这是用户在 2024-9-19 18:26 为 https://pubs.acs.org/doi/10.1021/acssynbio.1c00451 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications
My Activity
CONTENT TYPES
  • Subscribed
Research Article

Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications
通过局部结构修饰获得光稳定性增强的非天然碱基对
Click to copy article link
点击复制文章链接
Article link copied!

  • Honglei Wang
    Honglei Wang
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Honglei Wang
  • Luying Wang
    Luying Wang
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Luying Wang
  • Nana Ma
    Nana Ma
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Nana Ma
  • Wuyuan Zhu
    Wuyuan Zhu
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Wuyuan Zhu
  • Bianbian Huo
    Bianbian Huo
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Bianbian Huo
  • Anlian Zhu
    Anlian Zhu
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    More by Anlian Zhu
  • Lingjun Li*
    Lingjun Li
    Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
    *Email: lingjunlee@htu.edu.cn. Tel: +863733326335. Fax: +863733326335.
    More by Lingjun Li
Open PDFSupporting Information (1)

ACS Synthetic Biology

Cite this: ACS Synth. Biol. 2022, 11, 1, 334–342
Click to copy citationCitation copied!
https://doi.org/10.1021/acssynbio.1c00451
Published December 10, 2021
Copyright © 2021 American Chemical Society

Abstract 抽象

Click to copy section link
单击以复制部分链接
Section link copied!

Completing the storage and retrieval of increased genetic information in vivo and producing therapeutic proteins have been achieved by the unnatural base pair dNaM-dTPT3. Up to now, some biological and chemical approaches are implemented to improve the semi-synthetic organism (SSO). However, the photosensitivity of this pair, suggested as a potential threat to the healthy growth of cells, is still a problem to solve. Hence, we designed and synthesized a panel of TPT3 analogues with the basic structural skeletons of TPT3 but modified thiophene rings at variant sites to improve the photostability of unnatural base pairs. A comprehensive screening strategy, including photosensitivity tests, kinetic experiments, and replication in vitro by PCR and in vivo by amplification, was implemented. A new pair, dNaM-dTAT1, which had almost equally high efficiency and fidelity with the dNaM-dTPT3 pair itself both in vivo and in vitro, was proven to be more photostable and thermostable and less toxic to E. coli cells. The discovery of dNaM-dTAT1 represents our first progress for the optimization of this type of bases toward more photostable properties; our data also suggest that less photosensitive unnatural base pairs will be beneficial to build a healthier cellular replication system.
非天然碱基对 dNaM-dTPT3 完成了体内增加遗传信息的存储和检索并产生治疗性蛋白质。到目前为止,已经实施了一些生物和化学方法来改进半合成生物体 (SSO)。然而,这对光敏性被认为是对细胞健康生长的潜在威胁,仍然是一个需要解决的问题。因此,我们设计并合成了一组具有 TPT3 基本结构骨架的 TPT3 类似物,但在变体位点修饰了噻吩环,以提高非天然碱基对的光稳定性。实施了全面的筛选策略,包括光敏性测试、动力学实验以及通过 PCR 在体外和通过扩增在体内进行复制。一种新的 dNaM-dTAT1 对在体内和体外都与 dNaM-dTPT3 对本身具有几乎相同的效率和保真度,被证明具有更高的光稳定性和热稳定性,并且对大肠杆菌细胞的毒性更小。dNaM-dTAT1 的发现代表了我们在优化此类碱基以获得更多光稳定性方面的首次进展;我们的数据还表明,光敏感度较低的非天然碱基对将有利于构建更健康的细胞复制系统。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Copyright © 2021 American Chemical Society
版权所有 © 2021 美国化学会
Developments of unnatural base pairs (UBPs) to expand the genetic alphabet offers an opportunity to increase the information storage capacity of DNA, (1−3) simultaneously providing a platform for promising biotechnological applications including site-specific modifications of nucleic acids, (4,5) SELEX for high-affinity aptamers, (6−8) and production of therapeutic proteins bearing noncanonical amino acids. (9−12) However, it is always a challenging task to discover new unnatural bases possessing alien structural scaffolds from natural bases but having desirable chemical and biological properties. From the 1960s, researchers have explored hundreds of unnatural base pairs by variant design strategies such as different hydrogen-bonding patterns, hydrophobic packing interactions, and shape complementarities, (13−15) which representatively resulted in three types of pairs, TPT3-NaM, (16,17) Ds-Px, (18) and P-Z. (19,20) These pairs have high efficiency, fidelity, and bio-orthogonal functions. Especially, TPT3-NaM can be recently utilized in a semi-synthetic organism (SSO) to complete the storage and retrieval of increased genetic information. (9,12,17) Although the discovery of TPT3-NaM represented a milestone for applications of unnatural base pairs in synthetic biology, some drawbacks of this pair are also found in view of its further applications. The photosensitivity of the TPT3-NaM pair has been pointed out as a potential threat to the healthy growth of cells. (21−23) Typically, the strong near-visible light absorption of TPT3 can cause a dramatic increase of ROS in cellular cultures and thus lead to irreversible destruction of cells. To our best knowledge, the methods to improve the photostability of unnatural base pairs are still stranded.
开发非天然碱基对 (UBP) 以扩展遗传字母表为增加 DNA 的信息存储容量提供了机会,(1-3) 同时为有前途的生物技术应用提供了一个平台,包括核酸的位点特异性修饰,(4,5) 高亲和力适配体的 SELEX,(6-8) 和生产带有非经典氨基酸的治疗性蛋白质。(9−12) 然而,发现新的非自然碱基始终是一项具有挑战性的任务,这些碱基具有来自天然碱基的外来结构支架,但具有理想的化学和生物特性。从 1960 年代开始,研究人员通过不同的氢键模式、疏水堆积相互作用和形状互补性等变体设计策略探索了数百个非天然碱基对,(13−15) 代表性地产生了三种类型的碱基对,TPT3-NaM、(16,17) Ds-Px、(18) 和 P-Z。(19,20) 这些对具有高效率、保真度和生物正交功能。特别是,TPT3-NaM 最近可用于半合成生物体 (SSO) 中,以完成增加的遗传信息的存储和检索。(9,12,17) 尽管 TPT3-NaM 的发现代表了非天然碱基对在合成生物学中应用的里程碑,但鉴于其进一步的应用,也发现了这对碱基对的一些缺点。TPT3-NaM 对的光敏性已被指出是对细胞健康生长的潜在威胁。(21−23) 通常,TPT3 的强烈近可见光吸收会导致细胞培养物中 ROS 的急剧增加,从而导致细胞的不可逆破坏。 据我们所知,提高非天然碱基对的光稳定性的方法仍然搁浅。
The efficiency and fidelity of unnatural base pairs play a dominant role in their replication, transcription, and translation procedures in vitro and in vivo. A process for producing the new structural scaffolds of unnatural base pairs usually comprises three steps: (1) chemical synthesis of nucleotides, (2) screening their efficiency and fidelity, (3) structure–activity relationship (SAR) feedback, and redesign. Using such a synthesis-screening strategy, a series of described base pairs are discovered, and valuable structure features for optimal unnatural base pairs can be concluded. (3,24,25) Nevertheless, the current methods omitted the evaluations of photostability of unnatural base pairs; it is even unclear about which parts of the optimized unnatural base pairs can be ascribed to their instabilities under light irradiation conditions. In the case of the TPT3 base, SAR investigations have shown that the C═S group is essential to keep the functions of TPT3 for efficient replications, (26,27) but the C═S groups are traditionally considered as photosensitive motifs. (28−30) In this regard, it will be quite difficult to enhance the photostability of TPT3-type nucleotides and, at the same time, keep their high efficiency and fidelity.
非天然碱基对的效率和保真度在其体外和体内的复制、转录和翻译过程中起着主导作用。产生非天然碱基对的新结构支架的过程通常包括三个步骤:(1) 核苷酸的化学合成,(2) 筛选它们的效率和保真度,(3) 构效关系 (SAR) 反馈和重新设计。使用这种合成筛选策略,发现了一系列描述的碱基对,并且可以得出最佳非自然碱基对的有价值的结构特征。(3,24,25) 然而,目前的方法省略了对非天然碱基对的光稳定性的评估;甚至不清楚优化的非天然碱基对的哪些部分可以归因于它们在光照射条件下的不稳定性。在 TPT3 碱基的情况下,SAR 研究表明,C═S 基团对于保持 TPT3 的功能以进行有效复制至关重要 (26,27),但 C═S 基团传统上被认为是光敏基序。(28−30) 在这方面,要提高 TPT3 型核苷酸的光稳定性,同时保持其高效率和保真度将是相当困难的。
In this paper, a panel of unnatural bases was designed and synthesized, which had the basic structural skeletons of TPT3 but allowed the modifications of thiophene rings for optimizing their optical properties (Figure 1A). By testing their photostability in near-visible light to visible light, the more photostable analogues of dTPT3 were unveiled. Importantly, the following kinetic experiments and PCR-sequencing assay showed that one of the pairs (dNaM-dTAT1) had almost equally high efficiency and fidelity with the dNaM-dTPT3 pair itself. dNaM-dTAT1 could also be used effectively in E. coli cells for in vivo replications, and the cells cultured with dNaMTP and dTAT1TP showed more robust growth with less generation of reactive oxygen species (ROS). Our experiments not only demonstrate that the enhancements of photostability of TPT3-type unnatural base can be realized by local structural modifications for the first time but also result in a new dTAT1TP with high replication efficacy and stability, which can be used as a reformative tool in both of in vitro and in vivo assays for genetic code extensions.
在本文中,设计并合成了一组非天然碱基,它具有 TPT3 的基本结构骨架,但允许修改噻吩环以优化其光学特性(图 1A)。通过在近可见光到可见光下测试它们的光稳定性,揭示了 dTPT3 的更多光稳定性类似物。重要的是,以下动力学实验和 PCR 测序分析表明,其中一对 (dNaM-dTAT1) 与 dNaM-dTPT3 对本身具有几乎相同的效率和保真度。dNaM-dTAT1 也可以有效地用于大肠杆菌细胞进行体内复制,并且用 dNaMTP 和 dTAT1TP 培养的细胞显示出更稳健的生长和更少的活性氧 (ROS) 产生。我们的实验不仅表明,TPT3 型非天然碱基的光稳定性增强首次可以通过局部结构修饰来实现,而且还产生了具有高复制效率和稳定性的新型 dTAT1TP,可用作遗传密码延伸的体外和体内检测的改良工具。

Figure 1 图 1

Figure 1. (A) Design and structures of TPT3-type unnatural base nucleosides. (B) UV–vis spectra of the synthesized TPT3-type unnatural base nucleosides.
图 1.(A) TPT3 型非天然碱基核苷的设计和结构。(B) 合成的 TPT3 型非天然碱基核苷的紫外-可见光谱。

Results and Discussion 结果与讨论

Click to copy section link
单击以复制部分链接
Section link copied!

Design and Synthesis of TPT3-Type Unnatural Base Nucleotides
TPT3 型非天然碱基核苷酸的设计与合成

Based on data analysis of the kinetics and structural studies, an induced-fit mechanism is suggested for explaining the replications of hydrophobic unnatural base pairs, e.g., 5SICS-MMO2, 5SICS-NaM, TPT3-NaM, and PTMO-TPT3. (25,31−33) In the model, the pairing of unnatural bases in the polymerase active site drives the same large conformational change of the polymerase that is caused by the pairing of natural bases. During this procedure, the formation of the DNA-polymerase complex induces the unnatural bases to adopt an edge-to-edge paired Watson–Crick-like structure. However, a cross-strand intercalated structure forms in the free duplex DNA after an unnatural base pair synthesis and polymerase translocation. In order to continue the DNA synthesis, a de-intercalation occurs to reshape the Watson–Crick-like structure from the cross-strand intercalated structure. The interaction of each unnatural base is key for their efficient switches from intercalation to de-intercalation, which can also be designable in comprehensive consideration of SAR data including size-complementarity, π-stacking, and hydrophobic and hydrophilic forces.
基于动力学和结构研究的数据分析,提出了一种诱导拟合机制来解释疏水性非自然碱基对的复制,例如 5SICS-MMO2、5SICS-NaM、TPT3-NaM 和 PTMO-TPT3。(25,31−33) 在该模型中,聚合酶活性位点中非天然碱基的配对驱动了聚合酶的较大构象变化,这与天然碱基配对引起的相同。在此过程中,DNA-聚合酶复合物的形成诱导非天然碱基采用边对边配对的 Watson-Crick 样结构。然而,在非自然碱基对合成和聚合酶易位后,游离双链 DNA 中会形成交叉链嵌入结构。为了继续 DNA 合成,发生脱嵌以从交叉链插层结构重塑 Watson-Crick 样结构。每个非天然碱基的相互作用是它们从嵌入到脱嵌有效转换的关键,这也可以在综合考虑 SAR 数据(包括尺寸互补、π堆叠以及疏水和亲水力)的情况下进行设计。
TPT3 is discovered from its precursor 5SICS based on the induced-fit mechanism. (24) The size-complementarity of 5SICS and NaM is obtained by optimizing and screening from an over 3600 number of hydrophobic unnatural base pair candidates. (34) A fine adjustment on the benzene ring of 5SICS to reduce the hydrophobic surface of the base yields TPT3 with higher incorporation and extension efficiency. (24) A possible explanation is that the more polarizable TPT3 base is prone to drive the de-intercalation to form a Watson–Crick-like structure for efficient replications. On the other hand, the C═S groups in 5SICS and TPT3 are discovered to play critical roles for minor groove interactions. (26) Changing the C═S group to C═O group can cause a sharp reduction of its replication efficiency. (34) Therefore, keeping the geometric shape of TPT3 and the key C═S group, it is still possible to obtain new unnatural bases with better performances through careful optimizations of the interactions of TPT3 and its partner pairs. At this point, we designed a panel of TPT3-type unnatural bases as shown in Figure 1A. The nucleobases of dTPT4, dTAT1, and d4TFP (35) were synthesized from 2-thenaldehyde, thiazole-4-carboxaldehyde, and furfural via an intermolecular Curtius rearrangement based on literature methods, (36,37) and then the bases were coupled to (2R,5R)-5-chloro-2-(((4-methylbenzoyl)oxy)-methyl) tetrahydrofuran-3-yl 4-methylbenzoate. Column chromatography was used to obtain the β-anomer of dTPT4 and d4TFP as well as an α/β-anomer mix of dTAT1. The β-anomer of dTAT1 was obtained by reversed-phase HPLC. Then, they were converted to triphosphates under Ludwig conditions and purified by a Sephadex chromatography column and HPLC. The modifications on the thiophene ring of TPT3 via inducing the heteroatom do not affect the primary shapes of this base; however, it changes the UV–vis absorption property due to the variant conjugated systems (Figure 1B). Nucleosides d4TFP and dTPT4 show shorter absorption wavelengths, and dTAT1 shows a small molar absorbance coefficient in near-visible light spectra in contrast to dTPT3, thus offering potential candidates for the discovery of less photosensitive unnatural bases.
TPT3 是基于诱导拟合机制从其前体 5SICS 中发现的。(24) 5SICS 和 NaM 的大小互补性是通过从 3600 多个疏水性非天然碱基对候选者中进行优化和筛选而获得的。(34) 对 5SICS 的苯环进行微调以减少碱的疏水表面,得到具有更高掺入和延伸效率的 TPT3。(24) 一种可能的解释是,更易极化的 TPT3 碱基容易驱动脱嵌形成 Watson-Crick 样结构,以实现有效复制。另一方面,发现 5SICS 和 TPT3 中的 C═S 基团在小沟相互作用中起关键作用。(26) 将 C═S 组更改为 C═O 组会导致其复制效率急剧降低。(34) 因此,在保持 TPT3 的几何形状和关键的 C═S 基团的情况下,通过仔细优化 TPT3 及其伙伴对的相互作用,仍然有可能获得具有更好性能的新非天然碱基。此时,我们设计了一组 TPT3 型非天然碱基,如图 1A 所示。dTPT4、dTAT1 和 d4TFP 的核碱基 (35) 由2-乙醛、噻唑-4-甲醛和糠醛通过分子间 Curtius 重排合成 (36,37),然后将碱基偶联到 (2R,5 R)-5-氯-2-(((4-甲基苯甲酰基)氧)-甲基)四氢呋喃-3-基 4-甲基苯甲酸酯上。柱层析用于获得 dTPT4 和 d4TFP 的 β 异头异构体以及 dTAT1 的 α/β 异头异构体混合物。dTAT1 的 β 异构体是通过反相 HPLC 获得的。 然后,在 Ludwig 条件下将它们转化为三磷酸盐,并通过 Sephadex 色谱柱和 HPLC 纯化。通过诱导杂原子对 TPT3 的噻吩环的修饰不会影响该碱基的初级形状;但是,由于变体共轭系统,它改变了 UV-Vis 吸收特性(图 1B)。核苷 d4TFP 和 dTPT4 显示出较短的吸收波长,与 dTPT3 相比,dTAT1 在近可见光光谱中显示出较小的摩尔吸光度系数,因此为发现光敏性较低的非天然碱基提供了潜在的候选者。

Photostability Evaluations of dTPT3, dTPT4, dTAT1, and d4TFP
dTPT3、dTPT4、dTAT1 和 d4TFP 的光稳定性评估

Visible light and near-visible light are highly abundant in natural and standard fluorescence experimental environments. (38) The TPT3-type unnatural base nucleosides, dTPT3, dTPT4, dTAT1, and d4TFP, showed strong absorption within the near-visible light spectrum (350–410 nm) using UV–vis spectra (Figure 1B). To investigate the photostability of these nucleosides, they were dissolved in phosphate-buffered saline (pH = 7.4) and exposed to near-visible light and visible light (red, green, blue, and purple) for 0.25, 0.5, 0.75, 1, and 1.25 h. Then, samples were analyzed by HPLC and the degradation of nucleosides was normalized with samples without exposure (Figure 2A–D, Figure S1). The results showed that both TPT3 and its analogues were stable to visible light. When exposed to near-visible light, dTPT3, dTPT4, and dTAT1 were degraded continuously with the prolonged time, and the degradation of d4TFP was terminated at 0.5 h. In addition, the percent remaining of dTPT3, dTPT4, dTAT1, and d4TFP were 0.28 ± 0.02, 0.47 ± 0.03, 0.73 ± 0.01, and 0.85 ± 0.02 at 1.25 h, respectively. These data indicate that the nucleobases dTAT1 and d4TFP are more photostable. The changes in the chemical structure on the thiophene motif of TPT3 did change the photostability of these unnatural base nucleosides. Thus, the propriate modifications on the thiophene motif of TPT3 can offer a way to improve the photostability of TPT3-type bases.
可见光和近可见光在自然和标准荧光实验环境中非常丰富。(38) 使用紫外-可见光谱,TPT3 型非天然碱基核苷 dTPT3、dTPT4、dTAT1 和 d4TFP 在近可见光谱 (350-410 nm) 内显示出强吸收(图 1B)。为了研究这些核苷的光稳定性,将它们溶解在磷酸盐缓冲盐水 (pH = 7.4) 中,并暴露在近可见光和可见光(红色、绿色、蓝色和紫色)下 0.25、0.5、0.75、1 和 1.25 小时。然后,通过 HPLC 分析样品,并用未暴露的样品对核苷的降解进行归一化(图 2A-D,图 S1)。结果表明,TPT3 及其类似物对可见光均稳定。当暴露在近可见光下时,dTPT3 、 dTPT4 和 dTAT1 随着时间的延长而不断降解,d4TFP 的降解在 0.5 h 终止。此外,dTPT3 、 dTPT4 、 dTAT1 和 d4TFP 的剩余百分比分别为 0.28 ± 0.02 、 0.47 ± 0.03 、 0.73 ± 0.01 和 0.85 ± 0.02。这些数据表明,核碱基 dTAT1 和 d4TFP 的光稳定性更强。TPT3 噻吩基序上化学结构的变化确实改变了这些非天然碱基核苷的光稳定性。因此,对 TPT3 噻吩基序的适当修饰可以提供一种提高 TPT3 型碱基光稳定性的方法。

Figure 2 图 2

Figure 2. Photostability of dTPT3 and its analogues. (A) Photostability of dTPT3; (B) photostability of dTPT4; (C) photostability of dTAT1; (D) photostability of d4TFP.
图 2.dTPT3 及其类似物的光稳定性。(A) dTPT3 的光稳定性;(B) dTPT4 的光稳定性;(C) dTAT1 的光稳定性;(D) d4TFP 的光稳定性。

In Vitro Efficiency and Fidelity Evaluations of dTPT4TP, dTAT1TP, and d4TFPTP
dTPT4TP、dTAT1TP 和 d4TFPTP 的体外效率和保真度评估

The incorporation and extension of dTPT3 analogues were analyzed by presteady-state kinetics. (16,25,39) The assay was performed by extending a 23-mer primer labeled with HEX fluorescence (green) opposite its cognate 45-mer template using the Klenow fragment of E. coli DNA polymerase I (Kf) (Figure 3A). The incorporation was characterized by measuring the extending ratio of the unnatural base and next correct triphosphate (dCTP), demonstrating as ≥24-mer/all, and the extension was characterized by measuring the extending ratio of the next correct triphosphate (dCTP), demonstrated as ≥25-mer/≥24-mer. The separate extension assay was also performed by adding dYPT for a preincubation to allow for full incorporation and then adding dCTP. Full-length analysis was also performed by adding the unnatural and four natural bases to explore whether the unnatural base pair on DNA would affect the chain extension. Under the conditions selected, the % incorporation of dTPT3TP, dTPT4TP, dTAT1TP, and d4TFPTP were 63.4, 61.7, 60.3, and 63.3, and the % extension ratio of dTPT3TP, dTPT4TP, dTAT1TP, and d4TFPTP were 97, 96.6, 95.5, and 96.4%, respectively (Table 1). The % separate extension ratio of dTPT3TP, dTPT4TP, dTAT1TP, and d4TFPTP were 94.7 ± 0.5, 94.9 ± 0.5, 94.5 ± 0.2, and 95.5 ± 0.3, respectively (Figure S2 and Table S1). The analogues showed a narrow range of behaviors. As reported, dTPT3 can be weakly paired with natural nucleotides depending on the sequence context. (39) It was found that dTPT3 was mispaired with dGTP in the incorporation assay or dCTP in the extension assay (Table 1 and Figure 3B,C). However, the mispaired oligonucleotides could not be further extended (Figure S3). The other analogues showed less mispairing with dGTP or dCTP than dTPT3, especially the d4TFP showed barely mispairing. Full-length fragments with dTPT3 and its analogues were obtained and showed no significant difference, indicating that modifications of dTPT3 analogues did not affect the ability of DNA chain extension (Figure S4).
通过预稳态动力学分析 dTPT3 类似物的掺入和延伸。(16,25,39) 通过使用大肠杆菌 DNA 聚合酶 I (Kf) 的 Klenow 片段,将用 HEX 荧光(绿色)标记的 23 聚体引物延伸到其同源 45 聚体模板的对面进行测定(图 3A)。通过测量非天然碱基和下一个正确三磷酸盐 (dCTP) 的延伸比来表征掺入,证明为 ≥24-mer/all,通过测量下一个正确三磷酸盐 (dCTP) 的延伸比来表征延伸,证明为 ≥25-mer/≥24-mer。还通过添加 dYPT 进行预孵育以允许完全掺入,然后添加 dCTP 进行单独的延伸测定。还通过添加非天然碱基和 4 个天然碱基进行全长分析,以探讨 DNA 上的非天然碱基对是否会影响链延伸。在所选条件下,dTPT3TP、dTPT4TP、dTAT1TP 和 d4TFPTP 的掺入百分比分别为 63.4、61.7、60.3 和 63.3,dTPT3TP、dTPT4TP、dTAT1TP 和 d4TFPTP 的百分比延伸率分别为 97、96.6、95.5 和 96.4%(表 1)。dTPT3TP、dTPT4TP、dTAT1TP 和 d4TFPTP 的 % 分离延伸比分别为 94.7 ± 0.5、94.9 ± 0.5、94.5 ± 0.2 和 95.5 ± 0.3(图 S2 和表 S1)。类似物表现出狭窄的行为范围。据报道,dTPT3 可以与天然核苷酸弱配对,具体取决于序列环境。(39) 发现 dTPT3 在掺入试验中与 dGTP 或延伸试验中的 dCTP 错配(表 1图 3B、C)。 然而,错配对的寡核苷酸无法进一步延伸(图 S3)。与 dTPT3 相比,其他类似物与 dGTP 或 dCTP 的错配更少,尤其是 d4TFP 几乎没有错配。获得带有 dTPT3 及其类似物的全长片段,显示无显着差异,表明 dTPT3 类似物的修饰不会影响 DNA 链延伸的能力(图 S4)。

Figure 3 图 3

Figure 3. Kinetics analysis and sequencing analysis of the PCR products. (A) Kf-mediated primer extension and sequences used in this study; (B) representative gel for the incorporation assay; (C) representative gel for the extension assay. (D) Sequencing analysis of the PCR products after 36 cycles by OneTaq polymerase.
图 3.PCR 产物的动力学分析和测序分析。(A) 本研究中使用的 Kf 介导的引物延伸和序列;(B) 用于掺入测定的代表性凝胶;(C) 用于延伸测定的代表性凝胶。(D) 使用 OneTaq 聚合酶对 36 个循环后的 PCR 产物进行测序分析。

Table 1. Kinetics Dataa
表 1.动力学数据a
dYTPincorporation (%) 公司注册 (%)mispairing (%) 错配 (%)extension (%) 扩展 (%)mispairing (%) 错配 (%)
dTPT363.4 ± 1.119.9 ± 3.897 ± 0.220.9 ± 1.1
dTPT461.7 ± 1.21.4 ± 0.796.6 ± 0.27 ± 3.3
dTAT160.3 ± 1.5 60,3 ± 1.52.7 ± 0.795.5 ± 0.311.2 ± 0.2
d4TFP63.3 ± 2.01.6 ± 0.396.4 ± 0.73.0 ± 1.0
a

Incorporation assay conditions: 12.5 μM dYTP, 10 s. Extension assay conditions: 12.5 μM dYTP and dCTP, 10 s. The mispairing was characterized by measuring the paired ratio of the additional extension, demonstrated as 25-mer/≥24-mer or 26-mer/≥25-mer.


a

掺入测定条件:12.5 μM dYTP,10 秒。延伸测定条件:12.5 μM dYTP 和 dCTP,10 秒。通过测量额外延伸的配对比率来表征错配,显示为 25 mer/≥24 mer 或 26 mer/≥25-mer。

To further evaluate replication in vitro, a 134 bp single-stranded DNA containing dNaM (16) was synthesized. Due to the different sources and evolutionary levels, the differentiated and proofreading ability of polymerases is uneven, (40) and the adaptability of novel unnatural base pairs to polymerases should also be screened. (41,42) The template was amplified by PCR with HieffTaq, OneTaq, and Taq polymerase. Different polymerases were used for the amplification of 36 cycles to explore the enzyme adaptability of the nucleobases. The unnatural base pair retention per doubling defined as fidelity was calculated from the percentage of the amplified DNA that retained the unnatural base pair (retention). With HieffTaq, the fidelity of DNA containing dNaM-dTPT3, dNaM-dTAT1, dNaM-dTPT4, and dNaM-d4TFP, was 99.8, 99.8, 99.7, and 99.4% (Table 2, and Figure S5). With OneTaq, the fidelity of DNA containing dNaM-dTPT3, dNaM-dTAT1, dNaM-dTPT4, and dNaM-d4TFP was 99.5, 99.5, 99, and 99% (Table 2, and Figure S6). With Taq, the fidelity of DNA containing dNaM-dTPT3, dNaM-dTAT1, dNaM-dTPT4, and dNaM-d4TFP, was 99.8, 99.9, 99.6, and 98.2% (Table 2 and Figure S7). With the three polymerases, DNA containing dNaM-dTPT3 and dNaM-dTAT1 was amplified with essentially the same retention and fidelity; however, DNA containing dNaM-dTPT4, and especially dNaM-d4TFP, was amplified with significantly lower retention and fidelity. With OneTaq, the retention and fidelity of DNA containing the four unnatural base pairs were significantly lower than with HieffTaq and Taq polymerases, which may be due to the differentiated and proofreading ability of polymerases, as OneTaq has the proofreading ability and the other two do not have. These suggest that the optimization of UBPs should take into account the influence of different DNA polymerases. In summary, the dTPT3 and its analogues are adaptive to different enzymes and dTAT1 performs similarly to dTPT3 in PCR.
为了进一步评估体外复制,合成了含有 dNaM (16) 的 134 bp 单链 DNA。由于来源和进化水平不同,聚合酶的分化和校对能力不均衡 (40),还应筛选新的非天然碱基对聚合酶的适应性。(41,42) 使用 HieffTaq、OneTaq 和 Taq 聚合酶通过 PCR 扩增模板。使用不同的聚合酶进行 36 个循环的扩增,以探索核碱基的酶适应性。定义为保真度的每次倍增的非自然碱基对保留率是根据保留非天然碱基对的扩增 DNA 的百分比(保留)计算得出的。使用 HieffTaq,含有 dNaM-dTPT3、dNaM-dTAT1、dNaM-dTPT4 和 dNaM-d4TFP 的 DNA 的保真度分别为 99.8%、99.8%、99.7% 和 99.4%(表 2图 S5)。使用 OneTaq 时,含有 dNaM-dTPT3、dNaM-dTAT1、dNaM-dTPT4 和 dNaM-d4TFP 的 DNA 的保真度分别为 99.5%、99.5%、99% 和 99%(表 2图 S6)。使用 Taq 时,含有 dNaM-dTPT3、dNaM-dTAT1、dNaM-dTPT4 和 dNaM-d4TFP 的 DNA 的保真度分别为 99.8%、99.9%、99.6% 和 98.2%(表 2图 S7)。使用三种聚合酶,含有 dNaM-dTPT3 和 dNaM-dTAT1 的 DNA 以基本相同的保留和保真度扩增;然而,含有 dNaM-dTPT4 的 DNA,尤其是 dNaM-d4TFP 的扩增保留率和保真度显著降低。 使用 OneTaq 时,含有四个非天然碱基对的 DNA 的保留率和保真度显著低于 HieffTaq 和 Taq 聚合酶,这可能是由于聚合酶的分化和校对能力,因为 OneTaq 具有校对能力,而其他两种没有。这些表明 UBP 的优化应考虑不同 DNA 聚合酶的影响。总之,dTPT3 及其类似物可适应不同的酶,并且 dTAT1 在 PCR 中的表现与 dTPT3 相似。
Table 2. PCR Amplification Dataa
表 2.PCR 扩增数据a
 dTPT3dTPT4dTAT1d4TFP
dXTPretention (R, %) 留存率 (R, %)fidelity (R, %) 保真度 (R, %)retention (R, %) 留存率 (R, %)fidelity (R, %) 保真度 (R, %)retention (R, %) 留存率 (R, %)fidelity (R, %) 保真度 (R, %)retention (R, %) 留存率 (R, %)fidelity (R, %)
Hieff 希夫93.9 ± 1.7 93,9 ± 1.799.8 ± 0.0488.6 ± 0.899.7 ± 0.0294.4 ± 1.399.8 ± 0.0579.7 ± 2.299.4 ± 0.08
OneTaq OneTaq 公司84.2 ± 1.299.5 ± 0.04c
99.5 ± 0.04摄氏度
70.2 ± 2.799 ± 0.184.4 ± 1.699.5 ± 0.0568.9 ± 1.399 ± 0.05
Taq93.6 ± 0.499.8 ± 0.0185.2 ± 199.6 ± 0.0395.5 ± 1.499.9 ± 0.0452 ± 4.798.2 ± 0.2
OneTaqb83.8 ± 0.399.7 ± 0.01  79 ± 1.699.5 ± 0.04  
a

The data indicate mean values ± SD. n = 3.


a

数据表示 SD ±平均值。n = 3。

b

Represents PCR that were amplified for 51 cycles, and others were amplificated for 36 cycles.


b

表示扩增 51 个循环的 PCR,其他 PCR 扩增 36 个循环。

c

Represented the significant difference of TPT3 in fidelity between continuous 36 cycles and then 3 x 17 cycles.


c

表示 TPT3 在连续 36 个循环和 3 x 17 个循环之间的保真度上的显着差异。

PCR, a thermal cycling reaction, is generally implemented to amplify DNA containing the unnatural base pair. (4) Unnatural base pairs with better thermostability will perform better in PCR. PCR with continuous and discontinuous cycles can be performed to evaluate their thermostability. To further characterize dTAT1, amplification of 51 cycles (3 × 17, PCR mix was amplified over 17 cycles, diluted to 1000-fold, and amplified over the second 17 cycles, and finally diluted 1000-fold and amplified over the third 17 cycles) with OneTaq polymerase was performed. The fidelities of dNaM-dTPT3 by 51 cycles were 99.7%, which was reduced by PCR of 36 continuous cycles (99.5%). Also, the fidelities of dNaM-dTAT1 by 51 and 36 cycles were both 99.5%, showing no differences (Table 2, Figures S6 and S8). The results suggest that dTPT3 is less thermostable. Amplified efficiency of DNA containing unnatural base pair represents the yield of PCR products; the limited amplified efficiency will lead to high cost and constraints in further research. Amplified efficiency was determined by monitoring the grayscale of the stripe employing 16 and 20 cycles PCR with OneTaq. Compared to dNaM-dTPT3, the amplified efficiency of dNaM-dTAT1 was about 98% (16 doublings: = 0.986; 20 doublings: = 0.983) (Figure S9). The results indicate that the dTAT1 has similar efficiency with dTPT3.
PCR 是一种热循环反应,通常用于扩增含有非天然碱基对的 DNA。(4) 具有更好热稳定性的非天然碱基对在 PCR 中表现更好。可以进行连续和不连续循环的 PCR 以评估其热稳定性。为了进一步表征 dTAT1,使用 OneTaq 聚合酶扩增 51 个循环(3 × 17 个循环,PCR 混合物在 17 个循环中扩增,稀释至 1000 倍,并在第二个 17 个循环中扩增,最后稀释 1000 倍并在第三个 17 个循环中扩增)。51 个循环的 dNaM-dTPT3 的保真度为 99.7%,通过 36 个连续循环的 PCR (99.5%) 降低。此外,dNaM-dTAT1 在 51 次和 36 次循环中的保真度均为 99.5%,没有差异(表 2图 S6 和 S8)。结果表明 dTPT3 的热稳定性较差。含有非天然碱基对的 DNA 的扩增效率代表 PCR 产物的产量;有限的放大效率将导致高成本和进一步研究的限制。通过使用 OneTaq 进行 16 和 20 个循环 PCR 监测条带的灰度来确定扩增效率。与 dNaM-dTPT3 相比,dNaM-dTAT1 的扩增效率约为 98%(16 次倍增:= 0.986;20 次倍增:= 0.983)(图 S9)。结果表明,dTAT1 与 dTPT3 具有相似的效率。

DFT Calculations for Model the Pairing of TPT3 Analogues with NaM
用于对 TPT3 类似物与 NaM 的配对进行建模的 DFT 计算

The above experimental findings indicated the effective formation of hydrophobic unnatural base pairs by all the TPT3 analogues and NaM. However, we also found that the fidelity of the pairs ranged slightly. It was noteworthy that the pair TAT1-NaM demonstrated similar fidelity with TPT3-NaM itself. Indeed, quantum mechanical calculations have been performed to explain the noncanonical base pairs that are formed through size-complementary, electrostatic, and hydrophobic interactions. (24,31−33,43) A Watson-Crick like geometry of TPT3-NaM pair is suggested by X-ray experiments. (44,45) In order to rationalize the differences observed when the TPT3 analogues paired with NaM, we carried out a DFT analysis as shown in Figure 4 and Table S1. The distances between the C1’ atoms of nucleotides in the optimized Watson-Crick like geometry of TPT3-NaM, TPT4-NaM, TAT1-NaM, and 4TFP-NaM are 10.72 Å, 10.77 Å, 10.00 Å, and 10.37 Å, respectively, which are very closed to the average value of A-T and G-C pairs (10.48 Å and 10.69 Å). In the case of TPT3-NaM and TAT1-NaM, the differences in their distances between the C1’ atoms of nucleotides were only 0.04 Å. Further, the interaction energy calculation showed less than 0.23 kcal/mol ranged from all the pairs (Table S2). The tiny differences in interaction energy of the four pairs might be ascribed to their different electrostatic potential (Figure 4). For example, replacing the aldehyde group of Pa with the nitro group changes the electrostatic potential (ESP) maps, thus preventing the mispairing with A. (46) Taken together, the above analysis indicated that our changes in the chemical structure on the thiophene motif of TPT3 did not cause dramatic differences in the geometries and energies of their pairing with NaM.
上述实验结果表明,所有 TPT3 类似物和 NaM 都能有效形成疏水性非天然碱基对。然而,我们还发现,货币对的保真度略有不同。值得注意的是,TAT1-NaM 对与 TPT3-NaM 本身表现出相似的保真度。事实上,已经进行了量子力学计算来解释通过尺寸互补、静电和疏水相互作用形成的非规范碱基对。(24,31−33,43)X 射线实验提出了 TPT3-NaM 对的 Watson-Crick 类似几何形状。(44,45) 为了合理化 TPT3 类似物与 NaM 配对时观察到的差异,我们进行了 DFT 分析,如图 4表 S1 所示。TPT3-NaM、TPT4-NaM、TAT1-NaM 和 4TFP-NaM 的优化 Watson-Crick 几何结构中核苷酸的 C1' 原子之间的距离分别为 10.72 Å、10.77 Å、10.00 Å 和 10.37 Å,这与 A-T 和 G-C 对的平均值(10.48 Å 和 10.69 Å)非常接近。在 TPT3-NaM 和 TAT1-NaM 的情况下,核苷酸的 C1' 原子之间的距离差异仅为 0.04 Å。此外,相互作用能计算显示所有对的含量范围小于 0.23 kcal/mol(表 S2)。四对相互作用能的微小差异可能归因于它们不同的静电电位(图 4)。例如,用硝基取代 Pa 的醛基会改变静电势 (ESP) 图,从而防止与 A 错配。 (46) 综上所述,上述分析表明,我们在 TPT3 的噻吩基序上化学结构的变化并没有导致它们与 NaM 配对的几何形状和能量发生显着差异。

Figure 4 图 4

Figure 4. Optimized base pairs between dNaM and dTPT3 as well as its analogues (left). Optimal distances in the gas phase of the key atoms and C1′–C1′ distances. Oxygen, sulfur, and nitrogen are colored red, yellow, and blue, respectively. The electrostatic potential (ESP) maps (right) describe the electron density distribution; the red area represents the electron-rich area; and the green area represents the electron-deficient area.
图 4.dNaM 和 dTPT3 及其类似物之间的优化碱基对(左)。关键原子气相中的最佳距离和 C1′–C1′ 距离。氧、硫和氮分别呈红色、黄色和蓝色。静电势 (ESP) 图(右)描述了电子密度分布;红色区域代表电子富集区域;绿色区域代表缺电子区域。

Replications of dNaM-dTAT1 in Cells
dNaM-dTAT1 在细胞中的复制

Meanwhile, DNA polymerases in organisms are different from commercial DNA polymerases, so replication and transcription experiments in vivo are also necessary. (31,47) The effects of these nucleotides on physiology should be taken into account to build a healthier cellular system with unnatural nucleotides. (48) To evaluate replication in vivo, the previously reported D6 containing dNaM flanked on each side by three randomized natural nucleotides was synthesized. (16) The template was amplified by PCR using OneTaq polymerase in the presence of dNaM/dTPT3 and then inserted into plasmid pBLUE-T. The plasmid-expressed PtNTT2 to transport triphosphate was also synthesized. Then, the two plasmids were transformed to E. coli BL 21 (DE3) together. The workflow was shown (Figure 5A). After transformation, the E. coli BL 21 (DE3) was incubated at 37 °C for 17 h with dNaM/dTPT3 or dNaM/dTAT1 at a concentration of 125 μM. Finally, the retention was calculated by PCR using the E. coli cells as templates. It was found that the retentions of dNaM-dTAT1 and dNaM-dTPT3 in vivo were 51.4 ± 1.8 and 53.3 ± 4.4%, respectively. There were no differences between retentions of the two base pairs (Figure 5B and Figure S10). The retentions for in vivo replication are lower than reported previously, (17) which is likely due to the fact that a library of randomized sequences was employed. UBP retention is known to be sequence context-dependent with some sequence context showing high retention and others less or none. (48,49) The plasmids bearing randomized sequences will display the comprehensive retentions. In addition, the growth of E. coli cells was also analyzed by measuring OD600, and we found that E. coli cells incubated with dNaM/dTAT1 showed more robust growth (Figure 5C). The dTAT1 or dTPT3 was also individually incubated with E. coli cells. Also, the growth of E. coli cells showed the same trend (Figure 5D). As reported, UBPs incubated with E. coli cells can lead to the generation of reactive oxygen species (ROS). (23) The level of ROS was also monitored using the DCFH-DA probe, and we found that dTAT1 resulted in a lower ROS level (Figure 5E). These suggested that the new dTAT1 was less toxic to E. coli cells.
同时,生物体中的 DNA 聚合酶与市售的 DNA 聚合酶不同,因此还需要在体内进行复制和转录实验。(31,47) 应考虑这些核苷酸对生理学的影响,以使用非天然核苷酸构建更健康的细胞系统。(48) 为了评估体内复制,合成了先前报道的含有 dNaM 的 D6,每侧两侧有三个随机的天然核苷酸。(16) 在 dNaM/dTPT3 存在下,使用 OneTaq 聚合酶通过 PCR 扩增模板,然后插入质粒 pBLUE-T 中。还合成了表达质粒的 PtNTT2 以转运三磷酸盐。然后,将两个质粒一起转化到大肠杆菌 BL 21 (DE3) 中。显示了工作流程(图 5A)。转化后,将大肠杆菌 BL 21 (DE3) 与 125 μM 浓度的 dNaM/dTPT3 或 dNaM/dTAT1 在 37 °C 下孵育 17 小时。最后,以大肠杆菌细胞为模板,通过 PCR 计算保留率。结果发现 dNaM-dTAT1 和 dNaM-dTPT3 在体内的保留分别为 51.4 ± 1.8 和 53.3 ± 4.4%。两个碱基对的保留率没有差异(图 5B 和图 S10)。体内复制的保留率低于之前报道的 (17),这可能是由于采用了随机序列库。众所周知,UBP 保留率与序列上下文相关,某些序列上下文显示高保留率,而另一些则较低或没有保留率。(48,49) 带有随机序列的质粒将显示综合保留。此外,E 的生长还通过测量 OD600 分析了大肠杆菌细胞,我们发现与 dNaM/dTAT1 一起孵育的大肠杆菌细胞显示出更强劲的生长(图 5C)。dTAT1 或 dTPT3 也与大肠杆菌细胞单独孵育。此外,大肠杆菌细胞的生长也显示出相同的趋势(图 5D)。据报道,与大肠杆菌细胞一起孵育的 UBP 可导致活性氧 (ROS) 的产生。(23) 还使用 DCFH-DA 探针监测 ROS 水平,我们发现 dTAT1 导致 ROS 水平降低(图 5E)。这些表明新的 dTAT1 对大肠杆菌细胞的毒性较小。

Figure 5 图 5

Figure 5. Intracellular UBP replication and physiology of the E. coli cells after incubation for 17 h. (A) Overview of plasmid construction and transforming. X: dNaM; Y: dTPT3; or dTAT1. Color indicates overlapped sequences. The plasmids containing UBPs or PtNTT2 were transformed into E. coli BL 21 (DE3) together. (B) Retention of the UBPs. (C) Growth of E. coli cells cultured with UBPs. (D) Growth of E. coli cells cultured with dTPT3 or dTAT1. (E) ROS content of E. coli cells cultured with dTPT3 or dTAT1. Data represents the mean ± S.D. (n = 3), Student’s t test, **p < 0.01.
图 5.孵育 17 小时后大肠杆菌细胞的细胞内 UBP 复制和生理学。(A) 质粒构建和转化概述。X: dNaM;Y: dTPT3;或 dTAT1 的 dTAT1 中。Color 表示重叠的序列。将含有 UBPs 或 PtNTT2 的质粒一起转化到大肠杆菌 BL 21 (DE3) 中。(B) 保留 UBP。(C) 用 UBP 培养的大肠杆菌细胞的生长。(D) 用 dTPT3 或 dTAT1 培养的大肠杆菌细胞的生长。(E) 用 dTPT3 或 dTAT1 培养的大肠杆菌细胞的 ROS 含量。数据表示 ± S.D. (n = 3)、学生 t 检验、**p < 0.01 的平均值。

Conclusions 结论

Click to copy section link
单击以复制部分链接
Section link copied!

In summary, we have designed and synthesized a panel of TPT3 analogues with the basic structural skeletons of TPT3 but modified thiophene rings at variant sites to improve the photostability of unnatural base pairs. A new comprehensive synthesis-screening strategy, including photosensitivity tests, kinetic experiments, and replication in vitro by PCR and in vivo by amplification, was implemented. A new pair, dNaM-dTAT1, which had almost equally high efficiency and fidelity with the dNaM-dTPT3 pair itself both in vivo and in vitro, was proven to be more photostable and thermostable and less toxic to E. coli cells. We previously have shown that the ribonucleotide homolog of TAT1 also performed excellently in transcription and translation. (10) The discovery of dTAT1TP represents our first progress for the optimization of TPT3-type bases toward more photostable properties; our data also suggest that less photosensitive unnatural base pairs will be beneficial to build a healthier cellular replication system.
总之,我们设计并合成了一组具有 TPT3 基本结构骨架的 TPT3 类似物,但在变体位点修饰了噻吩环,以提高非天然碱基对的光稳定性。实施了一种新的综合合成筛选策略,包括光敏性测试、动力学实验以及通过 PCR 在体外和通过扩增在体内复制。一种新的 dNaM-dTAT1 对在体内和体外都与 dNaM-dTPT3 对本身具有几乎相同的效率和保真度,被证明具有更高的光稳定性和热稳定性,并且对大肠杆菌细胞的毒性更小。我们之前已经表明,TAT1 的核糖核苷酸同源物在转录和翻译中也表现出色。(10) dTAT1TP 的发现代表了我们在优化 TPT3 型碱基以获得更多光稳定性方面的首次进展;我们的数据还表明,光敏感度较低的非天然碱基对将有利于构建更健康的细胞复制系统。

Methods 方法

Click to copy section link
单击以复制部分链接
Section link copied!

Materials and Analytic Methods
材料和分析方法

Taq, Klenow fragment DNA polymerase I, and OneTaq NDA polymerases were purchased for New England Biolabs (Ipswich, MA). Hieff Taq DNA Polymerases were purchased from Sangon Biotech. dNTPs were purchased from Solarbio. The 134 bp single-stranded DNAs containing dNaM were purchased from GenScript, (16) and other oligonucleotides were purchased from Sangon Biotech. pBLUE-T Fast Cloning Kits and BL 21 (DE3) Electrocompetent cells were purchased from Zoman Biotechnology Co., Ltd. dNaMTP and dTPT3TP were synthesized as reported. (16,50) HRMS of all compounds was performed on a Bruker compact Ultra-high-resolution electro-spray time-of-flight mass spectrometer. MS of nucleoside triphosphates was performed on a Bruker Autoflex speed MALDLTOF/TOF spectrometer. NMR spectra were performed on a Bruker AVANCE III HD (600 MHz) or AVANCE NanoBay (400 MHz).
Taq、Klenow 片段 DNA 聚合酶 I 和 OneTaq NDA 聚合酶购自 New England Biolabs(马萨诸塞州伊普斯威奇)。Hieff Taq DNA 聚合酶购自 Sangon Biotech。dNTP 购自 Solarbio。含有 dNaM 的 134 bp 单链 DNA 购自金斯瑞 (16),其他寡核苷酸购自桑贡生物科技。pBLUE-T 快速克隆试剂盒和 BL 21 (DE3) 电感受态细胞购自 Zoman Biotechnology Co., Ltd.。dNaMTP 和 dTPT3TP 的合成如报道所述。(16,50) 所有化合物的 HRMS 均在 Bruker 紧凑型超高分辨率电喷雾飞行时间质谱仪上进行。在 Bruker Autoflex speed MALDLTOF/TOF 光谱仪上对核苷三磷酸进行 MS。核磁共振波谱在布鲁克 AVANCE III HD (600 MHz) 或 AVANCE NanoBay (400 MHz) 上进行。

Photostability Assay 光稳定性测定

The absorption spectra of TPT3-type unnatural nucleosides were scanned from 200 to 900 nm using an ultraviolet spectrophotometer (TU-1900, PERSIE). Each nucleoside was dissolved in aqueous phosphate-buffered saline (pH 7.4) to obtain 0.1 M solutions. Then, equal solutions in small PE pipes (volume of sample: 200 μL) were exposed to lights with different wavelength ranges for 0.25, 0.5, 0.75, 1, and 1.25 h. LED lamps emitting near-visible (350–410 nm), red (605–740 nm), green (500–560 nm), blue (450–480 nm), or purple light (400–435 nm) were used (10 W, XINCHUANG Electronic Technology Co., Ltd). After irradiation, the samples were quantified by high-performance liquid chromatography (HPLC, UltiMate 3000, Thermo Fisher) using a C18 reverse-phase. Samples were subjected to a linear gradient of 0–30% B over 40 min at a flow rate of 1 mL/min. Buffer A: 0.1 M TEAB, pH 7.3; buffer B: acetonitrile. For TPT3 and TAT1, absorption at 365 nm was monitored; for TPT4, absorption at 346 nm was monitored; and for d4TFP, absorption at 327 nm was monitored. The data are averages and standard deviations of three independent determinations.
使用紫外分光光度计 (TU-1900, PERSIE) 从 200 到 900 nm 扫描 TPT3 型非天然核苷的吸收光谱。将每种核苷溶于磷酸盐缓冲盐水 (pH 7.4) 中,得到 0.1 M 溶液。然后,将小 PE 管(样品体积:200 μL)中的等溶液暴露在不同波长范围的光下 0.25、0.5、0.75、1 和 1.25 h。使用发射近可见光 (350–410 nm)、红光 (605–740 nm)、绿光 (500–560 nm)、蓝光 (450–480 nm) 或紫光 (400–435 nm) 的 LED 灯 (10 W, 鑫创电子科技有限公司)。照射后,使用 C18 反相通过高效液相色谱(HPLC、UltiMate 3000、Thermo Fisher)对样品进行定量。样品以 1 mL/min 的流速在 40 分钟内以 0–30% B 的线性梯度进行实验。缓冲液 A:0.1 M TEAB,pH 7.3;缓冲液 B:乙腈。对于 TPT3 和 TAT1,监测 365 nm 处的吸收;对于 TPT4,监测 346 nm 处的吸收;对于 d4TFP,监测 327 nm 处的吸收。数据是三个独立测定的平均值和标准差。

Gel-Based Incorporation/Extension Assay
基于凝胶的掺入/延伸检测

Templates and HEX-labeled primers (Sangon Biotech) were annealed by heating to 95 °C and then slowly cooled to room temperature (Sequence Context II in Seo, et al. (50)). Reactions were initiated by adding 2 × dYTP or 2 × dYTP and dCTP solution (5 μL) to a 5 μL solution containing 0.3 μM primer/template and 0.44 μM Klenow fragment DNA polymerase I (Kf, NEB). All solutions were in Kf buffer (50 mM NaCl, 10 mM Tris–HCl, 10 mM MgCl2, 1 mM DTT, pH 7.9). For the incorporation assay, 12.5 μM dYTP was added. For the extension assay, 12.5 μM dYTP and dCTP were added. Reactions were incubated at 25 °C for 10 s and quenched with 20 μL loading dye (90% formamide, 30 mM EDTA, and sufficient amounts of bromophenol blue and xylene cyanol). Finally, the full length was obtained by adding 6.25 μM dYTP and 12.5 μM four natural bases. Reactions were incubated at 25 °C for 15 min and then quenched with 20 μL of loading dye. The reaction mix was analyzed by 8 M urea 15% denaturing polyacrylamide gel electrophoresis, and fluorescence intensities were quantified by fluorescence imaging (Amersham Imager 680, AI600 software). The data are averages and standard deviations of three independent determinations.
模板和 HEX 标记的引物 (Sangon Biotech) 通过加热至 95 °C 进行退火,然后缓慢冷却至室温(Seo 等人的序列上下文 II。(50)). 将 2 × dYTP 或 2 × dYTP 和 dCTP 溶液 (5 μL) 加入到含有 0.3 μM 引物/模板和 0.44 μM Klenow 片段 DNA 聚合酶 I (Kf, NEB) 的 5 μL 溶液中,引发反应。所有溶液均溶于 Kf 缓冲液(50 mM NaCl、10 mM Tris-HCl、10 mM MgCl2、1 mM DTT,pH 7.9)中。对于掺入测定,添加了 12.5 μM dYTP。对于延伸测定,加入 12.5 μM dYTP 和 dCTP。将反应物在 25 °C 下孵育 10 秒,并用 20 μL 上样染料(90% 甲酰胺、30 mM EDTA 和足量的溴酚蓝和二甲苯蓝)淬灭。最后,通过添加 6.25 μM dYTP 和 12.5 μM 四种天然碱基获得全长。将反应物在 25 °C 下孵育 15 分钟,然后用 20 μL 上样染料淬灭。通过 8 M 尿素 15% 变性聚丙烯酰胺凝胶电泳分析反应混合物,并通过荧光成像 (Amersham Imager 680, AI600 软件) 定量荧光强度。数据是三个独立测定的平均值和标准差。

PCR assay PCR 检测

All PCRs were performed with different DNA polymerases in a volume of 25 μL under the following conditions: 1 × reaction buffer with DNA polymerases, 0.2 mM dNTP, 0.1 mM dNaMTP and dTPT3TP or its analogues, 0.04 ng of the 134-mer templates or 2 μL bacterial fluid, and 1 μM primers under the following thermal cycling conditions: initial denaturation (96 °C, 1 min) followed by 16, 20, 36 or 3 × 17 cycles of denaturation (96 °C, 10 s), annealing (60 °C, 15 s), and extension (68 °C, 1 min), and then another extension (68 °C, 5 min). The PCR products were detected by 2% agarose gel and sequenced by Sangon Biotech. The percent retention of an unnatural base pair (F) was calculated using the raw sequencing data, and the fidelities were determined as the average % retention (F) of the unnatural base pair per doubling as reported. (50,51) Due to the significant read-through in the F direction, only the other direction (R) was used to gauge PCR fidelity without correcting or removing the read-through, which would reduce the retention value but did not affect the comparison between dTPT3-dNaM and its analogues-dNaM. The data are averages and standard deviations of three independent determinations.
在以下条件下,使用 25 μL 体积的不同 DNA 聚合酶进行所有 PCR:在以下热循环条件下,使用 1 × 反应缓冲液,加入 DNA 聚合酶、0.2 mM dNTP、0.1 mM dNaMTP 和 dTPT3TP 或其类似物、0.04 ng 134 mer 模板或 2 μL 细菌液和 1 μM 引物: 初始变性(96°C,1分钟),然后是16、20、36或3×17个变性循环(96°C,10秒),退火(60°C,15秒)和延伸(68°C,1分钟),然后是另一个延伸(68°C,5分钟)。用 2% 琼脂糖凝胶检测 PCR 产物,并由 Sangon Biotech 测序。使用原始测序数据计算非天然碱基对的保留百分比 (F),并将保真度确定为报告的每次倍增非天然碱基对的平均保留百分比 (F)。(50,51) 由于 F 方向的显著通读,仅使用另一个方向 (R) 来测量 PCR 保真度,而没有校正或删除通读,这会降低保留值,但不会影响 dTPT3-dNaM 与其类似物-dNaM 之间的比较。数据是三个独立测定的平均值和标准差。

Computational Details 计算详细信息

The nucleotides were designed as free bases terminated by a methyl group in place of the sugar phosphate backbone. Their respective pairs were optimized within a DFT approach implemented in the Gaussian 09 package. The quantum chemical geometry and interaction energies were calculated at the B3LYP/6-31 + G(d) level of theory in the gas phase. (52,53) The electrostatic potential (ESP) maps described the electron density distribution; the red area represents the electron-rich area; and the green area represents the electron-deficient area.
核苷酸被设计为以甲基为末端的游离碱基,以代替磷酸糖骨架。它们各自的对在 Gaussian 09 包中实现的 DFT 方法中进行了优化。在气相中,量子化学几何和相互作用能在 B3LYP/6-31 + G(d) 理论水平上计算。(52,53) 静电势 (ESP) 图描述了电子密度分布;红色区域代表电子富集区域;绿色区域代表缺电子区域。

Growth and In Vivo Replication Assay
生长和体内复制检测

The plasmid-expressed PtNTT2 was synthesized according to the previous report (48) by GenScript. Also, the 134-mer template containing dNaM flanked on each side by three randomized natural nucleotides (D6 (16)) was amplified by PCR with OneTaq. A linear fragment was amplified from pBLUE-T. Then, the products were purified by the DNA gel Recovery Kit from TsingKe. The linear fragment and 134-mer template were combined and assembled by circular overlap extension PCR based on literature methods (2) under the following thermocycling conditions: [96 °C, 1 min | 20× (96 °C, 30 s| 60 °C, 15 s | 68 °C, 4 min) | 68 °C, 5 min]. The PCR product was analyzed by restriction digestion and used directly for E. coli transformation.
质粒表达的 PtNTT2 由金斯瑞根据之前的报告 (48) 合成。此外,使用 OneTaq 通过 PCR 扩增含有 dNaM 且两侧各有三个随机天然核苷酸 (D6 (16)) 的 134 聚体模板。从 pBLUE-T 扩增线性片段。然后,使用 Tsingke 的 DNA 凝胶回收试剂盒纯化产物。在以下热循环条件下,将线性片段和 134 聚体模板合并并通过基于文献方法 (2) 的环重叠延伸 PCR 进行组装:[96 °C,1 分钟 | 20×(96 °C,30 s| 60 °C,15 秒 | 68 °C,4 分钟)| 68 °C,5 分钟]。通过限制性酶切分析 PCR 产物,并直接用于大肠杆菌转化。
The two plasmids were transformed to BL 21 (DE3) by electroporation (Gene Pulser II; Bio-Rad) according to the previous report (2) (voltage 25 kV, capacitor 2.5 μF, resistor 200 Ω, time constant 5 ms). The cells were then centrifuged at 2400 rpm for 10 min at 4 °C to remove the culture. Also, the cells were resuspended with 2 × YT media (100 μL 2 × YT media (casein peptone 16 g/L, yeast extract 10 g/L, NaCl 5 g/L), 25 μM chloramphenicol, 100 μg/mL ampicillin, 50 mM KPi) with 125 μM dTPT3 and dNaM and incubated at 37 °C for 40 min. Then, the cells were centrifuged at 2400 rpm for 10 min at 4 °C and resuspended with 2 × YT media (100 μL, 25 μM chloramphenicol, 100 μg/mL ampicillin, 50 mM KPi). Finally, 5 μL supernatant was added to the 2 × YT culture (100 μL, 25 μM chloramphenicol, 100 μg/mL ampicillin, 50 mM KPi) with 125 μM dNaM/dTPT3 or dNaM/dTAT1, incubating at 37 °C for 17 h. The growth of bacteria (OD600) was monitored by NanoDrop OneC and then used for the PCR assay.
通过电穿孔将两个质粒转化为 BL 21 (DE3) (Gene Pulser II;Bio-Rad)根据之前的报告 (2)(电压 25 kV,电容器 2.5 μF,电阻器 200 Ω,时间常数 5 ms)。然后将细胞在 4 °C 下以 2400 rpm 离心 10 分钟以去除培养物。此外,用 2 × YT 培养基(100 μL 2 × YT 培养基(酪蛋白蛋白胨 16 g/L、酵母提取物 10 g/L、NaCl 5 g/L)、25 μM 氯霉素、100 μg/mL 氨苄青霉素、50 mM KPi)和 125 μM dTPT3 和 dNaM 重悬细胞,并在 37 °C 下孵育 40 分钟。然后,将细胞在 4 °C 下以 2400 rpm 离心 10 分钟,并用 2 × YT 培养基(100 μL、25 μM 氯霉素、100 μg/mL 氨苄青霉素、50 mM KPi)重悬。最后,将 5 μL 上清液加入 2 × YT 培养物(100 μL、25 μM 氯霉素、100 μg/mL 氨苄青霉素、50 mM KPi)和 125 μM dNaM/dTPT3 或 dNaM/dTAT1 中,在 37 °C 下孵育 17 小时。通过 NanoDrop OneC 监测细菌 (OD600) 的生长,然后用于 PCR 测定。
The dTPT3 and dTAT1 were also incubated with BL 21 (DE3) alone for 17 h. The growth (OD600) was detected. Then, the level of reactive oxygen species (ROS) in the whole cultured system was monitored by the kit from Nanjing Jiancheng according to the manufacturer’s recommendation. The cells were incubated with DCFH-DA (2,7-dichlorodi-hydrofluorescein diacetate) at 37 °C for 30 min, and the level of ROS was detected by a multifunctional microplate reader (EnVision, PerkinElmer). The data are averages and standard deviations of three independent determinations.
dTPT3 和 dTAT1 也与 BL 21 (DE3) 单独孵育 17 小时。检测到生长 (OD600)。然后,根据制造商的建议,用南京建成的试剂盒监测整个培养系统中的活性氧 (ROS) 水平。将细胞与 DCFH-DA (2,7-二氯二氢荧光素二乙酸酯) 在 37 °C 下孵育 30 分钟,并通过多功能酶标仪 (EnVision, PerkinElmer) 检测 ROS 水平。数据是三个独立测定的平均值和标准差。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssynbio.1c00451.
支持信息可在 https://pubs.acs.org/doi/10.1021/acssynbio.1c00451 免费获取。

  • The Supporting Information is available free to charge on the ACS Publications website at XXX. Supporting methods, tables, and figures (PDF)
    支持信息可在 ACS Publications 网站 XXX 上免费获取。支持方法、表格和图表 (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统(http://pubs.acs.org/page/copyright/permissions.html)请求,从 ACS 获得用于其他用途的许可。

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Author 通讯作者
    • Lingjun Li - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, ChinaOrcidhttps://orcid.org/0000-0002-4722-3637 Email: lingjunlee@htu.edu.cn
      李玲军 - 河南师范大学 河南省有机功能分子与药物创新重点实验室, 河南省精细化工绿色制造协同创新中心, 河南省化学化工学院, 绿色化学介质与反应教育部重点实验室, 河南 453007 新乡; Orcid https://orcid.org/0000-0002-4722-3637 电子邮件:lingjunlee@htu.edu.cn
  • Authors 作者
    • Honglei Wang - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
      王洪磊 - 河南师范大学化学化工学院,河南省精细化工绿色制造协同创新中心,河南省有机功能分子与药物创新河南省重点实验室,河南省绿色化工介质与反应教育部重点实验室,河南453007新乡
    • Luying Wang - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
      王鲁英 - 河南师范大学化学化工学院,河南省精细化工绿色制造协同创新中心,河南省有机功能分子与药物创新重点实验室,河南省绿色化工介质与反应教育部重点实验室,河南453007新乡
    • Nana Ma - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, ChinaOrcidhttps://orcid.org/0000-0003-3225-9554
      马河南师范大学 河南省有机功能分子与药物创新重点实验室, 河南省精细化工绿色制造协同创新中心, 河南师范大学化学化工学院, 绿色化学介质与反应教育部重点实验室, 河南师范大学, 河南省 新乡, 河南 453007; Orcid https://orcid.org/0000-0003-3225-9554
    • Wuyuan Zhu - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
      朱武源 - 河南师范大学 河南省有机功能分子与药物创新重点实验室, 河南省精细化工绿色制造协同创新中心, 河南省化学化工学院, 绿色化学介质与反应教育部重点实验室, 河南 453007 新乡
    • Bianbian Huo - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
      霍边扁 - 河南师范大学 河南省有机功能分子与药物创新重点实验室, 河南省精细化学品绿色制造协同创新中心, 河南省化学化工学院, 绿色化学介质与反应教育部重点实验室, 河南 453007 新乡
    • Anlian Zhu - Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
  • Author Contributions

    H.W., L.W., and N.M. contributed equally to this work.

    Author Contributions

    H.W. and L.L. conceived the projects and designed the experiments. L.W., N.M., W.Z., B.H., and A.Z. performed the experiments. All authors contributed to the data analysis and manuscript preparation.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was funded by the National Natural Science Foundation of China (22077027, 21778015 to L.L.), Central Plains Science and Technology Innovation Leader Project (214200510008 to L.L.), Doctoral Initiation Fund (31901014, qd18008 to H.W., 5101039470644 to B.H.), and 21IRTSTHN001.

References

Click to copy section linkSection link copied!

This article references 53 other publications.

  1. 1
    Piccirilli, J. A.; Benner, S. A.; Krauch, T.; Moroney, S. E. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990, 343, 3337,  DOI: 10.1038/343033a0
  2. 2
    Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Corrêa, I. R.; Romesberg, F. E. A semi-synthetic organism with an expanded genetic alphabet. Nature 2014, 509, 385388,  DOI: 10.1038/nature13314
  3. 3
    Kimoto, M.; Hirao, I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem. Soc. Rev. 2020, 49, 76027626,  DOI: 10.1039/D0CS00457J
  4. 4
    Ledbetter, M. P.; Malyshev, D. A.; Romesberg, F. E. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet. Methods Mol. Biol. 2019, 1973, 193212,  DOI: 10.1007/978-1-4939-9216-4_13
  5. 5
    Kimoto, M.; Mitsui, T.; Harada, Y.; Sato, A.; Yokoyama, S.; Hirao, I. Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res. 2007, 35, 53605369,  DOI: 10.1093/nar/gkm508
  6. 6
    Kimoto, M.; Matsunaga, K. I.; Hirao, I. Evolving Aptamers with Unnatural Base Pairs. Curr. Protoc. Chem. Biol. 2017, 9, 315339,  DOI: 10.1002/cpch.31
  7. 7
    Hoshika, S.; Leal, N. A.; Kim, M.-J.; Kim, M.-S.; Karalkar, N. B.; Kim, H.-J.; Bates, A. M.; Watkins, N. E., Jr.; SantaLucia, H. A.; Meyer, A. J.; DasGupta, S.; Piccirilli, J. A.; Ellington, A. D.; SantaLucia, J., Jr.; Georgiadis, M. M.; Benner, S. A. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 2019, 363, 884887,  DOI: 10.1126/science.aat0971
  8. 8
    Kimoto, M.; Yamashige, R.; Matsunaga, K.; Yokoyama, S.; Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013, 31, 453457,  DOI: 10.1038/nbt.2556
  9. 9
    Manandhar, M.; Chun, E.; Romesberg, F. E. Genetic code expansion: inception, development, commercialization. J. Am. Chem. Soc. 2021, 143, 48594878,  DOI: 10.1021/jacs.0c11938
  10. 10
    Feldman, A. W.; Dien, V. T.; Karadeema, R. J.; Fischer, E. C.; You, Y.; Anderson, B. A.; Krishnamurthy, R.; Chen, J. S.; Li, L.; Romesberg, F. E. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J. Am. Chem. Soc. 2019, 141, 1064410653,  DOI: 10.1021/jacs.9b02075
  11. 11
    Zhou, A. X.-Z.; Sheng, K.; Feldman, A. W.; Romesberg, F. E. Progress toward Eukaryotic Semisynthetic Organisms: Translation of Unnatural Codons. J. Am. Chem. Soc. 2019, 141, 2016620170,  DOI: 10.1021/jacs.9b09080
  12. 12
    Fischer, E. C.; Hashimoto, K.; Zhang, Y.; Feldman, A. W.; Dien, V. T.; Karadeema, R. J.; Adhikary, R.; Ledbetter, M. P.; Krishnamurthy, R.; Romesberg, F. E. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 2020, 16, 570576,  DOI: 10.1038/s41589-020-0507-z
  13. 13
    Hamashima, K.; Kimoto, M.; Hirao, I. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Curr. Opin. Chem. Biol. 2018, 46, 108114,  DOI: 10.1016/j.cbpa.2018.07.017
  14. 14
    Saito-Tarashima, N.; Minakawa, N. Unnatural Base Pairs for Synthetic Biology. Chem. Pharm. Bull. 2018, 66, 132138,  DOI: 10.1248/cpb.c17-00685
  15. 15
    Marx, A.; Betz, K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chem. – Eur. J. 2020, 26, 34463463,  DOI: 10.1002/chem.201903525
  16. 16
    Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J. Am. Chem. Soc. 2014, 136, 826829,  DOI: 10.1021/ja408814g
  17. 17
    Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; San Jose, K.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 2017, 551, 644647,  DOI: 10.1038/nature24659
  18. 18
    Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 2009, 37, e14  DOI: 10.1093/nar/gkn956
  19. 19
    Yang, Z.; Sismour, A. M.; Sheng, P.; Puskar, N. L.; Benner, S. A. Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res. 2007, 35, 42384249,  DOI: 10.1093/nar/gkm395
  20. 20
    Yang, Z.; Chen, F.; Alvarado, J. B.; Benner, S. A. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 2011, 133, 1510515112,  DOI: 10.1021/ja204910n
  21. 21
    Ashwood, B.; Pollum, M.; Crespo-Hernández, C. E. Can a Six-Letter Alphabet Increase the Likelihood of Photochemical Assault to the Genetic Code?. Chem. – Eur. J. 2016, 22, 1664816656,  DOI: 10.1002/chem.201602160
  22. 22
    Bhattacharyya, K.; Datta, A. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM. Chem. – Eur. J. 2017, 23, 1149411498,  DOI: 10.1002/chem.201702583
  23. 23
    Pollum, M.; Ashwood, B.; Jockusch, S.; Lam, M.; Crespo-Hernández, C. E. Unintended Consequences of Expanding the Genetic Alphabet. J. Am. Chem. Soc. 2016, 138, 1145711460,  DOI: 10.1021/jacs.6b06822
  24. 24
    Feldmann, A. W.; Romesberg, F. E. Expansion of the genetic alphabet: A Chemist’s approach to synthetic biology. Acc. Chem. Res. 2018, 51, 394403,  DOI: 10.1021/acs.accounts.7b00403
  25. 25
    Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. Chem. – Eur. J. 2012, 18, 12311239,  DOI: 10.1002/chem.201102066
  26. 26
    Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res. 2014, 42, 1023510244,  DOI: 10.1093/nar/gku715
  27. 27
    Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair. J. Am. Chem. Soc. 2013, 135, 54085419,  DOI: 10.1021/ja312148q
  28. 28
    Pollum, M.; Crespo-Hernández, C. E. Communication: the dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J. Chem. Phys. 2014, 140, 071101  DOI: 10.1063/1.4866447
  29. 29
    Pollum, M.; Jockusch, S.; Crespo-Hernández, C. E. 2,4-Dithiothymine as a potent UVA chemotherapeutic agent. J. Am. Chem. Soc. 2014, 136, 1793017933,  DOI: 10.1021/ja510611j
  30. 30
    Pollum, M.; Jockusch, S.; Crespo-Hernández, C. E. Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys. Chem. Chem. Phys. 2015, 17, 2785127861,  DOI: 10.1039/C5CP04822B
  31. 31
    Dien, V. T.; Holcomb, M.; Feldman, A. W.; Fischer, E. C.; Dwyer, T. J.; Romesberg, F. E. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. J. Am. Chem. Soc. 2018, 140, 1611516123,  DOI: 10.1021/jacs.8b08416
  32. 32
    Jahiruddin, S.; Mandal, N.; Datta, A. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions. ChemPhysChem 2018, 19, 6774,  DOI: 10.1002/cphc.201700997
  33. 33
    Negi, I.; Kathuria, P.; Sharma, P.; Wetmore, S. D. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations. Phys. Chem. Chem. Phys. 2017, 19, 1636516374,  DOI: 10.1039/C7CP02576A
  34. 34
    Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc. 2008, 130, 23362343,  DOI: 10.1021/ja078223d
  35. 35
    Henry, A. A.; Yu, C.; Romesberg, F. E. Determinants of unnatural nucleobase stability and polymerase recognition. J. Am. Chem. Soc. 2003, 125, 96389646,  DOI: 10.1021/ja035398o
  36. 36
    New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F., Jr.; VanderMaelen, C. P.; Cipollina, J. A. The thieno[3,2-c]pyridine and furo[3,2-c]pyridine rings: new pharmacophores with potential antipsychotic activity. J. Med. Chem. 1989, 32, 11471156,  DOI: 10.1021/jm00126a002
  37. 37
    Asagarasu, A.; Matsui, T.; Hayashi, H.; Tamaoki, S.; Yamauchi, Y.; Sato, M. Design and Synthesis of Piperazinylpyridine Derivatives as Novel 5-HT1A Agonists/5-HT3 Antagonists for the Treatment of Irritable Bowel Syndrome (IBS). Chem. Pharm. Bull. 2009, 57, 3442,  DOI: 10.1248/cpb.57.34
  38. 38
    Gueymard, C. A.; Myers, D.; Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Solar Energy. 2002, 73, 443467,  DOI: 10.1016/S0038-092X(03)00005-7
  39. 39
    Morris, S. E.; Feldman, A. W.; Romesberg, F. E. Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells. ACS Synth. Biol. 2017, 6, 18341840,  DOI: 10.1021/acssynbio.7b00115
  40. 40
    Ouaray, Z.; Benner, S. A.; Georgiadis, M. M.; Richards, N. G. J. Building better polymerases: Engineering the replication of expanded genetic alphabets. J. Biol. Chem. 2020, 295, 1704617059,  DOI: 10.1074/jbc.REV120.013745
  41. 41
    Percze, K.; Meszaros, T. Analysis of Modified Nucleotide Aptamer Library Generated by Thermophilic DNA Polymerases. ChemBioChem 2020, 21, 29392944,  DOI: 10.1002/cbic.202000236
  42. 42
    Hwang, G. T.; Romesberg, F. E. Unnatural substrate repertoire of A, B, and X family DNA polymerases. J. Am. Chem. Soc. 2008, 130, 1487214882,  DOI: 10.1021/ja803833h
  43. 43
    Jahiruddin, S.; Datta, A. What sustains the unnatural base pairs (UBPs) with no hydrogen bonds. J. Phys. Chem. B. 2015, 119, 58395845,  DOI: 10.1021/acs.jpcb.5b03293
  44. 44
    Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat. Chem. Biol. 2012, 8, 612614,  DOI: 10.1038/nchembio.966
  45. 45
    Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. Structural insights into DNA replication without hydrogen bonds. J. Am. Chem. Soc. 2013, 135, 1863718643,  DOI: 10.1021/ja409609j
  46. 46
    Hirao, I.; Mitsui, T.; Kimoto, M.; Yokoyama, S. An efficient unnatural base pair for PCR amplification. J. Am. Chem. Soc. 2007, 129, 1554915555,  DOI: 10.1021/ja073830m
  47. 47
    Hashimoto, K.; Fischer, E. C.; Romesberg, F. E. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. J. Am. Chem. Soc. 2021, 143, 86038607,  DOI: 10.1021/jacs.1c03860
  48. 48
    Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13171322,  DOI: 10.1073/pnas.1616443114
  49. 49
    Feldman, A. W.; Romesberg, F. E. In vivo structure-activity relationships and optimization of an unnatural base pair for replication in a semi-synthetic organism. J. Am. Chem. Soc. 2017, 139, 1142711433,  DOI: 10.1021/jacs.7b03540
  50. 50
    Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. Optimization of an unnatural base pair toward natural-like replication. J. Am. Chem. Soc. 2009, 131, 32463252,  DOI: 10.1021/ja807853m
  51. 51
    Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 1200512010,  DOI: 10.1073/pnas.1205176109
  52. 52
    Sharma, P.; Manderville, R. A.; Wetmore, S. D. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity. Mutagenic. The Significance of Internal Communication in the Management of Successful Change. Nucleic Acids Res. 2014, 42, 1183111845,  DOI: 10.1093/nar/gku821
  53. 53
    Flamme, M.; Röthlisberger, P.; Levi-Acobas, F.; Chawla, M.; Oliva, R.; Cavallo, L.; Gasser, G.; Marlière, P.; Herdewijn, P.; Hollenstein, M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem. Biol. 2020, 15, 28722884,  DOI: 10.1021/acschembio.0c00396

Cited By

Click to copy section linkSection link copied!
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning7
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 3 publications.

  1. Floyd E. Romesberg. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philosophical Transactions of the Royal Society B: Biological Sciences 2023, 378 (1871) https://doi.org/10.1098/rstb.2022.0030
  2. Marcel Hollenstein. Enzymatic Synthesis of Base-Modified Nucleic Acids. 2023, 1-39. https://doi.org/10.1007/978-981-16-1313-5_23-1
  3. William Whitaker, Katya E. Moncrieff, Cate S. Anstöter, Natalie G. K. Wong, Jacob A. Berenbeim, Caroline E. H. Dessent. Probing the electronic relaxation pathways and photostability of the synthetic nucleobase Z via laser interfaced mass spectrometry. Physical Chemistry Chemical Physics 2022, 24 (45) , 27836-27846. https://doi.org/10.1039/D2CP03831E
Open PDF

ACS Synthetic Biology

Cite this: ACS Synth. Biol. 2022, 11, 1, 334–342
Click to copy citationCitation copied!
https://doi.org/10.1021/acssynbio.1c00451
Published December 10, 2021
Copyright © 2021 American Chemical Society

Article Views

893

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (A) Design and structures of TPT3-type unnatural base nucleosides. (B) UV–vis spectra of the synthesized TPT3-type unnatural base nucleosides.

    Figure 2

    Figure 2. Photostability of dTPT3 and its analogues. (A) Photostability of dTPT3; (B) photostability of dTPT4; (C) photostability of dTAT1; (D) photostability of d4TFP.

    Figure 3

    Figure 3. Kinetics analysis and sequencing analysis of the PCR products. (A) Kf-mediated primer extension and sequences used in this study; (B) representative gel for the incorporation assay; (C) representative gel for the extension assay. (D) Sequencing analysis of the PCR products after 36 cycles by OneTaq polymerase.

    Figure 4

    Figure 4. Optimized base pairs between dNaM and dTPT3 as well as its analogues (left). Optimal distances in the gas phase of the key atoms and C1′–C1′ distances. Oxygen, sulfur, and nitrogen are colored red, yellow, and blue, respectively. The electrostatic potential (ESP) maps (right) describe the electron density distribution; the red area represents the electron-rich area; and the green area represents the electron-deficient area.

    Figure 5

    Figure 5. Intracellular UBP replication and physiology of the E. coli cells after incubation for 17 h. (A) Overview of plasmid construction and transforming. X: dNaM; Y: dTPT3; or dTAT1. Color indicates overlapped sequences. The plasmids containing UBPs or PtNTT2 were transformed into E. coli BL 21 (DE3) together. (B) Retention of the UBPs. (C) Growth of E. coli cells cultured with UBPs. (D) Growth of E. coli cells cultured with dTPT3 or dTAT1. (E) ROS content of E. coli cells cultured with dTPT3 or dTAT1. Data represents the mean ± S.D. (n = 3), Student’s t test, **p < 0.01.

  • References


    This article references 53 other publications.

    1. 1
      Piccirilli, J. A.; Benner, S. A.; Krauch, T.; Moroney, S. E. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990, 343, 3337,  DOI: 10.1038/343033a0
    2. 2
      Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Corrêa, I. R.; Romesberg, F. E. A semi-synthetic organism with an expanded genetic alphabet. Nature 2014, 509, 385388,  DOI: 10.1038/nature13314
    3. 3
      Kimoto, M.; Hirao, I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem. Soc. Rev. 2020, 49, 76027626,  DOI: 10.1039/D0CS00457J
    4. 4
      Ledbetter, M. P.; Malyshev, D. A.; Romesberg, F. E. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet. Methods Mol. Biol. 2019, 1973, 193212,  DOI: 10.1007/978-1-4939-9216-4_13
    5. 5
      Kimoto, M.; Mitsui, T.; Harada, Y.; Sato, A.; Yokoyama, S.; Hirao, I. Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res. 2007, 35, 53605369,  DOI: 10.1093/nar/gkm508
    6. 6
      Kimoto, M.; Matsunaga, K. I.; Hirao, I. Evolving Aptamers with Unnatural Base Pairs. Curr. Protoc. Chem. Biol. 2017, 9, 315339,  DOI: 10.1002/cpch.31
    7. 7
      Hoshika, S.; Leal, N. A.; Kim, M.-J.; Kim, M.-S.; Karalkar, N. B.; Kim, H.-J.; Bates, A. M.; Watkins, N. E., Jr.; SantaLucia, H. A.; Meyer, A. J.; DasGupta, S.; Piccirilli, J. A.; Ellington, A. D.; SantaLucia, J., Jr.; Georgiadis, M. M.; Benner, S. A. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 2019, 363, 884887,  DOI: 10.1126/science.aat0971
    8. 8
      Kimoto, M.; Yamashige, R.; Matsunaga, K.; Yokoyama, S.; Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013, 31, 453457,  DOI: 10.1038/nbt.2556
    9. 9
      Manandhar, M.; Chun, E.; Romesberg, F. E. Genetic code expansion: inception, development, commercialization. J. Am. Chem. Soc. 2021, 143, 48594878,  DOI: 10.1021/jacs.0c11938
    10. 10
      Feldman, A. W.; Dien, V. T.; Karadeema, R. J.; Fischer, E. C.; You, Y.; Anderson, B. A.; Krishnamurthy, R.; Chen, J. S.; Li, L.; Romesberg, F. E. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J. Am. Chem. Soc. 2019, 141, 1064410653,  DOI: 10.1021/jacs.9b02075
    11. 11
      Zhou, A. X.-Z.; Sheng, K.; Feldman, A. W.; Romesberg, F. E. Progress toward Eukaryotic Semisynthetic Organisms: Translation of Unnatural Codons. J. Am. Chem. Soc. 2019, 141, 2016620170,  DOI: 10.1021/jacs.9b09080
    12. 12
      Fischer, E. C.; Hashimoto, K.; Zhang, Y.; Feldman, A. W.; Dien, V. T.; Karadeema, R. J.; Adhikary, R.; Ledbetter, M. P.; Krishnamurthy, R.; Romesberg, F. E. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 2020, 16, 570576,  DOI: 10.1038/s41589-020-0507-z
    13. 13
      Hamashima, K.; Kimoto, M.; Hirao, I. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Curr. Opin. Chem. Biol. 2018, 46, 108114,  DOI: 10.1016/j.cbpa.2018.07.017
    14. 14
      Saito-Tarashima, N.; Minakawa, N. Unnatural Base Pairs for Synthetic Biology. Chem. Pharm. Bull. 2018, 66, 132138,  DOI: 10.1248/cpb.c17-00685
    15. 15
      Marx, A.; Betz, K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chem. – Eur. J. 2020, 26, 34463463,  DOI: 10.1002/chem.201903525
    16. 16
      Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J. Am. Chem. Soc. 2014, 136, 826829,  DOI: 10.1021/ja408814g
    17. 17
      Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; San Jose, K.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 2017, 551, 644647,  DOI: 10.1038/nature24659
    18. 18
      Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 2009, 37, e14  DOI: 10.1093/nar/gkn956
    19. 19
      Yang, Z.; Sismour, A. M.; Sheng, P.; Puskar, N. L.; Benner, S. A. Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res. 2007, 35, 42384249,  DOI: 10.1093/nar/gkm395
    20. 20
      Yang, Z.; Chen, F.; Alvarado, J. B.; Benner, S. A. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 2011, 133, 1510515112,  DOI: 10.1021/ja204910n
    21. 21
      Ashwood, B.; Pollum, M.; Crespo-Hernández, C. E. Can a Six-Letter Alphabet Increase the Likelihood of Photochemical Assault to the Genetic Code?. Chem. – Eur. J. 2016, 22, 1664816656,  DOI: 10.1002/chem.201602160
    22. 22
      Bhattacharyya, K.; Datta, A. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM. Chem. – Eur. J. 2017, 23, 1149411498,  DOI: 10.1002/chem.201702583
    23. 23
      Pollum, M.; Ashwood, B.; Jockusch, S.; Lam, M.; Crespo-Hernández, C. E. Unintended Consequences of Expanding the Genetic Alphabet. J. Am. Chem. Soc. 2016, 138, 1145711460,  DOI: 10.1021/jacs.6b06822
    24. 24
      Feldmann, A. W.; Romesberg, F. E. Expansion of the genetic alphabet: A Chemist’s approach to synthetic biology. Acc. Chem. Res. 2018, 51, 394403,  DOI: 10.1021/acs.accounts.7b00403
    25. 25
      Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. Chem. – Eur. J. 2012, 18, 12311239,  DOI: 10.1002/chem.201102066
    26. 26
      Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res. 2014, 42, 1023510244,  DOI: 10.1093/nar/gku715
    27. 27
      Lavergne, T.; Degardin, M.; Malyshev, D. A.; Quach, H. T.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair. J. Am. Chem. Soc. 2013, 135, 54085419,  DOI: 10.1021/ja312148q
    28. 28
      Pollum, M.; Crespo-Hernández, C. E. Communication: the dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J. Chem. Phys. 2014, 140, 071101  DOI: 10.1063/1.4866447
    29. 29
      Pollum, M.; Jockusch, S.; Crespo-Hernández, C. E. 2,4-Dithiothymine as a potent UVA chemotherapeutic agent. J. Am. Chem. Soc. 2014, 136, 1793017933,  DOI: 10.1021/ja510611j
    30. 30
      Pollum, M.; Jockusch, S.; Crespo-Hernández, C. E. Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys. Chem. Chem. Phys. 2015, 17, 2785127861,  DOI: 10.1039/C5CP04822B
    31. 31
      Dien, V. T.; Holcomb, M.; Feldman, A. W.; Fischer, E. C.; Dwyer, T. J.; Romesberg, F. E. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. J. Am. Chem. Soc. 2018, 140, 1611516123,  DOI: 10.1021/jacs.8b08416
    32. 32
      Jahiruddin, S.; Mandal, N.; Datta, A. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions. ChemPhysChem 2018, 19, 6774,  DOI: 10.1002/cphc.201700997
    33. 33
      Negi, I.; Kathuria, P.; Sharma, P.; Wetmore, S. D. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations. Phys. Chem. Chem. Phys. 2017, 19, 1636516374,  DOI: 10.1039/C7CP02576A
    34. 34
      Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc. 2008, 130, 23362343,  DOI: 10.1021/ja078223d
    35. 35
      Henry, A. A.; Yu, C.; Romesberg, F. E. Determinants of unnatural nucleobase stability and polymerase recognition. J. Am. Chem. Soc. 2003, 125, 96389646,  DOI: 10.1021/ja035398o
    36. 36
      New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F., Jr.; VanderMaelen, C. P.; Cipollina, J. A. The thieno[3,2-c]pyridine and furo[3,2-c]pyridine rings: new pharmacophores with potential antipsychotic activity. J. Med. Chem. 1989, 32, 11471156,  DOI: 10.1021/jm00126a002
    37. 37
      Asagarasu, A.; Matsui, T.; Hayashi, H.; Tamaoki, S.; Yamauchi, Y.; Sato, M. Design and Synthesis of Piperazinylpyridine Derivatives as Novel 5-HT1A Agonists/5-HT3 Antagonists for the Treatment of Irritable Bowel Syndrome (IBS). Chem. Pharm. Bull. 2009, 57, 3442,  DOI: 10.1248/cpb.57.34
    38. 38
      Gueymard, C. A.; Myers, D.; Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Solar Energy. 2002, 73, 443467,  DOI: 10.1016/S0038-092X(03)00005-7
    39. 39
      Morris, S. E.; Feldman, A. W.; Romesberg, F. E. Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells. ACS Synth. Biol. 2017, 6, 18341840,  DOI: 10.1021/acssynbio.7b00115
    40. 40
      Ouaray, Z.; Benner, S. A.; Georgiadis, M. M.; Richards, N. G. J. Building better polymerases: Engineering the replication of expanded genetic alphabets. J. Biol. Chem. 2020, 295, 1704617059,  DOI: 10.1074/jbc.REV120.013745
    41. 41
      Percze, K.; Meszaros, T. Analysis of Modified Nucleotide Aptamer Library Generated by Thermophilic DNA Polymerases. ChemBioChem 2020, 21, 29392944,  DOI: 10.1002/cbic.202000236
    42. 42
      Hwang, G. T.; Romesberg, F. E. Unnatural substrate repertoire of A, B, and X family DNA polymerases. J. Am. Chem. Soc. 2008, 130, 1487214882,  DOI: 10.1021/ja803833h
    43. 43
      Jahiruddin, S.; Datta, A. What sustains the unnatural base pairs (UBPs) with no hydrogen bonds. J. Phys. Chem. B. 2015, 119, 58395845,  DOI: 10.1021/acs.jpcb.5b03293
    44. 44
      Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat. Chem. Biol. 2012, 8, 612614,  DOI: 10.1038/nchembio.966
    45. 45
      Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. Structural insights into DNA replication without hydrogen bonds. J. Am. Chem. Soc. 2013, 135, 1863718643,  DOI: 10.1021/ja409609j
    46. 46
      Hirao, I.; Mitsui, T.; Kimoto, M.; Yokoyama, S. An efficient unnatural base pair for PCR amplification. J. Am. Chem. Soc. 2007, 129, 1554915555,  DOI: 10.1021/ja073830m
    47. 47
      Hashimoto, K.; Fischer, E. C.; Romesberg, F. E. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. J. Am. Chem. Soc. 2021, 143, 86038607,  DOI: 10.1021/jacs.1c03860
    48. 48
      Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13171322,  DOI: 10.1073/pnas.1616443114
    49. 49
      Feldman, A. W.; Romesberg, F. E. In vivo structure-activity relationships and optimization of an unnatural base pair for replication in a semi-synthetic organism. J. Am. Chem. Soc. 2017, 139, 1142711433,  DOI: 10.1021/jacs.7b03540
    50. 50
      Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. Optimization of an unnatural base pair toward natural-like replication. J. Am. Chem. Soc. 2009, 131, 32463252,  DOI: 10.1021/ja807853m
    51. 51
      Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 1200512010,  DOI: 10.1073/pnas.1205176109
    52. 52
      Sharma, P.; Manderville, R. A.; Wetmore, S. D. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity. Mutagenic. The Significance of Internal Communication in the Management of Successful Change. Nucleic Acids Res. 2014, 42, 1183111845,  DOI: 10.1093/nar/gku821
    53. 53
      Flamme, M.; Röthlisberger, P.; Levi-Acobas, F.; Chawla, M.; Oliva, R.; Cavallo, L.; Gasser, G.; Marlière, P.; Herdewijn, P.; Hollenstein, M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem. Biol. 2020, 15, 28722884,  DOI: 10.1021/acschembio.0c00396
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssynbio.1c00451.

    • The Supporting Information is available free to charge on the ACS Publications website at XXX. Supporting methods, tables, and figures (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.