Data Availability 数据可用性
根据要求提供数据。
Fig. 1. SEM images of the as-received powders and their size distribution. (a) γ' nickel superalloy powder. (b) Powder size distribution of the γ' nickel superalloy powder. (c) Tungsten tracer powder. (d) Powder size distribution of the tungsten tracer powder.
图 1. 原状粉末的 SEM 图像及其尺寸分布。(a) γ' 镍基高温合金粉末。(b) γ' 镍基高温合金粉末的尺寸分布。(c) 钨示踪剂粉末。(d) 钨示踪剂粉末的尺寸分布。
Fig. 2. (a) Experiment setup of in situ synchrotron X-ray imaging of magnetic-field-assisted DED; (b) Setup of the no B case; (c) Setup of the B//V case; (d) Setup of the B downward case. Nickel-based superalloy powders were blended with W particles to be deposited on the thin substrate (1.5 mm thickness). The laser was kept stationary with a substrate moving at 1 mm/s traverse speed for unidirectional scan for all the builds with a stationary melt pool generated in the field of view. X-rays pass through the melt pool to image the melt pool at the framerate of 5 kHz, the resolution is 6.67 µm per pixel. The applied laser powers are 100, 160 and 200 W. Three layers for all the tracks. Two permanent magnets were mounted around the substrate to provide a uniform magnetic field (0.18–0.2 T) in the melt pool position.
图 2. (a)在磁场辅助增材制造的同步加速器原位 X 射线成像实验装置;(b)无磁场情况下实验装置示意图;(c)磁场方向与熔池方向一致情况下实验装置示意图;(d)磁场方向向下情况下实验装置示意图。镍基超耐热合金粉末与 W 颗粒混合后沉积在薄基板上(厚度 1.5 毫米)。对于所有构建,激光保持固定,基板以 1 毫米/秒的横向速度移动,实现单向扫描,在视场中产生静止熔池。X 射线穿过熔池对熔池进行成像,帧速率为 5KHz,分辨率为每像素 6.67 微米。所用激光功率为 100、160 和 200W。所有路径分为三层。在基板周围安装两个永磁体,以在熔池位置提供均匀磁场(0.18-0.2 T)。
Fig. 3. Flow behaviour without magnetic field. (a) Three successive radiographs showing a tungsten (W) particle’s trajectory, coloured by time. (b-d) Time-integrated radiographs showing W particles trajectories under no B case at various laser powers: (b) 100 W; (c) 160 W; (d) 200 W. (e) W particle velocity versus time with three laser powers, corresponding to the coloured trajectories in (b-d). The sample traverse speed is 1 mm/s for all the cases.
图 3. 无磁场流动行为。(a) 三张连续的无线电照片,显示了一个钨(W)粒子的轨迹,颜色随时间变化。(b-d) 在不同激光功率下无磁场情况下 W 粒子的轨迹时间积分照片: (b) 100W; (c) 160W; (d) 200W。(e) 钨粒子三種激光功率下的速度随时间变化,对应于(b-d)中不同的轨迹颜色。对于所有情况,样品横移速度为 1 mm/s。
Fig. 4. Comparison of W particle trajectories without and with the magnetic field (B). (a, b) no B case; (c, d) B//V case (V denotes the laser scan velocity); (e, f) B downward case; (b, d, f) is the zoom-in of the red box areas in (a, c, e). In the solid phase, tungsten (W) particles form straight black lines parallel to each other (see black arrows in c as examples) as a result of the time integration of radiographs. Pink boxes highlight the particle distribution in the solidified tracks: evenly distributed in (a) with no magnetic field; segregated to the very bottom of the pool in (c) for the B//V case; and segregated to the bottom half of the pool for (e), the B downward case.
图 4. 无磁场和有磁场情况下 W 颗粒轨迹对比。(a, b) 无 B 情况;(c, d) B//V 情况(V 表示激光扫描速度);(e, f) B 向下情况;(b, d, f) 是(a, c, e) 中红色框区域的放大图。在固相中,W 粒子由于时间积分,形成了相互平行的直线黑线(例如,参见 c 中的黑色箭头)。粉色框突出显示了固化轨道中的粒子分布:在无磁场的情况下均匀分布 (a);对于 B//V 情况,偏析到熔池的底部 (c);对于 B 向下情况,偏析到熔池的下半部分 (e)。
Fig. 5. Tungsten particles segregation under various conditions. (a) No B, 100 W; (b) B//V, 100 W; (c) B downward, 100 W; (d) B downward, 160 W; (e) B downward, 200 W. (f) The schematic shows the three orthogonal planes; (g) TEMHD flow circulating in the cross-sectional plane in the B//V case; and (h) TEMHD flow circulating in the horizontal plane under the B downward case. The particles are overlaid onto one tomograph in a horizontal projection plane. (Red arrow = scan direction. Green arrows = TEMHD flow. Yellow arrows = Marangoni flow. Scale bar = 500 µm.).
图 5. 钨颗粒在不同条件下的偏析。 (a) 无 B,100 W;(b) B//V,100 W;(c) B 向下,100 W;(d) B 向下,160 W;(e) B 向下,200 W。 (f) 示意图显示了三个正交平面;(g) TEMHD 流在 B//V 情况下在横截面平面中循环;(h) TEMHD 流在 B 向下情况下在水平平面中循环。 颗粒被叠加在一个水平投影平面上的断层扫描图上。 (红色箭头 = 扫描方向。 绿色箭头 = TEMHD 流。 黄色箭头 = 马朗哥尼流。 单位栏 = 500 µm。).
Fig. 6. Distribution of W particles in the solidified tracks in the longitudinal projection planes under conditions: (a) no B, 100 W; (b) no B, 160 W; (c) no B, 200 W; (d) B//V, 100 W (e) B//V, 160 W and (f) B//V, 200 W. All built in three layers. The scale bars are 500 µm.
图 6. 凝固轨道纵向投影面中 W 颗粒的分布,条件为:(a) 无 B 场,100 W;(b) 无 B 场,160 W;(c) 无 B 场,200 W;(d) B//V,100 W;(e) B//V,160 W 和(f) B//V,200 W。 所有都构建在三层中。 刻度尺为 500 µm。
Fig. 7. Comparison of the melt pool depth under the conditions of (a) no B, 100 W; (b) B//V, 100 W; (c) B downward, 100 W. The melt pools are filled with W particle trajectories to show the liquid area, i.e., the melt pool area. Distribution of W particles in the solidified tracks in the cross-sectional projection plane under conditions: (d) no B, 100 W; (e) B//V, 100 W; (f) B downward, 100 W, and (g-i) show the corresponding normalized frequency of W particles along substrate width. All built in three layers. The widths of all the substrates are 1.5 mm. The scale bars are 500 µm.
图 7. 在以下条件下熔池深度的比较:(a) 无 B,100 W;(b) B//V,100 W;(c) B 向下,100 W。熔池中填充有 W 粒子轨迹以显示液体区域,即熔池区域。条件下凝固轨迹中 W 粒子在横截面投影平面上的分布:(d) 无 B,100 W;(e) B//V,100 W;(f) B 向下,100 W,(g-i) 显示了 W 粒子沿基板宽度方向的对应归一化频率。所有构建在三层。所有基板的宽度均为 1.5 毫米。刻度为 500 µm。
Fig. 8. Comparison of the grain structure under the conditions: (a) no B, 100 W; (b) B//V, 100 W; (c) B vertical, 100 W. The white boxes indicate the central grain areas. The scale bar is 250 µm.
图 8. 不同条件下的晶粒结构对比:(a) 无 B,100 W;(b) B//V,100 W;(c) B 垂直,100 W。白色方框表示中心晶粒区域。比例尺为 250 µm。
Fig. 9. Schematic of the flows driven by TE Lorentz force. (a) Origin of thermoelectric currents in the melt pool; (b) TECs distribution on the cross-sectional plane; and (c) TECs distribution on the horizontal plane. (d) For the B//V case, the TEMHD flow circulates in the cross-sectional plane; and (e) for the B downward case, TEMHD flow circulates in the horizontal plane. TEMHD flow in a 3D melt pool for: (f) the B//V case ( denotes cross-sectional plane); and (g) the B downward case ( denotes horizontal plane).
图 9. 由 TE 洛伦兹力驱动的流动示意图。(a) 熔池中热电电流的起源;(b) 横截面上的 TEC 分布;(c) 水平面上的 TEC 分布。(d) 对于 B//V 情况,TEMHD 流在横截面内循环;(e) 对于 B 向下情况,TEMHD 流在水平面内循环。3D 熔池中的 TEMHD 流动: (f) B//V 情况 ( 表示横截面);(g) B 向下情况 ( 表示水平面)。
Fig. 10. The trajectories of W particles in the B downward case at 160 W. (a) W particle moves forward to the front of the melt pool; (b) W particle moves backward to the solidification front. The scale bars are 500 µm.
图 10. B 向下情况下,W 颗粒在 160 W 功率下的轨迹图。 (a) W 颗粒向前移动到熔池前方;(b) W 颗粒向后移动到凝固前沿。刻度尺为 500 微米。
Supplementary Table 1. Supplementary material.
.Supplementary Table 2. Supplementary material.
.Supplementary Table 3. Supplementary material.
.Supplementary Table 4. Supplementary material.
.Supplementary Table 5. Supplementary material.
.Influenced by the Marangoni flow in the molten pool, two opposite thermoelectric currents are generated on both sides of the grains due to the thermoelectric effect. As a result of the interaction between the TE current and the MF, thermoelectric magnetic force (TEMF) are generated at the top and bottom of the grains [51]. TEMF can influence the flow of the molten pool, thereby affecting the grain growth direction.
Tang et al. (Tang et al., 2023) revealed the relationships among the molten pool characteristics, depositing states, and appearance defects by molten pool surface high-speed photography in blue laser DED, and proposed the molten pool surface dynamic mechanism. Fan et al. (Fan et al., 2023) traced the flow of tungsten particles using synchrotron X-ray in-situ photography and ex-situ tomography to reveal the structure of thermoelectric magnetohydrodynamic-induced flow during DED. The multiphysics simulation based on the computational fluid dynamics(CFD) platform has been used more and more widely to explain molten pool flow mechanisms in the AM process.
By automatically tracing hundreds of moving particles in the melt pool from thousands of consecutive frames, the fluid flow is visualized and quantified with an exceptional lateral resolution of approximately 10 µm. The findings reveal the presence of a prevalent inward fluid flow (from cold area to hot area on the melt pool surface) in the melt pool, which differs from the previously reported outward flow with other commercial LPBF materials [16,23–25], along with the coexistence of outward and inward convections in the keyhole mode. This study primarily centers on gaining a deep understanding of the mechanisms underlying inward Marangoni convection and its dual impact on the behavior of the melt pool and the conduction-keyhole threshold within laser-based AM.