Method 方法 | Tool 工具 | Expression form 表达式形式 | Unkown 未知 | Search space 搜索空间 |
Linear SR 线性 SR | Uni-D linear system 单维线性系统 | |||
Multi-D linear system 多维线性系统 | ||||
Nonlinear SR 非线性 SR | Neural Network 神经网络 | |||
Expression-tree search 表达式树搜索 | Genetic Programming 遗传编程 | Expression tree 表达式树 | trees 树结构 | |
Transformers 变压器 | set2seq mapping 集合到序列映射 | |||
Reinforcement learning 强化学习 | set2seq mapping 集合到序列映射 | |||
Physics-inspired 物理启发式 | AI-Feynman AI-费曼 | - | - | |
Mathematics-inspired 数学启发的 | Symbolic metamodels 符号化元模型 |
Benchmark 基准测试 | Expression 表达 | ||||
Exp 表达式 | Exp 表达式 | ||||
Nguyen-2 阮氏-2 | T | 1.0 | F | 0.886 | |
Nguyen-3 阮氏-3 | T | 1.0 | F | 0.867 | |
Livermore-21 利弗莫尔-21 | T | 1.0 | F | 0.869 | |
Livermore-9 利弗莫尔-9 | T | 1.0 | F | 0.882 | |
Livermore-6 利弗莫尔-6 | T | 1.0 | F | 0.417 | |
Livermore-19 利弗莫尔-19 | T | 1.0 | F | -0.079 | |
Livermore-14* 利弗莫尔-14* | F | 1.0 | F | -0.857 | |
Nguyen-5 阮-5 | F | 0.999 | F | -3.97 | |
Nguyen-6 阮-6 | F | 0.999 | F | 0.564 |
Benchmark 基准测试 | Expression 表达 | ||||
Result 结果 | Result 结果 | ||||
Nguyen-12 阮氏-12 | T | 1.0 | F | ||
Livermore-5 利弗莫尔-5 | T | 1.0 | F | ||
Nguyen-9 阮氏-9 | F | F | |||
Nguyen-10 阮氏-10 | F | F |
Name 名称 | List of functions 功能列表 | |
Library 库 | U1 | |
U2 | ||
U3 |
- | sin 正弦 | + | sin 正弦 |
Application 应用 | Ref 参考文献 | Name/description(code) 名称/描述(代码) | Year 年份 | Method 方法 | Strategy 策略 |
SINDY | 51 | Sparse Identification of Nonlinear Dynamics link 非线性动力学稀疏辨识链接 | 2016 | Linear 线性 | D |
SINDY-AE | 33 | Data-driven discovery of coordinates and gov- erning equations (https://github.com/kpchamp/ SindyAutoencoders 数据驱动的坐标与主导方程发现 (https://github.com/kpchamp/SindyAutoencoders) | 2019 | Linear 线性 | 1 |
EQL | 47 | Equation learner (https://github.com/ KristofPusztai/EQL 方程学习器 (https://github.com/KristofPusztai/EQL) | 2016 | non linear 非线性 | D |
EQL÷ | 48 | Equation learner division (https://github.com/ martius-lab/EQL 方程学习器分割(https://github.com/martius-lab/EQL) | 2018 | Non linear 非线性 | D |
Eureqa 尤里卡 | 26 | Commercial software 商业软件 | 2011 | GP | D |
FFX | 20 | Fast function extraction (https://github.com/ natekupp/ffx/tree/master/ffx) 快速函数提取 (https://github.com/ natekupp/ffx/tree/master/ffx) | 2011 | GP | D |
ITEA | 22 | Interaction-Transformation Evolutionary Algorithm for SR (https://github.com/folivetti/ITEA/) 符号回归的交互-变换进化算法 (https://github.com/folivetti/ITEA/) | 2019 | GP | D |
MRGP | 23 | (https://github.com/ flexgp/gp-learners) | 2014 | GP | D |
E2ESR | 31 | (https://github.com/facebookresearch/ symbolicregression) | 2022 | TNN | D |
NeSymReS | 32 | (https:// github.com/SymposiumOrganization/ NeuralSymbolicRegressionThatScales) (https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales) | 2021 | TNN | D |
DSR | 19 | Deep symbolic regression (https://github.com/ brendenpetersen/deep-symbolic-regression) 深度符号回归(https://github.com/brendenpetersen/deep-symbolic-regression) | 2019 | RNN,RL 循环神经网络,强化学习 | D |
NGPPS | 29 | SR via Neural-Guided GP population seed- (https://github.com/brendenpetersen/ deep-symbolic-regression) 通过神经引导遗传编程种群种子实现的符号回归-(https://github.com/brendenpetersen/deep-symbolic-regression) | 2021 | RNN,GP,RL 循环神经网络,遗传编程,强化学习 | D |
AIFeynman AI 费曼算法 | 27 | Physics-inspired method for SR (https://github.com/SJ001/AI-Feynman 物理启发的 SR 方法(https://github.com/SJ001/AI-Feynman) | 2019 | Physics-informed 物理信息驱动 | 1 |
SM | 30 | Symbolic Metamodel (https://bitbucket.org/ mvdschaar/mlforhealthlabpub) 符号元模型(https://bitbucket.org/ mvdschaar/mlforhealthlabpub) | 2019 | Mathematics 数学 | 2 |
GNN | 52 | Discovering Symbolic Models from DL with Induc- tive Biases (https://github.com/MilesCranmer/ symbolic_deep_learning) 通过归纳偏置从深度学习中发现符号模型(https://github.com/MilesCranmer/symbolic_deep_learning) | 2020 | GNN | 2 |
HEAL | 53 | Heuristic and Evolutionary Algorithms Labo- ratory (https://github.com/heal-research/ HeuristicLab 启发式与进化算法实验室(https://github.com/heal-research/HeuristicLab) | - | Heuristic 启发式 | D |
Type 类型 | Benchmark 基准测试 | Number of problems 问题数量 | Year 年份 | Reference 参考文献 |
Physics-related 物理学相关 | Feynman Database 费曼数据库 | 119 | 2019 | 27 |
Strogatz Repository 斯特罗加茨知识库 | 10 | 2011 | 60 | |
Mathematics-related 数学相关 | Koza 科扎 | 3 | 1994 | 1 |
Keijzer 凯泽 | 15 | 2003 | 14 | |
Vladislavleva 弗拉季斯拉列娃 | 8 | 2009 | 15 | |
Nguyen 阮 | 12 | 2011 | 17 | |
Korns 科恩斯 | 15 | 2011 | 16 | |
R | 3 | 2013 | 61 | |
Jin 金 | 6 | 2019 | 18 | |
Livermore 利弗莫尔 | 22 | 2021 | 19 |
Dataset 数据集 | Expression 表达 | Variables 变量 | Data range 数据范围 |
Koza-1 | 1 | U | |
Koza-2 科扎-2 | 1 | U | |
Koza-3 科扎-3 | 1 | U | |
Nguyen-1 阮氏-1 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-2 阮氏-2 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-3 阮氏-3 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-4 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-5 阮氏-5 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-6 阮氏-6 | 1 | U(-1,1,20) 均匀分布(-1,1,20) | |
Nguyen-7 阮氏-7 | 1 | U(0,2,20) 均匀分布(0,2,20) | |
Nguyen-8 阮氏-8 | 1 | U(0,4,20) 均匀分布(0,4,20) | |
Nguyen-9 阮氏-9 | 2 | U(-1,1,100) 均匀分布(-1,1,100) | |
Nguyen-10 阮氏-10 | 2 | U(-1,1,100) 均匀分布(-1,1,100) | |
Nguyen-11 阮-11 | 2 | ||
Nguyen-12 阮-12 | 2 | ||
Jin-1 金-1 | 2 | U(-3,3,100) | |
Jin-2 金-2 | 2 | U(-3,3,100) 均匀分布(-3,3,100) | |
Jin-3 金-3 | 2 | U(-3,3,100) 均匀分布(-3,3,100) | |
Jin-4 金-4 | 2 | U(-3,3,100) 均匀分布(-3,3,100) | |
Jin-5 金-5 | 2 | U(-3,3,100) 均匀分布(-3,3,100) | |
Jin-6 金-6 | 2 | U(-3,3,100) | |
Keijzer-1 凯泽-1 | 1 | E | |
Keijzer-2 凯泽-2 | 1 | E | |
Keijzer-3 凯泽-3 | 1 | E | |
Keijzer-4 凯泽-4 | 1 | ||
Keijzer-5 凯泽-5 | 3 | ||
Keijzer-6 凯泽-6 | 1 | ||
Keijzer-7 凯泽-7 | 1 | E | |
Keijzer-8 凯泽-8 | 1 | E | |
Keijzer-9 凯泽-9 | 1 | E | |
Keijzer-10 凯泽-10 | 2 | ||
Keijzer-11 凯泽-11 | 2 | U[-3, 3, 20] 均匀分布[-3, 3, 20] | |
Keijzer-12 凯泽-12 | 2 | U[-3, 3, 20] 均匀分布[-3, 3, 20] | |
Keijzer-13 凯泽-13 | 2 | U | |
Keijzer-14 凯泽-14 | 2 | U | |
Keijzer-15 凯泽-15 | 2 | U | |
R1 | 1 | E | |
R2 | 1 | E | |
R3 | 1 | E |
Dataset 数据集 | Expression 表达 | Variables 变量 | Data range 数据范围 |
Korns-1 科恩斯-1 | 1 | U[-50, 50, 10000] | |
Korns-2 科恩斯-2 | 3 | U[-50, 50, 10000 均匀分布[-50, 50, 10000 | |
Korns-3 科恩斯-3 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-4 科恩斯-4 | 1 | U[-50, 50, 10000 均匀分布[-50, 50, 10000 | |
Korns-5 科恩斯-5 | 1 | U[-50, 50, 10000 均匀分布[-50, 50, 10000 | |
Korns-6 科恩斯-6 | 1 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-7 科恩斯-7 | 1 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-8 科恩斯-8 | 3 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-9 科恩斯-9 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-10 科恩斯-10 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-11 科恩斯-11 | 1 | U[-50, 50, 10000] 均匀分布[-50,50,10000] | |
Korns-12 科恩斯-12 | 2 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-13 科恩斯-13 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-14 科恩斯-14 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Korns-15 科恩斯-15 | 4 | U[-50, 50, 10000] 均匀分布[-50, 50, 10000] | |
Livermore-1 利弗莫尔-1 | 1 | U[-10,10,1000] 均匀分布[-10,10,1000] | |
Livermore-2 利弗莫尔-2 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-3 利弗莫尔-3 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-4 利弗莫尔-4 | 1 | U[0,2,20] | |
Livermore-5 利弗莫尔-5 | 2 | U[0,1,20] | |
Livermore-6 利弗莫尔-6 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-7 利弗莫尔-7 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-8 利弗莫尔-8 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-9 利弗莫尔-9 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-10 利弗莫尔-10 | 2 | U[0,1,20] 均匀分布[0,1,20] | |
Livermore-11 利弗莫尔-11 | 2 | U[-1,1,50] 均匀分布[-1,1,50] | |
Livermore-12 利弗莫尔-12 | 2 | U[-1,1,50] 均匀分布[-1,1,50] | |
Livermore-13 利弗莫尔-13 | 1 | U | |
Livermore-14 利弗莫尔-14 | 1 | U | |
Livermore-15 利弗莫尔-15 | 1 | U[0,4,20] | |
Livermore-16 利弗莫尔-16 | 1 | U | |
Livermore-17 利弗莫尔-17 | 2 | U[0,1,20] 均匀分布[0,1,20] | |
Livermore-18 利弗莫尔-18 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-19 利弗莫尔-19 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-20 利弗莫尔-20 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-21 利弗莫尔-21 | 1 | U[-1,1,20] 均匀分布[-1,1,20] | |
Livermore-22 利弗莫尔-22 | 1 | U[-1,1,20] 均匀分布[-1,1,20] |
Dataset 数据集 | Expression 表达 | Variables 变量 | Data range 数据范围 |
Vladislavleva-1 弗拉季斯拉夫列娃-1 | 1 | U | |
Vladislavleva-2 弗拉季斯拉夫列娃-2 | 2 | E | |
Vladislavleva-3 弗拉季斯拉夫列娃-3 | 2 | ||
Vladislavleva-4 弗拉季斯拉夫列娃-4 | 5 | U[0.05, 6.05, 1024] | |
Vladislavleva-5 弗拉季斯拉夫-5 | 3 | ||
Vladislavleva-6 弗拉季斯拉夫-6 | 2 | U | |
Vladislavleva-7 弗拉季斯拉夫-7 | 2 | U[0.05, 6.05, 300] | |
Vladislavleva-8 弗拉季斯拉夫-8 | 2 | U |
Function form 函数形式 | #v |
1 | |
2 | |
3 | |
4 9 3 | |
6 | |
2 | |
4 | |
3 | |
2 | |
5 | |
4 | |
5 | |
3 | |
2 | |
4 | |
4 | |
3 | |
3 | |
4 | |
3 | |
4 4 | |
2 | |
2 | |
3 | |
2 | |
4 | |
3 | |
3 | |
4 | |
6 | |
4 | |
3 | |
3 2 3 | |
4 | |
2 | |
3 | |
4 |
Function form 函数形式 | # |
6 | |
5 | |
4 | |
3 | |
4 | |
5 | |
3 | |
3 | |
4 | |
5 | |
2 | |
3 | |
4 | |
6 | |
4 | |
3 | |
2 | |
3 | |
5 | |
6 | |
5 | |
4 | |
2 | |
4 | |
3 | |
3 | |
3 | |
3 | |
5 | |
3 | |
3 | |
2 | |
3 | |
3 | |
4 | |
3 | |
5 | |
5 | |
8 | |
6 | |
4 | |
2 | |
4 |
Function form 函数形式 | #variables |
4 | |
3 | |
3 | |
6 | |
3 | |
2 | |
4 | |
5 | |
3 | |
3 | |
3 | |
3 | |
4 | |
4 |