这是用户在 2024-10-24 18:28 为 https://app.immersivetranslate.com/pdf-pro/dd5b0409-0004-4172-abb7-730f1a897cce 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Low clinker systems - Towards a rational use of SCMs for optimal performance
低熟料系统 - 朝着合理使用矿物掺合料以实现最佳性能的方向

Mohsen Ben Haha a , a , ^(a,^(**)){ }^{\mathrm{a},{ }^{*}}, Pipat Termkhajornkit b b ^(b){ }^{\mathrm{b}}, Alexandre Ouzia a a ^(a){ }^{\mathrm{a}}, Siva Uppalapati b b ^(b){ }^{\mathrm{b}}, Bruno Huet b b ^(b){ }^{\mathrm{b}}
莫赫森·本·哈哈 a , a , ^(a,^(**)){ }^{\mathrm{a},{ }^{*}} , 皮帕特·特姆卡霍恩基特 b b ^(b){ }^{\mathrm{b}} , 亚历山大·乌齐亚 a a ^(a){ }^{\mathrm{a}} , 西瓦·乌帕拉帕提 b b ^(b){ }^{\mathrm{b}} , 布鲁诺·于埃 b b ^(b){ }^{\mathrm{b}}
a a ^(a){ }^{a} Heidelberg Materials, Heidelberg Technology Center, Leimen, Germany
海德堡材料,海德堡技术中心,莱门,德国
b ^("b "){ }^{\text {b }} Holcim, Holcim Innovation Center, Lyon, France
b ^("b "){ }^{\text {b }} 霍尔西姆,霍尔西姆创新中心,法国里昂

A R T I C L E IN F O
文章信息

Keywords: 关键词:

Portland clinker 波特兰熟料
SCM 供应链管理
performance 表现
CO 2 CO 2 CO_(2)\mathrm{CO}_{2} footprint  CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 足迹
process 过程

Abstract 摘要

Progress in understanding the use of SCMs in blended Portland cement and related effects is reviewed. An optimized use of cement components will avoid wasting unreacted particles that do not contribute to the mechanical and durability performances. The reactivity of cement components increases with fineness and by controlled production processes. Clinker may become a minor component in the cementitious mix due to the optimized particle packing of blended cements. An optimized mineralogy of the clinker coupled to the addition of activators can help to further reduce its use in composite cements while maintaining concrete performance. Other cement constituents introduce different filler and chemical effects to the overall reaction and contributes differently to the performance. Filler and chemical effects influence the hydrates assemblage and in particular C-S-H formation, morphology, and chemical composition. The cement and concrete properties at different ages are tightly linked to these properties. Future approaches could be more technical than simply grinding and blending, allowing a better use of each cement component to achieve a lower CO 2 CO 2 CO_(2)\mathrm{CO}_{2} intensity.
对掺合料在混合波特兰水泥中的使用及相关影响的理解进展进行了回顾。优化水泥成分的使用将避免浪费不反应的颗粒,这些颗粒对机械性能和耐久性没有贡献。水泥成分的反应性随着细度的增加和受控生产过程而提高。由于混合水泥的颗粒优化堆积,熟料可能成为水泥混合物中的次要成分。优化熟料的矿物组成结合激活剂的添加可以进一步减少其在复合水泥中的使用,同时保持混凝土性能。其他水泥成分引入不同的填充和化学效应,对整体反应产生不同的贡献。填充和化学效应影响水合物的组合,特别是 C-S-H 的形成、形态和化学组成。不同龄期的水泥和混凝土性能与这些特性紧密相关。未来的方法可能比单纯的研磨和混合更具技术性,从而更好地利用每种水泥成分,以实现更低的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 强度。

1. Introduction 1. 引言

Under the Paris agreement negotiated during COP 21 in 2015, 195 countries acknowledged the need to limit the global temperature increase of 1.5 C 1.5 C 1.5^(@)C1.5^{\circ} \mathrm{C} by controlling their greenhouse gas emissions [1]. Carbon dioxide ( CO 2 ) CO 2 (CO_(2))\left(\mathrm{CO}_{2}\right) and methane ( CH 4 ) CH 4 (CH_(4))\left(\mathrm{CH}_{4}\right) are the two main anthropogenic greenhouse gases [2].
根据 2015 年在巴黎气候大会(COP 21)达成的协议,195 个国家承认需要通过控制温室气体排放来限制全球温度上升 1.5 C 1.5 C 1.5^(@)C1.5^{\circ} \mathrm{C} [1]。二氧化碳 ( CO 2 ) CO 2 (CO_(2))\left(\mathrm{CO}_{2}\right) 和甲烷 ( CH 4 ) CH 4 (CH_(4))\left(\mathrm{CH}_{4}\right) 是两种主要的人为温室气体[2]。
Production of clinker for cement is a heavy industrial process that is associated with significant CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions: about 800 kilogram of carbon dioxide per ton of cement (noted [ kgCO 2 / t cement ] kgCO 2 / t cement  [kgCO_(2)//t_("cement ")]\left[\mathrm{kgCO}_{2} / \mathrm{t}_{\text {cement }}\right] ) is the reference value for CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions from cement production in the early 90’s [3]. About two thirds from these emissions are related to the decarbonation of limestone for clinker and one third is related to the fuel consumption of the kiln. The global CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions from decarbonation of limestone for clinker represents 3 % 3 % 3%3 \% of the global CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions [2].
水泥熟料的生产是一个重工业过程,伴随着显著的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放:每吨水泥约 800 千克二氧化碳(参考值 [ kgCO 2 / t cement ] kgCO 2 / t cement  [kgCO_(2)//t_("cement ")]\left[\mathrm{kgCO}_{2} / \mathrm{t}_{\text {cement }}\right] )是 90 年代早期水泥生产 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放的参考值[3]。其中约三分之二的排放与熟料石灰石的脱碳有关,三分之一与窑的燃料消耗有关。全球因熟料石灰石脱碳而产生的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放占全球 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放的 3 % 3 % 3%3 \% [2]。
Before the Paris agreement in 2015, several authors highlighted different strategies to reduce the carbon footprint of cements. As early as 2004, Gartner [4] showed the difficulties of alkali activated materials and was supporting belite ye’elimite ferrite (BYF) cement. In 2010, John et al. [5] proposed a CO 2 CO 2 CO_(2)\mathrm{CO}_{2} index at the concrete level ( kgCO 2 / m 3 kgCO 2 / m 3 (kgCO_(2)//m3:}\left(\mathrm{kgCO}_{2} / \mathrm{m} 3\right. concrete / MPa) to highlight the efficient use of clinker and binder at the
在 2015 年巴黎协议之前,几位作者强调了减少水泥碳足迹的不同策略。早在 2004 年,Gartner [4] 就展示了碱激活材料的困难,并支持贝利特耶利米特铁酸盐(BYF)水泥。2010 年,John 等人 [5] 提出了一个 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 指数,在混凝土水平 ( kgCO 2 / m 3 kgCO 2 / m 3 (kgCO_(2)//m3:}\left(\mathrm{kgCO}_{2} / \mathrm{m} 3\right. 混凝土/MPa)以突出熟料和粘合剂的有效使用。

concrete level. In 2014 Scrivener [6], based on the experimental work of Antoni [7,8], showed that a promising route was ternary cements composed of clinker, calcined clay and limestone.
混凝土水平。2014 年,Scrivener [6] 基于 Antoni [7,8] 的实验工作,表明一种有前景的途径是由熟料、煅烧粘土和石灰石组成的三元水泥。
The consensus of a group of experts initiated by the United Nations Environment Program Sustainable Building and Climate Initiative lead by Scrivener [9] showed that optimizing Portland cement to make it compatible with the objectives of the Paris agreement is the main strategy for the next decade to lower concrete CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions. The main arguments for OPC are the availability of raw materials, the maturity of the current technologies, and the adoption by current market. Nevertheless, they mention two further levers to reduce the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} footprint of concrete: to increase the level of clinker substitution in cement and to decrease the cement content in mortar and concretes.
由联合国环境规划署可持续建筑与气候倡议发起的一组专家达成的共识显示,优化波特兰水泥以使其与《巴黎协定》的目标相兼容是未来十年降低混凝土 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放的主要策略。支持波特兰水泥的主要论据包括原材料的可获得性、当前技术的成熟度以及市场的接受度。然而,他们还提到两个进一步的杠杆来减少混凝土的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 足迹:提高水泥中熟料替代的比例以及减少砂浆和混凝土中的水泥含量。
Since the entry into force of the Paris Agreement and Scrivener et al’s paper, public institutions, professional associations, and main industrial players have issued their own roadmaps to reduce the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions of the cement industry. The International Energy Agency (IEA) in 2018 [10], the European Cement Association (Cembureau) in 2020 [3], the Global Cement and Concrete association (GCCA) (see Fig. 1) in 2022 [11], Heidelberg Materials in its 2021 sustainability report [12] and Holcim (LafargeHolcim at the time of publication) in its 2019 [13] and
自《巴黎协定》生效以来,以及 Scrivener 等人的论文发布后,公共机构、专业协会和主要行业参与者已发布各自的路线图,以减少水泥行业的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放。国际能源署(IEA)在 2018 年[10],欧洲水泥协会(Cembureau)在 2020 年[3],全球水泥和混凝土协会(GCCA)(见图 1)在 2022 年[11],海德堡材料在其 2021 年可持续发展报告中[12],以及 Holcim(在发布时为 LafargeHolcim)在其 2019 年[13]中。
2020 [14] integrated annual reports have issued their own roadmaps. In short, these roadmaps rely on five pillars, the so called 5 "C"s for Clinker, Cement, Concrete, Construction and Carbonation as proposed by the Cembureau:
2020 年[14]综合年度报告已发布各自的路线图。简而言之,这些路线图依赖于五个支柱,即 Cembureau 提出的五个“C”:熟料、水泥、混凝土、建筑和碳化。
  1. Clinker: to reduce CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions at the clinker level by using both alternative fuels and alternative raw materials with the emissions of CO 2 CO 2 CO_(2)\mathrm{CO}_{2} at the kiln per ton of clinker ( kgCO 2 / t clinker ) kgCO 2 / t clinker  (kgCO_(2)//t_("clinker "))\left(\mathrm{kgCO}_{2} / \mathrm{t}_{\text {clinker }}\right) as performance criterion.
    熟料:通过使用替代燃料和替代原材料,在熟料水平上减少 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放,以 ( kgCO 2 / t clinker ) kgCO 2 / t clinker  (kgCO_(2)//t_("clinker "))\left(\mathrm{kgCO}_{2} / \mathrm{t}_{\text {clinker }}\right) 每吨熟料的窑排放 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 作为绩效标准。
  2. Cement: to reduce the clinker content in cement by adding supplementary cementitious materials (SCM) with the aggregated CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions of constituents per ton of cement ( kgCO 2 / t cement ) kgCO 2 / t cement  (kgCO_(2)//t_("cement "))\left(\mathrm{kgCO}_{2} / \mathrm{t}_{\text {cement }}\right) as performance criterion.
    水泥:通过添加补充水泥材料(SCM)来减少水泥中的熟料含量,以每吨水泥的成分总排放量 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 作为性能标准 ( kgCO 2 / t cement ) kgCO 2 / t cement  (kgCO_(2)//t_("cement "))\left(\mathrm{kgCO}_{2} / \mathrm{t}_{\text {cement }}\right)
  3. Concrete: to reduce the cement content in concrete for the same structural performance with the compressive strength by the absolute CO 2 CO 2 CO_(2)\mathrm{CO}_{2} content per unit volume of concrete ( MPa / ( kgCO 2 / MPa / kgCO 2 / MPa//(kgCO_(2)//:}\mathrm{MPa} /\left(\mathrm{kgCO}_{2} /\right. m 3 m 3 m^(3)\mathrm{m}^{3} concrete) as a performance criterion.
    混凝土:在相同的结构性能下,通过每立方米混凝土的绝对 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 含量( MPa / ( kgCO 2 / MPa / kgCO 2 / MPa//(kgCO_(2)//:}\mathrm{MPa} /\left(\mathrm{kgCO}_{2} /\right. m 3 m 3 m^(3)\mathrm{m}^{3} 混凝土)作为性能标准,减少混凝土中的水泥含量以达到相同的抗压强度。
  4. Construction: to reduce the concrete content in the structure by optimizing the design and performance of concrete with CO 2 CO 2 CO_(2)\mathrm{CO}_{2} aggregated emissions per unit surface of building ( kgCO 2 / m 2 ) kgCO 2 / m 2 (kgCO_(2)//m^(2))\left(\mathrm{kgCO}_{2} / \mathrm{m}^{2}\right) during the building stage but also during the use phase of the building to lower energy demand by optimizing thermal mass and insulation.
    建设:通过优化混凝土的设计和性能,在建筑阶段以及建筑使用阶段减少结构中混凝土的含量,降低每单位建筑表面的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 聚合物排放 ( kgCO 2 / m 2 ) kgCO 2 / m 2 (kgCO_(2)//m^(2))\left(\mathrm{kgCO}_{2} / \mathrm{m}^{2}\right) ,同时通过优化热质量和绝缘来降低能耗。
  5. Carbonation: to account for cement natural carbonation in mortar and concrete products ( kgCO 2 ) kgCO 2 (kgCO_(2))\left(\mathrm{kgCO}_{2}\right)
    碳化:考虑砂浆和混凝土产品中水泥的自然碳化 ( kgCO 2 ) kgCO 2 (kgCO_(2))\left(\mathrm{kgCO}_{2}\right)
Therefore, the key elements of sustainable cement production are material efficiency and circular economy supported by technology. For the first three levers, the use of anthropogenic feedstock [ 15 , 16 ] [ 15 , 16 ] [15,16][15,16] is seen as an interesting alternative which has a minimum impact on the economics of cement production [17] but could influence the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} footprint of the cement based products. Note that depending on the country, SCM are added either at the cement level or at the concrete level, modifying
因此,可持续水泥生产的关键要素是材料效率和技术支持的循环经济。对于前三个杠杆,使用人造原料 [ 15 , 16 ] [ 15 , 16 ] [15,16][15,16] 被视为一种有趣的替代方案,对水泥生产的经济影响最小[17],但可能会影响水泥基产品的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 足迹。请注意,根据不同国家,SCM 要么在水泥层面添加,要么在混凝土层面添加,从而进行修改。

either the second or the third pillars.
第二或第三支柱。

In recent years, studies have focused on three aspects: the cement constituents (1) and their manufacturing process (2) to meet the expected performance of cement in building products (3). This article focuses on reviewing the first two pillars (Clinker and Cement). but some aspects regarding Concrete ( 3 rd 3 rd  3^("rd ")3^{\text {rd }} ) and Carbonation ( 5 th 5 th  5^("th ")5^{\text {th }} pillar) will also be discussed. This paper reviews significant literature published mainly since 2016 on: 1) cement constituents (Section 2), on cement processes (Section 3) and on cement performance (Section 4).
近年来,研究主要集中在三个方面:水泥成分(1)及其生产过程(2),以满足建筑产品中水泥的预期性能(3)。本文重点回顾前两个支柱(熟料和水泥),但也会讨论一些关于混凝土( 3 rd 3 rd  3^("rd ")3^{\text {rd }} )和碳化( 5 th 5 th  5^("th ")5^{\text {th }} 支柱)的内容。本文回顾了自 2016 年以来发表的主要文献,内容包括:1)水泥成分(第 2 节)、水泥工艺(第 3 节)和水泥性能(第 4 节)。
The Concrete, Construction and Carbonation pillars will be briefly mentioned in the performance Section 5. In particular, carbonation from life cycle analysis (LCA) or durability point of views is exactly the same physical and chemical process; only the performance criterion differs: bound CO 2 CO 2 CO_(2)\mathrm{CO}_{2} per volume of concrete or per functional unit for the LCA or carbonation depth over time for ensuring durability of reinforced concrete [18].
混凝土、施工和碳化这三个支柱将在第 5 节的性能部分中简要提及。特别是,从生命周期分析(LCA)或耐久性角度来看,碳化是完全相同的物理和化学过程;只有性能标准不同:每立方米混凝土或每个功能单位的结合 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} ,或者为了确保钢筋混凝土的耐久性而随时间变化的碳化深度[18]。
In terms of clinker and cement composition (Section 2), recent studies have focused on extending the range of composition of cements and extending the nature of SCMs considered in standards. This paper reviews binary and ternary blends composition based on standard constituents like Limestone filler, ground granulated blast furnace slag (GGBS), fly-ash (FA), calcined clay limestone binary and ternary blends.
在熟料和水泥成分方面(第 2 节),最近的研究集中在扩展水泥成分的范围和扩展标准中考虑的矿物掺合料的性质。本文回顾了基于标准成分的二元和三元混合物的组成,如石灰石填料、磨细的高炉矿渣(GGBS)、粉煤灰(FA)、煅烧粘土石灰石的二元和三元混合物。
Then, in terms of processing (Section 3), the clinker quality is key to keep early strength high, as substitution by SCMs may lead to low early age strength. Therefore, recent literature on optimizing fineness on clinker through grinding and grinding aids is reviewed. Also, the addition of clinker mineralizer to optimize the phase assemblage and lower the clinkering temperature is documented. Finally, the calcination of SCMs like clay is a key process to achieve late strength in limestone calcined clay cement to convert kaolin into reactive metakaolin.
然后,在加工方面(第 3 节),熟料质量是保持早期强度高的关键,因为使用矿物掺合料可能导致早期强度低。因此,最近关于通过磨细和磨助剂优化熟料细度的文献进行了回顾。此外,添加熟料矿化剂以优化相组合并降低熟化温度的做法也得到了记录。最后,像粘土这样的矿物掺合料的煅烧是实现石灰石煅烧粘土水泥晚期强度的关键过程,以将高岭土转化为反应性偏高岭土。
Finally, in terms of performance (Section 4), several key properties of cement need to be ensured such that they comply with standards or
最后,在性能方面(第 4 节),需要确保水泥的几个关键特性符合标准或

Fig. 1. GCCA roadmap to reach net zero in 2050 [11].
图 1. GCCA 到 2050 年实现净零排放的路线图 [11]。

regulations for concrete, mortar or other products valid in the place of use. For ready mix concrete applications, the early compressive and flexural strength (at 2 days), and the late strength ( 28 d ) are key properties of cement. For precast applications, specific strength threshold should be achieved even at 12 to 16 hours. To optimize the rheology and sulfate content of cement is also a key to ensure a good placement of concrete. Beyond strength testing, to characterize SCM reactivity for fast screening of SCM and use both thermodynamic calculations and measurements to confirm volume efficiency of the hydrates by measuring or estimating them through thermodynamic calculations are also important. Furthermore, there is a need for optimizing the performance of cement at the product level by modifying clinker content and performance, water to cement ratio and optimizing therefore the compressive strength over the embodied CO 2 CO 2 CO_(2)\mathrm{CO}_{2}. Finally, it is expected from cement in product to maintain performance over time, therefore the link between low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} cement and corrosion initiated by CO 2 CO 2 CO_(2)\mathrm{CO}_{2} or chloride ingress is reviewed.
在使用地点有效的混凝土、砂浆或其他产品的规定。对于预拌混凝土应用,早期抗压和抗弯强度(在 2 天时)以及后期强度(28 天)是水泥的关键特性。对于预制应用,特定的强度阈值应在 12 到 16 小时内达到。优化水泥的流变性和硫酸盐含量也是确保混凝土良好浇筑的关键。除了强度测试外,快速筛选矿物掺合料(SCM)以表征其反应性,并使用热力学计算和测量来确认水合物的体积效率,通过测量或估算它们也是重要的。此外,还需要通过修改熟料含量和性能、水泥与水的比例来优化水泥在产品层面的性能,从而优化抗压强度。最后,期望水泥在产品中能够保持性能,因此回顾了低 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 水泥与 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 引发的腐蚀或氯离子侵入之间的联系。

2. Low CO2 cement compositions
2. 低二氧化碳水泥配方

2.1. Carbonates containing cements
2.1. 含水泥的碳酸盐

Limestone is widely available and has long been used in cement. Its effects on cement hydration and mechanical properties have been extensively studied [19-24]. By substituting Portland cement with some limestone, the effective water-to-cement ratio is increased (dilution effect), allowing more space for clinker particles to hydrate.
石灰石广泛可得,长期以来一直用于水泥。它对水泥水化和机械性能的影响已被广泛研究[19-24]。通过用一些石灰石替代波特兰水泥,有效的水灰比得以提高(稀释效应),为熟料颗粒水化提供了更多空间。
Limestone can also improve cement hydration by increasing the heterogeneity of C-S-H growth. Microscopic observations by Berodier and Scrivener [25] showed that limestone increased C-S-H growth more effectively than quartz filler. Using zeta potential measurement, Ouyang et al. [26] pointed out that a strong adsorption of calcium ions from C-SH onto calcite particles is occurring, which was explained by the high affinity for Ca 2 + Ca 2 + Ca^(2+)\mathrm{Ca}^{2+} ions on limestone surface. Because of its similar isoelectric point, micronized quartz had a similar surface charge to C-S-H, which explains why Ca + 2 Ca + 2 Ca^(+2)\mathrm{Ca}^{+2} ions are not chemically adsorbed on its surface. In addition to providing surface for C-S-H precipitation, limestone reacts with aluminate to form stable hemi- and monocarboaluminate phases [19,27,28] in cementitious systems, thus stabilizing the ettringite and resulting in a higher total volume of hydrates than in non-limestone systems.
石灰石还可以通过增加 C-S-H 生长的异质性来改善水泥水化。Berodier 和 Scrivener 的显微观察显示,石灰石比石英填料更有效地促进 C-S-H 的生长。Ouyang 等人通过ζ电位测量指出,C-S-H 上的钙离子强烈吸附到方解石颗粒上,这可以通过石灰石表面对 Ca 2 + Ca 2 + Ca^(2+)\mathrm{Ca}^{2+} 离子的高亲和力来解释。由于其相似的等电点,微米级石英与 C-S-H 具有相似的表面电荷,这解释了为什么 Ca + 2 Ca + 2 Ca^(+2)\mathrm{Ca}^{+2} 离子不会在其表面上化学吸附。除了为 C-S-H 沉淀提供表面外,石灰石还与铝酸盐反应,在水泥体系中形成稳定的半碳铝酸盐和单碳铝酸盐相,从而稳定膨胀石,并导致比非石灰石体系更高的水合物总体积。
A better understanding of how limestone and cement hydration interact could lead to new strategies for optimizing sustainable mixture designs.
对石灰石和水泥水化相互作用的更好理解可能会导致优化可持续混合设计的新策略。
The surface/fineness of the limestone plays a major role in the acceleration effect at a given replacement level [29]. The heat data of the cement studied by Briki et al [20] when using fine and coarse limestone clearly shows a linear relationship between heat released and available surface for hydration as shown in the Fig. 2. The highest heat released after one day of hydration was attributed to fine limestone, which has the highest surface area for C-S-H nucleation. Despite having a similar available surface area, quartz used in the same study [20] is less favorable for C-S-H nucleation, as previously discussed. Furthermore, the lower the amount of fine limestone in blended cement, the less heat is released.
石灰石的表面/细度在给定替代水平下对加速效应起着重要作用[29]。Briki 等人[20]研究的水泥热量数据表明,使用细石灰石和粗石灰石时,释放的热量与水化可用表面之间存在明显的线性关系,如图 2 所示。水化一天后释放的最高热量归因于细石灰石,因为它具有最高的 C-S-H 成核表面积。尽管在同一研究中使用的石英具有相似的可用表面积,但如前所述,它对 C-S-H 成核的促进作用较差。此外,掺合水泥中细石灰石的含量越低,释放的热量就越少。
It is important to note this beneficial effect of fine limestone, when an increase in the degree of cement hydration particularly at early ages may be able to partially offset the detrimental effects of reduced cement content on hardened properties [20]. From an industrial standpoint, these results suggest that the 10-15% fine limestone could be co-ground with clinker, while the coarse fraction could simply be crushed and added later.
重要的是要注意细石灰石的这种有益效果,当水泥水化程度在早期阶段的增加能够部分抵消水泥含量减少对硬化性能的不利影响时[20]。从工业的角度来看,这些结果表明,10-15%的细石灰石可以与熟料共同研磨,而粗颗粒则可以简单地破碎后再添加。
A recent study carried out by Zajac and al [21] on OPC limestone cements using up to 50% limestone replacement and varying water/ cement and limestone/cement ratios showed that the mechanical properties of the main hydrated phase, the C-S-H, are governed by the
最近,Zajac 等人[21]对使用高达 50%石灰石替代的 OPC 石灰石水泥进行的研究显示,主要水合相 C-S-H 的机械性能受水/水泥和石灰石/水泥比的影响

Fig. 2. Linear correlation between heat evolved and surface available for hydration (L: limestone, Q: Quartz, F:fine, C: Coarse). To blend PC with 20% of limestone may either have no effect on the hydration (coarse limestone case) or increase its heat of hydration by 30% (fine enough limestone) after 24hours. Therefore, the surface rather than the mass replacement matters. N.B. by cement is meant Portland Cement, H H HH denotes the heat of hydration as measured by 20 C 20 C 20^(@)C20^{\circ} \mathrm{C} isothermal calorimetry at 24 hours, S Filler S Filler  S_("Filler ")S_{\text {Filler }} and S Cement S Cement  S_("Cement ")S_{\text {Cement }} denote the BET surface areas of the SCMs (limestone or quartz) and Portland cement respectively.
图 2. 释放的热量与水合可用表面之间的线性相关性(L:石灰石,Q:石英,F:细,C:粗)。将普通水泥与 20%的石灰石混合可能对水合没有影响(粗石灰石情况),或者在 24 小时后增加其水合热量 30%(足够细的石灰石)。因此,表面而非质量替代更为重要。注意,水泥指的是波特兰水泥, H H HH 表示在 24 小时内通过 20 C 20 C 20^(@)C20^{\circ} \mathrm{C} 等温量热法测量的水合热量, S Filler S Filler  S_("Filler ")S_{\text {Filler }} S Cement S Cement  S_("Cement ")S_{\text {Cement }} 分别表示 SCM(石灰石或石英)和波特兰水泥的 BET 表面积。

available space. It was shown that the space available modifies the C-S-H microstructure, which in turn is reflected in the pore volume and porosity distribution. In high-porosity environments, a C S H C S H C-S-H\mathrm{C}-\mathrm{S}-\mathrm{H} with higher amount of gel pores forms and efficiently fills the porosity. Contrarily, in low-porosity environments, a coarse microstructure is developed. Additionally, the available space has an impact on the clinker reaction and chemical composition of the C-S-H. It can alone be responsible for part of the microstructure modifications ascribed in other studies to the pozzolanic and semi-hydraulic reactions such as lower Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} ratio of C S H C S H C-S-H\mathrm{C}-\mathrm{S}-\mathrm{H} and different Portlandite content at comparable clinker reaction. A higher Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} ratio is observed at lower W/B ratios due to the increase of the supersaturation needed to precipitate Portlandite at these ratios.
可用空间。研究表明,可用空间会改变 C-S-H 微观结构,这反过来又反映在孔体积和孔隙率分布上。在高孔隙率环境中,形成了具有较多胶体孔的 C S H C S H C-S-H\mathrm{C}-\mathrm{S}-\mathrm{H} ,有效填充了孔隙率。相反,在低孔隙率环境中,发展出粗糙的微观结构。此外,可用空间对熟料反应和 C-S-H 的化学成分有影响。它可能单独负责部分微观结构的变化,而在其他研究中,这些变化被归因于火山灰和半水硬反应,例如在可比熟料反应下,较低的 Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} C S H C S H C-S-H\mathrm{C}-\mathrm{S}-\mathrm{H} 比率和不同的波特兰石含量。在较低的水胶比下,由于需要增加过饱和度以在这些比率下沉淀波特兰石,因此观察到较高的 Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} 比率。
Using dolomite instead of limestone leads to different observations [30-34]. Mechanical performances observed between limestone and dolomite Portland blends are comparable. However, as dolomite ( CaMg ( CO 3 ) 2 ) CO 3 2 {:(CO_(3))_(2))\left.\left(\mathrm{CO}_{3}\right)_{2}\right) dissolves in the composite systems, part of the alumina is bound with dissolving Mg to form hydrotalcite. The SEM microstructure observations show rims of hydrotalcite rich C-S-H surrounding the dolomite particles. The microstructure shows typically a two-tone appearance and the layer formed later (inner) is darker than the layer formed earlier. The difference is attributed to different hydrates (mixture of all hydrates and almost neat hydrotalcite). The relative amount of available sulfate to alumina increases, thus resulting in the stabilization of ettringite. The total volume of hydrates is increased by the ettringite stabilization besides hydrotalcite formation. Indeed, these hydrates increase the molar volume of the solids. These mechanisms improve the paste’s space filling properties while decreasing its porosity and permeability [30-32]. Ettringite is additionally thanks to the higher S/Al ratio of the pore solution more stable at higher temperatures ( 40 C 40 C (40^(@)C:}\left(40^{\circ} \mathrm{C}\right. and above) in the systems containing Dolomite than in the systems containing limestone. This leads to higher strengths at higher temperatures of dolomite cement in comparison to the limestone cements [ 30 , 35 ] [ 30 , 35 ] [30,35][30,35].
使用白云石代替石灰石会导致不同的观察结果[30-34]。观察到的石灰石和白云石波特兰混合物的机械性能相当。然而,随着白云石(CaMg ( CO 3 ) 2 ) CO 3 2 {:(CO_(3))_(2))\left.\left(\mathrm{CO}_{3}\right)_{2}\right) )在复合体系中的溶解,部分铝土矿与溶解的镁结合形成水滑石。扫描电子显微镜(SEM)微观结构观察显示,富含水滑石的 C-S-H 环绕在白云石颗粒周围。微观结构通常呈现出两种颜色的外观,后形成的层(内层)比早期形成的层颜色更深。这种差异归因于不同的水合物(所有水合物的混合物和几乎纯净的水滑石)。可用的硫酸盐与铝土矿的相对含量增加,从而导致铝钙石的稳定化。除了水滑石的形成外,铝钙石的稳定化还增加了水合物的总体积。实际上,这些水合物增加了固体的摩尔体积。这些机制改善了浆料的填充性能,同时降低了其孔隙率和渗透性[30-32]。 艾特林石由于孔隙溶液中较高的硫/铝比,在含有白云石的系统中比在含有石灰石的系统中在较高温度下更稳定 ( 40 C 40 C (40^(@)C:}\left(40^{\circ} \mathrm{C}\right. 。这导致白云石水泥在较高温度下的强度高于石灰石水泥 [ 30 , 35 ] [ 30 , 35 ] [30,35][30,35]

2.2. Slag limestone cements
2.2. 硅酸盐石灰石水泥

Because of the limited availability of slags in some geographic
由于某些地区矿渣的供应有限

regions and for the purpose of its optimized use, finely ground limestone as a slag replacement component is becoming popular in cement and concrete development [36-42]. This section provides a succinct review of the recent advances in understanding the microstructural properties of slag-limestone cements. Early age hydration, hydrates assemblages and composition, and pore solution are affected by these additions.
为了优化使用,细磨石灰石作为矿渣替代成分在水泥和混凝土开发中变得越来越受欢迎[36-42]。本节简要回顾了对矿渣-石灰石水泥微观结构特性的最新研究进展。早期水化、水合物组合及成分以及孔溶液都受到这些添加剂的影响。
Recent studies on limestone slag cement indicate that limestone powder reacts to a higher extent than observed limestone-Portland systems and its presence influences the overall reaction kinetics of the systems [38,40,43-47]. Higher calcite consumption occurs in slaglimestone systems, however, this is minor at early age [43,45]. This reaction is continuing steadily through the testing periods reported. When using limestone contents above 5%, the ternary slag-limestone blends often have residual calcite after 1 year. However, Amankwah et al [ 45 , 46 ] [ 45 , 46 ] [45,46][45,46] showed recently that up to 30 % 30 % 30%30 \% of the added calcite was consumed after 180 d (for 10 and 20% level of additions).
最近对石灰石矿渣水泥的研究表明,石灰石粉的反应程度高于观察到的石灰石-波特兰系统,其存在影响了系统的整体反应动力学[38,40,43-47]。在矿渣-石灰石系统中,碳酸钙的消耗量较高,但在早期阶段这一现象较小[43,45]。这一反应在报告的测试期间持续稳定进行。当石灰石含量超过 5%时,三元矿渣-石灰石混合物在 1 年后通常会有残余的碳酸钙。然而,Amankwah 等人 [ 45 , 46 ] [ 45 , 46 ] [45,46][45,46] 最近显示,在 180 天后,添加的碳酸钙中有多达 30 % 30 % 30%30 \% 被消耗(对于 10%和 20%的添加水平)。
A variety of factors influence the reaction kinetics of the different components of slag-limestone ternary blends. The formation of hydrates incl. carboaluminate phases, the filler effect, the availability of space for hydrate growth, and the pore solution concentrations have their impacts on the phase assemblage and the resulting microstructure depending on each stage of hydration
多种因素影响炉渣-石灰石三元混合物中不同组分的反应动力学。水合物的形成,包括碳铝酸盐相、填充效应、水合物生长的空间可用性以及孔隙溶液浓度,都会影响相的组合和最终的微观结构,这取决于水化的每个阶段。
The limestone impact goes beyond AFt / AFm AFt / AFm AFt//AFm\mathrm{AFt} / \mathrm{AFm} stability in the presence of slag. The distribution of alumina between the different hydration products is as well influenced [43-45]. The increased carbonate to aluminate ratio in the ternary blends results in higher carboaluminate contents in comparison to binary OPC-limestone blends, which leads to a stabilization of ettringite. This is as well reflected by the higher sulfate to alumina ratio that lowers alumina concentration in the pore solution [45]. As a result, less aluminum is available to incorporate into C-S-H, shown by the decrease of the Al / Si Al / Si Al//Si\mathrm{Al} / \mathrm{Si} ratio in C-A-S-H in comparison to the systems without limestone [45,48]. The higher carboaluminate amounts and the decrease of alumina concentrations in solution, impacts other alumina-bearing phases. Hydrotalcite-like phases have a higher Mg / Al Mg / Al Mg//Al\mathrm{Mg} / \mathrm{Al} ratio than traditionally observed in the binary slag cements [41,45,48].
石灰石的影响超出了在炉渣存在下的稳定性。不同水合产物之间铝土矿的分布也受到影响。三元混合物中碳酸盐与铝酸盐的比率增加,导致与二元普通硅酸盐水泥-石灰石混合物相比,碳铝酸盐含量更高,从而稳定了艾特林石。这也反映在更高的硫酸盐与铝土矿比率上,降低了孔溶液中的铝土矿浓度。因此,可用于结合到 C-S-H 中的铝减少,表现为与不含石灰石的系统相比,C-A-S-H 中的比率下降。更高的碳铝酸盐含量和溶液中铝土矿浓度的降低,影响了其他含铝土矿的相。水滑石类相的比率高于传统二元炉渣水泥中观察到的比率。
The addition of limestone to slag cements accelerates the alite hydration beyond what is observed by the addition of slag only. The acceleration of the reaction of aluminates is very significant [23,48]. Whilst alite reaction is accelerated in binary slag and the one of belite is retarded, in the limestone-containing cements, the alite is accelerated and the belite hydration is comparable to the ordinary Portland cement systems [43,44,49], implying that limestone compensates for the retarded belite reaction in the presence of slag. The addition of limestone to slag cements accelerates as well the aluminate and ferrite reactions [42,50,51].
向矿渣水泥中添加石灰石加速了铝酸盐水化,超出了仅添加矿渣时的观察结果。铝酸盐反应的加速非常显著[23,48]。虽然在二元矿渣中铝酸盐反应加速,而贝利特反应减缓,但在含石灰石的水泥中,铝酸盐反应加速,贝利特水化与普通波特兰水泥系统相当[43,44,49],这意味着石灰石弥补了矿渣存在时贝利特反应的减缓。向矿渣水泥中添加石灰石也加速了铝酸盐和铁酸盐反应[42,50,51]。
Slag in limestone composite cements reacts slowly in comparison to clinker. As a result, at early ages and at a given replacement level, this increases the effective w / c w / c w//c\mathrm{w} / \mathrm{c} ratio and the space for hydrate growth. The density of limestone is slightly lower than slag. Consequently, the water available per mass for hydration (i.e., dilution effect) would be similar at the very early stages of the reaction while per volume less water is available in the systems containing limestone.
石灰石复合水泥中的矿渣与熟料相比反应较慢。因此,在早期阶段和给定的替代水平下,这增加了有效 w / c w / c w//c\mathrm{w} / \mathrm{c} 比率和水合物生长的空间。石灰石的密度略低于矿渣。因此,在反应的最初阶段,每单位质量可用于水合的水(即稀释效应)将是相似的,而在含有石灰石的体系中,每单位体积可用的水较少。
At early age, enough space is available for hydrates growth. The rate of dissolution governs the kinetics of the early age reaction [45,49,51]. Despite the lower water volume in systems containing limestone, the effective water to slag + clinker ratio is higher thanks to limestone additions. The higher availability of water in the systems with limestone could account for the slightly higher slag reaction in the presence of limestone [ 45 , 49 ] [ 45 , 49 ] [45,49][45,49]. Slag hydration requires the availability of water and space. However, other factors, such as pore solution chemistry, must account for some of the differences in hydration behavior. Knowing that aluminum sorption on silicate surface sites slows dissolution of slag grains, lower aluminum levels thanks to the stabilization of AFt and AFm in the pore solution can promote glass and slag dissolution. Lower aluminum concentrations in the limestone-containing blends [45] would thus promote the slag reaction in these systems in comparison to
在早期阶段,有足够的空间供水合物生长。溶解速率决定了早期反应的动力学[45,49,51]。尽管含有石灰石的系统中水的体积较低,但由于添加了石灰石,有效的水与矿渣+熟料的比率更高。含有石灰石的系统中水的更高可用性可能解释了在石灰石存在下矿渣反应略微增强的原因 [ 45 , 49 ] [ 45 , 49 ] [45,49][45,49] 。矿渣水化需要水和空间的可用性。然而,其他因素,如孔隙溶液的化学成分,必须解释水化行为中的一些差异。知道铝在硅酸盐表面位点的吸附会减缓矿渣颗粒的溶解,孔隙溶液中 AFt 和 AFm 的稳定导致铝水平降低,可以促进玻璃和矿渣的溶解。因此,含有石灰石的混合物中较低的铝浓度[45]将促进这些系统中矿渣反应的发生。

systems without limestone.
没有石灰石的系统。

2.3. Pozzolan-Carbonates containing cements
2.3. 含火山灰-碳酸盐的水泥

Pozzolans used traditionally to produce composite cements are specially selected. They can be natural or artificial inorganic materials. Their use should improve the physico-chemical and mechanical properties of the cement or at least not worsen these properties. They can have slightly hydraulic(e.g. Calcareous fly ashes) or only pozzolanic properties [52-56]. Besides fly ashes, most of the pozzolans will lead to a non-appreciable increase of the water demand.
传统上用于生产复合水泥的火山灰是经过特别挑选的。它们可以是天然或人工无机材料。它们的使用应改善水泥的物理化学和机械性能,或者至少不恶化这些性能。它们可以具有轻微的水硬性(例如,石灰质粉煤灰)或仅具有火山灰特性[52-56]。除了粉煤灰,大多数火山灰将导致水需求的增加不明显。
Recently more attention was given to calcined clays [52] and natural pozzolans [54]. Pozzolans or calcined clays are alumino-silicates. Their reaction with water produces CAH besides C-S-H.
最近对煅烧粘土[52]和天然火山灰[54]给予了更多关注。火山灰或煅烧粘土是铝硅酸盐。它们与水反应产生 CAH 和 C-S-H。
This CAH is required for carbonates to react with. Indeed, when coupled to silica in the aluminosilicate (AS) glass phase of fly ash and the distorted aluminosilicate layers in calcined clays, the pozzolanic reactions is more complex and in an unbalanced manner leads to the formation of C-A-S-H, CAH and strätlingite as hydration products in the absence of carbonate source. The reaction of limestone in OPC is limited by insufficient CAH available from the clinker. The combination of limestone and an aluminate-containing pozzolans causes calcium carbonate to react more. This synergistic reaction results in more bound water, reduced porosity, and thus higher strength [52,55-60]. The synergetic effect between alumino-silicate materials and limestone powder is attributed to the impact of CaCO 3 CaCO 3 CaCO_(3)\mathrm{CaCO}_{3} on the AFm phases which has been observed for pure OPC [61], OPC-fly ash [62] and calcined clays cement [7]. Because alumino-silicates provide additional aluminates to the system via pozzolanic reaction with calcium hydroxide from cement hydration, the impact of limestone powder is amplified [52,53,63-67]. The increased volume of the hydration phases in the reactions demonstrates the effect. Small amounts of limestone powder promote the formation of hemicarbonate rather than monosulphate, which stabilizes ettringite. Monocarbonate is formed with larger limestone reaction and additions. The difference in specific volume of these phases, as well as the higher amount of hydrate water in ettringite vs. AFm, results in an increase in the total volume of hydration phases. This decreases the porosity and, as a result, an increase in strength is observed. Several studies have demonstrated the validity of the synergetic effect of limestone/alumino-silicate materials for various clinker and SCM types [35,53,62,63,66,67].
这种 CAH 是碳酸盐反应所必需的。实际上,当与飞灰的铝硅酸盐(AS)玻璃相结合以及在煅烧粘土中的扭曲铝硅酸盐层时,火山灰反应变得更加复杂,并且以不平衡的方式导致在没有碳酸盐源的情况下形成 C-A-S-H、CAH 和斯特拉丁石作为水合产物。石灰石在普通硅酸盐水泥(OPC)中的反应受到来自熟料的 CAH 不足的限制。石灰石与含铝酸盐的火山灰的结合使得碳酸钙的反应更加活跃。这种协同反应导致更多的结合水、降低的孔隙率,从而提高强度。铝硅酸盐材料与石灰石粉之间的协同效应归因于对 AFm 相的影响,这在纯 OPC、OPC-飞灰和煅烧粘土水泥中都有观察到。由于铝硅酸盐通过与水泥水合反应中的氢氧化钙进行火山灰反应为系统提供额外的铝酸盐,石灰石粉的影响得到了放大。反应中水合相体积的增加证明了这一影响。 少量的石灰石粉促进了半碳酸盐的形成,而不是单硫酸盐,这稳定了艾特林石。随着石灰石反应和添加量的增加,形成了单碳酸盐。这些相的比体积差异,以及艾特林石与 AFm 相比含有更高的水合水量,导致水合相的总体积增加。这降低了孔隙率,因此观察到强度的增加。多项研究已证明石灰石/铝硅酸盐材料对各种熟料和矿物掺合料类型的协同效应的有效性[35,53,62,63,66,67]。
Silicate anions have been shown to interact strongly with the precipitating portlandite. On the one hand, portlandite preferentially precipitates on the calcite surface rather than the quartz [68]. Calcite, on the other hand, was shown to dissolve rapidly until its solubility limit, supplying calcium to the pore solution [69]. As a result, it is possible to hypothesize that the presence of limestone causes fine portlandite precipitation due to portlandite nucleation on the limestone. Filler materials such as quartz do not have this effect, possibly due to the poisoning effect of silica [70]; quartz will dissolve slowly in the cement pore solution at high pH , which may result in an increase in Si concentration near the quartz grains. The delay in formation of stable CH nuclei and crystals in the short induction period between 8 and 10 h of hydration has been attributed to poisoning by the sorption of silica species. At the surface of cement grains Ca rich environment is present. This hypothesis also implies that pozzolans (alumino-silicate) do not serve as a preferential nucleation site for portlandite. The large surface area of natural pozzolana or of calcined clays in the absence of limestone increases the number of nuclei, with a slower crystal growth. the effect of adsorption on the silicate’s surfaces retards the nucleation and growth of CH , and CH nuclei can only grow spontaneously from a solution supersaturated with respect to pure CH .
硅酸盐阴离子已被证明与沉淀的水泥石强烈相互作用。一方面,水泥石更倾向于在方解石表面沉淀,而不是在石英上。另一方面,方解石被证明会迅速溶解,直到其溶解度极限,为孔隙溶液提供钙。因此,可以假设石灰石的存在导致细小水泥石的沉淀,因为水泥石在石灰石上成核。像石英这样的填料材料没有这种效果,可能是由于二氧化硅的中毒效应;石英在高 pH 的水泥孔隙溶液中会缓慢溶解,这可能导致石英颗粒附近的硅浓度增加。在水化的短诱导期(8 到 10 小时)内,稳定的氢氧化钙核和晶体的形成延迟被归因于二氧化硅物种的吸附中毒。在水泥颗粒的表面存在富钙环境。这个假设还暗示火山灰(铝硅酸盐)并不作为水泥石的优先成核位点。 天然火山灰或煅烧粘土在缺乏石灰石的情况下,较大的表面积增加了晶核的数量,导致晶体生长速度减慢。硅酸盐表面的吸附效应抑制了氢氧化钙(CH)的成核和生长,而氢氧化钙晶核只能在相对于纯氢氧化钙的过饱和溶液中自发生长。
Calcite’s reactivity causes several changes in the hydration process and the resulting microstructure. This is not limited to the formation of carbonate containing AFm. Portlandite distribution differs, with finer microstructure in carbonate-containing samples. According to literature
方解石的反应性导致水合过程和最终微观结构发生多种变化。这不仅限于含碳酸盐的 AFm 的形成。波特兰石的分布有所不同,含碳酸盐样品的微观结构更细。根据文献

[68], the distribution of silicate among the different hydrates is also affected: in carbonate-containing samples, silicate precipitates primarily as low Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} C-S-H. Instead, it is strätlingite and C-S-H with a higher Ca / Ca / Ca//\mathrm{Ca} / Si ratio in the case of quartz analogue. These differences indicate a different mechanism of pozzolanic reaction and have a significant impact on the evolution of performance.
在含碳酸盐的样品中,硅酸盐主要以低 Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} C-S-H 形式沉淀。而在石英类似物的情况下,则是以斯特拉廷石和具有更高 Ca / Ca / Ca//\mathrm{Ca} / Si 比率的 C-S-H 形式沉淀。这些差异表明了不同的火山灰反应机制,并对性能的演变产生了显著影响。
It is not necessary to use limestone as a carbonate source because dolomite, CaMg ( CO 3 ) 2 CaMg CO 3 2 CaMg(CO_(3))_(2)\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}, will work just as well and may even lead to higher strength through the formation of hydrotalcite in addition to traditional AFm phases [31,32,35,68,71]. Calcined clays appear to be the most reactive among all pozzolans and having large synergistic reaction with limestone, and as well dolomite. Carbonates also have an impact on the development of microstructures. Due to the fast reaction of metakaolin in calcined clays cement systems, dolomite effect seems to be lower than limestone one due its lower rate of dissolution, in comparison to limestone and due to its lower calcite content when used as pure materials [31,32,35]. However, in practice we face more the presence of dolomitic limestone and rarely pure dolomite pits.
不必使用石灰石作为碳酸盐来源,因为白云石 CaMg ( CO 3 ) 2 CaMg CO 3 2 CaMg(CO_(3))_(2)\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2} 同样有效,甚至可能通过形成水滑石以及传统的 AFm 相来提高强度[31,32,35,68,71]。煅烧粘土在所有火山灰中似乎是反应性最强的,与石灰石和白云石之间具有较大的协同反应。碳酸盐对微观结构的发展也有影响。由于在煅烧粘土水泥体系中偏高岭土的反应速度较快,白云石的影响似乎低于石灰石,因为其溶解速率较低,并且在作为纯材料使用时其方解石含量较低[31,32,35]。然而,在实践中,我们更常见的是白云石石灰石的存在,而纯白云石矿坑则很少。
Calcined clays have only been used recently and its high reactivity opened the eyes to new microstructural features in these systems. Traditionally, the limestone effect on composite cement performance has been linked to ettringite stabilization. The ettringite content is effectively stable in LC3 samples. However, in calcined clay systems where limestone has been replaced by quartz, only limited ettringite decomposition is observed [68]. The high ettringite content observed is reported to be a consequence of the very dense microstructure at later ages and a lack of calcium to stabilize monosulfate. Another mechanism that could account for the higher strength when using carbonate materials is the difference in microstructure caused by silicate distribution differences. The presence of two thermodynamically incompatible phases, strätlingite and portlandite, at the same time emphasizes the importance of the effect of a very dense matrix and local equilibrium that govern hydration in calcined clay systems.
煅烧粘土最近才被使用,其高反应性揭示了这些系统中新微观结构特征。传统上,石灰石对复合水泥性能的影响与艾特林石的稳定性有关。LC3 样品中的艾特林石含量有效稳定。然而,在石灰石被石英替代的煅烧粘土系统中,仅观察到有限的艾特林石分解[68]。观察到的高艾特林石含量被认为是由于后期非常致密的微观结构以及缺乏钙来稳定单硫酸盐。使用碳酸盐材料时可能导致更高强度的另一个机制是由于硅酸盐分布差异引起的微观结构差异。两种热力学不相容相(斯特拉廷石和波特兰石)同时存在,强调了非常致密的基体和局部平衡对煅烧粘土系统中水化过程的重要影响。

2.4. Particle packing 2.4. 粒子堆积

In addition to the chemical composition of clinker and SCM, particle packing is also improved by optimizing the particle size distribution of solids [72,73]. The space filling of solids in cement pastes, mortars or concrete can be maximized so that the initial porosity can be minimized. Excess water or spacing water can be defined as the difference between the real quantity of water and the minimum water needed to fill all porosity between the solids with maximum packing. This excess of water normalized by the specific area defined the water film thickness [74]. Particle packing is a key lever in addition to chemical admixtures to lower water to cement ratio or to lower cement paste content in concrete.
除了熟料和矿物掺合料的化学成分外,通过优化固体的粒径分布也可以改善颗粒堆积[72,73]。在水泥浆、砂浆或混凝土中,固体的空间填充可以最大化,从而最小化初始孔隙率。多余的水或间隙水可以定义为实际水量与填充所有孔隙所需的最小水量之间的差异,这种填充是在最大堆积情况下进行的。通过特定面积归一化的多余水定义了水膜厚度[74]。颗粒堆积是降低水胶比或降低混凝土中水泥浆含量的关键杠杆,除了化学外加剂之外。
The Compressible Packing Model (CPM), first introduced by De Larrard in 1999, accounts for any particle shapes [72]. Different methods can be used to quantify the water demand of a specific granular skeleton, and to optimize the fresh and hardened properties of cement pastes [75-78]: change of the state from pellets to paste or Vicat needle tests, the advantage of the latter being that it is standardized [79]. As early as 2003, Su et al [80] could apply the CPM model to lower paste content by 15 % 15 % 15%15 \% in concrete at constant water to cement ratio and constant performance. In 2008, Damtoft et al. [81] mentioned packing as one of the pillar of low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} concrete optimization. In 2010, Daminelli et al quantified how packing is affecting environmental performance of real concrete through two main indices: binder intensity or CO 2 CO 2 CO_(2)\mathrm{CO}_{2} intensity ( kg / m 3 / MPa kg / m 3 / MPa (kg//m^(3)//MPa:}\left(\mathrm{kg} / \mathrm{m}^{3} / \mathrm{MPa}\right. ) [5]. These latter indices can also be used for embodied energy ( MJ / m 3 / MPa MJ / m 3 / MPa MJ//m^(3)//MPa\mathrm{MJ} / \mathrm{m}^{3} / \mathrm{MPa} ) [82]. If packing can reduce the embodied CO 2 CO 2 CO_(2)\mathrm{CO}_{2}, this strategy can also help in reducing heat of hydration and temperature rise in concrete without compromising the strength [83]. Moreover, when the water content is low, unhydrated binders can act as reinforcements and give a contribution to strength [84].
可压缩包装模型(CPM)由德·拉拉德于 1999 年首次提出,考虑了任何颗粒形状[72]。可以使用不同的方法来量化特定颗粒骨架的水需求,并优化水泥浆的鲜性和硬化性能[75-78]:从颗粒到浆体的状态变化或维卡针测试,后者的优点在于其标准化[79]。早在 2003 年,苏等人[80]就能够应用 CPM 模型在水泥水比和性能恒定的情况下降低混凝土中的浆体含量 15 % 15 % 15%15 \% 。在 2008 年,达姆托夫等人[81]提到包装是低 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 混凝土优化的支柱之一。2010 年,达米内利等人量化了包装如何通过两个主要指标影响实际混凝土的环境性能:粘结剂强度或 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 强度 ( kg / m 3 / MPa kg / m 3 / MPa (kg//m^(3)//MPa:}\left(\mathrm{kg} / \mathrm{m}^{3} / \mathrm{MPa}\right. [5]。这些后者指标也可以用于体现能量( MJ / m 3 / MPa MJ / m 3 / MPa MJ//m^(3)//MPa\mathrm{MJ} / \mathrm{m}^{3} / \mathrm{MPa} )[82]。如果包装可以减少体现 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} ,那么这一策略也可以帮助降低混凝土的水化热和温度升高,而不影响强度[83]。 此外,当水分含量较低时,未水合的粘合剂可以作为增强材料,并对强度产生贡献 [84]。
In 2018 John et al. [85] reviewed the potential of limestone fillers for
在 2018 年,约翰等人[85]回顾了石灰石填料的潜力。

the cement industry and cement based materials, suggesting a reduction of up to 70 % 70 % 70%70 \% of clinker content (see Fig. 3). In their review, they show how researchers could reduce the binder intensity, highlighting the experimental results of Proske (see Fig. 3) [86,87] or Müller et al. [88], for which the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} intensity could reach 2 kgCO 2 / m 3 / MPa 2 kgCO 2 / m 3 / MPa 2kgCO_(2)//m^(3)//MPa2 \mathrm{kgCO}_{2} / \mathrm{m}^{3} / \mathrm{MPa} for compressive strength of about 40 MPa . (See Fig. 4.)
水泥行业和基于水泥的材料,建议减少高达 70 % 70 % 70%70 \% 的熟料含量(见图 3)。在他们的综述中,他们展示了研究人员如何减少粘合剂强度,强调了 Proske 的实验结果(见图 3)[86,87]或 Müller 等人的研究[88],其中 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 强度可达到 2 kgCO 2 / m 3 / MPa 2 kgCO 2 / m 3 / MPa 2kgCO_(2)//m^(3)//MPa2 \mathrm{kgCO}_{2} / \mathrm{m}^{3} / \mathrm{MPa} ,对应的抗压强度约为 40 MPa。(见图 4。)
In recent years, the particle packing was applied at the cement level to optimize the packing of Portland Limestone cements, CEM II/A-L or CEM II/B-L [89,90]. The concept was also applied for ternary cement blend with clinker, limestone and calcined clay [91] or metakaolin [92], i.e. with reactive SCMs. The most recent research is focusing on optimizing the entire solid skeleton of cement and concrete, including reactive SCM using natural pozzolans [93,94], fly-ash [94-97], slag [94,96] and metakaolin [97].
近年来,颗粒堆积被应用于水泥水平,以优化波特兰石灰石水泥的堆积,CEM II/A-L 或 CEM II/B-L [89,90]。该概念也被应用于含有熟料、石灰石和煅烧粘土 [91] 或高岭土 [92] 的三元水泥混合物,即与反应性矿物掺合料(SCMs)一起使用。最新的研究集中在优化水泥和混凝土的整个固体骨架,包括使用天然火山灰的反应性 SCM [93,94]、粉煤灰 [94-97]、矿渣 [94,96] 和高岭土 [97]。

2.5. Accelerators of composite cements
2.5. 复合水泥的加速剂

Minor additions are often used in composite cements to improve some of the properties required by the users; alkali additions can for instance increase early strength since decades.
小量添加剂常用于复合水泥中,以改善用户所需的一些性能;例如,碱性添加剂可以在几十年来提高早期强度。
Two hardening acceleration technologies are currently in use and are based on soluble salts and seeding technology:
目前正在使用两种硬化加速技术,基于可溶盐和播种技术:
  • Salts: Apart from sodium thiocyanate and nitrate, the most important accelerator salts are calcium-based ones [98-103]. They have the following major disadvantages: sensitivity to cement mineralogy, toxicity, regulatory constraints (particularly for chloride in reinforced concrete), and a negative impact on the long-term strength. The presence of the accelerator immediately after mixing changes the hydration conditions, such as the ion concentrations and pH value of the paste’s pore solution. It affects the reactions of cement clinkers as well as the formation of hydrate phases. The reactions are affected by the concentration of Ca 2 + Ca 2 + Ca^(2+)\mathrm{Ca}^{2+} ions in the pore solution during the early stages of hydration [49].
    盐:除了硫氰酸钠和硝酸盐外,最重要的加速剂盐是基于钙的盐[98-103]。它们有以下主要缺点:对水泥矿物组成的敏感性、毒性、监管限制(特别是对钢筋混凝土中的氯化物)以及对长期强度的负面影响。加速剂在混合后立即存在会改变水化条件,例如浆体孔溶液中的离子浓度和 pH 值。它影响水泥熟料的反应以及水合相的形成。这些反应受到水化早期孔溶液中 Ca 2 + Ca 2 + Ca^(2+)\mathrm{Ca}^{2+} 离子浓度的影响[49]。
SCMs generally react slower than cement. Increased pH is known to activate them. Alkali salt dry activators, mostly carbonates, are safe to use and will establish a high pH in situ by reacting with calcium hydroxide from cement hydration while also forming calcium carbonate with a high surface area, which is probably more reactive with calcium aluminate hydrates than limestone powder[104]. The disadvantage is that, depending on the total alkali content, alkali carbonates may retard cement setting and/or provide slightly lower long-term strength.
SCM 通常比水泥反应慢。已知增加 pH 值可以激活它们。碱盐干激活剂,主要是碳酸盐,使用安全,并且通过与水泥水化产生的氢氧化钙反应,在原位建立高 pH 值,同时形成具有高表面积的碳酸钙,这可能比石灰石粉与钙铝酸盐水合物反应更活跃[104]。缺点是,根据总碱含量,碱碳酸盐可能会延缓水泥的凝结和/或提供略低的长期强度。
Sodium sulfate is also an effective accelerator for aluminatecontaining pozzolans and slag, involving the formation of NaOH in situ for further acceleration and formation of solid ettringite and/or monosulfate with increased water binding. Recently, the effects of alkali sulfate or calcium chloride separately or in combination with amines technology on the strength of OPC-fly ash and OPC-GGBFS cements were investigated [36,105-108]. The compressive strength of the mortars was clearly increased by the combinations (see Fig. 5). Chemical activation was found to be more efficient than conventional grinding [36]. Chemical activation can increase early strength by 100 % 100 % 100%100 \% while maintaining higher late strength [36]. At early age, the accelerators increased the amount of ettringite. They could be a viable solution for increasing the early compressive strength of concrete with high amounts of SCM replacements. Some of the chemical activation techniques requires their use at high temperatures (slow dissolution of salts, etc.), rendering them inapplicable to ready-mix concrete but still applicable to precast concrete.
硫酸钠也是一种有效的加速剂,适用于含铝酸盐的火山灰和矿渣,涉及原位生成氢氧化钠以进一步加速并形成固体水合铝酸钙和/或单硫酸盐,从而增加水结合力。最近,研究了碱性硫酸盐或氯化钙单独或与胺技术结合对普通硅酸盐水泥-粉煤灰和普通硅酸盐水泥-矿渣粉的强度的影响。组合的砂浆抗压强度明显提高(见图 5)。化学活化被发现比传统研磨更有效。化学活化可以在保持较高后期强度的同时增加早期强度。在早期阶段,加速剂增加了水合铝酸钙的数量。它们可能是提高高掺量矿物掺合料混凝土早期抗压强度的可行解决方案。一些化学活化技术需要在高温下使用(盐的缓慢溶解等),使其不适用于预拌混凝土,但仍适用于预制混凝土。
  • Seeding technology: Nanoparticles accelerate the reaction by providing surfaces for heterogeneous nucleation and possibly pozzolanicity. C-S-H seeds appear to be one of the most efficient candidates because they are ideal nucleation substrates for C-S-H products and have a large specific surface area. C-S-H seeds
    播种技术:纳米颗粒通过提供异质成核的表面并可能具有火山灰性来加速反应。C-S-H 种子似乎是最有效的候选者之一,因为它们是 C-S-H 产品的理想成核基底,并且具有较大的比表面积。C-S-H 种子

Fig. 3. Results of performance of low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} concrete (figure taken from [85] with permission) in terms of CO 2 CO 2 CO_(2)\mathrm{CO}_{2} intensity, binder intensity, compressive Strength and clinker to binder ratio.
图 3. 低 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 混凝土的性能结果(图源自[85],已获许可),包括 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 强度、胶结材料强度、抗压强度和熟料与胶结材料比。

Fig. 4. Evolution of low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} cement design including particle packing (figure taken from [86] with permission)
图 4. 低 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 水泥设计的演变,包括颗粒堆积(图源自[86],已获许可)

Fig. 5. Amines, combined to plasticizer and small amount of sodium sulfate effect on strength development of composite cements containing C:clinker, S: GGBFS, L: limestone, AH: anhydrite, M:PCE, N$: Alkali sulphate, d: DEIPA, adapted from [36]
图 5. 胺与增塑剂和少量硫酸钠结合对含有 C:熟料,S:矿渣水泥,L:石灰石,AH:无水石膏,M:聚合物改性剂,N$: 碱性硫酸盐,d: DEIPA 的复合水泥强度发展的影响,改编自[36]

[109-111] can be obtained through a variety of methods (precipitation method, pozzolanic/hydraulic method, or sol-gel method), each with its own set of characteristics to control the Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} ratio and the particle size of C-S-H seeds. The latter is recognized as a critical factor, whereas the former is still being debated and some clarification would be appreciated. The main disadvantage of C-S-H seeds is the lower efficiency at low temperatures and with less reactive cements, as well as an increased demand for water or superplasticizer. The use of polymers during the synthesis of C-S-H is a very promising solution for controlling particle size via inhibition of agglomeration and Ostwald ripening [112,113]. Despite a significant increase in cost and reaction time, the final C-S-H/polymer composite exhibits improved performance.
[109-111] 可以通过多种方法获得(沉淀法、火山灰/水泥法或溶胶-凝胶法),每种方法都有其特定的特征来控制 Ca / Si Ca / Si Ca//Si\mathrm{Ca} / \mathrm{Si} 比率和 C-S-H 种子的粒径。后者被认为是一个关键因素,而前者仍在争论中,希望能得到一些澄清。C-S-H 种子的主要缺点是在低温和反应性较低的水泥中效率较低,以及对水或超塑化剂的需求增加。在 C-S-H 合成过程中使用聚合物是控制粒径的一个非常有前景的解决方案,通过抑制聚集和奥斯特瓦尔德熟化 [112,113]。尽管成本和反应时间显著增加,最终的 C-S-H/聚合物复合材料表现出改善的性能。
Acceleration is not lasting over time, which means that the benefits of accelerators may be lost at later ages, even on the first day; an accelerator that could address this issue would undoubtedly be a game changer. Long term properties (e.g., strength, porosity, etc.) are sometimes affected when using salt. An important question that has yet to be answered is whether it is possible to improve early strength without having negative long-term consequences. Hypotheses of less optimal hydrate packing in the microstructure are not supported by experimental evidence. At the same degree of hydration, materials with salt accelerators have higher strengths, but a lower degree of hydration in the long term is observed [2,19-22]. Some new research ideas suggest
加速效果不会随着时间的推移而持续,这意味着加速剂的好处可能在后期失去,甚至在第一天就会出现这种情况;能够解决这个问题的加速剂无疑会改变游戏规则。使用盐时,长期特性(例如强度、孔隙率等)有时会受到影响。一个尚未回答的重要问题是,是否可以在不产生负面长期后果的情况下提高早期强度。关于微观结构中水合物堆积不够优化的假设并没有实验证据支持。在相同的水合程度下,使用盐加速剂的材料具有更高的强度,但长期观察到的水合程度较低[2,19-22]。一些新的研究思路建议

that this is due to alkalis lowering water activity [114]. Early strength requirements result sometimes in excessive performance at later ages. This “needed early but useless long-term strength” observation is becoming a rising issue as environmental concerns rise, and it should be explained and exploited as well.
这归因于碱性物质降低了水分活度[114]。早期强度要求有时会导致后期性能过高。这种“早期需要但长期无用的强度”观察随着环境问题的上升而成为一个日益严重的问题,应该加以解释和利用。

2.6. Other technologies 2.6. 其他技术

Recently, the number of publications on the use of nanomaterials in concrete [ 115 , 116 ] [ 115 , 116 ] [115,116][115,116] has increased significantly. Graphene and its derivatives (GD) and carbon nanotubes (CNTs) are two nano materials that can sometimes improve the properties of cement and concrete [117-124]. However, results in literature vary from study to study and source to source. This makes it almost impossible to have reproducible results among different laboratories and studies. Additionally, the magnitude of effects varies widely in different studies. Indeed, If the used GD or CNTs are provided by the same supplier and the concrete design is made with the same level of dispersion, the results are repeatable. The main issue may link to the production of GD and CNTs. The characteristics of GD or CNTs from one provider may be different from another provider therefore the results in concrete level observed between the different studies are different.
最近,关于在混凝土中使用纳米材料的出版物数量显著增加。石墨烯及其衍生物(GD)和碳纳米管(CNTs)是两种有时可以改善水泥和混凝土性能的纳米材料。然而,文献中的结果因研究和来源而异。这使得在不同实验室和研究之间几乎不可能获得可重复的结果。此外,不同研究中效果的大小差异很大。实际上,如果使用的 GD 或 CNTs 来自同一供应商,并且混凝土设计采用相同的分散水平,结果是可重复的。主要问题可能与 GD 和 CNTs 的生产有关。来自一个供应商的 GD 或 CNTs 的特性可能与另一个供应商的不同,因此在不同研究中观察到的混凝土水平结果也不同。
Graphene, a 2D-atomic crystal, has a very higher surface area ( 2630 m 2 / g 2630 m 2 / g 2630m2//g2630 \mathrm{~m} 2 / \mathrm{g} ) with an excellent Young’s modulus ( 1 TMPa 1 TMPa ∼1TMPa\sim 1 \mathrm{TMPa} ) [125-127]. Moreover, graphene derivatives, including graphene oxide (GO), reduced GO (rGO) and functionalized GO (FGO), have similar properties as graphene with additional function. GO has hydrophilic properties and is easier to disperse in an aqueous solution [128]. rGO is close to graphene but has more flaws. In order to disperse graphene and GO in solvents and form covalent bonds with various substrates, they must be functionalized by specific functional groups such as poly amine groups, sulfonate groups and amino groups [129]. These GO are known as FGO.
石墨烯是一种二维原子晶体,具有非常高的比表面积( 2630 m 2 / g 2630 m 2 / g 2630m2//g2630 \mathrm{~m} 2 / \mathrm{g} )和优异的杨氏模量( 1 TMPa 1 TMPa ∼1TMPa\sim 1 \mathrm{TMPa} )[125-127]。此外,石墨烯衍生物,包括氧化石墨烯(GO)、还原氧化石墨烯(rGO)和功能化氧化石墨烯(FGO),具有与石墨烯相似的特性,并具备额外的功能。GO 具有亲水性,易于在水溶液中分散[128]。rGO 接近石墨烯,但缺陷更多。为了在溶剂中分散石墨烯和 GO,并与各种基材形成共价键,必须通过特定的功能基团如聚胺基团、磺酸基团和氨基团进行功能化[129]。这些 GO 被称为 FGO。
GD can be added to cement paste or concrete mix to improve the mechanical properties of the resulting material. GD can enhance the compressive and flexural strength of the material and increase its Young’s modulus.
GD 可以添加到水泥浆或混凝土混合物中,以改善所得到材料的机械性能。GD 可以增强材料的抗压强度和抗弯强度,并提高其杨氏模量。
CNTs are cylindrical structures made of carbon atoms arranged in a hexagonal pattern, similar to the way carbon atoms are arranged in graphite or graphene. CNTs have a diameter on the order of nanometers, but they can be very long, with lengths on the order of micrometers to millimeters. -GD and CNTs need to be dispersed before using them in cement and concrete.
CNT 是由碳原子以六角形模式排列而成的圆柱形结构,类似于石墨或石墨烯中碳原子的排列。CNT 的直径在纳米级别,但它们可以非常长,长度在微米到毫米级别。-GD 和 CNT 在用于水泥和混凝土之前需要进行分散。
CNTs can be used as a reinforcing agent in cement and concrete. They have high aspect ratios and exceptional mechanical properties, which make them ideal for reinforcing materials. By adding CNTs to cement and concrete, it is possible to increase their tensile strength and toughness.
CNTs 可以作为水泥和混凝土的增强剂。它们具有高的长宽比和卓越的机械性能,使其成为增强材料的理想选择。通过将 CNTs 添加到水泥和混凝土中,可以提高它们的抗拉强度和韧性。
GD and CNTs can also be used to reduce the carbon footprint of cement and concrete production. By adding these materials to the mix, it is possible to reduce the amount of cement needed, which in turn reduces the amount of CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions generated during production.
GD 和 CNTs 也可以用于减少水泥和混凝土生产的碳足迹。通过将这些材料添加到混合物中,可以减少所需的水泥量,从而减少生产过程中产生的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放量。
However, the availability and the costs of GD and CNTs associated with its production, transportation, and handling can make it far less cost-effective compared to traditional methods such as a reduction of water-to-cement ratio. In addition their benefit on properties is mainly seen at low water to cement ratio (below 0.35 ) [130,131]. Graphene and carbon nanotubes are currently considered safe for most applications, but their potential health hazards are still being investigated [132].
然而,石墨烯和碳纳米管的可用性及其生产、运输和处理的成本,使其相比于传统方法(如降低水胶比)变得远不那么具成本效益。此外,它们对性能的益处主要在低水胶比(低于 0.35)时显现[130,131]。目前,石墨烯和碳纳米管被认为在大多数应用中是安全的,但它们潜在的健康危害仍在研究中[132]。

2.7. Standards and specifications
2.7. 标准和规范

Standards in general and cement standards for the building industry in particular are one of key elements for the market deployment of cements ensuring expected technical performance and safety for the final user. With the pressure on reducing CO 2 CO 2 CO_(2)\mathrm{CO}_{2} emissions, updates of standards since 2018 in different part of the worlds have extended the possibilities
标准一般而言,特别是建筑行业的水泥标准,是水泥市场推广的关键要素之一,确保最终用户的预期技术性能和安全性。随着减少 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 排放的压力,自 2018 年以来,世界各地的标准更新扩展了可能性。

to reduce the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} footprint of industrial cements without compromising the final performance. We document here the key updates for different parts of the world. We comment here on recent updates of cement standards, but one should keep in mind that concrete products or building standards are also required for the deployment of low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} materials and solutions for buildings.
为了在不影响最终性能的情况下减少工业水泥的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 足迹。我们在这里记录了不同地区的关键更新。我们在这里评论了水泥标准的最新更新,但应该记住,混凝土产品或建筑标准对于低 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 材料和建筑解决方案的部署也是必需的。
In the European Union (EU), the Cement standard (EN 197-1:2011 [133]) allows for clinker content (Ck) as low as 65% for CEM II or even lower limits for CEM III ( Ck = 5 % Ck = 5 % Ck=5%\mathrm{Ck}=5 \% ), for CEM IV ( Ck = 45 % Ck = 45 % Ck=45%\mathrm{Ck}=45 \% ) and for CEM V ( Ck = 20 % Ck = 20 % Ck=20%\mathrm{Ck}=20 \% ) based on standards components (blast-furnace slags, silica fume, natural pozzolans, natural calcined pozzolans, fly-ash, limestone and burn shale). Recent complementary standards have been deployed to extend the cement composition and categories. In 2021, the EN 197-5 [134] introduced two extended cements: 1) CEM II/ C-M (minimum Ck = 50 % Ck = 50 % Ck=50%\mathrm{Ck}=50 \% ) and CEM VI (minimum Ck = 35 % Ck = 35 % Ck=35%\mathrm{Ck}=35 \% ). Both cement types allow for dolomitic limestone In terms of composition, CEM II/C-M allow for mixing up to 3 standard constituents including clinker. For example, the so-called LC3-50/30/15 calcined cements extensively studied in the literature can be commercialized as CEM II/CM. CEM VI cements are ternary cements for which either one of natural pozzolans, siliceous fly ash or limestone is added to clinker and blast furnace slag. In 2023, cement with recycled building materials could be specified according to EN 197-6:2023 [135]: this standard allows for the use of recycled concrete fines (RCF as F constituent) with a minimum clinker content as CEM II/B cements (minimum Ck = 65 % Ck = 65 % Ck=65%\mathrm{Ck}=65 \% ).
在欧盟(EU),水泥标准(EN 197-1:2011 [133])允许 CEM II 的熟料含量(Ck)低至 65%,而 CEM III 的限制甚至更低( Ck = 5 % Ck = 5 % Ck=5%\mathrm{Ck}=5 \% ),CEM IV( Ck = 45 % Ck = 45 % Ck=45%\mathrm{Ck}=45 \% )和 CEM V( Ck = 20 % Ck = 20 % Ck=20%\mathrm{Ck}=20 \% )的标准成分(高炉矿渣、硅灰、天然火山灰、天然煅烧火山灰、粉煤灰、石灰石和烧结页岩)也有类似规定。最近,补充标准已被推出,以扩展水泥的组成和类别。2021 年,EN 197-5 [134]引入了两种扩展水泥:1)CEM II/C-M(最低 Ck = 50 % Ck = 50 % Ck=50%\mathrm{Ck}=50 \% )和 CEM VI(最低 Ck = 35 % Ck = 35 % Ck=35%\mathrm{Ck}=35 \% )。这两种水泥类型允许使用白云石石灰石。在组成方面,CEM II/C-M 允许混合最多 3 种标准成分,包括熟料。例如,文献中广泛研究的所谓 LC3-50/30/15 煅烧水泥可以商业化为 CEM II/CM。CEM VI 水泥是三元水泥,其中添加了天然火山灰、硅质粉煤灰或石灰石中的任意一种与熟料和高炉矿渣混合。 在 2023 年,符合 EN 197-6:2023 标准的水泥可以根据回收建筑材料进行规定[135]:该标准允许使用回收混凝土细料(RCF 作为 F 成分),其最小熟料含量为 CEM II/B 水泥(最小 Ck = 65 % Ck = 65 % Ck=65%\mathrm{Ck}=65 \% )。
Beyond pure market demand, the adoption of low- CO 2 CO 2 CO_(2)\mathrm{CO}_{2} cement is also pushed by local regulations and enabled by product standards. As an example, in France, the regulation RE2020 (as explained in the reference guide [136]) pushes the adoption of low CO 2 CO 2 CO_(2)\mathrm{CO}_{2} concrete for buildings by analyzing the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} footprint of the building by two main carbon related indicators (Ic) measuring the carbon footprint of the building (with the unit kgCO 2 / m 2 kgCO 2 / m 2 kgCO_(2)//m^(2)\mathrm{kgCO}_{2} / \mathrm{m}^{2} ) from energy and materials during the construction phase and the use phase. As of 2028, this index for the construction phase should range between 160 and 260 kgCO 2 / m 2 260 kgCO 2 / m 2 260kgCO_(2)//m^(2)260 \mathrm{kgCO}_{2} / \mathrm{m}^{2}