A New Perspective on Enhancing Emotion Regulation in Military Personnel under Stress Based on Interaction Mechanism of Brain-Gut- Microbiota Axis: A Review
基于脑-肠-微生物群轴交互机制的应激下增强军人情绪调控的新观点研究进展
Cheng Chenga, Yushan Li a,1, Wenhao Lv a,1, Hongliang Lu a,*, Yan Zhang a,*
程成阿, 李玉山 A1, 吕文浩 a,1, 卢洪亮 a,*, 张艳 a,*
a. Department of Military Medical Psychology, Air Force Medical University, Xi’an 710032, China
a.空军医科大学军事医学心理学系,习安710032
Corresponding author, E-mail addresses: luhongliang@fmmu.edu.cn, xiaopingguo9302023@163.com
通讯作者, E-mail:luhongliang@fmmu.edu.cn, xiaopingguo9302023@163.com
Abstract
抽象
This paper explores the potential value of enhancing soldiers' emotion regulation ability based on the brain-gut-microbe interaction under military stress. Military stress may lead to mood swings, cognitive impairments, and physiological disorders, affecting both physical and mental health as well as combat effectiveness. Therefore, enhancing emotion regulation is crucial for effectively reducing the adverse effects of stress. Existing research primarily focuses on psychological repair and lacks depth in exploring the intricate role of physiology, particularly brain-gut interactions, in emotion regulation. It is possible to manage overwhelming emotional reactions by leveraging subtle connections between brain-field microbes. We can optimize the function of brain regions during stress through top-down neuromodulation to enhance emotional control in the immediate situation. Additionally, we can use FMT to re-establish the microecological balance of the gut in stress-prone individuals from the bottom up. This can help regulate neurotransmitter production to promote the function of the pre-stress neuronal centers and reduce the impact of stress-induced negative emotions. Finally, we propose a comprehensive intervention strategy that combines neurological intervention and FMT to alleviate the negative emotional changes caused by stress effectively. This approach aims to maintain psychological health and combat the effectiveness of bacteriophages.
本文探讨了基于军事压力下脑-肠-微生物相互作用增强士兵情绪调节能力的潜在价值。军事压力可能导致情绪波动、认知障碍和生理障碍,影响身心健康和战斗力。因此,加强情绪调节对于有效减少压力的不利影响至关重要。现有的研究主要集中在心理修复上,在探索生理学(尤其是脑-肠道相互作用)在情绪调节中的复杂作用方面缺乏深度。通过利用脑场微生物之间的微妙联系,可以管理压倒性的情绪反应。我们可以通过自上而下的神经调控来优化压力期间大脑区域的功能,以增强对当下情绪的控制。此外,我们可以使用 FMT 自下而上地重建易受压力的个体肠道的微生态平衡。这有助于调节神经递质的产生,以促进压力前神经元中枢的功能,并减少压力引起的负面情绪的影响。最后,我们提出了一种结合神经干预和 FMT 的综合干预策略,以有效缓解压力引起的负面情绪变化。这种方法旨在保持心理健康并对抗噬菌体的有效性。
Keywords: Military stress, emotion regulation, brain-gut-microbiota interaction mechanism, fecal microbiota transplantation, non-invasive intervention, gut microbiota, mental health, combat effectiveness.
关键词:军事压力,情绪调节,脑-肠道-微生物群相互作用机制,粪便微生物群移植,无创干预,肠道微生物群,心理健康,战斗力。
Introduction
介绍
In today's ever-changing and challenging world, the contributions of soldiers are vital in maintaining our country's safety and social stability. Given the nature of their work, they are often in high-pressure and high-stress environments, which can lead to high-stress levels. Military stress[1]refers to a series of physiological and psychological reactions that military personnel experience after evaluating the stimuli encountered in military activities and tasks. Military personnel are faced with various stressors, including earthquake relief work, peacekeeping tasks, intense military training, and rapidly changing battlefield situations. Moderate stress can improve the physical functions of soldiers in a short period, making them more sensitive to changes in the battlefield environment[2]; Excessive stress can negatively affect their physiological functioning, cognitive processes, and mood, including pain, fever, and decreased memory and reaction time(Fig.1)[3-5]. Surveys showed that 3.96 to 14.1 percent of military personnel in peacekeeping operations suffered psychological disorders as a result of stress; at the same time, combat stress resulted in more than 20 percent of the total attrition rate[6, 7]. Under stress, the emotional fluctuations of military personnel are particularly obvious, and they are prone to negative emotions such as anxiety, depression, and anger. These emotional changes will affect the cognitive function, decision-making ability, and execution ability of military personnel, and then affect the combat effectiveness of the whole force[8, 9]. It is important to improve the emotion regulation ability of military personnel, those with good emotion regulation skills can better handle stress, stay calm, and perform better in combat. However, existing stress research has certain limitations. First, most research in China and abroad focuses on repair rather than construction, mainly on the diagnosis and treatment of individuals who are already ill, and the treatment method is mostly based on psychotherapy; second, there is not enough in-depth research on the sources of psychological stress and its influencing factors of individuals and collectives in the actual combat environment; finally, most of the research in China focuses on the effects of stress on the psychological level of military personnel, while ignoring the changes at the physiological level[10].
在当今瞬息万变、充满挑战的世界中,士兵的贡献对于维护我国的安全和社会稳定至关重要。鉴于他们的工作性质,他们经常处于高压和高压力的环境中,这可能导致 高压力水平。Military stress[1] 是指军事人员在评估军事活动和任务中遇到的刺激后所经历的一系列生理和心理反应。军事人员面临着各种压力源,包括地震救灾工作、维和任务、强化军事训练和快速变化的战场局势。适度的压力可以在短时间内改善士兵的身体机能,使其对战场环境的变化更加敏感[2];过度的压力会对他们的生理功能、认知过程和情绪产生负面影响,包括疼痛、发烧以及记忆力和反应时间缩短(图 1)[3-5]。 调查显示,维和行动中 3.96% 至 14.1% 的军事人员因压力而遭受心理障碍;同时,战斗压力导致总减员率的 20% 以上[6, 7]。在压力下,军人的情绪波动尤为明显,容易产生焦虑、抑郁、愤怒等负面情绪。这些情绪变化会影响军事人员的认知功能、决策能力和执行能力,进而影响整个部队的战斗力[8,9]。提高军人的情绪调节能力很重要,拥有良好情绪调节技能的软管可以更好地处理压力,保持冷静,并在战斗中表现得更好。然而,现有的压力研究有一定的局限性。首先,国内外的研究大多集中在修复而非建设上,主要集中在已经患病个体的诊断和治疗上,治疗方法多以心理治疗为主;(二)对实战环境中个体和集体的心理压力来源及其影响因素的研究不够深入;最后,中国的大部分研究都集中在压力对军事人员心理水平的影响上,而忽视了生理水平的变化[10]。
Fig.1. Reasonable Emotion Regulation Relieve Stress via the Brain-Gut-Microbiota Axis. (By Figdraw). Multiple stressors affect the function of brain and gut via the brain-gut- microbiota axis. This negative effect can be positively regulated and relieved through proper emotion regulation.
图 1. 合理的情绪调节 R通过脑-肠-微生物群轴消除压力。(由 Figdraw 提供)。多种压力源 通过脑-肠道-微生物群轴影响 brain 和肠道的功能。这种负面影响可以通过适当的情绪调节得到积极调节和缓解。
During periods of stress, military personnel face significant challenges in their ability to regulate their emotions. It has long been believed that stress affects emotions by affecting the brain, and overactivation of the LocusCoeruleus-Sympathetico-adrenomedullary system(LSAM) and the hypothalamic-pituitary-adrenal system (HPA) during stress leads to mood changes, and impairment of adaptive mechanisms[11]. It can also cause anxiety, depression, decreased learning and memory, loss of appetite and libido, etc. In addition, research suggests that abnormal functional activity or abnormal connectivity in certain brain regions is a key contributor to the core symptoms of Post-Traumatic Stress Disorder (PTSD)[12]. Non-invasive intervention techniques can be employed to target specific localized brain areas. The application of transcranial electrical stimulation (TES) for the treatment of PTSD patients offers several advantages, including high safety, significant efficacy, a fast onset of action, and high patient acceptance. Additionally, TES reduces the adverse drug reactions and drug dependence commonly associated with pharmaceutical treatments and provides a novel therapeutic option for PTSD patients.
在压力期间,军事人员在调节情绪的能力方面面临重大挑战。长期以来,人们认为压力通过影响大脑来影响情绪,在压力期间蓝斑-交感神经-肾上腺系统(LSAM)和下丘脑-垂体-肾上腺系统(HPA)的过度激活会导致情绪变化和适应机制受损[11]。 它还会导致焦虑、抑郁、学习和记忆力下降、食欲不振和下降等。此外,研究表明,某些大脑区域的异常功能活动或异常连接是导致创伤后应激 障碍 (PTSD) 核心症状的关键因素[12]。非侵入性干预技术可用于针对特定的局部大脑区域。经颅电刺激 (TES) 治疗 PTSD 患者具有多项优势,包括安全性高、疗效显著、起效快和患者接受度高。此外,TES 减少了通常与药物治疗相关的药物不良反应和药物依赖,并为 PTSD 患者提供了一种新的治疗选择。
In recent years, an increasing number of studies have demonstrated that the occurrence of stress symptoms is also closely related to the brain-gut interaction mechanism. The connection between emotion and the gut is realized through the brain-gut axis. On the one hand, stress alters the living environment of gut flora through the brain-gut axis, resulting in dysbiosis, diarrhea, enteritis, and other symptoms. Conversely, gut flora can regulate the development and function of the brain through the gut-brain axis, which in turn affects the host's behavior[13]. Gut microorganisms feed on nutrients in human food and proliferate, metabolizing them to produce various neurotransmitters in the gut. Gut flora can influence the brain's emotional responses through the neurotransmitters and hormones they produce. Against this background, Fecal Microbiota Transplantation (FMT) was developed. FMT is a method of treating intestinal and extraintestinal disorders by transferring functional flora from the feces of a healthy individual to the intestines of a patient, thereby remodeling the new intestinal flora. Studies have demonstrated that through alterations in bacterial metabolites, greater serotonin can be produced to reach the brain, resulting in reduced depression and anxiety[14]. The fecal bacteria transplantation technique promises to turn out to be an effective method of mood regulation in situations where military personnel face stress.
近年来,越来越多的研究表明,应激症状的发生也与脑-肠相互作用机制密切相关。情绪和肠道之间的联系 是通过脑-肠轴实现的。一方面,压力通过脑-肠轴改变肠道菌群的生存环境,导致菌群失调、腹泻、肠炎等症状。相反,肠道菌群可以通过肠-脑轴调节大脑的发育和功能,进而影响宿主的行为[13]。肠道微生物以人类食物中的营养物质为食并增殖,代谢它们在肠道中产生各种神经递质。肠道菌群可以通过它们产生的神经递质和激素影响大脑的情绪反应。在此背景下,开发了粪便微生物群移植 (FMT)。FMT是一种治疗肠道和肠道外疾病的方法,通过将功能性菌群从健康个体的粪便转移到患者的肠道,从而重塑新的肠道菌群。研究表明,通过改变细菌代谢物,可以产生更大的血清素到达大脑,从而减少抑郁和焦虑[14]。粪便细菌移植技术有望在军事人员面临压力的情况下成为一种有效的情绪调节方法。
This review is based on a novel perspective on the Brain-Gut- Microbiota Axis interaction mechanisms, which can facilitate a more profound comprehension of the alterations and regulation of emotions under stress and the alleviation of negative emotions through the regulation of gut microbial homeostasis. When military personnel suffer from stress symptoms, we can not only resort to traditional psychological interventions but also utilize FMT to maintain the balance of gut microbes and effectively reduce the impact of negative emotions. FMT, as an emerging method of microbial conditioning, has shown great potential in prospective research and clinical practice. Meanwhile, we can also combine non-invasive intervention techniques with FMT to intervene on the stress level and emotion regulation ability of military personnel from both up and down, immediate and long-term dimensions. This comprehensive intervention strategy can rapidly alleviate military personnel's emotional distress under stress, while also maintaining their psychological health over time. Furthermore, it can enhance military personnel's capacity to regulate their emotions under stress.
本文基于对脑-肠道-微生物群轴相互作用机制的新观点,可以促进对压力下情绪的改变和调节的更深刻理解,并通过调节肠道微生物稳态来缓解负面情绪。当军人出现压力症状时,我们不仅可以采用传统的心理干预,还可以利用 FMT 来维持肠道微生物的平衡,有效减少负面情绪的影响。FMT 作为一种新兴的微生物调节方法,在前瞻性研究和临床实践中显示出巨大的潜力。同时,我们还可以将无创干预技术与 FMT 相结合,从上下、即时和长期维度对军事人员的压力水平和情绪调节能力进行干预。这种全面的干预策略可以迅速缓解军人在压力下的情绪困扰,同时还可以随着时间的推移保持他们的心理健康。此外,它还可以增强军事人员在压力下调节情绪的能力。
Stress impairs the ability of emotion regulation of military personnel
压力损害军人情绪调节能力
Emotion Regulation (ER) is the process by which individuals consciously or unconsciously regulate their emotion to adapt to the needs of the environment[15]. Military personnel can maintain mental health by rationally managing and regulating self-emotion. Self-comforting and asking for emotional help from others can be effective in improving anxiety; approaches that reframe cognitive and inhibit behaviors can effectively reduce depression[16]. Research has shown that people who experience early stress have poorer behavioral and emotional control. They tend to act impulsively without thinking or planning. They may be emotionally disturbed, which may result in poor performance on the task at hand[17]. When soldiers have encountered enemy firepower attacks, casualties among comrades, or other sudden dangerous events, they may develop acute stress disorder (ASD), triggering a "fight or flight" response. This can cause soldiers to suffer accelerated heart rate, increased blood pressure, and stress-induced stomach ulcers[18, 19]. Constant pressure on the battlefield can lead to chronic stress. It would make soldiers suffer from persistent tension, irritability, loss of interest, and pessimism symptoms. Special Forces soldiers who perform reconnaissance and stationing missions behind enemy lines for long periods will gradually develop severe symptoms of anxiety and depression as a result of prolonged hypervigilance and isolation, affecting their ability to carry out their missions and their quality of life[20]. Individuals' ability of emotion regulation has been impaired during the state of stress, which primarily involves high activation of the Sympathetic Nerves System (SNS) and HPA axis, with both physiological and psychological responses. Hyperactivity of the SNS triggers a range of non-specific physiological responses, such as rapid heartbeat, shortness of breath, increased body temperature and profuse sweating. At the same time, when the HPA axis is activated, it will induce the production of neuroendocrine hormones (e.g. glucocorticoids) that will have an impact on physiological and psychological functions[21]. As a result, when soldiers are in a state of overstress, they will feel high mental tension, anxiety, and irritability, which diminish their ability to regulate emotion. Scientific studies have shown that when stress-related stimuli enter the nervous system of the brain, the organism will regulate its state through a series of neuroendocrine mechanisms to adapt to external environmental changes. However, such a stress response produces significant suppression of various functions of the reproductive system, the immune system, and the digestive system. In the next section, we will delve into how stress specifically suppresses the digestive system.
情绪调节 (ER) 是个体有意识或无意识地调节其情绪以适应环境需求的过程 [15]。军人可以通过 理性管理和调节自我情绪来保持心理健康。S elf-giving giving and ask asking for emotional help to better for for improvement anxiety; A 重塑认知和抑制行为的 Pproaches 可以有效减少抑郁[16]。研究表明,经历早期压力的人的行为和情绪控制能力较差。他们往往在没有思考或计划的情况下冲动行事。他们可能会情绪紊乱,这可能导致手头任务的表现不佳[17]。当士兵遇到敌人的火力攻击、战友之间的伤亡或其他突发的危险事件时,他们可能会发展出可爱的应激障碍 (ASD),引发“战斗或逃跑”的反应。这可能导致士兵心率加快、血压升高和压力引起的胃溃疡[18, 19]。战场上的持续压力会导致慢性压力。 它会使士兵 遭受持续的紧张、易怒、失去兴趣和悲观情绪。特种部队士兵长期在敌后执行侦察和驻扎任务,由于长期的过度警觉和孤立,会逐渐出现严重的焦虑和抑郁症状,影响他们执行任务的能力和生活质量[20]。 个体的情绪调节能力 在 压力状态下受损,主要涉及交感神经 NervesSystem (SNS) 和 HPA 轴的高度激活,包括生理和心理反应。SNS 的过度活跃会引发一系列非特异性生理反应,例如心跳加快、呼吸急促、体温升高和大量出汗。同时,当 HPA 轴被激活时,它会诱导神经内分泌激素(例如糖皮质激素)的产生,从而对生理和心理功能产生影响[21]。因此,当士兵处于超压状态时,他们会感到高度的精神紧张、焦虑和烦躁,从而降低了他们调节情绪的能力。科学研究表明,当与压力相关的刺激I 进入大脑的神经系统时,机体会通过一系列神经内分泌机制来调节其状态,以适应外部环境的变化。然而,这种应激反应会显著抑制生殖系统、免疫系统和消化系统的各种功能。在下一节中,我们将深入研究压力如何具体抑制消化系统。
Stress adversely affects the cerebral cortex. It is thought to be the primary neural mechanism affecting emotion regulation and cognitive control. The prefrontal cortex (PFC) plays an important role in the integration of cognitive and emotional behaviors as well as the regulation of autonomic and neuroendocrine functions. The PFC responds to stress and regulates the response to it by modulating the hypothalamic paraventricular nucleus (PVN) and PVN in turn controls sympathetico- adrenomedullary system (SAM) and HPA axis. In addition, the PFC is associated with many forms of working memory and behavioral flexibility, and it remains activated in a state of stress. The physiological, psychological, and behavioral activities of soldiers are strongly modulated by PFC. On the one hand, stress can help military personnel to rapidly and efficiently reconfigure their physiological and psychological resources in the event of an emergency and dangerous situation, thereby enhancing their combat capability[22]; On the other hand, exposing to acute stress can increase catecholamine release in the PFC, which in turn impairs cognitive control in military personnel[23]. In patients diagnosed with psychiatric disorders, alterations in the ventral medial prefrontal cortex have been observed in situations where stress has been induced[24]. One study investigated 40 employees with chronic stress using MRI and found that functional connectivity between the amygdala and anterior cingulate cortex was significantly lower in employees suffering from chronic stress than in the control group, suggesting that functional connectivity between the amygdala and the anterior cingulate cortex is associated with the ability to down-regulate negative emotions[25]. Stress is associated with structural and functional changes in brain regions involved in emotion regulation. In studies of individuals with PTSD, it has been found that individuals have changes in gray matter volume, cortical thickness, functional connectivity with other brain regions, and metabolic rate regulation[26]. The prefrontal-limbic region of the cerebral cortex is particularly susceptible to alterations in neural activity when confronted with an acute stressor. As the center that regulates and controls the body's stress response, this region assumes a crucial function. The prefrontal-limbic brain region is not only involved in the regulation of emotion, but also in the execution of cognitive functions such as decision-making, planning, and problem-solving. Thus, when an individual is confronted with a sudden stressor or challenge, the intensity and pattern of activity in this region of the brain undergo a pronounced adjustment in response to the emergency. Such changes can be observed by techniques such as EEG or fMRI, which can help us gain a deeper understanding of the mechanisms of people's psychological and physiological responses under stress[27].
压力对大脑皮层产生不利影响。它被认为是影响情绪调节和认知控制的主要神经机制。 前额叶皮层 (PFC) 在认知和情绪行为的整合以及自主神经和神经内分泌功能的调节中起着重要作用。PFC 通过调节下丘脑室旁核 (PVN) 来响应压力并调节对压力的反应 ,而PVN 反过来控制交感神经-肾上髓系统 (SAM) 和 HPA 轴。此外,PFC 与多种形式的工作记忆和行为灵活性有关,并且在压力状态下保持激活 状态。 士兵的生理、心理和行为活动受到 PFC 的强烈调节。一方面,压力可以帮助军事人员在紧急情况和危险情况下快速有效地重新配置他们的生理和心理资源,从而提高他们的战斗能力[22]; 另一方面,暴露于急性应激会增加 PFC 中儿茶酚胺的释放,进而损害军事人员的认知控制[23]。在被诊断患有精神疾病的患者中,在诱发压力的情况下观察到腹侧内侧前额叶皮层的变化[24]。一项研究使用 MRI 调查了 40 名患有慢性压力的员工,发现患有慢性压力的员工杏仁核和前扣带皮层之间的功能连接明显低于对照组,这表明杏仁核和前扣带皮层之间的功能连接与下调负面情绪的能力有关[25]。 压力与参与情绪调节的大脑区域的结构和功能变化有关。在对 PTSD 患者的研究中,发现个体的灰质体积、皮质厚度、与其他大脑区域的功能连接以及代谢率调节都有变化[26]。当面临急性压力源时,大脑皮层的前额叶边缘区域特别容易受到神经活动改变的影响。作为调节和控制身体压力反应的中心,该区域承担着至关重要的功能。前额叶边缘大脑区域不仅参与情绪的调节,还参与决策、计划和解决问题等认知功能的执行。 因此,当一个人面临突然的压力源或挑战时,大脑这个区域的活动强度和模式会根据紧急情况进行明显的调整。这种变化可以通过 EEG 或 fMRI 等技术观察到,这可以帮助我们更深入地了解人们在压力下的心理和生理反应机制[27]。
Disturbances of the Brain-Gut-Microbiota axis in stress
压力下脑-肠道-微生物群轴的紊乱
There is a bidirectional communication system that exists between the gastrointestinal tract and the brain, which initially was called the "gut-brain axis". But now it has been redefined as the "Microbiota-Gut-Brain axis" because of the critical role of the gut microbiota in the maintenance of local and systemic homeostasis. The microbiota gut-brain axis is a conceptual framework that describes the complex interactions between gut microbiota and the CNS. In this axis, the gut microbiota communities and their metabolites communicate with the brain through various mechanisms. The gut microbiota communities and their products, the intestinal tissues, the humoral components produced by the endocrine and immune systems, and the vagus nerves and spinal nerves together constitute the brain-gut-microbe axis, so that the microbiota of the intestinal tract can regulate bi-directionally with the brain through a variety of pathways[28, 29]. The brain-gut-microbiota axis is strongly associated with psychological and neurological disorders. Many brain and behavioral disorders are related to exogenous stressor exposure, dissonance of the HPA axis, and are modulated by gut microbiota[29].
胃肠道和大脑之间存在 一个双向通讯系统 ,最初被称为“肠脑轴”。现在它已被重新定义为“Microbiota-G ut-B 雨轴”,因为肠道微生物群在维持局部和全身稳态中起着关键作用。 微生物群肠脑轴是一个概念框架,描述了肠道微生物群与 CNS 之间的复杂相互作用。在这个轴上, 肠道微生物群及其代谢物通过各种机制与大脑交流 。 肠道菌群 及其产物、肠道组织、内分泌和免疫系统产生的体液成分以及迷走神经和脊神经共同构成了脑-肠-微生物轴,因此肠道微生物可以通过多种途径与大脑进行双向调节[28, 29]。 脑-肠道-微生物iota 轴与心理和神经系统疾病密切相关。 M任何大脑和行为障碍都与外源性压力源暴露、 HPA 轴不协调有关,并受肠道微生物群的调节[29]。
It has been found that anxiety may be related to the activation of the brain-gut-microbiota axis that involves the immune system, neurotransmitters, and hormonal systems. It has become possible to treat anxiety disorders using medications of the gastrointestinal system such as probiotics and antibiotics based on the brain-gut-microbiota axis interaction mechanism[30]. Whereas the imbalances in the brain-gut-microbiota axis can affect psychological and behavioral performance, studies found that the gut microbiota of individuals with autism spectrum disorders differed significantly from that of the healthy population. They had a significant increase in the species and number of certain bacteria in their gut, and this imbalance in the gut microbiota is an important factor in the development of autism spectrum disorders (ASD)[31]. The brain-gut-microbiota axis serves as a bridge that transmits bidirectional communication between the gut and the CNS, linking the emotion and cognitive centers of the brain to peripheral gut functions[32]. Chronic or repeated psychological stress can lead individuals from initial changes in emotions of depression and anxiety to gastrointestinal dysfunction. It has been shown that gut microbiota is not only involved in the motility, structure and function of the digestive tract but can also influence individuals’ brain function and behavior through the brain-gut axis. Changes in microbiota communities and bacterial taxa have also been associated with social emotion and development in infants[33, 34]. The brain-gut-microbiota axis has emerged as an important link in psychological stress triggering gastrointestinal symptoms and abnormal brain behavior in the organism. In the system biology methodology, the study revealed how dietary composition affects the composition of the gut microbiota, the metabolite profiles of microorganisms, and how these changes further affect mood states and depressive symptoms[35]. The composition of microbiota communities plays an important role in mood changes in physically and mentally healthy adults[36]. The interaction among mind, emotion, and gut microbiota is an interesting frontier in the complex field of human cognition and physiology. The gut microbiota co-evolved with gut, brain, and mental. Research has shown that microbiota plays a key role in the maturation and daily functioning of the brain, suggesting that they have a crucial role in regulating our emotion[37].
已经发现,焦虑可能与涉及免疫系统、神经递质和荷尔蒙系统的 brain-g ut-m icrobiota 轴 的激活有关。使用胃肠道系统的药物(如益生菌和抗生素)治疗焦虑症已经成为可能,这些药物基于 brain-g ut-m icrobiota 轴相互作用机制m[30]。 虽然 brain-g ut-m icrobiota 轴的不平衡 会影响心理和行为表现,但研究发现,自闭症谱系障碍患者的肠道微生物群与健康人群的肠道微生物群存在显着差异。他们肠道中某些细菌的种类和数量显着增加,肠道微生物群的这种不平衡是自闭症谱系障碍 (ASD) 发展的重要因素[31]。The brain-g ut-m icrobiota 轴充当桥梁,在肠道和 CNS 之间传递双向通信,将大脑的情绪和认知中心与外周肠道功能联系起来[32]。 慢性或反复的心理压力会导致个体从抑郁和焦虑情绪的最初变化转变为胃肠道功能障碍。研究表明,肠道微生物iota 不仅参与消化道的运动、结构和功能,还可以通过脑-肠轴影响个体的大脑功能和行为。微生物ota 群落和细菌分类群的变化也与婴儿的社会情感和发育有关[33, 34]。 brain-g ut-m icrobiota 轴已成为心理压力引发生物体胃肠道症状和异常大脑行为的重要环节。在系统生物学方法中,该研究揭示了膳食成分如何影响肠道微生物群的组成、微生物的代谢物谱,以及这些变化如何进一步影响情绪状态和抑郁症状[35]。 m icrobiota communities 的组成在身心健康成人的情绪变化中起着重要作用[36]。 mind、情感和肠道微生物群之间的相互作用是人类认知和生理学复杂领域的一个有趣前沿。 肠道微生物群与肠道、大脑和精神共同进化。研究表明,微生物群在大脑的成熟和日常功能中起着关键作用,这表明它们在调节我们的情绪方面起着至关重要的作用[37]。
Research has repeatedly shown that there is bidirectional communication between the brain and the gut involving the nervous, hormonal and immune systems. Evidence from neuroscience research over the past few years suggested that the microbiota is critical to the development and maturation of brain systems associated with the stress response[38]. During the state of stress, the interactions and balance among the brain, gut and gut microbiota are disrupted, which negatively affects physical and mental health[39]. Stress activates the HPA axis and the ANS, especially the SNS, which causes a series of physiological responses such as increasing heart rate, increasing blood pressure, and increasing secretion of glucocorticoids (e.g., cortisol) [40]. Excess cortisol can affect intestinal motility, intestinal barrier function, and the structure and function of intestinal microbiota[41, 42]. Prolonged or severe stress may alter the diversity and composition of the gut microbiota community, resulting in a decrease in the number of beneficial bacteria and an increase in the proportion of harmful or conditionally pathogenic bacteria. This imbalance also affects the gut mucosal immune response, triggering or exacerbating inflammation. It may also affect the gut's metabolism of neurotransmitters and hormones, further affecting brain function. The close connection between gut microbiota and the immune system may be disrupted under stress, inducing an overreaction or hypofunction of the immune system, which in turn induces or exacerbates a range of immune-related diseases. The brain influences the intestine through the ANS, the enteric nervous system (nerve network of the digestive tract), and hormonal substances. In these nerves, the vagus nerve has a direct connection between brain and gut and it is a part of the Parasympathetic Division system. Eighty percent of the vagus nerve's function is to transmit signals from the gut to the brain from bottom to top, and the rest is to transmit information from the brain to the internal organs from top to down. Gut flora can activate the vagus nerve, and this activation plays an important role in the mediation of brain and behavior. The vagus nerve is an important part of the sensory pathway connecting the gut and the brain, and its abnormal function under stress may exacerbate intestinal dysfunction, such as decreased digestion and absorption and uncoordinated intestinal motility, as well as sending erroneous or excessive signals to the brain, exacerbating the response to psychological stress[39, 43, 44].
研究一再表明, 大脑和肠道之间存在双向交流,涉及神经、荷尔蒙和免疫系统。过去几年神经科学研究的证据表明,微生物群对于与应激反应相关的大脑系统的发育和成熟至关重要[38]。 在紧张状态下,大脑、肠道和肠道微生物群之间的相互作用和平衡被破坏,从而对身心健康产生负面影响[39]。 压力会激活 HPA 轴和ANS,尤其是 SNS,这会导致一系列生理反应,例如心率加快、血压升高和糖皮质激素(例如皮质醇)分泌增加[40]。 过量的皮质醇会影响肠道蠕动、肠道屏障功能以及肠道微生物群的结构和功能[41, 42]。 长期或严重的压力可能会改变肠道微生物iota 群落的多样性和组成,导致有益细菌的数量减少,有害或条件致病菌的比例增加。这种不平衡也会影响肠道粘膜免疫反应,引发或加剧炎症。 它还可能影响肠道神经递质和激素的代谢,进一步影响大脑功能。 肠道微生物群与免疫系统之间的密切联系可能会在压力下被破坏,导致免疫系统的过度反应或功能暂停,进而诱发或加剧一系列免疫相关疾病。大脑通过 ANS、肠道神经系统(消化道的神经网络)和激素物质影响肠道。 在这些神经中,迷走神经 在大脑和肠道之间有直接连接 ,它是副交感神经系统的一部分。迷走神经 80% 的功能是将信号从肠道自下传递到大脑,其余的是从上到下将信息从大脑传递到内脏器官。肠道菌群可以激活迷走神经,这种激活在大脑和行为的中介中起着重要作用。迷走神经是连接肠道和大脑的感觉通路的重要组成部分,它在压力下的异常功能可能会加剧肠道功能障碍,如消化吸收减少和肠道蠕动不协调,以及向大脑发送错误或过度的信号,加剧对心理压力的反应[39, 43, 44]。
Fig.2. Mechanism diagram of the microbiota-gut-brain axis. (By Figdraw). Immune system: Metabolites (e.g., short-chain fatty acids SCFAs) and membrane components (e.g., polysaccharide A) in gut microorganisms affect immune homeostasis, creating pro- or anti-inflammatory local immune responses. Peripheral pro-inflammatory cytokines enter the brain and activate microglia and astrocytes to trigger neurological disorders. Neuronal way: Gut microbiota can interact directly with the ENS and vagus nerve. The local signals generated can be transmitted to the brain, affecting cognition, mood, anxiety, etc. The vagus nerve in turn transmits signals to the intestinal mucosa and directly or indirectly affects gastrointestinal homeostasis. HPA axis: When stress occurs, the hypothalamus releases CRF, which stimulates corticotropes to release ACTH. ACTH travels through the bloodstream to the cortical regions of the adrenal glands and promotes the rapid synthesis of corticosteroids by the adrenal glands(e.g., the use of cholesterol to cortisol), which act on the brain and gut.
无花果。2.微生物群-肠-脑轴的机制图。(由 Figdraw 提供)。免疫系统:肠道微生物中的代谢物(例如短链脂肪酸 SCFA)和膜成分(例如多糖 A)会影响免疫稳态,产生促炎或抗炎的局部免疫反应。外周促炎细胞因子进入大脑并激活小胶质细胞和星形胶质细胞以触发神经系统疾病。 神经元方式: 肠道菌群可以直接与 ENS 和迷走神经相互作用。产生的局部信号可以传递到大脑,影响认知、情绪、焦虑等。迷走神经反过来将信号传递到肠粘膜,并直接或间接影响胃肠道稳态。HPA 轴:当压力发生时,下丘脑释放 CRF,刺激促皮质激素释放 ACTH。ACTH 通过血流到达肾上腺的皮质区域,并促进肾上腺快速合成皮质类固醇(例如,使用胆固醇转化为皮质醇),作用于大脑和肠道。
Above findings mainly indicate that bidirectional interactions between microbes and the brain affect various activities of the central nervous system (e.g., stress response, behavior, and mood) through immune and neuroendocrine system pathways. In conclusion, disruption of the brain-gut-microbiota axis during stress creates a vicious cycle that not only affects the health of the digestive system but also exacerbates the psychological stress response, which can have a serious impact on the psychological and physical health of military personnel and even the general population. Therefore, maintaining the balance of the brain-gut-microbiota axis is important for coping with stress and improving emotional regulation and psychological resilience.
上述发现主要表明,微生物与大脑之间的双向相互作用通过免疫和神经内分泌系统途径影响中枢神经系统的各种活动(例如,压力反应、行为和情绪)。总之,压力期间大脑-肠道-微生物群轴的破坏会形成恶性循环,不仅影响消化系统的健康,还会加剧心理压力反应,从而对军人甚至普通民众的身心健康产生严重影响。因此,维持脑-肠-微生物群轴的平衡对于应对压力和提高情绪调节和心理弹性很重要。
Interventions to Enhance Emotion Regulation in Military Personnel in State of Stress
增强军事人员在压力状态下情绪调节的干预措施
In order to effectively maintain the mental health of military personnel and improve their ability to regulate their emotions under stressful situations, researchers and clinicians are actively exploring new joint interventions. Among them, Transcranial Electrical Stimulation(tES) and FMT are newer interventions that show unique advantages in improving emotion regulation with their non-pharmacological and highly targeted features.
为了有效维护军人的心理健康,提高他们在压力情况下调节情绪的能力,研究人员和临床医生正在积极探索新的联合干预措施。其中,经颅电刺激 (tES) 和 FMT 是较新的干预措施,以其非药物和高度针对性的特点在改善情绪调节方面显示出独特的优势。
Transcranial electrical stimulation
经颅电刺激
Emotion regulation is considered a core therapeutic target for stress and other psychiatric disorders. In recent years, non-invasive intervention techniques have been widely used as interventions for PTSD, depression and other mental illnesses. Emotional disorder is also one of the main symptoms of stress[45, 46], and this dysregulation can explain the positive emotional deficits of stress. Currently, mood disorder is mainly intervened through medication and a range of contemporary psychotherapies such as cognitive behavioral therapy, emotion regulation therapy and dialectical behavior therapy. Pharmacological and psychotherapeutic treatments have limitations such as medication side effects and high costs. Therefore, the advantages of non-invasive intervention techniques that are cheap, convenient, non-invasive and high acceptable are more prominent [47-51].
情绪调节被认为是压力和其他精神疾病的核心治疗靶点。近年来,无创干预技术已被广泛用作 PTSD、抑郁症和其他精神疾病的干预措施。情绪障碍也是压力的主要症状之一[45, 46],这种失调可以解释压力的积极情绪缺陷。目前,情绪障碍 主要通过药物和一系列当代心理学家方法进行干预,例如认知行为疗法、情绪调节疗法和辩证行为疗法。药物和心理治疗存在局限性,例如药物副作用和高成本。因此,廉价、方便、无创、可接受性高的无创干预技术的优势更加突出[47-51]。
TES is a safe, non-invasive technique that delivers low-intensity electric current to the cerebral cortex through scalp electrodes that can create a current pathway to alter brain function. It is divided into transcranial direct current stimulation(tDCS), transcranial alternating current stimulation(tACS) and transcranial random noise stimulation(tRNS). The tDCS stimulates a target brain area with a low-intensity direct current(0.5-2mA) to alter neuronal excitability[52]. The tACS induces synchronized oscillations of neurons in the target region mainly through current of different frequencies[53]. tRNS offers stimuli at random frequencies and amplitudes within a specific stimulus range to alter neuronal excitability. Studies have shown that tES induces cortical excitability and neuromodulation, which makes it a safer and more reliable method of stimulating the brain and altering brain function. Smits proposes that tDCS may be an effective means of reducing stress-related emotional responses. By influencing the level of cortical excitability in the DLPFC/VLPFC through modulation of synaptic plasticity or an increase in the firing rate of neurons, it is possible to promote better down-regulation of negative emotions through a network of functional interactions in cortical-limbic pathways. Specifically, tES can inhibit the amygdala by activating PFC (e.g., the DLPFC), thereby reducing emotional reactivity to negative emotional content. There are some commonalities in the parameter settings of different types of electrical stimulation. Parameter settings should take into account the characteristics of the technique, the study objectives, the subject's condition, and the characteristics of the equipment to ensure safety and effectiveness[54].
TES是一种安全、无创的技术,它通过头皮电极将低强度电流输送到大脑皮层,从而产生电流通路来改变大脑功能。它分为经颅直流电刺激 (tDCS)、经颅交流电刺激 (tACS) 和经颅随机噪声刺激 (tRNS)。tDCS 用低强度直流电 (0.5-2mA) 刺激目标大脑区域以改变神经元兴奋性[52]。 tACS 主要通过不同频率的电流诱导目标区域神经元的同步振荡[53]。tRNS 在特定刺激范围内提供随机频率和振幅的刺激,以改变神经元的兴奋性。研究表明,tES 诱导皮质兴奋性和神经调控,这使其成为一种更安全、更可靠的刺激大脑和改变大脑功能的方法。 Smits 提出 tDCS 可能是减少与压力相关的情绪反应的有效手段。通过调节突触可塑性或增加神经元的放电率来影响 DLPFC/VLPFC 中的皮层兴奋性水平,有可能通过皮质-边缘通路中的功能相互作用网络更好地促进负面情绪的下调。具体来说,tES 可以通过激活 PFC(例如 DLPFC)来抑制杏仁核,从而降低对负面情绪内容的情绪反应。不同类型电刺激的参数设置存在一些共性。参数设置应考虑技术特点、研究目标、受试者状况和设备特性,以确保安全性和有效性[54]。
The tES technique has been shown to be effective in research in
tES 技术已被证明在 the areas of mood control and inhibition. Several studies have shown
情绪控制和抑制的领域。多项研究表明 that tDCS is effective in treating patients with depression.
tDCS 对治疗抑郁症患者有效。 For
为 example, anodic stimulation of
示例,阳极刺激the left prefrontal
左前额叶cortex
皮层 (DLPFC), along
(DLPFC) 一起 with cathodic stimulation of the same site on the right side, improves
通过对右侧同一部位的阴极刺激,改善 depressive symptoms
抑郁症 状 and
和 enhances positive
增强正能量 emotional
感情的 experiences and
经验和 emotion regulation.
情绪调节。 A meta-analysis of random controlled trials
随机对照试验的荟萃分析 that included
这包括 289 subjects showed that tDCS
受试者显示 tDCS was
是 comparable to
可比较 antidepressant medication for depression and had fewer side effects
抗抑郁药治疗抑郁症,副作用较少[55, 56]. The
这tDCS and tACS
tDCS 和 tACS have
有 also been used in studies of the treatment of anxiety disorders. One
也用于治疗焦虑症的研究。一 study found that tD
研究发现 tDCS intervention on the prefrontal-amygdala loop
S 对前额叶-杏仁核环的干预 reduced experimentally induced anxiety responses and improved anxiety
减少实验诱导的焦虑反应并改善焦虑 symptom scale scores.
症状量表评分。 The
这tACS stimulation of the prefrontal
前额叶的 tACS 刺激cortex
皮层 at
在 specific frequencies also reduced social anxiety and state anxiety
特定频率也减少了社交焦虑和状态焦虑[57]. Reappraisal of negative memories and experiences is critical to the
重新评估负面记忆和经历对 mental health of military personnel and an important goal in the
军人心理健康和重要目标 treatment of PTSD.
PTSD 的治疗。Peña-G
佩尼亚 Gómez
梅兹 et al.
等。 demonstrated that tDCS applied to
证明 tDCS 应用于 the left and right DLPFC enhanced cognitive control of
左右 DLPFC 增强了对 emotional
感情的 experiences during the processing of pictures, which resulted in a
体验,这会导致 reduction in the perceived negative potency of picture cues; improved
图片线索的感知负面效力降低;改进 reappraisal of negative emotional memories
消极情绪记忆的重新评估optimized
优化 the treatment of
治疗 mental disorder
精神障碍s[58, 59]. NIRS
国税 局 is a technique that enables the real-time monitoring of changes in cortical blood oxygen concentration, reflecting neural activity in localized brain regions.
是一种能够实时监测皮质血氧浓度变化的技术,反映局部大脑区域的神经活动。The
这 fNIRS
fNIRS红外光谱 measurements before and after
前后的测量 tES interventions have revealed that
tES 干预表明 stimulation can induce changes in blood flow or oxygenation levels in
刺激可引起 targeted brain regions
目标大脑区域 (e.g.,
(例如, prefrontal
前额 叶cortex
皮层, amygdala).
、杏仁核)。For example,
例如 one study detected a significant increase in oxygenated
一项研究发现含氧量hemoglobin
血红蛋白concentration in the left DLPFC by fNIRS after tDCS stimulation of the
tDCS 刺激后 fNIRS 在左侧 DLPFC 中的浓度 region, suggesting that the stimulation enhanced neural activity in
区域,表明刺激增强了 the region, coinciding with improved depressive symptoms.
该区域,与抑郁症状的改善相吻合。 The fMRI
功能磁共振成像 can
能 reveal the brain's functional connectivity and activation patterns when
在以下情况下揭示大脑的功能连接和激活模式 performing a specific task or being in a specific state.
执行特定任务或处于特定状态。The
这fMRI was also
也是 found to be associated with a significant increase in blood flow and
发现与血流量的显着增加有关,并且 oxygenated
含 氧hemoglobin
血红蛋白 levels in the brain.
水平。 The
这fMRI was also found to be
fMRI 也被发现 associated with a significant increase in blood flow and oxygenated
与血流量显著增加和氧合有关 hemoglobin
血红蛋白 levels in the brain. Depressed patients showed enhanced
水平。抑郁患者表现出增强 activation in this region during an emotional processing task, and the
在情绪处理任务期间,该区域中的激活,以及 degree of activation was positively correlated with improvement in
激活程度与 depressive symptoms
抑郁症 状[60]. The
这tES altered the
tES 改变了 connectivity
连接 strength
强度 of emotion-related
情感相关 brain
脑 networks(e.g.
网络(例如, default
违约 mode
模式 network,
网络 prefrontal-limbic system
前额叶边缘系统 loop);
循环); negative
阴性functional
功能的 connectivity
连接 between
之间 the prefrontal
前额叶 cortex
皮层 and
和 amygdala was
杏仁核是 weakened
伊肯 after
后 tDCS
tDCS系列 stimulation was applied, reflecting enhanced emotion regulation
应用刺激,反映增强的情绪调节[61, 62].
TES, especially tDCS and tACS, has demonstrated some effectiveness in studies of emotion control and inhibition and has helped to improve emotion regulation in patients with depression, anxiety, and impulse control disorders. Brain imaging studies have provided evidence that tES is capable of altering neural activity, activation patterns, and functional connectivity in targeted brain regions, further revealing its potential neural mechanisms for improving emotion regulation.
TES,尤其是 tDCS 和 tACS,在情绪控制和抑制研究中显示出一定的效果,并有助于改善抑郁症、焦虑症和冲动控制障碍患者的情绪调节。脑成像研究提供了证据,证明 tES 能够改变目标大脑区域的神经活动、激活模式和功能连接,进一步揭示了其改善情绪调节的潜在神经机制。
Fecal microbiota transplantation
粪便微生物群移植
Impaired brain-gut interaction mechanisms predispose to gastrointestinal dysfunction. These disorders can be exacerbated under the influence of social stress, and during times of stress or tension, people may experience symptoms such as abdominal pain, constipation, and diarrhea, which can seriously affect the quality of life[63, 64]. Gastrointestinal dysfunction is associated with gut motility, gut barrier, visceral hypersensitivity, immune regulation and metabolite changes, all of which are closely linked to the gut microbiota[29, 65]. Gut microbiota changes with age, the neonatal gut is sterile, acquiring bacteria from the mother through the birth canal and breast milk, and gradually increasing with growth, with the species stabilizing around 3 years of age[66]. Stress causes autonomic activity and physiological changes. Stress leads to increased autonomic activity and physiological arousal, and there is a high correlation between stress-related psychiatric symptoms (e.g., anxiety) and gastrointestinal disorders, with more than 50% of patients with gastrointestinal disorders experiencing depression or anxiety. This correlation provides direction for studying the role of gut microbes through the gut-brain axis[67]. The gut microbiota influences brain development and behavior, and recent studies have shown that it regulates brain, behavior, and stress responses through the microbiota-gut-brain axis[68, 69]. The gut microbiota interacts with the central nervous system, and the microbiota-gut-brain axis includes parts of the endocrine system (HPA axis), immune system, autonomic nervous system, and enteric nervous system. The gut microbiota produces bacterial metabolites through tryptophan metabolism that affect the HPA axis and vagus nerve[38]。
受损的脑-肠相互作用机制易导致胃肠道功能障碍。这些疾病在社会压力的影响下会加剧,在压力或紧张时期,人们可能会出现腹痛、便秘和腹泻等症状,这会严重影响生活质量[63, 64]。胃肠道功能障碍与肠道蠕动、肠道屏障、内脏超敏反应、炎症调节和代谢物变化有关,所有这些都与肠道菌群密切相关[29, 65]。肠道菌群随年龄的增长而变化,新生儿肠道是无菌的,通过产道和母乳从母亲那里获得细菌,并随着生长而逐渐增加,该物种在 3 岁左右稳定下来[66]。压力会导致自主神经活动和生理变化。压力导致自主神经活动和生理唤醒增加,压力相关精神症状(如焦虑)与胃肠道疾病之间存在高度相关性,超过 50% 的胃肠道疾病患者会出现抑郁或焦虑。这种相关性为研究肠道微生物通过肠-脑轴的作用提供了方向[67]。肠道微生物群影响大脑发育和行为,最近的研究表明,它通过微生物 iota-gut-brain 轴调节大脑、行为和压力反应[68, 69]。肠道菌群与中枢神经系统相互作用,微生物 iota-gut-brain 轴包括内分泌系统(HPA 轴)、免疫系统、自主神经系统和肠道神经系统的部分。肠道菌群通过色氨酸代谢产生细菌代谢产物,影响 HPA 轴和迷走神经[38]。
The composition of the gut microbiome is influenced by emotional
肠道微生物组的组成受情绪影响 and physiological stress. Numerous animal experiments have found that
和生理压力。大量动物实验发现 exposure to
暴露于 psychological
心理 stressors
压力 disrupts the
会破坏 population
人口 characteristics of
特征 the gut microbiota and that stress alters the
肠道微生物群和这种压力会改变 composition of gut microbes in mice
小鼠肠道微生物的组成[70]. Exposure of mice to two hours of social disruption causes a significant decrease in Lactobacillus counts
小鼠暴露于两小时的社交干扰会导致乳酸菌计数显着减少[71]. When rhesus monkey pups
当恒河猴幼崽 experience separation from their
体验与他们的分离 mothers, a separation anxiety response is triggered, which also leads
母亲们,会触发分离焦虑反应,这也会导致 to a significant decrease in the number of Lactobacillus in the gut
肠道中乳酸菌的数量显着减少 flora
植物群[72]. Probiotics will relieve anxiety caused by stressful situations. Certain species of Lactobacillus and Bifidobacterium have anxiety-relieving properties. Probiotic therapy, including Bacillus
益生菌将缓解因压力情况引起的焦虑。某些种类的乳酸菌和双歧杆菌具有缓解焦虑的特性。益生菌疗法,包括芽孢杆菌 longum
长, Bacillus infantis, and Lactobacillus helveticus, normalizes behavioral phenotypes in animal models of anxiety by correcting immune factors and modulating GABA receptors
、婴儿芽孢杆菌和瑞士乳杆菌通过纠正免疫因子和调节 GABA 受体使焦虑动物模型中的行为表型正常化[73, 74]. Numerous studies have
许多研究 concluded that Bacillus longum,
得出结论,长芽孢杆菌, Bacillus
芽孢杆菌 shortum,
短缺, Bacillus infantis
婴儿芽孢杆菌, Lactobacillus helveticus, Lactobacillus rhamnosus, Bacillus plantarum
瑞士乳杆菌、鼠李糖乳杆菌、植物芽孢杆菌, and Lactobacillus casei are considered
和干酪乳杆菌to be the most effective agents in
成为最有效的代理商 improving
提高 central
中央 nervous system functioning
神经系统功能 associated
相关 with
跟 psychiatric disorders(anxiety,
精神疾病(焦虑、 depression, mood disorders,
抑郁、情绪障碍、 and stress
和压力 reactions)
反应)[38]. FMT is the transplantation of
FMT 是 feces
粪便from
从 healthy
健康 individuals to patients with suspected intestinal dysbiosis to modulate
个体对疑似肠道菌群失调的患者进行调节 the gut microbiota
肠道微生物群[75]. Kurokawa et al. followed 17 patients with IBS
Kurokawa 等人跟踪了 17 例 IBS 患者, functional
功能的 diarrhea or constipation and showed
腹泻或便秘并显示significant
重要 improvement in depression and anxiety scores after 4 weeks of
4 周后抑郁和焦虑评分改善 FM
调频T treatment. In another study,
治疗。在另一项研究中, 30 patients with refractory IBS who
30 名难治性 IBS 患者 received FMT showed improvement in
接受 FMT 后显示改善 gastrointestinal
胃肠 and
和 anxiety
焦虑-depression symptoms, an increase in
抑郁症状,增加Verrucomicrobia
疣微菌属 and
和Euryarchaeota, as well as an increase in
,以及Methanobrevibacter
甲短杆菌 and
和Akkermansia
阿克曼西亚 muciniphila
嗜毛霉菌属. Regarding FMT treatment in depressed patients,
.关于抑郁症患者的 FMT 治疗, two
二 elderly patients receiving FMT had improved depressive symptoms,
接受 FMT 的老年患者抑郁症状有所改善, an
一 increase
增加 in
在Firmicutes
厚壁菌门, and
和 a decrease
减少 in
在 Bacteroidetes
拟杆菌门[76, 77]. Transplantation of
移植 fecal
粪便microbiota from depressed patients into microbiota-deficient rats
微生物群从抑郁症患者转变为微生物群缺乏大鼠 induced
诱导behavioral
行为 and physiological
和生理 features
特征 characteristic of
特征 depression in the recipient animals, including dysphoria and anxiety
受体动物的抑郁,包括烦躁不安和焦虑-like
喜欢behaviors
行为, as well as alterations in tryptophan metabolism
,以及色氨酸代谢的改变[78, 79]. Transplantation of
移植 swine
猪 fecal
粪便 flora alleviates
菌群缓解 changes
变化 in
在 physiological and biochemical indices induced by cold exposure
寒冷暴露诱导的生理生化指标 in mice
在小鼠中[80]. FMT can affect emotional responses
会影响情绪反应 in
在Japanese quail
日本鹌鹑[81]. FMT improves depression-like and anxiety-like
改善抑郁样和焦虑样 behaviors
行为induced by chronic
由慢性 unpredictable mild stress
不可预测的轻度压力[82-84]. It can
它可以 remodel the microbiota of the gut and may be an effective treatment for infant diarrhea
重塑肠道微生物群,可能是婴儿腹泻的有效治疗方法 [85]. Transplantation of
移植fecal
粪便 microbiota from mice with
小鼠的微生物群high-stress
高应力 resilience into receptors
对受体的恢复力 previously exposed to CUMS rescued neurogenesis in the hippocampus and
先前暴露于 CUMS 的海马体中挽救了神经发生,并且 promoted recovery from stress-induced depression and cognitive decline.
促进从压力引起的抑郁和认知能力下降中恢复。 Studies have shown that delivery of
研究表明,递送fecal
粪便 microbiota via oral capsules
通过口服胶囊的微生物群 is no different from traditional delivery(upper
与传统配送没有什么不同(上 gastrointestinal
胃肠 infusion
输液etc
等.)[86]. Interventions
干预 targeting
针对 gut
肠 microbiota
微生物群reorganization
再编制 through
通过fecal
粪便 microbiota transplantation and the use
微生物群移植和使用 of psychotropic probiotics have been assessed as reducing the chance
的精神药物益生菌已被评估为降低几率 of symptoms associated with neurodegeneration
与神经退行性变相关的症状[87].
Although relatively little research has been conducted on the role of FMT in the regulation of mood under stress in military personnel, possible mechanisms and potential effects can be speculated. The existence of a "gut-brain axis" between gut microbiota and the brain affects mood and cognitive function, and can produce neurotransmitters and metabolites, such as serotonin and dopamine, which can influence brain function and thus may be relevant to mood regulation. Stress, especially military stress, may lead to dysregulation of gut microbes, and this dysregulation can affect emotional stability, leading to mood problems such as anxiety and depression. Through fecal microbial transplantation, a healthy gut microbiota can be introduced into the gut of stressed military personnel, helping to restore the balance of gut microbes and possibly indirectly improving mood regulation. Studies have already shown that FMT has the potential to improve patients’ mental health when treating conditions such as irritable bowel syndrome and inflammatory bowel disease. However, research on the specific role of fecal microbial transplantation in mood regulation under stress in military personnel is still in its infancy, and more high-quality clinical trials are needed to validate its efficacy and safety.
尽管关于 FMT 在军事人员压力下情绪调节中的作用的研究相对较少,但可以推测可能的机制和潜在影响。肠道微生物群和大脑之间存在“肠脑轴”会影响情绪和认知功能,并可以产生神经递质和代谢物,例如血清素和多巴胺,这些代谢物可以影响大脑功能,因此可能与情绪调节有关。压力,尤其是军事压力,可能导致肠道微生物失调,而这种失调会影响情绪稳定,导致焦虑、抑郁等情绪问题。通过粪便微生物移植,健康的肠道微生物群可以引入压力大的军事人员的肠道,有助于恢复肠道微生物的平衡,并可能间接改善情绪调节。研究已经表明,FMT 在治疗肠易激综合征和炎症性肠病等疾病时有可能改善患者的心理健康。然而,关于粪便微生物移植在军事人员压力下情绪调节中的具体作用的研究仍处于起步阶段,需要更多高质量的临床试验来验证其有效性和安全性。
Fig.3. Interventions to Enhance Emotion Regulation in Stressful Situations. (By Figdraw). This is a joint intervention approach. tES: Using tES to regulate emotion from top to bottom; stimulates brain regions associated with emotion regulation to achieve the goal of improving negative emotions in stressful situations. The approach is divided into tDCS and tACS. FMT: extracting microbiota from faeces and transplanting the dominant microbiota into the subjects' intestines in the form of oral capsules or injections to achieve intestinal flora.
图 3.在压力情况下增强情绪调节的干预措施。(由 Figdraw 提供)。这是一种联合干预方法。tES:使用 tES 从上到下调节情绪;刺激与情绪调节相关的大脑区域,以达到在压力情况下改善负面情绪的目标。该方法分为 tDCS 和 tACS。FMT:从粪便中提取微生物群,并以口服胶囊或注射剂的形式将优势菌群移植到受试者的肠道中,以获得肠道菌群。
Summary and Perspective
总结和观点
The present study innovatively proposes a combined intervention strategy based on electrical stimulation for brain regulation and FMT to enhance the emotion regulation ability of individuals, especially military personnel, with a new perspective of "from top to bottom, from bottom to top, and integrating immediate and long-term interventions." Firstly, tDCS and tACS are used to accurately and instantly adjust the neural activity in specific areas of the brain to cope with emotional fluctuations. Secondly, FMT, as a method of remodeling the intestinal flora, positively affects the long-term emotional stability of the individual through the "gut-brain axis". The combination of the two forms a comprehensive intervention model that takes into account both immediate response and long-lasting maintenance, aiming to synchronize the individual's neural activity and intestinal micro-ecology, and to improve the overall emotion regulation ability of military personnel.
本研究以“自上而下、自下而上、即时干预与长期干预相结合”的新视角,创新性地提出了一种基于电刺激的大脑调节和 FMT 联合干预策略,以增强个体尤其是军事人员的情绪调节能力。首先,t DCS 和 tACS 用于准确和即时地调整大脑特定区域的神经活动,以应对情绪波动。其次,FMT 作为一种重塑肠道菌群的方法, 通过“肠脑轴”对个体的长期情绪稳定产生积极影响。两者结合形成兼顾即时反应和长效维持的综合干预模型,旨在同步个体的神经活动和肠道微生态,提高军人整体情绪调节能力。
The emotional state of military personnel directly affects the efficiency of military task execution, teamwork, decision-making quality, and battlefield survivability. Therefore, the implementation of the above joint intervention strategy is expected to significantly enhance the emotional resilience of military personnel, and improve their adaptability, concentration, and psychological tolerance under high-pressure and complex military environments, thus enhancing overall combat effectiveness. However, there are some limitations to this technique. There is a lot of research on FMT, which is mainly used to treat infectious diarrhea, inflammatory bowel disease, constipation, and other gastrointestinal conditions. The technology for treating depression and anxiety as well as psychiatric disorders is still immature. There are thousands of microorganisms in the intestinal tract, the relationship between different microorganisms and their hosts is little known, which patients are suitable and which are not, all of this is being explored, and there is no way to prevent fecal transplants from potentially bringing about several other illnesses, such as viruses, pathogenic bacteria, parasites, and so on. In addition, the operation procedure and application dose of fecal bacteria transplantation has not been standardized. Among them, the physical requirements for fecal bacteria transplant donors are high and strict screening is required, which also makes the cost higher. For such a special group as soldiers, who bear the important responsibility of protecting the country, there is still a long way to go to regulate stress levels by using fecal bacteria transplantation.
军事人员的情绪状态直接影响军事任务执行效率、团队合作、决策质量和战场生存能力。因此,上述联合干预策略的实施有望显著增强军事人员的情绪韧性, 提高他们在高压和复杂军事环境下的适应能力、专注度和心理承受能力,从而增强整体战斗力。但是,此技术存在一些限制 。关于 FMT 的研究很多,FMT 主要用于治疗感染性腹泻、炎症性肠病、便秘和其他胃肠道疾病。治疗抑郁症和焦虑症以及精神疾病的技术仍然不成熟。肠道中有成千上万的微生物,不同微生物与其宿主之间的关系鲜为人知,哪些患者适合,哪些不适合,所有这些都在探索中,没有办法阻止粪便移植可能带来其他几种疾病,如病毒、病原菌、寄生虫、 等等。此外,粪便细菌移植的操作程序和应用剂量尚未标准化。其中,对粪菌移植供体的物理要求高,需要严格的筛选,这也使得成本较高。 对于像士兵这样一个肩负着保卫国家重要责任的特殊群体来说,通过使用粪便细菌移植来调节压力水平还有很长的路要走 。
We propose the following perspectives: i. Deepen theoretical research and mechanism exploration. Clarifying the specific action mechanism and synergistic effect of joint intervention; ii. Develop an individualized intervention program. Differences between military branches, geography, diets, and exposure to different stressors, exploring differences in joint intervention approaches among different types of military personnel; iii. Pay more attention to the transplantation of specific bacterial flora. Finding flora that can regulate mood, treat depression, and improve stress will make the treatment more targeted and more effective; iv. depression, and ameliorate stress, making the treatment more targeted and effective; iv. Although current research has focused on transplantation using allogeneic donated feces, autologous transplantation also deserves equal attention and exploration as a potential future therapeutic strategy. Autologous transplantation has less rejection and also avoids the risk of some infectious diseases, such as hepatitis and AIDS.
我们提出以下观点: i.深化理论研究和机制探索。明确联合干预的具体作用机制和协同效应;ii. 制定个体化干预计划。军事部门之间的差异、地理、饮食和暴露于不同的压力源,探索不同类型军事人员之间联合干预方法的差异;三。多注意特定细菌菌群的移植。 寻找可以调节情绪、治疗抑郁症和改善压力的菌群将使治疗更有针对性和更有效;iv. 抑郁,缓解压力,使治疗更有针对性和有效性;iv. 尽管目前的研究集中在使用同种异体捐献的粪便进行移植,但自体移植作为未来潜在的治疗策略也值得同等的关注和探索。 自体移植的排斥反应较少,也避免了某些传染病的风险,例如肝炎和艾滋病。
In conclusion, the combined intervention based on electrical stimulation brain modulation and FMT is expected to be an effective practical strategy to enhance the emotion regulation of military personnel and to strongly safeguard the psychological health and combat effectiveness of military personnel.
综上所述,基于电刺激脑调节和 FMT 的联合干预有望成为增强军事人员情绪调节、有力维护军事人员心理健康和战斗力的有效实用策略。
References
参考s
[1] Feng X, Zhengzhi F. Progress of military stress and thinking on establishment of a model of combat-like psychosomatic stress[J]. Journal of Third Military Medical University, 2017,39(24):2335-2340.
[1]冯晓峰, 正志 F. 军事压力的研究进展及战斗类心身压力模型的建立思考[J].第三军医大学学报, 2017,39(24):2335-2340.
[2] Canhua H. Stress Medicine and Human Health[J]. Journal of Sichuan University (Medical Sciences), 2021,52(1):1-4.
[2]Canhua H. 压力医学与人类健康[J].四川大学学报(医学版), 2021,52(1):1-4.
[3] Goyal M, Singh S, Sibinga E M S, et al. Meditation Programs for Psychological Stress and Well-being[J]. JAMA Internal Medicine, 2014,174(3):357.
[3]Goyal M, Singh S, Sibinga E M S, et al. 心理压力和幸福感的冥想计划[J].美国医学内科杂志, 2014,174(3):357.
[4] Guangtao H, Xubo C, Liu Y, et al. Correlation of depression with psychological stress and resilence of soldiers stationed at high altitude[J]. Mental and Mental Health Center, 2019,29(04):485-487.
[4]Guangtao H, Xubo C, Liu Y, et al. 抑郁症与高海拔士兵心理压力与沉默的相关性[J].心理卫生中心, 2019,29(04):485-487.
[5] Houyu Z, Zhihao T, Jingrui Q, et al. Influence of special environments on cognitive function of military personnel[J]. Academic Journal of Second Military Medical University, 2021,42(4):432-438.
[5]侯玉 Z, 志浩 T, 景瑞 Q, 等. 特殊环境对军事人员认知功能的影响[J].第二军医大学学报, 2021,42(4):432-438.
[6] Feng Z. Advances in early treatment of combat stress psychological injury[J]. Journal of third military medical university, 2022,44(19):1905-1910.
[6]冯振军,战斗应激心理损伤早期治疗进展[J].第三军医大学学报, 2022, 44(19):1905-1910.
[7] Yong T, Xunjun L, Zhiqiang X, et al. A Study on the Sleep and Psychological Stress Status of Chinese Military Medical Staff in Fighting Against Infec-tious Disease Induced by Ebola Virus in Liberia[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2015(11):40-43.
[7]Yong T, Xunjun L, Zhiqiang X, et al.中国军队医务人员抗击利比里亚埃博拉病毒感染疾病睡眠及心理应激状况研究[J].中国人民解放军医学与制药杂志, 2015(11):40-43.
[8] Feng Z, Chen X. Research and perspective of Chinese soldiers' mental health in special military environment[J]. Journal of third military medical university, 2016,38(20):2199-2204.
[8]冯志强, 陈旭. 特殊军事环境下中国士兵心理健康研究与展望[J].第三军医大学学报, 2016,38(20):2199-2204.
[9] Yong H. Current Situation and Prospect of Military Pilots' Anti-Stress Ability Evaluation Training[J]. Advances in Psychology, 2023,13:4452-4456.
[9]军事飞行员抗压能力评价训练的现状与展望[J].心理学进展, 2023,13:4452-4456.
[10] Shan Z. Review on the Research of Psychological Stress in Battlefield[J]. Psychology in China, 2019,01.
[10]Shan Z. 战场心理压力研究综述[J].中国心理学, 2019,01.
[11] Gradus J. Prevalence and prognosis of stress disorders: a review of the epidemiologic literature[J]. Clin Epidemiol, 2017,Volume 9:251-260.
[11]Gradus J. Prevalence and prognosis of stress disorders: 流行病学文献综述[J].临床流行病学, 2017,卷 9:251-260.
[12] LeDoux J. The amygdala[J]. Current Biology, 2007,17(20):R868-R874.
[12]LeDoux J. 杏仁核[J].当代生物学, 2007,17(20):R868-R874.
[13] Molina-Torres G, Rodriguez-Arrastia M, Roman P, et al. Stress and the gut microbiota-brain axis[J]. Behavioural Pharmacology, 2019,30(2 and 3):187-200.
[13]Molina-Torres G, Rodriguez-Arrastia M, Roman P, et al. 压力与肠道菌群-脑轴[J].行为药理学, 2019,30(2 and 3):187-200.
[14] Lai W, Deng W, Xu S, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients[J]. Psychological Medicine, 2021,51(1):90-101.
[14]Lai W, 邓 W, 徐淑娴, et al. 鸟枪法宏基因组学揭示了重度抑郁症患者肠道菌群的分类学和色氨酸途径差异[J].心理医学, 2021,51(1):90-101.
[15] Shuhong H, Shuang H, Yanli S. Mediating effect of military stress perception on social support and mental health under major tasks[J]. Military Medical Sciences, 2021,45(6):409-413.
[15]Shuhong H, Shuang H, Yanli S. 重大任务下军事压力感知对社会支持和心理健康的中介效应[J].军事医学, 2021,45(6):409-413.
[16] Zhenkun M, Wang L, Huatao H, et al. Analysis on relationship between emotion regulation types and anxiety among young army men[J]. Chinese Journal of Health Education, 2015(6).
[16]Zhenkun M, Wang L, Huatao H, et al. 青年军人情绪调节类型与焦虑的关系分析[J].中国健康教育杂志, 2015(6).
[17] Etain B, Lajnef M, Bellivier F, et al. Revisiting the association between childhood trauma and psychosis in bipolar disorder: A quasi-dimensional path-analysis[J]. Journal of Psychiatric Research, 2017,84:73-79.
[17]Etain B, Lajnef M, Bellivier F, et al. 重新审视双相情感障碍童年创伤与精神病之间的关联:准维路径分析[J].精神病学研究杂志, 2017,84:73-79.
[18] Yuejia L, Wanjun L, Jianhui W, et al. Cognitive Neuroscience of Stress[J]. Progress in Physiological Sciences, 2013,44(05):345-353.
[18]月佳L, 万军L, Jianhui W, et al. 压力的认知神经科学[J].生理科学进展, 2013,44(05):345-353.
[19] McEwen B S. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain[J]. Physiological Reviews, 2007,87(3):873-904.
[19]McEwen B S. 压力和适应的生理学和神经生物学:大脑的核心作用[J].生理学评论, 2007,87(3):873-904.
[20] Hong H, Rongli D, Yan L, et al. Investigation on Depression and Anxiety and Related Factors in soldiers of An Army During Special Operation[J]. 解放军预防医学杂志, 2011,29(6).
[20]洪海, 荣丽D, 燕林, 等. 安军特种作战中士兵抑郁焦虑及相关因素调查[J]. 解放军预防医学杂志, 2011, 29(6).
[21] de Kloet E R, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease[J]. Nature Reviews Neuroscience, 2005,6(6):463-475.
[21]de Kloet E R, Joëls M, Holsboer F. 压力与大脑:从适应到疾病[J].自然评论神经科学, 2005,6(6):463-475.
[22] Haijun D, Xuewei W, Botao W, et al. Acute stress:Induction,measurement and effect analysis[J]. Advances in Psychological Science, 2017,25(10):1780-1790.
[22]海军 D, 雪伟 W, 博涛 W, et al. 急性应激:归纳、测量和效应分析[J].心理科学进展, 2017,25(10):1780-1790.
[23] Arnsten A F T. Stress weakens prefrontal networks: molecular insults to higher cognition[J]. Nature Neuroscience, 2015,18(10):1376-1385.
[23]Arnsten A F T. 压力削弱前额叶网络:对高级认知的分子侮辱[J].自然神经科学, 2015,18(10):1376-1385.
[24] Raio C M, Orederu T A, Palazzolo L, et al. Cognitive emotion regulation fails the stress test[J]. Proceedings of the National Academy of Sciences, 2013,110(37):15139-15144.
[24]Raio C M, Orederu T A, Palazzolo L, et al. 认知情绪调节未通过压力测试[J].美国国家科学院院刊, 2013,110(37):15139-15144.
[25] Golkar A, Johansson E, Kasahara M, et al. The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain[J]. PloS one, 2014,9(9):e104550.
[25]Golkar A, Johansson E, Kasahara M, et al.工作相关慢性压力对大脑情绪调节和功能连接的影响[J].公共科学图书馆一号, 2014,9(9):e104550.
[26] Kropf E, Syan S K, Minuzzi L, et al. From anatomy to function: the role of the somatosensory cortex in emotional regulation[J]. Brazilian Journal of Psychiatry, 2019,41(3):261-269.
[26]Kropf E, Syan S K, Minuzzi L, et al.从解剖学到功能:体感皮层在情绪调节中的作用[J].巴西精神病学杂志, 2019,41(3):261-269.
[27] Liu Y, Zhao X, Hu W, et al. Neural habituation during acute stress signals a blunted endocrine response and poor resilience[J]. Psychological Medicine, 2023,53(16):7735-7745.
[27]刘毅, 赵旭, 胡伟, et al. 急性应激期间的神经习惯化表明内分泌反应迟钝和恢复能力差[J].心理医学, 2023,53(16):7735-7745.
[28] Baj A, Moro E, Bistoletti M, et al. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis[J]. International Journal of Molecular Sciences, 2019,20(6):1482.
[28]Baj A, Moro E, Bistoletti M, et al. 沿微生物群-肠-脑轴的谷氨酸能信号传导[J].国际分子科学杂志, 2019,20(6):1482.
[29] Jiahui L, Qiang L, Shiyang L, et al. Research advances in brain-gut-microbiome axis in pathogenesis of irritable bowel syndrome[J]. Academic Journal of Chinese Pla Medical School, 2023,44(12):1403-1409.
[29]Jiahui L, Qiang L, Shiyang L, et al. 脑-肠-微生物组轴在肠易激综合征发病机制中的研究进展[J].中国解放医学会学术杂志, 2023,44(12):1403-1409.
[30] Lee Y, Kim Y. Understanding the Connection Between the Gut–Brain Axis and Stress/Anxiety Disorders[J]. Current Psychiatry Reports, 2021,23(5):22.
[30]Lee Y, Kim Y. 了解肠脑轴与压力/焦虑障碍之间的联系[J].当代精神病学报告, 2021,23(5):22.
[31] Chunyan Z, Luwen Z, Qiang T. Advance in Relationship between Autism Spectrum Disorders and Microbiome (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2019,25(3):319-323.
[31]Chunyan Z, Luwen Z, Qiang T. 自闭症谱系障碍与微生物组关系的进展(综述)[J].中国康复理论与实践, 2019,25(3):319-323.
[32] Kuwahara A, Matsuda K, Kuwahara Y, et al. Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system[J]. Biomedical Research, 2020,41(5):199-216.
[32]Kuwahara A, Matsuda K, Kuwahara Y, et al. 微生物群-肠-脑轴:肠内分泌细胞和肠道神经系统形成微生物群和中枢神经系统之间的界面[J].生物医学研究, 2020,41(5):199-216.
[33] Hao W, Shaoxian W. Discussion of Correlation Between Chronic Psychological Stress Induced Liver Depression and Spleen Deficiency Syndrome and Microbiota-gut-brain Axis and Study on Intervention Mechanism of Xiaoyaosan[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020,26(24):193-200.
[33]郝文文,少贤文,慢性心理应激诱导的肝抑郁脾虚证与微生物群-肠-脑轴的相关性探讨及小药散干预机制研究[J].中国实验中药方剂杂志, 2020,26(24):193-200.
[34] Mulder D, Gudden J, Ioannou A, et al. The Microbiota-Gut-Brain-Axis in Early life: The Temporal Relation Between Gut Microbial Development Over the First Year and Subsequent Social-Emotional Development up to 36 Months in Healthy Infants[J]. Biological Psychiatry, 2022,91(9, Supplement):S268.
[34]Mulder D, Gudden J, Ioannou A, et al.生命早期微生物群-肠-脑-轴:健康婴儿第一年肠道微生物发育与随后长达 36 个月的社会情感发育之间的时间关系[J].生物精神病学, 2022,91(9, 增刊):S268.
[35] Zalar B, Haslberger A, Peterlin B. The role of microbiota in depression-a brief review[J]. Psychiatria danubina, 2018,30(2):136-141.
[35]Zalar B, Haslberger A, Peterlin B.微生物群在抑郁症中的作用 - 简要评价[J].多努比纳精神病学, 2018,30(2):136-141.
[36] Li L, Su Q, Xie B, et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system[J]. Neurogastroenterology & Motility, 2016,28(8):1233-1240.
[36]Li L, Su Q, Xie B, et al. 肠道微生物与情绪相关:封闭实验性人类生命支持系统中的案例研究[J].神经胃肠病学与运动, 2016,28(8):1233-1240.
[37] Toader C, Dobrin N, Costea D, et al. Mind, Mood and Microbiota—Gut–Brain Axis in Psychiatric Disorders[J]. International Journal of Molecular Sciences, 2024,25(6):3340.
[37]Toader C, Dobrin N, Costea D, et al. 精神疾病中的心、境和微生物群——肠脑轴[J].国际分子科学杂志, 2024,25(6):3340.
[38] Kim Y, Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments[J]. Current neuropharmacology, 2018,16(5):559-573.
[38]Kim Y, Shin C.神经精神疾病中微生物群-肠-脑轴的病理生理机制和新疗法[J].当代神经药理学, 2018,16(5):559-573.
[39] Grenham S, Clarke G, Cryan J F, et al. Brain?Gut?Microbe Communication in Health and Disease[J]. Frontiers in Physiology, 2011,2.
[39]Grenham S, Clarke G, Cryan J F, et al.肠?健康与疾病中的微生物通讯[J].生理学前沿,2011,2。
[40] Leonard B E. The HPA and immune axes in stress: the involvement of the serotonergic system[J]. European Psychiatry, 2005,20(S3):S302-S306.
[40]伦纳德 B E.应激中的 HPA 和免疫轴:5-羟色胺能系统的参与[J].欧洲精神病学,2005,20(S3):S302-S306。
[41] Khansari D N, Murgo A J, Faith R E. Effects of stress on the immune system[J]. Immunology Today, 1990,11:170-175.
[41]Khansari D N, Murgo A J, Faith R E. 压力对免疫系统的影响[J].今日免疫学, 1990,11:170-175.
[42] Miao C C, Shen L Z, Wen H, et al. The influence of the large military exercise on the soldiers′some immune-endocrine function[J]. 解放军医学杂志, 2007,32(3):189-190.
[42]苗春聪, 沈丽珠, 温 H, et al.大型军事演习对士兵免疫内分泌功能的影响[J].解放军医学杂志, 2007,32(3):189-190.
[43] Dinan T G M P, Cryan J F P. The Microbiome-Gut-Brain Axis in Health and Disease[J]. Gastroenterology clinics of North America, 2017,46(1):77-89.
[43]Dinan T G M P, 克莱恩 J F P.健康与疾病中的微生物组-肠-脑轴[J].北美消化病诊所,2017,46(1):77-89.
[44] Kelly J R, Borre Y, O'Brien C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. Journal of psychiatric research, 2016,82:109-118.
[44]Kelly J R, Borre Y, O'Brien C, et al. 转移忧郁症:抑郁相关肠道菌群诱导大鼠神经行为改变[J].精神病学研究杂志, 2016,82:109-118.
[45] Sheppes G, Suri G, Gross J. Emotion Regulation and Psychopathology[J]. Annual review of clinical psychology, 2015,11.
[45]Sheppes G, Suri G, Gross J. 情绪调节与精神病理学[J].临床心理学年鉴, 2015,11.
[46] Joormann J, Vanderlind W M. Emotion Regulation in Depression[J]. Clinical Psychological Science, 2014,2(4):402-421.
[46]Joormann J, Vanderlind W M. 抑郁症中的情绪调节[J].临床心理科学, 2014,2(4):402-421.
[47] McRae K, Rekshan W, Williams L M, et al. Effects of antidepressant medication on emotion regulation in depressed patients: An iSPOT-D report[J]. Journal of Affective Disorders, 2014,159:127-132.
[47]McRae K, Rekshan W, Williams L M, et al. 抗抑郁药物对抑郁症患者情绪调节的影响:iSPOT-D 报告[J].情感障碍杂志, 2014,159:127-132.
[48] Rubin-Falcone H, Weber J, Kishon R, et al. Longitudinal effects of cognitive behavioral therapy for depression on the neural correlates of emotion regulation[J]. Psychiatry Research: Neuroimaging, 2018,271:82-90.
[48]Rubin-Falcone H, Weber J, Kishon R, et al. 抑郁症认知行为疗法对情绪调节神经相关性的纵向影响[J].精神病学研究:神经影像学,2018,271:82-90。
[49] Renna M E, Quintero J M, Fresco D M, et al. Emotion Regulation Therapy: A Mechanism-Targeted Treatment for Disorders of Distress[J]. Frontiers in Psychology, 2017,8.
[49]Renna M E, Quintero J M, Fresco D M, et al. 情绪调节疗法:一种针对痛苦障碍的机制靶向治疗[J].心理学前沿,2017,8。
[50] Gupta A, Kashyap A, Sidana A. Dialectical Behavior Therapy in Emotion Dysregulation - Report of Two Cases[J]. Indian journal of psychological medicine, 2019,41(6):578-581.
[50]Gupta A, Kashyap A, Sidana A. 情绪失调的辩证行为疗法 - 2 例报告[J].印度心理医学杂志, 2019,41(6):578-581.
[51] Cook S C, Schwartz A C, Kaslow N J. Evidence-Based Psychotherapy: Advantages and Challenges[J]. Neurotherapeutics, 2017,14(3):537-545.
[51]Cook S C, Schwartz A C, Kaslow N J. 循证心理治疗:优势与挑战[J].神经治疗学, 2017,14(3):537-545.
[52] Nitsche M A, Liebetanz D, Tergau F, et al. Modulation kortikaler Erregbarkeit beim Menschen durch transkranielle Gleichstromstimulation[J]. Nervenarzt, 2002,73(4):332-335.
[52]Nitsche M A, Liebetanz D, Tergau F, et al. Modulation kortikaler Erregbarkeit beim Menschen durch transkranielle Gleichstromstimulation[J].神经纳兹, 2002,73(4):332-335.
[53] Herrmann C S, Strüber D, Helfrich R F, et al. EEG oscillations: From correlation to causality[J]. International Journal of Psychophysiology, 2016,103:12-21.
[53]Herrmann C S, Strüber D, Helfrich R F, et al. EEG 振荡:从相关性到因果关系[J].国际心理生理学杂志, 2016,103:12-21.
[54] Lu H, Zhang Y, Huang P, et al. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review[J]. Frontiers in Neuroscience, 2022,16.
[54]Lu H, Zhang Y, Huang P, et al. 经颅电刺激为改善军事飞行员之间的团队合作提供了可能性:综述[J].神经科学前沿, 2022,16.
[55] Brunoni A R, Moffa A H, Fregni F, et al. Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data[J]. British Journal of Psychiatry, 2016,208(6):522-531.
[55]Brunoni A R, Moffa A H, Fregni F, et al. 经颅直流电刺激治疗急性重度抑郁发作:个体患者数据的荟萃分析[J].英国精神病学杂志, 2016,208(6):522-531.
[56] Qilin Z, Hongxing W, Di W, et al. Recent advance in transcranial direct current stimulation in treatment of depressive disorder[J]. Chinese Journal of Neuromedicine, 2018(17):1368-1370.
[56]麒麟 Z, Hongxing W, Di W, et al.经颅直流电刺激治疗抑郁症的研究进展[J].中国神经医学杂志, 2018(17):1368-1370.
[57] Boggio P S, Rocha M, Oliveira M O, et al. Noninvasive brain stimulation with high-frequency and low-intensity repetitive transcranial magnetic stimulation treatment for posttraumatic stress disorder[J]. J Clin Psychiatry, 2010,71(8):992-999.
[57]Boggio P S, Rocha M, Oliveira M O, et al. 高频低强度重复经颅磁刺激无创脑刺激治疗创伤后应激障碍[J].临床精神病学杂志, 2010,71(8):992-999.
[58] Doerig N, Seinsche R J, Moisa M, et al. Enhancing reappraisal of negative emotional memories with transcranial direct current stimulation[J]. Scientific Reports, 2021,11(1):14760.
[58]Doerig N, Seinsche R J, Moisa M, et al. 通过经颅直流电刺激增强对负面情绪记忆的再评估[J].科学报告, 2021,11(1):14760.
[59] Peña-Gómez C, Vidal-Piñeiro D, Clemente I C, et al. Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics[J]. PLoS One, 2011,6(7):e22812.
[59]Peña-Gómez C, Vidal-Piñeiro D, Clemente I C, et al. 经颅直流电刺激下调负面情绪处理:人格特征的影响[J].公共科学图书馆一号, 2011,6(7):e22812.
[60] Peña-Gómez C, Sala-Lonch R, Junqué C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI[J]. Brain Stimul, 2012,5(3):252-263.
[60]Peña-Gómez C, Sala-Lonch R, Junqué C, et al. 静息态功能 MRI 证实的经颅直流电刺激对大规模脑网络的调节[J].脑刺激, 2012,5(3):252-263.
[61] Clarke P J F, Van Bockstaele B, Marinovic W, et al. The effects of left DLPFC tDCS on emotion regulation, biased attention, and emotional reactivity to negative content[J]. Cognitive, Affective, & Behavioral Neuroscience, 2020,20(6):1323-1335.
[61]Clarke P J F, Van Bockstaele B, Marinovic W, et al.左侧 DLPFC tDCS 对情绪调节、偏向注意力和对负面内容的情绪反应性的影响[J].认知、情感与行为神经科学, 2020,20(6):1323-1335.
[62] Zhang Q, Li X, Liu X, et al. The Effect of Non-Invasive Brain Stimulation on the Downregulation of Negative Emotions: A Meta-Analysis: Brain Sciences[Z]. 2022: 12.
[62]张 Q, 李 X, 刘 X, et al.无创脑刺激对负面情绪下调的影响:荟萃分析:脑科学[Z].2022 年:12.
[63] Weaver K R, Sherwin L B, Walitt B, et al. Neuroimaging the brain-gut axis in patients with irritable bowel syndrome[J]. World journal of gastrointestinal pharmacology and therapeutics, 2016,7(2):320.
[63]Weaver K R, Sherwin L B, Walitt B, et al. 肠易激综合征患者脑肠轴神经影像学检查[J].世界胃肠道药理学与治疗学杂志, 2016,7(2):320.
[64] Li H, Li Y, Zhi-wei L, et al. Effect of Intestinal Microbiota in Regulating Visceral Hypersensitivity of IBS-D Based on Brain-gut Interacting Mechanism[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019,25(11):224-229.
[64]Li H, Li Y, Zhi-wei L, et al. 基于脑-肠相互作用机制的肠道菌群调控 IBS-D 内脏超敏反应的作用[J].中国实验中药方剂杂志, 2019,25(11):224-229.
[65] Bhattarai Y, Muniz Pedrogo D A, Kashyap P C. Irritable bowel syndrome: a gut microbiota-related disorder?[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2017,312(1):G52-G62.
[65]Bhattarai Y, Muniz Pedrogo D A, Kashyap P C. 肠易激综合征:肠道微生物群相关疾病?美国生理学-胃肠道和肝脏生理学杂志,2017,312(1):G52-G62。
[66] Mackie R I, Sghir A, Gaskins H R. Developmental microbial ecology of the neonatal gastrointestinal tract[J]. The American journal of clinical nutrition, 1999,69(5):1035S-1045S.
[66]Mackie R I, Sghir A, Gaskins H R. 新生儿胃肠道发育微生物生态学[J].美国临床营养学杂志,1999,69(5):1035S-1045S。
[67] Whitehead W E, Palsson O, Jones K R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications?[J]. Gastroenterology, 2002,122(4):1140-1156.
[67]Whitehead W E, Palsson O, Jones K R. 肠易激综合征与其他疾病共病的系统评价:哪些原因和影响?胃肠病学, 2002,122(4):1140-1156.
[68] Sherwin E, Sandhu K V, Dinan T G, et al. May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry[J]. CNS Drugs, 2016,30(11):1019-1041.
[68]Sherwin E, Sandhu K V, Dinan T G, et al. 愿原力与你同在:神经精神病学中微生物群-肠-脑轴的光明面和黑暗面[J].中枢神经系统药物, 2016,30(11):1019-1041.
[69] Cryan J F, Dinan T G. Microbiota and neuroimmune signalling—Metchnikoff to microglia[J]. Nature Reviews Gastroenterology & Hepatology, 2015,12(9):494-496.
[69]Cryan J F, Dinan T G. 微生物群和神经免疫信号——Metchnikoff 到小胶质细胞[J].Nature Reviews 胃肠病学与肝脏病学, 2015,12(9):494-496.
[70] Murakami T, Kamada K, Mizushima K, et al. Changes in Intestinal Motility and Gut Microbiota Composition in a Rat Stress Model[J]. Digestion, 2017,95(1):55-60.
[70]Murakami T, Kamada K, Mizushima K, et al. 大鼠应激模型中肠道蠕动和肠道菌群组成的变化[J].消化, 2017,95(1):55-60.
[71] Galley J D, Nelson M C, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota[J]. BMC microbiology, 2014,14:1-13.
[71]Galley J D, Nelson M C, Yu Z, et al. 暴露于社会压力源会破坏结肠粘膜相关微生物群的群落结构[J].BMC 微生物学, 2014,14:1-13.
[72] Bailey M T, Coe C L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys[J]. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 1999,35(2):146-155.
[72]Bailey M T, Coe C L. 母体分离破坏了婴儿恒河猴肠道菌群的完整性[J].发展心理生物学:国际发展心理生物学会杂志,1999,35(2):146-155。
[73] Ohland C L, Kish L, Bell H, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome[J]. Psychoneuroendocrinology, 2013,38(9):1738-1747.
[73]Ohland C L, Kish L, Bell H, et al. 瑞士乳杆菌对小鼠行为的影响取决于饮食和基因型,并与肠道微生物组的改变相关[J].心理神经内分泌学, 2013,38(9):1738-1747.
[74] Bravo J A, Forsythe P, Chew M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences, 2011,108(38):16050-16055.
[74]Bravo J A, Forsythe P, Chew M V, et al. 摄入乳酸菌菌株通过迷走神经调节小鼠情绪行为和中枢 GABA 受体表达[J].美国国家科学院院刊, 2011,108(38):16050-16055.
[75] Evrensel A, Ceylan M E. Fecal Microbiota Transplantation and Its Usage in Neuropsychiatric Disorders[J]. Clinical Psychopharmacology and Neuroscience, 2016,14(3):231-237.
[75]Evrensel A, Ceylan M E. 粪便微生物群移植及其在神经精神疾病中的应用[J].临床精神药理学与神经科学, 2016,14(3):231-237.
[76] Kurokawa S, Kishimoto T, Mizuno S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study[J]. J Affect Disord, 2018,235:506-512.
[76]Kurokawa S, Kishimoto T, Mizuno S, et al.粪便菌群移植对肠易激综合征、功能性腹泻和功能性便秘患者精神症状的影响:一项开放标签观察研究[J].J Affect Disord, 2018,235:506-512.
[77] Huang H L, Chen H T, Luo Q L, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota[J]. J Dig Dis, 2019,20(8):401-408.
[77]Huang H L, Chen H T, Luo Q L, et al. 粪便菌群移植缓解肠易激综合征与肠道菌群多样性和组成的变化有关[J].挖掘病学杂志, 2019,20(8):401-408.
[78] Kelly J R, Kennedy P J, Cryan J F, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders[J]. Frontiers in Cellular Neuroscience, 2015,9.
[78]Kelly J R, Kennedy P J, Cryan J F, et al. 打破障碍:肠道微生物组、肠道通透性和应激相关精神疾病[J].细胞神经科学前沿,2015,9。
[79] Zhang M, Li A, Yang Q, et al. Matrine alleviates depressive-like behaviors via modulating microbiota–gut–brain axis in CUMS-induced mice[J]. Journal of Translational Medicine, 2023,21(1):145.
[79]张明, 李A, 杨Q, et al. 苦参碱通过调节 CUMS 诱导小鼠的微生物群-肠-脑轴缓解抑郁样行为[J].转化医学杂志, 2023,21(1):145.
[80] Liu T, Guo Y, Lu C, et al. Effect of different pig fecal microbiota transplantation on mice intestinal function and microbiota changes during cold exposure[J]. Frontiers in Veterinary Science, 2022,9:805815.
[80]Liu T, Guo Y, Lu C, et al. 不同猪粪菌群移植对小鼠寒冷暴露期间肠道功能及菌群变化的影响[J].兽医学前沿, 2022,9:805815.
[81] Kraimi N, Calandreau L, Zemb O, et al. Effects of gut microbiota transfer on emotional reactivity in Japanese quails (Coturnix japonica)[J]. Journal of Experimental Biology, 2019,222(10):jeb202879.
[81]Kraimi N, Calandreau L, Zemb O, et al. 肠道菌群转移对日本鹌鹑 (Coturnix japonica) 情绪反应性的影响[J].实验生物学杂志, 2019,222(10):jeb202879.
[82] Rao J, Qiao Y, Xie R, et al. Fecal microbiota transplantation ameliorates stress-induced depression-like behaviors associated with the inhibition of glial and NLRP3 inflammasome in rat brain[J]. Journal of Psychiatric Research, 2021,137:147-157.
[82]Rao J, Qiao Y, Xie R, et al. 粪便微生物群移植改善了与大鼠脑胶质细胞和 NLRP3 炎性小体抑制相关的应激诱导的抑郁样行为[J].精神病学研究杂志, 2021,137:147-157.
[83] Rao J, Xie R, Lin L, et al. Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress-induced depressive-like behavior[J]. European Journal of Neuroscience, 2021,53(11):3598-3611.
[83]Rao J, Xie R, Lin L, et al. 粪便微生物群移植可改善应激诱导的抑郁样行为大鼠肠道菌群失衡和肠道屏障损伤[J].欧洲神经科学杂志, 2021,53(11):3598-3611.
[84] Li N, Wang Q, Wang Y, et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis[J]. Stress, 2019,22(5):592-602.
[84]Li N, Wang Q, Wang Y, et al. 慢性不可预测的轻度应激小鼠粪便微生物群移植通过肠道菌群-炎症-脑轴影响受体小鼠的焦虑样和抑郁样行为[J].压力, 2019,22(5):592-602.
[85] Liu M, Ma J, Xu J, et al. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides[J]. International Journal of Biological Macromolecules, 2024,261:129696.
[85]Liu M, 马 J, 徐军, et al. 粪便菌群移植通过减少肠道菌群衍生的脂多糖来缓解氧化应激和焦亡引起的肠道炎症性腹泻[J].国际生物大分子杂志, 2024,261:129696.
[86] Smieško G, Gusman V, Banović P, et al. Probiotics and fecal bacteriotherapy: the line between deception and treatment[J]. Vojnosanitetski pregled, 2021,78(9):994-999.
[86]Smieško G, Gusman V, Banović P, et al. 益生菌和粪便细菌疗法:欺骗与治疗之间的界限[J].Vojnosanitetski 预测, 2021,78(9):994-999.
[87] Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, et al. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach—A Comprehensive Narrative Review: International Journal of Molecular Sciences[Z]. 2023: 24.
[87]Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, et al. 神经退行性疾病中的肠道微生物代谢组和菌群失调:精神益生菌和粪便微生物群移植作为治疗方法——综合叙述性综述:国际分子科学杂志[Z]。2023:24。