Data availability 数据可用性
数据将应要求提供。
Fig. 1. Equivalent Circuit Diagram for single diode five-parameter model [40].
图 1.单二极管五参数模型等效电路图 [40]。
Table 1. Manufacturer’s catalog for CHL285P module, France Solar cell (RTC) and Photowatt PWP210.
表 1.CHL285P 模块、法国太阳能电池 (RTC) 和 Photowatt PWP210 的制造商目录。
Specification 规格 | CHL285P | France solar (RTC) 法国太阳能 (RTC) | PWP210 |
---|---|---|---|
Cell type 细胞类型 | Polycrystalline 多晶体 | NA | Polycrystalline 多晶体 |
[V] [V] | 41.25 | 0.5728 | 16.778 |
[A] [A] | 9.54 | 0.76 | 1.03 |
[V] [V] | 32.76 | 0.45 | 12.60 |
[A] [A] | 9.13 | 0.691 | 0.898 |
[W] [瓦] | 300 | 11.315 | 0.311 |
Ref. temp. [°C] 参考温度[°C] | STC | 33 | 45 |
No. of cells 细胞数 | 60 | 1 | 36 |
Dimensions 尺寸 | 57 mm diameter 57 毫米直径 | – |
Table 2. Comparison of proposed method with other numerical approaches.
表 2.拟议方法与其他数值方法的比较。
Parameters 参数 | Proposed 建议 | Standard NRM 标准 NRM | Benahmida [24] |
---|---|---|---|
(A) | 9.257012 | 9.257011 | 9.257009 |
3.3193 | 3.3190 | 3.3191 | |
1.206302 | 1.206301 | 1.206302 | |
0.355201 | 0.355201 | 0.355202 | |
Iterations. 迭代。 | 8 | 10 | 9 |
RMSE | 0.02 | 0.028 | 0.032 |
Fig. 2. Illustrates the theoretical Values Compared with its actual measured values.
图 2.说明 理论值与实际测量值的比较。
Fig. 3. Demonstrates the theoretical Values of Compared with its Actual Measured Values.
图 3.展示了 的理论值与实际测量值的对比。
Fig. 4. Plot of absolute error of output current versus output voltage for CHL285P at STC.
图 4.在 STC 条件下 CHL285P 输出电流与输出电压的绝对误差图。
Table 3. Parameter values using two methods for RTC France solar cell.
表 3.采用两种方法计算的法国 RTC 太阳能电池参数值。
Empty Cell | Standard NRM 标准 NRM | Benahmida [24] | Proposed method 建议的方法 |
---|---|---|---|
[A] [A] | 0.7611 | 0.7611 | 0.7611 |
0.3479 | 0.3477 | 0.3469 | |
0.0348 | 0.0349 | 0.0347 | |
1.4876 | 1.4877 | 1.4875 | |
RMSE | 0.004015 | 0.004938 | 0.003417 |
Iterations 迭代 | 7 | 7 | 6 |
Fig. 5. Plot of absolute error of output current versus output voltage for RTC solar cell at 33 °C.
图 5.33 °C 时 RTC 太阳能电池输出电流与输出电压的绝对误差图。
Table 4. Parameter values using two methods for Photowatt PWP210 solar module.
表 4.采用两种方法计算的 Photowatt PWP210 太阳能模块参数值。
Empty Cell | Newton–Raphson method 牛顿-拉斐逊法 | Benahmida [24] | Proposed method 建议的方法 |
---|---|---|---|
[A] [A] | 1.033 | 1.034 | 1.033 |
2.5671 | 2.7253 | 2.2989 | |
1.2316 | 1.2092 | 1.1958 | |
1.3132 | 1.3249 | 1.3043 | |
RMSE | 0.002621 | 0.002410 | 0.001934 |
Iterations 迭代 | 9 | 9 | 8 |
Fig. 6. Plot of absolute error of output current versus output voltage for PWP module at 45 °C.
图 6.45 °C 时 PWP 模块输出电流与输出电压的绝对误差图。
Fig. 7. Experimental (dots) and theoretical (solid line) curve under varying Irradiation.
图 7.不同辐照条件下的实验(圆点)和理论(实线) 曲线。
Fig. 8. Demonstrates experimental (dots) and theoretical (solid line) Curves under varying Irradiation.
图 8.展示了不同辐照条件下的实验(圆点)和理论(实线) 曲线。
Fig. 9. Illustrates the experimental (dots) and theoretical (solid line) Curves under varying temperature.
图 9.说明了不同温度下的实验(圆点)和理论(实线) 曲线。
Fig. 10. Demonstrates the experimental (dots) and theoretical (solid line) Curves under varying Temperature.
图 10.不同温度下的实验(点)和理论(实线) 曲线。
While current solar technologies offer many advantages, they also have certain weaknesses and drawbacks linked to optimizing energy extraction from solar panels. These include intermittency of power production, performance degradation under specific challenging conditions, high initial costs, non-linearity of photovoltaic characteristics [3]. A photovoltaic generator (PVG) can function across a broad range of output voltages and currents, but its maximum power delivery capacity is constrained to a single point Pmpp(Impp,Vmpp), which is subject to variations based on temperature and solar irradiance [4].