Naval Expeditionary Runway Construction Criteria 海军远征跑道建造标准
P-8 Poseidon Pavement Requirements P-8 海神路面要求
W. Jeremy Robinson, Jeremiah M. Stache, Jeb. S. Tingle, W.Jeremy Robinson、Jeremiah M. Stache、Jeb.S. Tingle
March 2023 2023 年 3 月
Geotechnical and Structures Laboratory Carlos R. Gonzalez, Anastasios M. Ioannides, and James T. Rushing 岩土工程与结构实验室 Carlos R. Gonzalez、Anastasios M. Ioannides 和 James T. Rushing
The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. 美国陆军工程研究与发展中心(ERDC)致力于解决美国最棘手的工程和环境挑战。 ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil. ERDC 在土木和军事工程、地理空间科学、水资源和环境科学领域为陆军、国防部、民用机构和国家公益事业开发创新解决方案。欲了解更多信息,请访问 www.erdc.usace.army.mil。
To search for other technical reports published by ERDC, visit the ERDC online library at https://erdclibrary.on.worldcat.org/discovery. 要搜索 ERDC 出版的其他技术报告,请访问 ERDC 在线图书馆 https://erdclibrary.on.worldcat.org/discovery。
Naval Expeditionary Runway Construction Criteria 海军远征跑道建造标准
P-8 Poseidon Pavement Requirements P-8 海神路面要求
W. Jeremy Robinson, Jeremiah M. Stache, Jeb S. Tingle, Carlos R. Gonzalez, Anastasios M. Ioannides, and James T. Rushing W.杰里米-罗宾逊、杰里迈亚-M-斯塔奇、杰布-S-廷格、卡洛斯-R-冈萨雷斯、阿纳斯塔西奥斯-M-伊万尼德斯和詹姆斯-T-拉辛
Geotechnical and Structures Laboratory 岩土工程与结构实验室
US Army Engineer Research and Development Center 美国陆军工程研发中心
3909 Halls Ferry Road 霍尔斯渡口路 3909 号
Vicksburg, MS 39180-6199 维克斯堡,MS 39180-6199
Final report 最终报告
DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. A. 批准公开发行:无限量发行。
Abstract 摘要
A full-scale airfield pavement test section was constructed and trafficked by the US Army Engineer Research and Development Center to determine minimum rigid and flexible pavement thickness requirements to support contingency operations of the P-8 Poseidon aircraft. 美国陆军工程研发中心建造了一个全尺寸的机场路面试验段,并进行了交通测试,以确定最低刚性和柔性路面厚度要求,为 P-8 海神飞机的应急行动提供支持。 Additionally, airfield damage repair solutions were tested to evaluate the compatibility of those solutions with the P-8 Poseidon. 此外,还测试了机场损坏修复解决方案,以评估这些解决方案与 P-8 海神的兼容性。 The test items consisted of various material thickness and strengths to yield a range of operations to failure allowing development of performance predictions at a relatively lower number of design operations than are considered in traditional sustainment pavement design scenarios. 测试项目包括不同的材料厚度和强度,以产生一系列失效操作,从而在设计操作次数相对少于传统养护路面设计情况下的情况下进行性能预测。 Test items were trafficked with a dual-wheel P-8 test gear on a heavy-vehicle simulator. Flexible pavement rutting, rigid pavement cracking and spalling, instrumentation response, and falling-weight deflectometer data were monitored at select traffic intervals. 在重型车辆模拟器上使用双轮 P-8 测试装置进行测试。在选定的行车间隔时间内,对柔性路面车辙、刚性路面开裂和剥落、仪器响应以及落重挠度计数据进行了监测。 The results of the trafficking tests indicated that existing design predictions were generally overconservative. Thus, minimum pavement layer thickness recommendations were made to support a minimum level of contingency operations. 贩运测试结果表明,现有的设计预测普遍过于保守。因此,提出了最小路面层厚度建议,以支持最低水平的应急运行。 The results of full-scale flexible pavement experiment were utilized to support an analytical modeling effort to extend flexible pavement thickness recommendations beyond those evaluated. 利用全尺寸柔性路面实验结果来支持分析建模工作,以将柔性路面厚度建议扩展到评估范围之外。
DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 免责声明:本报告内容不得用于广告、出版或促销目的。引用商品名称并不代表官方认可或批准使用此类商业产品。 All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. 所有引用的产品名称和商标均为其各自所有者的财产。除非有其他授权文件指定,否则本报告的结论不得解释为陆军部的官方立场。
Figure 1. Plan view of P-8 runway construction criteria test section … 3 图 1.P-8 跑道施工标准测试部分平面图...... 3
Figure 2. Profile view of P-8 construction criteria test lanes. … 4 图 2.P-8 施工标准测试车道剖面图。... 4
Figure 3. Clay subgrade moisture/density relationship … 8 图 3.粘土路基湿度/密度关系...... 8
Figure 4. Clay subgrade California bearing ratio (CBR)/moisture content relationship … 8 图 4.粘土路基加州承载比 (CBR) 与含水量的关系 ... 8
Figure 5. Base course aggregates … 9 图 5.基层集料...... 9
Figure 6. Limestone aggregate particle-size analysis … 10 图 6.石灰石骨料粒度分析...... 10
Figure 7. Limestone aggregate moisture/density relationship. … 10 图 7.石灰石骨料湿度/密度关系。... 10
Figure 8. Crushed gravel base particle-size analysis. … 11 图 8.碎石基层粒度分析。... 11
Figure 9. Crushed gravel base moisture/density relationship … 12 图 9.碎石基层湿度/密度关系...... 12
Figure 10. Test section excavation and preparation … 15 图 10.试验段的挖掘和准备 ... 15
Figure 11. Mixing and processing equipment. … 16 图 11.混合和加工设备。... 16
Figure 12. Material placement equipment. … 17 图 12.材料放置设备。... 17
Figure 13. Plan view of typical PCC instrumentation layout. … 18 图 13.典型 PCC 仪表布局平面图。... 18
Figure 14. Profile view of typical PCC instrumentation layout. … 18 图 14.典型 PCC 仪表布局剖面图。... 18
Figure 15. Plan view of typical HMA instrumentation layout. … 19 图 15.典型 HMA 仪表布局平面图。... 19
Figure 16. Profile view of typical HMA instrumentation layout … 19 图 16.典型 HMA 仪表布局剖面图 ... 19
Figure 17. EPC installation technique … 20 图 17.EPC 安装技术...... 20
Figure 18. Embedded concrete strain gauge installation … 21 图 18.嵌入式混凝土应变计安装 ... 21
Figure 19. SDD schematic … 23 图 19.SDD 原理图 ... 23
Figure 20. Single-depth deflectometer installation. … 24 图 20.单深度偏转仪安装。... 24
Figure 21. ASG installation. … 25 图 21.ASG 安装。... 25
Figure 22. ERDC Heavy Vehicle Simulator (HVS-A). … 29 图 22.ERDC 重型车辆模拟器 (HVS-A)。... 29
Figure 23. P-8 gear on HVS. … 30 图 23.HVS 上的 P-8 齿轮。... 30
Figure 24. Tire imprint of the P-8 test gear. … 31 图 24.P-8 试验齿轮的轮胎印。... 31
Figure 25. Bidirectional normally distributed wander pattern. … 32 图 25.双向正态分布的游走模式... 32
Figure 26. Example of HVS traffic wander methodology … 33 图 26.HVS 流量漫游方法示例...... 33
Figure 27. Pretraffic HWD results (8 in. thick PCC). … 36 图 27.交通前 HWD 结果(8 英寸厚 PCC)。... 36
Figure 28. Posttraffic HWD results (8 in. thick PCC) … 37 图 28.行车后 HWD 结果(8 英寸厚 PCC)...... 37
Figure 29. Crack map at 500 passes … 38 图 29.500 次通过时的裂缝图...... 38
Figure 30. Crack map at 546 passes … 39 图 30.546 个通道的裂缝图...... 39
Figure 31. Crack map at 750 passes. … 39 图 31.750 通过点的裂缝图。... 39
Figure 32. Crack map at 2,000 passes. … 39 图 32.2,000 通过点的裂缝图。... 39
Figure 33. Crack map at 3,000 passes. … 39 图 33.3,000 通过点的裂缝图。... 39
Figure 34. Crack map at 7,500 passes. … 40 图 34.7500 米处的裂缝图。... 40
Figure 35. Crack map at 10,000 passes. … 40 图 35.10,000 通过点的裂缝图。... 40
Figure 36. Crack map at 15,000 passes … 40 图 36.15,000 通过点的裂缝图...... 40
Figure 37. Total crack length with traffic (8 in. thick PCC). … 41 图 37.交通情况下的总裂缝长度(8 英寸厚 PCC)。... 41
Figure 38. ISM with traffic at various locations (8 in. thick PCC) … 43 图 38.不同位置的交通 ISM(8 英寸厚 PCC)............43
Figure 39. JE with traffic for dowelled and nondowelled joints (8 in. thick PCC) … 43 图 39.打钉和不打钉接缝的 JE(8 英寸厚 PCC).............43
Figure 40. Subgrade pressure response with traffic (8 in. thick PCC), … 45 图 40.交通对路基压力的响应(8 英寸厚 PCC)...... 45
Figure 41. SSG response of nondowelled joint (8 in. thick PCC). … 46 图 41.无冲洗接头(8 英寸厚 PCC)的 SSG 响应。... 46
Figure 42. SSG response of dowelled joint (8 in. thick PCC) … 46 图 42.锚固接头的 SSG 响应(8 英寸厚 PCC)...... 46
Figure 43. SSG response of midslab (8 in. thick PCC). … 47 图 43.中层板(8 英寸厚 PCC)的 SSG 响应。... 47
Figure 44. ESG response of nondowelled joint (8 in. thick PCC). … 48 图 44.无冲洗接头的 ESG 响应(8 英寸厚 PCC)。... 48
Figure 45. ESG response of dowelled joint (8 in. thick PCC) … 48 图 45.锚固连接的 ESG 响应(8 英寸厚 PCC)...... 48
Figure 46. ESG response of midslab (8 in. thick PCC). … 49 图 46.中层板(8 英寸厚 PCC)的 ESG 响应。... 49
Figure 47. Pretraffic HWD results (11 in. thick PCC) … 50 图 47.交通前 HWD 结果(11 英寸厚 PCC)...... 50
Figure 48. Posttraffic HWD results (11 in. thick PCC) … 51 图 48.交通后 HWD 结果(11 英寸厚 PCC)...... 51
Figure 49. ISM with traffic at various locations (11 in. thick PCC). … 53 图 49.不同位置的 ISM 流量(11 英寸厚 PCC)。... 53
Figure 50. JE with traffic for dowelled and nondowelled joints (11 in. thick PCC) … 53 图 50.打钉接缝和不打钉接缝的 JE 随车流变化情况(11 英寸厚 PCC)...... 53
Figure 51. Subgrade pressure response with traffic (11 in. thick PCC), … 54 图 51.交通情况下的路基压力响应(11 英寸厚 PCC)...... 54
Figure 52. SSG response of nondowelled joint (11 in. thick PCC) … 55 图 52.无冲洗接头的 SSG 响应(11 英寸厚 PCC)............55
Figure 53. SSG response of dowelled joint (11 in. thick PCC). … 56 图 53.螺纹连接的 SSG 响应(11 英寸厚 PCC)。... 56
Figure 54. SSG response of midslab (11 in. thick PCC). … 56 图 54.中层板(11 英寸厚 PCC)的 SSG 响应。... 56
Figure 55. ESG response of dowelled joint (11 in. thick PCC). … 57 图 55.锚固连接的 ESG 响应(11 英寸厚 PCC)。... 57
Figure 56. ESG response of midslab (11 in. thick PCC). … 58 图 56.中层板(11 英寸厚 PCC)的 ESG 响应。... 58
Figure 57. Example of rut-depth and permanent-deformation measurement. … 59 图 57.车辙深度和永久变形测量示例。... 59
Figure 58. Rut-depth progression with traffic … 61 图 58.车流的车辙深度变化...... 61
Figure 59. ISM with traffic. … 63 图 59.有流量的 ISM。... 63
Figure 60. Measured subgrade pressure response with traffic … 64 图 60.测量到的路基压力随交通量的变化...... 64
Figure 61. Subgrade pressure-effect of HMA thickness for LS base, 6 CBR subgrade. … 65 图 61.LS 基层、6 CBR 基层的 HMA 厚度对基层压力的影响。... 65
Figure 62. Subgrade pressure-effect of HMA thickness for LS base, 10 CBR subgrade. … 66 图 62.LS 基层、10 CBR 基层的 HMA 厚度对基层压力的影响。... 66
Figure 63. Subgrade pressure-effect of subgrade CBR for 4 in. HMA, LS base. … 66 图 63.4 英寸 HMA、LS 基层的基层压力对基层 CBR 的影响。... 66
Figure 64. Subgrade pressure-effect of subgrade CBR for 2 in . HMA, LS base … 67 图 64.2 英寸 HMA、LS 基层的基层压力对基层 CBR 的影响...... 67
Figure 65. Measured top-of-base pressure response with traffic. … 69 图 65.测量到的基底顶部压力随交通量的变化情况。... 69
Figure 66. Top-of-base pressure-effect of HMA thickness for LS base, 6 CBR subgrade. … 70 图 66.LS 基底、6 CBR 基层的基底压力对 HMA 厚度的影响。... 70
Figure 67. Top-of-base pressure-effect of HMA thickness for LS base, 10 CBR subgrade. … 71 图 67.LS 基底、10 CBR 基层的基底压力对 HMA 厚度的影响。... 71
Figure 68. Top-of-base pressure-effect of subgrade CBR for 4 in . HMA, LS base. … 71 图 68.4 英寸 HMA、LS 基底的基底压力对基底 CBR 的影响。... 71
Figure 69. Top-of-base pressure-effect of subgrade CBR for 2 in . HMA, LS base. … 72 图 69.2 英寸 HMA、LS 基底的基底压力对基底 CBR 的影响。... 72
Figure 70. Measured middepth base pressure response with traffic. … 74 图 70.交通情况下测量的中深度基底压力响应。... 74
Figure 71. Middepth base pressure-effect of HMA thickness for LS base, 6 CBR subgrade. … 75 图 71.LS 基底、6 CBR 基层的中深基面压力对 HMA 厚度的影响。... 75
Figure 72. Middepth base pressure-effect of HMA thickness for LS base, 10 CBR subgrade.75 图 72.LS 基底、10 CBR 基层的中深基面压力对 HMA 厚度的影响75。
Figure 73. Middepth base pressure-effect of subgrade CBR for 4 in. HMA, LS base. … 76 图 73.4 英寸 HMA、LS 基底的中深层基底压力对基底 CBR 的影响。... 76
Figure 74. Middepth base pressure-effect of subgrade CBR for 2 in. HMA, LS base. … 76 图 74.2 英寸 HMA、LS 基底的中深层基底压力对基底 CBR 的影响。... 76
Figure 75. Dynamic subgrade deflection with traffic. … 79 图 75.交通情况下的动态路基挠度... 79
Figure 76. Dynamic deflection-effect of HMA thickness for LS base, 6 CBR subgrade. … 79 图 76.LS 基底、6 CBR 基层的动态挠度对 HMA 厚度的影响。... 79
Figure 77. Dynamic deflection-effect of HMA thickness for LS base, 10 CBR subgrade. … 80 图 77.LS 基底、10 CBR 基层的动态挠度对 HMA 厚度的影响。... 80
Figure 78. Dynamic deflection-effect of subgrade CBR for 4 in. HMA, LS base. … 80 图 78.4 英寸 HMA、LS 基层的动态挠度对基层 CBR 的影响。... 80
Figure 79. Dynamic deflection-effect of subgrade CBR for 2 in . HMA, LS base. … 81 图 79.2 英寸 HMA、LS 基层的动态挠度对基层 CBR 的影响。... 81
Figure 80. Permanent subgrade deflection with traffic. … 83 图 80.交通量导致的路基永久变形... 83
Figure 81. Permanent deflection-effect of HMA thickness for LS base, 6 CBR subgrade. … 84 图 81.LS 基底、6 CBR 基层的永久挠度对 HMA 厚度的影响。... 84
Figure 82. Permanent deflection-effect of HMA thickness for LS base, 10 CBR subgrade. … 84 图 82.LS 基底、10 CBR 基层的永久挠度对 HMA 厚度的影响。... 84
Figure 83. Permanent deflection-effect of subgrade CBR for 4 in. HMA, LS base. … 85 图 83.4 英寸 HMA、LS 基层的永久挠度对基层 CBR 的影响。... 85
Figure 84. Permanent deflection-effect of subgrade CBR for 2 in. HMA, LS base. … 85 图 84.2 英寸 HMA、LS 基层的永久挠度对基层 CBR 的影响。... 85
Figure 85. Longitudinal ASG response with traffic … 88 图 85.纵向 ASG 响应与交通...... 88
Figure 86. Longitudinal strain-effect of HMA thickness for LS base, 10 CBR subgrade. … 89 图 86.LS 基底、10 CBR 基层的纵向应变对 HMA 厚度的影响。... 89
Figure 87. Longitudinal strain-effect of subgrade CBR for 2 in. HMA, LS base. … 89 图 87.2 英寸 HMA、LS 基层的纵向应变对基层 CBR 的影响。... 89
Figure 88. Transverse ASG response with traffic. … 92 图 88.横向 ASG 流量响应。... 92
Figure 89. Transverse strain-effect of HMA thickness for LS base, 6 CBR subgrade. … 92 图 89.LS 基层、6 CBR 基层的横向应变对 HMA 厚度的影响。... 92
Figure 90. Transverse strain-effect of HMA thickness for LS base, 10 CBR subgrade. … 93 图 90.LS 基底、10 CBR 基层的横向应变对 HMA 厚度的影响。... 93
Figure 91. Transverse strain-effect of subgrade CBR for 4 in. HMA, LS base … 93 图 91.4 英寸 HMA、LS 基层的横向应变对基层 CBR 的影响...... 93
Figure 92. Transverse strain-effect of subgrade CBR for 2 in. HMA, LS base … 94 图 92.2 英寸 HMA、LS 基层的横向应变对基层 CBR 的影响...... 94
Figure 93. Permanent deformation of geosynthetic reinforced sand with FRP. … 98 图 93.含玻璃钢的土工合成材料加固砂的永久变形。... 98
Figure 94. Photographs of geogrid stabilized backfill-posttraffic. … 98 图 94.土工格栅加固后回填土的照片。... 98
Figure 95. Permanent deformation of crushed limestone backfill with FRP. … 99 图 95.含玻璃钢的碎石灰石回填土的永久变形。... 99
Figure 96. Photographs of posttest limestone backfill. … 100 图 96.测试后石灰岩回填土的照片。... 100
Figure 97. Permanent deformation of cement stabilized sand with FRP. … 101 图 97.含玻璃钢的水泥稳定砂的永久变形。... 101
Figure 98. Photographs of posttest cement stabilized backfill. … 102 图 98.测试后水泥稳定回填土的照片。... 102
Figure 99. Spalling in stone and grout repair. … 104 图 99:石材剥落和灌浆修复。... 104
Figure 100. Processing debris backfill. … 105 图 100.处理碎片回填。... 105
Figure 101. Backfill placement process. … 106 图 101.回填安置过程。... 106
Figure 102. CSA placement process. … 108 图 102.CSA 安置流程。... 108
Figure 103. Permanent deformation of CSA crater repair. … 109 图 103.CSA 凹坑修复的永久变形。... 109
Figure 104. Joint spalling of CSA repair … 109 图 104.CSA 修补接缝剥落...... 109
Figure 105. ISM for CSA crater repair. … 110 图 105.用于 CSA 凹坑修复的 ISM。... 110
Figure 106. Placement of rapid-setting flowable fill/concrete cap. … 112 图 106.放置速凝可流动填料/混凝土盖。... 112
Figure 107. Joint spalling at 3,500 passes on rapid-setting (RS) crater repair … 113 图 107.快速固化 (RS) 凹坑修补 3 500 次后的接缝剥落............ 113
Figure 108. ISM for rapid-setting concrete crater repair. … 113 图 108.用于快速凝固混凝土坑洞修补的 ISM。... 113
Figure 109. Posttraffic layer deformation for 4 in. HMA, GR, 10 CBR … 115 图 109.4 英寸 HMA、GR、10 CBR 的交通后层变形...... 115
Figure 110. Posttraffic layer deformation for 2 in. HMA, GR, 10 CBR … 116 图 110.2 英寸 HMA、GR、10 CBR 的交通后层变形...... 116
Figure 111. Posttraffic layer deformation for 4 in. HMA, LS, 10 CBR. … 116 图 111.4 英寸 HMA、LS、10 CBR 的交通后层变形。... 116
Figure 112. Posttraffic layer deformation for 2 in . HMA, LS, 10 CBR. … 117 图 112.2 英寸 HMA、LS、10 CBR 的交通后层变形。... 117
Figure 113. Posttraffic layer deformation for 4 in. HMA, LS, 6 CBR. … 117 图 113.4 英寸 HMA、LS、6 CBR 的交通后层变形。... 117
Figure 114. Posttraffic layer deformation for 2HMA, LS, 6 CBR … 118 图 114.2HMA、LS 和 6 CBR 的交通后层变形...... 118
Figure 115. Photographs of excavated cross sections. … 119 图 115.挖掘横截面照片。... 119
Figure 116. Sublayering approach for decomposing the pavement structure with predefined analysis depths. … 124 图 116.以预定分析深度分解路面结构的分层方法。... 124
Figure 117. Use of transverse analysis points across width of test section to accumulate permanent deformation during each vehicle pass with wander. … 128 图 117.使用横向分析点横跨试验段宽度,累计车辆每次通过时的永久变形。... 128
Figure 118. Screenshot of PD model user interface, with plotted rut-depth history and computed pass level for a modified 2.25 in . rut-depth criteria … 129 图 118.PD 模型用户界面截图,图中绘制了车辙深度历史记录,并计算了修改后的 2.25 英寸车辙深度标准的通过水平...... 129
Figure 119. Approximation of nonuniform contact pressure of P-8 tire using the proposed method based on inverse analysis. … 132 图 119.使用基于反分析的拟议方法对 P-8 轮胎的非均匀接触压力进行近似计算。... 132
Figure 120. Comparison of rut-depth history between model and full-scale test items. … 133 图 120.模型和全尺寸测试项目的车辙深度历史对比。... 133
Figure 121. Comparison between predicted and measured vertical stress at the top of base. … 134 图 121.基底顶部预测垂直应力与实测垂直应力的比较。... 134
Figure 122. Comparison between predicted and measured vertical stress at middepth of base. … 135 图 122.基底中间深度处预测垂直应力与测量垂直应力的比较。... 135
Figure 123. Comparison between predicted and measured vertical stress at top of the subgrade … 136 图 123.路基顶部预测垂直应力与实测垂直应力的比较............ 136
Figure 124. Comparison between model predictions and ISM histories … 137 图 124.模型预测与 ISM 历史记录的比较...... 137
Figure 125. P-8 design curves for 2 in. thick HMA … 140 图 125.2 英寸厚 HMA 的 P-8 设计曲线...... 140
Figure 126. P-8 design curves for 4 in. thick HMA … 141 图 126.4 英寸厚 HMA 的 P-8 设计曲线...... 141
Figure 127. P-8 design curves for 6 in. thick HMA. … 142 图 127.6 英寸厚 HMA 的 P-8 设计曲线。... 142
Figure 128. Results of APT experiment in relation to design curves … 144 图 128.
Figure 129. Impact of varying HMA thickness on selected base course thickness. … 145 图 129.不同 HMA 厚度对所选基层厚度的影响。... 145
Figure 130. Minimum rigid pavement layer thickness for contingency operations. … 147 图 130.应急行动的最小刚性路面层厚度。... 147
Figure 131. Minimum flexible pavement layer thickness for contingency operations … 149 图 131.应急行动的最小柔性路面层厚度...... 149
Tables 表格
Table 1. ADR technology combinations. … 6 表 1.ADR 技术组合。... 6
Table 2. Hot-mix asphalt design properties. … 13 表 2.热拌沥青的设计特性... 13
Table 3. Portland cement concrete mixture properties … 14 表 3.波特兰水泥混凝土混合物性能 ... 14
Table 4. Rigid pavement as-built properties. … 27 表 4.刚性路面的竣工特性。... 27
Table 5. Flexible pavement as-built properties. … 28 表 5.柔性路面竣工属性。... 28
Table 6. Results of fresh PCC field tests. … 28 表 6.新鲜 PCC 现场测试结果。... 28
Table 7. Measurements from digitized tire imprints … 31 表 7.数字化轮胎印记的测量结果...... 31
Table 8. HWD joint load transfer efficiency results (8 in. thick PCC) … 37 表 8.HWD 接头荷载传递效率结果(8 英寸厚 PCC)...... 37
Table 9. Selected failure pass level for 8 in. thick PCC. … 41 表 9.8 英寸厚 PCC 的选定失效合格等级。... 41
Table 10. HWD joint load transfer efficiency results (11 in. thick PCC). … 51 表 10.HWD 接头荷载传递效率结果(11 英寸厚 PCC)。... 51
Table 11. Passes required to produce various rut depths … 61 表 11.产生不同车辙深度所需的通过次数...... 61
Table 12. Statistical analysis of subgrade pressure response … 68 表 12.
Table 13. Statistical analysis of top of base pressure response. … 73 表 13.底座顶部压力响应的统计分析。... 73
Table 14. Statistical comparison of middepth pressure response … 77 表 14.
Table 15. Statistical comparison of dynamic subgrade deflection response … 82 表 15.路基动态挠度响应的统计比较...... 82
Table 16. Statistical comparison of permanent subgrade deflection. … 87 表 16.永久性路基挠度的统计比较... 87
Table 17. Statistical comparison of longitudinal ASG response … 91 表 17.纵向 ASG 响应的统计比较...... 91
Table 18. Statistical comparison of transverse ASG response … 95 表 18.横向 ASG 响应的统计比较...... 95
Table 19. Geosynthetic properties. … 97 表 19.土工合成材料特性... 97
Table 20. Individual layer deformation … 115 表 20.单层变形...... 115
Table 21. Posttraffic material properties. … 120 表 21.交通后材料特性。... 120
Table 22. Change in material properties (posttraffic minus as-built). … 121 表 22.材料特性的变化(交通流量后减去竣工后) .... 121
Table 23. Comparison of PCASE7 (Beta-Alpha hybrid) predicted passes to failure and actual passes to failure … 123 表 23.PCASE7 (β-阿尔法混合)预测故障通过率与实际故障通过率的比较............. 123
Table 24. Comparison of PCASE7 (Alpha criteria) predicted passes to failure and actual passes to failure. … 123 表 24.PCASE7 (阿尔法标准)预测故障通过率与实际故障通过率的比较。... 123
Table 25. Calibrated parameters used in PD model for simulations against full- scale test data. … 138 表 25.根据全比例试验数据模拟 PD 模型时使用的校准参数。... 138
Table 26. ADR passes to failure. … 150 表 26.ADR 故障通过率。... 150
Table A-1. Pretest HWD data. … 154 表 A-1.预试验 HWD 数据。... 154
Table A-2. Posttest HWD data … 155 表 A-2.
Table A-3. Total crack length with passes. … 156 表 A-3.裂缝总长度与遍数... 156
Table A-4. FWD data at pass 0 … 156 表 A-4.0 号通道的 FWD 数据 ... 156
Table A-5. FWD data at pass 1 … 156 表 A-5.第 1 道工序的 FWD 数据 ... 156
Table A-6. FWD data at pass 10 … 157 表 A-6.第 10 道口的 FWD 数据...... 157
Table A-7. FWD data at pass 30. … 157 表 A-7.第 30 个关口的 FWD 数据。... 157
Table A-8. FWD data at pass 50. … 157 表 A-8.第 50 道口的 FWD 数据。... 157
Table A-9. FWD data at pass 75. … 158 表 A-9.第 75 道口的 FWD 数据。... 158
Table A-10. FWD data at pass 100. … 158 表 A-10.通过 100 时的 FWD 数据。... 158
Table A-11. FWD data at pass 300 … 158 表 A-11.通过 300 时的 FWD 数据...... 158
Table A-12. FWD data at pass 500 … 159 表 A-12.通过 500 时的 FWD 数据...... 159
Table A-13. FWD data at pass 750 … 159 表 A-13.750 道口的 FWD 数据...... 159
Table A-14. FWD data at pass 1,000. … 159 表 A-14.1,000 次通过时的 FWD 数据。... 159
Table A-15. FWD data at 3,000 passes. … 160 表 A-15.3,000 次通过时的 FWD 数据。... 160
Table A-16. FWD data at 5,000 passes. … 160 表 A-16.5000 次通过时的 FWD 数据。... 160
Table A-17. FWD data at pass 7,500 … 160 表 A-17.第 7,500 道口的 FWD 数据...... 160
Table A-18. FWD data at pass 10,000 … 161 表 A-18.10 000 次通过时的 FWD 数据...... 161
Table A-19. FWD data at pass 15,000 … 161 表 A-19.15000 次通过时的 FWD 数据...... 161
Table A-20. Earth pressure cell response data … 162 表 A-20.地压单元响应数据...... 162
Table A-21. SSG response data. … 162 表 A-21.SSG 响应数据。... 162
Table A-22. ESG response data. … 163 表 A-22.ESG 答复数据。... 163
Table B-1. HWD pretest data. … 164 表 B-1.HWD 预试验数据。... 164
Table B-2. HWD pretest data. … 165 表 B-2.HWD 预试验数据。... 165
Table B-3. FWD data at pass 0 … 166 表 B-3.0 号通道的 FWD 数据 ... 166
Table B-4. FWD data at pass 10 . … 166 表 B-4.第 10 道口的 FWD 数据 .... 166
Table B-5. FWD data at pass 50 … 166 表 B-5.通过 50 时的 FWD 数据 ... 166
Table B-6. FWD data at pass 100 … 167 表 B-6.通过 100 时的 FWD 数据 ... 167
Table B-7. FWD data at pass 300 . … 167 表 B-7.通过 300 时的 FWD 数据 .... 167
Table B-8. FWD data at pass 500 … 167 表 B-8.通过 500 时的 FWD 数据...... 167
Table B-9. FWD data at pass 1,000 . … 168 表 B-9.1,000 次通过时的 FWD 数据 .... 168
Table B-10. FWD data at pass 1,500 … 168 表 B-10.第 1 500 道口的 FWD 数据...... 168
Table B-11. FWD data at pass 3,000 … 168 表 B-11.第 3 000 道口的 FWD 数据...... 168
Table B-12. FWD data at pass 5,000 … 169 表 B-12.第 5000 道口的 FWD 数据...... 169
Table B-13. FWD data at pass 7,500 . … 169 表 B-13.第 7,500 道口的 FWD 数据 .... 169
Table B-14. FWD data at pass 10,000 … 169 表 B-14.10 000 次通过时的 FWD 数据...... 169
Table B-15. FWD data at pass 15,000 … 170 表 B-15.15,000 及格点的 FWD 数据...... 170
Table B-16. FWD data at pass 20,000 … 170 表 B-16.20 000 次通过时的 FWD 数据...... 170
Table B-17. FWD data at pass 30,000 … 170 表 B-17.30 000 次关口的 FWD 数据...... 170
Table B-18. FWD data at pass 40,000 … 171 表 B-18.通过 40,000 点时的 FWD 数据...... 171
Table B-19. FWD data at pass 50,000 … 171 表 B-19.通过 50 000 次时的 FWD 数据...... 171
Table B-20. Earth pressure cell response data. … 172 表 B-20.地压单元响应数据。... 172
Table C-1. Rut-depth data. … 173 表 C-1.Rut-depth 数据。... 173
Table C-2. ISM data. … 174 表 C-2.ISM 数据。... 174
Table C-3. Subgrade pressure cell response data. … 175 表 C-3.基层压力单元响应数据。... 175
Table C-4. Top of base pressure cell response data … 177 表 C-4.
Table C-5. Middepth of base pressure cell response data … 179 表 C-5.
Table C-6. Dynamic single-depth deflectometer response data … 181 表 C-6.
Table C-7. Permanent single-depth deflectometer response data. … 183 表 C-7.永久性单深度偏转仪响应数据。... 183
Table C-8. Longitudinal ASG response data … 185 表 C-8.纵向 ASG 响应数据...... 185
Table C-9. Transverse ASG response data. … 187 表 C-9.横向 ASG 响应数据。... 187
Preface 序言
This study was conducted for the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and the Naval Expeditionary Combat Command under Project No. 488187, Funding Account Code B36399. Mr. Michael L. 这项研究是为海军设施工程和远征作战中心(NAVFAC EXWC)和海军远征作战司令部进行的,项目编号为 488187,资金账户代码为 B36399。Mr. Ringen, NAVFAC, provided technical guidance and review during the project. Mr. Scott Barradas, NAVFAC, provided program oversight. Mr. Jeb S. 美国海军陆战队司令部的 Ringen 在项目期间提供了技术指导和审查。NAVFAC 的 Scott Barradas 先生负责项目监督。Mr. Tingle, senior scientific technical manager, Geotechnical and Structures Laboratory (GSL), US Army Engineer Research and Development Center (ERDC), was the ERDC program manager. 美国陆军工程研发中心(ERDC)岩土工程和结构实验室(GSL)高级科学技术经理 Tingle 是 ERDC 的项目经理。
The work was performed by the Airfields and Pavements Branch (GMA) of the Engineering Systems Division (GM), ERDC-GSL. At the time of publication, Ms. Anna M. Jordan was chief, GMA; Mr. Justin S. 这项工作由 ERDC-GSL 工程系统部 (GM) 的机场和路面处 (GMA) 负责。出版时,安娜-M-乔丹(Anna M. Jordan)女士任 GMA 处处长;贾斯汀-S. Strickler was chief, GM; and Mr. Nicholas Boone was the technical director for Force Projection and Maneuver Support. The deputy director of ERDC-GSL was Mr. Charles W. Ertle II, and the director was Mr. Bartley P. Durst. 斯特里克勒是全球机制的负责人;尼古拉斯-布恩先生是兵力投射和机动支持的技术主管。ERDC-GSL 的副主任是 Charles W. Ertle II 先生,主任是 Bartley P. Durst 先生。
COL Christian Patterson was the commander of ERDC, and Dr. David W. Pittman was the director. 克里斯蒂安-帕特森(Christian Patterson)上校是 ERDC 的指挥官,戴维-W-皮特曼(David W. Pittman)博士是主任。
1 Introduction 1 引言
1.1 Background 1.1 背景
The P-8 Poseidon aircraft presents a unique structural challenge for military airfield pavements. P-8 海神飞机对军用机场路面的结构提出了独特的挑战。 Reported increases in load-related distresses from P-8 trafficking are likely due to greater gear loads compared to fighter aircraft coupled with greater tire pressures compared to cargo aircraft. 据报告,P-8 运输过程中与载荷相关的损伤增加,可能是由于与战斗机相比,齿轮载荷更大,与货机相比,轮胎压力更大。 The close spacing of the dual-tire gear configuration has also been damaging to pavement joints. In addition, airfield damage repair (ADR) technologies have not been validated for the P-8 loading; thus, their performance under P-8 loading conditions is unknown. 双轮胎齿轮配置的间距过近也会对路面接缝造成损害。此外,机场损伤修复 (ADR) 技术尚未针对 P-8 负载进行验证,因此其在 P-8 负载条件下的性能尚不清楚。 Currently, UFC 3-260-02 (USACE 2001) outlines performance criteria for conventional flexible and rigid airfield pavements based on the California bearing ratio (CBR) vertical stress-based methodology and Westergaard’s thin plate theory, respectively. 目前,UFC 3-260-02(美国陆军工程兵部队,2001 年)分别根据基于垂直应力的加利福尼亚承载比 (CBR) 方法和 Westergaard 的薄板理论,概述了传统柔性和刚性机场路面的性能标准。 There are also performance criteria established for these pavement systems using layered elastic analysis. These performance criteria were based upon diverse military aircraft systems with significantly different loading conditions, and their applicability to the P-8\mathrm{P}-8 's military gear configuration is uncertain. In addition, conventional airfield pavement design criteria are based upon the design of enduring pavement systems sustaining many aircraft operations over a lengthy service life. 此外,还利用分层弹性分析为这些路面系统制定了性能标准。这些性能标准是根据不同的军用飞机系统制定的,这些系统的负载条件有很大的不同,它们是否适用于 P-8\mathrm{P}-8 的军用装备配置还不确定。此外,传统的机场路面设计标准是基于耐用路面系统的设计,这些路面系统可在较长的使用寿命内维持多架飞机的运行。 Furthermore, there is currently no formal performance model established for anything related to airfield crater repairs except for the airfield matting distress model outlined in reports such as MP-4-29 (Foster and Burns 1952), TR No. 此外,除了 MP-4-29(Foster 和 Burns,1952 年)、TR No. 3-539 (Thompson and Burns 1960) and the semi-prepared runway criteria discussed in TR S-70-5 (Hammitt and Aspinall 1970). Current ADR performance criteria is based upon empirical testing to meet minimum mission requirements. 3-539(Thompson 和 Burns,1960 年)以及 TR S-70-5(Hammitt 和 Aspinall,1970 年)中讨论的半预制跑道标准。目前的 ADR 性能标准基于经验测试,以满足最低任务要求。 Consequently, there is a need to gather performance data in terms of simulated P-8 aircraft traffic over nonstandard expeditionary pavement structures and ADR sections. 因此,有必要收集模拟 P-8 飞机在非标准远征路面结构和 ADR 断面上飞行的性能数据。
1.2 Objective 1.2 目标
The objective of this research was to develop improved rigid and flexible pavement performance criteria for expeditionary operations of the fully loaded P-8 aircraft. 这项研究的目的是为满载的 P-8 飞机的远征作业制定改进的刚性和柔性路面性能标准。 These criteria were based on results from a full-scale instrumented test section trafficked by a simulated P-8 gear. 这些标准是根据模拟 P-8 齿轮所经过的全尺寸仪器测试路段的结果制定的。
There were two distinct components to the effort: (1) evaluation of the minimum structural pavement design required to support expeditionary operations and (2) evaluation of the compatibility/performance of P-8 operations on emerging ADR technologies. 这项工作有两个不同的组成部分:(1) 评估支持远征行动所需的最低结构路面设计;(2) 评估新兴 ADR 技术与 P-8 行动的兼容性/性能。
1.3 Scope 1.3 范围
The performance of relatively thin pavement structures and emerging ADR technologies were evaluated under simulated P-8 traffic. 在模拟 P-8 交通流量下,对相对较薄的路面结构和新兴 ADR 技术的性能进行了评估。 Full-scale instrumented pavement test sections were constructed to fully characterize the pavement structural support requirements for the P-8 aircraft. 为全面确定 P-8 飞机的路面结构支撑要求,建造了全尺寸仪器路面试验段。 The test program included two distinct evaluations: (1) the suitability of emerging ADR technologies for supporting P-8 aircraft operations and (2) the minimum structural requirements for designing, building, and operating expeditionary airfields to sustain a limited number of P-8\mathrm{P}-8 sorties. The full-scale instrumented pavement sections were designed with different layer thicknesses and surface types (flexible pavement and rigid pavement). 测试项目包括两个不同的评估:(1) 新兴 ADR 技术是否适合支持 P-8 飞机的运行;(2) 设计、建造和运行远征机场的最低结构要求,以维持有限的 P-8\mathrm{P}-8 架次。全尺寸仪器路面断面的设计采用了不同的层厚和表面类型(柔性路面和刚性路面)。
1.4 Approach 1.4 方法
The test sections were trafficked with the US Army Engineer Research and Development Center’s (ERDC’s) Heavy Vehicle Simulator (HVS) using authentically configured actual P-8 aircraft wheels loaded to simulate the maximum operational weight of the aircraft. 测试路段采用美国陆军工程研发中心(ERDC)的重型车辆模拟器(HVS),使用真实配置的实际 P-8 飞机机轮加载,以模拟飞机的最大运行重量。 The performance of the various expeditionary pavement sections was recorded and used to establish pass-to-failure performance data to validate or adjust the existing pavement performance curve as required. 对各种远征路面路段的性能进行了记录,并用于建立通过-失效性能数据,以验证或根据需要调整现有的路面性能曲线。 The performance in terms of passes to failure of the emerging ADR technologies was also recorded to verify the compatibility of these new expedient ADR solutions for use with the P-8\mathrm{P}-8 aircraft. In addition, pavement response data were collected from the pavement instrumentation to inform mechanistic pavement models suitable to adapt current pavement design and evaluation criteria for the P-8\mathrm{P}-8. Finally, the construction of the different full-scale pavement sections provided information regarding the constructability of these pavement features in expeditionary environments. 此外,还记录了新兴 ADR 技术从通过到失效的性能,以验证这些新的便捷 ADR 解决方案与 P-8\mathrm{P}-8 飞机的兼容性。此外,还从路面仪器中收集了路面响应数据,为机械路面模型提供信息,以适应 P-8\mathrm{P}-8 飞机当前的路面设计和评估标准。最后,不同全尺寸路面断面的施工提供了有关这些路面特征在远征环境中可施工性的信息。 These performance data can be used to mitigate risk by increasing confidence in the performance criteria while providing the Navy with options for expeditionary airfield designs for the P-8 that reduce construction costs. 这些性能数据可用于增强对性能标准的信心,从而降低风险,同时为海军提供可降低建造成本的 P-8 远征机场设计方案。 The results of the full-scale experimentation were used to draft new criteria documents for the construction of Navy expeditionary airfields. 全面试验的结果被用于起草海军远征机场建设的新标准文件。
2 Test Plan and Layout 2 测试计划和布局
A large, full-scale pavement test section was constructed under cover in Hangar 2 at ERDC. Construction under cover minimized the influence of soil moisture changes caused by variable weather conditions throughout the duration of the test. 在 ERDC 的 2 号机库中,在覆盖物下建造了一个大型全尺寸路面试验段。在整个试验期间,在覆盖物下施工最大程度地减少了多变天气条件造成的土壤湿度变化的影响。
The full-scale test sections were designed to accomplish the objectives of the test program given the constraints imposed by the available funding and schedule. Thus, a full matrix of independent variables was cost prohibitive and would have taken years to accomplish. 全尺寸试验段的设计是为了在现有资金和时间表的限制下实现试验计划的目标。因此,完整的自变量矩阵成本过高,需要数年才能完成。 The test sections were designed to provide the required information to evaluate existing performance models for the P-8, to provide enough performance data to modify the models for improved low-pass criteria if necessary, and to validate the performance compatibility of the P-8\mathrm{P}-8 with new expeditionary ADR technologies. 试验段的设计旨在提供评估 P-8 现有性能模型所需的信息,提供足够的性能数据以便在必要时修改模型以改进低通标准,并验证 P-8\mathrm{P}-8 与新的远征 ADR 技术在性能上的兼容性。
Figure 1 shows a plan view of the P-8 Runway Construction Criteria fullscale test section for rigid and flexible pavements. 图 1 显示了 P-8 跑道施工标准刚性和柔性路面全尺寸试验段的平面图。 This test section supported the evaluation of ADR technology compatibility with the P-8 and the evaluation of the minimum structural requirements for expeditionary runways supporting the P-8\mathrm{P}-8. Figure 2 shows a profile view outlining the structural layering of the individual test items. 该测试部分支持对 ADR 技术与 P-8 的兼容性进行评估,以及对支持 P-8\mathrm{P}-8 的远征跑道的最低结构要求进行评估。图 2 显示了各个测试项目的结构分层剖面图。
Figure 1. Plan view of P-8 runway construction criteria test section. 图 1.P-8 跑道施工标准试验段平面图。
Figure 2. Profile view of P-8 construction criteria test lanes. 图 2.P-8 施工标准测试车道剖面图。
2.1 Pavement Structural Requirements 2.1 路面结构要求
Figure 1 shows that test Lanes 1 and 2 each consisted of seven 20 ft by 20ft^(1)20 \mathrm{ft}^{1} slabs of PCC. Lane 1 was comprised of 14 in. thick PCC over a 6 in. thick crushed limestone subbase/working platform over a 10 CBR high-plasticity (CH) subgrade. 图 1 显示,测试车道 1 和 2 各由七块 20 英尺 x 20ft^(1)20 \mathrm{ft}^{1} 的 PCC 板组成。车道 1 由 14 英寸厚的 PCC 组成,上面是 6 英寸厚的碎石灰石基层/工作平台,上面是 CBR 值为 10 的高弹性 (CH) 基层。 Lane 1 served two purposes: (1) to provide an upper end performance point for PCC pavements (approximately 5,000-10,000 passes) and (2) to provide a location for evaluation of the Expedient and Expeditionary Airfield Damage Repair (E-ADR) technologies. 1 号车道有两个目的:(1) 为 PCC 路面提供一个上限性能点(约 5,000-10,000 次);(2) 为评估快速和远征机场损坏修复 (E-ADR) 技术提供一个地点。 Lane 2 consisted of two thickness of PCC (8 in. and 11 in.) placed over a 6 in. thick crushed limestone subbase/working platform over a 10 CBR CH subgrade. 2 号车道包括两层厚的水泥混凝土(8 英寸和 11 英寸),铺设在 6 英寸厚的碎石灰石基层/工作平台上,基层的 CBR 值为 10。 The purpose of Lane 2 was to provide P-8 performance data for relatively thin PCC slabs (designed for approximately 100-500 passes) and medium thicknesses of PCC (designed for approximately 750-3,000 passes). 巷道 2 的目的是为相对较薄的 PCC 板(设计通过次数约为 100-500 次)和中等厚度的 PCC(设计通过次数约为 750-3000 次)提供 P-8 性能数据。 Dowelbar assemblies were installed along one joint in each PCC test item to 在每个 PCC 测试项目的一个接缝处安装道钉杆组件,以便
investigate load transfer. The assemblies consisted of 1.25 in . diam epoxycoated dowel bars 18 in . long and spaced at 12 in. intervals. Lanes 3 and 4 were designed to collect P-8\mathrm{P}-8 performance data on relatively thin hot mix asphalt (HMA) flexible pavements. Lane 3 consisted of a 4 in. thick layer of HMA placed over 12 in . of a low-quality crushed gravel base over a 10 CBR CH subgrade. The same 4 in. thick HMA layer was placed over 12 in . 研究荷载传递。这些组件由直径为 1.25 英寸、长 18 英寸、间距为 12 英寸的环氧树脂涂层镙杆组成。第 3 和第 4 车道的设计目的是收集相对较薄的热拌沥青 (HMA) 柔性路面的 P-8\mathrm{P}-8 性能数据。第 3 车道由 4 英寸厚的 HMA 层组成,铺设在 12 英寸的低质碎石基层上,基层的 CBR 值为 10。同样 4 英寸厚的 HMA 层铺设在 12 英寸厚的 CBR CH 基层上。 of high-quality base material over two different CH subgrade strengths (6 and 10 CBR). Current Navy criteria allow 4 in. as the minimum HMA thickness for conventional airfield flexible pavements. Lane 4 consisted of the same pavement cross sections with only 2 in. 在两种不同的 CH 基层强度(6 CBR 和 10 CBR)上使用高质量的基层材料。海军现行标准允许传统机场柔性路面的最小 HMA 厚度为 4 英寸。第 4 车道由相同的路面横截面组成,厚度仅为 2 英寸。 of HMA as an absolute minimum design for limited traffic in an expeditionary environment. 将 HMA 作为远征环境中有限交通的绝对最低设计标准。 The inclusion of the lower-quality crushed gravel base provided pavement performance data for situations in which a quality base course meeting Navy standards was unavailable or where the airfield was previously built by other entities. 在没有符合海军标准的优质基层或机场以前由其他实体建造的情况下,加入低质量碎石基层可提供路面性能数据。 Flexible pavement designs are sensitive to subgrade strength; thus, the two subgrade strengths provided performance data for dissimilar site conditions allowing meaningful evaluation of current performance criteria. 柔性路面设计对基层强度非常敏感;因此,两种基层强度为不同的现场条件提供了性能数据,从而可以对当前的性能标准进行有意义的评估。
The test items contained a suite of instrumentation consisting of both rigid and flexible pavement strain gauges, earth pressure cells, single-depth deflectometers (SDD), moisture probes, pore-water pressure transducers, and temperature probes. 测试项目包含一套仪器,包括刚性和柔性路面应变仪、土压力传感器、单深度偏转仪 (SDD)、湿度探头、孔隙水压力传感器和温度探头。 Instrumentation is described in detail in Chapter 5. 第 5 章将详细介绍仪器设备。
Simulated aircraft traffic was applied using a dual-wheel P-8 tire configuration mounted on ERDC’s HVS. The dual-wheel gear configuration was loaded to a nominal total force of 89,000lbf89,000 \mathrm{lbf} that was verified prior to trafficking using a set of calibrated mobile aircraft scales. Tire pressures were maintained at 220 psi throughout testing and were monitored daily. Details regarding simulated aircraft traffic can be found in Chapter 7. 使用安装在 ERDC HVS 上的双轮 P-8 轮胎配置进行了模拟飞机运输。双轮齿轮配置被加载到 89,000lbf89,000 \mathrm{lbf} 的标称总力,并在运输前使用一套校准过的移动飞机秤进行验证。在整个测试过程中,轮胎压力保持在 220 psi,并每天进行监测。有关模拟飞机交通的详细信息,请参见第 7 章。
2.2 ADR Capabilities 2.2 ADR 功能
For the evaluation of ADR technologies, simulated “craters” were cut through the PCC surface in Lane 1. Each repair technology was constructed within a simulated crater, and the HVS was used to evaluate the performance of the repairs under simulated P-8 traffic. 为评估 ADR 技术,在 1 号车道的 PCC 表面开凿了模拟 "凹坑"。每种修复技术都在模拟坑内进行施工,并使用 HVS 评估修复在模拟 P-8 交通情况下的性能。 Table 1 outlines the repair technologies that were evaluated. 表 1 概述了所评估的维修技术。
A detailed analysis was conducted to evaluate the performance of the ADR technologies, rigid pavement test items, and flexible pavement items. The compatibility of emerging ADR methods with the P-8 aircraft was directly evaluated, and the number of P-8 passes that each method sustained prior to failure of the system was directly measured. 对 ADR 技术、刚性路面测试项目和柔性路面项目的性能进行了详细的分析评估。直接评估了新出现的 ADR 方法与 P-8 飞机的兼容性,并直接测量了每种方法在系统失效之前所能承受的 P-8 通过次数。 The pavement performance data were analyzed to determine the minimum PCC or HMA thickness necessary to support P-8 operations. 对路面性能数据进行分析,以确定支持 P-8 运营所需的最小 PCC 或 HMA 厚度。 Instrumentation response data (stress, strain, and deflection) were used to validate mechanistic pavement response models that allow the extension of the models to other pavement structures of interest. The instrumentation data were used to validate or modify pavement performance models by relating critical pavement response parameters (stress, strain, or deflection at critical locations) to the damage resulting from cumulative traffic passes. 仪器响应数据(应力、应变和挠度)用于验证机械路面响应模型,以便将模型扩展到其他相关路面结构。通过将关键路面响应参数(关键位置的应力、应变或挠度)与累积交通流量造成的损坏联系起来,仪器数据可用于验证或修改路面性能模型。 These data provided improved and validated models for extending pavement design and evaluation methods to low-volume airfield pavement structures. 这些数据为将路面设计和评估方法扩展到低容量机场路面结构提供了改进和验证模型。
Specifically, the following comparisons were made from this study: 具体来说,本研究进行了以下比较:
Comparison of passes to failure of emerging ADR methods 比较新出现的 ADR 方法的通过率和失败率
Effect of PCC thickness on passes to failure PCC 厚度对失效通过次数的影响
Effect of PCC thickness on measured instrumentation response PCC 厚度对测量仪器响应的影响
Effect of HMA thickness on passes to failure HMA 厚度对失效通过次数的影响
Effect of HMA thickness on measured instrumentation response HMA 厚度对测量仪器响应的影响
Effect of base course strength on passes to failure 基层强度对失效通过率的影响
Effect of base course strength on measured instrumentation response 基层强度对测量仪器响应的影响
Effect of subgrade CBR strength on passes to failure 路基 CBR 强度对失效通过次数的影响
Effect of subgrade CBR on measured instrumentation response 路基 CBR 对测量仪器响应的影响
Effect of gross load on pavement response. 总荷载对路面响应的影响
3 Materials 3 种材料
Laboratory tests were performed to characterize each component layer material as well as underlying subgrade soils. Material characterization test results are presented in the following paragraphs. 进行了实验室测试,以确定各组成层材料以及底层土壤的特征。材料特性测试结果见以下段落。
3.1 Subgrade 3.1 基层
The design subgrade soil consisted of a locally sourced CH, commonly referred to as Vicksburg buckshot. 设计的路基土壤由一种当地产的 CH 组成,通常被称为 Vicksburg buckshot。 This material has been used extensively in test section construction principally for its ability to maintain moisture content (and consequently design strength) over an extended time. A particle-size analysis indicated the material consisted of 96.8%96.8 \% fines passing the No. 200 sieve. The soil had a liquid limit (LL) of 85%85 \%, a plasticity limit (PL) of 29%29 \%, and a plasticity index (PI) of 56%56 \%, as determined by American Society for Testing and Materials (ASTM) D4318 (ASTM 2017c). 这种材料被广泛用于试验段施工,主要是因为它能够在较长时间内保持含水量(从而保持设计强度)。粒度分析表明,该材料由通过 200 号筛的 96.8%96.8 \% 细粒组成。根据美国材料与试验协会(ASTM)D4318(ASTM 2017c)的测定,该土壤的液限(LL)为 85%85 \% ,塑限(PL)为 29%29 \% ,塑性指数(PI)为 56%56 \% 。 According to the Unified Soil Classification System (USCS) (ASTM 2017a), the soil was classified as CH and an A-7-6 according to the American Association of State and Highway Transportation Officials (AASHTO) classification system (AASHTO 2012). 根据统一土壤分类系统(USCS)(ASTM 2017a),土壤被归类为 CH,根据美国州和公路交通官员协会(AASHTO)分类系统(AASHTO 2012),土壤被归类为 A-7-6。
Modified Proctor compaction tests (ASTM D1557 [2012]) were performed to determine the relationship between moisture content and dry density. The maximum dry density was found to be 106.1 pcf at an optimum moisture content of 17.5%17.5 \% (ASTM 2012). Graphical results of the moisture-density relationship test are shown in Figure 3. 为确定含水量与干密度之间的关系,进行了改良型 Proctor 压实试验(ASTM D1557 [2012])。在最佳含水量为 17.5%17.5 \% 时,最大干密度为 106.1 pcf(ASTM 2012)。湿度-密度关系测试的图表结果如图 3 所示。
To determine an in-place moisture content at the targeted 10 CBR and 6 CBR, a suite of ASTM D1883 laboratory CBR tests was performed (ASTM 2016). These tests were conducted at moisture contents ranging from approximately 20%20 \% to approximately 40%40 \%. Based on the relationship between moisture content and CBR, a target moisture content of 28%28 \% was selected to achieve a 10 CBR, and a target moisture content of 32%32 \% was selected to achieve a 6 CBR. The relationship between CBR and moisture content is presented graphically in Figure 4. 为确定目标 10 CBR 和 6 CBR 的就地含水量,进行了一系列 ASTM D1883 实验室 CBR 测试(ASTM 2016)。这些测试是在大约 20%20 \% 到大约 40%40 \% 的含水量范围内进行的。根据含水量与 CBR 之间的关系,选择 28%28 \% 的目标含水量以达到 10 CBR,选择 32%32 \% 的目标含水量以达到 6 CBR。CBR 与含水量之间的关系如图 4 所示。
Figure 4. Clay subgrade California bearing ratio (CBR)/moisture content relationship. 图 4.粘土路基加州承载比 (CBR) 与含水量的关系。
3.2 Base Course 3.2 基层
Crushed limestone (LS) and crushed gravel (GR) (Figure 5) were used to construct the flexible aggregate base courses, and LS was used to construct a working platform for concrete placement. 碎石灰岩(LS)和碎砾石(GR)(图 5)用于建造柔性骨料基层,LS 用于建造混凝土浇筑的工作平台。 LS was selected to represent a strong base (historically this material yields an in situ CBR of 100+) and the GR to represent a base material that may be substantially weaker yet representative of materials that could be encountered in pavement sections in less developed theaters of operation. 选择 LS 代表强基(历史上这种材料的原位 CBR 值在 100 以上),选择 GR 代表可能较弱的基底材料,但代表在欠发达作业区的路面路段可能遇到的材料。 Material characterization results are summarized in the following sections. 材料表征结果概述如下。
Figure 5. Base course aggregates. 图 5.基层集料。
(a) Crushed limestone base (a) 碎石石灰岩基础
(b) Crushed gravel base (b) 碎石路基
3.2.1 LS Base 3.2.1 LS 基础
The gradation for the LS base is shown in Figure 6. ASTM procedure D2487 was used to determine that the base course was comprised of 66.2%66.2 \% gravel, 25.3%25.3 \% sand, and 8.5%8.5 \% nonplastic fines passing the No. 200 sieve (ASTM 2017a). The coefficient of curvature ( C_(c)\mathrm{C}_{\mathrm{c}} ) was calculated as 7.63 , and the coefficient of uniformity ( (C_(u))\left(\mathrm{C}_{\mathrm{u}}\right) was 68.21 . The LS aggregate base was classified as a poorly graded gravel with silt and sand (GP-GM) according to the USCS (ASTM 2017a) and an A-1-a according to the AASHTO procedure (AASHTO 2012). LS 基层的级配如图 6 所示。采用 ASTM D2487 程序确定基层由 66.2%66.2 \% 碎石、 25.3%25.3 \% 砂和通过 200 号筛的 8.5%8.5 \% 非塑性细粒组成(ASTM 2017a)。经计算,曲率系数( C_(c)\mathrm{C}_{\mathrm{c}} )为 7.63,均匀系数( (C_(u))\left(\mathrm{C}_{\mathrm{u}}\right) )为 68.21。根据 USCS(ASTM 2017a),LS 集料基础被归类为含粉砂和砂的低级砾石(GP-GM),根据 AASHTO 程序(AASHTO 2012),LS 集料基础被归类为 A-1-a。 Modified Proctor compaction tests (Figure 7) were performed in accordance with ASTM D1557 Method C Modified (ASTM 2012). The maximum dry density was 147.9 pcf at an optimum moisture content of 5.2%5.2 \%. 根据 ASTM D1557 方法 C Modified(ASTM 2012)进行了改良型 Proctor 压实度测试(图 7)。在最佳含水量为 5.2%5.2 \% 时,最大干密度为 147.9 pcf。
The gradation for the crushed gravel is shown in Figure 8. The GR base course was comprised of 38%38 \% gravel, 58%58 \% sand, and 3.5%3.5 \% nonplastic fines passing the No. 200 sieve. The Cc was calculated as 1.51 , and the Cu was 10.56. The GR aggregate base was classified as a well-graded sand (SW) according to the USCS (ASTM 2017a) and an A-1-a according to the AASHTO procedure (AASHTO 2012). 碎石的级配如图 8 所示。GR 基层由 38%38 \% 碎石、 58%58 \% 砂和 3.5%3.5 \% 通过 200 号筛的非塑性细粒组成。经计算,Cc 为 1.51,Cu 为 10.56。根据 USCS(ASTM 2017a),GR 骨料基础被归类为级配良好的砂(SW),根据 AASHTO 程序(AASHTO 2012),GR 骨料基础被归类为 A-1-a。 Modified Proctor compaction tests (Figure 9) were performed in accordance with ASTM D1557 Method B Modified (ASTM 2012). The maximum dry density was 115.1 pcf at an optimum moisture content of 8.4%8.4 \%. 根据 ASTM D1557 方法 B Modified(ASTM 2012)进行了改良型 Proctor 压实度测试(图 9)。在最佳含水量为 8.4%8.4 \% 时,最大干密度为 115.1 pcf。
Figure 8. Crushed gravel base particle-size analysis. 图 8.碎石基层粒度分析。
Figure 9. Crushed gravel base moisture/density relationship. 图 9.碎石基层湿度/密度关系。
3.3 HMA
A 9.5 mm nominal maximum aggregate size (NMAS) HMA surface mixture was selected for placement of the wearing surface of the flexible test items. The HMA mixture was one that is representative of a typical airfield mix and consisted of 40%40 \% limestone aggregate, 59%59 \% gravel/sand, and 1%1 \% hydrated lime. Recycled asphalt pavement (RAP) was not allowed, and natural sand was limited to 15%15 \% of the total aggregate blend. 在铺设柔性测试项目的耐磨表面时,选择了公称最大骨料粒径为 9.5 毫米的 HMA 表面混合物。HMA 混合料是一种典型的机场混合料,由 40%40 \% 石灰石骨料、 59%59 \% 砾石/砂和 1%1 \% 熟石灰组成。不允许使用回收的沥青路面 (RAP),天然砂只限于总混合骨料中的 15%15 \% 。
Pertinent mixture properties are summarized in Table 2. 表 2 概述了混合物的相关特性。
3.4 PCC
A 5,000 psi design compressive strength PCC mixture was selected for placement of the surface of the rigid pavement test items. Additionally, the PCC mixture had a design flexural strength of 650 psi. 刚性路面测试项目的表面铺设选用了设计抗压强度为 5000 psi 的 PCC 混合物。此外,PCC 混合物的设计抗折强度为 650 psi。 Cementitious materials consisted of a Type 1 portland cement and a Class C fly ash. 胶凝材料包括 1 级波特兰水泥和 C 级粉煤灰。
Coarse aggregate consisted of an angular crushed limestone aggregate that was classified as a #57 stone (i.e., 1 in. maximum aggregate size.) 粗骨料由角状碎石灰石骨料组成,被归类为 57 号石料(即最大骨料尺寸为 1 英寸)。
Pertinent mixture properties are provided in Table 3. 表 3 列出了混合物的相关特性。
Material Type Description Design Quantity Specific Gravity Volume ( ft^(3) )
Cement Type 1 526 lb 3.15 2.68
Fly Ash Class C 132 lb 2.63 0.80
Coarse Aggregate #57 Limestone 1900 lb 2.69 11.32
Fine Aggregate Concrete Sand 1083 lb 2.64 6.57
Water Potable 32 gal. 1.00 4.28
Admixture Water Reducer 26 oz - -
Admixture Air Entraining 3 oz - -
Air Content 5.00% 1.35
Yield 3908 lb 27.00
Unit Weight 144.7lb//ft^(3)
Design Compressive Strength 5,000 psi
Design Slump 4 in.
Water/Cementitious Ratio 0.41 | Material Type | Description | Design Quantity | Specific Gravity | Volume ( $\mathrm{ft}^{3}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Cement | Type 1 | 526 lb | 3.15 | 2.68 |
| Fly Ash | Class C | 132 lb | 2.63 | 0.80 |
| Coarse Aggregate | #57 Limestone | 1900 lb | 2.69 | 11.32 |
| Fine Aggregate | Concrete Sand | 1083 lb | 2.64 | 6.57 |
| Water | Potable | 32 gal. | 1.00 | 4.28 |
| Admixture | Water Reducer | 26 oz | - | - |
| Admixture | Air Entraining | 3 oz | - | - |
| | | Air Content | 5.00% | 1.35 |
| | | Yield | 3908 lb | 27.00 |
| | | Unit Weight | $144.7 \mathrm{lb} / \mathrm{ft}^{3}$ | |
| Design Compressive Strength | | | 5,000 psi | |
| | | Design Slump | 4 in. | |
| Water/Cementitious Ratio | | | 0.41 | |
4 Test Section Construction 4 试验段建造
4.1 Excavation 4.1 挖掘
A 140 ft by 65 ft test section was constructed in ERDC’s Hangar 2 Accelerated Pavement Test Facility. The test section consisted of four lanes, each with a different pavement and subgrade combination that are described in detail in Chapter 2. 在 ERDC 的 2 号机库加速路面试验设施中建造了一个 140 英尺 x 65 英尺的试验段。试验段由四条车道组成,每条车道都有不同的路面和基层组合,详见第 2 章。 Excavation was completed to a depth of approximately 5 ft using a John Deere 130 G tracked excavator (Figure 10). The excavated area was uniformly graded using a motor grader and was recompacted using a smooth drum vibrator roller. 挖掘工作使用约翰迪尔 130 G 履带式挖掘机完成,深度约为 5 英尺(图 10)。使用平地机对挖掘区域进行均匀平整,并使用平滑鼓式振动压路机重新压实。 After excavation, the bottom and sides of the test section were lined with a 6 mil plastic sheeting to separate the natural subgrade from the constructed subgrade and to encapsulate the pavement test section to prevent moisture migration into/out of the design pavement layers. 挖掘完成后,在试验段的底部和两侧铺上 6 密耳塑料布,将天然路基与施工路基隔开,并将路面试验段封装起来,以防止湿气渗入/渗出设计路面层。
Figure 10. Test section excavation and preparation. 图 10.试验段的挖掘和准备工作。
(a) John Deere 130G tracked excavator (a) 约翰迪尔 130G 履带式挖掘机
(b) 6 mil plastic sheeting in bottom of excavation (b) 在挖掘底部铺设 6 密耳塑料布
4.2 Subgrade 4.2 基层
The CH material described in section 3.1 was used as the subgrade for the entire test section. As previously noted, two moisture contents were targeted to achieve 6 and 10 CBR. 3.1 节所述的 CH 材料被用作整个试验段的基层。如前所述,两种含水量分别用于达到 6 CBR 和 10 CBR。 Samples were taken from the stockpile to determine the natural moisture content by oven drying, ASTM D2216 (ASTM 2019), or microwave drying, ASTM D4643 (ASTM 2017d). 从堆放物中取样,通过烘箱干燥法(ASTM D2216,ASTM 2019)或微波干燥法(ASTM D4643,ASTM 2017d)测定天然含水量。 After determining the natural moisture content, the material was spread using multiple loaders to facilitate processing the material to the desired moisture content. 在确定天然含水量后,使用多台装载机将材料铺开,以便将材料加工成所需的含水量。 If the results of moisture content determinations indicated that the material was above the desired moisture content, natural drying of the material was allowed to occur. 如果含水量测定结果表明材料的含水量高于所需的含水量,则允许材料自然干燥。 If the results of moisture content determinations indicated the material was below the desired moisture content, water was added using 如果含水量测定的结果表明材料的含水量低于所需的含水量,则用
a hydroseeder. Mixing and tilling of the material was performed using a John Deere 6430 tractor with a Frontier RT2308 tiller attachment (Figure 11) to ensure a uniform moisture content was obtained throughout the material. 水力播种机。材料的混合和翻耕使用了配备 Frontier RT2308 翻耕机附件的约翰迪尔 6430 拖拉机(图 11),以确保整个材料的含水量均匀一致。 The material was tilled, restockpiled, respread, and tilled again to achieve moisture uniformity. This process was repeated multiple times until moisture uniformity was achieved. 对材料进行翻耕、重新堆放、重新摊铺和再次翻耕,以达到水分均匀。这一过程重复多次,直到达到水分均匀为止。 Moisture samples were taken frequently throughout the process to monitor changes in moisture content. 在整个过程中经常采集水分样本,以监测水分含量的变化。 After the material achieved the desired moisture content, it was stockpiled and covered with a heavy-duty tarp to mitigate moisture content changes prior to placement in the test section. 在材料达到所需的含水量后,将其堆放起来,并用厚重的防水布覆盖,以减缓材料在放入试验段前的含水量变化。
Figure 11. Mixing and processing equipment. 图 11.混合和加工设备。
To prepare the test section for subgrade placement, wooden grade stakes ensured each lift of clay was placed and compacted near a uniform height. Front-end loaders were used to place material within the test section. 为准备试验段的路基铺设,使用了木质标高桩,以确保每一车粘土都能以接近统一的高度铺设和压实。使用前端装载机在试验段内放置材料。 A CAT 277 Compact Track Loader (CTL) (Figure 12) was used to spread the clay in the test section. After each loose lift was placed, the material was compacted using an Ingram 10000 pneumatic roller and a Dynapac CA25 smooth wheel roller. 使用 CAT 277 紧凑型履带装载机(CTL)(图 12)在试验段铺设粘土。每次松土后,使用英格拉姆 10000 型气动压路机和戴纳派克 CA25 型光轮压路机对材料进行压实。 The Ingram 10000 pneumatic roller had a gross weight of approximately 70,000 lb applied to sets of pneumatic tires inflated to 120 psi. During the compaction process, a Troxler 3440 nuclear density gauge (ASTM D6938) was used to measure density (ASTM 2017b). 英格拉姆 10000 型气动压路机的总重量约为 70,000 磅,压在充气至 120 磅/平方英寸的充气轮胎上。在压实过程中,使用 Troxler 3440 核密度计(ASTM D6938)测量密度(ASTM 2017b)。 After completion of the compaction process for each lift, the clay layer was covered with 6 mil plastic sheeting to mitigate a loss of moisture from the placed clay layer. 在完成每次提升的压实过程后,用 6 密耳塑料布覆盖粘土层,以减少已铺设粘土层的水分流失。 Quality control testing was performed on each lift to ensure strength requirements were achieved and to measure uniformity throughout the test section. 对每次提升都进行了质量控制测试,以确保达到强度要求,并测量整个测试部分的均匀性。 The ASTM D4429 field CBR test (ASTM 2009a) was performed on each lift as a quality control test. After all lifts of the subgrade were completed, a motor grader was used to finalize the desired elevation of the test section. 作为质量控制测试,每次提升都进行了 ASTM D4429 现场 CBR 测试(ASTM 2009a)。在完成所有基层提升后,使用平地机最终确定试验段的理想标高。 Gauges were installed after the grading process was complete. 测量仪是在平整过程完成后安装的。
Figure 12. Material placement equipment. 图 12.材料放置设备。
After the subgrade was completed, an aggregate base layer was placed. The aggregate base layer was not processed to a desired moisture content outside of the test section. 基层铺设完成后,再铺设集料基层。试验段外的集料基层没有处理到理想的含水量。 Instead, the aggregate base layer was placed in the test section with a front-end loader and spread using a CTL. The aggregate base layer was compacted at its natural moisture content using a smooth drum vibratory roller. 而是用前端装载机在试验段铺设骨料基层,并用 CTL 进行摊铺。使用光滑钢轮振动压路机以自然含水量压实骨料基层。 A nuclear density gauge and CBR tests were performed to ensure strength requirements were achieved. A motor grader was used to achieve the final desired elevation. 为确保达到强度要求,还进行了核密度计和 CBR 测试。使用平地机达到最终预期的标高。
4.4 Surface Layers 4.4 表层
Placement of the PCC and HMA surface layers were completed by contracting local suppliers. ERDC personnel performed construction oversight and material acceptance. PCC 和 HMA 表层的铺设由当地供应商承包完成。ERDC 人员负责施工监督和材料验收。
5 Instrumentation 5 仪器
Instrumentation was installed to monitor pavement response during test section trafficking. Sensors installed in the rigid pavement test items included earth pressure cells (EPCs), surface strain gauges (SSG), and embedded strain gauges (ESG). 安装了仪器以监测试验段运输过程中的路面反应。刚性路面测试项目中安装的传感器包括土压力传感器 (EPC)、表面应变仪 (SSG) 和嵌入式应变仪 (ESG)。 Sensors installed in the flexible pavement test items included EPCs, SDDs, and asphalt strain gauges (ASGs). Pore-water pressure transducers, temperature sensors, and moisture sensors were installed to monitor environmental parameters. 柔性路面测试项目中安装的传感器包括 EPC、SDD 和沥青应变计 (ASG)。还安装了孔隙水压力传感器、温度传感器和湿度传感器来监测环境参数。 Figures 13 and 14 show the plan and profile view of the typical instrumentation layout for a rigid pavement test item, respectively. Figures 15 and 16 show the plan and profile view of the typical instrumentation layout for a flexible pavement test item, respectively. 图 13 和图 14 分别为刚性路面测试项目的典型仪器布局平面图和剖面图。图 15 和图 16 分别为柔性路面测试项目的典型仪器布局平面图和剖面图。
Figure 13. Plan view of typical PCC instrumentation layout. 图 13.典型 PCC 仪表布局平面图。
5.1 Subgrade and Base Vertical Pressure Cells 5.1 基层和基底垂直压力单元
Vertical stresses in the base course and subgrade were measured using 9 in. diam Geokon EPCs. EPCs provided a quantitative measurement of the vertical distribution of the stresses within each traffic lane during testing. 使用 9 英寸直径的 Geokon EPC 测量基层和路基的垂直应力。在测试过程中,EPC 对每条行车道内的应力垂直分布进行了量化测量。 Cells with a maximum pressure range up to 145 psi were installed in the subgrade of the PCC and HMA test items, and EPCs with a maximum pressure range of 325 psi were installed in the base course of the HMA test items. The EPCs in the base course were located 2 in . 在 PCC 和 HMA 测试项目的基层中安装了最大压力范围为 145 psi 的电池,在 HMA 测试项目的基层中安装了最大压力范围为 325 psi 的 EPC。基层中的 EPC 位于 2 英寸处。 below the top of the base and at middepth of the base course of the HMA test items. The EPCs placed in the subgrade of the PCC and HMA test items were located 2 in. below the top of the subgrade. Figure 12 shows an EPC being installed 2 in. 在 HMA 试验项目中,EPC 位于路基顶部以下 2 英寸处,而 HMA 试验项目中,EPC 位于路基中间深度处。放置在 PCC 和 HMA 试验项目基层中的 EPC 位于基层顶部下方 2 英寸处。图 12 显示了在 PCC 和 HMA 试验项目的路基下 2 英寸处安装的 EPC。 below the surface of the subgrade at the interface with the base course. 与基层交接处的基层表面以下。
Installation (Figure 17) commenced by locating each EPC at the preplanned station within each test item and carefully outlining the excavation area to minimize disturbance to adjacent soils. 开始安装时(图 17),先将每个 EPC 定位在每个测试项目内预先计划的站位上,并仔细划定挖掘区域的轮廓,以尽量减少对邻近土壤的干扰。 Measurements were made using a rod and level to determine pre-excavation elevation and to benchmark proper placement depth. 使用测量杆和水平仪进行测量,以确定挖掘前的标高,并确定适当的放置深度。 The EPC area was excavated to the target depth, the bottom of the excavation was carefully leveled, and a thin layer of clean sand was evenly spread to ensure the gauge maintained full contact with the underlying subgrade soils. Shallow trenches (approximately 1 in . 将 EPC 区域挖掘至目标深度,仔细平整挖掘底部,并均匀铺上一层薄薄的干净沙子,以确保测量仪与下层土壤保持充分接触。浅沟槽(约 1 英寸 . deep) were excavated to the edge of each test item for wire placement and protection from subsequent construction activities. After excavation was complete, an EPC was placed in the excavation, and its alignment was verified. 深)挖掘到每个测试项目的边缘,以便放置电线和保护其免受后续施工活动的影响。挖掘完成后,将 EPC 放入挖掘区,并对其进行校准。 Design subgrade soils were placed around each EPC and were compacted with a pneumatic hammer to minimize density variations in the disturbed area. 在每个 EPC 周围都放置了设计基层土壤,并用气动锤压实,以尽量减少扰动区域的密度变化。
Embedded concrete strain gauges, manufactured by Bridge Diagnostics Inc., were used to measure tensile strain near the bottom of the rigid pavement. Capable of measuring +-2,000\pm 2,000 microstrains, the gauges were 9 in. long and 桥梁诊断公司制造的嵌入式混凝土应变片用于测量刚性路面底部附近的拉伸应变。应变片长 9 英寸,可测量 +-2,000\pm 2,000 微应变。
were comprised of a full Wheatstone bridge circuit with four active 350 ohm strain gauges. Each gauge was installed 1 in . above the bottom of the concrete layer. 该系统由一个完整的惠斯通电桥电路和四个有源 350 欧姆应变片组成。每个应变片安装在混凝土层底部上方 1 英寸处。 Four-inch-long spikes with an oversized nut welded to the head of the spike were used to secure the gauges prior to concrete placement. Spikes were driven into the prepared base course such that the center of the welded nut was 1 in . above the prepared base course. 在浇筑混凝土之前,用四英寸长的钉子固定测量仪,钉子头部焊接一个特大号螺母。将钉子插入准备好的基层,使焊接螺母的中心高出准备好的基层 1 英寸。 The threaded ends of each concrete gauge were fed through the welded nut and a second nut was used to secure the threaded end of a concrete gauge. Lead wires from a gauge array were secured together and routed outside the test area. 每个混凝土压力表的螺纹端穿过焊接螺母,第二个螺母用于固定混凝土压力表的螺纹端。测量仪阵列的导线固定在一起,并引出测试区域。 Photographs of an embedded concrete strain gauge array are shown in Figure 18. 图 18 显示了嵌入式混凝土应变计阵列的照片。
(b) Strain array along traffic centerline (b) 沿交通中心线的应变阵列
SSGs were installed after completion of a 28 -day PCC curing period. SSGs consisted of a linear measurement gauge mounted on a polymide backing and were manufactured by HBM (model no. 1-LY43-6/350). SSG 是在 28 天的 PCC 固化期结束后安装的。SSG 由安装在聚酰亚胺衬底上的线性测量仪组成,由 HBM 制造(型号 1-LY43-6/350)。 The gauge locations were prepared by first filling surface voids in the PCC surface with a 5 min rapid-cure general purpose epoxy. After the epoxy sufficiently hardened, 120-grit sandpaper was used to smooth the area and eliminate surface irregularities during epoxy placement. 首先用 5 分钟快速固化的通用环氧树脂填充 PCC 表面的空隙,然后准备测量仪位置。环氧树脂充分硬化后,用 120 号砂纸将该区域磨平,消除环氧树脂涂抹过程中的表面不规则现象。 After the surface was determined to be sufficiently smooth, a rapid evaporating cleaner similar to acetone was used to remove debris and dust from the sanding operation. 在确定表面足够光滑后,使用类似丙酮的快速蒸发清洁剂清除打磨过程中产生的碎屑和灰尘。
After the surface was adequately cleaned, Devcon 5-min gel epoxy (No. 21045) was applied to the back of the gauge. A gauge was placed on the prepared location and Mylar tape was used to secure the gauge during adhesive curing. 表面充分清洁后,在仪器背面涂上 Devcon 5 分钟凝胶环氧树脂(编号 21045)。将仪器放在准备好的位置上,并在粘合剂固化期间使用 Mylar 胶带固定仪器。 A thin protective layer of adhesive was applied over the gauge and allowed to cure. At the conclusion of the adhesive cure period, the Mylar tape was removed. 在测量仪上涂上一层薄薄的粘合剂保护层,让其固化。粘合剂固化期结束后,撕下米拉胶带。 A protective coating that consisted of Micro-Measurements Gagekote #8 was applied over the entire gauge area while leaving the wire solder tabs exposed. 在整个量具区域涂上一层由 Micro-Measurements Gagekote #8 组成的保护层,同时将导线焊接片暴露在外。
Wires were soldered to the gauge tabs and a final coating of Gagekote #8 was applied over the gauge, solder tabs, and wire leads to provide a secondary protective coating. A layer of 1//8in1 / 8 \mathrm{in}. thick foam tape followed by a layer of aluminum foil tape was placed over the installed gauge to act as a mechanical barrier. Gagekote #8 was applied around the edges and seams of the tapes to mitigate moisture intrusion. 将导线焊接到仪器的焊片上,最后在仪器、焊片和导线上涂上一层 8 号 Gagekote,以提供二次保护涂层。在安装好的压力表上贴上一层 1//8in1 / 8 \mathrm{in} .厚的泡沫胶带,然后再贴上一层铝箔胶带,作为机械屏障。在胶带的边缘和接缝处使用了 8 号 Gagekote,以减少湿气侵入。
5.3 SDD
Vertical deflections in the subgrade were measured using SDDs assembled by ERDC. One SDD was placed in the middle of each test item along the centerline of traffic. The SDD was placed such that the shaft was anchored at a depth of 8 ft from the top of the subgrade. 使用 ERDC 装配的 SDD 测量路基的垂直变形。沿交通中心线在每个测试项目的中间放置一个 SDD。放置 SDD 时,轴锚定在距路基顶部 8 英尺处。 A linear variable displacement transducer (LVDT) with a range of +-1in\pm 1 \mathrm{in}. was placed in the housing such that it was in contact with both the anchor rod and the surface plate, as shown in Figure 19. Thus, the LVDT measured movement of the plate 2 in. below the base-subgrade interface relative to the control point located at a depth of 8 ft . 如图 19 所示,将量程为 +-1in\pm 1 \mathrm{in} . 的线性可变位移传感器 (LVDT) 放在外壳中,使其与锚杆和表面板接触。这样,LVDT 就能测量到位于基底界面下 2 英寸处的表板相对于位于 8 英尺深控制点的移动量。
Figure 19. SDD schematic. 图 19.SDD 原理图。
Like EPC installation, each SDD was located at a preplanned location and excavated such that the top of the removable access plate was 2 in. below the existing subgrade elevation. 与 EPC 安装一样,每个 SDD 都位于预先计划的位置,并进行挖掘,使可拆卸检修板的顶部低于现有基层标高 2 英寸。 A borehole was advanced at the center of the plate location to a depth of approximately 8 ft by using earth-auger drilling techniques. Rapid-setting concrete was placed in the borehole, and the instrument assembly was lowered to the target depth. 利用土钻技术,在平板中心位置钻孔,深度约为 8 英尺。在钻孔中放入速凝混凝土,然后将仪器组件下放到目标深度。 After the concrete had sufficiently cured, the LVDT was installed through a removable access plate such that the tip of the LVDT was in contact with the fixed anchor rod. Subgrade soils were then compacted over the surface of the SDD assembly. 混凝土充分固化后,通过可拆卸检修板安装 LVDT,使 LVDT 的尖端与固定锚杆接触。然后在 SDD 组件表面压实基层土壤。 Photographs summarizing SDD installation are shown in Figure 20. 图 20 是 SDD 安装的照片摘要。
Tensile strain at the bottom of an HMA layer provides a quantitative measure of the pavement response during trafficking. The tensile strain at the bottom of the HMA is a key response parameter linked to fatigue damage in the HMA layer. HMA 层底部的拉伸应变可定量测量路面在运输过程中的反应。HMA 层底部的拉伸应变是与 HMA 层疲劳损坏相关的关键响应参数。 For this study, strain at the bottom of the HMA surface was measured using dynamic ASGs in the longitudinal (i.e., with traffic) direction. The ASGs were manufactured by Tokyo Sokki and could measure a range of +-5,000\pm 5,000 microstrains. The gauges were adhered to the surface of the base course with a heated asphalt binder, and HMA from the asphalt paver was placed as cover over each of the gauges immediately prior to paving the entire test section. This process is shown in Figure 21. 在本研究中,使用动态 ASG 测量了纵向(即交通)HMA 表面底部的应变。ASG 由 Tokyo Sokki 制造,可测量 +-5,000\pm 5,000 微应变范围。测量仪用加热的沥青粘结剂粘附在基层表面,在摊铺整个试验段之前,立即将沥青摊铺机摊铺的 HMA 覆盖在每个测量仪上。此过程如图 21 所示。
Figure 21. ASG installation. 图 21.ASG 安装。
6 Pavement Characterization 6 路面特征描述
6.1 As-Built Properties 6.1 竣工属性
Quality control tests were performed during construction of each material lift to ensure target values were achieved and to monitor material consistency. 在每次材料提升施工过程中都进行了质量控制测试,以确保达到目标值并监测材料的一致性。 Dry density and moisture content were measured using a nuclear moisture density device in accordance with ASTM D6938 (ASTM 2017b) to verify the uniformity of each material lift. 使用符合 ASTM D6938(ASTM 2017b)标准的核水分密度装置测量了干密度和含水量,以验证每次材料提升的均匀性。 Field in-place CBR tests were performed in general accordance with ASTM D4429 (ASTM 2009a) on each compacted lift to ensure target values were achieved. 对每块压实土层都按照 ASTM D4429(ASTM 2009a)进行了现场 CBR 测试,以确保达到目标值。 To further characterize the strength of the completed base and subgrade layers, Dynamic Cone Penetrometer (DCP) tests were performed in accordance with ASTM D6951 (ASTM 2018). 为进一步确定已完成的基层和底基层的强度,根据 ASTM D6951(ASTM 2018)标准进行了动态锥入度计(DCP)测试。 HMA cores were obtained from each flexible pavement test item, and core densities were determined in accordance with AASHTO T166 (AASHTO 2016). 从每个柔性路面测试项目中获取 HMA 路芯,并根据 AASHTO T166(AASHTO 2016)确定路芯密度。 Unconfined PCC compressive strength was determined in accordance with ASTM C39 (ASTM 2021a), and PCC flexural strength was determined in accordance with ASTM C78 (ASTM 2021b). 抗压强度根据 ASTM C39(ASTM 2021a)测定,抗折强度根据 ASTM C78(ASTM 2021b)测定。 As-built properties are summarized in Table 4 for the rigid traffic lanes and Table 5 for the flexible traffic lanes. 表 4 和表 5 分别汇总了刚性车道和柔性车道的竣工属性。
6.2 DCP
A series of DCP tests was performed to characterize the strength of the unbound gravel pavement layers. DCP tests were performed after completion of HMA placement, following the procedures described by ASTM D 6951 (ASTM 2018). 进行了一系列 DCP 测试,以确定未粘结砾石路面层的强度。按照 ASTM D 6951(ASTM 2018)描述的程序,在完成 HMA 铺设后进行了 DCP 测试。 Measured values of the DCP index (millimeters of penetration per hammer blow) were converted to CBR strength by using the relationship developed by Webster et al. (1992) and Webster et al. (1994). 通过使用 Webster 等人(1992 年)和 Webster 等人(1994 年)建立的关系,将 DCP 指数的测量值(每锤击穿毫米)转换为 CBR 强度。
6.3 Falling-Weight Deflectometer 6.3 落锤式偏转仪
Falling-weight deflectometer (FWD) tests were performed on the surface of the test items after construction and prior to trafficking. 在施工后和运输前,对测试项目的表面进行了坠落重力挠度(FWD)测试。 The measured impulse stiffness modulus (ISM) was used to evaluate the stiffness of the constructed pavement section and to provide a baseline for subsequent comparison under traffic. 测得的脉冲刚度模量 (ISM) 用于评估已建路面的刚度,并为随后在交通状况下进行比较提供基线。 The ISM is the ratio of the applied load to the measured plate deflection with greater values representing a stiffer pavement structure. ISM results are discussed in Chapter 7. ISM 是施加荷载与测量板挠度的比值,数值越大代表路面结构越硬。第 7 章将讨论 ISM 结果。
6.4 Fresh PCC Test Results 6.4 新鲜 PCC 测试结果
Field tests were conducted during PCC placement to document the asdelivered properties and to verify consistency during the placement. Field tests included slump (ASTM 2020), temperature (ASTM 2017e), and air content (ASTM 2009b). 在铺设水泥混凝土期间进行了现场测试,以记录交付时的特性并验证铺设过程中的一致性。现场测试包括坍落度(ASTM 2020)、温度(ASTM 2017e)和空气含量(ASTM 2009b)。 Five compressive strength test cylinders and three flexural strength beams were cast for subsequent laboratory testing at each field test collection point. 在每个实地测试采集点,浇铸了五个抗压强度测试筒和三个抗弯强度梁,用于随后的实验室测试。 Three independent samples were obtained at approximately evenly spaced intervals (i.e., approximately every 60 cubic yd) during the concrete placement. The entire placement utilized a pump truck, and fresh PCC samples were obtained from the pump truck discharge pipe. 在混凝土浇筑过程中,以大致均匀的间隔(即大约每 60 立方码)采集了三个独立的样本。整个浇筑过程都使用了泵车,新鲜的 PCC 样品是从泵车的出料管中采集的。 A summary of field measurement test results is provided in Table 6. 表 6 提供了实地测量测试结果摘要。