Li et al. profile the full time courses of mouse kidney fibrogenesis using singlecell combinatorial indexing RNA sequencing. They describe diverse injury states of proximal tubular cells, including one cell state with enhanced lipid metabolism at an early phase of ischemia-induced injury. This single-cell atlas defines kidney epithelial injury responses in fibrosis. Li等人利用单细胞组合索引RNA测序技术描绘了小鼠肾脏纤维化的全过程。他们描述了近端肾小管细胞的多种损伤状态,包括缺血诱导损伤早期脂质代谢增强的一种细胞状态。该单细胞图谱定义了纤维化过程中肾脏上皮细胞的损伤反应。
Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis 全面的单细胞转录谱分析确定了肾脏纤维化过程中共同和独特的上皮损伤反应
Haikuo Li, ^(1){ }^{1} Eryn E. Dixon, ^(1){ }^{1} Haojia Wu, ^(1){ }^{1} and Benjamin D. Humphreys ^(1,2,3,^(**)){ }^{1,2,3,{ }^{*}} Haikuo Li、 ^(1){ }^{1} Eryn E. Dixon、 ^(1){ }^{1} Haojia Wu、 ^(1){ }^{1} and Benjamin D. Humphreys ^(1,2,3,^(**)){ }^{1,2,3,{ }^{*}}^(1){ }^{1} Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA ^(1){ }^{1} 美国密苏里州圣路易斯市华盛顿大学医学系肾脏病科^(2){ }^{2} Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA ^(2){ }^{2} 美国密苏里州圣路易斯市华盛顿大学发育生物学系^(3){ }^{3} Lead contact ^(3){ }^{3} 牵头联络人*Correspondence: humphreysbd@wustl.edu *通信:humphreysbd@wustl.eduhttps://doi.org/10.1016/j.cmet.2022.09.026
Abstract 摘要
SUMMARY The underlying cellular events driving kidney fibrogenesis and metabolic dysfunction are incompletely understood. Here, we employed single-cell combinatorial indexing RNA sequencing to analyze 24 mouse kidneys from two fibrosis models. We profiled 309,666 cells in one experiment, representing 50 cell types/states encompassing epithelial, endothelial, immune, and stromal populations. Single-cell analysis identified diverse injury states of the proximal tubule, including two distinct early-phase populations with dysregulated lipid and amino acid metabolism, respectively. Lipid metabolism was defective in the chronic phase but was transiently activated in the very early stages of ischemia-induced injury, where we discovered increased lipid deposition and increased fatty acid beta\beta-oxidation. Perilipin 2 was identified as a surface marker of intracellular lipid droplets, and its knockdown in vitro disrupted cell energy state maintenance during lipid accumulation. Surveying epithelial cells across nephron segments identified shared and unique injury responses. Stromal cells exhibited high heterogeneity and contributed to fibrogenesis by epithelial-stromal crosstalk. 摘要 驱动肾脏纤维化和代谢功能障碍的潜在细胞事件尚不完全清楚。在这里,我们采用单细胞组合索引 RNA 测序技术分析了来自两种纤维化模型的 24 个小鼠肾脏。我们在一次实验中分析了 309,666 个细胞,代表了 50 种细胞类型/状态,包括上皮细胞、内皮细胞、免疫细胞和基质细胞。单细胞分析确定了近端肾小管的多种损伤状态,包括两种不同的早期阶段细胞群,它们分别存在脂质和氨基酸代谢失调。脂质代谢在慢性阶段存在缺陷,但在缺血诱导损伤的早期阶段被短暂激活,我们发现脂质沉积增加,脂肪酸 beta\beta 氧化增加。Perilipin 2被鉴定为细胞内脂滴的表面标志物,体外敲除它将破坏脂质积累过程中细胞能量状态的维持。对各肾节段上皮细胞的调查发现了共同和独特的损伤反应。基质细胞表现出高度的异质性,并通过上皮细胞与基质细胞之间的串联促进了纤维形成。
INTRODUCTION 引言
Chronic kidney disease (CKD) affects ∼10%\sim 10 \% of the population worldwide and ultimately can lead to kidney failure (Hill et al., 2016; Kalantar-Zadeh et al., 2021). With no cure and relatively few therapies that slow progression, people with CKD suffer considerable morbidity and mortality. Across all CKDs, regardless of the underlying cause, dysregulated epithelial metabolism is increasingly recognized as an important pathological feature that drives interstitial fibrosis (Kang et al., 2014; Slee, 2012; Tran et al., 2016; Zhu et al., 2021). Understanding the earliest cellular events driving kidney fibrogenesis will improve our knowledge of CKD pathophysiology and may identify new, effective therapeutic targets. 慢性肾脏病(CKD)影响着全球 ∼10%\sim 10 \% 的人口,并最终导致肾衰竭(Hill 等人,2016 年;Kalantar-Zadeh 等人,2021 年)。由于无法治愈,而减缓病情恶化的疗法又相对较少,因此慢性肾功能衰竭患者的发病率和死亡率都相当高。在所有慢性肾脏病中,无论其根本原因如何,上皮代谢失调越来越被认为是导致间质纤维化的一个重要病理特征(Kang 等人,2014 年;Slee,2012 年;Tran 等人,2016 年;Zhu 等人,2021 年)。了解驱动肾脏纤维化的最早细胞事件将提高我们对慢性肾脏病病理生理学的认识,并可能确定新的、有效的治疗靶点。
Single-cell RNA sequencing (scRNA-seq) allows for the unbiased characterization of cell transcriptomics and has been widely applied to decipher cell fate dynamics and metabolic heterogeneity (Evers et al., 2019; Kuppe et al., 2021; Park et al., 2018; Stuart and Satija, 2019). The most commonly used platform for scRNA-seq is based upon droplet microfluidics, but due to several technical limitations including low throughput, difficulty in analyzing multiple samples or time points, batch effects, and incompatibility with fixed samples, many studies analyze a limited number of samples, providing only a “snapshot” of a specific biological condition (Li and Humphreys, 2021; Stoeckius et al., 2018; Weinreb et al., 2018). Previous work has character- 单细胞 RNA 测序(scRNA-seq)可对细胞转录组学进行无偏见表征,并已广泛应用于破译细胞命运动力学和代谢异质性(Evers 等,2019 年;Kuppe 等,2021 年;Park 等,2018 年;Stuart 和 Satija,2019 年)。最常用的 scRNA-seq 平台基于液滴微流控技术,但由于一些技术限制,包括通量低、难以分析多个样本或时间点、批次效应以及与固定样本不兼容等,许多研究分析的样本数量有限,只能提供特定生物条件的 "快照"(Li 和 Humphreys,2021;Stoeckius 等人,2018;Weinreb 等人,2018)。以前的工作已经
ized CKD and kidney fibrosis at single-cell resolution (Dhillon et al., 2021; Lu et al., 2021; Wu et al., 2019; Zhang et al., 2021), but these studies typically lack multiple time points especially in early stages. Even though sample-multiplexing approaches exist (e.g., CITE-seq; Stoeckius et al., 2017), this method does not easily scale up, which is detrimental for analysis of the kidney due to diversity of cell types and states that arise during injury and progression of fibrosis (Balzer et al., 2022; Gerhardt et al., 2021; Kirita et al., 2020; Wu et al., 2019). As an example, proximal tubule (PT) cells constitute ∼50%\sim 50 \% of the total kidney cell number, so rare cell types and states may be underrepresented in a lower complexity scRNA-seq dataset. While multiple scRNA-seq experiments and large-scale data integration could resolve these limitations, batch effect correction would be required (Tran et al., 2020). 等,2021;Wu 等,2019;Zhang 等,2021),但这些研究通常缺乏多个时间点,尤其是在早期阶段。尽管存在样本多路复用方法(如 CITE-seq;Stoeckius 等人,2017 年),但这种方法不容易扩展,这对分析肾脏不利,因为在损伤和纤维化进展过程中会出现多种细胞类型和状态(Balzer 等人,2022 年;Gerhardt 等人,2021 年;Kirita 等人,2020 年;Wu 等人,2019 年)。例如,近端肾小管(PT)细胞占肾细胞总数的 ∼50%\sim 50 \% ,因此稀有细胞类型和状态在复杂度较低的scRNA-seq数据集中可能代表性不足。虽然多个 scRNA-seq 实验和大规模数据整合可以解决这些局限性,但需要进行批次效应校正(Tran 等人,2020 年)。
Here, we optimized single-cell combinatorial indexing RNAseq (sci-RNA-seq) (Cao et al., 2020, 2019) in order to decipher the molecular events driving kidney fibrogenesis. We leveraged the high-throughput, high sample-multiplexing capacity, and low costs of sci-RNA-seq to characterize two mouse models of kidney injury and fibrosis, unilateral ischemia-reperfusion injury (uni-IRI) and unilateral ureteral obstruction (UUO), at multiple time points. sci-RNA-seq is compatible with tissue fixation, which stabilizes RNA immediately after tissue collection preventing degradation, allowing multi-site sample acquisition, and facilitating storage of samples from multiple time points prior 在这里,我们优化了单细胞组合索引RNAseq(sci-RNA-seq)(Cao等人,2020年,2019年),以破译驱动肾脏纤维化的分子事件。我们利用sci-RNA-seq的高通量、高样本复用能力和低成本特点,在多个时间点对单侧缺血再灌注损伤(uni-IRI)和单侧输尿管梗阻(UUO)这两种小鼠肾脏损伤和纤维化模型进行了表征。sci-RNA-seq与组织固定兼容,它能在组织采集后立即稳定RNA,防止降解,允许多点样本采集,便于在采集前储存多个时间点的样本。
to processing. We have generated an atlas of kidney fibrogenesis (data visualizer available at http://humphreyslab.com/ SingleCell/) from a single experiment with 11 biological conditions and 24 samples. This approach enabled the elimination of batch effects and profiling of 309,666 cells. We report that uni-IRI and UUO induced two distinct PT cell states after injury with unique transcriptomic signatures and fate outcomes. Further investigation of these two cell states highlighted their distinct mechanisms of metabolic regulation, including activated lipid metabolism in the earliest stages of uni-IRI where we identified PLIN2+ lipid droplets. Additionally, we describe both shared and unique epithelial responses to injury and repair across nephron segments, as well as kidney stromal heterogeneity and intercellular communication dynamics during kidney fibrosis. This atlas of kidney fibrogenesis serves as a unique resource and reveals previously unappreciated epithelial cell states. 到处理。我们从包含 11 种生物条件和 24 个样本的单一实验中生成了肾脏纤维化图谱(数据可视化器可在 http://humphreyslab.com/ SingleCell/ 上获取)。这种方法消除了批次效应,对 309,666 个细胞进行了分析。我们报告说,uni-IRI 和 UUO 在损伤后诱导了两种不同的 PT 细胞状态,它们具有独特的转录组特征和转归结果。对这两种细胞状态的进一步研究突显了它们不同的代谢调控机制,包括在单IRI的最早阶段激活脂质代谢,我们在该阶段发现了PLIN2+脂滴。此外,我们还描述了各肾节段上皮细胞对损伤和修复的共同和独特反应,以及肾脏纤维化过程中肾脏基质的异质性和细胞间的通讯动态。该肾脏纤维化图谱是一种独特的资源,揭示了以前未被认识的上皮细胞状态。
RESULTS 结果
Generation of two mouse models of kidney fibrogenesis We performed uni-IRI and UUO surgeries on 8- to 9 -week-old adult male C57BL6/J mice and collected samples at multiple time points during disease progression ( 0 and 6 h and 2,7,142,7,14, and 28 days post uni-IRI or 0,2,4,6,100,2,4,6,10, and 14 days post UUO; n=2n=2 for each time point) (Figure 1A). To validate each sample prior to scRNA-seq, we first stained kidney injury and fibrosis markers by immunofluorescence (Figure 1B). In mice with uniIRI, the kidney injury marker HAVCR1 was strongly upregulated after 2 days post injury (uni-IRI D2), and its expression gradually decreased during the repair phase after uni-IRI D7. The fibrosis marker collagen type I (COL1) started to accumulate at uni-IRI D2 and was highly abundant at uni-IRI D14. By uni-IRI D28, the expression of HAVCR1 was close to baseline while COL1 expression was only partially resolved, suggesting an acute kidney injury (AKI) to CKD transition (Figure 1B). By contrast, UUO kidneys had sustained HAVCR1 expression and increased upregulation of COL1 over the full time course (Figure 1B), reflecting the more aggressive fibrotic burden in this model. Successful induction of injury and fibrogenesis on mouse kidneys was also confirmed by qPCR where we measured Havcr1 and myofibroblast marker genes Acta2 and Col1a1 and observed similar expression patterns (Figure S1A). 建立两种肾脏纤维化小鼠模型 我们对 8 到 9 周大的成年雄性 C57BL6/J 小鼠进行了单侧肾脏造影(uni-IRI)和单侧肾脏造影(UUO)手术,并在疾病进展的多个时间点收集样本(单侧肾脏造影(uni-IRI)后的 0 和 6 h 以及 2,7,142,7,14 和 28 天,或单侧肾脏造影(UUO)后的 0,2,4,6,100,2,4,6,10 和 14 天;每个时间点的 n=2n=2 )(图 1A)。为了在 scRNA-seq 之前验证每个样本,我们首先用免疫荧光染色了肾损伤和纤维化标记物(图 1B)。在uni-IRI小鼠中,肾损伤标志物HAVCR1在损伤后2天(uni-IRI D2)强烈上调,在uni-IRI D7后的修复阶段其表达逐渐下降。纤维化标志物 I 型胶原蛋白(COL1)从损伤后 2 天(uni-IRI D2)开始积累,到损伤后 14 天时达到高表达水平。到单IRI D28时,HAVCR1的表达接近基线,而COL1的表达仅部分缓解,这表明急性肾损伤(AKI)向CKD过渡(图1B)。相比之下,UUO 肾脏在整个过程中 HAVCR1 表达持续,COL1 上调增加(图 1B),这反映了该模型中纤维化负担更具侵袭性。我们通过 qPCR 检测了 Havcr1 和肌成纤维细胞标记基因 Acta2 和 Col1a1,并观察到了类似的表达模式(图 S1A)。
Characterization of kidney fibrogenesis with sci-RNA-seq3 利用 sci-RNA-seq 分析肾脏纤维形成的特征3
Nuclear suspensions were prepared from each sample, fixed, and snap-frozen. This enabled us to process all 24 samples simultaneously in a single experiment to achieve sample-multiplexing using the sci-RNA-seq3 protocol (Cao et al., 2019, 2020), which employed a combinatorial indexing strategy based 从每个样本中制备核悬浮液,固定并速冻。这样,我们就能在一次实验中同时处理所有 24 个样本,利用 sci-RNA-seq3 协议(Cao 等人,2019 年,2020 年)实现样本复用。
on reverse transcription (RT), hairpin ligation, and indexed PCR. In sci-RNA-seq3, the nuclei from each sample were divided into several wells of four 96 -well plates, and thus, the first barcode introduced by RT allowed sample identification (Figure 1A). In addition to the multiplexing capacity, high-throughput, and relatively low cost of sci-RNA-seq3, common laboratory supplies could be used, and the protocol was modifiable. Early results revealed several challenges in applying the original sci-RNA-seq3 protocol to kidney, including low nuclei extraction yield, nuclei aggregation in the suspension, reduced library quality due to non-uniform transposase activity and incomplete purification. We therefore separately optimized each of these steps in our modified protocol, including performing a Tn5 transposase activity test which significantly improved library yield and quality. The changes to the original protocol are summarized in Table S1 and in more detail in the STAR Methods. We included a species-mixing control with nuclei harvested from human HEK293T and mouse C3H/10T1/2 cultured cells in order to evaluate doublet frequency. 在 sci-RNA-seq3 中,每个样本的细胞核都被分装在四个 96 孔板的多个孔中,因此,RT 引入的第一个条形码可用于样本识别(图 1A)。在 sci-RNA-seq3 中,每个样本的细胞核都被分成 4 个 96 孔板中的几个孔,因此 RT 引入的第一个条形码可用于样本识别(图 1A)。sci-RNA-seq3 除了具有复用能力、高通量和相对较低的成本外,还可以使用普通的实验室用品,而且方案可以修改。早期结果显示,在肾脏中应用原始的 sci-RNA-seq3 方案存在一些挑战,包括细胞核提取率低、悬浮液中细胞核聚集、转座酶活性不均匀导致文库质量下降以及纯化不完全。因此,我们在修改后的方案中分别对这些步骤进行了优化,包括进行 Tn5 转座酶活性测试,从而显著提高了文库的产量和质量。表 S1 总结了对原始方案的改动,更多细节见 STAR 方法。我们使用从人类 HEK293T 和小鼠 C3H/10T1/2 培养细胞中提取的细胞核进行物种混合对照,以评估双顶体频率。
We sequenced the entire sci-RNA-seq3 library on one NovaSeq 6000 flow cell. Over half of the reads (60.4%) mapped to intronic regions, as expected for single-nucleus sequencing (Wu et al., 2019). After demultiplexing, we first assessed doublets by analyzing the species-mixing samples. This revealed a very low cell collision rate of 1.3% (Figure S1B). For the remaining mouse kidney samples, we generated a total of 413,681 raw cell transcriptomes at a minimum threshold of 200 uniform molecular identifiers (UMIs) per cell. We detected an average of 1,165 UMIs/cell (Table S1). After quality control procedures including removal of predicted doublets and artifacts (STAR Methods), we proceeded to analyze 309,666 high-quality cells. We first projected the pseudobulk transcriptomes of all 24 samples into two dimensions in an unsupervised fashion. This revealed clearly distinct trajectories between the uni-IRI and UUO samples and low variation between biological replicates. The uni-IRI 6 h and UUO D2 samples were similar, but later samples diverged substantially (Figure 1C). Even though uni-IRI and UUO are both models of kidney fibrosis, the distinct trajectories suggested quite different cellular mechanisms. 我们在一个 NovaSeq 6000 流式细胞上对整个 sci-RNA-seq3 文库进行了测序。超过一半的读数(60.4%)映射到了内含子区域,这也是单核测序的预期结果(Wu 等人,2019 年)。解复用后,我们首先通过分析物种混合样本来评估双倍性。结果显示,细胞碰撞率非常低,仅为 1.3%(图 S1B)。对于其余的小鼠肾脏样本,我们以每个细胞 200 个统一分子识别码(UMI)为最低阈值,共生成了 413,681 个原始细胞转录组。我们平均检测到 1,165 个 UMIs/细胞(表 S1)。经过质量控制程序,包括去除预测的双倍和伪影(STAR 方法)后,我们对 309,666 个高质量细胞进行了分析。我们首先以无监督的方式将所有 24 个样本的假体转录组投影到两个维度。结果显示,uni-IRI 样本和 UUO 样本之间的轨迹明显不同,生物重复之间的差异也很小。单IRI 6小时样本和UUO D2样本相似,但之后的样本差异很大(图1C)。尽管 uni-IRI 和 UUO 都是肾脏纤维化的模型,但其不同的轨迹表明它们的细胞机制截然不同。
The large size of this scRNA-seq dataset allowed for a detailed characterization of cellular heterogeneity in healthy and fibrotic kidneys. Cell clustering of the 309,666 cells revealed 19 major cell clusters, including cells of the PT, loop of Henle (LoH), and podocytes (Figure 1D). We performed subclustering analysis on all major cell clusters, which identified a total of 50 cell types or states (summarized in Table S2) including low abundance cell types such as juxtaglomerular apparatus (JGA), dendritic cell subtypes (Figure S1C), and vascular cells (Figure S1D). The 19 major clusters were annotated based on expression of known marker genes (Figure 1E) and data integration with previous cell atlas resources such as our bilateral IRI (bi-IRI) scRNA-seq 该 scRNA-seq 数据集规模庞大,可以详细描述健康肾脏和纤维化肾脏的细胞异质性。对 309,666 个细胞进行的细胞聚类分析发现了 19 个主要细胞群,包括 PT 细胞、亨列环(LoH)细胞和荚膜细胞(图 1D)。我们对所有主要细胞簇进行了亚聚类分析,共鉴定出 50 种细胞类型或状态(摘要见表 S2),包括并肾小球器(JGA)、树突状细胞亚型(图 S1C)和血管细胞(图 S1D)等低丰度细胞类型。根据已知标记基因的表达(图 1E)以及与以前的细胞图谱资源(如我们的双侧 IRI(bi-IRI)scRNA-seq)的数据整合,对 19 个主要细胞群进行了注释。
dataset (Kirita et al., 2020; Figure S1E). Correlation analysis across cell types indicated high transcriptomic similarity between fibroblasts (Prkg1/Gpc6 high) and myofibroblasts (Col1a1/Col1a2 high) and across distal nephron epithelia (thick ascending limb [TAL], distal convoluted tubule [DCT], connecting tubule [CNT], principal cell [PC], type A intercalated cell of collecting duct [ICA], and type B intercalated cell of collecting duct [ICB]) (Figure S1F). We next identified cells according to sample condition (health, uni-IRI or UUO), which revealed that nearly all cells from disease time points distributed distinctly from the healthy cells-reflecting that fibrosis affects the entire organ (Figures S1G and S1H). Myofibroblasts and immune cells were quite sparse in health but underwent proliferative expansion during disease (Figures S1I and S1J). 数据集(Kirita 等人,2020 年;图 S1E)。跨细胞类型的相关性分析表明,成纤维细胞(Prkg1/Gpc6 高)和肌成纤维细胞(Col1a1/Col1a2 高)之间以及远端肾小管上皮(粗升支[TAL]、远端曲小管[DCT]、连接小管[CNT]、主细胞[PC]、A 型肾小管[PC])之间的转录组高度相似、PC]、集合管 A 型夹层细胞[ICA]和集合管 B 型夹层细胞[ICB])(图 S1F)。接下来,我们根据样本条件(健康、uni-IRI 或 UUO)对细胞进行了鉴定,结果显示,几乎所有来自疾病时间点的细胞的分布都与健康细胞截然不同--这反映出纤维化影响了整个器官(图 S1G 和 S1H)。肌成纤维细胞和免疫细胞在健康时非常稀少,但在疾病期间却发生了增殖扩张(图 S1I 和 S1J)。
Diverse PT injury states 不同的 PT 损伤状态
Our initial clustering suggested considerable heterogeneity in PT cell states during fibrosis (Figure 1D). We therefore performed unsupervised subclustering on PT cells alone ( 130,503 cells after quality control; Figure 2A). This revealed the expected healthy S1/S2/S3 PT clusters, as well as multiple injury states (high expression of Havcr1 and Nrg1), including acute injury (PTAclnj), repairing (PT-R), a state we have previously characterized as failed repair PT cells (FR-PTCs) (Kirita et al., 2020; Muto et al., 2021) and two apparent intermediate PT injury states, located between healthy cells and FR-PTC in the UMAP space, which we annotated as Type1 and Type2 injured PT cells. All injured PT cell states were also characterized by downregulation of healthy PT marker genes such as solute-linked carriers (e.g., S/c34a1, S/c5a12, and S/c7a13), suggesting cell dedifferentiation. The significances of PT-AcInj, PT-R, and FR-PTC have been described in previous scRNA-seq studies (Gerhardt et al., 2021; Kirita et al., 2020; Lu et al., 2021; Rudman-Melnick et al., 2020) and were benchmarked in our large-scale dataset. Specifically, PT-AcInj cells expressed genes encoding heatshock proteins (HSPs) (e.g., Hspa1b and Hsp90aa1) and showed high activity of Hsf 1 in the transcription factor activity analysis (Figures 2B, 2C, and S2A). The PT-R cluster strongly expressed genes associated with cell proliferation (e.g., Top2a, Mki67, and Lmnb1) and scored highly by cell-cycle scoring analysis (Figure S2B). FR-PTC were characterized by expression of known marker genes Vcam1 and Kcnip4. Smad1, an essential component of TGF- beta\beta signaling (Zhang et al., 2015), exhibited high transcription factor activity in FR-PTC (Figures 2C and 2D) and sin-gle-cell pathway activity analysis revealed that NF-кB and TNF- alpha\alpha pathways were also highly active (Figure 2D), indicating that these cells were proinflammatory and profibrotic, confirming prior results (Markó et al., 2016; Ramseyer and Garvin, 2013; Shimizu et al., 2011; Zager et al., 2005). 我们最初的聚类结果表明,纤维化过程中 PT 细胞的状态存在相当大的异质性(图 1D)。因此,我们仅对 PT 细胞进行了无监督子聚类(质控后为 130,503 个细胞;图 2A)。这揭示了预期的健康 S1/S2/S3 PT 聚类,以及多种损伤状态(Havcr1 和 Nrg1 高表达),包括急性损伤(PTAclnj)、修复状态(PT-R)、一种我们之前表征为修复失败 PT 细胞(FR-PTCs)的状态(Kirita 等人,2020 年;Muto 等人,2021 年),以及两种明显的中间 PT 损伤状态,它们位于 UMAP 空间中的健康细胞和 FR-PTC 之间,我们将其注释为 1 型和 2 型损伤 PT 细胞。所有损伤的 PT 细胞状态都具有健康 PT 标记基因下调的特征,如溶质连接载体(如 S/c34a1、S/c5a12 和 S/c7a13),这表明细胞发生了去分化。之前的 scRNA-seq 研究(Gerhardt 等人,2021 年;Kirita 等人,2020 年;Lu 等人,2021 年;Rudman-Melnick 等人,2020 年)已经描述了 PT-AcInj、PT-R 和 FR-PTC 的重要性,我们的大规模数据集也对其进行了基准测试。具体而言,PT-AcInj 细胞表达了编码热休克蛋白(HSPs)(如 Hspa1b 和 Hsp90aa1)的基因,并在转录因子活性分析中显示出 Hsf 1 的高活性(图 2B、2C 和 S2A)。PT-R 簇强烈表达与细胞增殖相关的基因(如 Top2a、Mki67 和 Lmnb1),在细胞周期评分分析中得分很高(图 S2B)。已知标记基因 Vcam1 和 Kcnip4 的表达是 FR-PTC 的特征。 TGF- beta\beta 信号转导的重要组成部分Smad1(Zhang等人,2015年)在FR-PTC中表现出很高的转录因子活性(图2C和2D),单细胞通路活性分析表明,NF-кB和TNF- alpha\alpha 通路也高度活跃(图2D),表明这些细胞具有促炎和促组织坏死的特性,证实了之前的研究结果(Markó等人,2016年;Ramseyer和Garvin,2013年;Shizu等人,2011年;Zager等人,2005年)、2016;Ramseyer 和 Garvin,2013;Shimizu 等人,2011;Zager 等人,2005)。
By contrast, we struggled to annotate the Type1 and Type2 PT cell clusters to previously published work, possibly because these cells were enriched in early and middle stages of kidney fibrogenesis (i.e., IRI 6 h, UUO D2-D4) that have not been previ- 相比之下,我们很难将 1 型和 2 型 PT 细胞集群注释为以前发表的研究成果,这可能是因为这些细胞富集于肾脏纤维化的早期和中期阶段(即 IRI 6 h、UUO D2-D4),而这些阶段尚未被研究。
ously analyzed in scRNA-seq studies. Surveying the proportion of each PT cell type across conditions (Figures 2E and S2C) revealed that Type1 injured PT was primarily found in uniIRI (occurrence frequency in uni-IRI: UUO ∼11:1\sim 11: 1 ) and Type2 injured PT was more specific to UUO samples (abundance of Type1:Type2 injured PT ~ 10:1). More specifically, in uni-IRI, Type1 injured cells comprised 80%80 \% of all PT cells at 6 h after injury, with this proportion falling rapidly to 5%5 \% of the total by D2. In UUO, Type2 injured cells also appeared in the early time point (D2) and dominated the PT population (62% of the total cells), but their frequency did not fall as quickly as Type1 injured cells in uni-IRI (Figure 2E). This analysis also highlighted distinct outcomes of PT successful repair versus failed repair in the two mouse models: the frequency of healthy PT cells was reduced remarkably by both uni-IRI or UUO surgeries, but only in uni-IRI did these cells return to their prior uninjured state (Figure 2E). While a small percentage of FR-PTC ( ∼4%\sim 4 \% ) remained at -IRI D28, FR-PTC constituted a large and increasing proportion of all cells as the time course proceeded in UUO ( ∼55%\sim 55 \% at UUO D14) (Figure 2E). 在scRNA-seq研究中被广泛分析。调查不同条件下每种 PT 细胞类型的比例(图 2E 和 S2C)发现,1 型损伤 PT 主要存在于 uniIRI 中(uni-IRI:UUO 中的出现频率 ∼11:1\sim 11: 1 ),而 2 型损伤 PT 在 UUO 样本中更具特异性(1 型:2 型损伤 PT 的丰度约为 10:1)。更具体地说,在单IRI中,1型损伤细胞在损伤后6小时占所有PT细胞的 80%80 \% ,到D2时,这一比例迅速下降到 5%5 \% 。在 UUO 中,2 型损伤细胞也出现在早期时间点(D2),并在 PT 群体中占主导地位(占细胞总数的 62%),但其频率下降的速度不如在 uni-IRI 中的 1 型损伤细胞(图 2E)。这项分析还突显了两种小鼠模型中PT成功修复与失败修复的不同结果:健康PT细胞的频率在uni-IRI或UUO手术中都显著降低,但只有在uni-IRI中这些细胞才恢复到之前的未损伤状态(图2E)。虽然在 -IRI D28 时仍有一小部分 FR-PTC ( ∼4%\sim 4 \% ),但随着 UUO 的时间进程(UUO D14 时为 ∼55%\sim 55 \% ),FR-PTC 在所有细胞中所占的比例越来越大(图 2E)。
Two types of cell states of injured PT 受伤 PT 的两种细胞状态
We next asked whether the ability of PT to successfully repair in uni-IRI but not in UUO might be related to Type1 versus Type2 injury. Gene ontology (GO) enrichment analysis on differentially expressed genes (DEGs) for the two populations highlighted wound healing, cell junction organization, and cell-cell adhesion in Type1 injured PT and epithelial morphogenesis and MAPK signaling in the Type2 group (Figure S2D). Regulation of cell motility was a shared term in both groups (Figure S2D). Type1 injured PT cells were primarily observed early-at 6 h post uniIRI with defining DEGs such as Plin2 and Col27a1 (Figures 2B and S2E). We found that Elf3, a transcription factor that has been reported to be upregulated in both mouse and human AKI samples (Famulski et al., 2012; Rudman-Melnick et al., 2020), showed high gene activity in Type1 injured PT cells (Figures 2C and S2F). This PT subpopulation also exhibited activated EGFR signaling (Figure S2F), a pathway known to promote PT recovery after AKI (Tang et al., 2013). For Type2 injured PT, we observed some cluster-specific DEGs including S/c6a6, Bcat1, and S/c7a12, but others that were in common with the FR-PTC cluster (e.g., Sema5a, Dcdc2a, and Ypel2) (Figure S2E), hinting at a lineage relationship between Type2 PT and FR-PTC. Correlation analysis confirmed high similarity between Type2 PT and FR-PTC compared with the other cell states (Figure S2G). Mapping the Type1 and Type2 subclusters back onto the entire dataset revealed that they constituted the major cluster annotated as “PT-Inj” (Figure S2H). Collectively, these results led us to hypothesize that the Type1 PT injury state is protective while the Type2 state leads to FR-PTC driving fibrogenesis. 我们接下来要问的是,PT 在单IRI 而非UUO 中成功修复的能力是否可能与1型损伤和2型损伤有关。对两组人群差异表达基因(DEGs)的基因本体论(GO)富集分析显示,在1型损伤的PT中,伤口愈合、细胞连接组织和细胞-细胞粘附;而在2型组中,上皮形态发生和MAPK信号转导(图S2D)。细胞运动调节是两组的共同术语(图 S2D)。1型受伤的PT细胞主要是在单IRI后6小时早期观察到的,其中有Plin2和Col27a1等确定的DEGs(图2B和S2E)。我们发现,Elf3--一种已被报道在小鼠和人类 AKI 样本中上调的转录因子(Famulski 等人,2012 年;Rudman-Melnick 等人,2020 年)--在 1 型损伤 PT 细胞中显示出较高的基因活性(图 2C 和 S2F)。这种 PT 亚群还表现出活化的表皮生长因子受体(EGFR)信号传导(图 S2F),这是一种已知能促进 AKI 后 PT 恢复的途径(Tang 等人,2013 年)。对于2型损伤的PT,我们观察到了一些簇特异的DEGs,包括S/c6a6、Bcat1和S/c7a12,但也观察到了其他与FR-PTC簇相同的DEGs(如Sema5a、Dcdc2a和Ypel2)(图S2E),这暗示了2型PT与FR-PTC之间的血缘关系。相关性分析证实,与其他细胞状态相比,2 型 PT 和 FR-PTC 之间具有高度相似性(图 S2G)。将 Type1 和 Type2 亚簇映射回整个数据集后发现,它们构成了注释为 "PT-Inj "的主要簇(图 S2H)。综合这些结果,我们推测类型 1 PT 损伤状态是保护性的,而类型 2 状态会导致 FR-PTC 驱动纤维化。
To better characterize potential lineage relationships between Type1/Type2 injured PT and other PT subpopulations, we leveraged single-cell trajectory inference analysis (Qiu et al., 2017) 为了更好地描述 1 型/2 型受伤 PT 与其他 PT 亚群之间的潜在血统关系,我们利用了单细胞轨迹推断分析(Qiu 等人,2017 年)。
A
B
C
G
Figure 3. Dysregulated lipid metabolism in proximal tubule cells during fibrogenesis and activated fatty acid oxidation after short-term lipid deposition 图 3纤维化过程中近端小管细胞的脂质代谢失调以及短期脂质沉积后脂肪酸氧化被激活
(A) Protein-protein interaction (PPI) enrichment analysis on upregulated differentially expressed genes of Type1 injured PT cells showing terms associated with lipid metabolism. (A) 蛋白质-蛋白质相互作用(PPI)富集分析表明,1 型损伤 PT 细胞上调的差异表达基因与脂质代谢相关。
Article 文章
and identified two major trajectories starting from Type1 injured PT in uni-IRI (Figure 2F, left panel): these cells first became repairing cells and then either differentiated into healthy PT cells (successful repair trajectory) or FR-PTC (failed repair trajectory). Consistent with this result, the successful repair trajectory upregulated healthy PT marker genes, but the FR-PTC lineage failed to do so (Figure S2I). By contrast only one major trajectory was observed in UUO: it started from healthy cells and ended at FR-PTC with Type2 injured PT cells located in between (Figure 2F, right panel). In this UUO trajectory, expression of FRPTC markers gradually increased over pseudotime (Figure S2I). This analysis suggested that the Type1 injury state was a bipotential one with the ability to become either healthy cells or FRPTC, whereas the Type2 category was unipotential with the ability only to differentiate into FR-PTC. We also performed trajectory analysis on dataset combining uni-IRI and UUO cells, which presented consistent results (Figure S2J). To further support this hypothesis, we conducted a computational cell fate mapping analysis, which simulated a birth-death process based on the Markov chains model (Lange et al., 2022) (STAR Methods). We observed that in uni-IRI, Type1 injured PT cells showed the highest probability of contributing to the repairing cell lineage (Figure 2G, left panel), which could further develop into either healthy cells or FR-PTC (Figure S2K). By contrast, the majority of Type2 injured PT cells in UUO differentiated into FR-PTC (Figure 2G, right panel). Even though a small proportion of Type2 injured PT cells were predicted to acquire a repairing cell state, most of these ultimately adapted the FR-PTC phenotype (Figure S2K). 图 2F 左侧面板):这些细胞首先成为修复细胞,然后分化为健康 PT 细胞(成功修复轨迹)或 FR-PTC(失败修复轨迹)。与这一结果一致的是,成功的修复轨迹上调了健康 PT 的标记基因,但 FR-PTC 系则没有上调(图 S2I)。相比之下,在 UUO 中只观察到一条主要的轨迹:它从健康细胞开始,到 FR-PTC 结束,2 型损伤 PT 细胞位于两者之间(图 2F 右面板)。在这一 UUO 轨迹中,FRPTC 标记的表达随着假时间逐渐增加(图 S2I)。这一分析表明,1 型损伤状态是一种双潜能状态,既能成为健康细胞,也能成为 FRPTC,而 2 型损伤状态是单潜能状态,只能分化为 FR-PTC。我们还对单IRI和UUO细胞的数据集进行了轨迹分析,结果一致(图S2J)。为了进一步支持这一假设,我们进行了计算细胞命运图谱分析,根据马尔可夫链模型模拟了出生-死亡过程(Lange 等人,2022 年)(STAR 方法)。我们观察到,在uni-IRI中,1型受伤的PT细胞对修复细胞系的贡献概率最高(图2G,左侧面板),可进一步发育成健康细胞或FR-PTC(图S2K)。相比之下,UUO 中大多数 2 型损伤 PT 细胞分化为 FR-PTC(图 2G 右图)。尽管预测有一小部分2型损伤的PT细胞会获得修复细胞状态,但这些细胞中的大多数最终都适应了FR-PTC表型(图S2K)。
Dysregulated PT lipid metabolisms during fibrogenesis 纤维形成过程中 PT 脂质代谢失调
Next, we aimed to explore metabolic mechanisms underlying the distinct fate outcomes of Type1 and Type2 injured PT cells. Pro-tein-protein interaction (PPI) enrichment analysis on the top DEGs for Type1 injured PT cells highlighted terms associated with lipid metabolism, including mitochondrial long-chain fatty acid beta\beta-oxidation (FAO), regulation of lipid transport, and lipid localization (Figure 3A). Previous studies have demonstrated defective FAO metabolism of PT cells in CKD, which could be reversed by restoring the capacity of FAO (Kang et al., 2014; 接下来,我们旨在探索1型和2型损伤PT细胞不同命运结果的代谢机制。对1型损伤的PT细胞的顶级DEGs进行的前蛋白-蛋白相互作用(PPI)富集分析强调了与脂质代谢相关的术语,包括线粒体长链脂肪酸 beta\beta -氧化(FAO)、脂质转运调控和脂质定位(图3A)。先前的研究表明,CKD 中 PT 细胞的 FAO 代谢存在缺陷,而这种缺陷可以通过恢复 FAO 的能力来逆转(Kang 等,2014;
Pei et al., 2020; Stadler et al., 2015; Wu et al., 2020). Consistently, by scoring genes involved in FAO across all PT cells, we observed a reduced FAO activity in the middle stages of uniIRI (i.e., D2/7/14) and all UUO samples (Figures 3B and S3A). FR-PTC exhibited the lowest FAO score when compared with healthy PT (Figure 3B), and the proportion of FR-PTC correlated negatively with FAO activity (Figure S3B), highlighting the central role of this population in CKD. Pei等人,2020;Stadler等人,2015;Wu等人,2020)。同样,通过对所有 PT 细胞中参与 FAO 的基因进行评分,我们观察到在 uniIRI 的中期(即 D2/7/14)和所有 UUO 样本中 FAO 活性降低(图 3B 和 S3A)。与健康 PT 相比,FR-PTC 的 FAO 得分最低(图 3B),FR-PTC 的比例与 FAO 活性呈负相关(图 S3B),突显了这一群体在 CKD 中的核心作用。
By contrast, we noticed an unexpected increase in the FAO score at uni-IRI 6 h (Figure 3B), which implied activated lipid metabolism in Type1 injured PT cells at this early phase. In addition, we observed activated peroxisome proliferator-activated receptor signaling, reflected by significantly increased expression of FAO rate-limiting genes such as Cpt1a, Acox1, Hadha, and Hadhb (Figure S3A) (Mann-Whitney UU test with the Benjamini-Hochberg correction). 相比之下,我们注意到,在单IRI 6小时时,FAO评分意外增加(图3B),这意味着1型损伤的PT细胞在这一早期阶段激活了脂质代谢。此外,我们还观察到过氧化物酶体增殖激活受体信号的激活,这反映在 FAO 限速基因如 Cpt1a、Acox1、Hadha 和 Hadhb 的表达显著增加(图 S3A)(经本杰明-霍奇伯格校正的 Mann-Whitney UU 检验)。
We hypothesized that the upregulated FAO gene expression at uni-IRI 6 h would be accompanied by increased lipid deposition. A variety of proteins are required for maintenance of cytoplasmic lipid droplets, so we examined the expression of genes involved in formation and maintenance of lipid droplets. Consistent with this hypothesis, the lipid droplet score was significantly increased at uni-IRI 6 h but returned to baseline for all subsequent time points (Figure 3C). The expression of lipid droplet genes Plin2, Fabp4, Acs/4, and Ehd1 were upregulated in the Type1 injured PT cells compared with the healthy (Figure S3A). 我们假设,在单IRI 6小时内,FAO基因表达的上调将伴随着脂质沉积的增加。维持细胞质脂滴需要多种蛋白质,因此我们检测了参与脂滴形成和维持的基因的表达。与这一假设一致的是,脂滴得分在单IRI 6小时时显著增加,但在随后的所有时间点都恢复到基线(图3C)。与健康细胞相比,脂滴基因 Plin2、Fabp4、Acs/4 和 Ehd1 在 1 型损伤的 PT 细胞中表达上调(图 S3A)。
Next, we analyzed lipid content at multiple time points identifying a striking increase in Oil Red O-positive lipid droplets throughout both cortical and medullary tubules at uni-IRI 6 h compared with healthy kidney (Figure 3D). Interestingly, at uniIRI D2, most lipids were cleared from cortical tubular cells, though we also observed mild persistence of intraluminal, extracellular lipids in outer medullary casts (Figure 3D). Oil Red O-positive lipid droplets were undetectable at uni-IRI D7 and later time points (Figures 3D and S3C). On the other hand, UUO lacked the early lipid droplet accumulation but gradually accumulated tubular lipids over time (Figures 3D and S3C). 接下来,我们分析了多个时间点的脂质含量,发现与健康肾脏相比,在单IRI 6小时时,皮质和髓质肾小管中油红O阳性脂滴显著增加(图3D)。有趣的是,在 uniIRI D2 时,大多数脂质从皮质肾小管细胞中清除,但我们也观察到在髓质外铸型中轻度持续存在管腔内、细胞外脂质(图 3D)。油红 O 阳性脂滴在 uni-IRI D7 及以后的时间点检测不到(图 3D 和 S3C)。另一方面,UUO 缺乏早期脂滴积累,但随着时间的推移逐渐积累管状脂质(图 3D 和 S3C)。
To quantitatively determine this transient lipid accumulation, we measured the abundance of triglycerides (TAGs), free fatty acids (FFAs), and cholesterol in uni-IRI mouse kidney tissues 为了定量测定这种瞬时脂质积累,我们测量了单IRI小鼠肾组织中甘油三酯(TAG)、游离脂肪酸(FFA)和胆固醇的丰度。
from multiple time points with mass spectrometry. With a total of 47 TAG species analyzed, this lipidomics analysis revealed an ∼6\sim 6-fold increased abundance of total TAGs at uni-IRI 6 h compared with healthy tissues (Figure 3E). ∼70%\sim 70 \% of the accumulated TAGs were a combination of palmitate (16:0), oleate (18:1), and linoleate (18:2). Consistent with our Oil Red O staining, TAG was still abundant at uni-IRI D2, but it decreased nearly to baseline by uni-IRI D7 and D14 (Figure 3E). We also observed a 1.8 -fold increased abundance of total FFAs at uni-IRI 6 h compared with those of healthy tissues (Figure 3F). Among the 16 FFA species analyzed, palmitic acid (16:0) and oleic acid (18:1) were the two major FFAs in both healthy and diseased mouse kidneys, constituting ~50% of total FFAs (Figure 3F). Lipidomic analysis was also performed on UUO D10 and UUO D14 samples, where we identified ∼2\sim 2-fold increased TAG abundance but almost no differences in FFA abundance (Figure S3D). In addition, we did not identify obvious changes in cholesterol abundance across samples (Figure S3E). 通过质谱法分析了多个时间点的总 TAG。这项脂质组学分析共分析了 47 种 TAG,结果显示,与健康组织相比,单IRI 6 h 时总 TAG 丰度增加了 ∼6\sim 6 -倍(图 3E)。 ∼70%\sim 70 \% 累积的 TAG 是棕榈酸酯(16:0)、油酸酯(18:1)和亚油酸酯(18:2)的组合。与我们的油红 O 染色结果一致,TAG 在单内切酶切 D2 时仍很丰富,但在单内切酶切 D7 和 D14 时几乎降至基线(图 3E)。我们还观察到,与健康组织相比,单IRI 6 h时总FFA的丰度增加了1.8倍(图3F)。在分析的 16 种 FFA 中,棕榈酸(16:0)和油酸(18:1)是健康和患病小鼠肾脏中的两种主要 FFA,占总 FFA 的约 50%(图 3F)。我们还对UUO D10和UUO D14样本进行了脂质体分析,发现TAG丰度增加了 ∼2\sim 2 倍,但FFA丰度几乎没有差异(图S3D)。此外,我们没有发现不同样本中胆固醇丰度的明显变化(图 S3E)。
Therefore, our results suggested a transient upregulation of genes involved in FAO and lipid metabolism, accompanied by cytoplasmic lipid accumulation, at the earliest time points after uni-IRI. 因此,我们的研究结果表明,在单IRI后的最早时间点,参与粮农组织和脂质代谢的基因出现了短暂的上调,同时伴有细胞质脂质的积累。
Fatty acid exposure in vitro leads to lipid accumulation and FAO burst 脂肪酸在体外暴露会导致脂质积累和 FAO 爆发
To study how PT cells respond to short-term lipid accumulation, we established an in vitro model by treating primary human renal PT epithelial cells (RPTECs) with oleic or palmitic acids for 6 h . Oil Red O and BODIPY 493/503 staining confirmed a striking increase in intracellular lipid deposition after 6-h exposure of oleic or palmitic acids (Figure 3G). A longer exposure (2-6 days) to fatty acids resulted in an increased size of Oil Red O+ lipid aggregates (Figure S3H). We also treated RPTECs with fluorescently labeled palmitic acid (BODIPY C_(16)\mathrm{C}_{16} ) for 6 h and validated that RPTECs actively transported fatty acids leading to intracellular lipid accumulation (Figure S3F). Both 6-h oleic and palmitic acid exposure led to significant upregulation of CD36, which encodes a plasma membrane receptor for long-chain fatty acid transport and CPT1A, which encodes a mitochondrial membrane enzyme for long-chain fatty acyl-coenzyme A (CoA) transport (Figure S3G). 为了研究 PT 细胞如何应对短期脂质积累,我们建立了一个体外模型,用油酸或棕榈酸处理原代人肾 PT 上皮细胞(RPTECs)6 小时。油红 O 和 BODIPY 493/503 染色证实,接触油酸或棕榈酸 6 小时后,细胞内脂质沉积显著增加(图 3G)。接触脂肪酸的时间越长(2-6 天),油红 O+ 脂质聚集体的体积就越大(图 S3H)。我们还用荧光标记的棕榈酸(BODIPY C_(16)\mathrm{C}_{16} )处理 RPTECs 6 小时,验证了 RPTECs 能主动转运脂肪酸,导致细胞内脂质积累(图 S3F)。暴露 6 小时的油酸和棕榈酸都会导致 CD36(编码长链脂肪酸转运的质膜受体)和 CPT1A(编码长链脂肪酸酰辅酶 A(CoA)转运的线粒体膜酶)的显著上调(图 S3G)。
Previous studies reported mitochondrial dysregulation in PT cells in kidney diseases (Chung et al., 2019; Mori et al., 2021; Zhan et al., 2013). We stained for mitochondria and observed that most mitochondrion had a thread-like appearance in the steady state, but an increased fraction of mitochondria became fragmented into a sphere-like appearance (i.e., mitochondrial fission) after 6-h oleic or palmitic acid treatment (Figure S3I). On the other hand, we did not observe significant changes in reactive oxygen species, a feature of mitochondrial damage, after the 6-h fatty acid treatment (Figure S3J). 之前的研究报道了肾脏疾病中PT细胞线粒体的失调(Chung等人,2019年;Mori等人,2021年;Zhan等人,2013年)。我们对线粒体进行了染色,观察到大多数线粒体在稳定状态下呈线状外观,但在油酸或棕榈酸处理6小时后,有越来越多的线粒体碎裂成球状外观(即线粒体裂变)(图S3I)。另一方面,在脂肪酸处理 6 小时后,我们没有观察到作为线粒体损伤特征的活性氧发生显著变化(图 S3J)。
Next, to answer whether the accumulated lipid droplets could be oxidized later, we exposed RPTECs to lipids for 6 h then washed them away and replaced with normal culture medium (without fatty acid supplements) for 2 days. We observed very little Oil Red O staining at 2 days post culture medium renewal (Figure 3H), indicating that the deposited lipids induced by 6-h fatty acid treatment were largely cleared from cells by this time point. We asked whether this lipid clearance was the consequence of 接下来,为了回答积累的脂滴日后是否会被氧化,我们将 RPTEC 暴露于脂质中 6 小时,然后将其洗去,换上正常培养基(不含脂肪酸补充剂)培养 2 天。我们观察到,在培养基更新后的第 2 天,油红 O 染色非常少(图 3H),这表明经 6 小时脂肪酸处理诱导的沉积脂质在这个时间点基本上已从细胞中清除。我们询问这种脂质清除是否是由于
oxidation or due to other mechanisms such as lipid secretion. The presence of the lipolysis inhibitor Atglistatin during the 2-day chase prevented clearance of lipid droplets for both palmitic and oleic acids (Figure 3H), while 2-day treatment of Atglistatin alone did not induce significant lipid accumulation (Figure S3K). These results strongly suggest that RPTEC clearance of lipid accumulation occurs through FAO. 在 2 天的追逐过程中,脂肪分解抑制剂阿司司他丁的存在阻止了棕榈酸和油酸脂滴的清除(图 3H)。在 2 天的追逐过程中,脂肪分解抑制剂 Atglistatin 的存在阻止了棕榈酸和油酸脂滴的清除(图 3H),而单独使用 Atglistatin 的 2 天处理并未诱发显著的脂质积累(图 S3K)。这些结果有力地表明,RPTEC 是通过 FAO 清除脂质积累的。
To directly measure FAO and determine whether a dysregulation of glucose metabolism might also be involved, we measured the real-time oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) on RPTECs after 6-h fatty acid treatment, in a similar approach as described before (Kang et al., 2014). We identified a significantly higher OCR in cells pretreated with oleic or palmitic acids than control cells (Figures 3I and S3L), suggesting enhanced FAO activity. Injection of etomoxir, a CPT1 inhibitor, and oligomycin, an ATP synthase inhibitor, both reduced OCR, confirming that the increased OCR observed was the consequence of increased FAO (Figure S3L). In addition, an increased ECAR was also identified in cells pretreated with fatty acids (Figures 31 and S 3 L ). These results suggest that 6-h fatty acid exposure increases both FAO and glycolysis activity, characteristics of an energetically active cell state (Hocaoglu et al., 2021). 为了直接测量 FAO 并确定葡萄糖代谢失调是否也可能参与其中,我们采用与之前描述的类似方法(Kang 等,2014 年)测量了脂肪酸处理 6 小时后 RPTECs 的实时耗氧率(OCR)和细胞外酸化率(ECAR)。我们发现用油酸或棕榈酸预处理的细胞的 OCR 明显高于对照细胞(图 3I 和 S3L),这表明 FAO 活性增强。注射 CPT1 抑制剂 etomoxir 和 ATP 合酶抑制剂 oligomycin 都会降低 OCR,这证实了观察到的 OCR 增加是 FAO 增加的结果(图 S3L)。此外,在用脂肪酸预处理的细胞中也发现了 ECAR 的增加(图 31 和图 S3L)。这些结果表明,暴露于脂肪酸 6 小时会增加 FAO 和糖酵解活性,这是细胞能量活跃状态的特征(Hocaoglu 等人,2021 年)。
Next, to study cellular responses to lipid accumulation at the gene expression level, we performed bulk RNA-seq on RPTECs treated with oleic acids for 6 h (Ole_6 h). We also sequenced cells that were exposed to medium without fatty acid supplements for 2 days after the 6-h treatment (Ole_6 h + 2 days) to study the long-term effect of lipid accumulation. GO analysis indicated that the upregulated DEGs of the Ole_6 h group compared with control cells were enriched in intracellular lipid droplets (FDR =3.84 xx10^(-3)=3.84 \times 10^{-3} ). Consistently, genes associated with FAO and lipid metabolism were significantly upregulated in the Ole_6 h group (GO term FDR =7.94 xx10^(-5)=7.94 \times 10^{-5} ), including CPT1A and genes encoding long-chain acyl-CoA synthetases (ACSLs) (Figure 3J). Glucose metabolic process was also an upregulated GO term in the enrichment analysis (FDR = 5.88 xx10^(-3)5.88 \times 10^{-3} ), supporting our ECAR measurement mentioned above. Interestingly, we found that genes involved in DNA replication and cell-cycle regulation were significantly upregulated in the Ole_6 h+2\mathrm{h}+2 days group (GO term FDR =6.36 xx10^(-14)=6.36 \times 10^{-14} ), including MKI67, TOP2A, and genes encoding minichromosome maintenance (MCM) proteins (Figure 3J). Thus, our results suggested that fatty acid exposure and lipid accumulation in RPTECs promotes cell proliferation, consistent with our singlecell fate mapping analysis identifying that Type1 injured PT cells (enriched at uni-IRI 6 h) were precursors of Mki67-expressing PT-R cells (enriched at uni-IRI D2) (Figures 2F and 2G). 接下来,为了在基因表达水平上研究细胞对脂质积累的反应,我们对用油酸处理 6 小时(Ole_6 h)的 RPTEC 进行了大量 RNA-seq。我们还对在 6 小时处理后暴露于不含脂肪酸补充剂的培养基中 2 天(Ole_6 h + 2 天)的细胞进行了测序,以研究脂质积累的长期影响。GO分析表明,与对照组相比,Ole_6 h组上调的DEGs富集在细胞内脂滴中(FDR =3.84 xx10^(-3)=3.84 \times 10^{-3} )。同样,与 FAO 和脂质代谢相关的基因在 Ole_6 h 组显著上调(GO 项 FDR =7.94 xx10^(-5)=7.94 \times 10^{-5} ),包括 CPT1A 和编码长链酰基-CoA 合成酶(ACSLs)的基因(图 3J)。在富集分析中,葡萄糖代谢过程也是一个上调的 GO 项(FDR = 5.88 xx10^(-3)5.88 \times 10^{-3} ),这支持了我们上述的 ECAR 测量。有趣的是,我们发现参与 DNA 复制和细胞周期调控的基因在 Ole_6 h+2\mathrm{h}+2 天组显著上调(GO 项 FDR =6.36 xx10^(-14)=6.36 \times 10^{-14} ),包括 MKI67、TOP2A 和编码迷你染色体维护(MCM)蛋白的基因(图 3J)。因此,我们的结果表明,RPTECs 中的脂肪酸暴露和脂质积累会促进细胞增殖,这与我们的单细胞命运图谱分析一致,即 1 型损伤的 PT 细胞(富集于 uni-IRI 6 h)是表达 Mki67 的 PT-R 细胞(富集于 uni-IRI D2)的前体(图 2F 和 2G)。
PLIN2 marks lipid droplets in Type1 injured proximal tubular cells and maintains cell energy state PLIN2, also known as perilipin 2 or adipose differentiationrelated protein, is a lipid droplet surface protein and an essential component of the PPAR signaling pathway (Kimmel and Sztalryd, 2016). Our scRNA-seq data identified Plin2 as a marker gene of Type 1 injured PT cells (Figures 2B and 4A). Reanalyzing a recently published spatial transcriptomic analysis of mouse kidney bi-IRI (Dixon et al., 2022) revealed the transiently increased expression of Plin2 throughout the kidney cortex at 12 h post-surgery (Figure 4B). To further validate Plin2 as a PLIN2标记1型损伤近端肾小管细胞中的脂滴并维持细胞能量状态 PLIN2,又称perilipin 2或脂肪分化相关蛋白,是一种脂滴表面蛋白,也是PPAR信号通路的重要组成部分(Kimmel和Sztalryd,2016年)。我们的 scRNA-seq 数据将 Plin2 鉴定为 1 型损伤 PT 细胞的标记基因(图 2B 和 4A)。重新分析最近发表的小鼠肾脏双IRI空间转录组分析(Dixon等人,2022年)发现,在手术后12小时,Plin2在整个肾皮质中的表达瞬时增加(图4B)。为了进一步验证
Next, we sought to investigate the mechanism of Plin2 upregulation in Type1 injured PT cells. Previous studies have reported that PLIN2 expression can be increased either by cellular uptake of fatty acids or endoplasmic reticulum (ER) stress (Chen et al., 2017; Dalen et al., 2006; Gao and Serrero, 1999). Therefore, we exposed FFAs or chemical ER stress inducers on RPTECs. We observed ∼10\sim 10-fold increased expression of PLIN2 after a 6-h treatment of oleic or palmitic fatty acids by qPCR analysis (Figure 4G). PLIN2 expression was significantly reduced when cells were exposed to culture medium without fatty acid supplements for 2 days (Figure 4G), suggesting a positive correlation between PLIN2 expression level and abundance of lipids. 6-h treatment of ER stress inducers including Tunicamycin and Thapsigargin could also increase PLIN2 expression, but the fold change ( ∼1.5-\sim 1.5- fold) was much lower than observed with fatty acid treatments (Figure S4B). We also performed immunofluorescence on fatty-acid-treated RPTECs and confirmed strongly upregulated PLIN2 protein expression in almost all cells (Figure 4H). With the bulk RNA-seq data on RPTECs mentioned above, we surveyed the gene expression of all PLIN family members (Figure S4C) and found that PLIN4 was another significantly upregulated gene ( 1.9 -fold) after 6-h oleic acid treatment, but it was much more lowly expressed compared with PLIN2 (average transcript per million [TPM] of PLIN2, 1,104.90; average TPM 接下来,我们试图研究Plin2在1型损伤的PT细胞中上调的机制。之前的研究报道,PLIN2的表达可通过细胞摄取脂肪酸或内质网(ER)应激而增加(Chen等人,2017;Dalen等人,2006;Gao和Serrero,1999)。因此,我们将脂肪酸或化学ER应激诱导剂暴露于RPTECs上。通过qPCR分析,我们观察到油酸或棕榈脂肪酸处理6小时后,PLIN2的表达增加了 ∼10\sim 10 -倍(图4G)。当细胞暴露在不含脂肪酸补充剂的培养基中2天时,PLIN2的表达明显降低(图4G),这表明PLIN2的表达水平与脂质的丰度呈正相关。6小时的ER应激诱导剂(包括Tunicamycin和Thapsigargin)处理也能增加PLIN2的表达,但其折叠变化( ∼1.5-\sim 1.5- 折叠)远低于脂肪酸处理所观察到的(图S4B)。我们还对脂肪酸处理过的 RPTEC 进行了免疫荧光检测,结果证实几乎所有细胞中的 PLIN2 蛋白表达都强烈上调(图 4H)。利用上述 RPTECs 的大量 RNA-seq 数据,我们调查了所有 PLIN 家族成员的基因表达情况(图 S4C),发现 PLIN4 是另一个在油酸处理 6 小时后显著上调的基因(1.9 倍),但与 PLIN2 相比,它的表达量要低得多(PLIN2 的平均百万转录本 [TPM],1,104.90;PLIN4 的平均百万转录本 [TPM],1,104.90;PLIN4 的平均百万转录本 [TPM],1,104.90)。
of PLIN4, 0.93). Therefore, in vitro modeling of PLIN2 activation was consistent with our in vivo observation in uni-IRI mouse surgery, indicating that fatty acid exposure is sufficient to induce PLIN2 upregulation in PT cells. PLIN4,0.93)。因此,PLIN2激活的体外模型与我们在单IRI小鼠手术中的体内观察结果一致,表明脂肪酸暴露足以诱导PT细胞中的PLIN2上调。
To further investigate the functional significance of PLIN2 in response to lipid accumulation, we performed PLIN2 gene knockdown with small interfering RNA (siRNA) on RPTECs. Successful gene knockdown was validated with qPCR analysis, revealing ∼15\sim 15 - to 20 -fold decreased expression of PLIN2 in cells treated with PLIN2 siRNA (siPLIN2) both with and without fatty acid exposure compared with corresponding controls (Figure S4D). Importantly, siPLIN2 treatment did not significantly alter fatty acid uptake and lipid accumulation as demonstrated by Oil Red O staining (Figure S4E). Next, to ask whether PLIN2 was important for cellular metabolic activities, we imposed 6-h fatty acid treatment on RPTECs with or without siPLIN2 and measured real-time OCR and ECAR. In the absence of fatty acid pretreatment, we observed a significantly reduced OCR and ECAR in cells treated with siPLIN2 compared with cells treated with non-targeting control siRNA (siNT) (Figures 4 I and S4F). With 6-h oleic or palmitic acid pretreatment, both OCR and ECAR were significantly increased in siNT-treated cells (Figures 41 and S4F), consistent with our results presented in Figure 31 . By contrast, for cells treated with siPLIN2, the decreased OCR was only partially reversed by 6-h palmitic acid pretreatment and could not be increased by oleic acid exposure (Figures 4 I and S4F), implying defective lipid metabolism after PLIN2 knockdown. Both decreased OCR and ECAR suggested that siPLIN2 knockdown drove a metabolically quiescent cell state. 为了进一步研究 PLIN2 在脂质积累中的功能意义,我们用小干扰 RNA(siRNA)对 RPTECs 进行了 PLIN2 基因敲除。通过 qPCR 分析验证了基因敲除的成功,结果显示,与相应的对照组相比,用 PLIN2 siRNA(siPLIN2)处理过和没有接触过脂肪酸的细胞中 PLIN2 的表达都下降了 ∼15\sim 15 - 到 20 - 倍(图 S4D)。重要的是,油红 O 染色显示,siPLIN2 处理并没有明显改变脂肪酸摄取和脂质积累(图 S4E)。接下来,为了弄清PLIN2对细胞代谢活动是否重要,我们在有或没有siPLIN2的RPTECs上施加了6小时脂肪酸处理,并测量了实时OCR和ECAR。在没有脂肪酸预处理的情况下,我们观察到与非靶向对照 siRNA(siNT)处理的细胞相比,siPLIN2 处理的细胞的 OCR 和 ECAR 明显降低(图 4 I 和 S4F)。经 6 小时油酸或棕榈酸预处理后,siNT 处理的细胞的 OCR 和 ECAR 均明显增加(图 41 和 S4F),这与图 31 中的结果一致。相比之下,用 siPLIN2 处理的细胞,OCR 的降低仅在棕榈酸预处理 6 小时后被部分逆转,并且不能通过油酸暴露而增加(图 4 I 和 S4F),这意味着 PLIN2 敲除后的脂质代谢缺陷。OCR和ECAR的降低都表明,siPLIN2敲除导致细胞处于代谢静止状态。
Next, we exposed siPLIN2-treated RPTECs to oleic acids for 6 h (siPLIN2 + Ole6 h) and performed RNA-seq to determine the transcriptomic variations caused by gene knockdown. Compared with the siNT + Ole6 h group, the siPLIN2-treated cells upregulated genes associated with autophagy and reticulophagy (GO term FDR =4.28 xx10^(-3)=4.28 \times 10^{-3} ) such as genes encoding autophagy activating kinases ULK1/2 (Figure 4J). Previous studies have reported autophagy can induced by cell stress and nutrient deprivation in kidney and persistent activation of autophagy after kidney injury leads to maladaptive repair (Tang et al., 2020), implying that normal PLIN2 function could be essential for successful repair of Type1 injured PT cells. We also 接下来,我们将 siPLIN2 处理的 RPTECs 暴露于油酸 6 h(siPLIN2 + Ole6 h),并进行 RNA-seq 分析,以确定基因敲除引起的转录组变化。与 siNT + Ole6 h 组相比,siPLIN2 处理的细胞上调了与自噬和网状吞噬相关的基因(GO term FDR =4.28 xx10^(-3)=4.28 \times 10^{-3} ),如编码自噬激活激酶 ULK1/2 的基因(图 4J)。先前的研究表明,肾脏细胞应激和营养剥夺可诱导自噬,肾脏损伤后自噬的持续激活会导致不适应性修复(Tang 等,2020),这意味着 PLIN2 的正常功能可能对 1 型损伤 PT 细胞的成功修复至关重要。我们还
identified a decreased glucose metabolism gene profile and increased expression of genes involved in amino acid transport in siPLIN2 + Ole 6 h cells compared with siNT + Ole6 h (Figure 4J). The reduced expression of genes responsible for glycolysis (GO term FDR =4.22 xx10^(-3)=4.22 \times 10^{-3} ) such as ENO1/2 and HK1/2 was consistent with our observation of decreased ECAR after PLIN2 knockdown (Figure 4I). 与 siNT + Ole6 h 相比,siPLIN2 + Ole 6 h 细胞中葡萄糖代谢基因谱减少,参与氨基酸转运的基因表达增加(图 4J)。负责糖酵解的基因(GO term FDR =4.22 xx10^(-3)=4.22 \times 10^{-3} )如 ENO1/2 和 HK1/2 的表达减少与我们观察到的 PLIN2 敲除后 ECAR 的减少一致(图 4I)。
In the above analysis, we found that genes associated with DNA replication and cell-cycle regulation were upregulated in Ole_6 h + 2 days cells compared with control cells (Figure 3J). We wondered whether PLIN2 knockdown undermined this cellular event as it disrupted the metabolic cellular response after 6-h fatty acid exposure. Thus, cells exposed to normal culture medium for 2 days after the 6-h oleic acid treatment (siPLIN2 + Ole6 h+2\mathrm{h}+2 days) were analyzed by RNA-seq. Compared with siNT + Ole6 h + 2 days, we found that DNA replication was a downregulated GO term in siPLIN2+Ole6 h+2\mathrm{h}+2 days cells (FDR =7.72 xx10^(-5)=7.72 \times 10^{-5} ), reflected by decreased expression of genes associated with DNA primase activity (e.g., GINS1/2 and PRIM2), DNA polymerase regulation (e.g., RFC2/5 and PCNA) and genes encoding MCM proteins (Figure S4G). Therefore, this RNA-seq analysis indicated that PLIN2 knockdown reduced activities of DNA replication and cell proliferation after 6-h fatty acid uptake. 在上述分析中,我们发现与对照细胞相比,与DNA复制和细胞周期调控相关的基因在Ole_6 h + 2天细胞中上调(图3J)。我们想知道,PLIN2 基因敲除是否会破坏这一细胞事件,因为它破坏了脂肪酸暴露 6 小时后的细胞代谢反应。因此,在6小时油酸处理后暴露于正常培养基2天(siPLIN2 + Ole6 h+2\mathrm{h}+2 天)的细胞进行了RNA-seq分析。与 siNT + Ole6 h + 2 天相比,我们发现在 siPLIN2+Ole6 h+2\mathrm{h}+2 天细胞中,DNA 复制是一个下调的 GO 项(FDR =7.72 xx10^(-5)=7.72 \times 10^{-5} ),这反映在与 DNA 引物酶活性(如 GINS1/2 和 PRIM2)、DNA 聚合酶调控(如 RFC2/5 和 PCNA)和编码 MCM 蛋白的基因的表达减少上(图 S4G)。因此,RNA-seq分析表明,PLIN2基因敲除会降低6小时脂肪酸摄取后的DNA复制和细胞增殖活性。
Taken together, our results highlight PLIN2 as a marker of intracellular lipid droplets in Type1 injured PT cells and knockdown studies show that PLIN2 regulates energy homeostasis in PT cells. 综上所述,我们的研究结果表明,PLIN2 是 1 型损伤 PT 细胞中细胞内脂滴的标记物,而基因敲除研究表明 PLIN2 调节 PT 细胞的能量平衡。
To better characterize the metabolic consequences of Type2 injured PT, we performed PPI enrichment analysis and identified amino acid metabolism as a downregulated pathway compared with healthy PT (Figure S5A), consistent with previous studies reporting defective amino acid metabolisms in CKD (Garibotto et al., 2010; Kang et al., 2014). We also identified several genes associated with amino acid transport and catalysis that were among top upregulated markers of S3 segment cells of Type2 injured PT, including Bcat1, S/c6a6, and Slc7a12 (Figure 5A). A survey of the Human Protein Atlas (Uhlén et al., 2015) confirmed that the proteins encoded by these genes were expressed in the renal tubule. Revisiting a published RNA-seq work on PT-enriched transcripts of UUO mice (Wu et al., 2020) further validated increased expression of Bcat1, S/c6a6, and S/c7a12, as well as other DEGs of Type2 injured PT, in UUO D5/10 mouse kidneys than contralateral control kidneys (Figure S5B). 为了更好地描述 2 型损伤 PT 的代谢后果,我们进行了 PPI 富集分析,发现与健康 PT 相比,氨基酸代谢是一个下调途径(图 S5A),这与之前报告 CKD 中氨基酸代谢缺陷的研究一致(Garibotto 等,2010 年;Kang 等,2014 年)。我们还发现了几个与氨基酸转运和催化相关的基因,这些基因是2型损伤PT的S3节段细胞的最高上调标志物,包括Bcat1、S/c6a6和Slc7a12(图5A)。对人类蛋白质图谱(Human Protein Atlas)的调查(Uhlén 等人,2015 年)证实,这些基因编码的蛋白质在肾小管中表达。对已发表的关于 UUO 小鼠 PT 富集转录本的 RNA-seq 研究(Wu 等人,2020 年)进行重访,进一步验证了 Bcat1、S/c6a6 和 S/c7a12 以及其他 2 型损伤 PT 的 DEGs 在 UUO D5/10 小鼠肾脏中的表达量比对侧对照肾脏高(图 S5B)。
Bcat1 is branched-chain amino acid (BCAA) transaminase 1 and it is responsible for transamination of BCAAs (including leucine, isoleucine, and valine) resulting in production of branched chain keto acids (BCKAs) and glutamate (Adeva et al., 2011). Immunostaining results verified that the expression of BCAT1 was specific to PT cells and mostly limited to UUO (Figure 5B), where Type2 injured cells were highly abundant. The upregulation of BCAT1, compared with healthy controls, was also observed in UUO D10/14 (Figures 5B and S5C), in which the Type2 state still existed. In addition, we found that genes that are responsible for BCKA catalysis, including Bckdha, Bckdhb, and Ppm1k, were downregulated in injured PT Bcat1是支链氨基酸(BCAA)转氨酶1,负责BCAA(包括亮氨酸、异亮氨酸和缬氨酸)的转氨作用,从而产生支链酮酸(BCKAs)和谷氨酸(Adeva等人,2011年)。免疫染色结果证实,BCAT1的表达特异于PT细胞,且主要局限于UUO(图5B),在UUO中,2型损伤细胞大量存在。与健康对照组相比,在UUO D10/14中也观察到了BCAT1的上调(图5B和S5C),其中2型状态仍然存在。此外,我们还发现,负责 BCKA 催化的基因,包括 Bckdha、Bckdhb 和 Ppm1k,在损伤的 PT
compared with healthy PT (Figure S5D), confirming a recent report (Piret et al., 2021). Next, we measured the concentration of BCAAs in mouse kidney cortical tissues across multiple time points. We identified an increased BCAA accumulation during the UUO time course, and the concentration in the uni-IRI time course was not changed too much (Figure 5C). Re-analyzing a previous human dataset (Nakagawa et al., 2015) confirmed a significantly increased BCAT1 expression in patients with CKD than controls (Figure 5D). 与健康 PT 相比(图 S5D),这证实了最近的一份报告(Piret 等人,2021 年)。接下来,我们测量了多个时间点小鼠肾皮质组织中 BCAAs 的浓度。我们发现在 UUO 时间过程中 BCAA 积累增加,而在 uni-IRI 时间过程中浓度变化不大(图 5C)。重新分析之前的人类数据集(Nakagawa 等人,2015 年)证实,与对照组相比,CKD 患者的 BCAT1 表达量显著增加(图 5D)。
SLC6A6, also known as TauT, is a transporter of the sulfurcontaining amino acid taurine, and the accumulation of taurine has been described in patients with kidney failure (Mozaffari, 2003; Suliman et al., 2002). We found the expression of SLC6A6 was also significantly elevated in patients with CKD than healthy controls (Figure 5E). Next, we validated the increased expression of S/c6a6 in Type2 injured PT by RNA in situ hybridization (RNA ISH), in which the expression of S/c6a6 was not observed in healthy and uni-IRI samples, but was upregulated as early as at UUO D2 in outer stripe of the outer medulla (OSOM) of kidney, where S3 segment of PT cells are supposed to locate, (Figure 5F). We also co-stained SIc6a6 with Havcr1 and validated the expression of S/c6a6 in Havcr1-expressing injured PT (Figure S5E). S/c7a12 encodes a transporter for cationic amino acids and recent work demonstrated that S/c7a12 was present in kidney PT in disease and the upregulation was accompanied by emergence of Vcam1-expressing FR-PTC (Gerhardt et al., 2021), concordant with our analysis identifying the high probability of Type2 injured PT differentiating into FR-PTC (Figures 2F and 2G). Taken together, these results suggest that Type2 PT cells are characterized by dysregulated amino acid metabolisms. SLC6A6 又称 TauT,是含硫氨基酸牛磺酸的转运体,已有肾衰竭患者出现牛磺酸蓄积的描述(Mozaffari,2003;Suliman 等人,2002)。我们发现,与健康对照组相比,SLC6A6 在 CKD 患者中的表达也明显升高(图 5E)。接下来,我们通过 RNA 原位杂交(RNA ISH)验证了 S/c6a6 在 2 型损伤 PT 中表达的增加,其中 S/c6a6 的表达在健康样本和单 IRI 样本中均未观察到,但早在 UUO D2 阶段,S/c6a6 的表达就在肾脏外髓质的外侧条纹(OSOM)中上调,而 S3 段 PT 细胞应该位于外侧条纹(图 5F)。我们还将 SIc6a6 与 Havcr1 共同染色,验证了 S/c6a6 在表达 Havcr1 的损伤 PT 中的表达(图 S5E)。S/c7a12 编码阳离子氨基酸转运体,最近的研究表明,S/c7a12 存在于患病的肾脏 PT 中,其上调伴随着表达 Vcam1 的 FR-PTC 的出现(Gerhardt 等人,2021 年),这与我们的分析结果一致,即 2 型损伤 PT 极有可能分化为 FR-PTC(图 2F 和 2G)。综上所述,这些结果表明,2 型 PT 细胞的特点是氨基酸代谢失调。
Shared and unique cellular response of tubular epithelia in fibrogenesis 纤维形成过程中肾小管上皮细胞共同和独特的细胞反应
Our analysis revealed that most injured PT cells in uni-IRI repair (Figure 2E, left panel), whereas they do not in UUO (Figure 2E, right panel). We next sought to compare shared and unique responses to injury across tubular epithelial cell types. We identified multiple subtypes of LoH (Figure 6A) and cells of the distal nephron, including DCT, CNT, and PCs of collecting duct (Figure 6B) and Type A and Type B intercalated cells of collecting duct (Figure S6A). Subclustering of LoH showed TAL to be the abundant population, and it expressed marker genes such as SIc12a1 and Umod (Figure 6C). TAL cells could also be stratified by their cortical (Kng2/Thsd4 high) or medullary (Mrps6/ Tmem207 high), as could PCs of the collecting duct (medullary PC2, Pcdh7 high; cortical PC3, Mgat4c high) (Figure S6B). Interestingly, we found another group of TAL-expressing healthy marker genes at a lower level and showing enhanced expression of a well-known injury marker Lcn2 (also known as Ngal) that we annotated as injured TAL (TAL-inj). TAL-inj also showed upregulation of Kctd1, a gene that regulates reabsorption of paracellular urinary Ca^(2+)//Mg^(2+)\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+} and performs a protective role in kidney fibrosis (Marneros, 2020, 2021). Compared with healthy TAL, cells of TAL-inj showed increased expression of genes associated with profibrotic and proinflammatory signaling, such as Tgfbr1, Map3k1, Stat3, and Myh9 (Figure S6C). GO enrichment analysis presented terms that also appeared in injured PT, such as cell junction organization, actin cytoskeleton regulation, 我们的分析表明,在单IRI修复过程中,大多数受伤的PT细胞会修复(图2E,左侧面板),而在UUO中则不会(图2E,右侧面板)。接下来,我们试图比较不同类型的肾小管上皮细胞对损伤的共同和独特反应。我们确定了 LoH 的多种亚型(图 6A)和远端肾小管的细胞,包括集合管的 DCT、CNT 和 PCs(图 6B)以及集合管的 A 型和 B 型夹层细胞(图 S6A)。LoH的亚聚类显示TAL是大量的细胞群,它表达SIc12a1和Umod等标记基因(图6C)。TAL 细胞也可按皮质(Kng2/Thsd4 高)或髓质(Mrps6/ Tmem207 高)分层,集合管的 PCs 也是如此(髓质 PC2,Pcdh7 高;皮质 PC3,Mgat4c 高)(图 S6B)。有趣的是,我们发现另一组 TAL 表达健康标记基因的水平较低,而著名的损伤标记基因 Lcn2(又称 Ngal)表达增强,我们将其注释为损伤 TAL(TAL-inj)。TAL-inj还显示出Kctd1的上调,Kctd1是一种调节尿液旁 Ca^(2+)//Mg^(2+)\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+} 重吸收的基因,在肾脏纤维化中起保护作用(Marneros,2020,2021)。与健康的TAL相比,TAL-inj细胞中与促纤维化和促炎症信号转导相关的基因,如Tgfbr1、Map3k1、Stat3和Myh9的表达增加了(图S6C)。GO富集分析显示的术语也出现在受伤的PT中,如细胞连接组织、肌动蛋白细胞骨架调控等、
Figure 6. Shared and unique injury responses of renal tubular epithelial cells 图 6.肾小管上皮细胞共同和独特的损伤反应
(A and B) UMAP plots of cells of LoH (A) and DCT, CNT, and PC (B) in subclustering analysis. Abbreviations of cell types have been described in Figure 1D. ( CC and DD ) Dot plots showing expression of genes specific to cell clusters identified in (A) and (B). Visualization was performed on dataset combining both uni-IRI and UUO subsets. (A 和 B)亚聚类分析中 LoH 细胞(A)和 DCT、CNT 和 PC 细胞(B)的 UMAP 图。细胞类型缩写见图 1D。( CC 和 DD ) 点阵图显示了(A)和(B)中确定的细胞簇特异基因的表达。可视化是在结合了 uni-IRI 和 UUO 子集的数据集上进行的。
(E) Connected bar plots displaying the proportional abundance of healthy and injured TECs (including TAL, DCT, and CNT) in each group condition, which identifies a shared injury response of TECs in an insult-dependent manner. (E)连接的柱状图显示了各组条件下健康和损伤的 TEC(包括 TAL、DCT 和 CNT)的丰度比例,这表明 TEC 以损伤依赖的方式做出了共同的损伤反应。
(F) Heatmaps presenting expression of genes that are either co-varied across all injured TECs or dysregulated in a cell-type-specific manner compared with the healthy state of each TEC. (F) 热图显示了与健康状态相比,所有受伤的 TEC 基因表达共变或以细胞类型特异性的方式表达失调的基因。
Article 文章
cell migration, and epithelial cell differentiation (Figure S6D). Using a similar approach, we identified injured DCT (DCT-inj) and CNT (CNT-inj) both of which showed downregulated healthy marker genes (e.g., Slc12a3 for DCT and S/c8a1 for CNT) and increased expression of fibrotic genes (Figures 6D and S6E). We identified Trpv5, a gene encoding a calcium channel essential for Ca^(2+)\mathrm{Ca}^{2+} reabsorption in kidney (De Groot et al., 2008), as upregulated in both DCT-inj and CNT-inj. 细胞迁移和上皮细胞分化(图 S6D)。使用类似的方法,我们鉴定了损伤的DCT(DCT-inj)和CNT(CNT-inj),这两种基因都显示健康标记基因下调(如DCT的Slc12a3和CNT的S/c8a1)和纤维化基因表达增加(图6D和S6E)。我们发现,编码肾脏 Ca^(2+)\mathrm{Ca}^{2+} 重吸收所必需的钙通道的基因Trpv5(De Groot等人,2008年)在DCT-inj和CNT-inj中均上调。
We next surveyed the transition between these epithelial cells in health and disease across the full time course of either uni-IRI and UUO. We found that injury cell states (i.e., TAL-inj, DCT-inj, and CNT-inj) were largely absent in healthy kidneys (Figure 6E), but as expected, their numbers increased after either insult. Similar to PT, injured TAL, DCT, and CNT took on a transient injury state but then repaired at later time points, whereas these same cell types remained injured through the UUO time course (Figure 6E). 接下来,我们调查了这些上皮细胞在健康和疾病状态下,在单IRI和UUO的整个过程中的转变情况。我们发现,健康肾脏中基本不存在损伤细胞状态(即 TAL-inj、DCT-inj 和 CNT-inj)(图 6E),但正如预期的那样,它们的数量在两种损伤后都有所增加。与 PT 相似,受伤的 TAL、DCT 和 CNT 呈短暂的损伤状态,但随后会在较后的时间点修复,而这些相同类型的细胞在整个 UUO 时间过程中仍处于损伤状态(图 6E)。
We examined the DEGs for each injured subtype compared with its healthy state and identified those that were common to all injury states (Figure 6F, left panel). For example, Spp1 encodes osteopontin, a pleiotropic glycoprotein, which is induced in both AKI and CKD and is important for tubulogenesis (Kaleta, 2019; Khamissi et al., 2022; Wu et al., 2022). Here, its upregulation was observed not only in TAL/DCT/ CNT, but also in PT, though the expression is more increased in Type2 injured PT than the Type1 state. We also identified Nrg1, which modifies EGFR signaling, as a gene that co-varied across injury states (Harskamp et al., 2016). Some identified genes have poorly understood functions in epithelia, such as Syne2, which contributes to maintenance of the nuclear envelope structure, though its role in cell proliferation in skin wound healing has also been noted (Rashmi et al., 2012). We also identified Wwc1 as an injury-associated gene and its protein product (also known as KIBRA, kidney- and brain-expressed protein) is an upstream regulator of Hippo pathway and KIBRA overexpression can disrupt cytoskeleton of podocytes via inhibiting YAP signaling (Meliambro et al., 2017). Each injured nephron segment also expressed transcripts unique to that segment (Figure 6F, right panel), such as upregulation of Rbms3 (encoding a c-Myc single-strand-binding protein; Penkov et al., 2000) in TAL-inj and decreased expression of Plcl1 (encoding a regulator of GABA(A)\operatorname{GABA}(\mathrm{A}) receptors; Kanematsu et al., 2007) in CNT-inj. 我们研究了每种损伤亚型的 DEGs 与其健康状态的 DEGs,并确定了所有损伤状态下的共同 DEGs(图 6F,左侧面板)。例如,Spp1编码骨蛋白,这是一种多向糖蛋白,在AKI和CKD中都会被诱导,对肾小管生成很重要(Kaleta,2019;Khamissi等人,2022;Wu等人,2022)。在这里,不仅在 TAL/DCT/ CNT 中观察到其上调,在 PT 中也观察到其上调,但在 2 型损伤 PT 中的表达比 1 型状态下更高。我们还发现,改变表皮生长因子受体(EGFR)信号转导的 Nrg1 也是一个在不同损伤状态下共同变化的基因(Harskamp 等人,2016 年)。一些已发现的基因在上皮细胞中的功能尚不清楚,如 Syne2,它有助于维持核膜结构,但它在皮肤伤口愈合的细胞增殖中的作用也已被注意到(Rashmi 等人,2012 年)。我们还发现 Wwc1 是一种损伤相关基因,其蛋白产物(又称 KIBRA,肾和脑表达蛋白)是 Hippo 通路的上游调节因子,KIBRA 过表达可通过抑制 YAP 信号转导破坏荚膜细胞的细胞骨架(Meliambro 等人,2017 年)。每个受伤的肾小管节段也表达该节段特有的转录本(图 6F 右侧面板),如 TAL-inj 中 Rbms3(编码一种 c-Myc 单链结合蛋白;Penkov 等人,2000 年)上调,CNT-inj 中 Plcl1(编码一种 GABA(A)\operatorname{GABA}(\mathrm{A}) 受体调节因子;Kanematsu 等人,2007 年)表达减少。
Heterogeneity of kidney stroma 肾脏基质的异质性
In response to injury, kidney resident pericytes and fibroblasts proliferate and differentiate into myofibroblasts with increased cell motility and extracellular matrix (ECM) deposition, contributing to kidney fibrosis (Kuppe et al., 2021; Sato and Yanagita, 2017). However, it remains unclear whether the fibroblasts or myofibroblasts are homogeneous populations or heterogeneous groups with subtypes performing distinct functions (Humphreys, 2018). Therefore, we next aimed to characterize kidney stromal cell heterogeneity. 为应对损伤,肾脏常驻周细胞和成纤维细胞增殖并分化为肌成纤维细胞,细胞运动性和细胞外基质(ECM)沉积增加,导致肾脏纤维化(Kuppe 等人,2021 年;Sato 和 Yanagita,2017 年)。然而,目前仍不清楚成纤维细胞或肌成纤维细胞是同质群体还是具有不同功能亚型的异质群体(Humphreys,2018)。因此,我们接下来的目标是鉴定肾脏基质细胞的异质性。
Subclustering of fibroblasts and myofibroblasts led to identification of multiple subtypes of kidney stroma including Ren1-expressing JGA cells (Figures 7A and S7A). Three clusters showed elevated expression of Acta2 and Col1a1, classic myofibroblast marker genes (Myo-2/3/4) (Figures 7A and S7A). One subpopulation (Myo-1) exhibited high transcriptomic similarity with Myo2//3//42 / 3 / 4 and showed increased expression of multiple myosin genes (Figure S7B), suggesting an enhanced capacity for cell migration and contraction, so we considered this as a myofibroblast subtype as well. We annotated the remaining clusters as fibroblasts (Fib-1/2/3) due to the presence of fibroblast marker genes and their high abundance in healthy kidneys (Figure 7B). Time course analysis revealed that in uni-IRI, the total number of (myo)fibroblasts peaked at day 2 and was then decreased moderately with time (Figure S7C, left panel), whereas in UUO, myofibroblasts accumulated across the time course accounting for over 30% of the total kidney cells at D14 (Figure S7C, right panel). 对成纤维细胞和肌成纤维细胞进行亚群分类,发现了肾基质的多种亚型,包括表达 Ren1 的 JGA 细胞(图 7A 和 S7A)。有三个细胞群显示典型的肌成纤维细胞标记基因(Myo-2/3/4)Acta2 和 Col1a1 表达升高(图 7A 和 S7A)。一个亚群(Myo-1)表现出与 Myo 2//3//42 / 3 / 4 高度的转录组相似性,并显示多个肌球蛋白基因的表达增加(图 S7B),表明细胞迁移和收缩能力增强,因此我们将其也视为肌成纤维细胞亚型。由于成纤维细胞标记基因的存在及其在健康肾脏中的高丰度(图 7B),我们将其余的集群注释为成纤维细胞(Fib-1/2/3)。时间进程分析表明,在 uni-IRI 中,(肌)成纤维细胞的总数在第 2 天达到峰值,然后随着时间的推移适度减少(图 S7C,左侧面板),而在 UUO 中,肌成纤维细胞在整个时间进程中不断积累,在第 14 天时占肾脏细胞总数的 30% 以上(图 S7C,右侧面板)。
Kidney stromal heterogeneity included differences in regional localization. We identified Fib-1/2 as cortical fibroblasts (Itih5 high) and Fib-3 and Myo-4 as medullary (Spon1/Bmpr1b high) (Figure S7A). We found that Myo-4 specifically expressed Prickle1 (Figure S7A), which encodes a nuclear receptor that regulates cell polarity and is involved in Wnt signaling (Yang et al., 2013). Immunofluorescence analysis on UUO D10 tissues confirmed that PRICKLE1 was specifically expressed on nuclear membranes of alpha\alpha-SMA+ myofibroblasts in the inner medulla, but not in cortical regions (Figure 7C). The regional heterogeneity of stromal cells was further confirmed by spatial transcriptomic analysis of an existing dataset (Dixon et al., 2022), which indicated a higher expression of Itih5 in cortex than medulla and me-dulla-specific expression of Spon1 and Bmpr1b (Figures 7D and S7D). 肾脏基质异质性包括区域定位的差异。我们确定 Fib-1/2 为皮质成纤维细胞(Itih5 高),Fib-3 和 Myo-4 为髓质成纤维细胞(Spon1/Bmpr1b 高)(图 S7A)。我们发现Myo-4特异性表达Prickle1(图S7A),Prickle1编码一种调节细胞极性并参与Wnt信号转导的核受体(Yang等人,2013年)。UUO D10组织的免疫荧光分析证实,PRICKLE1在内侧髓质的 alpha\alpha -SMA+肌成纤维细胞的核膜上特异表达,而在皮质区域则没有(图7C)。对现有数据集(Dixon 等人,2022 年)进行的空间转录组学分析进一步证实了基质细胞的区域异质性,该分析表明皮质中 Itih5 的表达高于髓质,Spon1 和 Bmpr1b 的表达也具有髓质特异性(图 7D 和 S7D)。
Next, we assessed functional differences between myofibroblast subtypes. In addition to high expression of myosin genes (Figures 7E and S7B), Myo-1 cells showed increased expression of ////34/ / 34 and components of the ERK/MAPK pathway (Figures S7A and S7E), indicating their inflammatory properties (Boström and Lundberg, 2013; Pat et al., 2003; Shoji et al., 2016). For Myo-2 cells, we observed upregulation of l/31ra (Figure S7A), a gene that is crucial for IL-31 signaling and has been found overexpressed in dermal fibroblasts of patients with systemic sclerosis (Kuzumi et al., 2021). Importantly, Myo-2 cells exhibited significantly enhanced activity of the mitochondrial respiratory chain as indicated by gene module scoring analysis (Mann-Whitney U test) (Figure 7E), including subunits of NADH:ubiquinone oxidoreductase, ubiquinol-cytochrome c (CYC) reductase, CYC oxidase, and ATP synthase (Figure S7F). A majority of heat-shock-protein-encoding genes were also upregulated in Myo-2 (Figures 7E and S7G), indicating that these cells performed highly active metabolic activities and stress response. In addition, even though all these myofibroblast subtypes had increased expression of Acta2 and Col1a1 compared with the other kidney cell types, we noticed that one myofibroblast cluster, Myo-3, exhibited the highest expression of these genes and ECM deposition score (Figure 7E), including elevated expression of various glycoproteins, collagens, and proteoglycans (Figure S 7 H ). Therefore, we annotated myofibroblast (Myo-3) as the major population responsible for ECM synthesis in kidney fibrosis. Although highly abundant collagens (i.e., COL1 and COL3) were mostly detected in Myo-3, we found that genes encoding rare collagens, such as Col6a3, Col6a4, Col7a1, and Col9a1, were produced in myofibroblast group Myo-4 (Figure S71), highlighting potential functional differences within myofibroblast subtypes. 接下来,我们评估了肌成纤维细胞亚型之间的功能差异。除了肌球蛋白基因的高表达(图 7E 和 S7B)外,Myo-1 细胞还显示出 ////34/ / 34 和 ERK/MAPK 通路成分的表达增加(图 S7A 和 S7E),这表明它们具有炎症特性(Boström 和 Lundberg,2013 年;Pat 等人,2003 年;Shoji 等人,2016 年)。对于 Myo-2 细胞,我们观察到了 l/31ra 的上调(图 S7A),该基因对 IL-31 信号转导至关重要,在系统性硬化症患者的真皮成纤维细胞中发现了该基因的过度表达(Kuzumi 等人,2021 年)。重要的是,通过基因模块评分分析(曼-惠特尼U检验),Myo-2细胞的线粒体呼吸链活性明显增强(图7E),包括NADH:泛醌氧化还原酶、泛醌-细胞色素c(CYC)还原酶、CYC氧化酶和ATP合成酶的亚基(图S7F)。大多数热休克蛋白编码基因也在Myo-2中上调(图7E和S7G),表明这些细胞进行着高度活跃的代谢活动和应激反应。此外,尽管与其他肾脏细胞类型相比,所有这些肌成纤维细胞亚型的 Acta2 和 Col1a1 表达量都有所增加,但我们注意到,其中一个肌成纤维细胞集群 Myo-3 的这些基因表达量和 ECM 沉积得分最高(图 7E),包括各种糖蛋白、胶原和蛋白多糖的表达量升高(图 S 7H)。因此,我们将肌成纤维细胞(Myo-3)命名为肾脏纤维化中负责 ECM 合成的主要群体。 虽然高含量胶原(即 COL1 和 COL3)大多在 Myo-3 中检测到,但我们发现编码罕见胶原(如 Col6a3、Col6a4、Col7a1 和 Col9a1)的基因在肌成纤维细胞组 Myo-4 中产生(图 S71),这突显了肌成纤维细胞亚型内部潜在的功能差异。
Dynamics of cell-cell interactions in kidney fibrogenesis Intercellular communication drives kidney fibrosis. We analyzed cell-cell interaction (CCI) activity across all major cell types based on their ligand-receptor transcriptomic signature and identified that fibroblast and myofibroblast displayed the strongest capacity to interact with other cell types (Figure 7F). We also observed higher CCI activity in diseased PT cells (e.g., Type1/2 injured PT and FR-PTC) compared with healthy PT (Figure 7F). We calculated CCI scores across the uni-IRI and UUO time courses and found that the total number of significant CCls was low in health but increased after injury (Figure 7G). Specifically, in uni-IRI, the number of interactions peaked at day 2 and then gradually decreased, and in UUO, we observed an increasing activity of CCl which reached highest level at around day 10 (Figure 7G). 肾脏纤维化过程中的细胞-细胞相互作用动力学 细胞间通信驱动肾脏纤维化。我们根据配体-受体转录组特征分析了所有主要细胞类型的细胞-细胞相互作用(CCI)活性,发现成纤维细胞和肌成纤维细胞与其他细胞类型相互作用的能力最强(图 7F)。我们还观察到,与健康 PT 相比,患病 PT 细胞(如 1/2 型损伤 PT 和 FR-PTC)的 CCI 活性更高(图 7F)。我们计算了单IRI和UUO时间进程中的CCI评分,发现健康时有意义的CCl总数较少,但损伤后有所增加(图7G)。具体而言,在单IRI中,相互作用的数量在第2天达到峰值,然后逐渐减少;在UUO中,我们观察到CCl的活性不断增加,在第10天左右达到最高水平(图7G)。
We next characterized PT and myofibroblast crosstalk. Fibroblasts and myofibroblasts were grouped together and CCI scores were calculated with healthy PT, FR-PTC, and injured PT. We found that interactions between FR-PTC and fibroblasts (FR-fibroblast) had the most robust CCl score (Figure 7H). In uniIRI, we observed a strong FR-fibroblast interaction beginning at day 2 when FR-PTC started to expand, and interestingly, the interaction was still active at day 28 (Figure 7H), even though FR-PTC only constituted < 5%<5 \% of the total PT cells at this point (Figure 2E). In UUO, a similar pattern was evident beginning at day 6 (Figure 7H). The importance of FR-fibroblast interactions 我们接下来描述了 PT 和肌成纤维细胞串扰的特征。我们将成纤维细胞和肌成纤维细胞分组,并计算了健康 PT、FR-PTC 和损伤 PT 的 CCI 分数。我们发现,FR-PTC 与成纤维细胞之间的相互作用(FR-成纤维细胞)具有最稳健的 CCl 评分(图 7H)。在 uniIRI 中,我们观察到从第 2 天开始,当 FR-PTC 开始扩张时,FR-成纤维细胞之间的相互作用很强,有趣的是,尽管此时 FR-PTC 只占 PT 细胞总数的 < 5%<5 \% ,但这种相互作用在第 28 天仍很活跃(图 7H)(图 2E)。在 UUO 中,类似的模式从第 6 天开始就很明显(图 7H)。FR-成纤维细胞相互作用的重要性
encouraged us to identify molecule pairs responsible for the communication between the two cell types. In addition to strong interactions between fibroblast integrins and VCAM1/COL18A1/ SPP1 expressed by FR-PTC (Figure S7J), we identified CD44FGFR2 as a significantly dysregulated receptor-receptor pair in both uni-IRI and UUO (Figure S7J). The CD44-FGFR2 interaction was highly specific to the FR-fibroblast CCl as its activity was not statistically significant in interactions between fibroblasts and other PT subtypes (Figure S7K). CD44 is a receptor for hyaluronic acid, and its upregulation in injured PT cells has been well characterized (Lewington et al., 2000; Schiessl et al., 2018), and FGFR2 is known to be essential for kidney development and its ablation ameliorates kidney fibrosis (Hains et al., 2008; Xu and Dai, 2017). In our dataset, Cd44 was specifically expressed in FR-PTC and Fgfr2 could be detected in multiple (myo)fibroblast subtypes with highest expression in Myo-1 (Figure S7L), which reinforced the critical role of CD44-FGFR2 interaction in FR-fibroblast intercellular communication. In addition, we also examined communications between fibroblasts and LoH cells, identifying enhanced activity of EPHB2-EFNA5 interaction in kidney fibrogenesisFigure S7. The expression of Ephb2 (encoding ephrin type-B receptor 2) was specific to LoH cells and was upregulated in TAL-inj compared with its healthy state (Figure S7M), which was supported by several previous studies (Huang et al., 2021; Ogawa et al., 2006), suggesting that Eph/Ephrin signaling axis may be a mediator of kidney fibrogenesis. 这促使我们确定了负责两种细胞类型之间交流的分子对。除了成纤维细胞整合素与 FR-PTC 表达的 VCAM1/COL18A1/ SPP1 之间的强相互作用(图 S7J)外,我们还发现 CD44FGFR2 是 uni-IRI 和 UUO 中显著失调的受体-受体对(图 S7J)。CD44-FGFR2相互作用对FR-成纤维细胞CCl具有高度特异性,因为其活性在成纤维细胞和其他PT亚型之间的相互作用中没有统计学意义(图S7K)。CD44 是透明质酸的受体,其在损伤的 PT 细胞中的上调已被充分表征(Lewington 等,2000;Schiessl 等,2018),已知 FGFR2 对肾脏发育至关重要,其消融可改善肾脏纤维化(Hains 等,2008;Xu 和 Dai,2017)。在我们的数据集中,Cd44在FR-PTC中特异性表达,Fgfr2可在多种(成纤维细胞)亚型中检测到,其中Myo-1的表达量最高(图S7L),这加强了CD44-FGFR2相互作用在FR-成纤维细胞细胞间通讯中的关键作用。此外,我们还研究了成纤维细胞与 LoH 细胞之间的通讯,发现 EPHB2-EFNA5 相互作用在肾脏纤维化中的活性增强图 S7。Ephb2(编码ephrin B型受体2)是LoH细胞的特异性表达,与健康状态相比,在TAL-inj中表达上调(图S7M),这得到了之前一些研究的支持(Huang等人,2021年;Ogawa等人,2006年),表明Eph/Ephrin信号轴可能是肾脏纤维化的介质。
DISCUSSION 讨论
Our dataset has been deposited into an online interactive scRNA-seq data analyzer (http://humphreyslab.com/SingleCell/ ), which allows researchers to visualize expression of any gene of interest among different cell types or disease groups. We specifically profiled samples of uni-IRI and UUO, two well-characterized models of kidney injury and fibrosis, and present a computational workflow (STAR Methods) for integrating our dataset with other scRNA-seq atlases so comparative and joint analysis can be performed with batch effects removed. For example, we integrated our previous scRNA-seq dataset on bi-IRI mouse kidneys (Kirita et al., 2020) with this uni-IRI subset and found that all major cell states could be identified in both models (Figure S1E). 我们的数据集已存入在线交互式 scRNA-seq 数据分析器 ( http://humphreyslab.com/SingleCell/ ),研究人员可以通过它直观地看到不同细胞类型或疾病组中任何感兴趣基因的表达情况。我们特别分析了uni-IRI和UUO样本,这是两种表征良好的肾损伤和肾纤维化模型,并介绍了将我们的数据集与其他scRNA-seq图谱集整合的计算工作流程(STAR方法),这样就可以在去除批次效应的情况下进行比较和联合分析。例如,我们将之前关于双IRI小鼠肾脏的scRNA-seq数据集(Kirita等人,2020年)与这一uni-IRI子集整合在一起,发现两种模型中的所有主要细胞状态都能被识别出来(图S1E)。
Our scRNA-seq library was generated with the sci-RNA-seq3 protocol, a technology based on sci (also known as split-pool barcoding). sci-RNA-seq3 differs from widely adopted droplet microfluidic solutions, such as 10X Chromium, by marking each cell with a unique combination of several barcodes (instead of one barcode). Though still early in development, sci-based approaches have been applied to a growing number of studies in recent years, due to its high-throughput capabilities, samplemultiplexing capacity and utilization of common laboratory equipment (Li and Humphreys, 2021). Here, we demonstrated its applicability in solid tissues collected from disease models. The high-throughput and highly multiplexed dataset enables the identification of rare cell types in the time course of disease progression, such as the Type1/2 injured PT cells described here. Sci-based methods also provide a cost-effective solution to constructing comprehensive human cell atlases by profiling multiple samples in parallel to minimize batch effects, and recent 我们的 scRNA-seq 文库是用 sci-RNA-seq3 协议生成的,这是一种基于 sci(也称作分割池条形码)的技术。sci-RNA-seq3 与广泛采用的液滴微流控解决方案(如 10X Chromium)不同,它是用多个条形码的独特组合(而不是一个条形码)标记每个细胞。基于 sci 的方法虽然仍处于发展初期,但由于其高通量能力、样本复用能力和对普通实验室设备的利用,近年来已被越来越多的研究采用(Li 和 Humphreys,2021 年)。在此,我们展示了其在疾病模型实体组织中的适用性。高通量和高度多路复用的数据集能够在疾病进展的时间过程中识别罕见的细胞类型,如本文所述的1/2型受伤的PT细胞。基于科学的方法还为构建全面的人类细胞图谱提供了一种具有成本效益的解决方案,它可以并行剖析多个样本,最大程度地减少批次效应。
improvements have been made to achieve higher gene detection sensitivity and co-measurement of multiple modalities (Ma et al., 2020; Martin et al., 2021). 为了实现更高的基因检测灵敏度和多种模式的共同测量,已经进行了改进(Ma 等人,2020 年;Martin 等人,2021 年)。
Our results have been comprehensively validated through reanalyzing existing mouse and human datasets on relevant disease models. For example, we observed upregulation of Plin2 (or human PLIN2) in the folic-acid-induced mouse nephropathy model (Craciun et al., 2016; Figure S4A) and in a human renal IRI model (Park et al., 2020) (Mendeley Data). Our characterization of Type2 injured PT cells was supported by a previous dataset, which profiled PT-enriched transcripts in UUO mice (Wu et al., 2020; Figure S5B). We also surveyed a prior work on biopsy samples of patients with CKD (Nakagawa et al., 2015) and validated increased expression of Type2, but not Type1, injured PT marker genes in patients with CKD compared with control (Figures 4D and 4E; Mendeley Data). An interesting and open question is whether the abundance of either injured PT state in the early stages of human kidney disease correlates with long-term patient outcomes. 通过重新分析相关疾病模型的现有小鼠和人类数据集,我们的结果得到了全面验证。例如,我们在叶酸诱导的小鼠肾病模型(Craciun 等人,2016 年;图 S4A)和人类肾脏 IRI 模型(Park 等人,2020 年)中观察到了 Plin2(或人类 PLIN2)的上调(Mendeley 数据)。我们对 2 型损伤 PT 细胞的特征描述得到了先前数据集的支持,该数据集分析了 UUO 小鼠中 PT 丰富的转录本(Wu 等人,2020 年;图 S5B)。我们还调查了之前对 CKD 患者活检样本的研究(Nakagawa 等人,2015 年),并验证了与对照组相比,CKD 患者中 2 型(而非 1 型)损伤 PT 标记基因的表达增加(图 4D 和 4E;Mendeley 数据)。一个有趣而悬而未决的问题是,在人类肾脏疾病的早期阶段,两种损伤性 PT 状态的丰富程度是否与患者的长期预后相关。
PT cells have high baseline energy demands and preferentially utilize lipids to generate ATP. Accumulation of lipids in PT is dependent on uptake of serum-FFAs (Zeng et al., 2017) and defects in lipid metabolism are a well-recognized defect of CKD (Kang et al., 2014; Stadler et al., 2015; Tran et al., 2016). A recent study demonstrated that long-term fatty acid uptake (10-day palmitic acid administration) promoted inflammation and fibrogenesis of mouse PT cells (Mori et al., 2021). Here, we identified an unexpected, transient lipid accumulation and enhanced expression of FAO-related genes in Type1 injured PT cells (Figures 3A-3F). Three experimental observations led to the conclusion that the increased expression of FAO genes contributed to an increased FAO phenotype: (1) cells had very low content intracellular lipids at uni-IRI D2 (Figure 3D), implying the deposited lipids in the first 6 h were utilized over the next day; (2) in vitro modeling of lipid accumulation, in combination with the use of a lipolysis inhibitor revealed that clearance of lipid droplets was through FAO (Figure 3H); and (3) direct metabolic measurement identified an increased OCR after 6-h fatty acid treatment (Figures 31 and S3L). Interestingly, in our bulk RNAseq analysis of cells harvested at 2 days after 6-h oleic acid treatment, we found upregulation of genes involved in DNA replication, cell-cycle regulation, and cell proliferation (Figure 3J), which are high-energy-demand cellular events. This was also consistent with our observation that Mki67-expressing PT-R cells were most abundant at uni-IRI D2 (Figure 2E). Therefore, the deposited lipids in 6 h may serve as an essential energy source for injured epithelia following injury, promoting tubular repair through proliferative expansion. PT 细胞具有较高的基线能量需求,并优先利用脂质产生 ATP。PT 中脂质的积累依赖于对血清-FFA 的吸收(Zeng 等人,2017 年),脂质代谢缺陷是公认的 CKD 缺陷(Kang 等人,2014 年;Stadler 等人,2015 年;Tran 等人,2016 年)。最近的一项研究表明,长期摄入脂肪酸(10 天棕榈酸给药)会促进小鼠 PT 细胞的炎症和纤维化(Mori 等人,2021 年)。在这里,我们在 1 型损伤的 PT 细胞中发现了意想不到的瞬时脂质积累和 FAO 相关基因的表达增强(图 3A-3F)。通过三项实验观察,我们得出结论:FAO 基因表达的增加导致了 FAO 表型的增加:(1)细胞在单IRI D2时细胞内脂质含量很低(图3D),这意味着前6小时沉积的脂质在第二天被利用;(2)脂质积累的体外建模,结合使用脂肪分解抑制剂,发现脂滴的清除是通过FAO进行的(图3H);(3)直接代谢测量发现脂肪酸处理6小时后OCR增加(图31和S3L)。有趣的是,在对 6 小时油酸处理后 2 天收获的细胞进行大量 RNAseq 分析时,我们发现参与 DNA 复制、细胞周期调控和细胞增殖的基因上调(图 3J),这些都是高能量需求的细胞事件。这也与我们的观察结果一致,即表达 Mki67 的 PT-R 细胞在 uni-IRI D2 处最为丰富(图 2E)。因此,6 小时内沉积的脂质可能是损伤后受伤上皮的重要能量来源,通过增殖扩张促进肾小管修复。
Lipid droplets, also known as lipid vacuoles, are organelles whose phospholipid monolayer is decorated with lipid binding proteins and containing a hydrophobic core consisting of neutral lipids. Here, we identified an ∼10\sim 10-fold increased PLIN2 expression after a 6-h fatty acid stimulus in vitro, with resolution of expression 2 days after removal of fatty acids from the media (Figure 4G), implying that PLIN2 plays a key role in how the cell responds to intracellular lipid accumulation. Further, PLIN2 gene knockdown caused a decrease in OCR and ECAR activities (Figures 4 I and S4F), suggesting that PLIN2 regulates cellular metabolism. Although a reduced OCR may be expected to 脂滴又称脂质空泡,是一种细胞器,其磷脂单层由脂质结合蛋白装饰,并含有由中性脂质组成的疏水核心。在这里,我们发现在体外6小时的脂肪酸刺激后,PLIN2的表达量增加了 ∼10\sim 10 -倍,从培养基中去除脂肪酸2天后,PLIN2的表达量消失(图4G),这意味着PLIN2在细胞如何应对细胞内脂质积累方面起着关键作用。此外,PLIN2 基因敲除导致 OCR 和 ECAR 活性降低(图 4 I 和 S4F),表明 PLIN2 调节细胞代谢。虽然 OCR 的降低可能会
reflect a downregulation of FAO genes, we did not identify decreased expression of genes encoding mitochondrial FAO components such as CPT1A and CPT2. Instead, we observed significantly decreased expression of ACSL3, ACSL4, and ACSL5, which encode cytosolic proteins that convert lipolysisderived FFAs into fatty acyl-CoA (Li et al., 2010). These results indicate that PLIN2 regulates acyl-CoA generation by lipolysis but does not directly affect mitochondrial beta\beta-oxidation. Overall, we propose the model presented in Figure 4K: after IRI, Type1 injured PT cells rapidly accumulate lipid droplets, inducing PLIN2 expression, leading to enhanced PLIN2-dependent FAO activity with subsequent consumption of these lipids, promoting epithelial proliferation and tubule regeneration. Why this lipid accumulation and consumption process does not occur in Type2 injured PT (or in UUO), and whether lack of lipid acquisition in early stages is responsible for the poor fate outcome of kidney fibrogenesis, requires further investigation. 我们没有发现编码线粒体 FAO 组成部分(如 CPT1A 和 CPT2)的基因表达下降,这反映了 FAO 基因的下调。相反,我们观察到 ACSL3、ACSL4 和 ACSL5 的表达明显下降,它们编码的细胞膜蛋白能将脂肪分解产生的 FFA 转化为脂肪酰基-CoA(Li 等人,2010 年)。这些结果表明,PLIN2 可调节脂肪分解产生的酰基-CoA,但不会直接影响线粒体 beta\beta 氧化。总之,我们提出了图 4K 所示的模型:IRI 后,1 型损伤 PT 细胞迅速积聚脂滴,诱导 PLIN2 表达,导致 PLIN2 依赖性 FAO 活性增强,随后消耗这些脂质,促进上皮细胞增殖和肾小管再生。为什么这种脂质积累和消耗过程不会发生在2型损伤的PT(或UUO)中,早期缺乏脂质获取是否是肾脏纤维化的不良命运结局的原因,还需要进一步研究。
We highlighted two dysregulated pathways, lipid and amino acid metabolism, in diseased PT cells, but we also acknowledge that kidney fibrogenesis affects many other metabolic networks. For example, SLC5A2 (the target of SGLT2 inhibitors) is responsible for ∼90%\sim 90 \% of tubular glucose transport (Wen et al., 2021). As a consequence of cell dedifferentiation in both uni-IRI and UUO, we observed a remarkable reduction in expression of S/c5a2 in PT. We also identified decreased expression of genes encoding phosphofructokinase, glucose-6-phosphatase, and isocitrate dehydrogenase, which could be recovered in late time points of uni-IRI but remained at low levels in UUO, suggesting disrupted glucose metabolism in kidney fibrogenesis. In addition, we found that the two genes encoding subunits of lactate dehydrogenase, Ldha and Ldhb, were dysregulated with patterns consistent with a recent report (Osis et al., 2021) (Mendeley Data), indicating off-balance interconversion between lactate and pyruvate. Interestingly, we identified Hmox1, which encodes heme oxygenase-1 (HO-1, an essential modulator of glucose metabolism), and its transcription factor Nfe2l2 as two upregulated markers of early IRI injury (i.e., uni-IRI 6 h) distributed in Type1 injury and acute injury PT cells (Mendeley Data). Previous studies have demonstrated a protective role of HO-1\mathrm{HO}-1 against kidney injury and exhibited significant elimination of tubular injury and interstitial fibrosis in UUO mice following treatment with an HO-1 inducer (Bolisetty et al., 2017; Kim et al., 2006). Understanding the specific role of HO-1\mathrm{HO}-1 in maintaining renal glucose metabolism in disease states will require further investigation. 我们强调了病变 PT 细胞中脂质和氨基酸代谢这两条失调的途径,但我们也承认肾脏纤维化会影响许多其他代谢网络。例如,SLC5A2(SGLT2 抑制剂的靶点)负责 ∼90%\sim 90 \% 肾小管葡萄糖转运(Wen 等,2021 年)。由于单IRI和UUO中细胞的去分化,我们观察到PT中S/c5a2的表达显著减少。我们还发现编码磷酸果糖激酶、葡萄糖-6-磷酸酶和异柠檬酸脱氢酶的基因表达减少,这些基因在单IRI的晚期可以恢复,但在UUO中仍处于低水平,这表明肾脏纤维化过程中糖代谢紊乱。此外,我们还发现编码乳酸脱氢酶亚基的两个基因 Ldha 和 Ldhb 发生了失调,其模式与最近的一份报告(Osis 等人,2021 年)(Mendeley Data)一致,表明乳酸和丙酮酸之间的相互转化失衡。有趣的是,我们发现编码血红素加氧酶-1(HO-1,葡萄糖代谢的重要调节因子)的 Hmox1 及其转录因子 Nfe2l2 是分布在 1 型损伤和急性损伤 PT 细胞中的早期 IRI 损伤(即 6 小时的单 IRI)的两个上调标志物(Mendeley 数据)。先前的研究表明, HO-1\mathrm{HO}-1 对肾脏损伤具有保护作用,在使用HO-1诱导剂治疗后,UUO小鼠的肾小管损伤和间质纤维化明显消除(Bolisetty等人,2017年;Kim等人,2006年)。了解 HO-1\mathrm{HO}-1 在疾病状态下维持肾脏葡萄糖代谢的具体作用还需要进一步研究。
This high-throughput dataset enabled us to discover a shared injury response of all major TEC structures including PT, TAL, DCT, and CNT. Although TAL-inj, DCT-inj, and CNT-inj were described as populations covering injured cells from both uniIRI and UUO in this analysis, we could not exclude the possibility that they were heterogeneous groups composed of multiple injury states, as characterized in injured PT. For example, we found that Gcnt2, whose deficiency can cause abnormal morphology of tubule epithelium (Chen et al., 2005), was upregulated in TAL-inj specifically at uni-IRI 6 h , but not in UUO (Figure S6F). Higher detection resolution will be needed for this additional subclustering analysis. 这一高通量数据集让我们发现了所有主要 TEC 结构(包括 PT、TAL、DCT 和 CNT)的共同损伤反应。虽然在这项分析中,TAL-inj、DCT-inj 和 CNT-inj 被描述为涵盖了 uniIRI 和 UUO 的损伤细胞群,但我们不能排除它们是由多种损伤状态组成的异质群的可能性,正如损伤的 PT 所描述的那样。例如,我们发现 Gcnt2(其缺乏可导致肾小管上皮细胞形态异常(Chen 等,2005 年))在 TAL-inj 中的上调特异性地发生在 uni-IRI 6 h 时,而在 UUO 中则没有(图 S6F)。这种额外的亚聚类分析需要更高的检测分辨率。
This single-cell atlas of kidney fibrogenesis also serves as a unique resource to study fibrotic responses of other non-epithelial cells such as stromal cells (Figures 7A-7E), immune cells 这一肾脏纤维形成的单细胞图谱也是研究其他非上皮细胞(如基质细胞(图 7A-7E)、免疫细胞)纤维化反应的独特资源。
(Figure S1C), and endothelial cells (ECs) (Figure S1D). We have performed subclustering analysis on all these populations to illustrate the complexity of the dataset. For example, we identified a group of macrophages ( Mvarphi-2\mathrm{M} \varphi-2 ) marked by elevated expression of a lysozyme gene Lyz2, Tgfbi, and various genes encoding HSPs (Figure S1C; Mendeley Data). M varphi-2\varphi-2 showed high abundance at uni-IRI 6 h/D2 but was low abundance in UUO (Mendeley Data). It has been reported that TGFBI+ macrophages can capture apoptotic cells and induce fibrotic responses (Nacu et al., 2008), and our results indicate that Mvarphi-2\mathrm{M} \varphi-2 could be an essential population initiating immune response against kidney injury. In the subclustering of ECs, we found that a subgroup of EC (Activated EC) exhibited upregulated expression of Rapgef5 and Magi1, genes involved in abnormal angiogenesis and endothelial activation (Abe et al., 2019; Hong et al., 2007; Figure S1D). This cell type was rarely observed in healthy tissues but could proliferate rapidly in disease, particularly after UUO D6 (Mendeley Data), and it would be interesting to learn its lineage progenitors and functional importance in kidney fibrogenesis in future studies. (图 S1C)和内皮细胞(ECs)(图 S1D)。我们对所有这些群体进行了亚聚类分析,以说明数据集的复杂性。例如,我们发现了一组巨噬细胞( Mvarphi-2\mathrm{M} \varphi-2 ),其特征是溶菌酶基因Lyz2、Tgfbi和各种编码HSP的基因表达量升高(图S1C;Mendeley数据)。M varphi-2\varphi-2 在 uni-IRI 6 h/D2 中的丰度较高,但在 UUO 中的丰度较低(Mendeley 数据)。据报道,TGFBI+巨噬细胞可捕获凋亡细胞并诱导纤维化反应(Nacu 等,2008 年),我们的结果表明, Mvarphi-2\mathrm{M} \varphi-2 可能是启动肾损伤免疫反应的一个重要群体。在EC亚群中,我们发现一个EC亚群(激活EC)表现出Rapgef5和Magi1的表达上调,这些基因参与异常血管生成和内皮激活(Abe等人,2019年;Hong等人,2007年;图S1D)。这种细胞类型在健康组织中很少被观察到,但在疾病中却能迅速增殖,尤其是在 UUO D6 之后(Mendeley 数据),在未来的研究中了解其系祖细胞及其在肾脏纤维化中的功能重要性将是非常有趣的。
In summary, we leveraged sci-RNA-seq3 to generate a highthroughput single-cell transcriptomic landscape of kidney fibrogenesis. PT cell dedifferentiation was a shared injury response in both uni-IRI and UUO models, but unique cell states existed in each model, such as the Type1 and Type2 injured PT, characterized by dysregulated lipid and amino acid metabolism, respectively. We also identified both shared and unique injury and repair responses in epithelial cells across nephron segments and demonstrated the heterogeneity of kidney stromal cells. Since kidney fibrosis affects nearly all renal cell types encompassing epithelia, stroma, endothelia, and the immune system, it is critical to construct a comprehensive network of cell-cell communications for translational studies. Our work highlights the utility of analyzing detailed time courses of kidney fibrogenesis and validates sci-RNA-seq3 as a powerful method for analyzing multiple samples at once. 总之,我们利用 sci-RNA-seq3 生成了肾脏纤维化的高通量单细胞转录组图谱。在uni-IRI和UUO模型中,PT细胞去分化是一种共同的损伤反应,但每种模型中都存在独特的细胞状态,如1型和2型损伤PT,其特征分别是脂质和氨基酸代谢失调。我们还确定了各肾节段上皮细胞共同和独特的损伤和修复反应,并证明了肾脏基质细胞的异质性。由于肾脏纤维化影响到几乎所有肾细胞类型,包括上皮细胞、基质细胞、内皮细胞和免疫系统,因此构建一个全面的细胞-细胞通讯网络对于转化研究至关重要。我们的工作凸显了分析肾脏纤维化的详细时间过程的实用性,并验证了 sci-RNA-seq3 是同时分析多个样本的强大方法。
Limitations of study 研究的局限性
Our work employs two widely adopted mouse kidney fibrogenesis models, uni-IRI and UUO, but how generalizable our findings are to other forms of kidney injury is unresolved. This version of sci-RNA-seq3 is technically limited in gene detection sensitivity. Also, it is challenging to assess the significance of Type1 injured PT in humans because this cell state only transiently appears ∼6h\sim 6 \mathrm{~h} after AKI, and few if any such early AKI human samples are available. Finally, our transcriptomic characterization is unimodal. Future multi-modality measurements such as combined transcriptomic and epigenomic readouts will be needed to depict a complete cell atlas of kidney fibrosis. 我们的研究采用了两种被广泛采用的小鼠肾脏纤维化模型--uni-IRI 和 UUO,但我们的发现对其他形式的肾脏损伤有多大的普适性还没有解决。这一版本的 sci-RNA-seq3 在基因检测灵敏度方面存在技术限制。此外,评估 1 型损伤 PT 在人体中的意义也很有挑战性,因为这种细胞状态只在 AKI 后短暂出现 ∼6h\sim 6 \mathrm{~h} ,而这种早期 AKI 人体样本即使有也很少。最后,我们的转录组特征描述是单模态的。未来需要进行多模态测量,如结合转录组学和表观基因组学读数,以描绘肾脏纤维化的完整细胞图谱。
STAR ***\star METHODS 星级 ***\star 方法
Detailed methods are provided in the online version of this paper and include the following: 本文的在线版本提供了详细的方法,包括以下内容:
O In vitro fatty acid exposure, ER stress induction and lipolysis inhibition O 体外脂肪酸暴露、ER 应激诱导和脂肪分解抑制
Fatty acid internalization assay 脂肪酸内化试验
Mitochondria staining on cultured cells 对培养细胞进行线粒体染色
In vitro gene knockdown 体外基因敲除
ROS staining ROS 染色
Metabolic measurement 代谢测量
Nuclei isolation and fixation (mouse kidney) 细胞核分离和固定(小鼠肾脏)
Nuclei isolation and fixation (cultured cells) 细胞核分离和固定(培养细胞)
sci-RNA-seq3 library generation sci-RNA-seq3 文库生成
Next-generation Sequencing for sci-RNA-seq3 用于 sci-RNA-seq 的新一代测序3
sci-RNA-seq3 data pre-processing sci-RNA-seq3 数据预处理
Pseudobulk trajectory ordering 伪舱轨迹排序
Doublet estimation, quality control and cell clustering 双音估计、质量控制和细胞聚类
Gene module scoring 基因模块评分
Single-cell trajectory inference 单细胞轨迹推断
Single-cell fate mapping on time-series datasets 在时间序列数据集上绘制单细胞命运图谱
Gene enrichment analysis 基因富集分析
Single-cell pathway and transcription factor (TF) activity prediction 单细胞通路和转录因子 (TF) 活性预测
Cell-cell interaction analysis 细胞-细胞相互作用分析
Comparison and integration with other datasets 与其他数据集的比较和整合
Bulk RNA-seq 批量 RNA-seq
Lipidomics analysis 脂质组学分析
Measurement of BCAA concentration 测量 BCAA 浓度
QUANTIFICATION AND STATISTICAL ANALYSIS 量化和统计分析
SUPPLEMENTAL INFORMATION 补充资料
Supplemental information can be found online at https://doi.org/10.1016/j. cmet.2022.09.026. 补充信息可在线查阅:https://doi.org/10.1016/j. cmet.2022.09.026。
ACKNOWLEDGMENTS 致谢
These experiments were funded by NIH grants DK103740 and UC2DK126024 to B.D.H. The authors acknowledge the Washington University Diabetes Research Center for providing training for Seahorse Analyzer applications. The authors also acknowledge the Washington University Genome Technology Access Center and Center for Genome Sciences & Systems Biology for sequencing support. 这些实验由美国国立卫生研究院资助 DK103740 和 UC2DK126024 给 B.D.H。作者感谢华盛顿大学糖尿病研究中心提供的海马分析仪应用培训。作者还感谢华盛顿大学基因组技术访问中心和基因组科学与系统生物学中心提供的测序支持。
AUTHOR CONTRIBUTIONS 作者贡献
H.L. and B.D.H. conceived, coordinated, and designed the study. H.L. performed experiments with contributions from E.E.D. and H.W.; H.L. and B.D.H. analyzed data. H.L. and B.D.H. wrote the manuscript. All authors read and approved the final manuscript. H.L.和B.D.H.构思、协调和设计了这项研究。H.L.进行了实验,E.E.D.和H.W.提供了帮助;H.L.和B.D.H.分析了数据。H.L.和B.D.H.撰写了手稿。所有作者阅读并批准了最终手稿。
DECLARATION OF INTERESTS 利益申报
B.D.H. is a consultant for Janssen Research & Development, LLC, Pfizer, and Chinook Therapeutics and holds equity in Chinook Therapeutics and grant B.D.H. 是 Janssen Research & Development, LLC、辉瑞公司和 Chinook Therapeutics 的顾问,并持有 Chinook Therapeutics 的股权和赠款。
funding from Chinook Therapeutics, Janssen Research & Development, LLC, and Pfizer; all interests are unrelated to the current work. 资金来自 Chinook Therapeutics、Janssen Research & Development, LLC 和辉瑞公司;所有利益均与当前工作无关。
INCLUSION AND DIVERSITY 包容性和多样性
We support inclusive, diverse, and equitable conduct of research. 我们支持以包容、多元和公平的方式开展研究。
Received: March 3, 2022 收到:2022 年 3 月 3 日
Revised: July 19, 2022 修订:2022 年 7 月 19 日
Accepted: September 28, 2022 接受:2022 年 9 月 28 日
Published: October 19, 2022 出版日期2022 年 10 月 19 日
REFERENCES 参考文献
Abe, J.-I., Ko, K.A., Kotla, S., Wang, Y., Paez-Mayorga, J., Shin, I.J., Imanishi, M., Vu, H.T., Tao, Y., Leiva-Juarez, M.M., et al. (2019). MAGl1 as a link between endothelial activation and ER stress drives atherosclerosis. JCl Insight 4. e125570. https://doi.org/10.1172/JCI.INSIGHT. 125570. Abe, J.-I., Ko, K.A., Kotla, S., Wang, Y., Paez-Mayorga, J., Shin, I.J., Imanishi, M., Vu, H.T., Tao, Y., Leiva-Juarez, M.M., et al. (2019).MAGl1 是内皮激活和 ER 应激驱动动脉粥样硬化之间的纽带。JCl Insight 4. e125570. https://doi.org/10.1172/JCI.INSIGHT.125570.
Adeva, M.M., Calviño, J., Souto, G., and Donapetry, C. (2011). Insulin resistance and the metabolism of branched-chain amino acids in humans. Amin Acids 43, 171-181. https://doi.org/10.1007/S00726-011-1088-7. Adeva,M.M.、Calviño,J.、Souto,G.和 Donapetry,C.(2011 年)。胰岛素抵抗与人类支链氨基酸的新陈代谢》(Insulin resistance and the metabolism of branched-chain amino acids in humans.Amin Acids 43, 171-181. https://doi.org/10.1007/S00726-011-1088-7。
Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169. https://doi.org/10.1093/BIOINFORMATICS/BTU638. Anders, S., Pyl, P.T., and Huber, W. (2015)。HTSeq--处理高通量测序数据的 Python 框架。Bioinformatics 31, 166-169. https://doi.org/10.1093/BIOINFORMATICS/BTU638.
Balzer, M.S., Rohacs, T., and Susztak, K. (2022). How many cell types are in the kidney and what do they do? Annu. Rev. Physiol. 84, 507-531. https:// doi.org/10.1146/annurev-physiol-052521-121841. Balzer, M.S.、Rohacs, T.和 Susztak, K. (2022)。肾脏中有多少种细胞类型?Annu.Rev. Physiol. 84, 507-531. https:// doi.org/10.1146/annurev-physiol-052521-121841。
Bolisetty, S., Zarjou, A., and Agarwal, A. (2017). Heme oxygenase 1 as a therapeutic target in acute kidney injury. Am. J. Kidney Dis. 69, 531-545. https:// doi.org/10.1053/J.AJKD.2016.10.037. Bolisetty, S., Zarjou, A., and Agarwal, A. (2017)。血红素加氧酶 1 作为急性肾损伤的治疗靶点。Am.J. Kidney Dis.69,531-545。https:// doi.org/10.1053/J.AJKD.2016.10.037。
Boström, E.A., and Lundberg, P. (2013). The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS One 8, e81665. https://doi.org/10.1371/JOURNAL.PONE.0081665. Boström, E.A., and Lundberg, P. (2013)。新发现的细胞因子 IL-34 在牙龈成纤维细胞中表达,在促炎细胞因子的作用下表达增强,并刺激破骨细胞分化。PLoS One 8, e81665. https://doi.org/10.1371/JOURNAL.PONE.0081665.
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502. https://doi.org/10.1038/s41586-019-0969-x. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019).哺乳动物器官发生的单细胞转录景观。Nature 566, 496-502. https://doi.org/10.1038/s41586-019-0969-x.
Cao, J., O’Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger, K.A., Blecher-Gonen, R., Zhang, F., et al. (2020). A human cell atlas of fetal gene expression. Science 370, eaba7721. https://doi.org/10. 1126/SCIENCE.ABA7721. Cao, J., O'Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger, K.A., Blecher-Gonen, R., Zhang, F., et al. (2020).胎儿基因表达的人类细胞图谱。Science 370, eaba7721. https://doi.org/10.1126/SCIENCE.ABA7721.
Chang-Panesso, M., Kadyrov, F.F., Lalli, M., Wu, H., Ikeda, S., Kefaloyianni, E., Abdelmageed, M.M., Herrlich, A., Kobayashi, A., and Humphreys, B.D. (2019). FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501-5517. https://doi.org/10.1172/ JCI125519. Chang-Panesso, M., Kadyrov, F.F., Lalli, M., Wu, H., Ikeda, S., Kefaloyianni, E., Abdelmageed, M.M., Herrlich, A., Kobayashi, A., and Humphreys, B.D. (2019)。FOXM1 在急性缺血性肾损伤修复过程中驱动近端小管增殖。J. Clin.Invest.129, 5501-5517. https://doi.org/10.1172/ jci125519.
Chen, G.-Y., Muramatsu, H., Kondo, M., Kurosawa, N., Miyake, Y., Takeda, N., and Muramatsu, T. (2005). Abnormalities caused by carbohydrate alterations in Ibeta6-N-acetylglucosaminyltransferase-deficient mice. Mol. Cell. Biol. 25, 7828-7838. https://doi.org/10.1128/MCB.25.17.7828-7838.2005. Chen, G.-Y., Muramatsu, H., Kondo, M., Kurosawa, N., Miyake, Y., Takeda, N., and Muramatsu, T. (2005).Ibeta6-N-acetylglucosaminyltransferase-deficient mice.Mol. Cell.25, 7828.25, 7828-7838. https://doi.org/10.1128/MCB.25.17.7828-7838.2005.
Chen, E., Tsai, T.H., Li, L., Saha, P., Chan, L., and Chang, B.H.J. (2017). PLIN2 is a key regulator of the unfolded protein response and endoplasmic reticulum stress resolution in pancreatic beta\beta cells. Sci. Rep. 71, 1-12. https://doi.org/10. 1038/srep40855. Chen, E., Tsai, T.H., Li, L., Saha, P., Chan, L., and Chang, B.H.J. (2017)。PLIN2是胰腺 beta\beta 细胞未折叠蛋白反应和内质网应激分辨率的关键调节因子。Sci. Rep. 71, 1-12. https://doi.org/10.1038/srep40855.
Chung, K.W., Dhillon, P., Huang, S., Sheng, X., Shrestha, R., Qiu, C., Kaufman, B.A., Park, J., Pei, L., Baur, J., et al. (2019). Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784-799.e5. https://doi.org/10.1016/J.CMET.2019.08.003. Chung, K.W., Dhillon, P., Huang, S., Sheng, X., Shrestha, R., Qiu, C., Kaufman, B.A., Park, J., Pei, L., Baur, J., et al. (2019).线粒体损伤和 STING 通路激活导致肾脏炎症和纤维化。Cell Metab.30, 784-799.e5. https://doi.org/10.1016/J.CMET.2019.08.003.
Craciun, F.L., Bijol, V., Ajay, A.K., Rao, P., Kumar, R.K., Hutchinson, J., Hofmann, O., Joshi, N., Luyendyk, J.P., Kusebauch, U., et al. (2016). RNA sequencing identifies novel translational biomarkers of kidney fibrosis. J. Am. Soc. Nephrol. 27, 1702-1713. https://doi.org/10.1681/ASN. 2015020225. Craciun, F.L., Bijol, V., Ajay, A.K., Rao, P., Kumar, R.K., Hutchinson, J., Hofmann, O., Joshi, N., Luyendyk, J.P., Kusebauch, U., et al. (2016)。RNA测序发现肾脏纤维化的新型转化生物标志物。J. Am.Soc. Nephrol.27, 1702-1713. https://doi.org/10.1681/ASN. 2015020225.
Dalen, K.T., Ulven, S.M., Arntsen, B.M., Solaas, K., and Nebb, H.I. (2006). PPARalpha activators and fasting induce the expression of adipose differenti-ation-related protein in liver. J. Lipid Res. 47, 931-943. https://doi.org/10. 1194/jlr.M500459-JLR200. Dalen, K.T., Ulven, S.M., Arntsen, B.M., Solaas, K., and Nebb, H.I. (2006)。PPARalpha 激活剂和禁食诱导肝脏中脂肪分化相关蛋白的表达。J. Lipid Res. 47, 931-943. https://doi.org/10.1194/jlr.M500459-JLR200.
De Groot, T., Bindels, R.J.M., and Hoenderop, J.G.J. (2008). TRPV5: an ingeniously controlled calcium channel. Kidney Int. 74, 1241-1246. https://doi.org/ 10.1038/KI.2008.320. De Groot, T., Bindels, R.J.M., and Hoenderop, J.G.J. (2008)。TRPV5:巧妙控制的钙通道。74, 1241-1246. https://doi.org/ 10.1038/KI.2008.320。
Dhillon, P., Park, J., Hurtado del Pozo, C., Li, L., Doke, T., Huang, S., Zhao, J., Kang, H.M., Shrestra, R., Balzer, M.S., et al. (2021). The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379-394.e8. https://doi.org/10.1016/J.CMET.2020. 11.011. Dhillon, P., Park, J., Hurtado del Pozo, C., Li, L., Doke, T., Huang, S., Zhao, J., Kang, H.M., Shrestra, R., Balzer, M.S., et al. (2021)。核受体 ESRRA 通过耦合代谢和分化保护肾脏免受疾病侵袭。细胞代谢。33, 379-394.e8. https://doi.org/10.1016/J.CMET.2020.11.011.
Dixon, E.E., Wu, H., Muto, Y., Wilson, P.C., and Humphreys, B.D. (2022). Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J. Am. Soc. Nephrol. 33, 279-289. https://doi.org/10.1681/ ASN. 2021081150. Dixon, E.E., Wu, H., Muto, Y., Wilson, P.C., and Humphreys, B.D. (2022)。雌性小鼠急性肾损伤的空间分辨转录组分析。J. Am.Soc. Nephrol.33, 279-289. https://doi.org/10.1681/ asn. 2021081150.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. https://doi.org/10.1093/BIOINFORMATICS/ BTS635. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013)。STAR: ultrafast universal RNA-seq aligner.Bioinformatics 29, 15-21. https://doi.org/10.1093/BIOINFORMATICS/ BTS635.
Dries, R., Zhu, Q., Dong, R., Eng, C.H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al. (2021). Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 1-31. https://doi.org/10. 1186/S13059-021-02286-2/FIGURES/6. Dries, R., Zhu, Q., Dong, R., Eng, C.H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al. (2021).Giotto: a toolbox for integrative analysis and visualization of spatial expression data.Genome Biol. 22, 1-31. https://doi.org/10.1186/S13059-021-02286-2/FIGURES/6.
Efremova, M., Vento-Tormo, M., Teichmann, S.A., and Vento-Tormo, R. (2020). CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484-1506. https://doi.org/10.1038/s41596-020-0292-x. Efremova, M., Vento-Tormo, M., Teichmann, S.A., and Vento-Tormo, R. (2020)。CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.Nat.Protoc.15, 1484-1506. https://doi.org/10.1038/s41596-020-0292-x.
Evers, T.M.J., Hochane, M., Tans, S.J., Heeren, R.M.A., Semrau, S., Nemes, P., and Mashaghi, A. (2019). Deciphering metabolic heterogeneity by singlecell analysis. Anal. Chem. 91, 13314-13323. https://doi.org/10.1021/ACS. ANALCHEM.9B02410. Evers, T.M.J., Hochane, M., Tans, S.J., Heeren, R.M.A., Semrau, S., Nemes, P., and Mashaghi, A. (2019)。通过单细胞分析破译代谢异质性。Anal.Chem.91, 13314-13323. https://doi.org/10.1021/ACS.analchem.9b02410.
Famulski, K.S., De Freitas, D.G., Kreepala, C., Chang, J., Sellares, J., Sis, B., Einecke, G., Mengel, M., Reeve, J., and Halloran, P.F. (2012). Molecular phenotypes of acute kidney injury in kidney transplants. J. Am. Soc. Nephrol. 23, 948-958. https://doi.org/10.1681/ASN. 2011090887. Famulski, K.S., De Freitas, D.G., Kreepala, C., Chang, J., Sellares, J., Sis, B., Einecke, G., Mengel, M., Reeve, J., and Halloran, P.F. (2012)。肾移植急性肾损伤的分子表型。J. Am.Soc. Nephrol.23, 948-958. https://doi.org/10.1681/ASN. 2011090887.
Fleming, S.J., Marioni, J.C., and Babadi, M. (2019). CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. Preprint at bioRxiv. https://doi.org/10. 1101/791699. Fleming, S.J., Marioni, J.C., and Babadi, M. (2019).CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets.Preprint at bioRxiv. https://doi.org/10.1101/791699.
Gao, J., and Serrero, G. (1999). Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem. 274, 16825-16830. https://doi.org/10.1074/JBC. 274.24.16825. Gao, J. 和 Serrero, G. (1999)。转染 COS-7 细胞中表达的脂肪分化相关蛋白(ADRP)选择性地刺激长链脂肪酸的吸收。J. Biol.Chem.274, 16825-16830. https://doi.org/10.1074/JBC.274.24.16825.
Garcia-Alonso, L., Holland, C.H., Ibrahim, M.M., Turei, D., and SaezRodriguez, J. (2019). Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363-1375. https://doi.org/10.1101/GR.240663.118. Garcia-Alonso, L., Holland, C.H., Ibrahim, M.M., Turei, D., and SaezRodriguez, J. (2019)。估算人类转录因子活性的基准和资源整合。Genome Res. 29, 1363-1375. https://doi.org/10.1101/GR.240663.118.
Garibotto, G., Sofia, A., Saffioti, S., Bonanni, A., Mannucci, I., and Verzola, D. (2010). Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin. Nutr. 29, 424-433. https://doi.org/10.1016/ J.CLNU.2010.02.005. Garibotto, G., Sofia, A., Saffioti, S., Bonanni, A., Mannucci, I., and Verzola, D. (2010)。人体肾脏和慢性肾病患者的氨基酸和蛋白质代谢。临床。29, 424-433. https://doi.org/10.1016/ J.CLNU.2010.02.005。
Gerhardt, L.M.S., Liu, J., Koppitch, K., Cippà, P.E., and McMahon, A.P. (2021). Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc. Natl. Acad. Sci. USA 118. e2026684118. https://doi.org/10.1073/PNAS. 2026684118. Gerhardt, L.M.S., Liu, J., Koppitch, K., Cippà, P.E., and McMahon, A.P. (2021)。单核转录组学揭示了急性肾损伤动态反应中近端肾小管细胞状态的多样性。Proc.Natl.e2026684118. https://doi.org/10.1073/PNAS.2026684118.
Hains, D., Sims-Lucas, S., Kish, K., Saha, M., Mchugh, K., and Bates, C.M. (2008). Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr. Res. 64, 592-598. https://doi.org/10.1203/PDR.0b013e318187cc12. Hains, D., Sims-Lucas, S., Kish, K., Saha, M., Mchugh, K., and Bates, C.M. (2008)。成纤维细胞生长因子受体 2 在肾脏间质中的作用。Pediatr.64, 592-598. https://doi.org/10.1203/PDR.0b013e318187cc12.
Harskamp, L.R., Gansevoort, R.T., Van Goor, H., and Meijer, E. (2016). The epidermal growth factor receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 12, 496-506. https://doi.org/10.1038/nrneph.2016.91. Harskamp, L.R., Gansevoort, R.T., Van Goor, H., and Meijer, E. (2016)。慢性肾脏疾病中的表皮生长因子受体通路。Nat.Rev. Nephrol.12, 496-506. https://doi.org/10.1038/nrneph.2016.91.
Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O’Callaghan, C.A., Lasserson, D.S., and Hobbs, F.D.R. (2016). Global prevalence of chronic kidney disease - A Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O'Callaghan, C.A., Lasserson, D.S., and Hobbs, F.D.R. (2016)。全球慢性肾脏病患病率--A
systematic review and meta-analysis. PLoS One 11. e0158765. https://doi.org/ 10.1371/journal.pone. 0158765. 系统回顾和荟萃分析。PLoS One 11. e0158765. https://doi.org/ 10.1371/journal.pone.0158765.
Hocaoglu, H., Wang, L., Yang, M., Yue, S., and Sieber, M. (2021). Heritable shifts in redox metabolites during mitochondrial quiescence reprogramme progeny metabolism. Nat. Metab. 3, 1259-1274. https://doi.org/10.1038/ s42255-021-00450-3. Hocaoglu, H., Wang, L., Yang, M., Yue, S., and Sieber, M. (2021)。线粒体静止过程中氧化还原代谢产物的遗传转变重编程后代代谢。Nat.Metab.3, 1259-1274. https://doi.org/10.1038/ s42255-021-00450-3.
Holland, C.H., Tanevski, J., Perales-Patón, J., Gleixner, J., Kumar, M.P., Mereu, E., Joughin, B.A., Stegle, O., Lauffenburger, D.A., Heyn, H., et al. (2020). Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 1-19. https://doi.org/ 10.1186/S13059-020-1949-Z. Holland, C.H., Tanevski, J., Perales-Patón, J., Gleixner, J., Kumar, M.P., Mereu, E., Joughin, B.A., Stegle, O., Lauffenburger, D.A., Heyn, H., et al. (2020).转录因子和通路分析工具在单细胞 RNA-seq 数据上的稳健性和适用性。Genome Biol. 21, 1-19. https://doi.org/ 10.1186/S13059-020-1949-Z。
Hong, J., Doebele, R.C., Lingen, M.W., Quilliam, L.A., Tang, W.J., and Rosner, M.R. (2007). Anthrax edema toxin inhibits endothelial cell chemotaxis via epac and Rap1. J. Biol. Chem. 282, 19781-19787. https://doi.org/10.1074/jbc. M700128200. Hong, J., Doebele, R.C., Lingen, M.W., Quilliam, L.A., Tang, W.J., and Rosner, M.R. (2007)。炭疽水肿毒素通过 epac 和 Rap1 抑制内皮细胞趋化。J. Biol.Chem.282, 19781-19787. https://doi.org/10.1074/jbc.M700128200.
Huang, Z., Liu, S., Tang, A., Al-Rabadi, L., Henkemeyer, M., Mimche, P.N., and Huang, Y. (2021). Key role for EphB2 receptor in kidney fibrosis. Clin. Sci. 135, 2127-2142. https://doi.org/10.1042/CS20210644. Huang, Z., Liu, S., Tang, A., Al-Rabadi, L., Henkemeyer, M., Mimche, P.N., and Huang, Y. (2021)。EphB2受体在肾脏纤维化中的关键作用。临床。135, 2127-2142. https://doi.org/10.1042/CS20210644.
Humphreys, B.D. (2018). Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309-326. https://doi.org/10.1146/annurev-physiol-022516-034227. Humphreys, B.D. (2018)。肾脏纤维化的机制。Annu.Rev. Physiol. 80, 309-326. https://doi.org/10.1146/annurev-physiol-022516-034227.
Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L., and Perkovic, V. (2021). Chronic kidney disease. Lancet 398, 786-802. https://doi.org/10. 1016/S0140-6736(21)00519-5. Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L., and Perkovic, V. (2021)。慢性肾脏病。Lancet 398, 786-802. https://doi.org/10.1016/S0140-6736(21)00519-5.
Kaleta, B. (2019). The role of osteopontin in kidney diseases. Inflamm. Res. 68, 93-102. https://doi.org/10.1007/S00011-018-1200-5. Kaleta, B. (2019)。补骨脂素在肾脏疾病中的作用。Inflamm.68, 93-102. https://doi.org/10.1007/S00011-018-1200-5.
Kanematsu, T., Fujii, M., Mizokami, A., Kittler, J.T., Nabekura, J., Moss, S.J., and Hirata, M. (2007). Phospholipase C-related inactive protein is implicated in the constitutive internalization of GABAA receptors mediated by clathrin and AP2 adaptor complex. J. Neurochem. 101, 898-905. https://doi.org/10. 1111/J.1471-4159.2006.04399.X. Kanematsu, T., Fujii, M., Mizokami, A., Kittler, J.T., Nabekura, J., Moss, S.J., and Hirata, M. (2007).磷脂酶 C 相关非活性蛋白与由 clathrin 和 AP2 适配复合物介导的 GABAA 受体构成性内化有关。J. Neurochem.101, 898-905. https://doi.org/10.1111/J.1471-4159.2006.04399.X.
Kang, H.M., Ahn, S.H., Choi, P., Ko, Y.-A., Han, S.H., Chinga, F., Park, A.S.D., Tao, J., Sharma, K., Pullman, J., et al. (2014). Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37-46. https://doi.org/10.1038/nm.3762. Kang,H.M.,Ahn,S.H.,Choi,P.,Ko,Y.-A.,Han,S.H.,Chinga,F.,Park,A.S.D.,Tao,J.,Sharma,K.,Pullman,J.,等(2014)。肾小管上皮细胞脂肪酸氧化缺陷在肾脏纤维化发展中起关键作用。Nat.Med.21, 37-46. https://doi.org/10.1038/nm.3762.
Khamissi, F.Z., Ning, L., Kefaloyianni, E., Dun, H., Arthanarisami, A., Keller, A., Atkinson, J.J., Li, W., Wong, B., Dietmann, S., et al. (2022). Identification of kidney injury-released circulating osteopontin as causal agent of respiratory failure. Sci. Adv. 8, eabm5900. https://doi.org/10.1126/SCIADV.ABM5900. Khamissi, F.Z., Ning, L., Kefaloyianni, E., Dun, H., Arthanarisami, A., Keller, A., Atkinson, J.J., Li, W., Wong, B., Dietmann, S., et al. (2022)。鉴定肾损伤释放的循环骨化素为呼吸衰竭的致病因子。Sci. Adv. 8, eabm5900. https://doi.org/10.1126/SCIADV.ABM5900.
Kim, J.H., Yang, J.I., Jung, M.H., Hwa, J.S., Kang, K.R., Park, D.J., Roh, G.S., Cho, G.J., Choi, W.S., and Chang, S.H. (2006). Heme Oxygenase-1 protects rat kidney from ureteral obstruction via an antiapoptotic pathway. J. Am. Soc. Nephrol. 17, 1373-1381. https://doi.org/10.1681/ASN. 2005091001. Kim,J.H.、Yang,J.I.、Jung,M.H.、Hwa,J.S.、Kang,K.R.、Park,D.J.、Roh,G.S.、Cho,G.J.、Choi,W.S.和 Chang,S.H.(2006 年)。血红素加氧酶-1通过抗凋亡途径保护大鼠肾脏免受输尿管梗阻。J. Am.Soc. Nephrol.17, 1373-1381. https://doi.org/10.1681/ASN. 2005091001.
Kimmel, A.R., and Sztalryd, C. (2016). The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471-509. https://doi. org/10.1146/ANNUREV-NUTR-071813-105410. Kimmel, A.R. 和 Sztalryd, C. (2016)。perilipins: major cytosolic lipid drop-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis.Annu.Rev. Nutr. 36, 471-509. https://doi. org/10.1146/ANNUREV-NUTR-071813-105410.
Kirita, Y., Wu, H., Uchimura, K., Wilson, P.C., and Humphreys, B.D. (2020). Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl. Acad. Sci. USA 117, 15874-15883. https://doi.org/10.1073/ pnas. 2005477117. Kirita, Y., Wu, H., Uchimura, K., Wilson, P.C., and Humphreys, B.D. (2020)。小鼠急性肾损伤的细胞谱分析揭示了细胞对损伤的保守反应。Proc.Natl.USA 117, 15874-15883. https://doi.org/10.1073/ pnas. 2005477117.
Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289-1296. https://doi.org/10.1038/s41592-019-0619-0. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019).用 Harmony 快速、灵敏、准确地整合单细胞数据。Nat.方法 16, 1289-1296. https://doi.org/10.1038/s41592-019-0619-0.
Kuppe, C., Ibrahim, M.M., Kranz, J., Zhang, X., Ziegler, S., Perales-Patón, J., Jansen, J., Reimer, K.C., Smith, J.R., Dobie, R., et al. (2021). Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281-286. https://doi. org/10.1038/s41586-020-2941-1. Kuppe, C., Ibrahim, M.M., Kranz, J., Zhang, X., Ziegler, S., Perales-Patón, J., Jansen, J., Reimer, K.C., Smith, J.R., Dobie, R., et al. (2021)。解码人类肾脏纤维化中的肌成纤维细胞起源。Nature 589, 281-286. https://doi. org/10.1038/s41586-020-2941-1.
Kuzumi, A., Yoshizaki, A., Matsuda, K.M., Kotani, H., Norimatsu, Y., Fukayama, M., Ebata, S., Fukasawa, T., Yoshizaki-Ogawa, A., Asano, Y., et al. (2021). Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat. Commun. 12, 1-18. https://doi.org/10.1038/s41467-021-26099-w. Kuzumi, A., Yoshizaki, A., Matsuda, K.M., Kotani, H., Norimatsu, Y., Fukayama, M., Ebata, S., Fukasawa, T., Yoshizaki-Ogawa, A., Asano, Y., et al. (2021).白细胞介素-31 在系统性硬化症中促进纤维化和 T 辅助细胞 2 极化。Nat.12, 1-18. .12, 1-18. https://doi.org/10.1038/s41467-021-26099-w.
Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H., Ansari, M., Schniering, J., Schiller, H.B., et al. (2022). CellRank for directed sin-gle-cell fate mapping. Nat. Methods 19, 159-170. https://doi.org/10.1038/ s41592-021-01346-6. Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H., Ansari, M., Schniering, J., Schiller, H.B., et al. (2022)。用于定向单细胞命运图谱的 CellRank。Nat.https://doi.org/10.1038/ S41592-021-01346-6.
Le Clef, N., Verhulst, A., D’Haese, P.C., and Vervaet, B.A. (2016). Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice. PLoS One 11. e0152153. https://doi.org/10.1371/JOURNAL.PONE. 0152153. Le Clef, N., Verhulst, A., D'Haese, P.C., and Vervaet, B.A. (2016)。单侧肾缺血再灌注作为小鼠急性至慢性肾损伤的稳健模型。PLoS One 11. e0152153. https://doi.org/10.1371/JOURNAL.PONE.0152153.
Lewington, A.J.P., Padanilam, B.J., Martin, D.R., and Hammerman, M.R. (2000). Expression of CD44 in kidney after acute ischemic injury in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R247-R254. https://doi.org/ 10.1152/ajpregu.2000.278.1.R247. Lewington, A.J.P., Padanilam, B.J., Martin, D.R., and Hammerman, M.R. (2000)。大鼠急性缺血性损伤后肾脏中 CD44 的表达。Am.J. Physiol.Regul.Integr.Comp. Physiol.Physiol. 278, R247-R254. https://doi.org/ 10.1152/ajpregu.2000.278.1.R247.
Li, H., and Humphreys, B.D. (2021). Single cell technologies: beyond microfluidics. Kidney360 2, 1196-1204. https://doi.org/10.34067/KID.0001822021. Li, H. 和 Humphreys, B.D. (2021)。单细胞技术:超越微流控。Kidney360 2, 1196-1204. https://doi.org/10.34067/KID.0001822021.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/BIOINFORMATICS/ BTP352. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009).序列对齐/映射格式和 SAMtools。Bioinformatics 25, 2078-2079. https://doi.org/10.1093/BIOINFORMATICS/ BTP352.
Li, L.O., Klett, E.L., and Coleman, R.A. (2010). Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim. Biophys. Acta 1801, 246-251. https://doi. org/10.1016/J.BBALIP.2009.09.024. Li, L.O., Klett, E.L., and Coleman, R.A. (2010)。Acyl-CoA 合成、脂质代谢和脂毒性。Biochim.Biophys.Acta 1801, 246-251. https://doi. org/10.1016/J.BBALIP.2009.09.024.
Liu, J., Kumar, S., Dolzhenko, E., Alvarado, G.F., Guo, J., Lu, C., Chen, Y., Li, M., Dessing, M.C., Parvez, R.K., et al. (2017). Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2, e94716. https://doi.org/10.1172/JCI.INSIGHT. 94716. Liu, J., Kumar, S., Dolzhenko, E., Alvarado, G.F., Guo, J., Lu, C., Chen, Y., Li, M., Dessing, M.C., Parvez, R.K., et al. (2017).缺血再灌注后急性肾损伤向慢性肾损伤转变的分子特征。JCI Insight 2, e94716. https://doi.org/10.1172/JCI.INSIGHT.94716.
Lu, Y.A., Liao, C.T., Raybould, R., Talabani, B., Grigorieva, I., Szomolay, B., Bowen, T., Andrews, R., Taylor, P.R., and Fraser, D. (2021). Single-nucleus RNA sequencing identifies new classes of proximal tubular epithelial cells in kidney fibrosis. J. Am. Soc. Nephrol. 32, 2501-2516. https://doi.org/10. 1681/ASN. 2020081143. Lu, Y.A., Liao, C.T., Raybould, R., Talabani, B., Grigorieva, I., Szomolay, B., Bowen, T., Andrews, R., Taylor, P.R., and Fraser, D. (2021)。单核 RNA 测序发现肾脏纤维化的近端肾小管上皮细胞新类别。J. Am.Soc. Nephrol.32, 2501-2516. https://doi.org/10.1681/asn. 2020081143.
Ma, S., Zhang, B., LaFave, L., Chiang, Z., Hu, Y., Ding, J., Brack, A., Kartha, V.K., Law, T., Lareau, C., et al. (2020). Chromatin potential identified by shared single cell profiling of RNA and chromatin. Preprint at bioRxiv. https://doi.org/ 10.1101/2020.06.17.156943. Ma, S., Zhang, B., LaFave, L., Chiang, Z., Hu, Y., Ding, J., Brack, A., Kartha, V.K., Law, T., Lareau, C., et al. (2020).通过共享单细胞 RNA 和染色质图谱识别染色质潜力。Preprint at bioRxiv. https://doi.org/ 10.1101/2020.06.17.156943.
Markó, L., Vigolo, E., Hinze, C., Park, J.K., Roël, G., Balogh, A., Choi, M., Wübken, A., Cording, J., Blasig, I.E., et al. (2016). Tubular epithelial NF-кB activity regulates ischemic AKI. J. Am. Soc. Nephrol. 27, 2658-2669. https://doi. org/10.1681/ASN. 2015070748. Markó, L., Vigolo, E., Hinze, C., Park, J.K., Roël, G., Balogh, A., Choi, M., Wübken, A., Cording, J., Blasig, I.E., et al. (2016)。肾小管上皮 NF-кB 活性调控缺血性 AKI。J. Am.Soc. Nephrol.27, 2658-2669. https://doi. org/10.1681/ASN. 2015070748.
Marneros, A.G. (2020). AP-2 beta//\beta / KCTD1 control distal nephron differentiation and protect against renal fibrosis. Dev. Cell 54, 348-366.e5. https://doi.org/ 10.1016/J.DEVCEL.2020.05.026. Marneros, A.G. (2020)。AP-2 beta//\beta / KCTD1 控制远端肾小球分化并防止肾脏纤维化。Dev.Cell 54, 348-366.e5. https://doi.org/ 10.1016/J.DEVCEL.2020.05.026.
Marneros, A.G. (2021). Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron. Cell Rep. 34, 108616. https://doi.org/ 10.1016/J.CELREP.2020.108616. Marneros, A.G. (2021)。镁和钙的平衡依赖于远端肾小球中 KCTD1 的功能。Cell Rep. 34, 108616. https://doi.org/ 10.1016/J.CELREP.2020.108616.
Martin, B.K., Qiu, C., Nichols, E., Phung, M., Green-Gladden, R., Srivatsan, S., Blecher-Gonen, R., Beliveau, B.J., Trapnell, C., Cao, J., et al. (2021). An optimized protocol for single cell transcriptional profiling by combinatorial indexing. Preprint at arXiv. https://doi.org/10.48550/arXiv.2110.15400. Martin, B.K., Qiu, C., Nichols, E., Phung, M., Green-Gladden, R., Srivatsan, S., Blecher-Gonen, R., Beliveau, B.J., Trapnell, C., Cao, J., et al. (2021)。通过组合索引进行单细胞转录谱分析的优化方案。Preprint at arXiv. https://doi.org/10.48550/arXiv.2110.15400.
Meliambro, K., Wong, J.S., Ray, J., Calizo, R.C., Towne, S., Cole, B., El Salem, F., Gordon, R.E., Kaufman, L., He, J.C., et al. (2017). The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J. Biol. Chem. 292, 21137-21148. https://doi. org/10.1074/jbc.M117.819029. Meliambro, K., Wong, J.S., Ray, J., Calizo, R.C., Towne, S., Cole, B., El Salem, F., Gordon, R.E., Kaufman, L., He, J.C., et al. (2017).Hippo通路调节因子KIBRA通过抑制YAP信号传导和破坏肌动蛋白细胞骨架动力学促进荚膜细胞损伤。J. Biol.Chem.292, 21137-21148. https://doi. org/10.1074/jbc.M117.819029.
Mori, Y., Ajay, A.K., Chang, J.H., Mou, S., Zhao, H., Kishi, S., Li, J., Brooks, C.R., Xiao, S., Woo, H.M., et al. (2021). KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. 33, 1042-1061.e7. https://doi.org/10.1016/J.CMET.2021.04.004. Mori, Y., Ajay, A.K., Chang, J.H., Mou, S., Zhao, H., Kishi, S., Li, J., Brooks, C.R., Xiao, S., Woo, H.M., et al. (2021).KIM-1介导肾小管细胞摄取脂肪酸,促进糖尿病肾病的进展。Cell Metab.33, 1042-1061.e7. https://doi.org/10.1016/J.CMET.2021.04.004.
Mozaffari, M.S. (2003). Taurine modulation of renal excretory function. Thai J Physiol. Sci. 16, 83-90. Mozaffari, M.S.(2003 年)。牛磺酸对肾脏排泄功能的调节。泰国 J Physiol.
Muto, Y., Wilson, P.C., Ledru, N., Wu, H., Dimke, H., Waikar, S.S., and Humphreys, B.D. (2021). Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 1-17. https://doi.org/10.1038/s41467-021-22368-w. Muto, Y., Wilson, P.C., Ledru, N., Wu, H., Dimke, H., Waikar, S.S., and Humphreys, B.D. (2021)。单细胞转录和染色质可及性分析重新定义了成人肾脏的细胞异质性。Nat.12, 1-17. .12, 1-17. https://doi.org/10.1038/s41467-021-22368-w.
Article 文章
Nacu, N., Luzina, I.G., Highsmith, K., Lockatell, V., Pochetuhen, K., Cooper, Z.A., Gillmeister, M.P., Todd, N.W., and Atamas, S.P. (2008). Macrophages produce TGFBI (BIGH3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 180, 50365044. https://doi.org/10.4049/JIMMUNOL.180.7.5036. Nacu, N., Luzina, I.G., Highsmith, K., Lockatell, V., Pochetuhen, K., Cooper, Z.A., Gillmeister, M.P., Todd, N.W., and Atamas, S.P. (2008)。巨噬细胞摄取凋亡细胞后产生 TGFBI(BIGH3),并调节成纤维细胞中 MMP14 的水平和胶原蛋白的周转。J. Immunol.180, 50365044. https://doi.org/10.4049/JIMMUNOL.180.7.5036.
Nakagawa, S., Nishihara, K., Miyata, H., Shinke, H., Tomita, E., Kajiwara, M., Matsubara, T., lehara, N., Igarashi, Y., Yamada, H., et al. (2015). Molecular markers of tubulointerstitial fibrosis and tubular cell damage in patients with chronic kidney disease. PLoS One 10. e0136994. https://doi.org/10.1371/ JOURNAL.PONE. 0136994. Nakagawa, S., Nishihara, K., Miyata, H., Shinke, H., Tomita, E., Kajiwara, M., Matsubara, T., lehara, N., Igarashi, Y., Yamada, H., et al. (2015)。慢性肾脏病患者肾小管间质纤维化和肾小管细胞损伤的分子标记。PLoS One 10. e0136994. https://doi.org/10.1371/ JOURNAL.PONE.0136994.
Ogawa, K., Wada, H., Okada, N., Harada, I., Nakajima, T., Pasquale, E.B., and Tsuyama, S. (2006). EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. J. Cell Sci. 119, 559-570. https://doi.org/10.1242/JCS.02777. Ogawa, K., Wada, H., Okada, N., Harada, I., Nakajima, T., Pasquale, E.B., and Tsuyama, S. (2006)。成人肾脏中表达的 EphB2 和 ephrin-B1 通过 Rho 家族 GTPases 调节髓质小管细胞的细胞结构。J. Cell Sci. 119, 559-570. https://doi.org/10.1242/JCS.02777.
Osis, G., Traylor, A.M., Black, L.M., Spangler, D., George, J.F., Zarjou, A., Verlander, J.W., and Agarwal, A. (2021). Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am. J. Physiol. Ren. Physiol. 320, F706F718. https://doi.org/10.1152/ajprenal.00628.2020. Osis, G., Traylor, A.M., Black, L.M., Spangler, D., George, J.F., Zarjou, A., Verlander, J.W., and Agarwal, A. (2021)。乳酸脱氢酶 A 和 B 同工酶在小鼠肾脏中的表达。Am.J. Physiol.Ren.320, F706F718. https://doi.org/10.1152/ajprenal.00628.2020.
Park, J., Shrestha, R., Qiu, C., Kondo, A., Huang, S., Werth, M., Li, M., Barasch, J., and Suszták, K. (2018). Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758-763. https://doi.org/10.1126/science.aar2131. Park, J., Shrestha, R., Qiu, C., Kondo, A., Huang, S., Werth, M., Li, M., Barasch, J., and Suszták, K. (2018)。小鼠肾脏的单细胞转录组学揭示了肾脏疾病的潜在细胞靶标。Science 360, 758-763. https://doi.org/10.1126/science.aar2131.
Park, M., Kwon, C.H., Ha, H.K., Han, M., and Song, S.H. (2020). RNA-seq identifies condition-specific biological signatures of ischemia-reperfusion injury in the human kidney. BMC Nephrol. 21, 1-12. https://doi.org/10.1186/S12882-020-02025-Y. Park, M., Kwon, C.H., Ha, H.K., Han, M., and Song, S.H. (2020)。RNA-seq鉴定人类肾脏缺血再灌注损伤的条件特异性生物特征。BMC Nephrol.21, 1-12. https://doi.org/10.1186/S12882-020-02025-Y.
Pat, B.K., Cuttle, L., Watters, D., Yang, T., Johnson, D.W., and Gobe, G.C. (2003). Fibrogenic stresses activate different mitogen-activated protein kinase pathways in renal epithelial, endothelial or fibroblast cell populations. Nephrology 8, 196-204. https://doi.org/10.1046/J.1440-1797.2003.00162.X. Pat, B.K., Cuttle, L., Watters, D., Yang, T., Johnson, D.W., and Gobe, G.C. (2003)。Fibrogenic stresses activate different mitogen-activated protein kinase pathways in renal epithelial, endothelial or fibroblast cell populations.https://doi.org/10.1046/J.1440-1797.2003.00162.X。
Pei, K., Gui, T., Li, C., Zhang, Q., Feng, H., Li, Y., Wu, J., and Gai, Z. (2020). Recent progress on lipid intake and chronic kidney disease. BioMed Res. Int. 2020. 3680397. https://doi.org/10.1155/2020/3680397. Pei, K., Gui, T., Li, C., Zhang, Q., Feng, H., Li, Y., Wu, J., and Gai, Z. (2020)。脂质摄入与慢性肾脏病的最新进展。BioMed Res. Int. 2020.3680397. https://doi.org/10.1155/2020/3680397.
Penkov, D., Ni, R., Else, C., Piñol-Roma, S., Ramirez, F., and Tanaka, S. (2000). Cloning of a human gene closely related to the genes coding for the c-myc sin-gle-strand binding proteins. Gene 243, 27-36. https://doi.org/10.1016/S0378-1119(99)00515-6. Penkov, D., Ni, R., Else, C., Piñol-Roma, S., Ramirez, F., and Tanaka, S. (2000).Cloning of a human gene closely related to the genes coding for the c-myc sin-gle-strand binding proteins.Gene 243, 27-36. https://doi.org/10.1016/S0378-1119(99)00515-6。
Piret, S.E., Guo, Y., Attallah, A.A., Horne, S.J., Zollman, A., Owusu, D., Henein, J., Sidorenko, V.S., Revelo, M.P., Hato, T., et al. (2021). Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc. Natl. Acad. Sci. USA 118. e2024414118. https://doi.org/ 10.1073/PNAS. 2024414118. Piret, S.E., Guo, Y., Attallah, A.A., Horne, S.J., Zollman, A., Owusu, D., Henein, J., Sidorenko, V.S., Revelo, M.P., Hato, T., et al. (2021)。Krüppel-like factor 6 介导的 BCAA 分解损失导致小鼠和人类肾损伤。Proc.Natl.USA 118. e2024414118. https://doi.org/ 10.1073/PNAS.2024414118.
Polański, K., Young, M.D., Miao, Z., Meyer, K.B., Teichmann, S.A., and Park, J.-E. (2020). BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964-965. https://doi.org/10.1093/BIOINFORMATICS/ BTZ625. Polański, K., Young, M.D., Miao, Z., Meyer, K.B., Teichmann, S.A., and Park, J.-E.(2020).BBKNN: fast batch alignment of single cell transcriptomes.https://doi.org/10.1093/BIOINFORMATICS/ BTZ625.
Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017). Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979-982. https://doi.org/10.1038/NMETH. 4402. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017)。反向图嵌入解析复杂单细胞轨迹。Nat.Methods 14, 979-982. https://doi.org/10.1038/NMETH.4402.
Ramseyer, V.D., and Garvin, J.L. (2013). Tumor necrosis factor- alpha\alpha : regulation of renal function and blood pressure. Am. J. Physiol. Ren. Physiol. 304, F1231F1242. https://doi.org/10.1152/AJPRENAL.00557.2012. Ramseyer, V.D. 和 Garvin, J.L. (2013)。肿瘤坏死因子- alpha\alpha :肾功能和血压的调节。Am.J. Physiol.Ren.Physiol. 304, F1231F1242. https://doi.org/10.1152/AJPRENAL.00557.2012.
Rashmi, R.N., Eckes, B., Glöckner, G., Groth, M., Neumann, S., Gloy, J., Sellin, L., Walz, G., Schneider, M., Karakesisoglou, I., et al. (2012). The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. Nucleus 3, 172-186. https://doi.org/10.4161/NUCL. 19090. Rashmi, R.N., Eckes, B., Glöckner, G., Groth, M., Neumann, S., Gloy, J., Sellin, L., Walz, G., Schneider, M., Karakesisoglou, I., et al. (2012)。核包膜蛋白 Nesprin-2 在伤口愈合过程中的细胞增殖和分化中发挥作用。Nucleus 3, 172-186. https://doi.org/10.4161/NUCL.19090.
Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., and Kelso, J. (2015). DeML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770-772. https://doi.org/10.1093/bioinformatics/btu719. Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., and Kelso, J. (2015).DeML: robust demultiplexing of Illumina sequences using a likelihood-based approach.Bioinformatics 31, 770-772. https://doi.org/10.1093/bioinformatics/btu719.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. https://doi.org/10.1093/ BIOINFORMATICS/BTP616. Robinson,M.D.、McCarthy,D.J.和 Smyth,G.K.(2010 年)。 edgeR:用于数字基因表达数据差异表达分析的 Bioconductor 软件包。Bioinformatics 26, 139-140. https://doi.org/10.1093/ BIOINFORMATICS/BTP616。
Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z., Monteiro, C.D., McDermott, M.G., and Ma’ayan, A. (2016). The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford) 2016, baw100. https://doi.org/10.1093/ DATABASE/BAW100. Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z., Monteiro, C.D., McDermott, M.G., and Ma'ayan, A. (2016)。The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins.数据库(牛津)2016,BAW100。https://doi.org/10.1093/ DATABASE/BAW100。
Rudman-Melnick, V., Adam, M., Potter, A., Chokshi, S.M., Ma, Q., Drake, K.A., Schuh, M.P., Matthew Kofron, J.M., Devarajan, P., and Steven Potter, S.S. (2020). Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 31, 2793-2814. https://doi.org/10.1681/ASN. 2020010052. Rudman-Melnick, V., Adam, M., Potter, A., Chokshi, S.M., Ma, Q., Drake, K.A., Schuh, M.P., Matthew Kofron, J.M., Devarajan, P., and Steven Potter, S.S. (2020)。小鼠 AKI 模型的单细胞谱分析揭示了新的转录特征、坏死表型以及上皮细胞与基质之间的串联。J. Am.Soc. Nephrol.31, 2793-2814. https://doi.org/10.1681/ASN. 2020010052.
Sato, Y., and Yanagita, M. (2017). Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflam. Regen. 37, 17. https://doi.org/10. 1186/s41232-017-0048-3. Sato, Y. 和 Yanagita, M. (2017)。肾脏中的驻留成纤维细胞:纤维化和炎症的主要驱动力。Inflam.Regen.37, 17. https://doi.org/10.1186/s41232-017-0048-3.
Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., et al. (2019). Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928-943.e22. https://doi.org/10.1016/J.CELL. 2019. 01.006. Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., et al. (2019).单细胞基因表达的优化传输分析确定了重编程的发展轨迹。Cell 176, 928-943.e22. https://doi.org/10.1016/J.CELL.2019.01.006.
SchiessI, I.M., Grill, A., Fremter, K., Steppan, D., Hellmuth, M.-K., and Castrop, H. (2018). Renal interstitial platelet-derived growth factor receptor-B cells support proximal tubular regeneration. J. Am. Soc. Nephrol. 29, 1383-1396. https://doi.org/10.1681/ASN. 2017101069. SchiessI, I.M.、Grill, A.、Fremter, K.、Steppan, D.、Hellmuth, M.-K. 和 Castrop, H. (2018)。肾间质血小板衍生生长因子受体-B细胞支持近端肾小管再生。J. Am.Soc. Nephrol.29, 1383-1396. https://doi.org/10.1681/ASN. 2017101069.
Schubert, M., Klinger, B., Klünemann, M., Sieber, A., Uhlitz, F., Sauer, S., Garnett, M.J., Blüthgen, N., and Saez-Rodriguez, J. (2018). Perturbationresponse genes reveal signaling footprints in cancer gene expression. Nat. Commun. 91, 1-11. https://doi.org/10.1038/s41467-017-02391-6. Schubert, M., Klinger, B., Klünemann, M., Sieber, A., Uhlitz, F., Sauer, S., Garnett, M.J., Blüthgen, N., and Saez-Rodriguez, J. (2018)。干扰响应基因揭示癌症基因表达的信号足迹。Nat.Nat.91, 1-11. https://doi.org/10.1038/s41467-017-02391-6.
Shao, X., Taha, I.N., Clauser, K.R., Gao, Y.T., and Naba, A. (2020). MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 48, D1136-D1144. https://doi.org/10.1093/NAR/GKZ849. Shao, X., Taha, I.N., Clauser, K.R., Gao, Y.T., and Naba, A. (2020)。MatrisomeDB: ECM 蛋白知识数据库。Nucleic Acids Res. 48, D1136-D1144. https://doi.org/10.1093/NAR/GKZ849.
Shimizu, H., Bolati, D., Adijiang, A., Muteliefu, G., Enomoto, A., Nishijima, F., Dateki, M., and Niwa, T. (2011). NF-кB plays an important role in indoxyl sul-fate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am. J. Physiol. Cell Physiol. 301, 1201-1212. https://doi.org/10.1152/ajpcell.00471.2010. Shimizu, H., Bolati, D., Adijiang, A., Muteliefu, G., Enomoto, A., Nishijima, F., Dateki, M., and Niwa, T. (2011)。NF-кB在硫酸茚三酮诱导的细胞衰老、纤维化基因表达和近端肾小管细胞增殖抑制中扮演重要角色。Am.J. Physiol.301, 1201-1212. https://doi.org/10.1152/ajpcell.00471.2010.
Shoji, H., Yoshio, S., Mano, Y., Kumagai, E., Sugiyama, M., Korenaga, M., Arai, T., Itokawa, N., Atsukawa, M., Aikata, H., et al. (2016). Interleukin-34 as a fibro-blast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci. Rep. 61, 1-11. https://doi.org/10.1038/srep28814. Shoji, H., Yoshio, S., Mano, Y., Kumagai, E., Sugiyama, M., Korenaga, M., Arai, T., Itokawa, N., Atsukawa, M., Aikata, H., et al. (2016)。白细胞介素-34作为非酒精性脂肪肝患者肝纤维化的纤维细胞衍生标记物。Sci. Rep. 61, 1-11. https://doi.org/10.1038/srep28814.
Slee, A.D. (2012). Exploring metabolic dysfunction in chronic kidney disease. Nutr. Metab. 91, 1-16. https://doi.org/10.1186/1743-7075-9-36. Slee, A.D. (2012)。探索慢性肾脏病的代谢功能障碍。Nutr.Metab.91, 1-16. https://doi.org/10.1186/1743-7075-9-36.
Stadler, K., Goldberg, I.J., and Susztak, K. (2015). The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diab. Rep. 15, 40. https://doi.org/10.1007/S11892-015-0611-8. Stadler, K., Goldberg, I.J., and Susztak, K. (2015)。脂质代谢对糖尿病肾病贡献的认识演变。Curr.Diab。15, 40. https://doi.org/10.1007/S11892-015-0611-8.
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865-868. https://doi.org/10.1038/nmeth. 4380. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017)。在单细胞中同时测量表位和转录组。Nat.Methods 14, 865-868. https://doi.org/10.1038/nmeth.4380.
Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z., Mauck, W.M., Smibert, P., and Satija, R. (2018). Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224. https://doi.org/10.1186/s13059-018-1603-1. Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z., Mauck, W.M., Smibert, P., and Satija, R. (2018)。使用条形码抗体进行细胞散列可实现单细胞基因组学的多路复用和双重检测。Genome Biol. 19, 224. https://doi.org/10.1186/s13059-018-1603-1.
Stuart, T., and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272. https://doi.org/10.1038/s41576-019-0093-7. Stuart, T. 和 Satija, R. (2019)。单细胞综合分析。Nat.Rev. Genet.20, 257-272. https://doi.org/10.1038/s41576-019-0093-7.
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21. https://doi.org/10.1016/J. CELL.2019.05.031. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019).单细胞数据的全面整合。Cell 177, 1888-1902.e21. https://doi.org/10.1016/J.cell.2019.05.031.
Suliman, M.E., Bárány, P., Filho, J.C.D., Lindholm, B., and Bergström, J. (2002). Accumulation of taurine in patients with renal failure. Nephrol. Dial. Transplant. 17, 528-529. https://doi.org/10.1093/NDT/17.3.528. Suliman, M.E., Bárány, P., Filho, J.C.D., Lindholm, B., and Bergström, J. (2002)。肾衰竭患者体内牛磺酸的积累。肾脏病。Dial.移植。17,528-529。https://doi.org/10.1093/NDT/17.3.528。
Tang, J., Liu, N., and Zhuang, S. (2013). Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney Int. 83, 804-810. https://doi.org/ 10.1038/KI.2012.435. Tang, J., Liu, N., and Zhuang, S. (2013)。表皮生长因子受体在急性和慢性肾损伤中的作用》。Kidney Int. 83, 804-810. https://doi.org/ 10.1038/KI.2012.435。
Tang, C., Livingston, M.J., Liu, Z., and Dong, Z. (2020). Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 16, 489-508. https://doi.org/ 10.1038/s41581-020-0309-2. Tang, C., Livingston, M.J., Liu, Z., and Dong, Z. (2020)。自噬在肾脏稳态和疾病中的作用。Nat.Rev. Nephrol.16, 489-508. https://doi.org/ 10.1038/s41581-020-0309-2。
Tran, M.T., Zsengeller, Z.K., Berg, A.H., Khankin, E.V., Bhasin, M.K., Kim, W., Clish, C.B., Stillman, I.E., Karumanchi, S.A., Rhee, E.P., et al. (2016). PGC1 alpha\alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528-532. https://doi.org/10.1038/nature17184. Tran, M.T., Zsengeller, Z.K., Berg, A.H., Khankin, E.V., Bhasin, M.K., Kim, W., Clish, C.B., Stillman, I.E., Karumanchi, S.A., Rhee, E.P., et al. (2016)。PGC1 alpha\alpha 驱动 NAD 生物合成,将氧化代谢与肾脏保护联系起来。自然》531,528-532。https://doi.org/10.1038/nature17184。
Tran, H.T.N., Ang, K.S., Chevrier, M., Zhang, X., Lee, N.Y.S., Goh, M., and Chen, J. (2020). A benchmark of batch-effect correction methods for singlecell RNA sequencing data. Genome Biol. 21, 12. https://doi.org/10.1186/ s13059-019-1850-9. Tran, H.T.N., Ang, K.S., Chevrier, M., Zhang, X., Lee, N.Y.S., Goh, M., and Chen, J. (2020)。单细胞 RNA 测序数据批效应校正方法基准。Genome Biol. 21, 12. https://doi.org/10.1186/ s13059-019-1850-9。
Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347. 1260419. https://doi.org/10.1126/science.1260419. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015).蛋白质组学。基于组织的人类蛋白质组图谱。Science 347.1260419. https://doi.org/10.1126/science.1260419.
Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M., and Klein, A.M. (2018). Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl. Acad. Sci. USA 115, E2467-E2476. https://doi.org/10.1073/PNAS. 1714723115. Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M., and Klein, A.M. (2018)。单细胞快照动态推断的基本限制。Proc.Natl.USA 115, E2467-E2476. https://doi.org/10.1073/PNAS.1714723115.
Wen, L., Li, Y., Li, S., Hu, X., Wei, Q., and Dong, Z. (2021). Glucose metabolism in acute kidney injury and kidney repair. Front. Med. 8, 2183. https://doi.org/ 10.3389/FMED.2021.744122/BIBTEX. Wen, L., Li, Y., Li, S., Hu, X., Wei, Q., and Dong, Z. (2021)。急性肾损伤和肾修复中的葡萄糖代谢。Front.8, 2183.8, 2183. https://doi.org/ 10.3389/fmed.2021.744122/bibtex.
Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1-5. https://doi.org/10.1186/ S13059-017-1382-0. Wolf, F.A., Angerer, P., and Theis, F.J. (2018)。SCANPY:大规模单细胞基因表达数据分析。Genome Biol. 19, 1-5. https://doi.org/10.1186/ S13059-017-1382-0。
Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281291.e9. https://doi.org/10.1016/J.CELS.2018.11.005. Wolock, S.L., Lopez, R., and Klein, A.M. (2019).Scrublet: computational identification of cell doublets in single-cell transcriptomic data.Cell Syst.8, 281291.e9. https://doi.org/10.1016/J.CELS.2018.11.005.
Wu, H., Kirita, Y., Donnelly, E.L., and Humphreys, B.D. (2019). Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23-32. https://doi.org/10.1681/ASN. 2018090912. Wu, H., Kirita, Y., Donnelly, E.L., and Humphreys, B.D. (2019).成人肾脏单核比单细胞 RNA 测序的优势:纤维化中发现的罕见细胞类型和新型细胞状态。J. Am.Soc. Nephrol.30, 23-32. https://doi.org/10.1681/ASN. 2018090912.
Wu, H., Lai, C.F., Chang-Panesso, M., and Humphreys, B.D. (2020). Proximal tubule translational profiling during kidney fibrosis reveals proinflammatory and long noncoding RNA expression patterns with sexual dimorphism. J. Am. Soc. Nephrol. 31, 23-38. https://doi.org/10.1681/ASN. 2019040337. Wu, H., Lai, C.F., Chang-Panesso, M., and Humphreys, B.D. (2020)。肾脏纤维化过程中近端肾小管翻译谱分析揭示了具有性别二态性的促炎症和长非编码 RNA 表达模式。J. Am.Soc. Nephrol.31, 23-38. https://doi.org/10.1681/ASN. 2019040337.
Wu, H., Villalobos, R.G., Yao, X., Reilly, D., Chen, T., Rankin, M., Myshkin, E., Breyer, M.D., and Humphreys, B.D. (2022). Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 34, 1064-1078.e6. https://doi.org/10.1016/j.cmet.2022.05.010. Wu, H., Villalobos, R.G., Yao, X., Reilly, D., Chen, T., Rankin, M., Myshkin, E., Breyer, M.D., and Humphreys, B.D. (2022)。绘制小鼠糖尿病肾病对疗法的单细胞转录组反应图。细胞代谢。34, 1064-1078.e6. https://doi.org/10.1016/j.cmet.2022.05.010.
Xu, Z., and Dai, C. (2017). Ablation of FGFR2 in fibroblasts ameliorates kidney fibrosis after ischemia/reperfusion injury in mice. Kidney Dis. 3, 160-170. https://doi.org/10.1159/000484604. Xu, Z. 和 Dai, C. (2017)。消融成纤维细胞中的FGFR2可改善小鼠缺血再灌注损伤后的肾脏纤维化。Kidney Dis.3, 160-170. https://doi.org/10.1159/000484604.
Yang, T., Bassuk, A.G., and Fritzsch, B. (2013). Prickle1 stunts limb growth through alteration of cell polarity and gene expression. Dev. Dyn. 242, 12931306. https://doi.org/10.1002/DVDY. 24025. Yang, T., Bassuk, A.G., and Fritzsch, B. (2013)。Prickle1 通过改变细胞极性和基因表达阻碍肢体生长。Dev.Dyn.242, 12931306. https://doi.org/10.1002/DVDY.24025.
Zager, R.A., Johnson, A.C.M., Hanson, S.Y., and Lund, S. (2005). Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-alpha generation and systemic release. Am. J. Physiol. Ren. Physiol. 289, F289-F297. https://doi.org/10.1152/AJPRENAL.00023.2005. Zager, R.A., Johnson, A.C.M., Hanson, S.Y., and Lund, S. (2005)。缺血性近端肾小管损伤使小鼠形成内毒素诱导的 TNF-α 生成和全身释放。Am.J. Physiol.Ren.289, F289-F297. https://doi.org/10.1152/AJPRENAL.00023.2005.
Zeng, L., Sas, K.M., Cifarelli, V., Schoiswohl, G., Huggins, L., Gumaste, N., Hu, Y., Pennathur, S., Abumrad, N.A., Kershaw, E.E., et al. (2017). Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids[S]. J. Lipid Res. 58, 1132-1142. https://doi.org/10.1194/jlr.M074427. Zeng, L., Sas, K.M., Cifarelli, V., Schoiswohl, G., Huggins, L., Gumaste, N., Hu, Y., Pennathur, S., Abumrad, N.A., Kershaw, E.E., et al. (2017).空腹小鼠肾脏甘油三酯积累取决于血清游离脂肪酸[S].J. Lipid Res. 58, 1132-1142. https://doi.org/10.1194/jlr.M074427.
Zhan, M., Brooks, C., Liu, F., Sun, L., and Dong, Z. (2013). Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568-581. https://doi.org/10.1038/KI.2012.441. Zhan, M., Brooks, C., Liu, F., Sun, L., and Dong, Z. (2013)。线粒体动力学:肾脏病理生理学中的调控机制和新作用》。Kidney Int. 83, 568-581. https://doi.org/10.1038/KI.2012.441.
Zhang, Y., Wang, S., Liu, S., Li, C., and Wang, J. (2015). Role of Smad signaling in kidney disease. Int. Urol. Nephrol. 47, 1965-1975. https://doi.org/10.1007/ S11255-015-1115-9. Zhang, Y., Wang, S., Liu, S., Li, C., and Wang, J. (2015)。Smad信号在肾脏疾病中的作用。Int.Urol.Nephrol.47, 1965-1975. https://doi.org/10.1007/ s11255-015-1115-9.
Zhang, J., Chen, Y., Chen, T., Miao, B., Tang, Z., Hu, X., Luo, Y., Zheng, T., Na, N., and Ning Na, C. (2021). Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis. Clin. Transl. Med. 11, e321. https://doi.org/10.1002/CTM2.321. Zhang, J., Chen, Y., Chen, T., Miao, B., Tang, Z., Hu, X., Luo, Y., Zheng, T., Na, N., and Ning Na, C. (2021)。单细胞转录组学提供了腹膜纤维化过程中成纤维细胞作用的新见解。Clin.Transl.Med.11, e321. https://doi.org/10.1002/CTM2.321.
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. https://doi.org/10.1038/s41467-019-09234-6. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019)。Metascape 为系统级数据集分析提供了面向生物学家的资源。Nat.10, 1523.10, 1523. https://doi.org/10.1038/s41467-019-09234-6.
Zhu, X., Jiang, L., Long, M., Wei, X., Hou, Y., and Du, Y. (2021). Metabolic reprogramming and renal fibrosis. Front. Med. 8, 2198. https://doi.org/10.3389/ FMED.2021.746920/BIBTEX. Zhu, X., Jiang, L., Long, M., Wei, X., Hou, Y., and Du, Y. (2021)。代谢重编程与肾脏纤维化。Front.Med。8, 2198. https://doi.org/10.3389/ fmed.2021.746920/bibtex.
Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
Quick Ligase NEB M2200L
Second strand synthesis enzyme NEB E6111L
Dimethylformamide Thermo Scientific Cat#20673
USER enzyme NEB M5505L
NEBnext 2xx master mix NEB M0541L
DNA binding buffer Zymo D4004-1-L
Critical commercial assays
Oil Red O Stain Kit Abcam ab150678
Branched Chain Amino Acid Colorimetric Kit Sigma MAK003
Seahorse XFe96 FluxPaks Agilent Cat#102416-100
Deposited data
Raw and processed sci-RNA-seq3 data This study GEO: GSE190887
Raw and processed RNA-seq data This study GEO: GSE206084
Kidney Interactive Transcriptomics The Humphreys Lab http://humphreyslab.com/SingleCell/
Mendeley Data This study http://doi.org/10.17632/hd3j7mdm2p. 1
Data S1 - Source Data This study N/A
Experimental models: Cell lines
HEK-293T ATCC CRL-3216
C3H/10T1/2 ATCC CCL-226
Primary human renal proximal tubule epithelial cells Lonza CC-2553
Experimental models: Organisms/strains
C57BL/6J The Jackson Lab Cat#000664
Software and algorithms
Scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/
Seurat Stuart et al., 2019 https://satijalab.org/seurat/
sci-RNA-seq3 preprocessing Cao et al., 2019 https://github.com/JunyueC/sci-RNA-seq3_pipeline
deML Renaud et al., 2015 https://github.com/grenaud/deML
TrimGalore N/A https://github.com/FelixKrueger/TrimGalore
STAR Dobin et al., 2013 https://github.com/alexdobin/STAR
samtools Li et al., 2009 http://www.htslib.org/
HTSeq Anders et al., 2015 https://htseq.readthedocs.io/en/master/index.html
CellBender Fleming et al., 2019 https://github.com/broadinstitute/CellBender
Monocle2 Qiu et al., 2017 http://cole-trapnell-lab.github.io/monocle-release/
Scrublet Wolock et al., 2019 https://github.com/swolock/scrublet
plot1cell Wu et al., 2022 https://github.com/TheHumphreysLab/plot1cell
Harmony Korsunsky et al., 2019 https://portals.broadinstitute.org/harmony/articles/ quickstart.html
Cellrank Lange et al., 2022 https://cellrank.readthedocs.io/en/stable/
Metascape Zhou et al., 2019 https://metascape.org
Progeny Holland et al., 2020 https://github.com/saezlab/progeny-py
DoRothEA Holland et al., 2020 https://github.com/saezlab/dorothea-py
CellPhoneDB Efremova et al., 2020 https://github.com/Teichlab/cellphonedb
BBKNN Polański et al., 2020 https://github.com/Teichlab/bbknn
SpaceRanger 10X Genomics https://support.10xgenomics.com/spatial-geneexpression/software/pipelines/latest/installation
Giotto Dries et al., 2021 https://rubd.github.io/Giotto_site/
edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/ html/edgeR.html| Continued | | |
| :---: | :---: | :---: |
| REAGENT or RESOURCE | SOURCE | IDENTIFIER |
| Quick Ligase | NEB | M2200L |
| Second strand synthesis enzyme | NEB | E6111L |
| Dimethylformamide | Thermo Scientific | Cat#20673 |
| USER enzyme | NEB | M5505L |
| NEBnext $2 \times$ master mix | NEB | M0541L |
| DNA binding buffer | Zymo | D4004-1-L |
| Critical commercial assays | | |
| Oil Red O Stain Kit | Abcam | ab150678 |
| Branched Chain Amino Acid Colorimetric Kit | Sigma | MAK003 |
| Seahorse XFe96 FluxPaks | Agilent | Cat#102416-100 |
| Deposited data | | |
| Raw and processed sci-RNA-seq3 data | This study | GEO: GSE190887 |
| Raw and processed RNA-seq data | This study | GEO: GSE206084 |
| Kidney Interactive Transcriptomics | The Humphreys Lab | http://humphreyslab.com/SingleCell/ |
| Mendeley Data | This study | http://doi.org/10.17632/hd3j7mdm2p. 1 |
| Data S1 - Source Data | This study | N/A |
| Experimental models: Cell lines | | |
| HEK-293T | ATCC | CRL-3216 |
| C3H/10T1/2 | ATCC | CCL-226 |
| Primary human renal proximal tubule epithelial cells | Lonza | CC-2553 |
| Experimental models: Organisms/strains | | |
| C57BL/6J | The Jackson Lab | Cat#000664 |
| Software and algorithms | | |
| Scanpy | Wolf et al., 2018 | https://scanpy.readthedocs.io/en/stable/ |
| Seurat | Stuart et al., 2019 | https://satijalab.org/seurat/ |
| sci-RNA-seq3 preprocessing | Cao et al., 2019 | https://github.com/JunyueC/sci-RNA-seq3_pipeline |
| deML | Renaud et al., 2015 | https://github.com/grenaud/deML |
| TrimGalore | N/A | https://github.com/FelixKrueger/TrimGalore |
| STAR | Dobin et al., 2013 | https://github.com/alexdobin/STAR |
| samtools | Li et al., 2009 | http://www.htslib.org/ |
| HTSeq | Anders et al., 2015 | https://htseq.readthedocs.io/en/master/index.html |
| CellBender | Fleming et al., 2019 | https://github.com/broadinstitute/CellBender |
| Monocle2 | Qiu et al., 2017 | http://cole-trapnell-lab.github.io/monocle-release/ |
| Scrublet | Wolock et al., 2019 | https://github.com/swolock/scrublet |
| plot1cell | Wu et al., 2022 | https://github.com/TheHumphreysLab/plot1cell |
| Harmony | Korsunsky et al., 2019 | https://portals.broadinstitute.org/harmony/articles/ quickstart.html |
| Cellrank | Lange et al., 2022 | https://cellrank.readthedocs.io/en/stable/ |
| Metascape | Zhou et al., 2019 | https://metascape.org |
| Progeny | Holland et al., 2020 | https://github.com/saezlab/progeny-py |
| DoRothEA | Holland et al., 2020 | https://github.com/saezlab/dorothea-py |
| CellPhoneDB | Efremova et al., 2020 | https://github.com/Teichlab/cellphonedb |
| BBKNN | Polański et al., 2020 | https://github.com/Teichlab/bbknn |
| SpaceRanger | 10X Genomics | https://support.10xgenomics.com/spatial-geneexpression/software/pipelines/latest/installation |
| Giotto | Dries et al., 2021 | https://rubd.github.io/Giotto_site/ |
| edgeR | Robinson et al., 2010 | https://bioconductor.org/packages/release/bioc/ html/edgeR.html |
Article 文章
RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Benjamin D. Humphreys (humphreysbd@wustl.edu).
Materials availability
This study did not generate new unique reagents.
Data and code availability
Raw (fastq) and pre-processed data (count matrix) and metadata of the sci-RNA-seq3 dataset have been deposited in NCBl’s Gene Expression Omnibus and are available through GEO Series accession number GSE190887. Raw and processed bulk RNA-seq data on RPTECs are available through GEO Series accession number GSE206084. All additional data are available at Mendeley Data (http://doi.org/10.17632/hd3j7mdm2p.1).
Scripts for a pipeline of single-cell clustering and visualization and generation of all major figures in this study were written mostly in Python and R with code available at https://github.com/TheHumphreysLab/sci-RNA-seq-kidney. Data S1 - Source Data, containing values used to generate graphs related to Figures 3,4,5,7,S13,4,5,7, S 1, and S3-S7S 3-S 7, is also presented.
EXPERIMENTAL MODEL AND SUBJECT DETAILS 实验模型和受试者详情
All mouse experiments were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee at Washington University in St. Louis. C57BL/6J mice were obtained from The Jackson Laboratory (000664, JAX). Both uni-IRI and UUO surgeries were performed as previously described (Le Clef et al., 2016; Wu et al., 2019). Briefly, 8 - to 9 -week-old male mice were anesthetized with isoflurane and buprenorphine Sustained-Release was administered for analgesia. Body temperature was monitored and maintained at 36.5-37.5^(@)C36.5-37.5^{\circ} \mathrm{C} throughout both procedures. After flank incision, in uni-IRI, ischemia was induced on the left kidney by clamping the renal pedicle with a nontraumatic micro aneurysm clamp (RS-5420, Roboz) for 22 minutes, and the clamp was subsequently removed. The 22-min clamping time was determined with a titration test before the experiment where we confirmed successful induction of tissue injury, fibrosis and repair. In UUO, irreversible obstruction was induced by ligating the left ureter twice with nonabsorbable silk suture (468782, McKesson) between the bladder and renal pelvis.
METHOD DETAILS 方法细节
Mouse kidney sample processing 小鼠肾脏样本处理
Mice were euthanized with isoflurane and the left ventricle was perfused with phosphate-buffered saline (PBS). Left kidneys were subsequently harvested. For tissues used in sci-RNA-seq3 library generation, a piece of cortical tissue was dissected from each kidney for subsequent qPCR analysis and the remaining tissue were snap-frozen with liquid nitrogen for nuclei preparation. For immunofluorescence, kidneys were fixed with 4%4 \% paraformaldehyde (PFA) (15713, Electron Microscopy Sciences) at 4^(@)C4^{\circ} \mathrm{C} for 2 hours, immersed in 30%30 \% sucrose at 4^(@)C4^{\circ} \mathrm{C} overnight and embedded in optimum cutting temperature compound (4583, Sakura) to cut sections.
Cell culture 细胞培养
HEK-293T cells (CRL-3216, ATCC) and C3H/10T1/2 cells (CCL-226, ATCC) were cultured in DMEM (11965, Gibco) supplemented with 10%10 \% Fetal Bovine Serum (F4135, Sigma) and 1xx1 \times penicillin-streptomycin ( 15140122 , Gibco). Primary human renal proximal tubule epithelial cells (RPTECs) (CC-2553, Lonza) were cultured in Renal Epithelial Cell Growth Medium (CC-3190, Lonza) with supplements provided in the kit. Primary RPTECs were used in early passage. All cells were maintained in a humidified 5%CO_(2)5 \% \mathrm{CO}_{2} atmosphere at 37^(@)C37^{\circ} \mathrm{C} unless otherwise specified.
Quantitative polymerase chain reaction (qPCR) analysis 定量聚合酶链反应(qPCR)分析
For each kidney sample, tissue was homogenized in TRIzol reagents (15596026, Invitrogen) on ice and RNA was extracted with the Direct-zol RNA Miniprep Kit (R2072, Zymo) following the manufacturer’s instructions. Complementary DNA (cDNA) was obtained by reverse transcribing the extracted RNA ( ∼1.5 mug\sim 1.5 \mu \mathrm{~g} ) with the High-Capacity cDNA Reverse Transcription Kit (4368813, Life Technologies), and then processed for qPCR using the iTaq Universal SYBR Green Supermix (1725125, BioRad). Gene expression was normalized to Gapdh or Actb expression and quantified with the 2^(-Delta Delta Ct)2^{-\Delta \Delta C t} method. For cultured human RPTECs, we performed cell lysis in TRIzol reagents and followed a similar procedure as mentioned above. Primer sequences can be found in Mendeley Data.
Immunofluorescence 免疫荧光
6-mu m6-\mu m tissue sections were fixed with 4%4 \% PFA for 5 minutes, washed with PBS and blocked with blocking buffer (1% Bovine Serum Albumin (BSA), 1% goat serum, 0.3%0.3 \% Triton X-100 in PBS) for 20-40 minutes at room temperature. For each target, sections were stained with the desired primary antibody for 45-9045-90 minutes at room temperature or overnight at 4^(@)C4^{\circ} \mathrm{C}. Sections were washed with PBS (three times; 5 minutes each) and stained with the desired secondary antibody for 45-60 minutes at room temperature. After
three washes with PBS for 5 minutes each, sections were counterstained with DAPI and mounted with Prolong Gold. Images were captured and processed with a confocal microscope (Eclipse Ti, Nikon) and examined in a blinded fashion.
Lipid staining 脂质染色
For Oil Red O staining, Oil Red O Stain Kit (ab150678, Abcam) was used. We incubated 6-mum6-\mu \mathrm{m} fixed frozen tissue sections (formalinfixed paraffin-embedded sections are not recommended) or fixed cells on a slide with Oil Red O Solution overnight at room temperature and followed the other procedures with the manufacturer’s instructions. Images were captured with a Zeiss Axio Scan Z1 light microscopy and examined in a blinded fashion.
BODIPY 493/503 (25892, Cayman Chemical) was used to label cellular lipid contents. Briefly, 6-mum6-\mu \mathrm{m} fixed frozen tissue sections or fixed cells on a slide were incubated with 7.5-15 muM7.5-15 \mu \mathrm{M} BODIPY 493//503493 / 503 for 15 minutes at room temperature and washed with PBS. The sample was counterstained with DAPI and then processed for confocal imaging.
RNA in situ hybridization (ISH) RNA 原位杂交 (ISH)
RNA ISH was performed as previously described (Chang-Panesso et al., 2019; Liu et al., 2017). Briefly, the cDNA used in qPCR was amplified by PCR with primer sequences described in Mendeley Data. Probes were transcribed in vitro by T7 (for antisense probes) (10881767001, Roche) or SP6 (for sense probes) (10810274001, Roche) RNA polymerases in the presence of DIG RNA Labeling Mix ( 11277073910 , Roche). The reaction was performed at 37^(@)C37^{\circ} \mathrm{C} for 2 hours. Then, the reaction was supplemented with DNase ( 79254 , Qiagen), incubated at 37^(@)C37^{\circ} \mathrm{C} for 15 minutes and stopped by adding EDTA pH 8.0. Probes were purified and eluted in hybridization buffer ( 50%50 \% formamide, 5xx5 \times SSC, 1%1 \% SDS, 50 mug//mL50 \mu \mathrm{~g} / \mathrm{mL} yeast tRNA (15401011, Invitrogen) and 50 mug//mL50 \mu \mathrm{~g} / \mathrm{mL} heparin (H3393, Sigma)). Next, 15-mum15-\mu \mathrm{m} sections were fixed with 4%4 \% PFA overnight, washed with PBS and incubated with 10 mug//mL10 \mu \mathrm{~g} / \mathrm{mL} Proteinase-K (25530049, Invitrogen) in PBS for 20 minutes. Sections were washed with PBS and incubated with acetylation solution ( 533 mu533 \mu l triethanolamine ( T 58300, Sigma), 70 mul37%HCl70 \mu \mathrm{l} 37 \% \mathrm{HCl} and 150 mul150 \mu \mathrm{l} acetic anhydride ( 320102 , Sigma) in 40mLH_(2)O40 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} ) for 10 minutes. Sections were then washed with PBS, H_(2)O,70%\mathrm{H}_{2} \mathrm{O}, 70 \% ethanol and 95%95 \% ethanol. Probes were added at a final concentration of 500-1000ng//mL500-1000 \mathrm{ng} / \mathrm{mL} in hybridization buffer and the reaction was performed at 68^(@)C68^{\circ} \mathrm{C} overnight. After hybridization, sections were washed with 5xx5 \times SSC, 1xx1 \times SSC supplemented with 50%50 \% formamide, 2xx2 \times SSC and 0.2 xx0.2 \times SSC at 68^(@)C68^{\circ} \mathrm{C}, and then washed with TBST buffer at room temperature. Sections were blocked with 2%2 \% blocking reagent (11096176001, Roche) for 1-2 hours at room temperature and 1:4000 diluted anti-DIG-AP Fab fragments antibody (11093274910, Roche) was added and incubated at 4^(@)C4^{\circ} \mathrm{C} overnight. Then, sections were washed with TBST and NTMT ( 100mMNaCl,100mM100 \mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM} Tris pH9.5,50mMMgCl,0.1%\mathrm{pH} 9.5,50 \mathrm{mM} \mathrm{MgCl}, ~ 0.1 \% Tween 20 and 2 mM Tetramisole (L9756, Sigma)) buffers and incubated with BM-Purple solution (11442074001, Roche) at room temperature. Sections were fixed again, washed with PBS and mounted with Prolong Gold. Images were captured with a Zeiss Axio Scan Z1 light microscopy and examined in a blinded fashion. To validate successful development of RNA ISH, we stained S/c22a7, a well-described gene expressed in S3 segment of PT in health (Chang-Panesso et al., 2019), and confirmed that it was highly expressed in healthy kidney tissues and was not observed at UUO D2 in antisense probe hybridization, and could not be detected in both conditions by sense probes (Mendeley Data).
For dual RNA-ISH, the aforementioned procedure was used with minor changes. Briefly, probes were transcribed in either DIG RNA Labeling Mix or Fluorescein RNA Labeling Mix (11685619910, Roche). The two probes were mixed and incubated on the slide at 68^(@)C68^{\circ} \mathrm{C} overnight. After hybridization, the Fluorescein-labelled probe was used to develop a blue color with anti-Fluorescein-AP Fab fragments (11426338910, Roche) coupled with NBT/BCIP solution (11681451001, Roche). The AP substrate was removed by incubating the slide at 68^(@)C68^{\circ} \mathrm{C} for 30-60 minutes. Then, the section was blocked again and the DIG-labelled probed was used to develop a brown color with anti-DIG-AP Fab fragments coupled with INT/BCIP solution (11681460001, Roche).
In vitro fatty acid exposure, ER stress induction and lipolysis inhibition
When human primary RPTECs reached 70%-80%70 \%-80 \% confluence, cells were starved overnight by culturing in Renal Epithelial Cell Growth Medium without growth supplements. Then, cells were switched to complete growth medium and treated with BSA-conjugated oleate fatty acid (29557, Cayman Chemical), palmitate fatty acid (29558, Cayman Chemical) or ER stress inducers, Tunicamycin (SML1287, Sigma) or Thapsigargin ( 10 mM stock concentration) (T9033, Sigma) at desired concentrations, where BSA or DMSO treatments were used as control groups. To analyze the long-term effect of 6 -hour fatty acid stimulus, cells were washed to ensure complete removal of fatty acids and incubated in complete growth medium with or without 10 muM10 \mu \mathrm{M} Atglistatin (15284, Cayman Chemical), a lipolysis inhibitor, for 40-48 hours. Cells were then harvested for downstream analysis. 当人原代RPTEC达到 70%-80%70 \%-80 \% 汇合时,在不含生长补充剂的肾上皮细胞生长培养基中培养细胞,使其饥饿过夜。然后,将细胞转入完全生长培养基,并用 BSA 结合的油酸脂肪酸(29557,Cayman 化学公司)、棕榈酸脂肪酸(29558,Cayman 化学公司)或ER 应激诱导剂 Tunicamycin(SML1287,Sigma 公司)或 Thapsigargin(10 mM 储存浓度)(T9033,Sigma 公司)以所需浓度处理细胞,其中 BSA 或 DMSO 处理作为对照组。为了分析 6 小时脂肪酸刺激的长期影响,细胞被清洗以确保脂肪酸被完全清除,并在含有或不含脂肪分解抑制剂 10 muM10 \mu \mathrm{M} Atglistatin(15284,Cayman Chemical)的完全生长培养基中培养 40-48 小时。然后收获细胞进行下游分析。
Fatty acid internalization assay 脂肪酸内化试验
Human primary RPTECs were starved overnight and treated with green fluorescent fatty acid BODIPY FL C _(16){ }_{16} (D3821, Thermo Scientific) in complete growth medium for 6 hours. Cells were then washed with PBS and fixed with 4%4 \% PFA for 15 minutes. Cells were washed again, counterstained with DAPI and processed for confocal imaging. 将人原代 RPTEC 饥饿过夜,然后在完全生长培养基中用绿色荧光脂肪酸 BODIPY FL C _(16){ }_{16} (D3821,Thermo Scientific 公司)处理 6 小时。然后用 PBS 冲洗细胞,并用 4%4 \% PFA 固定 15 分钟。再次清洗细胞,用 DAPI 反染色,然后进行共焦成像处理。
Mitochondria staining on cultured cells 对培养细胞进行线粒体染色
Human primary RPTECs were starved overnight and then exposed to complete growth medium with or without fatty acid treatment. Cells were incubated with MitoTracker Red CMXRos (9082S, Cell Signaling) at a final concentration of 200 nM for 30 minutes in the 将人类原代 RPTEC 细胞饥饿过夜,然后将其置于完全生长培养基中,无论是否经过脂肪酸处理。将细胞与终浓度为 200 nM 的 MitoTracker Red CMXRos(9082S,Cell Signaling 公司)孵育 30 分钟。
Article 文章
37^(@)CCO_(2)37^{\circ} \mathrm{CCO}_{2} incubator before harvested. Then cells were washed with PBS and fixed with ice-cold methanol for 15 minutes at -20^(@)C-20^{\circ} \mathrm{C}. Cells were washed again, counterstained with DAPI and processed for confocal imaging. 37^(@)CCO_(2)37^{\circ} \mathrm{CCO}_{2} 培养箱中培养 15 分钟后收获。然后用 PBS 冲洗细胞,并用冰冷的甲醇在 -20^(@)C-20^{\circ} \mathrm{C} 温度下固定 15 分钟。再次清洗细胞,用 DAPI 反染色,然后进行共聚焦成像。
In vitro gene knockdown 体外基因敲除
PLIN2 expression in human primary RPTECs was knocked down with lipid-based siRNA transfection method. Briefly, Lipofectamine Reagent (13778150, Thermo Scientific) and PLIN2 Smartpool siRNA (L-019204-01-0010, Dharmacon) were mixed for 5 minutes and added to cells following the manufacturer’s instruction. ON-TARGETplus Non-targeting Control Pool (siNT) (D-001810-10-20, Dharmacon) was as control. Both siRNA molecules were used at a final concentration of 10 nM . Cells were examined or processed for subsequent treatments at 1-2 days after siRNA transfection. 用脂质 siRNA 转染法敲除人原代 RPTECs 中 PLIN2 的表达。简单地说,将 Lipofectamine Reagent(13778150,Thermo Scientific)和 PLIN2 Smartpool siRNA(L-019204-01-0010,Dharmacon)混合 5 分钟后,按照生产商的说明加入细胞中。ON-TARGETplus非靶向对照池(siNT)(D-001810-10-20,Dharmacon)作为对照。两种 siRNA 分子的最终浓度均为 10 nM。siRNA 转染后 1-2 天,对细胞进行检查或处理,以进行后续处理。
ROS staining ROS 染色
2,7-Dichlorodihydrofluorescein diacetate (85155, Cayman Chemical) was added to cell culture medium at a final concentration of 50 muM50 \mu \mathrm{M} and incubated with RPTECs for 45 minutes at 37^(@)C37^{\circ} \mathrm{C}. Cells were then washed and fixed with 4%4 \% PFA. Cells were counterstained with DAPI and processed for confocal imaging. 将 2,7-二氯二氢荧光素二乙酸酯(85155,Cayman Chemical)以 50 muM50 \mu \mathrm{M} 的终浓度加入细胞培养液中,并与 RPTECs 在 37^(@)C37^{\circ} \mathrm{C} 下培养 45 分钟。然后洗涤细胞并用 4%4 \% PFA 固定。用 DAPI 对细胞进行反染色,并进行共焦成像处理。
Metabolic measurement 代谢测量
Metabolic measurement of human primary RPTECs was performed as previously described (Kang et al., 2014) with minor changes. Briefly, a Seahorse XFe96 Analyzer (Agilent) was used to measure real-time oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). 10,000-20,000 cells were seeded into each well of a XF96 cell culture microplate (102416-100, Agilent). Cells were starved overnight in Renal Epithelial Cell Growth Medium without growth supplements. Cells were then treated with oleate or palmitate fatty acids in complete growth medium for 6 hours. The culture medium was switched into Seahorse XF DMEM assay medium (103680-100, Agilent) supplemented with 2 mM glucose and 0.5 mM L-carnitine (C0283, Sigma) at one hour before the real-time measurement. Oleate or palmitate fatty acids, etomoxir (11969, Cayman Chemical) and oligomycin (O4876, Sigma) were injected during the analysis at a final concentration of 100 muM,40 muM100 \mu \mathrm{M}, 40 \mu \mathrm{M} and 1muM1 \mu \mathrm{M}, respectively. After the Seahorse measurement was completed, the number of cells per well was counted for data normalization. Briefly, cells were washed with PBS, fixed in icecold methanol at -20^(@)C-20^{\circ} \mathrm{C} for 15 minutes and then stained with DAPI for 10 minutes. Cell counting was performed on the Lionheart FX Automated Microscope (Agilent) and the estimated mean number of cells was used to normalize the OCR and ECAR readouts. The four cell energy states (quiescent, aerobic, glycolytic, energetic) were defined according to existing publications (Hocaoglu et al., 2021) and the manufacturer’s instruction. 人类原代 RPTECs 的代谢测量按照之前描述的方法进行(Kang 等人,2014 年),略有改动。简而言之,使用海马 XFe96 分析仪(安捷伦)测量实时耗氧率(OCR)和细胞外酸化率(ECAR)。将 10,000-20,000 个细胞播种到 XF96 细胞培养微孔板(102416-100,安捷伦)的每个孔中。细胞在不含生长补充剂的肾上皮细胞生长培养基中饥饿过夜。然后在完全生长培养基中用油酸或棕榈酸脂肪酸处理细胞 6 小时。在进行实时测量前一小时,将培养基换成添加了 2 mM 葡萄糖和 0.5 mM 左旋肉碱(C0283,Sigma)的 Seahorse XF DMEM 检测培养基(103680-100,Agilent)。分析期间注入油酸或棕榈酸脂肪酸、依托莫西(11969,Cayman Chemical)和寡霉素(O4876,Sigma),最终浓度分别为 100 muM,40 muM100 \mu \mathrm{M}, 40 \mu \mathrm{M} 和 1muM1 \mu \mathrm{M} 。海马测量结束后,计数每孔细胞数,以进行数据归一化。简单地说,用 PBS 冲洗细胞,在 -20^(@)C-20^{\circ} \mathrm{C} 冰冷的甲醇中固定 15 分钟,然后用 DAPI 染色 10 分钟。细胞计数在 Lionheart FX 自动显微镜(安捷伦)上进行,估计的平均细胞数用于归一化 OCR 和 ECAR 读数。四种细胞能量状态(静止、有氧、糖酵解、能量)是根据现有出版物(Hocaoglu 等人,2021 年)和制造商的说明定义的。
Nuclei isolation and fixation (mouse kidney) 细胞核分离和固定(小鼠肾脏)
Nuclei isolation from mouse kidney tissues was performed as previously described (Kirita et al., 2020) with minimal changes. Briefly, Nuclei EZ Lysis Buffer (NUC101, Sigma) was used and supplemented with EDTA-free protease inhibitor tablets (5892791001, Roche) and RNase inhibitors (N2615, Promega; AM2696, Thermo Scientific). Tissues were minced with a razor blade and homogenized with Dounce Tissue Grinders (885303-0002, Kimble) in ice-cold lysis buffer. The homogenate was filtered through a 200-mum200-\mu \mathrm{m} strainer (43-50200-03, pluriSelect), incubated in the buffer for 5 minutes and then filtered again through a 40-mum40-\mu \mathrm{m} strainer (43-50040-51, pluriSelect). The homogenate was centrifuged at 500 xxg500 \times \mathrm{g} for 4 minutes and the pellet was resuspended in the lysis buffer with gentle pipetting. After 5 -minute incubation, the suspension was centrifuged at 500 xxg500 \times \mathrm{g} for 4 minutes and the nuclei pellet was resuspended with Nuclei Suspension Buffer (NSB), which was freshly prepared by supplementing nuclei buffer ( 10 mM Tris- HClpH7.4,10mM\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM}NaCl,3mMMgClM_(2)\mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2} ) with 1%1 \% RNase inhibitor (AM2696, Thermo Scientific) and 2%2 \% BSA (B9000S, NEB). All procedures were performed at 4^(@)C4^{\circ} \mathrm{C} to protect RNA integrity. 从小鼠肾脏组织中分离细胞核的方法如前所述(Kirita et al.简而言之,使用 Nuclei EZ 裂解缓冲液(NUC101,Sigma),并添加不含 EDTA 的蛋白酶抑制剂片剂(5892791001,Roche)和 RNase 抑制剂(N2615,Promega;AM2696,Thermo Scientific)。用刀片将组织切碎,然后用 Dounceue 组织研磨器(885303-0002,Kimble)在冰冷的裂解缓冲液中将组织匀浆。匀浆经 200-mum200-\mu \mathrm{m} 滤网(43-50200-03,pluriSelect)过滤,在缓冲液中孵育 5 分钟,然后再次经 40-mum40-\mu \mathrm{m} 滤网(43-50040-51,pluriSelect)过滤。将匀浆在 500 xxg500 \times \mathrm{g} 离心4分钟,然后用移液管轻轻地将颗粒重新悬浮在裂解缓冲液中。5 分钟孵育后,将悬浮液在 500 xxg500 \times \mathrm{g} 下离心 4 分钟,然后用核悬浮缓冲液(NSB)重悬核颗粒,NSB 是在新鲜制备的核缓冲液(10 mM Tris- HClpH7.4,10mM\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM}NaCl,3mMMgClM_(2)\mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2} )中加入 1%1 \% RNase 抑制剂(AM2696,Thermo Scientific)和 2%2 \% BSA(B9000S,NEB)。所有操作均在 4^(@)C4^{\circ} \mathrm{C} 条件下进行,以保护 RNA 的完整性。
Then, the nuclei were fixed with PFA (15713, Electron Microscopy Sciences) at a final concentration of 2.4%2.4 \% and incubated for 10 minutes on ice. The suspension was centrifuged at 500 xxg500 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C} to remove supernatant and washed with NSB for 1-2 times. The nuclei were resuspended in NSB, snap-frozen in a cryotube and stored in liquid nitrogen for the sci-RNA-seq3 experiment. All centrifugation steps were performed using a centrifuge with a swinging bucket to reduce cell loss. In total, we generated 25 fixed frozen single-nuclei suspensions from 24 mouse kidney tissues and one mixture of cultured human and mouse cell lines (see below). 然后,用终浓度为 2.4%2.4 \% 的 PFA(15713,Electron Microscopy Sciences)固定细胞核,并在冰上孵育 10 分钟。悬浮液在 500 xxg500 \times \mathrm{g} 离心5分钟, 4^(@)C4^{\circ} \mathrm{C} 除去上清液,用NSB洗涤1-2次。将细胞核重悬于 NSB 中,在低温管中快速冷冻并保存在液氮中,以备 sci-RNA-seq3 实验之用。所有离心步骤均使用带摇摆桶的离心机进行,以减少细胞损失。我们总共从 24 个小鼠肾脏组织和一个人鼠混合培养细胞系(见下文)中生成了 25 个固定冷冻的单核悬浮液。
Nuclei isolation and fixation (cultured cells) 细胞核分离和固定(培养细胞)
HEK-293T cells and C3H/10T1/2 cells were trypsinized at approximately 70%70 \% confluence, centrifuged at 300 xxg300 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C} and washed twice with ice-cold PBS. Cell concentrations were measured, and equal number of cells from each cell line were pooled into a total of 5 million cells. The cell mixture was centrifuged at 300 xxg300 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C} and the pellet was resuspended with 1 mL ice-cold cell line lysis buffer ( 10 mM Tris- HClpH7.4,10mMNaCl,3mMMgCl,0.1%NP-40,1%\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl}, ~ 0.1 \% \mathrm{NP}-40,1 \% SUPERaseln RNase Inhibitor (AM2696, Thermo Scientific) and 2% BSA (B9000S, NEB)). Cells were incubated on ice for 4 minutes. Then, nuclei were filtered through a 40-mum40-\mu \mathrm{m} Flowmi cell strainer (H13680-0040, Bel-Art), centrifuged at 500 xxg500 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C} and washed with 1 mL cell line lysis buffer. The nuclei pellet was resuspended with 1 mL PBS and PFA (15713, Electron Microscopy Sciences) was added to a final concentration of 3.2%3.2 \%. Fixation was performed on ice for 10 minutes. The fixed nuclei were centrifuged at 500 xxg500 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C}, washed twice with cell line wash buffer ( 10 mM Tris- HClpH7.4,10mMNaCl,3mMMgCl\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl}, 1%1 \% SUPERaseln RNase Inhibitor and 2%BSA2 \% \mathrm{BSA} ) and snap-frozen in a cryotube and stored in liquid nitrogen. HEK-293T细胞和C3H/10T1/2细胞在大约 70%70 \% 汇合时进行胰蛋白酶处理,在 300 xxg300 \times \mathrm{g} 转速 4^(@)C4^{\circ} \mathrm{C} 下离心5分钟,然后用冰冷的PBS洗两次。测量细胞浓度,将每个细胞系的等量细胞汇集成总计 500 万个细胞。细胞混合物在 300 xxg300 \times \mathrm{g}4^(@)C4^{\circ} \mathrm{C} 离心 5 分钟,用 1 mL 冰冷细胞系裂解缓冲液(10 mM Tris- HClpH7.4,10mMNaCl,3mMMgCl,0.1%NP-40,1%\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl}, ~ 0.1 \% \mathrm{NP}-40,1 \% SUPERaseln RNase Inhibitor (AM2696, Thermo Scientific)和 2% BSA (B9000S, NEB))重悬细胞颗粒。细胞在冰上孵育 4 分钟。然后,用 40-mum40-\mu \mathrm{m} Flowmi 细胞过滤器(H13680-0040,Bel-Art)过滤细胞核,在 500 xxg500 \times \mathrm{g} 转速 4^(@)C4^{\circ} \mathrm{C} 下离心 5 分钟,并用 1 mL 细胞系裂解缓冲液洗涤。细胞核颗粒用 1 mL PBS 重悬,然后加入 PFA(15713,Electron Microscopy Sciences),最终浓度为 3.2%3.2 \% 。在冰上固定 10 分钟。将固定好的细胞核在 500 xxg500 \times \mathrm{g} 离心5分钟,离心温度为 4^(@)C4^{\circ} \mathrm{C} ,用细胞系洗涤缓冲液(10 mM Tris- HClpH7.4,10mMNaCl,3mMMgCl\mathrm{HCl} \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl} , 1%1 \% SUPERaseln RNase Inhibitor 和 2%BSA2 \% \mathrm{BSA} )洗涤两次,然后放入低温冷冻管中冷冻并保存在液氮中。
sci-RNA-seq3 library generation sci-RNA-seq3 文库生成
Generation of the sci-RNA-seq3 library was performed following a previously described protocol (Cao et al., 2019) with minor changes. In sci-RNA-seq3, both indexed reverse transcription (RT) and hairpin ligation were performed on 384 wells. Each of these wells contains a uniquely indexed oligo (a poly-T or ligation primer) with sequences described before (Cao et al., 2019). The two types of oligo-containing wells are referred to RT wells and ligation wells, respectively. Each RT well contains 2mul2 \mu \mathrm{l} poly-T primers ( 100 muM100 \mu \mathrm{M} ) and each ligation well contains 8mu8 \mu hairpin ligation primers (100 muM)(100 \mu \mathrm{M}). All RT wells and ligation wells were pre-prepared and stored at -20^(@)C-20^{\circ} \mathrm{C} before use. All oligos used in this study were ordered from IDT. sci-RNA-seq3文库的生成是按照之前描述的方案(Cao等人,2019)进行的,但略有改动。在 sci-RNA-seq3 中,索引反转录(RT)和发夹连接均在 384 个孔上进行。每个孔都包含一个唯一索引的寡聚物(poly-T 或连接引物),其序列在之前已有描述(Cao 等人,2019 年)。这两种含寡聚物的孔分别称为 RT 孔和连接孔。每个 RT 孔包含 2mul2 \mu \mathrm{l} poly-T 引物( 100 muM100 \mu \mathrm{M} ),每个连接孔包含 8mu8 \mu 发夹连接引物 (100 muM)(100 \mu \mathrm{M}) 。所有 RT 孔和连接孔都是预先制备好的,使用前储存在 -20^(@)C-20^{\circ} \mathrm{C} 中。本研究中使用的所有寡聚物都是从 IDT 订购的。
Fixed frozen nuclei suspensions were thawed in a 37^(@)C37^{\circ} \mathrm{C}-water bath and then centrifuged at 500 xxg500 \times \mathrm{g} for 5 minutes at 4^(@)C4^{\circ} \mathrm{C}. For each sample, the nuclei were resuspended with freshly prepared NSB, permeabilized with Triton X-100 at a final concentration of 0.2%0.2 \% for 5 minutes on ice and washed with NSB. Then, sonication was performed with a Bioruptor Pico sonication device (Diagenode) lightly ( 10 seconds) to reduce nuclei clumps. For each sample, the nuclei suspension was filtered through a 40- mum\mu \mathrm{m} Flowmi cell strainer and nuclei concentration was measured. 将固定的冷冻核悬浮液在 37^(@)C37^{\circ} \mathrm{C} 水浴中解冻,然后在 500 xxg500 \times \mathrm{g} 转速 4^(@)C4^{\circ} \mathrm{C} 下离心5分钟。对于每个样本,用新鲜制备的 NSB 重悬细胞核,用终浓度为 0.2%0.2 \% 的 Triton X-100 在冰上渗透 5 分钟,然后用 NSB 冲洗。然后,用 Bioruptor Pico 超声装置(Diagenode)轻轻超声(10 秒),以减少核团。每个样本的细胞核悬浮液都用 40- mum\mu \mathrm{m} Flowmi 细胞过滤器过滤,然后测量细胞核浓度。
Approximately 80,000 nuclei in 22 mu22 \mu INSB and 2mu10mM2 \mu 10 \mathrm{mM} dNTP ( 639125 , Clontech) were added into each RT well. The well IDs into which each sample was deposited were recorded for downstream sample demultiplexing analysis. In total, we deposited the mixed human/mouse cells into 2 wells and mouse kidney cells from the 24 samples into the other 382 wells ( 15 or 16 wells per sample). Then, all RT wells were incubated at 55^(@)C55^{\circ} \mathrm{C} for 5 minutes and 14 mu14 \mu I RT reaction mix, containing 2mu2 \mu SuperScript IV reverse transcriptase (18090050, Thermo Scientific), 8muLxx8 \mu \mathrm{~L} \times RT buffer, 2mul100mM2 \mu \mathrm{l} 100 \mathrm{mM} DTT and 2mu2 \mu RNaseOUT RNase inhibitor (10777019, Thermo Scientific), was added into each well. The RT reaction was performed by incubating all RT wells at 4^(@)C,10^(@)C,20^(@)C,30^(@)C,40^(@)C4{ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C} and 50^(@)C50^{\circ} \mathrm{C} ( 2 minutes each) and then 55^(@)C55^{\circ} \mathrm{C} for 15 minutes. Then 60 mu60 \mu NBB (nuclei buffer supplemented with 1.5%BSA1.5 \% \mathrm{BSA} ) was added into each well and the nuclei suspensions from all RT wells were pooled. The pooled nuclei suspension was centrifuged at 500 xxg500 \times \mathrm{g} for 10 minutes at 4^(@)C4^{\circ} \mathrm{C}. The nuclei pellet was resuspended with 4.3 mL NSB and 10 mul10 \mu \mathrm{l} was added into each ligation well supplemented with 2mul2 \mu \mathrm{l} ligase (M2200L, NEB) and 20 mul2xx20 \mu \mathrm{l} 2 \times ligation buffer. The ligation reaction was performed by incubating all ligation wells at 25^(@)C25^{\circ} \mathrm{C} for 10 minutes. Then, 60 mu60 \mu I NBB was added to each well and the nuclei suspensions from all ligation wells were pooled. The pooled suspension was centrifuged at 600 xxg600 \times \mathrm{g} for 10 minutes at 4^(@)C4^{\circ} \mathrm{C} and washed with NBB at 600 xxg600 \times \mathrm{g} for 10 minutes again. The pellet was gently resuspended with 4 mL NBB and filtered through a 40-mum40-\mu \mathrm{m} Flowmi cell strainer. Then, we measured the nuclei concentration and distributed approximately 4,000 nuclei in 5mu5 \mu INB into each well of several 96 -well plates, which were stored at -80^(@)C-80^{\circ} \mathrm{C} for further use. 在每个 RT 孔中加入约 80,000 个细胞核( 22 mu22 \mu INSB 和 2mu10mM2 \mu 10 \mathrm{mM} dNTP ( 639125 , Clontech))。我们记录了每份样本的存入孔编号,以便进行下游样本解复用分析。我们总共将人/鼠混合细胞放入 2 个孔中,将 24 个样本的小鼠肾脏细胞放入其他 382 个孔中(每个样本 15 或 16 个孔)。然后,在 55^(@)C55^{\circ} \mathrm{C} 温度下孵育 5 分钟,在每个孔中加入含有 2mu2 \mu SuperScript IV 逆转录酶(18090050,Thermo Scientific)、 8muLxx8 \mu \mathrm{~L} \times RT 缓冲液、 2mul100mM2 \mu \mathrm{l} 100 \mathrm{mM} DTT 和 2mu2 \mu RNaseOUT RNase 抑制剂(10777019,Thermo Scientific)的 RT 反应混合物。所有 RT 孔均在 4^(@)C,10^(@)C,20^(@)C,30^(@)C,40^(@)C4{ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C} 和 50^(@)C50^{\circ} \mathrm{C} 条件下孵育(各 2 分钟),然后在 55^(@)C55^{\circ} \mathrm{C} 条件下孵育 15 分钟。然后在每个孔中加入 60 mu60 \mu NBB(补充了 1.5%BSA1.5 \% \mathrm{BSA} 的核酸缓冲液),并将所有 RT 孔中的核悬液集中起来。汇集的核悬液在 500 xxg500 \times \mathrm{g} 下离心 10 分钟,离心温度为 4^(@)C4^{\circ} \mathrm{C} 。用 4.3 mL NSB 重悬核悬液,并在每个连接孔中加入 10 mul10 \mu \mathrm{l} 连接酶(M2200L,NEB)和 20 mul2xx20 \mu \mathrm{l} 2 \times 连接缓冲液。将所有连接孔在 25^(@)C25^{\circ} \mathrm{C} 温度下孵育 10 分钟,进行连接反应。然后,在每个孔中加入 60 mu60 \mu I NBB,并将所有连接孔中的细胞核悬浮液集中起来。在 4^(@)C4^{\circ} \mathrm{C} 条件下,将汇集的悬浮液在 600 xxg600 \times \mathrm{g} 下离心 10 分钟,然后在 600 xxg600 \times \mathrm{g} 条件下用 NBB 再次洗涤 10 分钟。用 4 mL NBB 轻轻重悬沉淀,并用 40-mum40-\mu \mathrm{m} Flowmi 细胞过滤器过滤。 然后,我们测量了细胞核的浓度,并将 5mu5 \mu INB 中约 4,000 个细胞核分散到多个 96 孔板的每个孔中,这些孔储存在 -80^(@)C-80^{\circ} \mathrm{C} 中,以备进一步使用。
Before sublibrary generation, we first prepared the transposome needed in the tagmentation step. Two lyophilized adapter oligos, ME_R ([PHO]CTGTCTCTTATACACATCT) and ME_A (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) were reconstituted to 100 muM100 \mu \mathrm{M} with annealing buffer ( 40 mM Tris- HClpH8.0,50mMNaCl\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl} ). Then, 5mul5 \mu \mathrm{l} ME_R and 10 muME10 \mu \mathrm{ME} M were mixed and incubated in a thermocycler. The oligo mixture was incubated at 95^(@)C95^{\circ} \mathrm{C} for 5 minutes, cooled down to 65^(@)C65^{\circ} \mathrm{C} at -0.1^(@)C//-0.1^{\circ} \mathrm{C} / second, incubated at 65^(@)C65^{\circ} \mathrm{C} for 5 minutes and finally cooled down to 4^(@)C4^{\circ} \mathrm{C} at -0.1^(@)C//-0.1^{\circ} \mathrm{C} / second. Then, 12.5 mu12.5 \mu l annealed oligos were added into 10 mul10 \mu \mathrm{l} naked (unloaded) Tn 5 transposase, and the mixture was incubated at 23^(@)C23^{\circ} \mathrm{C} for 30 minutes. Then, 12.5 mulglycerol12.5 \mu \mathrm{lglycerol} was added and the loaded Tn 5 was stored at -20^(@)C-20^{\circ} \mathrm{C} for further use. 在生成子库之前,我们首先制备了标记步骤中所需的转座子。用退火缓冲液(40 mM Tris- HClpH8.0,50mMNaCl\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl} )将两个冻干适配器寡核苷酸 ME_R ([PHO]CTGTCTCTTATACACATCT)和 ME_A (GTCTCGTGGCTCGGAGATGTGTATAAGAGACAG)重组为 100 muM100 \mu \mathrm{M} 。然后,将 5mul5 \mu \mathrm{l} ME_R 和 10 muME10 \mu \mathrm{ME} M 混合并在热循环仪中孵育。寡核苷酸混合物在 95^(@)C95^{\circ} \mathrm{C} 温育 5 分钟,在 -0.1^(@)C//-0.1^{\circ} \mathrm{C} / 秒冷却到 65^(@)C65^{\circ} \mathrm{C} ,在 65^(@)C65^{\circ} \mathrm{C} 温育 5 分钟,最后在 -0.1^(@)C//-0.1^{\circ} \mathrm{C} / 秒冷却到 4^(@)C4^{\circ} \mathrm{C} 。然后,将 12.5 mu12.5 \mu l 个退火的寡核苷酸加入到 10 mul10 \mu \mathrm{l} 裸露(未加载)的 Tn 5 转座酶中,在 23^(@)C23^{\circ} \mathrm{C} 温度下培养 30 分钟。然后,加入 12.5 mulglycerol12.5 \mu \mathrm{lglycerol} ,将负载的 Tn 5 储存在 -20^(@)C-20^{\circ} \mathrm{C} 中,以备进一步使用。
For sublibrary generation, one of the aforementioned plates was thawed in room temperature and 5mu5 \mu reaction mix, containing 0.67 mul0.67 \mu \mathrm{l} second strand synthesis enzyme (E6111L, NEB), 1.33 mul1.33 \mu \mathrm{l} reaction buffer and 3mul3 \mu \mathrm{l} elution buffer, was added into each well. The plate was incubated at 16^(@)C16^{\circ} \mathrm{C} for 3 hours. For tagmentation, 2xx2 \times TD buffer, containing 20 mM Tris- HClpH7.5,10mMMgCl_(2)\mathrm{HCl} \mathrm{pH} 7.5,10 \mathrm{mM} \mathrm{MgCl}{ }_{2} and 20%(v//v)20 \%(\mathrm{v} / \mathrm{v}) dimethylformamide (20673, Thermo Scientific), was added to the pre-prepared loaded Tn5 to a final concentration of 20 nM . Then, 10 mul20nM10 \mu \mathrm{l} 20 \mathrm{nM} transposase was added into each well. Tagmentation was performed at 55^(@)C55^{\circ} \mathrm{C} for 5 minutes. Then, we added 20 mu20 \mu I DNA binding buffer (D4004-1-L, Zymo) into each well and incubated the reaction mix at room temperature for 5 minutes. Then, 40 mul40 \mu \mathrm{l} Ampure XP beads (A63881, Beckman Coulter) were added into each well and the mixture was incubated at room temperature for 5 minutes. The supernatants were removed by placing the 96 -well plate onto a magnetic stand. After washing with 80%80 \% ethanol twice, beads of each well were resuspended with 10 mu10 \mu USER reaction mix, containing 1mu1 \mu l enzyme (M5505L, NEB), 1mul10 xx1 \mu \mathrm{l} 10 \times buffer and 8muHH_(2)O8 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}. The plate was sealed and incubated at 37^(@)C37^{\circ} \mathrm{C} for 15 minutes. Then, 7mul7 \mu \mathrm{l} elution buffer was added into each well. The plate was placed onto a magnetic stand and 16 mu16 \mu l supernatant was transferred to a new 96 -well plate. 生成子库时,将上述平板中的一个在室温下解冻,然后在每个孔中加入含有 0.67 mul0.67 \mu \mathrm{l} 第二链合成酶(E6111L,NEB)、 1.33 mul1.33 \mu \mathrm{l} 反应缓冲液和 3mul3 \mu \mathrm{l} 洗脱缓冲液的 5mu5 \mu 反应混合物。在 16^(@)C16^{\circ} \mathrm{C} 条件下培养 3 小时。标记时,将含有 20 mM Tris- HClpH7.5,10mMMgCl_(2)\mathrm{HCl} \mathrm{pH} 7.5,10 \mathrm{mM} \mathrm{MgCl}{ }_{2} 和 20%(v//v)20 \%(\mathrm{v} / \mathrm{v}) 二甲基甲酰胺(20673,Thermo Scientific)的 2xx2 \times TD 缓冲液加入预先制备好的负载 Tn5 中,使其最终浓度达到 20 nM。然后,在每个孔中加入 10 mul20nM10 \mu \mathrm{l} 20 \mathrm{nM} 转座酶。在 55^(@)C55^{\circ} \mathrm{C} 条件下标记 5 分钟。然后,在每个孔中加入 20 mu20 \mu I DNA 结合缓冲液(D4004-1-L,Zymo),室温下孵育 5 分钟。然后,在每个孔中加入 40 mul40 \mu \mathrm{l} Ampure XP珠子(A63881,Beckman Coulter公司),室温下孵育5分钟。将 96 孔板放在磁力架上,取出上清液。用 80%80 \% 乙醇洗涤两次后,用含有 1mu1 \mu l 酶(M5505L,NEB)、 1mul10 xx1 \mu \mathrm{l} 10 \times 缓冲液和 8muHH_(2)O8 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O} 的USER反应混合物重悬各孔的珠子。将平板密封,在 37^(@)C37^{\circ} \mathrm{C} 温度下培养 15 分钟。然后,在每个孔中加入 7mul7 \mu \mathrm{l} 洗脱缓冲液。将平板放在磁力架上,将 16 mu16 \mu l 上清液转移到新的 96 孔平板中。
For indexed PCR reaction, the plate was first incubated at 80^(@)C80^{\circ} \mathrm{C} for 10 minutes. Then, 20 muNEBnext2xx20 \mu \mathrm{NEBnext} 2 \times master mix (M0541L, NEB), 2muI10 muM2 \mu \mathrm{I} 10 \mu \mathrm{M} P5 primer and 2mul10 muM2 \mu \mathrm{l} 10 \mu \mathrm{M} P7 primer were added into each well. Primer sequences can be found in Mendeley Data. PCR was performed by incubating the plate at 72^(@)C72^{\circ} \mathrm{C} for 5 minutes, 98^(@)C98^{\circ} \mathrm{C} for 30 seconds, 15 cycles of [98^(@)C10:}\left[98^{\circ} \mathrm{C} 10\right. seconds, 66^(@)C3066^{\circ} \mathrm{C} 30 seconds, 72^(@)C72^{\circ} \mathrm{C} 30 seconds] and 72^(@)C72^{\circ} \mathrm{C} for 5 minutes. Finally, PCR products from all wells were pooled together, purified with 0.7 xx0.7 \times Ampure XP beads and eluted with 100 mu100 \mu l elution buffer. The library was further purified with 0.7 xx0.7 \times Size-Select beads (D4084, Zymo) and visualized on a Bioanalyzer 2100 instrument. 索引 PCR 反应时,首先在 80^(@)C80^{\circ} \mathrm{C} 条件下培养 10 分钟。然后,在每个孔中加入 20 muNEBnext2xx20 \mu \mathrm{NEBnext} 2 \times 母液(M0541L,NEB)、 2muI10 muM2 \mu \mathrm{I} 10 \mu \mathrm{M} P5 引物和 2mul10 muM2 \mu \mathrm{l} 10 \mu \mathrm{M} P7 引物。引物序列见 Mendeley Data。进行 PCR 时,将平板在 72^(@)C72^{\circ} \mathrm{C} 5 分钟、 98^(@)C98^{\circ} \mathrm{C} 30 秒、 [98^(@)C10:}\left[98^{\circ} \mathrm{C} 10\right. 秒、 66^(@)C3066^{\circ} \mathrm{C} 30 秒、 72^(@)C72^{\circ} \mathrm{C} 30 秒] 和 72^(@)C72^{\circ} \mathrm{C} 5 分钟的条件下孵育 15 个循环。最后,汇集所有孔的 PCR 产物,用 0.7 xx0.7 \times Ampure XP 珠纯化,并用 100 mu100 \mu l 洗脱缓冲液洗脱。用 0.7 xx0.7 \times Size-Select beads (D4084, Zymo)进一步纯化文库,并在 Bioanalyzer 2100 仪器上进行观察。
Next-generation Sequencing for sci-RNA-seq3 用于 sci-RNA-seq 的新一代测序3
In this study, a total of 8 sci-RNA-seq3 sublibraries were generated and pooled for sequencing. The pooled library was sequenced on the NovaSeq 6000 platform (Illumina) using a paired-end 200-cycle S4 kit (Read1: 34bp; Index1: 10bp; Index2: 10bp; Read2: 100bp). 在本研究中,共生成了 8 个 sci-RNA-seq3 子文库,并将其汇集起来进行测序。在 NovaSeq 6000 平台(Illumina)上使用成对端 200 周期 S4 试剂盒对汇集的文库进行测序(Read1:34bp;Index1:10bp;Index2:10bp;Read2:100bp)。
sci-RNA-seq3 data pre-processing sci-RNA-seq3 数据预处理
Pre-processing sci-RNA-seq3 sequencing data was performed as previously described (Cao et al., 2019). Briefly, sequencing .fastq files were demultiplexed based on their i5 and i7 barcodes using deML (Renaud et al., 2015) with default settings. Then, unique molecular identifiers (UMIs), RT and ligation barcodes were extracted from the demultiplexed reads. RT and ligation barcodes were sci-RNA-seq3 测序数据的预处理按照之前的描述进行(Cao 等人,2019)。简而言之,使用默认设置下的 deML(Renaud 等人,2015 年)根据 i5 和 i7 条形码对测序 .fastq 文件进行解复用。然后,从解复用读数中提取唯一分子标识符(UMI)、RT 和连接条形码。RT 和连接条形码
Article 文章
filtered with an edit distance (ED) < 2 and adapter-clipped with TrimGalore v.0.6.6 (https://github.com/FelixKrueger/TrimGalore). Trimmed reads were split into two modules based on their RT barcodes: the mouse kidney nuclei module ( 382 barcodes) and HEK-293T and C3H/10T1/2 mixed nuclei module (2 barcodes). Each module was mapped to its corresponding reference genome, mm10 or combined mm10 and hg19, using STAR v.2.7.7a (Dobin et al., 2013) (GENCODE vM11 for mouse and v19 for human). Lowquality aligners were filtered using samtools (Li et al., 2009) and reads with identical UMI, RT and ligation barcodes (ED < 2 ) were annotated as duplicates and removed. As recommended in the prior study (Cao et al., 2019), we performed UMI error correction ( ED < 2\mathrm{ED}<2 ) on a subset of our data and observed that 96.1%96.1 \% of reads remained after UMI error correction compared to skipping this step, suggesting good data quality. Next, mapped reads were split based on their combinatorial indexing barcodes and barcodes with at least 200 reads identified were processed for the next step. Finally, HTSeq v.0.12.4 (Anders et al., 2015) was used to generate a gene count matrix by calculating the number of strand-specific UMIs for each cell mapping to the exonic and intronic regions of each gene. 用 TrimGalore v.0.6.6 ( https://github.com/FelixKrueger/TrimGalore) 对编辑距离(ED)小于 2 的读数进行过滤和适配器剪切。修剪后的读数根据其 RT 条形码分成两个模块:小鼠肾脏细胞核模块(382 个条形码)和 HEK-293T 与 C3H/10T1/2 混合细胞核模块(2 个条形码)。使用 STAR v.2.7.7a (Dobin et al., 2013)(小鼠为 GENCODE vM11,人类为 v19)将每个模块映射到相应的参考基因组 mm10 或 mm10 和 hg19 的组合。使用 samtools(Li 等人,2009 年)过滤低质量的比对者,并将具有相同 UMI、RT 和连接条码(ED < 2)的读数注释为重复并删除。根据之前研究(Cao 等,2019)的建议,我们对一部分数据进行了 UMI 错误校正( ED < 2\mathrm{ED}<2 ),观察到与跳过这一步相比,UMI 错误校正后仍有 96.1%96.1 \% 的读数,表明数据质量良好。接下来,根据组合索引条形码对映射读数进行拆分,并对至少识别出 200 个读数的条形码进行下一步处理。最后,使用 HTSeq v.0.12.4(Anders 等人,2015 年)计算每个细胞中映射到每个基因外显子和内含子区域的链特异性 UMI 数量,从而生成基因计数矩阵。
For species-mixing analysis, cells with over 85%85 \% of UMIs assigned to one species were annotated as species-specific cells and the other cells were annotated as cell collisions. Predicted doublet rate was calculated by dividing the number of cell collisions by total number of human and mouse cells after quality control. We performed ambient RNA removal with CellBender (Fleming et al., 2019) on the species-mixing data subset and observed similar doublet rates before and after data correction. 在物种混杂分析中,如果有超过 85%85 \% 的 UMIs 被分配给一个物种,则该细胞被注释为物种特异性细胞,其他细胞被注释为细胞碰撞。经过质量控制后,用细胞碰撞数除以人和小鼠细胞总数,计算出预测的双倍率。我们使用 CellBender(Fleming 等,2019 年)对物种混合数据子集进行了环境 RNA 去除,观察到数据校正前后的双倍率相似。
Pseudobulk trajectory ordering 伪舱轨迹排序
First, each cell in the cell-by-gene count matrix ( 413,681 cells xx48,795\times 48,795 genes) was assigned to its original mouse kidney sample ( n=24n=24 ) based on its RT barcode. Then, a sample-by-gene count matrix was generated from the cell-by-gene count matrix by aggregating cells that originate from the same sample. Then, gene counts were normalized by the total number of reads per sample. 首先,根据RT条形码,将细胞-基因计数矩阵(413,681个细胞 xx48,795\times 48,795 基因)中的每个细胞分配给其原始小鼠肾脏样本( n=24n=24 )。然后,通过汇总来自同一样本的细胞,从逐个细胞的基因计数矩阵中生成逐个样本的基因计数矩阵。然后,用每个样本的总读数对基因计数进行归一化处理。
Pseudobulk trajectory analysis was performed using Monocle2 (Qiu et al., 2017). Briefly, the sample-by-gene count matrix was converted into a CellDataSet data class with the newCellDataSet function and size factors and dispersions were estimated with the estimateSizeFactors and estimateDispersions functions. Then, genes expressed in at least 2 samples were selected. Differentially expressed genes across the 24 mouse kidneys were identified with the differentialGeneTest function and top 5000 significant genes were selected as the ordering genes. Samples were ordered along a pseudo-trajecotry using the reduceDimension function (method = ‘DDRTree’) and the orderCells function. Data visualization was enabled with the plot_cell_trajectory function. 使用 Monocle2(Qiu et al.)简而言之,使用 newCellDataSet 函数将样本-基因计数矩阵转换为 CellDataSet 数据类,并使用 estimateSizeFactors 和 estimateDispersions 函数估算大小因子和离散度。然后,选出至少在两个样本中表达的基因。使用 differentialGeneTest 函数确定 24 个小鼠肾脏中的差异表达基因,并选择前 5000 个显著基因作为排序基因。使用 reduceDimension 函数(method = 'DDRTree')和 orderCells 函数沿伪轨迹对样本进行排序。使用 plot_cell_trajectory 函数实现了数据可视化。
Doublet estimation, quality control and cell clustering 双音估计、质量控制和细胞聚类
The gene count matrix generated above was converted into a data format (AnnData) compatible with the Scanpy v1.7.2 (Wolf et al., 2018) platform. Protein-coding genes, pseudogenes and genes encoding lincRNAs were maintained in further analysis. Estimation of cell doublets was implemented on Scrublet v0.2.1 (Wolock et al., 2019) using the scrublet.Scrublet function with the expected overall doublet rate set as 0.06 and the number of neighbors set as 30 . Then, a doublet score was calculated for each cell with the scrub_doublets function ( min\mathbf{m i n} _counts =3=3, min_cells =3=3, min_gene_variability_pctl =85=85, n_prin_comps =30=30 ). Cells with the doublet score over 0.2 were annotated as expected doublets. 上述生成的基因计数矩阵被转换成与 Scanpy v1.7.2 (Wolf 等人,2018 年)平台兼容的数据格式(AnnData)。在进一步分析中保留了蛋白质编码基因、假基因和编码 lincRNA 的基因。在 Scrublet v0.2.1 (Wolock et al., 2019)平台上使用 scrublet.Scrublet 函数实现了细胞双倍体的估计,将预期总体双倍体率设为 0.06,邻域数设为 30。然后,使用 scrub_doublets 函数( min\mathbf{m i n} _counts =3=3 , min_cells =3=3 , min_gene_variability_pctl =85=85 , n_prin_comps =30=30 )计算每个细胞的双倍得分。双倍得分超过 0.2 的细胞被注释为预期双倍。
Only cells with less than 5%5 \% of counts derived from mitochondrial genes were processed. Cells with less than 80 genes detected and genes present in less than 30 cells were removed from the gene count matrix. Then, data was normalized and log-transformed. The top 5000 genes were selected with the highest variance using the scanpy.pp.highly_variable_genes function. The data was scaled and Principal Component Analysis (PCA) was performed for dimensionality reduction using the scanpy.tl.pca function (svd_solver = ‘arpack’, n_comps = 50). Next, a neighborhood graph of cells was computed using the scanpy.pp.neighbors function with the number of neighbors set as 50 (metric = ‘cosine’). Next, the neighborhood graph was embedded in two dimensions using Uniform Manifold Approximation and Projection (UMAP) with the scanpy.tl.umap function, in which the effective minimum distance between embedded points set as 0.01 . Leiden clustering was performed (resolution =2=2 ) and marker genes of each Leiden cluster was identified using the scanpy.tl.rank_genes_groups function (method = ‘wilcoxon’). One cluster showed significantly elevated mitochondrial gene counts and no expression of other cluster-specific genes, and therefore, annotated as an artefact cluster. Two minor clusters showed co-expression of well-known marker genes of PT and LoH cells or PT and DCT cells, and therefore, annotated as doublet clusters. These clusters were not specific to a kidney sample or disease condition and therefore removed. The remaining 309,666 cells were re-analyzed following a similar approach as described above (see data and code availability). For customized UMAP visualization used in Figure 1, we utilized a computational framework (https://github.com/TheHumphreysLab/ plot1cell) described in a recent study (Wu et al., 2022). Individual clusters were annotated by manually inspecting the expression of lineage-specific genes and comparison with existing cell atlas datasets. For cell type subclustering, cells annotated as the subtype in the above analysis were extracted and re-analyzed following the similar procedure. Quality control was performed again, and lowquality cells may be further removed, and the effects of total counts per cell may be regressed out using the scanpy.pp.regress_out function to improve single-cell visualization and cell type annotation (see data and code availability). 只处理线粒体基因计数少于 5%5 \% 的细胞。从基因计数矩阵中剔除检测到的基因少于 80 个的细胞和存在基因少于 30 个的细胞。然后,对数据进行归一化和对数转换。使用 scanpy.pp.highly_variable_genes 函数选出方差最大的前 5000 个基因。使用 scanpy.tl.pca 函数(svd_solver = 'arpack',n_comps = 50)对数据进行缩放并执行主成分分析(PCA)以降低维度。接着,使用 scanpy.pp.neighbors 函数计算单元格的邻域图,邻域数设为 50(度量 = '余弦')。接着,使用扫描py.tl.umap 函数的统一曲面逼近和投影(UMAP)功能将邻域图嵌入到两个维度中,嵌入点之间的有效最小距离设置为 0.01。使用 scanpy.tl.rank_genes_groups 函数(method = 'wilcoxon')进行莱顿聚类(分辨率 =2=2 )并确定每个莱顿聚类的标记基因。其中一个聚类显示线粒体基因数量明显增加,而其他聚类特异基因没有表达,因此被注释为人工聚类。两个小簇显示 PT 和 LoH 细胞或 PT 和 DCT 细胞的知名标记基因共同表达,因此被注释为双簇。这些细胞簇并非肾脏样本或疾病条件所特有,因此被删除。剩下的 309,666 个细胞按照上述类似方法进行了重新分析(见数据和代码可用性)。 对于图 1 中使用的定制 UMAP 可视化,我们采用了最近一项研究(Wu 等人,2022 年)中描述的计算框架(https://github.com/TheHumphreysLab/ plot1cell)。我们通过人工检测细胞系特异性基因的表达,并与现有细胞图谱数据集进行比较,来标注单个聚类。对于细胞类型亚簇,提取在上述分析中注释为亚类型的细胞,并按照类似程序重新分析。再次进行质量控制,进一步去除低质量细胞,并使用 scanpy.pp.regress_out 函数去除每个细胞总计数的影响,以改善单细胞可视化和细胞类型注释(见数据和代码提供)。
Due to the unique sample multiplexing capacity of sci-RNA-seq3, all samples were expected to have very minimal technical batch effects since they were processed in one experiment and sequenced in one flow cell concurrently, and therefore, all presented data were analyzed without the use of batch effect removal tools, in a similar approach as described before (Cao et al., 2019). However, we compared our clustering results before and after batch effect correction with Harmony (Korsunsky et al., 2019). Briefly, the RunHarmony function was used and the 24 mouse kidney samples were considered as batch variables. Downstream analysis was performed on Seurat (Stuart et al., 2019). The RunUMAP function was used with [n.neighbors=40,dims =1:40=1: 40, min.dist=0.01] 由于sci-RNA-seq3具有独特的样本复用能力,所有样本都在一个实验中处理,并在一个流式细胞中同时测序,因此预计技术批次效应非常小,因此所有展示的数据都没有使用批次效应去除工具进行分析,与之前描述的方法类似(Cao等人,2019)。不过,我们用 Harmony(Korsunsky 等人,2019)比较了批次效应校正前后的聚类结果。简而言之,我们使用了 RunHarmony 函数,并将 24 个小鼠肾脏样本视为批次变量。下游分析在 Seurat(Stuart 等人,2019 年)上进行。使用 RunUMAP 函数,[n.neighbor=40,dims =1:40=1: 40 , min.dist=0.01] 。
for global cell clustering and [ n .neighbors =40=40, dims =1:15=1: 15, min . dist =0.1=0.1 ] for PT cell subclustering. Overall, we found the use of Harmony on our dataset resulted in impaired identification of sample-specific cell populations such as the uni-IRI 6hrs-specific Type1 injured PT cells, suggesting batch overcorrection. 用于全局细胞聚类,[ n .neighbors =40=40 , dims =1:15=1: 15 , min . dist =0.1=0.1 ] 用于 PT 细胞亚聚类。总之,我们发现在我们的数据集上使用 Harmony 会影响样本特异性细胞群的识别,如 uni-IRI 6hrs 特异性 1 型损伤 PT 细胞,这表明批次校正过度。
Gene module scoring 基因模块评分
Cell cycle scoring was performed with the scanpy.tl.score_genes_cell_cycle function with a list of genes associated with S-phase and G2M-phase. In addition, marker genes of cell cycle arrest and senescence were manually checked to verify the proliferate state of cells with high cell cycle scores. Scoring analysis of the other gene modules was performed with the scanpy.tl.score_genes function. The gene set used for ECM scoring was obtained from the Matrisome Project (Shao et al., 2020). The gene sets used for scoring of lipid droplet, heat shock proteins, mitochondrial respiration and myosin were obtained from the database of Harmonizome (Rouillard et al., 2016). All gene lists and their references can be found in Mendeley Data. 细胞周期评分是使用 scanpy.tl.score_genes_cell_cycle 函数进行的,该函数包含与 S 期和 G2M 期相关的基因列表。此外,还人工检查了细胞周期停滞和衰老的标记基因,以验证细胞周期得分高的细胞的增殖状态。其他基因模块的评分分析使用 scanpy.tl.score_genes 函数进行。用于 ECM 评分的基因集来自 Matrisome 项目(Shao 等人,2020 年)。用于脂滴、热休克蛋白、线粒体呼吸和肌球蛋白评分的基因集来自 Harmonizome 数据库(Rouillard 等人,2016 年)。所有基因列表及其参考文献均可在 Mendeley Data 中找到。
Single-cell trajectory inference 单细胞轨迹推断
Single-cell pseudotemporal ordering was implemented on Monocle2 (Qiu et al., 2017). After single-cell clustering and sample demultiplexing, PT cells were downsampled for the Monocle analysis due to significant computation time required. Briefly, after size factors and dispersions were estimated, expressed genes were defined as genes that were identified in at least 30 cells. Then, highly variable genes were selected, and dimensionality reduction was performed using the reduceDimension function and cells were ordered along a pseudotemporal trajectory. The aforementioned analysis was performed in a semi-supervised manner with a few marker genes of health and injury selected. A similar unsupervised analysis was also performed, and no significant difference was identified. We also performed the analysis with Monocle v.3.alpha and obtained similar results. To compare the difference of gene expression signature between successful repair and failed repair branches, the branched expression analysis modeling (BEAM) was used. Genes with q values < 10^(-30)<10^{-30} were processed and the two clusters were cataloged in a pseudotime manner. For analysis where cell downsampling was performed, the scanpy.pp.subsample function was used. 单细胞伪时序排序是在 Monocle2(Qiu 等人,2017 年)上实现的。在单细胞聚类和样本解复用之后,由于需要大量的计算时间,Monocle分析对PT细胞进行了降采样。简而言之,在估计了大小因子和分散度之后,表达基因被定义为在至少 30 个细胞中被识别的基因。然后,选出高度可变的基因,使用 reduceDimension 函数进行降维,并沿着伪时间轨迹对细胞进行排序。上述分析以半监督方式进行,选择了一些健康和损伤的标记基因。我们还进行了类似的无监督分析,结果没有发现明显差异。我们还使用 Monocle v.3.alpha 进行了分析,得到了类似的结果。为了比较成功修复和失败修复分支之间基因表达特征的差异,我们使用了分支表达分析模型(BEAM)。对 q 值 < 10^(-30)<10^{-30} 的基因进行了处理,并以伪时间方式对两个聚类进行了编目。在进行细胞下采样分析时,使用了 scanpy.pp.subsample 函数。
Single-cell fate mapping on time-series datasets 在时间序列数据集上绘制单细胞命运图谱
To infer the temporal couplings of the injury and repairing process of PT cells, which were sampled from various independent timepoints, we performed single-cell fate prediction analysis on the Cellrank (Lange et al., 2022) (development version of 1.3.2) platform which incorporates the Waddington Optimal-Transport (Schiebinger et al., 2019) modeling approach. Briefly, a subset of PT cells was selected to accelerate computation, and dimensionality reduction and UMAP embedding were conducted. Initial growth rates were estimated with default settings. Then, a cell-cell transition matrix was calculated using the compute_transition_matrix function (growth_iters = 3, last_time_point = “connectivities”), which uses a birth-death prediction process based on the Markov chains model. Then, the mass flow probabilities of the Type1 and Type2 PT injury states were computed and visualized using the plot_single_flow function. 为了推断从不同独立时间点采样的PT细胞损伤和修复过程的时间耦合,我们在Cellrank(Lange等人,2022年)(开发版本为1.3.2)平台上进行了单细胞命运预测分析,该平台结合了Waddington Optimal-Transport(Schiebinger等人,2019年)建模方法。简言之,为了加速计算,选择了 PT 细胞子集,并进行了降维和 UMAP 嵌入。采用默认设置估算初始增长率。然后,使用 compute_transition_matrix 函数(growth_iters = 3,last_time_point = "connectivities")计算细胞-细胞过渡矩阵,该函数使用基于马尔科夫链模型的出生-死亡预测过程。然后,使用 plot_single_flow 函数计算 PT1 型和 PT2 型损伤状态的质量流概率并将其可视化。
Gene enrichment analysis 基因富集分析
All gene enrichment analysis and protein-protein interaction enrichment analysis were performed on the Metascape 33.5 (Zhou et al., 2019) platform with default settings. Top differentially expressed genes of a cell type were selected and q-values were log-transformed and used for data visualization. 所有基因富集分析和蛋白-蛋白相互作用富集分析均在 Metascape 33.5(Zhou 等,2019 年)平台上以默认设置进行。选择细胞类型中差异表达最高的基因,q值经对数变换后用于数据可视化。
Progeny (v1) (Holland et al., 2020; Schubert et al., 2018) was used to analyze activities of key biological pathways in individual cells. Briefly, gene weights for each pathway were defined which considered top 2000 significant genes per pathway. Then, the dataset was normalized and scaled, and 100 permutations were conducted to calculate pp-values of random activities. Progeny (v1) (Holland 等人,2020;Schubert 等人,2018) 被用来分析单个细胞中关键生物通路的活性。简而言之,每个通路的基因权重是根据每个通路前 2000 个重要基因确定的。然后,对数据集进行归一化和缩放,并进行 100 次排列以计算随机活动的 pp 值。
For TF activity prediction in scRNA-seq data, DoRothEA (v1) (Garcia-Alonso et al., 2019; Holland et al., 2020) was used. Briefly, a TF-target network matrix was first defined in the package with confidence levels set as [‘A’, ‘B’, ‘C’]. TFs with less than 5 targets identified in the dataset were ignored and 100 permutations were performed on normalized and scaled data. The rank_tfs_groups function was used to identify genes that showed differential activities in each cell type. 为了预测 scRNA-seq 数据中的 TF 活性,使用了 DoRothEA (v1) (Garcia-Alonso et al., 2019; Holland et al., 2020)。简而言之,首先在软件包中定义一个 TF-靶标网络矩阵,置信度设置为['A'、'B'、'C']。数据集中少于 5 个目标的 TF 将被忽略,并对归一化和缩放数据进行 100 次排列。rank_tfs_groups 函数用于识别在每种细胞类型中表现出不同活性的基因。
Cell-cell interaction analysis 细胞-细胞相互作用分析
Cell-cell interaction analysis was performed using CellPhoneDB (v2.1.7) (Efremova et al., 2020) on all cells used in single-cell clustering. Cell subtypes with high transcriptomics similarity (e.g. Type1 Injured S1/2 and S3 cells of PT) were combined for the convenience of data visualization. For the use of CellPhoneDB, all genes were converted to human orthologues according to the Homology database of Mouse Genome Informatics. The analysis was implemented with the statistical method of CellPhoneDB (-iterations = 2000). For analyzing the dynamics of cell-cell interactions across multiple timepoints, data was demultiplexed and the same analysis was performed on each condition. Significantly dysregulated ligand-receptor pairs were identified based on their p-values and activity scores. 使用 CellPhoneDB (v2.1.7) (Efremova et al., 2020) 对所有用于单细胞聚类的细胞进行了细胞间相互作用分析。为了数据可视化的方便,将具有高度转录组学相似性的细胞亚型(如 PT 的 1 型损伤 S1/2 和 S3 细胞)合并在一起。为了使用 CellPhoneDB,所有基因都根据小鼠基因组信息学同源数据库转换为人类同源基因。分析采用 CellPhoneDB 的统计方法(-iterations = 2000)。为了分析细胞-细胞相互作用在多个时间点上的动态变化,对数据进行了解复用,并对每个条件进行了相同的分析。根据配体-受体对的 p 值和活性评分,确定了显著失调的配体-受体对。
Article 文章
Comparison and integration with other datasets 与其他数据集的比较和整合
For integration with a previous scRNA-seq dataset (Kirita et al., 2020) ( 126,578 cells) generated by 10X Chromium technologies, we first extracted cells originated from healthy and uni-IRI kidney samples (206,681 cells) from our sci-RNA-seq3 data. Then, the two datasets were combined using the AnnData.concatenate function, and then normalized and log-transformed. The top 3000 genes were selected as the highly variable genes. The data was scaled and PCA was performed using the scanpy.tl.pca function (svd_solver = ‘arpack’, n_comps = 30). A neighborhood graph was calculated ( n_\mathrm{n} \_neighbors =20=20, metric == ‘cosine’) and further embedded into a 2D UMAP graph using the scanpy.tl.umap function. Then, Batch Balanced K Nearest Neighbours (BBKNN) (Polański et al., 2020) was used with default settings to correct batch difference. For visualization of the combined dataset, UMAP space was computed again with the effective minimum distance between embedded points set as 0.1. 为了与之前由 10X Chromium 技术生成的 scRNA-seq 数据集(Kirita 等人,2020 年)(126,578 个细胞)进行整合,我们首先从 sci-RNA-seq3 数据中提取了来自健康肾脏样本和 uni-IRI 肾脏样本的细胞(206,681 个细胞)。然后,使用 AnnData.concatenate 函数合并两个数据集,并进行归一化和对数转换。前 3000 个基因被选为高变异基因。使用 scanpy.tl.pca 函数(svd_solver = 'arpack', n_comps = 30)对数据进行缩放并执行 PCA。计算出邻域图( n_\mathrm{n} \_ 邻居 =20=20 ,度量 == '余弦'),并使用 scanpy.tl.umap 函数进一步嵌入到二维 UMAP 图中。然后,在默认设置下使用批量平衡 K 近邻(BBKNN)(Polański 等人,2020 年)来校正批量差异。为了使合并数据集可视化,再次计算了 UMAP 空间,并将嵌入点之间的有效最小距离设置为 0.1。
Spatial transcriptomics analysis was performed by revisiting a recent dataset (Dixon et al., 2022) generated with the 10X Genomics Visium System (PN-1000185, Lot No. 155614, Rev D). Quality control of spatial sequencing libraries was performed according to manufacturer’s instructions. Resulting Visium libraries were processed and aligned using the count and agg function of 10X Genomics SpaceRanger (v1.2.1). Analysis files were loaded into Seurat or Giotto (Dries et al., 2021) for normalization and plotting of spatial expression for genes of interest. 空间转录组学分析是通过重温最近使用 10X Genomics Visium 系统(PN-1000185,批号 155614,修订版 D)生成的数据集(Dixon 等人,2022 年)进行的。空间测序文库的质量控制按照制造商的说明进行。使用 10X Genomics SpaceRanger(v1.2.1)的计数和比对功能处理和比对得到的 Visium 文库。分析文件被载入 Seurat 或 Giotto(Dries 等人,2021 年),用于归一化和绘制相关基因的空间表达图谱。
In addition, we compared our results with a few bulk RNA-seq datasets on kidney injury and fibrosis, which include a human renal IRI model (Park et al., 2020), folic acid-induced mouse nephropathy (Craciun et al., 2016) and UUO induced on S/c34a1GCE-eGFPL10a mice (PT-enriched transcripts) (Wu et al., 2020). Previous datasets generated by microarray approaches were also examined by surveying publicly available database collections (http://v5.nephroseq.org/). Protein expression of genes of interest was examined in The Human Protein Atlas (Uhlén et al., 2015). 此外,我们还将我们的结果与一些关于肾损伤和肾纤维化的批量RNA-seq数据集进行了比较,其中包括人类肾脏IRI模型(Park等人,2020年)、叶酸诱导的小鼠肾病(Craciun等人,2016年)以及S/c34a1GCE-eGFPL10a小鼠诱导的UUO(PT富集转录本)(Wu等人,2020年)。还通过调查公开可用的数据库集(http://v5.nephroseq.org/),研究了以前通过微阵列方法生成的数据集。在人类蛋白质图谱(The Human Protein Atlas)(Uhlén et al.
Bulk RNA-seq 批量 RNA-seq
Human primary RPTECs were harvested at five different conditions for bulk RNA-seq with three biological replicates per group: (1) siNT treatment (control); (2) siNT and 6-hour 100 muM100 \mu \mathrm{M} oleic acid exposure (siNT+Ole6hrs); (3) PLIN2 siRNA treatment and 6-hour 100 muM100 \mu \mathrm{M} oleic acid exposure (siPLIN2+Ole6hrs), (4) siNT and 2-day normal medium exposure after 6-hour 100 muM100 \mu \mathrm{M} oleic acid exposure (siNT+Ole6hrs+2d); and (5) siPLIN2+Ole6hrs+2d. RNA was extracted with RNeasy Kits (74104, Qiagen) following the manufacturer’s instruction. Libraries were generated with the poly-A selection method (mRNA Direct kit, Life Technologies) and sequenced with the NovaSeq 6000 S 4 platform ( 2xx150bp2 \times 150 \mathrm{bp} ) at a target of 30 million reads per library. RNA-seq reads were aligned and quantitated to the human reference genome Ensembl GRCh38.101 with an Illumina DRAGEN Bio-IT on-premise server running version 3.9.3-8 software. Differential expression analysis was performed with the exactTest function of edgeR v3.34.1 (Robinson et al., 2010). Genes with FDR < 0.01<0.01 were processed for GO enrichment analysis. 在五种不同条件下采集人原代 RPTECs 进行批量 RNA 序列分析,每组三个生物重复:(1) siNT 处理(对照);(2) siNT 和 6 小时 100 muM100 \mu \mathrm{M} 油酸暴露(siNT+Ole6hrs);(3) PLIN2 siRNA 处理和 6 小时 100 muM100 \mu \mathrm{M} 油酸暴露(siPLIN2+Ole6hrs);(4) siNT 和 6 小时 100 muM100 \mu \mathrm{M} 油酸暴露后 2 天正常培养基暴露(siNT+Ole6hrs+2d);(5) siPLIN2+Ole6hrs+2d。按照生产商的说明用 RNeasy Kits(74104,Qiagen)提取 RNA。用poly-A选择法(mRNA Direct试剂盒,Life Technologies公司)生成文库,并用NovaSeq 6000 S 4平台( 2xx150bp2 \times 150 \mathrm{bp} )测序,每个文库的目标读数为3000万。用运行 3.9.3-8 版软件的 Illumina DRAGEN Bio-IT on-premise 服务器将 RNA-seq 读数与人类参考基因组 Ensembl GRCh38.101 进行比对和量化。差异表达分析使用 edgeR v3.34.1 的 exactTest 功能进行(Robinson 等人,2010 年)。对 FDR < 0.01<0.01 的基因进行了 GO 富集分析。
Lipidomics analysis 脂质组学分析
Triacylglycerol (TAG), free fatty acid (FFA), and cholesterol in mouse kidney tissues were analyzed with mass spectrometry-based lipidomics. Briefly, the mouse kidney samples were homogenized in water ( 1:4,w//v1: 4, \mathrm{w} / \mathrm{v} ) using Omni Bead Ruptor. A modified Bligh and Dyer method was used to extract TAG, FFA, and cholesterol from 50 muL50 \mu \mathrm{~L} of homogenate. Internal standards of TAG (Nu-Chek Prep #T404), FFA (Cambridge Isotopes #DLM-2893-0.5) and cholesterol (Toronto Research Company #C432503) were added to the samples before extraction. The FFA was derivatized with 4-aminomethylphenylpyridium to improve mass spectrometric sensitivity. Measurement of TAG, FFA and cholesterol was performed with a Shimadzu 20AD HPLC system coupled to a 4000QTRAP mass spectrometer operated in positive multiple reaction monitoring mode. The electrospray ionization was used for TAG and FFA, and air pressure chemical ionization was used for cholesterol. Data processing was conducted with Analyst 1.6.3. Quality control (QC) samples were prepared by pooling the aliquots of the study samples and were used to monitor the instrument stability. Only the lipid species with CV < 15%<15 \% in QC sample were reported. The data were reported as the peak area ratios of the analytes to the corresponding internal standards. 基于质谱的脂质组学分析了小鼠肾脏组织中的三酰甘油(TAG)、游离脂肪酸(FFA)和胆固醇。简而言之,使用 Omni Bead Ruptor 将小鼠肾脏样本在水中( 1:4,w//v1: 4, \mathrm{w} / \mathrm{v} )匀浆。采用改进的 Bligh 和 Dyer 方法从匀浆 50 muL50 \mu \mathrm{~L} 中提取 TAG、FFA 和胆固醇。提取前在样品中加入 TAG(Nu-Chek Prep #T404)、FFA(Cambridge Isotopes #DLM-2893-0.5)和胆固醇(Toronto Research Company #C432503)的内部标准。用 4-aminomethylphenylpyridium 对 FFA 进行衍生处理,以提高质谱灵敏度。采用岛津 20AD 高效液相色谱系统和 4000QTRAP 质谱仪,在正多反应监测模式下测定 TAG、FFA 和胆固醇。TAG 和 FFA 采用电喷雾电离,胆固醇采用气压化学电离。数据处理采用 Analyst 1.6.3。质控(QC)样品由研究样品的等分试样汇集而成,用于监测仪器的稳定性。只报告质控样品中 CV < 15%<15 \% 的脂质种类。数据以分析物与相应内标物的峰面积比进行报告。
Measurement of BCAA concentration 测量 BCAA 浓度
Branched Chain Amino Acid Colorimetric Kit (MAK003, Sigma) was used to determine the concentration of BCAA in mouse kidneys. Briefly, mouse kidneys were completely perfused with PBS before dissection. For each sample, 10-20 mg tissue was dissected from mouse kidney cortex, weighted and homogenized in cold BCAA Assay Buffer. After centrifugation, supernatant was obtained and processed for the colorimetric detection with the manufacturer’s instructions. Leucine standards were used to generate the standard curve. 支链氨基酸比色试剂盒(MAK003,Sigma)用于测定小鼠肾脏中 BCAA 的浓度。简言之,小鼠肾脏在解剖前用 PBS 完全灌注。每个样本从小鼠肾皮质中取出 10-20 毫克组织,称重并在冷 BCAA 分析缓冲液中均质。离心后取上清液,按照生产商的说明进行比色检测。亮氨酸标准品用于生成标准曲线。
QUANTIFICATION AND STATISTICAL ANALYSIS 量化和统计分析
Unless otherwise specified, pp values presented in tissue culture and biochemical assays were generated by unpair two-tailed Student’s t-tests and FDR values presented in bulk RNA-seq differential expression analysis were generated by exact tests on two groups of negative binomial random variables. Unless otherwise specified, Mann-Whitney-U test with the Benjamini-Hochberg correction was used for differential expression analysis of scRNA-seq data. 除非另有说明,组织培养和生化检测中的 pp 值是通过无对双尾的学生 t 检验得出的,批量 RNA-seq 差异表达分析中的 FDR 值是通过两组负二项随机变量的精确检验得出的。除非另有说明,scRNA-seq 数据的差异表达分析采用 Mann-Whitney-U 检验和 Benjamini-Hochberg 校正。
distributions of 11 group conditions in each cell type (inner layout; color legend same as C). PT, proximal tubule; PT-Inj, injured PT; PT-R, repairing PT; FR-PTC, failed repair PT cell; PT-Aclnj, acute injury PT; DTL, descending limb of loop of Henle (LoH); ATL, thin ascending limb of LoH; TAL, thick ascending limb of LoH; DCT, distal convoluted tubule; CNT, connecting tubule; PC, principal cell of collecting duct; ICA, type A intercalated cell of collecting duct; ICB, type B intercalated cell of collecting duct; Pod, podocyte; EC, endothelial cell; Fib, fibroblast; Myofib, myofibroblast; Ma, macrophage (M varphi\varphi ); B//TB / T, immune cell; Uro, urothelium. 各细胞类型中 11 组条件的分布(内部布局;颜色图例与 C 相同)。PT,近端小管;PT-Inj,损伤的 PT;PT-R,修复的 PT;FR-PTC,修复失败的 PT 细胞;PT-Aclnj,急性损伤的 PT;DTL,亨氏襻降支(LoH);ATL,亨氏襻细升支;TAL,亨氏襻粗升支;DCT,远端卷曲小管;CNT,连接小管;PC,集合管主细胞;ICA,集合管 A 型闰细胞;ICB,集合管 B 型闰细胞;Pod,荚膜细胞;EC,内皮细胞;Fib,成纤维细胞;Myofib,肌成纤维细胞;Ma,巨噬细胞(M varphi\varphi ); B//TB / T ,免疫细胞;Uro,尿路上皮细胞。
(E) Dot plot showing expression pattern of cluster-specific marker genes and bar plot showing the number of cells of each cluster. In the dot plot, the diameter of the dot corresponds to the proportion of cells expressing the indicated gene and the density of the dot corresponds to average expression relative to all cell types. (E) 点图显示细胞群特异性标记基因的表达模式,条形图显示每个细胞群的细胞数量。在点阵图中,点的直径对应于表达所指基因的细胞比例,点的密度对应于相对于所有细胞类型的平均表达量。
(E) Connected bar plots displaying the proportional abundance of each cell cluster in each disease condition. Injured S1/2 and S3 cells are combined for the convenience of data visualization. (E) 连接的柱状图显示每种疾病条件下各细胞群的丰度比例。为便于数据可视化,受伤的 S1/2 和 S3 细胞合并在一起。
(F) Pseudotemporal ordering of cells sampled from uni-IRI and UUO subsets colored by cluster identity (color legend same as E), using Monocle2. (F) 使用 Monocle2 对从 uni-IRI 和 UUO 子集中采样的细胞进行伪时序排序,按集群特征着色(颜色图例与 E 相同)。
(G) Single-cell fate mapping of Type1 and Type2 injured PT cells (color legend same as E), using CellRank. Flows connecting two cell types describe lineage transition and the flow width indicate predicted probability. See also Figure S2K. (G) 使用 CellRank 绘制的 1 型和 2 型受伤 PT 细胞的单细胞命运图谱(颜色图例与 E 相同)。连接两种细胞类型的流线描述了细胞系的转变,流线宽度表示预测概率。另见图 S2K。
( B and C ) Gene module activity scores of FAO(B)\mathrm{FAO}(\mathrm{B}) and lipid droplets ( C ) in different PT clusters (all time points) (left panels) and across the time courses of uni-IRI and UUO (right panels), where each dot indicates mean score of two samples of a group condition and data are shown as the mean +-\pm SEM. ( B 和 C ) 不同 PT 簇中 FAO(B)\mathrm{FAO}(\mathrm{B}) 和脂滴 ( C ) 的基因模块活性得分(所有时间点)(左侧面板),以及单 IRI 和 UUO 的整个时间过程(右侧面板),其中每个点表示一组条件下两个样本的平均得分,数据以平均值 +-\pm SEM 表示。
(D) Oil Red O staining on multiple group conditions identifying transient accumulation of lipids at uni-IRI 6 h, clearance of lipids after uni-IRI D2 and lipid accumulation at late stages of UUO. Regions of inner cortex or outer medulla (IC/OM) and outer cortex (OC) are shown. Red color indicates lipids and blue indicates cell nucleus. See also Figure S3C. (D) 在多组条件下进行油红 O 染色,以确定脂质在单-IRI 6 小时内的短暂积聚、单-IRI D2 后的脂质清除以及 UUO 晚期的脂质积聚。图中显示了内皮层或外髓质(IC/OM)和外皮层(OC)的区域。红色表示脂质,蓝色表示细胞核。另见图 S3C。
(E) Relative quantity of triglyceride (TAG) species in mouse kidney tissues of different group conditions. The most abundant 8 TAG species are presented and the other species are combined and annotated as “other TAGs.” See also Figure S3D. (E)不同组别小鼠肾组织中甘油三酯(TAG)种类的相对数量。图中列出了含量最高的 8 种甘油三酯,其他种类的甘油三酯被合并并注释为 "其他甘油三酯"。另见图 S3D。
(F) Relative quantity of free fatty acid (FFA) species in mouse kidney tissues of different group conditions. The most abundant 7 FFA species are presented, and the other species are combined and annotated as “other FFAs.” See also Figure S3D. (F) 不同组别小鼠肾脏组织中游离脂肪酸(FFA)种类的相对数量。图中列出了含量最高的 7 种游离脂肪酸,其他种类的游离脂肪酸合并在一起,并标注为 "其他游离脂肪酸"。另见图 S3D。
(G) Oil Red O staining (upper panels) and BODIPY493/503 staining (lower panels) on RPTECs after 6-h treatment of 100- muM\mu \mathrm{M} BSA-conjugated oleate (Ole) or palmitate (Pal) fatty acids. Scale bars, 50 mum50 \mu \mathrm{~m}. Zoom-in figures of a single cell are also presented for Oil Red O staining, which demonstrates accumulation of lipid droplets after treatment. (G) 100- muM\mu \mathrm{M} BSA 结合的油酸(Ole)或棕榈酸(Pal)脂肪酸处理 6 小时后,RPTEC 上的油红 O 染色(上图)和 BODIPY493/503 染色(下图)。比例尺, 50 mum50 \mu \mathrm{~m} 。单个细胞的放大图还显示了油红 O 染色,它显示了处理后脂滴的积累。
(H) Oil Red O staining on RPTECs which were exposed to culture medium without fatty acid supplements after 6 h of 100 muM100 \mu \mathrm{M} oleate or palmitate fatty acid treatment, with ( w ) or without ( w//o\mathrm{w} / \mathrm{o} ) Atglistatin (Atg) treatment. Scale bars, 50 mum50 \mu \mathrm{~m}. Zoom-in figures of a single cell are also presented. (H)油酸或棕榈酸脂肪酸处理 6 小时后,将 RPTECs 暴露于不含脂肪酸补充剂的培养基中,用(w)或不用( w//o\mathrm{w} / \mathrm{o} )阿曲司他丁(Atg)处理,对其进行油红 O 染色。比例尺, 50 mum50 \mu \mathrm{~m} 。还提供了单个细胞的放大图。
(I) Energy map presenting an increased OCR and ECAR at the basal condition after 6h100 muM6 \mathrm{~h} 100 \mu \mathrm{M} oleate or palmitate fatty acid pretreatment on RPTECs. OCR and ECAR readouts are normalized by cell numbers. Data are shown as the mean +-\pm SEM. The four energy states were annotated as previously described. **p < 0.01<0.01, (I) 能量图显示,油酸或棕榈酸脂肪酸预处理 RPTECs 后,OCR 和 ECAR 在基础条件下增加。OCR和ECAR读数按细胞数归一化。数据以平均值 +-\pm SEM表示。四种能量状态的注释如前所述。**P < 0.01<0.01 、
****p < 0.0001, and n.s (not significant) by Student’s t test. ****p < 0.0001,n.s(无显著性)采用学生 t 检验。
(J) Heatmap showing expression of genes involved in lipid metabolism and FAO regulation, and DNA replication and cell-cycle regulation in RPTECs with control and 6h100 muM6 \mathrm{~h} 100 \mu \mathrm{M} oleic acid (Ole 6 h ) treatments and harvested at 2 days after the 6 -h treatment (Ole 6h+26 \mathrm{~h}+2 days). Each group has three biological replicates. Transcript per million (TPM) is normalized for visualization. (J) 热图显示了在对照组和 6h100 muM6 \mathrm{~h} 100 \mu \mathrm{M} 油酸(Ole 6 小时)处理后 2 天(Ole 6h+26 \mathrm{~h}+2 天)收获的 RPTECs 中参与脂质代谢和 FAO 调节以及 DNA 复制和细胞周期调节的基因的表达。每组有三个生物重复。为便于可视化,对每百万转录本(TPM)进行了归一化处理。
(F) Immunofluorescence staining of PLIN2 (green), oxidized low-density lipoprotein (oxLDL; red), and DAPI (blue) on a uni-IRI 6 h tissue section showing PLIN2 colocalizes with oxLDL. Scale bars, 10 mum10 \mu \mathrm{~m}. (F) 单IRI 6 h组织切片上PLIN2(绿色)、氧化低密度脂蛋白(oxLDL;红色)和DAPI(蓝色)的免疫荧光染色显示PLIN2与oxLDL共聚焦。比例尺, 10 mum10 \mu \mathrm{~m} 。
(G) Relative expression of PLIN2 in RPTECs after 6-h oleate (Ole) or palmitate (Pal) fatty acid exposure or at 2 days after removal of the fatty acids from culture medium, measured by qPCR. Data are shown as the mean +-\pm SEM. ^(********)p < 0.0001{ }^{* * * *} p<0.0001 by Student’s tt test. (G) 通过 qPCR 测量油酸(Ole)或棕榈酸(Pal)脂肪酸暴露 6 小时后或从培养基中去除脂肪酸 2 天后 RPTECs 中 PLIN2 的相对表达。数据以平均值 +-\pm SEM表示。 ^(********)p < 0.0001{ }^{* * * *} p<0.0001 采用学生 tt 检验。
(H) Immunostaining of PLIN2 (green) and DAPI (blue) on RPTECs after 6-h oleate or palmitate fatty acid treatment. Scale bars, 100 mum100 \mu \mathrm{~m}. (H)油酸或棕榈酸脂肪酸处理 6 小时后,RPTEC 上 PLIN2(绿色)和 DAPI(蓝色)的免疫染色。比例尺, 100 mum100 \mu \mathrm{~m} 。
(I) Energy map presenting an increased OCR and ECAR after 6-h fatty acid pretreatment, as well as a decreased OCR and ECAR after PLIN2 knockdown on RPTECs. OCR and ECAR readouts are normalized by cell numbers. Data are shown as the mean +-\pm SEM. Comparisons were made between no treatment and combined oleate and palmitate fatty acid pretreatment (control siRNA), and between no treatment with control siRNA and no treatment with PLIN2 siRNA. The four energy states were annotated as previously described. ^(********)p < 0.0001{ }^{* * * *} \mathrm{p}<0.0001 by Student’s tt test. (I) 能量图显示脂肪酸预处理 6 小时后 OCR 和 ECAR 增加,以及 PLIN2 敲除 RPTECs 后 OCR 和 ECAR 减少。OCR和ECAR读数按细胞数归一化。数据以平均值 +-\pm SEM表示。未处理与联合油酸和棕榈酸脂肪酸预处理(对照 siRNA)之间进行了比较,未用对照 siRNA 处理与未用 PLIN2 siRNA 处理之间也进行了比较。四种能量状态的注释如前所述。 ^(********)p < 0.0001{ }^{* * * *} \mathrm{p}<0.0001 通过学生 tt 检验。
(J) Heatmap showing expression of genes involved in autophagy, amino acid transport and glucose metabolism in RPTECs with non-targeting siRNA (control) and 6h100-muM6 \mathrm{~h} 100-\mu \mathrm{M} oleic acid (siNT + Ole 6 h ) treatments and in cells treated with PLIN2 siRNA and 6h100-muM6 \mathrm{~h} 100-\mu \mathrm{M} oleic acid (siPLIN2 + Ole 6 h). Each group has three biological replicates. TPM expression is normalized for visualization. (J) 热图显示了非靶向 siRNA(对照组)和 6h100-muM6 \mathrm{~h} 100-\mu \mathrm{M} 油酸(siNT + Ole 6 h )处理的 RPTECs 以及 PLIN2 siRNA 和 6h100-muM6 \mathrm{~h} 100-\mu \mathrm{M} 油酸(siPLIN2 + Ole 6 h)处理的细胞中参与自噬、氨基酸转运和葡萄糖代谢的基因的表达。每组有三个生物重复。为便于观察,对 TPM 表达进行了归一化处理。
(K) Proposed model of activated lipid metabolisms in Type1 injured PT cells. CD36 is a transporter of long-chain fatty acids. Intracellular fatty acids aggregate and form lipid droplets with PLIN2 as a surface protein. Fatty acyl-coenzyme A (CoA) is converted from lipids through ACSL-mediated lipolysis or lipophagy and used in ACOX1-mediated peroxisomal beta\beta-oxidation or CPT-mediated mitochondrial beta\beta-oxidation, which can generate acetyl CoA, the substrate of tricarboxylic acid (TCA) cycle to produce energy. PPAR signaling is the main regulator of the lipid metabolism pathway and mitochondrial fission is involved in lipid accumulation. Figure created with BioRender.com. (K)1 型损伤 PT 细胞活化脂质代谢的拟议模型。CD36 是长链脂肪酸的转运体。细胞内脂肪酸聚集形成脂滴,PLIN2 是其表面蛋白。脂肪酰辅酶 A(CoA)通过 ACSL 介导的脂肪分解或噬脂作用从脂质中转化出来,用于 ACOX1 介导的过氧物酶体 beta\beta 氧化或 CPT 介导的线粒体 beta\beta 氧化,从而产生乙酰 CoA,即三羧酸循环(TCA)产生能量的底物。PPAR 信号是脂质代谢途径的主要调节器,线粒体裂变参与了脂质积累。图由 BioRender.com 绘制。