, 1977: Energy balance climate models: A reappraisal of ice–albedo feedback. J. Atmos. Sci., 34, 1058–1062, doi:10.1175/1520-0469(1977)034<1058:EBCMAR>2.0.CO;2.
Lian, M. S. 和 R. D. Cess, 1977: 能量平衡气候模型:冰-反照率反馈的重新评估。大气科学杂志, 34, 1058–1062, doi:10.1175/1520-0469(1977)034<1058:EBCMAR>2.0.CO;2.Lin, R. Q., and G. R. North, 1990: A study of abrupt climate change in a simple nonlinear climate model. Climate Dyn., 4, 253–261, doi:10.1007/BF00211062.
林, R. Q., 和 G. R. North, 1990: 在一个简单的非线性气候模型中对突发气候变化的研究. 气候动力学, 4, 253–261, doi:10.1007/BF00211062.Lindzen, R. S., and B. Farrell, 1977: Some realistic modifications of simple climate models. J. Atmos. Sci., 34, 1487–1501, doi:10.1175/1520-0469(1977)034<1487:SRMOSC>2.0.CO;2.
林岱森, R. S., 和 B. Farrell, 1977: 一些简单气候模型的现实修改. 大气科学杂志, 34, 1487–1501, doi:10.1175/1520-0469(1977)034<1487:SRMOSC>2.0.CO;2.Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 1550–1575, doi:10.1029/JC076i006p01550.
Maykut, G. A. 和 N. Untersteiner, 1971: 一种时间依赖的海冰热力学模型的一些结果. 地球物理研究杂志, 76, 1550–1575, doi:10.1029/JC076i006p01550.Maykut, G. A., and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100 (C12), 24 691–24 703, doi:10.1029/95JC02554.
Maykut, G. A. 和 M. G. McPhee, 1995: 北极混合层的太阳加热. 地球物理研究杂志, 100 (C12), 24 691–24 703, doi:10.1029/95JC02554.Mengel, J. G., D. A. Short, and G. R. North, 1988: Seasonal snowline instability in an energy balance model. Climate Dyn., 2, 127–131, doi:10.1007/BF01053470.
孟格尔, J. G., D. A.肖特, 和 G. R.诺斯, 1988: 能量平衡模型中的季节性雪线不稳定性. 气候动力学, 2, 127–131, doi:10.1007/BF01053470.Moon, W., and J. S. Wettlaufer, 2011: A low-order theory of Arctic sea ice stability. Europhys. Lett., 96, 39001, doi:10.1209/0295-5075/96/39001.
Moon, W. 和 J. S. Wettlaufer, 2011: 北极海冰稳定性的低阶理论. 欧洲物理快报, 96, 39001, doi:10.1209/0295-5075/96/39001.Moon, W., and J. S. Wettlaufer, 2012: On the existence of stable seasonally varying Arctic sea ice in simple models. J. Geophys. Res.,117, C07007, doi:10.1029/2012JC008006.
Moon, W. 和 J. S. Wettlaufer, 2012:关于简单模型中稳定季节性变化的北极海冰的存在。地球物理研究杂志, 117, C07007, doi:10.1029/2012JC008006。Moon, W., and J. S. Wettlaufer, 2013: A stochastic perturbation theory for non-autonomous systems. J. Math. Phys., 54, 123303, doi:10.1063/1.4848776.
Moon, W. 和 J. S. Wettlaufer, 2013: 非自治系统的随机扰动理论. 数学物理学杂志, 54, 123303, doi:10.1063/1.4848776.Morales Maqueda, M., A. J. Willmott, J. L. Bamber, and M. S. Darby, 1998: An investigation of the small ice cap instability in the Southern Hemisphere with a coupled atmosphere–sea ice–ocean–terrestrial ice model. Climate Dyn., 14, 329–352, doi:10.1007/s003820050227.
Morales Maqueda, M., A. J. Willmott, J. L. Bamber, 和 M. S. Darby, 1998: 使用耦合的大气-海冰-海洋-陆地冰模型对南半球小冰盖不稳定性的研究。气候动力学, 14, 329–352, doi:10.1007/s003820050227.Müller-Stoffels, M., and R. Wackerbauer, 2011: Regular network model for the sea ice-albedo feedback in the Arctic. Chaos,21, 013111, doi:10.1063/1.3555835.
穆勒-斯托费尔斯, M., 和 R. 瓦克鲍尔, 2011: 北极海冰-反照率反馈的规则网络模型. 混沌, 21, 013111, doi:10.1063/1.3555835.Müller-Stoffels, M., and R. Wackerbauer, 2012: Albedo parametrization and reversibility of sea ice decay. Nonlinear Processes Geophys., 19, 81–94, doi:10.5194/npg-19-81-2012.
穆勒-斯托费尔斯, M., 和 R. 瓦克鲍尔, 2012: 海冰融化的反照率参数化和可逆性. 非线性过程地球物理学, 19, 81–94, doi:10.5194/npg-19-81-2012.North, G. R., 1975a: Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci., 32, 1301–1307, doi:10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2.
北, G. R., 1975a: 具有扩散热传输的简单气候模型的解析解. 大气科学杂志, 32, 1301–1307, doi:10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2.North, G. R., 1975b: Theory of energy-balance climate models. J. Atmos. Sci., 32, 2033–2043, doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.
北, G. R., 1975b: 能量平衡气候模型理论. 大气科学杂志, 32, 2033–2043, doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.North, G. R., 1984: The small ice cap instability in diffusive climate models. J. Atmos. Sci., 41, 3390–3395, doi:10.1175/1520-0469(1984)041<3390:TSICII>2.0.CO;2.
North, G. R., 1984:扩散气候模型中的小冰盖不稳定性。《大气科学杂志》,41,3390–3395,doi:10.1175/1520-0469(1984)041<3390:TSICII>2.0.CO;2。North, G. R., and J. A. Coakley, 1979: Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity. J. Atmos. Sci., 36, 1189–1204, doi:10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2.
North, G. R. 和 J. A. Coakley, 1979:季节性与年均能量平衡模型计算气候及气候敏感性之间的差异。大气科学杂志, 36, 1189–1204, doi:10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2。North, G. R., R. F. Cahalan, and J. A. Coakley Jr., 1981: Energy balance climate models. Rev. Geophys., 19, 91–121, doi:10.1029/RG019i001p00091.
North, G. R., R. F. Cahalan, 和 J. A. Coakley Jr., 1981: 能量平衡气候模型。地球物理学评论, 19, 91–121, doi:10.1029/RG019i001p00091.North, G. R., J. G. Mengel, and D. A. Short, 1983: Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. J. Geophys. Res., 88 (C11), 6576–6586, doi:10.1029/JC088iC11p06576.
North, G. R., J. G. Mengel, 和 D. A. Short, 1983: 简单的能量平衡模型解决季节和大陆问题:对冰河时代天文学理论的应用。地球物理研究杂志, 88 (C11), 6576–6586, doi:10.1029/JC088iC11p06576.Ridley, J., J. Lowe, and D. Simonin, 2008: The demise of Arctic sea ice during stabilisation at high greenhouse gas concentrations. Climate Dyn., 30, 333–341, doi:10.1007/s00382-007-0291-4.
Ridley, J., J. Lowe, 和 D. Simonin, 2008: 在高温室气体浓度稳定期间北极海冰的消亡。气候动力学, 30, 333–341, doi:10.1007/s00382-007-0291-4.Ridley, J., J. Lowe, and H. T. Hewitt, 2012: How reversible is sea ice loss? Cryosphere, 6, 193–198, doi:10.5194/tc-6-193-2012.
Ridley, J., J. Lowe, 和 H. T. Hewitt, 2012: 海冰损失的可逆性有多大?冰冻圈, 6, 193–198, doi:10.5194/tc-6-193-2012.Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 2828–2843, doi:10.1175/2009JAS3039.1.
罗斯,B. E. J.,和 J. 马歇尔,2009:海洋热输送、海冰和多重气候状态:来自能量平衡模型的见解。《大气科学杂志》,66,2828–2843,doi:10.1175/2009JAS3039.1。Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor., 8, 392–400, doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.
Sellers, W. D., 1969:基于地球-大气系统能量平衡的全球气候模型。《应用气象学杂志》,8,392–400,doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2。Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13B, 224–230, doi:10.1111/j.2153-3490.1961.tb00079.x.
斯托梅尔,H.,1961:具有两种稳定流动状态的热盐对流。《地球》,13B,224–230,doi:10.1111/j.2153-3490.1961.tb00079.x。Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365–1387, doi:10.1175/JCLI3689.1.
Stouffer, R. J.,及合著者,2006:研究热盐环流对过去和未来气候变化反应的原因。《气候学杂志》,19,1365–1387,doi:10.1175/JCLI3689.1。Suarez, M. J., and I. M. Held, 1979: Sensitivity of an energy balance climate model to variations in the orbital parameters. J. Geophys. Res., 84 (C8), 4825–4836, doi:10.1029/JC084iC08p04825.
Suarez, M. J. 和 I. M. Held, 1979: 能量平衡气候模型对轨道参数变化的敏感性. 地球物理研究杂志, 84 (C8), 4825–4836, doi:10.1029/JC084iC08p04825.Thorndike, A. S., 1992: A toy model linking atmospheric thermal radiation and sea ice growth. J. Geophys. Res., 97 (C6), 9401–9410, doi:10.1029/92JC00695.
索恩代克,A. S.,1992:一个连接大气热辐射与海冰生长的玩具模型。《地球物理研究杂志》,97 (C6),9401–9410,doi:10.1029/92JC00695。Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2011: Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett.,38, L02707, doi:10.1029/2010GL045698.
Tietsche, S., D.Notz, J. H.Jungclaus, 和 J.Marotzke, 2011: 北极夏季海冰的恢复机制. 地球物理研究快报, 38, L02707, doi:10.1029/2010GL045698.Winton, M., 2006: Does the Arctic sea ice have a tipping point? Geophys. Res. Lett.,33, L23504, doi:10.1029/2006GL028017.
温顿,M.,2006:北极海冰是否存在临界点?地球物理研究快报,33,L23504,doi:10.1029/2006GL028017。Winton, M., 2008: Sea ice–albedo feedback and nonlinear Arctic climate change. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 111–131.
温顿,M.,2008:海冰-反照率反馈与非线性北极气候变化。《北极海冰下降:观察、预测、机制及其影响》,地球物理学文集,第 180 卷,美国地球物理联盟,111–131。Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 3924–3934, doi:10.1175/2011JCLI4146.1.
温顿,M.,2011:气候模型是否低估了北半球海冰覆盖的敏感性?气候学杂志,24,3924–3934,doi:10.1175/2011JCLI4146.1。