In this work, the variations of the electrical properties and trapping effects of p-GaN gate highelectron-mobility transistors (HEMTs) under 1-MeV electron irradiation were investigated systematically. When the irradiation fluence was increased, the drain-source current and the gate leakage current also uprose, but the threshold voltage shifted toward the negative direction. Specifically, after final irradiation, traps in these devices were identified via the current-transient method, and alteration of the trapping effects near the drain and gate could be observed, respectively, by applying different filling voltages. According to the time constant spectra (TCS) and differential amplitude spectra (DAS), six types of detrapping behaviors could be identified. When compared with the results during the pristine stage, the absolute amplitudes of the traps changed after irradiation, which indicated trap densities decreased near the drain and those increased near the gate. The observed changes in the trapping behaviors are consistent with the changes in the electrical properties. To identify the activation energies and locations of traps, the current-transient response was measured at various temperatures before and after electron irradiation. The possible reason for the increased activation energies is that electron irradiation turned the Ga vacancies that decorated the dislocations into pure dislocations and increased the barrier height. 在这项工作中,系统地研究了在 1-MeV 电子辐照下 p-GaN 栅极高电子迁移率晶体管(HEMTs)的电气特性和捕获效应的变化。当辐照通量增加时,漏源电流和栅极漏电流也随之上升,但阈值电压向负方向偏移。具体而言,在最终辐照后,通过电流瞬态方法识别了这些器件中的陷阱,并通过施加不同的充电电压观察到靠近漏极和栅极的捕获效应的变化。根据时间常数谱(TCS)和微分幅度谱(DAS),可以识别出六种去捕获行为。与原始阶段的结果相比,辐照后陷阱的绝对幅度发生了变化,这表明靠近漏极的陷阱密度减少,而靠近栅极的陷阱密度增加。观察到的捕获行为变化与电气特性的变化是一致的。 为了确定陷阱的激活能和位置,在电子辐照前后在不同温度下测量了电流瞬态响应。激活能增加的可能原因是电子辐照将装饰在位错上的镓空位转变为纯位错,并增加了势垒高度。
Index Terms-Current-transient method, electron irradiation, p-GaN gate high-electron-mobility transistor (HEMT), traps. 索引词-瞬态电流法,电子辐照,p 型氮化镓门高电子迁移率晶体管(HEMT),陷阱。
I. INTRODUCTION 一. 引言
WITH the smaller size and weight of space power electronic systems, the basic characteristic requirements are gradually increasing for the power devices, such as efficiency, reliability, and controllability [1], [2], [3]. AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} high-electron-mobility transistors (HEMTs) are widely used in power modules and frequency converters of terminal equipment in the aerospace and military fields [4], because of their low ON-resistance, high power density, and high-temperature resistance [5], [6], [7]. Among the available enhancement-mode solutions, p-GaN gate HEMTs have become the promising candidate devices for these application fields with their stable threshold voltage ( V_(TH)V_{\mathrm{TH}} ), high reliability, and good repeatability [8], [9]. Nevertheless, the performance of GaN power HEMTs will still be affected after irradiation because of the high-density defects that exist in epitaxially grown GaN materials [10]. In the space environment, electronic devices will suffer from long-term irradiation and high radiation flux, which can accumulate nonionizing radiation damage in GaN and eventually cause displacement damage [11]. Moreover, radiation may introduce mobile charges into the material, forming external current, which will result significantly device performance degradation and reduce the reliability of electronic devices [12]. 随着空间电力电子系统尺寸和重量的减小,对功率器件的基本特性要求逐渐提高,例如效率、可靠性和可控性。高电子迁移率晶体管(HEMTs)因其低导通电阻、高功率密度和高温抗性,在航空航天和军事领域的终端设备的功率模块和频率转换器中被广泛使用。在现有的增强模式解决方案中,p-GaN 栅极 HEMTs 因其稳定的阈值电压、高可靠性和良好的重复性,已成为这些应用领域的有前景的候选器件。然而,由于外延生长的 GaN 材料中存在高密度缺陷,GaN 功率 HEMTs 的性能在辐照后仍会受到影响。在太空环境中,电子设备将遭受长期辐照和高辐射通量,这可能在 GaN 中积累非电离辐射损伤,并最终导致位移损伤。 此外,辐射可能会在材料中引入移动电荷,形成外部电流,这将显著降低器件性能并减少电子设备的可靠性[12]。
The irradiation of these devices in space is mainly caused by the high-energy protons and electrons that are present in the irradiation zone of the Earth. In recent years, there have been numerous reports on the effects of proton and electron irradiation on GaN-based materials [11], [13] and traditional depletion-mode AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMTs [14], [15], [16]. The response of GaN to irradiation damage is related to the irradiation energy, the injection dose, the carrier density, and the impurity content of GaN, which would provide possible explanations for the discrepancies between different reports [4], [17]. Hwang et al. [15] studied four different heterojunction HEMTs under 10-MeV10-\mathrm{MeV} electron irradiation and proposed that the electron irradiation reduced the 2-D electron gas (2DEG) mobility in the AlGaN//GaN//Si\mathrm{AlGaN} / \mathrm{GaN} / \mathrm{Si} heterojunction; this caused a reduction in the threshold voltages of the corresponding HEMTs. Chen and Liu [14] reported the effect of 1.8-MeV1.8-\mathrm{MeV} electron irradiation on AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMTs that were treated using fluorine plasma and observed 这些设备在太空中的辐照主要是由存在于地球辐照区的高能质子和电子引起的。近年来,关于质子和电子辐照对基于氮化镓(GaN)材料的影响的报告屡见不鲜[11],[13],以及传统的耗尽模式 AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMT[14],[15],[16]。GaN 对辐照损伤的响应与辐照能量、注入剂量、载流子密度和 GaN 的杂质含量有关,这可能为不同报告之间的差异提供了可能的解释[4],[17]。Hwang 等人[15]研究了四种不同的异质结 HEMT 在 10-MeV10-\mathrm{MeV} 电子辐照下的表现,并提出电子辐照降低了 AlGaN//GaN//Si\mathrm{AlGaN} / \mathrm{GaN} / \mathrm{Si} 异质结中的二维电子气(2DEG)迁移率;这导致了相应 HEMT 的阈值电压降低。Chen 和 Liu[14]报告了 1.8-MeV1.8-\mathrm{MeV} 电子辐照对使用氟等离子体处理的 AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMT 的影响,并观察到
Fig. 1. In addition, we find that the abscissa of Fig. 2(a) should be V_(GS)(V)V_{\mathrm{GS}}(\mathrm{V}), instead of V_(DS)(V)V_{\mathrm{DS}}(\mathrm{V}). This change does not affect the content of the article because it is accepted that the transition characteristic curve is I_(DS)(V)∼V_(GS)(V)I_{\mathrm{DS}}(\mathrm{V}) \sim V_{\mathrm{GS}}(\mathrm{V}). The modified figure is in the attachment named Fig. 2-correct. 图 1。此外,我们发现图 2(a)的横坐标应该是 V_(GS)(V)V_{\mathrm{GS}}(\mathrm{V}) ,而不是 V_(DS)(V)V_{\mathrm{DS}}(\mathrm{V}) 。这个更改不会影响文章的内容,因为过渡特性曲线被接受为 I_(DS)(V)∼V_(GS)(V)I_{\mathrm{DS}}(\mathrm{V}) \sim V_{\mathrm{GS}}(\mathrm{V}) 。修改后的图在名为 Fig. 2-correct 的附件中。
that the device saturation drain current increased significantly after irradiation. Although majority of these studies reported on the changes in the electrical properties of the devices before and after irradiation, the understanding of trapping behaviors in irradiated GaN devices remains relatively limited. The changes in electrical characteristics are attributed to the trapping behaviors exhibited. Therefore, the comparison and analysis of trapping effects become imperative to deepen our understanding of these phenomena before and after electron radiation. 在辐照后,器件的饱和漏电流显著增加。尽管大多数研究报告了辐照前后器件电气特性的变化,但对辐照后氮化镓(GaN)器件中捕获行为的理解仍然相对有限。电气特性的变化归因于所表现出的捕获行为。因此,比较和分析捕获效应变得至关重要,以加深我们对电子辐照前后这些现象的理解。
When the energy of the electrons falls below 0.87 MeV , the concentration of N vacancies exceeds that of Ga vacancies. Conversely, at an electron energy level of 1.2 MeV , the concentration of Ga vacancies surpasses that of N vacancies. When the electron energy is between 0.87 and 1.2 MeV , the change pattern of the device cannot be fully determined [18]. Therefore, we choose 1 MeV for experimentation. 当电子能量低于 0.87 MeV 时,氮空位的浓度超过镓空位的浓度。相反,在电子能量为 1.2 MeV 时,镓空位的浓度超过氮空位的浓度。当电子能量在 0.87 和 1.2 MeV 之间时,设备的变化模式无法完全确定[18]。因此,我们选择 1 MeV 进行实验。
In this work, we determine the effects of 1-MeV1-\mathrm{MeV} electron irradiation with different fluences that ranged from 1xx1 \times10^(13)cm^(-2)10^{13} \mathrm{~cm}^{-2} to 1xx10^(15)cm^(-2)1 \times 10^{15} \mathrm{~cm}^{-2} on p-GaN\mathrm{p}-\mathrm{GaN} gate AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMTs. In particular, we used the current-transient method to investigate the trapping effects in HEMTs, which can characterize the traps with the electrical parameters of the electronic devices themselves. The trap-related amplitude, time constants, and energy levels can be extracted from current-transient curves, accordingly indicating the effects of irradiation on trapping behaviors. We can effectively determine the trap positions by applying different filling voltages in the current-transient method and explain the possible reasons for the alteration of electrical characteristics of HEMTs. 在这项工作中,我们确定了不同辐照通量下 1-MeV1-\mathrm{MeV} 电子辐照对 p-GaN\mathrm{p}-\mathrm{GaN} 栅 AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} HEMT 的影响,辐照通量范围从 1xx1 \times10^(13)cm^(-2)10^{13} \mathrm{~cm}^{-2} 到 1xx10^(15)cm^(-2)1 \times 10^{15} \mathrm{~cm}^{-2} 。特别地,我们使用电流瞬态方法研究 HEMT 中的捕获效应,该方法可以通过电子设备本身的电气参数来表征捕获。捕获相关的幅度、时间常数和能级可以从电流瞬态曲线中提取,从而指示辐照对捕获行为的影响。我们可以通过在电流瞬态方法中施加不同的充电电压有效地确定捕获位置,并解释 HEMT 电气特性变化的可能原因。
II. EXPERIMENTAL DETAILS II. 实验细节
The devices under investigation were 15 EPC2007C transistors, which are enhancement-mode GaN power devices with Schottky p-GaN gate structures [19]. As shown in Fig. 1, the epitaxial structure of these devices consists of a ∼70-nm\sim 70-\mathrm{nm}p-GaN\mathrm{p}-\mathrm{GaN} cap layer, a ∼13-nm\sim 13-\mathrm{nm} AlGaN barrier layer, a ∼2-mum\sim 2-\mu \mathrm{m} GaN buffer layer, and a ∼550-mumSi\sim 550-\mu \mathrm{m} \mathrm{Si} substrate. 所调查的设备是 15 个 EPC2007C 晶体管,这些是具有肖特基 p-GaN 栅极结构的增强型 GaN 功率器件[19]。如图 1 所示,这些设备的外延结构由 ∼70-nm\sim 70-\mathrm{nm}p-GaN\mathrm{p}-\mathrm{GaN} 盖层、 ∼13-nm\sim 13-\mathrm{nm} AlGaN 障碍层、 ∼2-mum\sim 2-\mu \mathrm{m} GaN 缓冲层和 ∼550-mumSi\sim 550-\mu \mathrm{m} \mathrm{Si} 基底组成。
The electron irradiation procedure was performed on the 15 devices with 1-MeV1-\mathrm{MeV} electrons using fluences that ranged from 1xx10^(13)cm^(-2)1 \times 10^{13} \mathrm{~cm}^{-2} to 1xx10^(15)cm^(-2)1 \times 10^{15} \mathrm{~cm}^{-2} at room temperature. The total dose received by these devices was 1.61 xx10^(15)cm^(-2)1.61 \times 10^{15} \mathrm{~cm}^{-2} and the electron dose rate was kept constant at 10^(11)cm^(-2)*s^(-1)10^{11} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1} 电子辐照程序在 15 个设备上进行,使用的电子流量范围从 1xx10^(13)cm^(-2)1 \times 10^{13} \mathrm{~cm}^{-2} 到 1xx10^(15)cm^(-2)1 \times 10^{15} \mathrm{~cm}^{-2} ,辐照时的温度为室温。这些设备接收到的总剂量为 1.61 xx10^(15)cm^(-2)1.61 \times 10^{15} \mathrm{~cm}^{-2} ,电子剂量率保持在恒定的 10^(11)cm^(-2)*s^(-1)10^{11} \mathrm{~cm}^{-2} \cdot \mathrm{s}^{-1} 。
III. RESULTS AND Discussion
A. Transfer, Output, and Gate Characteristics Test III. 结果与讨论
A. 转移、输出和门特性测试
The transfer and output characteristic curves of the devices after irradiation are shown in Fig. 2(a) and (b), respectively. All samples exhibit almost the same transfer current-voltage (I-V)(I-V) and output curves in the preirradiation case and show similar shift behaviors in the postirradiation case. Specifically, Fig. 2(a) shows that V_(TH)V_{\mathrm{TH}} drifts slightly toward the negative direction after irradiation, and Fig. 2(b) clearly shows that the saturated drain-source current ( I_(DS)I_{\mathrm{DS}} ) increases with increasing fluence. After irradiation with a dose of 1.61 xx10^(15)cm^(-2)1.61 \times 10^{15} \mathrm{~cm}^{-2}, the shift of V_(TH)V_{\mathrm{TH}} was 7.8%7.8 \% and the increase of I_(DS)I_{\mathrm{DS}} was 18.2%18.2 \%. The shift in V_(TH)V_{\mathrm{TH}} hardly has any effect on I_(DS)I_{\mathrm{DS}} under higher gate-source voltage ( V_(GS)V_{\mathrm{GS}} ) [23]. Chen and Liu [14] concluded that the increase in I_(DS)I_{\mathrm{DS}} could be attributed to increased electron mobility after irradiation. Studies have shown that the change in V_(TH)V_{\mathrm{TH}} is related to the increase in the positive charge and the reduction in the negative charge in the AlGaN layer [24], [25]. In general, the electrical properties of these devices were improved after irradiation, and this improvement could be ascribed to the reduced trap densities at the AlGaN barrier layer and the GaN buffer [16]. 设备在辐照后的传输和输出特性曲线分别如图 2(a)和(b)所示。所有样品在辐照前的传输电流-电压曲线几乎相同,而在辐照后则表现出类似的偏移行为。具体而言,图 2(a)显示辐照后 V_(TH)V_{\mathrm{TH}} 略微向负方向漂移,图 2(b)清楚地显示饱和漏源电流( I_(DS)I_{\mathrm{DS}} )随着辐照剂量的增加而增加。在剂量为 1.61 xx10^(15)cm^(-2)1.61 \times 10^{15} \mathrm{~cm}^{-2} 的辐照后, V_(TH)V_{\mathrm{TH}} 的偏移为 7.8%7.8 \% ,而 I_(DS)I_{\mathrm{DS}} 的增加为 18.2%18.2 \% 。在较高的栅源电压( V_(GS)V_{\mathrm{GS}} )下, V_(TH)V_{\mathrm{TH}} 的偏移对 I_(DS)I_{\mathrm{DS}} 几乎没有影响[23]。陈和刘[14]得出结论, I_(DS)I_{\mathrm{DS}} 的增加可以归因于辐照后电子迁移率的提高。研究表明, V_(TH)V_{\mathrm{TH}} 的变化与 AlGaN 层中正电荷的增加和负电荷的减少有关[24],[25]。 一般来说,这些器件的电气特性在辐照后得到了改善,这种改善可以归因于 AlGaN 势垒层和 GaN 缓冲层中陷阱密度的降低[16]。
Because the electron trapping during the filling process at (V_(GSQ),V_(DSQ))=(0,0V)\left(V_{\mathrm{GSQ}}, V_{\mathrm{DSQ}}\right)=(0,0 \mathrm{~V}) can be negligible, the alteration of I_(DS)I_{\mathrm{DS}} 由于在填充过程中 (V_(GSQ),V_(DSQ))=(0,0V)\left(V_{\mathrm{GSQ}}, V_{\mathrm{DSQ}}\right)=(0,0 \mathrm{~V}) 的电子捕获可以忽略不计,因此 I_(DS)I_{\mathrm{DS}} 的变化
Besides, the comparisons of the detrapping effects under the bias conditions of (V_(GF),V_(DF))=(5,0V)\left(V_{\mathrm{GF}}, V_{\mathrm{DF}}\right)=(5,0 \mathrm{~V}) are illustrated in Fig. 6, and the specific process is consistent with Fig. 5. As shown in Fig. 6(a), after electron irradiation, the total variation in the drain-source current transient of the samples 此外,图 6 展示了在 (V_(GF),V_(DF))=(5,0V)\left(V_{\mathrm{GF}}, V_{\mathrm{DF}}\right)=(5,0 \mathrm{~V}) 偏置条件下去捕获效应的比较,具体过程与图 5 一致。如图 6(a)所示,电子辐照后,样品的漏源电流瞬态总变化。
The results show that the DP1 and DP4 fitted E_(A)E_{\mathrm{A}} values are consistent before and after electron irradiation, which indicates that the trap levels of DP1 and DP4 remain unchanged. Specifically, DP1 is identified at an E_(A)E_{\mathrm{A}} of 0.31 eV . The trapping behavior in a GaN layer with a similar time constant was also reported in [32], [33], and [33], and thus, DP1 is confirmed to be in the GaN buffer layer. The other traps’ fitted E_(A)E_{\mathrm{A}} values increase when compared with the values before irradiation, indicating that irradiation deepens the trap energy levels in these devices. Moreover, the variations of DP2 and DP3 energy levels near the drain are the same, as well as DP5 and DP6 near 结果表明,DP1 和 DP4 的拟合 E_(A)E_{\mathrm{A}} 值在电子辐照前后是一致的,这表明 DP1 和 DP4 的陷阱能级保持不变。具体而言,DP1 的 E_(A)E_{\mathrm{A}} 被确定为 0.31 eV。在 [32]、[33] 和 [33] 中也报告了具有类似时间常数的 GaN 层中的捕获行为,因此确认 DP1 位于 GaN 缓冲层中。与辐照前的值相比,其他陷阱的拟合 E_(A)E_{\mathrm{A}} 值增加,表明辐照加深了这些器件中的陷阱能级。此外,DP2 和 DP3 在漏极附近的能级变化相同,DP5 和 DP6 也在附近。
Fig. 8. Band diagram of p-GaN//AIGaN//GaNp-G a N / A I G a N / G a N gate-stack after electron irradiation. 图 8. 电子辐照后 p-GaN//AIGaN//GaNp-G a N / A I G a N / G a N 门堆的能带图。
the gate. The possible reason for the deepening of the energy levels is as follows. During irradiation, electrons are injected into the lattice and collide with the atoms, thus causing a quantity of the Ga atoms to be scattered from the lattice positions to the interstitial positions to form interstitial Ga (Ga_(i))\left(\mathrm{Ga}_{i}\right) and leave Ga vacancies (V_(Ga)).Ga_(i)\left(V_{\mathrm{Ga}}\right) . G a_{i} can then passivate a V_(Ga)V_{\mathrm{Ga}} decorated dislocation (V_(Ga)-DL)\left(V_{\mathrm{Ga}}-D L\right) to form a pure dislocation (pure DL). The transition from V_(Ga)-DLV_{\mathrm{Ga}}-D L to pure DL modulates the energy band, and this modulation may exist in p-GaN and AlGaN. As shown in Fig. 8, before irradiation, the electrons can be trapped and released by these traps with low activation energies through V_(Ga)-DLsV_{\mathrm{Ga}}-D L s. After irradiation, the state of the pure DL is deeper than that of V_(Ga)-DLV_{\mathrm{Ga}}-D L, and the electrons then require more energy to be released from the electron traps, and the trap energy levels become deeper as a result [27], [34]. Traps similar to DP2 and DP3 can be found in [15] and [35], respectively. DP2 and DP3 are considered to be located within the AlGaN layer, and DP5 and DP6 are located within the p-GaN layer. DP4 was identified at the 0.40 eV level near the gate, because its E_(A)E_{\mathrm{A}} remains unchanged, DP4 is considered to be located at the metal/p-GaN interface close to the gate. 门。能级加深的可能原因如下。在辐照过程中,电子被注入到晶格中并与原子碰撞,从而导致一些 Ga 原子从晶格位置散射到间隙位置,形成间隙 Ga (Ga_(i))\left(\mathrm{Ga}_{i}\right) 并留下 Ga 空位 (V_(Ga)).Ga_(i)\left(V_{\mathrm{Ga}}\right) . G a_{i} ,然后可以钝化一个 V_(Ga)V_{\mathrm{Ga}} 装饰的位错 (V_(Ga)-DL)\left(V_{\mathrm{Ga}}-D L\right) ,形成纯位错(纯 DL)。从 V_(Ga)-DLV_{\mathrm{Ga}}-D L 到纯 DL 的过渡调制了能带,这种调制可能存在于 p-GaN 和 AlGaN 中。如图 8 所示,在辐照之前,电子可以通过 V_(Ga)-DLsV_{\mathrm{Ga}}-D L s 被这些低激活能的陷阱捕获和释放。辐照后,纯 DL 的状态比 V_(Ga)-DLV_{\mathrm{Ga}}-D L 更深,电子因此需要更多的能量才能从电子陷阱中释放出来,陷阱能级因此变得更深 [27],[34]。类似于 DP2 和 DP3 的陷阱分别可以在[15]和[35]中找到。DP2 和 DP3 被认为位于 AlGaN 层内,而 DP5 和 DP6 位于 p-GaN 层内。DP4 在 0 处被识别。在栅极附近的 40 eV 能级,因为其 E_(A)E_{\mathrm{A}} 保持不变,DP4 被认为位于靠近栅极的金属/p-GaN 界面。
The changes in the electrical characteristics of the HEMTs before and after irradiation are closely related to the changes in trap densities. The collisions of the incident electrons in the lattice can produce quantities of electron-hole pairs. The electrons can be trapped, whereas the holes are relatively immobile. The trap densities of DP2 and DP3 in the AlGaN layer decrease and the negative electric center formed by the trapped electrons is reduced, which means that the number of negative charges in the AlGaN layer decreases and the threshold voltage drifts negatively [24]. In addition, the reason for the increase in I_(DS)I_{\mathrm{DS}} is that the effects of Coulomb scattering on the electron mobility are reduced, which means that the mobility of the 2DEG increases [20]. The E_(A)E_{A} values of DP2 and DP3 increase after irradiation, and the deep-level traps are more likely to capture electrons and these electrons are also less likely to escape [20]. However, an increase in I_(DS)I_{\mathrm{DS}} shows that the effect of the trap density on the performance takes precedence over the deepening of the energy levels. The increase of the trap density of DP4 uprises the probability of assisted tunneling, which is equivalent to reducing the Schottky barrier height [24]. The decrease of trap density of DP3 reduces the possibility of electron capture by the deep traps, resulting in increase in the surface current and I_(GS)I_{\mathrm{GS}} [28]. HEMTs 在辐照前后的电特性变化与陷阱密度的变化密切相关。入射电子在晶格中的碰撞可以产生大量的电子-空穴对。电子可以被捕获,而空穴则相对不动。AlGaN 层中 DP2 和 DP3 的陷阱密度降低,被捕获电子形成的负电中心减少,这意味着 AlGaN 层中的负电荷数量减少,阈值电压向负方向漂移。此外, I_(DS)I_{\mathrm{DS}} 增加的原因是库仑散射对电子迁移率的影响减小,这意味着 2DEG 的迁移率增加。辐照后,DP2 和 DP3 的 E_(A)E_{A} 值增加,深能级陷阱更容易捕获电子,这些电子也更不容易逃逸。然而, I_(DS)I_{\mathrm{DS}} 的增加表明,陷阱密度对性能的影响优先于能级的加深。 DP4 的陷阱密度增加提高了辅助隧穿的概率,这相当于降低了肖特基势垒高度[24]。DP3 的陷阱密度降低减少了深陷阱对电子捕获的可能性,从而导致表面电流和 I_(GS)I_{\mathrm{GS}} 增加[28]。
IV. CONCLUSION 四. 结论
In this article, we have reported on the electrical characteristics and trapping effects of electron irradiation on p-GaN gate-based HEMTs in detail. To determine the changes in the device electrical properties, current-voltage measurements were performed before and after irradiation. Particularly, we identified six trap types in the HEMTs using the current-transient method and the DAS and also investigated the variations in these traps after the final electron irradiation. The trap densities in the AlGaN layer were reduced, and thus, the electron mobility was increased, which may be the reason for the negative drift of threshold voltage and the increase in I_(Ds)I_{\mathrm{Ds}}. Furthermore, the reduction of trap densities also uprose the surface current, and the increased trap densities of Schottky junction increased the probability of assisted tunneling, and those resulted in an increase in the gate leakage current. Electron irradiation turned the Ga vacancies that decorated the dislocations into pure dislocations and uprose the barrier height, which increased the activation energies of four traps. This article provides a reference value for the improvement of manufacturing process and application of p-GaN\mathrm{p}-\mathrm{GaN} gate HEMTs in the aerospace field. 在本文中,我们详细报告了电子辐照对 p-GaN 栅极 HEMT 的电气特性和捕获效应。为了确定器件电气特性的变化,在辐照前后进行了电流-电压测量。特别地,我们使用电流瞬态方法和 DAS 在 HEMT 中识别了六种捕获类型,并调查了最终电子辐照后这些捕获的变化。AlGaN 层中的捕获密度降低,因此电子迁移率增加,这可能是阈值电压负漂移和 I_(Ds)I_{\mathrm{Ds}} 增加的原因。此外,捕获密度的降低也提高了表面电流,而肖特基结的捕获密度增加了辅助隧穿的概率,从而导致栅极漏电流增加。电子辐照将装饰位错的镓空位转变为纯位错,并提高了势垒高度,从而增加了四个捕获的激活能。 本文为 p-GaN\mathrm{p}-\mathrm{GaN} 门 HEMTs 在航空航天领域的制造工艺改进和应用提供了参考价值。
REFERENCES 参考文献
[1] G. Dutta, N. DasGupta, and A. DasGupta, “Gate leakage mechanisms in AlInN/GaN and AlGaN/GaN MIS-HEMTs and its modeling,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3609-3615, Sep. 2017, doi: 10.1109/TED.2017.2723932. G. Dutta, N. DasGupta 和 A. DasGupta,“AlInN/GaN 和 AlGaN/GaN MIS-HEMT 中的栅漏机制及其建模,”IEEE 电子器件汇刊,卷 64,第 9 期,页 3609-3615,2017 年 9 月,doi: 10.1109/TED.2017.2723932。
[2] S. Yang et al., “Identification of trap states in p-GaN layer of a p-GaN/AlGaN/GaN power HEMT structure by deep-level transient spectroscopy,” IEEE Electron Device Lett., vol. 41, no. 5, pp. 685-688, May 2020, doi: 10.1109/LED.2020.2980150. [2] S. Yang 等, “通过深能级瞬态光谱识别 p-GaN/AlGaN/GaN 功率 HEMT 结构中 p-GaN 层的陷阱态,” IEEE 电子器件快报, 第 41 卷, 第 5 期, 第 685-688 页, 2020 年 5 月, doi: 10.1109/LED.2020.2980150.
[3] R. R. Chaudhuri, V. Joshi, S. D. Gupta, and M. Shrivastava, “On the channel hot-electron’s interaction with C-doped GaN buffer and resultant gate degradation in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 68, no. 10, pp. 4869-4876, Oct. 2021, doi: 10.1109/TED. 2021.3102469. [3] R. R. Chaudhuri, V. Joshi, S. D. Gupta, 和 M. Shrivastava, “关于通道热电子与掺碳 GaN 缓冲层的相互作用及其在 AlGaN/GaN HEMTs 中的栅极退化,” IEEE 电子器件学报, 第 68 卷, 第 10 期, 第 4869-4876 页, 2021 年 10 月, doi: 10.1109/TED. 2021.3102469.
[4] S. J. Pearton, Y.-S. Hwang, and F. Ren, “Radiation effects in GaN-based high electron mobility transistors,” Jom, vol. 67, no. 7, pp. 1601-1611, 2015, doi: 10.1007//s11837-015-1359-y10.1007 / \mathrm{s} 11837-015-1359-\mathrm{y} [4] S. J. Pearton, Y.-S. Hwang, 和 F. Ren, “基于 GaN 的高电子迁移率晶体管中的辐射效应,” Jom, 第 67 卷, 第 7 期, 页 1601-1611, 2015, doi: 10.1007//s11837-015-1359-y10.1007 / \mathrm{s} 11837-015-1359-\mathrm{y}
[5] T. Satoh, K. Osawa, and A. Nitta, “GaN HEMT for space applications,” in Proc. IEEE BiCMOS Compound Semiconductor Integr. Circuits Technol. Symp. (BCICTS), San Diego, CA, USA, Oct. 2018, pp. 136-139, doi: 10.1109/BCICTS.2018.8551070. [5] T. Satoh, K. Osawa, 和 A. Nitta, “用于空间应用的 GaN HEMT,” 见于 IEEE BiCMOS 复合半导体集成电路技术研讨会 (BCICTS) 论文集, 美国加利福尼亚州圣地亚哥, 2018 年 10 月, 第 136-139 页, doi: 10.1109/BCICTS.2018.8551070.
[6] H.-P. Lee and C. Bayram, “Improving current ON/OFF ratio and subthreshold swing of Schottky-gate AlGaN/GaN HEMTs by postmetallization annealing,” IEEE Trans. Electron Devices, vol. 67, no. 7, pp. 2760-2764, Jul. 2020, doi: 10.1109/TED. 2020.2992014. [6] H.-P. Lee 和 C. Bayram, “通过后金属化退火改善 Schottky 门 AlGaN/GaN HEMT 的当前开关比和亚阈值摆幅,” IEEE 电子器件学报, 第 67 卷, 第 7 期, 页 2760-2764, 2020 年 7 月, doi: 10.1109/TED.2020.2992014.
[7] X. Zheng et al., “Evidence of GaN HEMT Schottky gate degradation after gamma irradiation,” IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3784-3788, Sep. 2019, doi: 10.1109/TED.2019.2928560. [7] X. Zheng 等, “伽马辐射后 GaN HEMT 肖特基栅极退化的证据,” IEEE 电子器件学报, 第 66 卷, 第 9 期, 页 3784-3788, 2019 年 9 月, doi: 10.1109/TED.2019.2928560.
[8] Y. Xin, W. Chen, R. Sun, X. Deng, Z. Li, and B. Zhang, “Barrier lowering-induced capacitance increase of short-channel power p-GaN HEMTs at high temperature,” IEEE Trans. Electron Devices, vol. 69, no. 3, pp. 1176-1180, Mar. 2022, doi: 10.1109/TED.2021.3139561. [8] Y. Xin, W. Chen, R. Sun, X. Deng, Z. Li, 和 B. Zhang, “高温下短通道功率 p-GaN HEMT 的势垒降低引起的电容增加,” IEEE 电子器件学报, 第 69 卷, 第 3 期, 页 1176-1180, 2022 年 3 月, doi: 10.1109/TED.2021.3139561.
[9] J. Chen et al., “The device instability of p-GaN gate HEMTs induced by self-heating effect investigated by on-state drain current injection (DCI) technique,” IEEE Trans. Electron Devices, vol. 69, no. 10, pp. 5496-5502, Oct. 2022, doi: 10.1109/TED.2022.3200301. [9] J. Chen 等, “自加热效应引起的 p-GaN 门 HEMT 设备不稳定性通过开态漏电流注入 (DCI) 技术进行研究,” IEEE 电子器件汇刊, 第 69 卷, 第 10 期, 第 5496-5502 页, 2022 年 10 月, doi: 10.1109/TED.2022.3200301.
[10] D. Zhang et al., “Reliability improvement of GaN devices on freestanding GaN substrates,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3379-3387, Aug. 2018, doi: 10.1109/TED. 2018.2848971. [10] D. Zhang 等, “在独立 GaN 基板上提高 GaN 器件的可靠性,” IEEE 电子器件汇刊, 第 65 卷, 第 8 期, 第 3379-3387 页, 2018 年 8 月, doi: 10.1109/TED.2018.2848971.
[11] A. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877-887, 2013, doi: 10.1039/c2tc00039c. [11] A. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, 和 J. Kim, “GaN 材料和器件中的辐射效应,” J. Mater. Chem. C, 第 1 卷, 第 5 期, 页 877-887, 2013, doi: 10.1039/c2tc00039c.
[12] S. J. Pearton et al., “Review-Radiation damage in wide and ultra-wide bandgap semiconductors,” ECS J. Solid State Sci. Technol., vol. 10, no. 5, May 2021, Art. no. 055008, doi: 10.1149/2162-8777/abfc23. [12] S. J. Pearton 等, “综述-宽带和超宽带隙半导体中的辐射损伤,” ECS 固态科学与技术杂志, 第 10 卷, 第 5 期, 2021 年 5 月, 文章编号 055008, doi: 10.1149/2162-8777/abfc23.
[13] T. T. Duc, G. Pozina, N. T. Son, E. Janzén, T. Ohshima, and C. Hemmingsson, “Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy,” Appl. Phys. Lett., vol. 105, no. 10, Sep. 2014, Art. no. 102103, doi: 10.1063/1.4895390. [13] T. T. Duc, G. Pozina, N. T. Son, E. Janzén, T. Ohshima, 和 C. Hemmingsson, “通过卤化物蒸气相外延生长的 GaN 大块材料中的辐射诱导缺陷,” 应用物理快报, 第 105 卷, 第 10 期, 2014 年 9 月, 文章编号 102103, doi: 10.1063/1.4895390.
[14] C. Chen and X. Z. Liu, “Effects of low-energy electron irradiation on enhancement-mode AlGaN/GaN high-electron-mobility transistors,” Adv. Mater. Res., vols. 774-776, pp. 876-880, Sep. 2013, doi: 10.4028/www.scientific.net/amr.774-776.876. [14] C. Chen 和 X. Z. Liu, “低能电子辐照对增强模式 AlGaN/GaN 高电子迁移率晶体管的影响,” Adv. Mater. Res., 卷 774-776, 页 876-880, 2013 年 9 月, doi: 10.4028/www.scientific.net/amr.774-776.876.
[15] Y.-S. Hwang et al., “Effect of electron irradiation on AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} and InAlN/GaN heterojunctions,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater., Process., Meas., Phenomena, vol. 31, no. 2, Mar. 2013, Art. no. 022206, doi: 10.1116/1.4795210. [15] Y.-S. Hwang 等, “电子辐照对 AlGaN//GaN\mathrm{AlGaN} / \mathrm{GaN} 和 InAlN/GaN 异质结的影响,” 真空科学与技术 B, 纳米技术与微电子, 材料, 过程, 测量, 现象, 第 31 卷, 第 2 期, 2013 年 3 月, 文章编号 022206, doi: 10.1116/1.4795210.
[16] S. Pan et al., “Analysis of the effects of high-energy electron irradiation of GaN high-electron-mobility transistors using the voltage-transient method,” IEEE Trans. Electron Devices, vol. 68, no. 8, pp. 3968-3973, Aug. 2021, doi: 10.1109/TED.2021.3089449. [16] S. Pan 等, “使用电压瞬态法分析高能电子辐照对 GaN 高电子迁移率晶体管的影响,” IEEE 电子器件学报, 第 68 卷, 第 8 期, 第 3968-3973 页, 2021 年 8 月, doi: 10.1109/TED.2021.3089449.
[17] S. J. Pearton, F. Ren, E. Patrick, M. E. Law, and A. Y. Polyakov, “Review-Ionizing radiation damage effects on GaN devices,” ECS J. Solid State Sci. Technol., vol. 5, no. 2, pp. 35-60, 2016, doi: 10.1149/2.0251602jss [17] S. J. Pearton, F. Ren, E. Patrick, M. E. Law, 和 A. Y. Polyakov, “综述-电离辐射对 GaN 器件的损伤影响,” ECS J. Solid State Sci. Technol., vol. 5, no. 2, pp. 35-60, 2016, doi: 10.1149/2.0251602jss
[18] J. W. McClory, J. C. Petrosky, J. M. Sattler, and T. A. Jarzen, “An analysis of the effects of low-energy electron irradiation of AlGaN/GaN HFETs,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 1946-1952, Dec. 2007, doi: 10.1109/TNS.2007.910121. [18] J. W. McClory, J. C. Petrosky, J. M. Sattler, 和 T. A. Jarzen, “低能电子辐照对 AlGaN/GaN HFETs 影响的分析,” IEEE 核科学汇刊, 第 54 卷, 第 6 期, 页 1946-1952, 2007 年 12 月, doi: 10.1109/TNS.2007.910121.
[19] Efficient Power Conversion. (2013). EPC2007C-Enhancement Mode Power Transistor. [Online]. Available: https://epc-co.com/epc/Portals/0/ epc/documents/datasheets/EPC2007C_datasheet.pdf [19] 高效电源转换。 (2013)。EPC2007C-增强模式功率晶体管。 [在线]。可用:https://epc-co.com/epc/Portals/0/ epc/documents/datasheets/EPC2007C_datasheet.pdf
[20] P. Wang et al., “Investigation of trapping effects in Schottky lightly doped p-GaN gate stack under gamma\gamma-ray irradiation,” Appl. Phys. Lett., vol. 121, no. 14, Oct. 2022, Art. no. 143501, doi: 10.1063/5.0094090. [20] P. Wang 等, “在 gamma\gamma -射线辐照下对轻掺杂 p-GaN 闸极堆栈中捕获效应的研究,” 应用物理快报, 第 121 卷, 第 14 期, 2022 年 10 月, 文章编号 143501, doi: 10.1063/5.0094090.
[21] X. Zheng, S. Feng, Y. Gao, Y. Zhang, Y. Jia, and S. Pan, “A voltage-transient method for characterizing traps in GaN HEMTs,” Microelectron. Rel., vol. 93, pp. 57-60, Feb. 2019, doi: 10.1016/j.microrel.2018.12.009. [21] X. Zheng, S. Feng, Y. Gao, Y. Zhang, Y. Jia, 和 S. Pan, “一种用于表征 GaN HEMT 中陷阱的电压瞬态方法,” 微电子可靠性, 第 93 卷, 第 57-60 页, 2019 年 2 月, doi: 10.1016/j.microrel.2018.12.009.
[22] X. Zheng, S. Feng, Y. Zhang, X. He, and Y. Wang, “A new differential amplitude spectrum for analyzing the trapping effect in GaN HEMTs based on the drain current transient,” IEEE Trans. Electron Devices, vol. 64, no. 4, pp. 1498-1504, Apr. 2017, doi: 10.1109/TED. 2017.2654481. [22] X. Zheng, S. Feng, Y. Zhang, X. He, 和 Y. Wang, “一种新的差分幅度谱用于分析基于漏电流瞬态的 GaN HEMT 中的捕获效应,” IEEE 电子器件学报, 第 64 卷, 第 4 期, 第 1498-1504 页, 2017 年 4 月, doi: 10.1109/TED. 2017.2654481.
[23] S. Pan et al., “Identification of traps in p-GaN gate HEMTs during OFF-state stress by current transient method,” IEEE Trans. Electron Devices, vol. 69, no. 9, pp. 4877-4882, Sep. 2022, doi: 10.1109/TED. 2022.3193889. [23] S. Pan 等, “通过电流瞬态方法识别 p-GaN 门 HEMT 在关态应力下的陷阱,” IEEE 电子器件学报, 第 69 卷, 第 9 期, 第 4877-4882 页, 2022 年 9 月, doi: 10.1109/TED.2022.3193889.
[24] X. Zhou et al., “Total-ionizing-dose radiation effect on dynamic threshold voltage in p-GaN gate HEMTs,” IEEE Trans. Electron Devices, vol. 70, no. 8, pp. 4081-4086, Aug. 2023, doi: 10.1109/TED.2023.3285515. [24] X. Zhou 等, “总电离剂量辐射对 p-GaN 门 HEMT 动态阈值电压的影响,” IEEE 电子器件汇刊, 第 70 卷, 第 8 期, 第 4081-4086 页, 2023 年 8 月, doi: 10.1109/TED.2023.3285515.
[25] Z. Jiang, L. Li, C. Wang, J. Zhao, and M. Hua, “Gate-bias induced threshold voltage (VTH) instability in P-N junction/AlGaN/GaN HEMT,” IEEE Trans. Electron Devices, vol. 69, no. 7, pp. 3654-3659, Jul. 2022, doi: 10.1109/TED.2022.3177397. [25] Z. Jiang, L. Li, C. Wang, J. Zhao, 和 M. Hua, “门偏置引起的 P-N 结/AlGaN/GaN HEMT 阈值电压 (VTH) 不稳定性,” IEEE 电子器件学报, 第 69 卷, 第 7 期, 第 3654-3659 页, 2022 年 7 月, doi: 10.1109/TED.2022.3177397.
[26] N. Xu et al., “Gate leakage mechanisms in normally off pGaN/AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 113, no. 15, Oct. 2018, Art. no. 152104, doi: 10.1063/1.5041343. [26] N. Xu 等, “正常关断 pGaN/AlGaN/GaN 高电子迁移率晶体管中的栅漏电机制,” 应用物理快报, 第 113 卷, 第 15 期, 2018 年 10 月, 文章编号 152104, doi: 10.1063/1.5041343.
[27] R. Sun, X. Chen, C. Liu, W. Chen, and B. Zhang, “Degradation mechanism of Schottky p-GaN gate stack in GaN power devices under neutron irradiation,” Appl. Phys. Lett., vol. 119, no. 13, Sep. 2021, Art. no. 133503, doi: 10.1063/5.0065046. [27] R. Sun, X. Chen, C. Liu, W. Chen, 和 B. Zhang, “在中子辐照下 GaN 功率器件中 Schottky p-GaN 门堆的降解机制,” 应用物理快报, 第 119 卷, 第 13 期, 2021 年 9 月, 文章编号 133503, doi: 10.1063/5.0065046.
[28] J. Kotani, M. Tajima, S. Kasai, and T. Hashizume, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 91, no. 9, Aug. 2007, Art. no. 093501, doi: 10.1063/1.2775834. [28] J. Kotani, M. Tajima, S. Kasai, 和 T. Hashizume, “AlGaN/GaN 异质结构中肖特基栅极附近表面导电机制,” 应用物理快报, 第 91 卷, 第 9 期, 2007 年 8 月, 文章编号 093501, doi: 10.1063/1.2775834.
[29] J. Joh and J. A. del Alamo, “A current-transient methodology for trap analysis for GaN high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 132-140, Jan. 2011, doi: 10.1109/TED.2010.2087339. [29] J. Joh 和 J. A. del Alamo,“用于氮化镓高电子迁移率晶体管的陷阱分析的电流瞬态方法”,IEEE 电子器件学报,卷 58,第 1 期,页 132-140,2011 年 1 月,doi: 10.1109/TED.2010.2087339。
[30] J. Wei et al., “Charge storage mechanism of drain induced dynamic threshold voltage shift in p-GaN gate HEMTs,” IEEE Electron Device Lett., vol. 40, no. 4, pp. 526-529, Apr. 2019, doi: 10.1109/LED.2019.2900154. [30] J. Wei 等, “p-GaN 门 HEMT 中排水引起的动态阈值电压偏移的电荷存储机制,” IEEE 电子器件快报, 第 40 卷, 第 4 期, 第 526-529 页, 2019 年 4 月, doi: 10.1109/LED.2019.2900154.
[31] S. Pan et al., “Evaluation of trapping behaviors in forward biased Schottky-type p-GaN gate HEMTs,” IEEE Trans. Electron Devices, vol. 70, no. 7, pp. 3475-3482, Jul. 2023, doi: 10.1109/TED. 2023.3278614 [31] S. Pan 等, “正向偏置肖特基型 p-GaN 门 HEMT 的捕获行为评估,” IEEE 电子器件学报, 第 70 卷, 第 7 期, 页 3475-3482, 2023 年 7 月, doi: 10.1109/TED.2023.3278614
[32] M. Charfeddine, M. Gassoumi, H. Mosbahi, C. Gaquiére, M. A. Zaidi, and H. Maaref, “Electrical characterization of traps in AlGaN/GaN FAT-HEMT’s on silicon substrate by C-V\mathrm{C}-\mathrm{V} and DLTS measurements,” J. Mod. Phys., vol. 2, no. 10, pp. 1229-1234, 2011, doi: 10.4236/jmp.2011.210152. [32] M. Charfeddine, M. Gassoumi, H. Mosbahi, C. Gaquiére, M. A. Zaidi, 和 H. Maaref, “通过 C-V\mathrm{C}-\mathrm{V} 和 DLTS 测量对硅基 AlGaN/GaN FAT-HEMT 中的陷阱进行电特性表征,” J. Mod. Phys., vol. 2, no. 10, pp. 1229-1234, 2011, doi: 10.4236/jmp.2011.210152.
[33] N. Sghaier et al., “Traps centers and deep defects contribution in current instabilities for AlGaN/GaN HEMT’s on silicon and sapphire substrates,” Microelectron. J., vol. 37, no. 4, pp. 363-370, Apr. 2006, doi: 10.1016//10.1016 / j.mejo.2005.05.014. [33] N. Sghaier 等, “铝镓氮/氮化镓 HEMT 在硅和蓝宝石基底上的电流不稳定性中的陷阱中心和深缺陷贡献,” 微电子学杂志, 第 37 卷, 第 4 期, 页 363-370, 2006 年 4 月, doi: 10.1016//10.1016 / j.mejo.2005.05.014.
[34] A. Y. Polyakov and I.-H. Lee, “Deep traps in GaN-based structures as affecting the performance of GaN devices,” Mater. Sci. Eng. R, Rep., vol. 94, pp. 1-56, May 2015, doi: 10.1016/j.mser.2015.05.001. [34] A. Y. Polyakov 和 I.-H. Lee, “GaN 基结构中的深陷阱对 GaN 器件性能的影响,” 材料科学与工程 R, 报告, 第 94 卷, 第 1-56 页, 2015 年 5 月, doi: 10.1016/j.mser.2015.05.001.
[35] W. Götz, N. M. Johnson, M. D. Bremser, and R. F. Davis, “A donorlike deep level defect in Al_(0.12)Ga_(0.88)N\mathrm{Al}_{0.12} \mathrm{Ga}_{0.88} \mathrm{~N} characterized by capacitance transient spectroscopies,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2379-2381, Oct. 1996, doi: 10.1063//1.11764310.1063 / 1.117643. [35] W. Götz, N. M. Johnson, M. D. Bremser, 和 R. F. Davis, “一种类似施主的深能级缺陷在 Al_(0.12)Ga_(0.88)N\mathrm{Al}_{0.12} \mathrm{Ga}_{0.88} \mathrm{~N} 中的特征通过电容瞬态光谱,” 应用物理快报, 第 69 卷, 第 16 期, 第 2379-2381 页, 1996 年 10 月, doi: 10.1063//1.11764310.1063 / 1.117643 .
Manuscript received 16 April 2024; revised 4 June 2024; accepted 7 June 2024. Date of publication 17 June 2024; date of current version 25 July 2024. This work was supported in part by the National Natural Science Foundation of China under Grant 62174008 and in part by Beijing Municipal Education Commission under Grant KZ202110005001. The review of this article was arranged by Editor M. Meneghini. (Corresponding authors: Shiwei Feng; Xiang Zheng.) 手稿于 2024 年 4 月 16 日收到;2024 年 6 月 4 日修订;2024 年 6 月 7 日接受。出版日期为 2024 年 6 月 17 日;当前版本日期为 2024 年 7 月 25 日。本研究部分得到了中国国家自然科学基金(资助号 62174008)和北京市教育委员会(资助号 KZ202110005001)的支持。本文的审稿由编辑 M. Meneghini 安排。(通讯作者:冯士伟;郑翔。)
Zixuan Feng, Shiwei Feng, Shijie Pan, Binyu You, Boyang Zhang, Yaning Wang, and Yamin Zhang are with the College of Microelectronics, Beijing University of Technology, Beijing 100124, China (e-mail: shwfeng@bjut.edu.cn). 冯子轩、冯世伟、潘世杰、游彬宇、张博扬、王亚宁和张亚敏均来自北京工业大学微电子学院,中国北京 100124(电子邮件:shwfeng@bjut.edu.cn)。
Xuan Li was with the Institute of Semiconductor Device Reliability Physics, Beijing University of Technology, Beijing 100124, China. He is now with the Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China (e-mail: lixuan2023@ime.ac.cn). Xuan Li 曾在中国北京 100124,北京工业大学半导体器件可靠性物理研究所工作。现在他在中国科学院微电子研究所工作,地址为中国北京 100029(电子邮件:lixuan2023@ime.ac.cn)。
Xiang Zheng is with the Center for Device Thermography and Reliability, University of Bristol, Bristol BS8 1QU, U.K. (e-mail: xiang.zheng@bristol.ac.uk). 向正在布里斯托大学设备热成像与可靠性中心工作,地址:英国布里斯托 BS8 1QU。(电子邮件:xiang.zheng@bristol.ac.uk)
Color versions of one or more figures in this article are available at https://doi.org/10.1109/TED.2024.3412869. 本文中一个或多个图的彩色版本可在 https://doi.org/10.1109/TED.2024.3412869 获取。
Digital Object Identifier 10.1109/TED.2024.3412869 数字对象标识符 10.1109/TED.2024.3412869