这是用户在 2024-6-8 10:05 为 https://app.immersivetranslate.com/pdf-pro/721e655f-b97d-4c4f-b5e3-cf26743f74a9 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_06_08_5f2b72e29acb8dd4b1d9g

DISSOLVED ORGANIC MATTER IN THE OCEAN
海洋中的溶解有机物

A CONTROVERSY STIMULATES NEW INSIGHTS
一场争议激发了新的见解

ABSTRACT. Containing as much carbon as the atmosphere, marine dissolved organic matter is one of Earth's major carbon reservoirs. With invigoration of scientific inquiries into the global carbon cycle, our ignorance of its role in ocean biogeochemistry became untenable. Rapid mobilization of relevant research two decades ago required the community to overcome early false leads, but subsequent progress in examining the global dynamics of this material has been steady. Continuous improvements in analytical skill coupled with global ocean hydrographic survey opportunities resulted in the generation of thousands of measurements throughout the major ocean basins. Here, observations and model results provide new insights into the large-scale variability of dissolved organic carbon, its contribution to the biological pump, and its deep ocean sinks.
摘要。海洋溶解有机物含有与大气中相当的碳量,是地球上主要的碳储库之一。随着对全球碳循环的科学探究的兴起,我们对其在海洋生物地球化学中的作用的无知变得站不住脚。二十年前相关研究的快速动员要求社区克服早期的错误引导,但随后对这种物质全球动态的研究取得了稳步进展。分析技能的持续改进与全球海洋水文调查机会的增加导致在主要海洋盆地中生成了数千个测量值。在这里,观测和模型结果为溶解有机碳的大尺度变异性、其对生物泵的贡献以及其深海汇提供了新的见解。

BACKGROUND 背景

Two decades ago, in the inaugural volume of Oceanography, the ocean science community learned of a brewing controversy on the role of marine dissolved organic matter (DOM) in the biogeochemical cycling of the major elements (Williams and Druffel, 1988). Historically, DOM had been considered a spatially invariant, biologically refractory pool of carbon (and associated elements) uniformly distributed throughout the deep sea. In 1988, Sugimura and Suzuki shook the marine biogeochemical world by reporting dissolved organic carbon (DOC) and nitrogen (DON) concentrations that exceeded by several fold previously thought-to-be-reliable values. Their results challenged well-established paradigms on how the biological pump functioned in the ocean. Instead of sinking particles being the primary agent of biogenic carbon export to the deep abyss, the "new" values made DOM dominant in the biological pump (Toggweiler, 1989).
二十年前,在《海洋学》的首卷中,海洋科学界得知了关于海洋溶解有机物(DOM)在主要元素的生物地球化学循环中的作用引发了一场争议(Williams 和 Druffel,1988)。历史上,DOM 被认为是一种空间不变、生物上难降解的碳(和相关元素)库,均匀分布在深海中。1988 年,Sugimura 和 Suzuki 通过报告溶解有机碳(DOC)和氮(DON)浓度,超过了之前被认为可靠的数值几倍。他们的结果挑战了有关生物泵在海洋中如何运作的既定范式。新值使 DOM 在生物泵中占主导地位,而不是下沉颗粒是将生物碳输出到深渊的主要因素(Toggweiler,1989)。
Oceanography Vo1.22, No. 4
《海洋学》第 22 卷,第 4 期

REGULAR ISSUE FEATURE 常规问题特色
DANIEL J. REPETA, AND REINER SCHLITZER
丹尼尔·J·雷佩塔和莱纳·施利策
As then assessed by Williams and Druffel (1988), "these elevated concentrations, as yet unconfirmed, have been accepted as gospel by some, as heresy by others." The key phrase there is "as yet unconfirmed." Shouldering the challenge, the marine science community proceeded to expend great resources in testing the new gospel. Communitywide method intercomparison exercises identified the analytical problems to overcome, while individual and smallgroup efforts contributed to their solution (Hedges and Lee, 1993). With improvement of the high-temperature combustion method, the magnitude of DOC concentrations was found to be consistent with the "old, low" concentrations (see discussions in Hansell and Carlson, 2002). With support from the US National Science Foundation, the widespread use of analytical reference materials for DOC determinations was instituted (Hansell and Carlson, 2001; Sharp et al., 2002; Hansell, 2005) to ensure intercomparability of data from vast reaches of the ocean, and continues today.
正如威廉姆斯和德鲁费尔(1988 年)所评估的,“这些尚未得到证实的升高浓度,有些人将其奉为真理,有些人则视之为异端邪说。” 关键短语是“尚未得到证实”。面对挑战,海洋科学界投入了大量资源来测试这一新真理。整个社区的方法比较练习确定了需要克服的分析问题,而个人和小组的努力有助于解决这些问题(Hedges 和 Lee,1993 年)。随着高温燃烧方法的改进,DOC 浓度的大小被发现与“旧的、低的”浓度一致(请参见 Hansell 和 Carlson,2002 年的讨论)。在美国国家科学基金会的支持下,为了确保来自广阔海洋区域的数据的可比性,DOC 测定的分析参考材料的广泛使用被建立起来(Hansell 和 Carlson,2001 年;Sharp 等,2002 年;Hansell,2005 年),并持续至今。
Although the outcome of the "DOM controversy" was seemingly anticlimactic, our curiosity about the role of DOM in ocean biogeochemistry had been piqued. Great community efforts resulted in improved DOC and DON analytical skill that yielded data of higher precision and accuracy, but these slowly emerging data were as yet inadequate to describe the biogeochemical role of DOM. The international Joint Global Ocean Flux Study, World Ocean Circulation Experiment, and Climate Variability and Predictability (CLIVAR) Repeat Hydrography project provided the opportunities required to obtain global observations of DOM variability, its contribution to the biological pump, and its subsequent fate within the ocean interior in unprecedented detail. Below we outline findings on DOC in the global ocean as revealed by the most recent, spatially extensive data sets.
尽管“DOM 争议”的结果似乎有些平淡无奇,但我们对 DOM 在海洋生物地球化学中的作用产生了好奇。社区的巨大努力导致了 DOC 和 DON 分析技能的提高,产生了更高精度和准确性的数据,但这些逐渐出现的数据尚不足以描述 DOM 的生物地球化学作用。国际联合全球海洋通量研究、世界海洋环流实验和气候变率与可预测性(CLIVAR)重复水文学项目提供了获得 DOM 变异、其对生物泵的贡献以及其在海洋内部随后命运的全球观测所需的机会,以前所未有的细节。下面我们将概述最新的、空间广泛的数据集揭示的全球海洋中 DOC 的发现。

DISSOLVED ORGANIC CARBON IN THE BIOLOGICAL PUMP
生物泵中的溶解有机碳

At C (Table 1), marine DOM is the largest ocean reservoir of reduced carbon, holding greater than 200 times the carbon inventory of marine biomass. Oceanic DOM is mostly produced autochthonously by photosynthetic plankton in the surface ocean, and it serves as substrate to vast heterotrophic microbial populations and as a source of nitrogen and phosphorus to nutrientstarved autotrophs. DOC export through overturn of the ocean water column can be an important contributor to the biological pump whereby biogenic carbon is sequestered in the deep ocean, away from the atmosphere.
摄氏度(表 1),海洋 DOM 是还原碳的最大海洋库,其碳库量超过海洋生物量的 200 倍。海洋 DOM 主要是由表层海洋中的光合浮游生物自生产的,它作为底栖微生物群体的底物,同时也是供给养分匮乏的自养生物的氮和磷的来源。通过海洋水柱的翻转,DOC 的输出可以是生物泵的重要贡献者,通过这种方式,生物源碳被封存到深海中,远离大气层。
Despite its large global inventory, DOC exists in the open ocean at extremely low concentrations ( ). Due to limitations in analytical skill, we were until recently unable to resolve concentration gradients in the deep sea, so little had been known about the fate of DOC once it was removed to the deep ocean interior. A few high-precision measurements made to assess the distribution of DOC in the deep ocean indicated an decrease in concentration along the path of the deep global thermohaline circulation (from the deep North Atlantic to the deep North Pacific; Hansell and Carlson, 1998a), but the data were too sparse to develop further insights.
尽管其在全球的库存量很大,DOC 在开放海洋中的浓度极低( )。由于分析技术的限制,直到最近我们才能够解决深海中浓度梯度的问题,因此对于 DOC 一旦被移除到深海内部的命运知之甚少。一些高精度测量结果用于评估深海中 DOC 的分布,表明在深海全球热盐环流路径上(从深北大西洋到深北太平洋;Hansell 和 Carlson,1998a)浓度呈 下降,但数据过于稀疏,无法进一步深入了解。
In 2003, the US CLIVAR Repeat Hydrography project sought to provide the first high-precision, high-resolution global view of DOC distribution and variability in the context of a global ocean hydrographic survey. Since then, more than 20,000 individual DOC values have been determined for the Atlantic, Indian, Pacific, and Southern oceans. Using these observational data in combination with a coupled circulationbiogeochemical model, we add new details on and insights into the role of DOC in the biological pump.
2003 年,美国 CLIVAR 重复水文项目试图在全球海洋水文调查的背景下提供 DOC 分布和变异的第一个高精度、高分辨率的全球视图。从那时起,已经为大西洋、印度洋、太平洋和南极洋确定了超过 20,000 个 DOC 值。利用这些观测数据结合耦合环流生物地球化学模型,我们对 DOC 在生物泵中的作用增加了新的细节和见解。
The biological pump is the sum of processes that transport biogenic carbon from the surface euphotic zone to the ocean's interior where the material is mineralized, thus maintaining the strong vertical gradients of oceanic inorganic carbon. Passively sinking particulate carbon, active vertical
生物泵是一系列将生物源性碳从表层光合带运送到海洋内部的过程总和,这些物质在那里被矿化,从而维持海洋无机碳的强烈垂直梯度。被动下沉的颗粒碳、活跃的垂直迁移和来自表层的 DOC 混合物构成了生物泵的主要组成部分。
Table 1. Global inventories of DOC differentiated by water column depth zone. Values result from modeled inventories of DOC.
表 1. 水柱深度区分的全球 DOC 存量清单。数值来自 DOC 的模拟清单。
Depth Zone 深度区域 Inventory (Pg C) 存量(Pg C)
47
185
477
0-bottom 662
migration by zooplankton, and DOC mixed downward from the surface comprise the main components of the
海洋生物泵的强大贡献最初需要 DOC 中的强烈垂直梯度,然后需要水柱的活跃翻转循环,从而将富含 DOC 的表层水体移动到海洋内部进行最终矿化。
Dennis A. Hansell(dhansell@rsmas. miami.edu) is Professor, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA. Craig A. Carlson is Professor, Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA. Daniel J. Repeta is Senior Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. Reiner Schlitzer is Professor, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, Germany. pump (Ducklow et al., 2001). Strong contributions by DOC to the biological pump initially require strong vertical gradients in DOC and then an active overturning circulation of the water column, thus moving DOC-enriched surface waters to the ocean interior for ultimate mineralization.
Dennis A. Hansell(dhansell@rsmas. miami.edu)是迈阿密大学罗森斯蒂尔海洋和大气科学学院教授,美国佛罗里达州迈阿密市。Craig A. Carlson 是加利福尼亚大学圣巴巴拉分校生态、进化和海洋生物学系教授,美国加利福尼亚州圣巴巴拉市。Daniel J. Repeta 是伍兹霍尔海洋研究所海洋化学与地球化学系高级科学家,美国马萨诸塞州伍兹霍尔。Reiner Schlitzer 是德国不来梅阿尔弗雷德韦格纳极地和海洋研究所教授。生物泵(Ducklow 等人,2001 年)。DOC 对生物泵的强大贡献最初需要 DOC 中的强烈垂直梯度,然后需要水柱的活跃翻转循环,从而将富含 DOC 的表层水体移动到海洋内部进行最终矿化。
Open ocean surface waters exhibit a DOC concentration range of (Figure 1A). High values of are present in the tropical and subtropical systems to ), where vertical stratification of the upper water column favors the slow accumulation of organic matter resistant to biological degradation. Lower concentrations ( ) are observed at the surface in subpolar seas and in the circumpolar Southern Ocean ( ), where low-DOC, deep ocean waters are more readily mixed to the surface. The highly stratified surface Arctic Ocean is enriched in DOC by the input of terrigenous organic matter via high fluvial fluxes to the system (Dittmar and Kattner, 2003).
开放海洋表层水体显示出 DOC 浓度范围为 (图 1A)。高值的 出现在热带和亚热带系统 处,其中上层水柱的垂直分层有利于有机物质缓慢积累,抵抗生物降解。较低浓度( )观察到在亚极海域和南极洲环极海洋表面( )处,那里低 DOC、深海水更容易混合到表面。高度分层的北冰洋表层富含 DOC,通过高河流通量向系统输入陆源有机物质(Dittmar 和 Kattner,2003)。
Autotrophic production in the euphotic zone is the chief source of DOC to the open ocean, while microbial mineralization is the dominant sink. In marine systems, the amount of DOC that is routed through rapid bacterial production may be as much as of primary production (i.e., equivalent to a DOC flux of ; Williams, 2000).
自养生产在光合带是开放海洋 DOC 的主要来源,而微生物矿化是主要的汇。在海洋系统中,通过快速细菌生产的 DOC 量可能达到初级生产的 (即等同于 DOC 通量为 ;Williams,2000)。

Figure 1. Distributions of dissolved organic carbon (DOC; mol kg-1) at and (B). Meridional and zonal lines of data are observed values, while the background field is modeled (see Box 1 for model description). Central elements of the global meridional overturning circulation include net northward upper layer and southward deep layer flows in the Atlantic, and northward flow near bottom in the western Pacific.
图 1. 溶解有机碳(DOC; mol kg-1)在 处的分布(B)。经度和纬度线上的数据是观测值,而背景场是模拟的(有关模型描述,请参见框 1)。全球经向翻转环流的中心要素包括大西洋中净向北的上层流和向南的深层流,以及西太平洋底部附近的向北流。
This biologically labile fraction represents a large flux of carbon in the ocean, but with rapid turnover it constitutes a very small fraction of the ocean DOC inventory. A more biologically resistant fraction, produced in the euphotic zone at of net community productivity ( 2 Pg C yr ; Hansell and Carlson, 1998b), is not immediately mineralized and instead accumulates in the surface ocean as biologically semi-labile DOC (Carlson, 2002; Hansell, 2002).
这种生物易降解的部分代表了海洋中的大量碳通量,但由于快速周转,它构成了海洋 DOC 库的非常小的一部分 。更具生物抵抗力的部分,在光合带以 的净社区生产力(2 Pg C yr ;Hansell 和 Carlson,1998b)产生,不会立即矿化,而是在表层海洋中积累为生物半易降解 DOC(Carlson,2002;Hansell,2002)。
Semi-labile DOC is now recognized to be a family of carbohydrates that have remarkably conservative spectroscopic and chemical properties throughout the global ocean (Aluwihare et al., 1997). The elemental ratios of carbon, nitrogen, and phosphorus, the major sugars released by chemical hydrolysis, and the partitioning of carbon between functional groups all fall within a narrow range for the semi-labile fraction. These properties can be used to trace semilabile DOC into the deep sea, and to illuminate changes in DOC composition that may be related to biolability. Small changes in the amount and ratio of component sugars, which may parallel structural changes acting to decrease DOC lability, occur as semi-labile DOC accumulates to high concentrations in mid-ocean gyres (Skoog and Benner, 1998; Goldberg et al., 2009). Isotopic measurements of carbohydrates in the upper ocean semi-labile DOC pool show significant amounts of bomb (post 1955) radiocarbon, at levels equal to dissolved inorganic carbon. Such high levels of bomb radiocarbon imply turnover of only a few years or less for much of this surface-accumulated material (Repeta and Aluwihare, 2006).
半不稳定 DOC 现在被认为是一类在全球海洋中具有非常保守的光谱和化学性质的碳水化合物家族(Aluwihare 等,1997 年)。碳、氮和磷的元素比、化学水解释放的主要糖类,以及碳在功能基团之间的分配,所有这些都在半不稳定分数的一个狭窄范围内。这些性质可用于追踪半不稳定 DOC 进入深海,并阐明可能与生物可降解性相关的 DOC 组成变化。当半不稳定 DOC 在中太平洋环流中积累到高浓度时,组分糖的数量和比例发生微小变化,这可能与减少 DOC 可降解性的结构变化相似(Skoog 和 Benner,1998 年;Goldberg 等,2009 年)。上层海洋半不稳定 DOC 池中的碳水化合物的同位素测量显示出显着的 bomb(1955 年后)放射性碳,水平等同于溶解无机碳。这种高水平的 bomb 放射性碳意味着这些表面积累物质的周转仅为几年或更短(Repeta 和 Aluwihare,2006 年)。
Semi-labile DOC that accumulates in the subtropical gyres can be exported in all ocean basins by Ekman convergence of surface waters, downwelling the DOC-enriched waters to depths of a few hundred meters (note deepening of DOC-enriched surface waters in gyre centers; Figure 2). Most organic carbon exported and mineralized along this path is returned for exchange with the atmosphere within months to years.
在副热带环流中积累的半不稳定 DOC 可以通过 Ekman 汇聚表层水体在所有海洋盆地中被输出,将富含 DOC 的水体下沉至几百米深度(注意环流中富含 DOC 的表层水体的加深;图 2)。沿着这条路径输出和矿化的大部分有机碳在几个月到几年内就会交换到大气中。

In contrast, DOC transported with the wind-driven surface currents from low to high latitudes is exported to greater depth via meridional overturning circulation and ventilation of the ocean interior, resulting in a longer-term sequestration of the biogenic carbon
相比之下,随着风驱动的表层洋流从低纬度向高纬度运输的 DOC 通过经向翻转环流和海洋内部通风被输出到更深的深度,导致生物源碳的长期封存。

(Figure 2; Copin-Montégut and Avril, 1993; Carlson et al., 1994; Hansell and Carlson, 2001; Hansell et al., 2002; Hopkinson and Vallino, 2005). Waters ventilating the intermediate and deepest portions of the ocean can effectively sequester carbon exported as DOC
(图 2;Copin-Montégut 和 Avril,1993;Carlson 等,1994;Hansell 和 Carlson,2001;Hansell 等,2002;Hopkinson 和 Vallino,2005)。通风中层和深层海洋的水可以有效地封存作为 DOC 输出的碳

A
B
Figure 3. Concentrations of DOC ( ) on density surfaces (A) 26.7 to 27.0 (reference pressure is surface ocean), ventilating the upper ocean, and (B) 41.15 to 41.5 in the Atlantic (black lines; reference pressure ) and in the Pacific (gray lines; reference pressure ). The lighter-density plot (A) approximates the density range for upper intermediate waters ventilated at subpolar latitudes. The higher-density plot (B) follows North Atlantic Deep Water at mid depth in the Atlantic and Lower Circumpolar Deep Water near bottom in the Pacific, both of which are ventilated at higher latitudes. for years to centuries. This process is particularly evident in the Atlantic Ocean, where DOC-enriched subtropical water is transported to the regions of deep-water formation in the far north (Carlson et al., in press; Figure 2).
图 3. 浓度 DOC( )在密度面上(A)26.7 至 27.0(参考压力为海洋表面),通风上层海洋,以及(B)41.15 至 41.5 在大西洋(黑线;参考压力 )和太平洋 (灰线;参考压力 )。较轻密度图(A)近似于在亚极地纬度通风的上中层水的密度范围。较高密度图(B)遵循大西洋中层深水在大西洋中部深度和太平洋底部附近的南极环流深水,这两者在较高纬度通风。长达数年至数个世纪。这一过程在大西洋尤为明显,其中富含 DOC 的亚热带水被输送到远北深水形成区域(Carlson 等,即将出版;图 2)。
The largest deep ocean DOC gradients along intermediate and deep ventilation pathways ( ) are observed in the North Atlantic basin (Figure 3A and 3B, respectively). Vertical input with North Atlantic Deep Water (NADW) formation results in bathypelagic DOC concentrations
在北大西洋盆地(图 3A 和 3B,分别)沿中层和深层通风路径( )观察到最大的深海 DOC 梯度。随着北大西洋深水(NADW)形成的垂直输入导致深海 DOC 浓度

the intermediate and deep ventilation pathways, then decreases to by the equator (Figures 1B and 3). DOC concentrations in the deep South Atlantic are further depleted to at (Figure 3B). Biotic remineralization of the exported DOC as well as dilution with northward flowing, DOC-impoverished water masses at intermediate (Antarctic Intermediate Water; AAIW) and bottom (Antarctic Bottom Water; AABW) depths (Figure 2) create this deep Atlantic meridional gradient. The deep Atlantic, including export by intermediate, deep, and bottom water formation in both the north and the south (totaling , where ), represents a DOC sink of (calculated as water mass formation rates times DOC concentration gradients from Figure 3).
中间和深层通气途径,然后在赤道降至 (图 1B 和 3)。南大西洋深层的 DOC 浓度在 进一步减少至 (图 3B)。出口的 DOC 的生物重矿化以及与中间(南极中间水;AAIW)和底部(南极底层水;AABW)深度北向流动的贫 DOC 水团的稀释(图 2)形成了这种深大西洋纬向梯度。深大西洋,包括北部和南部中间、深层和底层水的形成的出口(总计 ,其中 ),代表了 的 DOC 汇(根据图 3 的水团形成速率和 DOC 浓度梯度计算)。
The isopycnal concentration gradients between and (Figure 3) in both the Atlantic and the Pacific suggest net input and subsequent removal of DOC with waters formed in the Southern Ocean (unless there is a bias imparted by the limited locations of sampling).
大西洋和太平洋之间的等密度线浓度梯度在 之间(图 3)表明,由南大洋形成的水体存在净输入和随后的 DOC 去除(除非受到采样位置有限的偏差的影响)。

Box 1. Model Description
盒 1. 模型描述

The DOC model is based on a coupled physical/biogeochemical model (Schlitzer, 2002, 2007), which is fitted to the global ocean distributions of temperature, salinity, oxygen, nutrients, carbon, radiocarbon , and chlorofluorocarbons CFC-11 and CFC-12 by means of an automatic optimization procedure. The model explains the global , CFC-11, and CFC-12 distributions extremely well, and thus supposedly has realistic global ocean overturning rates as well as realistic ventilation rates and material transports from the surface to deeper layers. Ventilation and vertical mixing are essential processes for the transport of DOC from the near-surface production layers into the intermediate and deep layers of the ocean.
DOC 模型基于耦合的物理/生物地球化学模型(Schlitzer,2002,2007),通过自动优化程序拟合到全球海洋的温度、盐度、氧气、营养物质、碳、放射性碳 和氯氟烃 CFC-11 和 CFC-12 的分布。该模型非常好地解释了全球 、CFC-11 和 CFC-12 的分布,因此据说具有现实的全球海洋翻转速率以及现实的通气速率和物质从表层向更深层的运输。通气和垂直混合是将 DOC 从近表面生产层运输到海洋中间和深层的关键过程。
DOC in the model is decomposed into three pools: two pools of semi-labile DOC with lifetimes of about three and 10 years, and a pool representing refractory with a lifetime of about 15,000 years. The lifetimes of the fastturnover, semi-labile pools were determined on the basis of empirical correlations of DOC with water mass age from chlorofluorocarbon data. The lifetime of the refractory DOC was adjusted to obtain an optimal fit with deep ocean DOC data. DOC is produced in the euphotic zone at rates proportional to the square root of primary production, as estimated from satellite data. Absolute production rates were adjusted to achieve an optimal fit with surface DOC data.
模型中的 DOC 被分解为三个池:两个半不稳定 DOC 池,寿命约为三年和十年,以及代表难降解 的池,寿命约为 15,000 年。快速周转、半不稳定池的寿命是基于 DOC 与氯氟烃数据的水团年龄的经验相关性确定的。难降解 DOC 的寿命经过调整以获得与深海 DOC 数据最佳拟合。DOC 在光合带产生,产量与初级生产的平方根成正比,根据卫星数据估算。绝对产量经过调整以实现与表层 DOC 数据的最佳拟合。
Downward DOC fluxes (Figure 4) are global integrals of local fluxes based on model vertical velocities, mixing coefficients, and DOC concentrations at the considered depths. Model downward POC fluxes (Figure 4) are determined by the automatic optimization procedure using the constraint to reproduce measured dissolved nutrient and oxygen distributions realistically.
向下的 DOC 通量(图 4)是基于模型垂直速度、混合系数和考虑深度处的 DOC 浓度的局部通量的全球积分。模型向下的 POC 通量(图 4)是通过自动优化程序确定的,使用约束条件实现实际地再现测量的溶解养分和氧气分布。

DOC is exported with deep ventilation there, then transported north as nearbottom water flow in both the Atlantic (as AABW) and the Pacific (as Lower Circumpolar Deep Water; LCDW). Bottom waters of the Pacific Ocean gradually lose carbon as they move northward; DOC is in the circumpolar waters of the South Pacific, decreasing to (Figure 3B) as the water slowly invades the deep North Pacific (Figure 1B). Unlike the North Atlantic, water masses at great depth in the North Pacific are not locally formed and so are greatly aged. As the near-bottom water mass enters the North Pacific from the south, it gains buoyancy via vertical mixing, rising to the mid water column where it returns south as Pacific Deep Water (PDW; Figure 2). During southward transit of PDW, DOC continues to decline, reaching a global low concentration of at mid depth in the South Pacific. Including both intermediate and bottom water ventilation of the Pacific Ocean ( ), the basin is a sink for as DOC.
DOC 在深层通风的情况下被输送到北部,分别在大西洋(作为 AABW)和太平洋(作为较低环极深水;LCDW)中以近底水流的形式流动。太平洋底层水在向北移动时逐渐失去碳;DOC 在南太平洋环极水域中为 ,随着水体缓慢侵入深北太平洋(图 1B),逐渐减少至 (图 3B)。与北大西洋不同,北太平洋深层水团不是在当地形成的,因此年龄较大。当近底水团从南部进入北太平洋时,通过垂直混合获得浮力,上升到中层水柱,然后返回南部作为太平洋深水(PDW;图 2)。在 PDW 向南传输过程中,DOC 继续下降,达到南太平洋中层的全球最低浓度 。包括太平洋的中层和底层水通风( ),该海盆是 DOC 的 汇。
On a global ocean basis, model results indicate that semi-labile DOC undergoes net export to depths at
根据模型结果,在全球海洋范围内,半不稳定 DOC 经历净向深度 的输出

1.8 , or of global export production (Figure 4). Because DOC concentrations in the surface layer are highest at low latitudes (Figure 1), it is the relatively shallow water masses ventilated with those surface waters
1.8 ,或全球生产输出的 (图 4)。由于表层 DOC 浓度在低纬度最高(图 1),因此通风这些表层水的相对较浅水团
Figure 5. Concentrations of DOC plotted against and depth along line P16 in the Pacific Ocean. Semi-labile DOC is removed relatively rapidly (note initial drop in DOC concentration with decreasing radiocarbon content), primarily by biotic processes. Refractory DOC is lost more slowly, perhaps due to abiotic transformation of the DOC to particles. Note nonlinearity of depth (color) scale.
图 5。在太平洋 P16 线上根据 和深度绘制的 DOC 浓度。半不稳定 DOC 被相对迅速去除(注意随着放射性碳含量降低而初始 DOC 浓度下降),主要是通过生物过程。难降解 DOC 失去速度较慢,可能是由于 DOC 向颗粒的非生物转化。请注意深度(颜色)比例尺的非线性。
that receive most of the exported DOC. Only of the exported DOC survives to depths , so the contribution of DOC export decreases relative to particulate organic carbon (POC) export with increasing depths (Figure 4). As such, DOC mineralization makes its greatest contribution to oxygen consumption in the upper ocean (up to of oxygen consumption at ; Doval and Hansell, 2000; Abell et al., 2000) and its least at greater depths ( in deep waters; Arístegui et al., 2002; Carlson et al., in press).
大多数出口 DOC 的地方。只有 的出口 DOC 存活到 深度,因此随着深度增加,DOC 出口相对于颗粒有机碳(POC)出口的贡献减少(图 4)。因此,DOC 矿化在上层海洋中对氧消耗做出了最大贡献(最多 处的氧消耗;Doval 和 Hansell,2000;Abell 等,2000),在更深处的贡献最小( 在深水中;Arístegui 等,2002;Carlson 等,即将发表)。

DEEP OCEAN SINKS FOR
深海沉积物

EXPORTED DOC 出口 DOC

At a global export rate of , the calculated residence time for the full ocean DOC inventory of C is 370 years. Most of the oceanic DOC, however, is highly depleted in radiocarbon and is therefore reactive only on a multi-millennial time scale (referred to here as refractory DOC, which survives several cycles of interior ocean circulation). It is the semi-labile fraction that is most reactive during cycling through the deep ocean. Spectroscopic and chemical analyses indicate the presence of semilabile carbohydrates even in the oldest waters of the deep North Pacific basin. Isotopic values (per mil deviation from that in nineteenth century ) of semi-labile DOC in the deep North Pacific are equal to values, but up to 300 per mil enriched relative to total DOC. These findings confirm that deep sea DOC is a mixture of chemically distinct forms of carbon of different radiocarbon ages (the semi-labile and refractory fractions). DOC concentrations plotted against in the Pacific Ocean distinguishes these two fractions by time scale of removal (Figure 5). The semi-labile pool (with annual to multi-decadal time scale of removal) is largely present in the upper ocean ( ) and exhausted at greater depths (Figure 2). A portion of the refractory fraction (or perhaps a longerlived semi-labile fraction) is removed during several hundred years of deep ocean circulation.
在全球 的出口速率下,完整海洋 DOC 库存的计算滞留时间为 370 年。然而,大部分海洋 DOC 在放射性碳方面严重缺乏,因此仅在多千年时间尺度上具有反应性(在此称为难降解 DOC,它可以在多次内部海洋循环中存活)。在深海循环过程中,半易降解分数是最具反应性的。光谱和化学分析表明,即使在深北太平洋盆地最古老的水域中,也存在半易降解的碳水化合物。深北太平洋中半易降解 DOC 的同位素 值(相对于 19 世纪 的偏差)等于 值,但相对于总 DOC 富集了高达 300 个千分点。这些发现证实了深海 DOC 是不同放射性碳年龄的化学不同形式碳的混合物(半易降解和难降解分数)。在太平洋中,DOC 浓度与 的关系通过移除时间尺度(图 5)区分了这两个分数。半易降解池(具有年度到多年时间尺度的移除)主要存在于上层海洋( )并在更深处耗尽(图 2)。在数百年的深海循环中,部分难降解分数(或者可能是更长寿的半易降解分数)被移除。
DOC concentrations in the deep ocean range from 34 to , with the gradient established over a single circulation of the abyss (Figures 2 and 5). The mechanisms of loss are not understood, but both biotic and abiotic processes are likely involved. Large increases in apparent oxygen utilization (AOU) with aging of water masses reveal that heterotrophic processes dominate the deep ocean carbon cycle. The observed relationship between DOC and AOU in deep waters indicates that DOC flux supports of bathypelagic respiration (Arístegui et al., 2002; Carlson et al., in press). Overall consumption rates are low in the bathypelagic relative to the surface waters, but total respiration in the dark ocean is a major component of the carbon flux in the biosphere (Arístegui et al., 2003). Specific prokaryotic respiration rates at depth can be greater than observed in the surface ocean, indicating that individual meso- and bathypelagic prokaryotes can be highly active (Reinthaler et al., 2006). Short-term radioisotope and utilization bioassays provide estimates of prokaryotic DOC metabolism in the bathypelagic, ranging from 0.003-0.15 (Williams and Carlucci, 1975; Turley and Mackie, 1994; Nagata et al., 2000; Ingalls et al., 2006) to as high as 22-82 (Reinthaler et al., 2006). The highest rates of prokaryotic carbon metabolism reported must be
深海中 DOC 浓度范围从 34 到 不等,该梯度是在深海循环中建立的(见图 2 和 5)。损失机制尚不清楚,但可能涉及生物和非生物过程。随着水团老化,明显的氧利用增加(AOU)表明异养过程主导深海碳循环。深水中 DOC 与 AOU 之间的观察到的关系表明 DOC 通量支持 的深层呼吸(Arístegui 等,2002; Carlson 等,即将发表)。总体上,与表层水相比,深层水中的 消耗率较低,但黑暗海洋中的总呼吸是生物圈碳通量的主要组成部分(Arístegui 等,2003)。深度处的特定原核呼吸速率可能高于表层海洋中观察到的速率,表明个别中、深层原核生物可能非常活跃(Reinthaler 等,2006)。短期放射性同位素和 利用生物测定提供了深层中原核 DOC 代谢的估计,范围从 0.003-0.15 (Williams 和 Carlucci,1975; Turley 和 Mackie,1994; Nagata 等,2000; Ingalls 等,2006)到高达 22-82 (Reinthaler 等,2006)。报道的最高原核碳代谢速率必须

supported with supply of new organic matter such as dissolution of sinking POC (Cherrier et al., 1999; Hansman et al., 2009) or by production of organic matter via archaeal chemoautotrophy (Ingalls et al., 2006; Hansman et al., 2009), though these rates may have been overestimated due to limitations in methodologies as discussed in Reinthaler et al. (2006) and Burd et al. (in press). Further measures of the content of deep-sea bacterioplankton DNA are needed to provide insight on the sources of organic matter supporting deep heterotrophic microbial production.
通过提供新有机物质的供应来支持,例如溶解下沉 POC(Cherrier 等,1999; Hansman 等,2009)或通过古菌化学自养合成有机物质(Ingalls 等,2006; Hansman 等,2009),尽管这些速率可能由于方法学限制而被高估,如 Reinthaler 等(2006)和 Burd 等(即将发表)中所讨论的。需要进一步测量深海细菌浮游生物 DNA 的 含量,以揭示支持深层异养微生物生产的有机物质来源。
Refractory DOC removal has also been ascribed to two abiotic processes: photolysis by ultraviolet (UV) irradiation at the ocean surface (Mopper et al., 1991) and transformation to and/or interaction with suspended particles (Druffel et al., 1992). Once exposed to surface UV irradiation, refractory DOC is altered via photo-oxidation and made susceptible to microbial remineralization (Kieber et al., 1989; Mopper et al., 1991; Benner and Biddanda, 1998; Anderson and Williams, 1999). The depleted values of surface bacterioplankton DNA indicate the uptake and incorporation of this old DOC, presumably made bioavailable through photolysis (Cherrier et al., 1999). However, photolysis is restricted to the surface ocean and thus cannot account for the DOC gradients observed in the deep ocean (Figures 2 and 5). Organic gel formation by deep ocean DOC (leading to particle formation), or adsorption of these organic gels onto suspended and sinking particles, are abiotic particle interaction processes that may contribute to a reduction in DOC concentrations. Biopolymers present in seawater, such as DOC, gels, and transparent exopolymers (Wells, 1998; Carlson, 2002; Passow and Alldredge, 2004), can move organic molecules up the particle size spectrum to sizes capable of sinking through the water column (Verdugo et al., 2004; Engel et al., 2004). Evidence for stripping -depleted, refractory DOC by one or both of these processes is the lower than expected value of suspended POC in deep water, with a mean reduction in value in deep sea POC compared to suspended POC located in the surface ocean (Druffel and Williams, 1990; Druffel et al., 1996, 1998). If such removal processes are at work, then of C on suspended POC in the deep central North Pacific could be due to adsorption (or addition via gel formation) of old DOC (Druffel and Williams, 1990). With deep-ocean-suspended POC concentrations of and residence times of 5-10 years (Bacon and Anderson, 1982), the removal rate of DOC by this process ranges from 1.4-2.8 nmol C kg .
难降解的 DOC 去除也被归因于两种非生物过程:在海洋表面紫外线(UV)照射下的光解(Mopper 等,1991 年)和转化为和/或与悬浮颗粒相互作用(Druffel 等,1992 年)。一旦暴露在表面紫外线照射下,难降解的 DOC 通过光氧化被改变,并变得容易受微生物重矿化(Kieber 等,1989 年;Mopper 等,1991 年;Benner 和 Biddanda,1998 年;Anderson 和 Williams,1999 年)。表面细菌浮游 DNA 的降低 值表明这种陈旧 DOC 的摄取和吸收,可能是通过光解使其变得生物可利用(Cherrier 等,1999 年)。然而,光解仅限于表面海洋,因此无法解释深海观察到的 DOC 梯度(图 2 和 5)。深海 DOC 通过有机凝胶形成(导致颗粒形成),或这些有机凝胶吸附到悬浮和下沉颗粒上,是可能导致 DOC 浓度降低的非生物颗粒相互作用过程。海水中存在的生物聚合物,如 DOC、凝胶和透明外聚物(Wells,1998 年;Carlson,2002 年;Passow 和 Alldredge,2004 年),可以将有机分子移动到能够通过水柱下沉的尺寸(Verdugo 等,2004 年;Engel 等,2004 年)。通过这些过程之一或两者剥离 -降解的难降解 DOC 的证据是深水中悬浮 POC 的 值低于预期,与表面海洋中的悬浮 POC 相比,深海 POC 的 值平均降低 值(Druffel 和 Williams,1990 年;Druffel 等,1996 年,1998 年)。如果这样的去除过程起作用,那么北太平洋中央深海悬浮 POC 上的 C 的 可能是由于陈旧 DOC 的吸附(或通过凝胶形成的添加)(Druffel 和 Williams,1990 年)。 在深海悬浮 POC 浓度为 ,滞留时间为 5-10 年(Bacon 和 Anderson,1982)的情况下,通过这一过程去除 DOC 的速率范围为 1.4-2.8 nmol C kg
This DOC removal rate, calculated from the content of suspended particles in the deep ocean, can be tested using the data presented here. Figures 2 and depict the concentrations of DOC in the deep Pacific Ocean, demonstrating the input of relatively DOC-enriched waters from the circumpolar deep layer of the Southern Ocean, the transport of that deep water to the north, its slow removal in transit, and the southward return of DOC-impoverished water as PDW (emanating from the North Pacific) at mid depth. The transit time from the Southern Ocean to the mid depths of the North Pacific Ocean is years (Stuiver et al.,
通过深海悬浮颗粒物中的 含量计算得出的 DOC 去除速率可以使用此处呈现的数据进行测试。图 2 和 展示了太平洋深层水中 DOC 的浓度,显示了相对富含 DOC 的水从南极环流深层向北部的输入,这些深层水的缓慢去除过程,以及来自北太平洋的 PDW(在中层产生)的贫含 DOC 水向南回流。从南极到北太平洋中层的传输时间为 年(Stuiver 等,1983; Van Aken,2007)。DOC 浓度与无机碳的放射性碳含量之间的相关性表明,在深太平洋存在 的净 DOC 去除速率(从南太平洋 DOC 与放射性碳年龄的线性回归计算得出 ,使用图 5 中的数据在 )。从水团年龄和 DOC 浓度梯度评估的 DOC 去除速率与 Druffel 和 Williams(1990)基于悬浮颗粒物的同位素组成得出的{{3}}去除速率一致。速率的一致性表明,在深太平洋中去除的大部分 DOC 可能是通过与颗粒物的非生物相互作用实现的。

1983; Van Aken, 2007). The correlation between DOC concentrations and radiocarbon content of inorganic carbon indicates a net DOC removal rate of in the deep Pacific (calculated from linear regression of DOC against radiocarbon age in the South Pacific ], using data from Figure 5 at ). The DOC removal rate assessed from water mass age and DOC concentration gradients is consistent with the Druffel and Williams (1990) removal rate of based on the isotopic composition of the suspended particles. Agreement in rates suggests that a large fraction of the DOC removed in the deep Pacific may be via abiotic interactions with particles.
Refractory DOC removal by abiotic interaction with particles is estimated to be if the process occurs at throughout the volume of the ocean (both refractory DOC and suspended POC are ubiquitous, so the process should be as well). This loss rate means a residence time for refractory DOC of 12,500 years (assuming a global mean refractory DOC concentration of , given a global inventory of , or of the global inventory of total DOC). The radiocarbon age of DOC measured in the deep central North Pacific is 6000 years (Williams and Druffel, 1987; Bauer et al., 2002), so photolysis at the ocean surface likely makes up the balance of refractory DOC removal by abiotic processes.
通过与颗粒物的非生物相互作用,难降解 DOC 的去除估计为 ,如果该过程在整个海洋体积中发生(难降解 DOC 和悬浮 POC 普遍存在,因此该过程也应如此)。这种损失速率意味着难降解 DOC 的停留时间为 12,500 年(假设全球平均难降解 DOC 浓度为 ,考虑到全球存量为 ,或者是总 DOC 全球存量的 )。在深处中太平洋中心测得的 DOC 的放射性碳年龄为 6000 年(Williams 和 Druffel,1987 年;Bauer 等,2002 年),因此海洋表面的光解很可能占非生物过程去除难降解 DOC 的平衡部分。
DOC removal via abiotic interaction with particles equals of the 0.3-0.4 of sinking particulate organic carbon reaching the deep seafloor, but it is four times the rate of
通过与颗粒物的非生物相互作用,DOC 的去除量等于 的 0.3-0.4 到达深海底部的下沉颗粒有机碳量,但是是有机碳在深海底泥沉积中的四倍速率(Lochte 等,2003 年;Dunne 等,2007 年)。难降解 DOC 去除和沉积速率之间的不平衡表明,大多数源自 DOC 的、非生物形成的颗粒在仍悬浮在水柱中或落到海底后就被矿化。如果是这样,难降解 DOC 转化为颗粒物是将难降解有机物转化为更易生物利用形式的重要机制。如果难降解 DOC 去除程度是时间的一阶函数(图 5),那么深海中出现的最低 DOC 浓度应该随着其停留时间的变化而变化。停留时间较长的深海应该导致较低的最低 DOC 浓度,而停留时间较短的系统将导致升高的最低值。

organic carbon sequestration in deep ocean sediments (Lochte et al., 2003; Dunne et al., 2007). This imbalance between refractory DOC removal and sediment sequestration rates indicates that most of the DOC-derived, abiotically formed particles are mineralized while still suspended in the water column or after falling to the ocean bottom. If so, the conversion of refractory DOC to particles is an important mechanism for transforming recalcitrant organic matter to a more biologically available form. If the extent of refractory DOC removal is a first-order function of time (Figure 5), then the minimum DOC concentrations occurring in the deep ocean should vary with its residence time. A more slowly ventilated deep ocean should result in lowered minimum DOC concentrations while a more rapidly ventilated system will result in elevated minima.
结论性陈述

CONCLUDING STATEMENTS 通过与颗粒物的非生物相互作用,难降解 DOC 的去除估计为{{0}},如果该过程在整个海洋体积中发生(难降解 DOC 和悬浮 POC 普遍存在,因此该过程也应如此)。这种损失速率意味着难降解 DOC 的停留时间为 12,500 年(假设全球平均难降解 DOC 浓度为{{2}},考虑到全球存量为{{3}},或者是总 DOC 全球存量的{{4}})。在深处中太平洋中心测得的 DOC 的放射性碳年龄为 6000 年(Williams 和 Druffel,1987 年;Bauer 等,2002 年),因此海洋表面的光解很可能占非生物过程去除难降解 DOC 的平衡部分。

Turning our attention so intently to DOM two decades ago highlighted how little we knew about its role in biogeochemical cycles. Although the elevated concentrations of DOM failed to hold up under the scrutiny of the scientific method, vindicating those shouting "heresy," the renewed focus on DOM resulted in vast new insights that continue to grow. Traditional paradigms of the ocean carbon cycle have been revised as we now recognize DOC as an important export term in the biological pump. Great challenges remain to unlock the secret messages held in the molecular composition of DOM (Hedges, 2002), and to develop tracers for the nonadvective additions of DOM to the deep interior ocean (e.g., by particle dissolution and chemoautotrophy). Advances in these techniques will pull back the next thin sheet of the knowledge onion, exposing the community to new and unanticipated opportunities.
二十年前,我们如此专注于 DOM,突显了我们对其在生物地球化学循环中作用知之甚少。尽管 DOM 的浓度未能经受科学方法的审查,证明了那些高喊“异端”的人是正确的,但对 DOM 的重新关注带来了广泛的新见解,这些见解仍在不断增长。随着我们现在将 DOC 视为生物泵中的重要输出项,海洋碳循环的传统范式已被修订。要解开 DOM 分子组成中隐藏的秘密信息(Hedges,2002),并开发用于 DOM 非平流添加到深海内部的示踪剂(例如,通过颗粒溶解和化能自养作用)仍然存在巨大挑战。这些技术的进步将揭开知识洋葱的下一层薄膜,为社区展示新的、意想不到的机遇。
The new highly spatially resolving DOM data contradict the previously held view of an invariant pool of refractory carbon, revealing portions of the DOM pool that are quite dynamic even in the deepest ocean interior and operating on time scales that are greater than can be assessed with traditional biological (incubation) assays. These new DOM data, available to anyone who wishes to work with them (http://cdiac.ornl.gov/oceans/ RepeatSections/repeat_map.html), allow the community to pose second-order questions and form testable hypotheses (e.g., regarding the fate of exported DOM and mechanisms of removal). The still-evolving DOM story is a testament to the marine biogeochemistry community's (and its funding agencies') dogged pursuit of new knowledge.
新的高空间分辨率 DOM 数据与先前认为的不变的难降解碳库的观点相矛盾,揭示了即使在最深的海洋内部,DOM 库的部分是相当动态的,并且在传统生物(孵育)测定无法评估的时间尺度上运作。这些新的 DOM 数据可供任何希望使用的人使用(http://cdiac.ornl.gov/oceans/RepeatSections/repeat_map.html),使社区能够提出二阶问题并形成可检验的假设(例如,关于输出 DOM 的命运和去除机制)。不断发展的 DOM 故事证明了海洋生物地球化学社区(及其资助机构)对新知识的坚定追求。

ACKNOWLEDGEMENTS 致谢

The authors are indebted to the captains, ships' crews, chief scientists, and participating scientists of the US CLIVAR Repeat Hydrography cruises. We thank Meredith Meyers and Elisa Halewood at the University of California at Santa Barbara and Charles Farmer and Wenhao Chen at the University of Miami for their dedication to the projects. The US National Science Foundation supported this work under grants OCE 0752972 to DAH and CAC, OCE 0751733 and BIO 0792384 to DJR. The Gordon and Betty Moore Foundation also provided support to DJR.
作者们感谢美国 CLIVAR 重复水文航次的船长、船员、首席科学家和参与科学家。我们感谢加利福尼亚大学圣巴巴拉分校的 Meredith Meyers 和 Elisa Halewood,以及迈阿密大学的 Charles Farmer 和 Wenhao Chen 对项目的奉献。美国国家科学基金会在 DAH 和 CAC 获得的资助号为 OCE 0752972,以及在 DJR 获得的资助号为 OCE 0751733 和 BIO 0792384。戈登和贝蒂·摩尔基金会也为 DJR 提供了支持。

REFERENCES 参考文献

Abell, J., S. Emerson, and P. Renaud. 2000. Distribution of TOP, TON, TOC in the North Pacific subtropical gyre: Implications for nutrient supply in the surface ocean and remineralization in the upper thermocline. Journal of Marine Research 58:203-222.
Abell, J., S. Emerson, and P. Renaud. 2000. 北太平洋亚热带环流区 TOP、TON、TOC 的分布:对表层海洋营养物供应和上层热层再矿化的影响。《海洋研究杂志》58:203-222。
Aluwihare, L.I., D.J. Repeta, and R.F. Chen. 1997. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387:166-169.
Aluwihare, L.I., D.J. Repeta, and R.F. Chen. 1997. 海表水中溶解有机碳的主要生物聚合物成分。《自然》387:166-169。
Anderson, T.R., and P.J. leB. Williams. 1999. A one-dimensional model of dissolved organic carbon cycling in the water column incorporating combined biological-photochemical decomposition. Global Biogeochemical Cycles 13:337-349.
Anderson, T.R., and P.J. leB. Williams. 1999. 水柱中溶解有机碳循环的一维模型,包括生物-光化学分解的结合。《全球生物地球化学循环》13:337-349。
Arístegui, J., S. Agustí, and C.M. Duarte. 2003. Respiration in the dark ocean. Geophysical Research Letters 30, 1041, doi:10.1029/2002GL016227.
Arístegui, J., S. Agustí, and C.M. Duarte. 2003. 暗海洋中的呼吸。《地球物理研究通讯》30, 1041, doi:10.1029/2002GL016227。
Arístegui, J., C.M. Duarte, S. Agustí, M. Doval, A. Álvarez-Salgado, and D.A. Hansell. 2002. Dissolved organic carbon support of respiration in the dark ocean. Science 298:1,967.
Bacon, M., and R.F. Anderson. 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. Journal of Geophysical Research 87:2,045-2,056.
Bauer, J.E., P.M. Williams, and E.R.M. Druffel. 2002. activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357:667-670.
Bauer, J.E., P.M. Williams, and E.R.M. Druffel. 2002. 北太平洋和蔚蓝海中溶解有机碳分数的 活性。自然 357:667-670。
Benner, R., and B. Biddanda. 1998. Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnology and Oceanography 43:1,373-1,378
Benner, R., and B. Biddanda. 1998. 表面和深海溶解有机物的光化学转化:对细菌生长的影响。湖沼学和海洋学 43:1,373-1,378。
Burd, A.B., D.A. Hansell, D.K. Steinberg, T.R. Anderson, J. Arístegui, F. Baltar, R. Beaupré, K.O. Buesseler, F. DeHairs, G.A. Jackson, and others. In press. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets? Deep-Sea Research Part II.
Burd, A.B., D.A. Hansell, D.K. Steinberg, T.R. Anderson, J. Arístegui, F. Baltar, R. Beaupré, K.O. Buesseler, F. DeHairs, G.A. Jackson, and others. In press. 评估中、深层生物活动的地球化学和生物化学指标之间明显不平衡:目前碳预算计算存在什么问题?深海研究第二部分。
Carlson, C.A. 2002. Production and removal processes. Pp. 91-151 in Biogeochemistry of Marine Dissolved Organic Matter. D.A. Hansell and C.A. Carlson, eds, Academic Press, San Diego, CA.
Carlson, C.A. 2002. 生产和去除过程。见于《海洋溶解有机物的生物地球化学》第 91-151 页。D.A. Hansell 和 C.A. Carlson 编,学术出版社,圣地亚哥,加利福尼亚。
Carlson, C.A., H.W. Ducklow, and A.F. Michaels. 1994 Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405-408.
卡尔森(Carlson, C.A.),达克洛(H.W. Ducklow),迈克尔斯(A.F. Michaels)。1994 年,西北萨尔加索海光合带溶解有机碳的年通量。《自然》371:405-408。
Carlson, C.A., D.A. Hansell, N.B. Nelson, D.A. Siegel, W.M. Smethie Jr., S. Khatiwala, M.M. Meyers, and E. Wallner. In press. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Research Part II.
卡尔森(Carlson, C.A.),汉塞尔(D.A. Hansell),纳尔逊(N.B. Nelson),西格尔(D.A. Siegel),斯梅西(W.M. Smethie Jr.),卡蒂瓦拉(S. Khatiwala),迈尔斯(M.M. Meyers),沃尔纳(E. Wallner)。即将发表。北大西洋盆地中、深层中水域的溶解有机碳输出及随后的重矿化。《深海研究第二部分》。
Cherrier, J., J.E. Bauer, E.R.M. Druffel, R.B. Coffin, and J.P. Chanton. 1999. Radiocarbon in marine bacteria: Evidence for the ages of assimilated carbon. Limnology and Oceanography 44:730-736.
谢里尔(Cherrier, J.),鲍尔(J.E. Bauer),德鲁费尔(E.R.M. Druffel),科芬(R.B. Coffin),查顿(J.P. Chanton)。1999 年。海洋细菌中的放射性碳:同化碳的年龄证据。《湖沼与海洋学》44:730-736。
Copin-Montégut, C., and B. Avril. 1993. Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Research Part I 40:1,963-1,972.
科平-蒙泰古(Copin-Montégut, C.),阿维尔(B. Avril)。1993 年。地中海西北部溶解有机碳的垂直分布和时间变化。《深海研究第一部分》40:1,963-1,972。
Dittmar, T., and G. Kattner. 2003. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Marine Chemistry 83:103-120.
迪特马尔(Dittmar, T.),卡特纳(G. Kattner)。2003 年。北冰洋河流和陆架生态系统的生物地球化学:一项综述。《海洋化学》83:103-120。
Doval, M.D., and D.A. Hansell. 2000. Organic carbon and apparent oxygen utilization in the western South Pacific and central Indian Ocean. Marine Chemistry 68:249-264.
多瓦尔(Doval, M.D.),汉塞尔(D.A. Hansell)。2000 年。南太平洋西部和印度洋中部的有机碳和表观氧利用。《海洋化学》68:249-264。
Druffel, E.R.M., and P.M. Williams. 1990. Identification of a deep marine source of particulate organic carbon using bomb . Nature 347:172-174.
Druffel, E.R.M., J.E. Bauer, P.M. Williams, S. Griffin, and D.M. Wolgast. 1996. Seasonal variability of particulate organic radiocarbon in the Northeast Pacific Ocean. Journal of Geophysical Research 101:20,543-20,552.
Druffel, E.R.M., S. Griffin, J.E. Bauer, D.M. Wolgast, and X.-C. Wang. 1998. Distribution of particulate organic carbon and radiocarbon in the water column from the upper slope to the abyssal NE Pacific Ocean. Deep-Sea Research Part II 45:667-687.
Druffel, E.R.M., P.M. Williams, J.E. Bauer, and J.R. Ertel. 1992. Cycling of dissolved and particulate organic matter in the open ocean. Journal of Geophysical Research 97(C10):15,639-15,659.
Ducklow, H.W., D.K. Steinberg, and K.O. Buesseler. 2001. Upper ocean carbon export and the biological pump. Oceanography 14(4):50-58. Available online at: http://tos.org/oceanography/ issues/issue_archive/14_4.html (accessed September 24, 2009).
Dunne, J.P., J.L. Sarmiento, and A. Gnanadesikan. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochemical Cycles 21, GB4006, doi:10.1029/2006GB002907.
Engel, A., S. Thoms, U. Riebesell, E. Rochelle-Newall, and I. Zondervan. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929-932.
Goldberg, S.J., C.A. Carlson, D.A. Hansell, N.B. Nelson, and D.A. Siegel. 2009. Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the northwestern Sargasso Sea. Deep Sea Research Part I 56:672-685.
Hansell, D.A. 2002. DOC in the global ocean carbon cycle. Pp. 685-715 in Biogeochemistry of Marine Dissolved Organic Matter. D.A. Hansell and C.A. Carlson, eds, Academic Press, San Diego, CA.
Hansell, D.A. 2005. Dissolved organic carbon reference material program. Eos, Transactions, American Geophysical Union 86(35):318.
Hansell, D.A., and C.A. Carlson. 1998a. Deep ocean gradients in dissolved organic carbon concentrations. Nature 395:263-266.
Hansell, D.A., and C.A. Carlson. 1998b. Net community production of dissolved organic carbon. Global Biogeochemical Cycles 12:443-453.
Hansell, D.A., and C.A. Carlson. 2001. Marine dissolved organic matter and the carbon cycle. Oceanography 14(4):41-49. Available online at: http://tos.org/oceanography/issues/issue_ archive/14_4.html (accessed September 24, 2009).
Hansell, D.A., and C.A. Carlson. 2002. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, .
Hansell, D.A., C.A. Carlson, and S. Suzuki. 2002. Dissolved organic carbon export with North Pacific Intermediate Water formation. Global Biogeochemical Cycles 16:77-84.
Hansman, R.L., S. Griffin, J.T. Watson, E.R.M. Druffel, A.E. Ingalls, A. Pearson, and L.I. Aluwihare. 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proceedings of the National Academy of Sciences of the United States of America 106:6,513-6,518.
Hedges, J.I. 2002. Why dissolved organics matter? Pp. 1-33 in Biogeochemistry of Marine Dissolved Organic Matter. D.A. Hansell and C.A. Carlson, eds, Academic Press, San Diego, CA.
Hedges, J.I., and C. Lee. 1993. Measurement of dissolved organic carbon and nitrogen in natural waters. Marine Chemistry 41(1-3):1-290.
Hopkinson, C.S., Jr., and J.J. Vallino. 2005. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142-145.
Ingalls, A.E., S.R. Shah, R.L. Hansman, L.I. Aluwihare, G.M. Santos, E.R.M. Druffel, and A. Pearson. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proceedings of the National Academy of Sciences of the United States of America 103:6,442-6,447.
Kieber, D.J., J. McDaniel, and K. Mopper. 1989. Photochemical source of biological substrates in sea water: Implications for carbon cycling. Nature 341:637-639.
Lochte, K., R. Anderson, R. Francois, R.A. Jahnke, G. Shimmield, and A. Vetrov. 2003. Benthic processes and the burial of carbon. Pp. 195-216 in Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change. M.J.R. Fasham, ed., Springer Verlag, Berlin Heidelberg.
Mopper, K., X.L. Zhou, R.J. Kieber, D.J. Kieber, R.J. Sikorski, and R.D. Jones. 1991. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353:60-62.
Nagata, T., H. Fukuda, R. Fukuda, and I. Koike. 2000. Bacterioplankton distribution and production in deep Pacific waters: Large -scale geographic variations and possible coupling with sinking particle fluxes. Limnology and Oceanography 45:419-425.
Passow, U., and A.L. Alldredge. 2004. Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Marine Ecology Progress Series 113:185-198.
Reinthaler, T., H. van Aken, C. Veth, J. Arístegui, C. Robinson, P. Williams, P. Lebaron, and G.J. Herndl. 2006. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnology and Oceanography 51:1,262-1,273.
Repeta, D.J., and L.I. Aluwihare. 2006. High molecular weight dissolved organic carbon cycling as determined by radiocarbon measurements of neutral sugars. Limnology and Oceanography 51:1,045-1,053.
Schlitzer, R. 2002. Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite based estimates. Deep-Sea Research Part II 49:1,623-1,644.
Schlitzer, R. 2007. Assimilation of radiocarbon and chlorofluorocarbon data to constrain deep and bottom water transports in the world ocean. Journal of Physical Oceanography 37:259-276.
Sharp, J.H., C.A. Carlson, E.T. Peltzer, D.M. CastleWard, K.B. Savidge, and K.R. Rinker. 2002. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Marine Chemistry 77:239-253.
Skoog, A., and R. Benner. 1998. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnology and Oceanography 42:1,803-1,813.
Stuiver, M., P.D. Quay, and H.G. Ostlund. 1983. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219(4586):849-851.
Sugimura, Y., and Y. Suzuki. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry 24:105-131.
Toggweiler, J.R. 1989. Is the downward dissolved organic matter (DOM) flux important in carbon transport? Pp. 65-83 in Productivity in the Ocean: Present and Past. W.H. Berger, V.S. Smetacek, and G. Wefer, eds, Wiley, New York, NY.
Turley, C.M., and P.J. Mackie. 1994. Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Marine Ecology Progress Series 115:191-203.
Van Aken, H. 2007. Oceanic Thermohaline Circulation. Springer Verlag, New York, NY, 326 pp.
Verdugo, P., A.L. Alldredge, F. Azam, D.L. Kirchman, U. Passow, and P.H. Santschi. 2004. The oceanic gel phase: A bridge in the DOM-POM continuum. Marine Chemistry 92(1-4 Special Issue):67-85.
Wells, M.L. 1998. Marine colloids: A neglected dimension. Nature 391:530-531.
Williams, P.J. leB. 2000. Heterotrophic bacteria and the dynamics of dissolved organic material. Pp. 153-200 in Microbial Ecology of the Oceans. D.L. Kirchman, ed., Wiley-Liss, New York, NY.
Williams, P.M., and A.F. Carlucci. 1975. Bacterial utilization of organic matter in the deep sea. Nature 262:810-811.
Williams, P.M., and E.R.M. Druffel. 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330(6145):246-248.
Williams, P.M., and E.R.M. Druffel. 1988. Dissolved organic matter in the ocean: Comments on a controversy. Oceanography 1(1):14-17. Available online at: http://tos.org/oceanography/ issues/issue_archive/1_1.html (accessed September 24, 2009).