Understanding the impact of cultivated land-use changes on China's grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization
解读耕地利用变化对中国粮食生产潜力的影响及政策启示:非农化、非粮化和边缘化的视角
环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区Keywords 关键词
1. Introduction 一、简介
城市化被广泛认为是对粮食安全的威胁( Gu et al., 2019 )。到 2030 年,城市扩张预计将导致全球可耕地减少 1.8-2.4%。耕地减少造成的粮食损失估计占 2000 年全球农作物产量的 3-4%,主要影响以下地区:亚洲和非洲( Bren d'Amour 等,2017 )。过去几十年来,中国城市化进程空前迅猛,给农业空间带来了巨大的压力( Li et al., 2017 ; Xu et al., 2020 ),也给耕地有效利用带来了一系列挑战。土地。首先,城市发展直接导致城市周边农田大量流失( Liu et al., 2019 ; Zhou et al., 2020 ),仅2003年至2016年就导致约3.2×10 4 km 2的耕地减少。 ( Qiu,B. 等人,2020 )。相比之下,中国人口的持续增长导致人均耕地大幅减少,增加了对持续、安全的粮食供应的需求( Ge et al., 2018 )。 随着消费模式和营养意识的发展,中国居民对蔬菜、水果、肉、蛋、奶等食品的需求日益增加,不再完全依赖谷物作为能源( Gu等人,2019 ;朱和贝戈,2022 )。在丰厚回报和不断变化的消费趋势的推动下,中国相当多的农田已经不再从事粮食生产( Su et al., 2020 ; Zhang, D. et al., 2023 )。在经济发展过程中,农村劳动力向城市转移,导致耕地的大量利用(刘等,2016 )甚至废弃(任志强等,2023 ;严等,2016 )。目前,中国的粮食安全有保障,但长期挑战依然存在,包括粮食生产的水土资源约束趋紧、粮食供应结构性不足、粮食生产地区差异等(刘和周,2021 )。耕地利用变化造成的粮食生产潜在损失不容低估。
为应对经济发展中粮食生产面临的挑战,中国政府出台了一系列政策措施,例如《关于坚决停止耕地非农化的通知》(国务院,2020)和《关于坚决遏制耕地非农化的通知》(国务院,2020)防止耕地非粮利用稳定粮食生产确保粮食安全”(国务院,2020)。尽管政府的努力在耕地保护方面取得了一些进展,但上述问题仍然普遍存在。因此,迫切需要阐明农田利用变化对粮食生产造成的威胁(刘和周,2021 )。
学者们广泛研究了经济发展过程中耕地利用变化对粮食生产的影响(王X等,2020 ;钟等,2022 )。城市扩张与农业利用之间的竞争一直是耕地利用变化研究的焦点(刘,2018 )。人们普遍认为,快速的城市化不可避免地会导致优质农田的永久丧失( Chen等,2022 ; Tan等,2005 )。 1992年至2015年,城市扩张导致中国粮食产量每年减少1245×10 4 t,粮食自给率每年下降2%(何等,2017) )。 2000年以来,遥感技术的快速发展为种植模式监测开辟了途径,逐渐引起人们对种植强度变化对粮食生产的影响的关注(韩等,2022 ;邱等,2015 ;严等,2015) ., 2019 ).有报告显示,中国南方地区从双季稻转向单季稻导致粮食产量下降 2.6%( Jiang et al., 2019 )。 此外,广泛的实地调查发现,非粮作物种植和荒地现象日益普遍(彭等,2021 ;邱涛等,2020 ;任志强等,2023 );然而,这些研究通常集中于特定区域和样本。近年来,区域尺度的非粮生产和耕地撂荒监测逐渐受到关注(韩和宋,2020 ;苏等,2019,2020 ) 。例如, Zhang, D. 等人。 (2023)揭示了关中地区耕地非粮生产的时空特征。张,M.等人。 (2023)利用土地利用数据来描述中国过去三十年的耕地撂荒情况。尽管对非粮化和抛荒进行了部分探索,但其对粮食生产的威胁尚未量化,其对粮食生产的影响程度尚未明确。而且,这些研究侧重于农田变化的具体方面或类型,缺乏对其对粮食安全的总体影响进行全面评估和系统计算。 进一步明确经济发展过程中各种耕地利用变化对粮食生产的影响和空间异质性,可以指导农地管理策略的制定和粮食增产的有效路径探索。
当前,我国仍处于城镇化加速进程中,上述耕地利用变化可能会更加普遍。针对1990年以来我国城镇化进程中存在的耕地利用问题,本研究深入探讨了非农化、非粮化、边际化三个具体方面的耕地变化对我国城镇化进程中粮食生产潜力(GPP)的影响。通过结合遥感和统计数据来确定网格规模。本研究的主要目标是(1)阐明非农化、非粮食化和边缘化对 GPP 的影响程度,(2)揭示空间异质性,表征这些耕地利用变化对 GPP 的影响。 GPP,(3)根据当前形势讨论耕地保护的政策影响。
2. Data sources and methods
2 数据来源和方法
2.1. Study area 2.1.研究区
本研究包括中国31个省市(不包括香港、澳门和台湾)。根据农业生产条件和气候,将研究区划分为9个农业气候带(图1 ): 东北平原(NCP):包括辽宁、吉林、黑龙江;北方干旱半干旱地区(NASR):甘肃、宁夏、新疆、内蒙古;黄淮海平原(HHHP):北京、天津、河北、山东、河南;黄土高原(LP):陕西、山西;青藏高原(QTP):青海和西藏;长江中下游平原(MLYP):上海、江苏、浙江、安徽、江西、湖北、湖南;四川盆地(SCB):重庆、四川;云贵高原(YGP):广西、贵州、云南;华南地区 (SC):广东、海南和福建。

Fig. 1. Distribution map of agricultural climate zones in China.
图1 .中国农业气候带分布图。
2.2. Data collection and preprocessing
2.2.数据收集和预处理
数据包括欧洲航天局气候变化倡议1992年至2020年土地利用/覆盖(ESACCI_LC)、资源环境科学数据中心提供的中国土地利用/覆盖数据集(CLUD)、 MODIS增强植被指数(EVI) )、作物潜在产量数据和统计数据(表1 )。
Table 1. Data description.
表 1 .数据说明。
Data type 数据类型 | Time range 时间范围 | Spatial resolution 空间分辨率 | Source 来源 |
---|---|---|---|
ESACCI_LC | 1992–2020 | 300 m 300米 | http://climate.esa.int/en/projects/land-cover |
CLUDs CLUD | 1990, 1995, 2000, 2005, 2010, 2015, 2020 | 1 km 1公里 | https://www.resdc.cn/ |
EVI (MOD13Q1) 房屋(MOD13Q1) | 2000–2020 | 250 m 250米 | https://ladsweb.modaps.eosdis.nasa.gov/ |
Potential crop yield 作物潜在产量 | 2010 | 1 km 1公里 | https://www.resdc.cn/ |
Statistical data 统计数据 | 1990–2020 | – | China Statistical Yearbook and China Rural Statistical Yearbook 中国统计年鉴和中国农村统计年鉴 |
Agricultural climate zones 农业气候区 | – | – | https://www.resdc.cn/ |
ESACCI_LC 的空间分辨率为 300 m,时间范围为 1992 年至 2020 年,使其成为全球范围内最长的连续土地利用产品。该产品根据联合国粮食及农业组织 (FAO )土地覆盖分类系统 (LCCS) 进行分类,其中包括 36 种土地利用类型。
CLUD从1990年到2020年每五年提供一次中国详细的土地利用信息。该数据集基于Landsat MSS、TM/ETM和Landsat8卫星遥感数据,采用人机交互式视觉解释构建。包括耕地、森林、草原、水域、建成区、荒地6个一级类和25个二级类。
2000年至2020年的EVI数据来自MOD13 Q1数据集,空间分辨率为250 m,时间分辨率为16天。这些数据用于构建涵盖2000年至2020年的多种作物指数(MCI)(补充文本1)数据集。MODIS数据始于2000年2月,2000年1月的数据缺失。因此,使用 2001 年 1 月的数据来填补这一空白。
1990年至2020年各省粮食总产量和粮食作物播种面积比重统计数据来源于《中国统计年鉴》和《中国农村统计年鉴》。
2.3. Research methods 2.3.研究方法
20世纪90年代以来,中国快速的城市化进程显着影响了耕地的利用。 1996年至2009年间,约300×10 4 hm 2优质耕地被建设用地占用( Kong,2014 )。同时,随着农村劳动力的不断迁移,耕地的粗放利用和废弃等现象也日益明显(王等,2020 ,王等,2020王Y.等,2020徐等人,2019 )。针对我国耕地利用的主要问题,根据耕地非农化的模式,我们将其分为非农化、非粮化、边缘化三种类型,并系统分析了其影响。对GPP的影响(图2 )。

Fig. 2. Flowchart for estimating the impact of non-agriculturalization, non-grainization, and marginalization of cultivated land on GPP.
2.3.1. Estimation method for the impact of non-agriculturalization on GPP
2.3.2. Estimation method for the impact of non-grainization on GPP
2.3.3. Estimation method for the impact of marginalization on GPP
- (1)Method for estimating the impact of MCI reduction on GPP
- (2)Estimating the impact of farmland abandonment on GPP
3. Results
3.1. Spatiotemporal changes of cultivated land

Fig. 3. 1992–2020 change of cultivated land area in China and nine agricultural climate zones (ratio of annual area and multi-year averaged area).

Fig. 4. Spatial shift of cultivated land (a), grain production (b), and population (c) gravity center from 1990 to 2020.
3.2. Influence of non-agriculturalization on GPP

Fig. 5. Area of non-agricultural farmland from 1990 to 2020.

Fig. 6. Loss of GPP due to non-agriculturalization of cultivated land in each 10 km × 10 km grid from 1990 to 2020.
3.3. Influence of non-grainization on GPP
3.3.1. Loss of GPP due to the planting of cash crops

Fig. 7. Proportion of sown area for grain crops in China and nine agricultural climate zones from 1990 to 2020.

Fig. 8. Changes in GPP due to the planting of cash crops from 1990 to 2020.
3.3.2. Loss of GPP due to conversion to orchards

Fig. 9. Area of cultivated land transformed into orchards in China and nine agricultural climate zones from 1990 to 2020 (unit: 104 hm2).

Fig. 10. Loss of GPP due to conversion to orchards in each 10 km × 10 km grid from 1990 to 2020.
3.4. Influence of marginalization on GPP
3.4.1. Loss of GPP due to MCI reduction

Fig. 11. Spatial distribution of cropping intensity conversion from 2000 to 2019.

Fig. 12. Loss of GPP due to MCI reduction in each 10 km × 10 km grid from 2000 to 2019.
3.4.2. Loss of GPP due to farmland abandonment
- (1)Overall farmland abandonment trends

Fig. 13. Interannual changes of newly abandoned farmland area (a) and accumulated farmland abandoned land area (b).
- (2)Durations of farming cessation between 1993 and 2019

Fig. 14. Farming cessation durations between 1993 and 2019.
- (3)Spatiotemporal distribution of farmland abandonment

Fig. 15. Area of abandoned farmland within a 10 km × 10 km grid between 1993 and 2019.
- (4)Effects of farmland abandonment on GPP

Fig. 16. Loss of GPP due to farmland abandonment in each 10 km × 10 km grid from 1993 to 2020.
4. Discussion
- (1)Main changes in cultivated land use affecting China's GPP

Fig. 17. Changes in GPP caused by cultivated land-use change in China and nine agricultural zones.
- (2)Implications for cultivated land protection
- (3)Availability of identification results for farmland abandonment
- (4)Limitations and uncertainties
5. Conclusion
CRediT authorship contribution statement
Declaration of competing interest
Appendix A. Supplementary data
Multimedia component 1.
References
- Bene, 2020Resilience of local food systems and links to food security - a review of some important concepts in the context of COVID-19 and other shocksFood Secur., 12 (4) (2020), pp. 805-822
- Bren d'Amour et al., 2017Future urban land expansion and implications for global croplandsProc. Natl. Acad. Sci. U. S. A., 114 (34) (2017), pp. 8939-8944
- Brink et al., 2023Future responses to environment-related food self-insufficiency, from local to globalReg. Environ. Change, 23 (3) (2023), p. 87
- Chai et al., 2019Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central ChinaJ. Clean. Prod., 207 (2019), pp. 474-482
- Chen et al., 2023Assessment of continuity and efficiency of complemented cropland use in China for the past 20 years: a perspective of cropland abandonmentJ. Clean. Prod., 388 (2023), Article 135987
- Chen et al., 2022Spatiotemporal evolution of cultivated land non-agriculturalization and its drivers in typical areas of Southwest China from 2000 to 2020Rem. Sens., 14 (13) (2022)
- FAO, 2023World Food and Agriculture – Statistical Yearbook 2023(2023), 10.4060/cc8166enRome
- Ge et al., 2018Farmland transition and its influences on grain production in ChinaLand Use Pol., 70 (2018), pp. 94-105
- Gu et al., 2019Four steps to food security for swelling citiesNature, 566 (7742) (2019), pp. 31-33
- Guo et al., 2023Cropland abandonment in China: patterns, drivers, and implications for food securityJ. Clean. Prod., 418 (2023), Article 138154
- Ha et al., 2021Climate change impact assessment on Northeast China's grain productionEnviron. Sci. Pollut. Control Ser., 28 (12) (2021), pp. 14508-14520
- Han et al., 2022Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020Agric. Syst., 200 (2022)
- Han and Song, 2020Abandoned cropland: patterns and determinants within the Guangxi Karst mountainous area, ChinaAppl. Geogr., 122 (2020), Article 102245
- He et al., 2017Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivitySci. Total Environ., 576 (2017), pp. 660-670
- Jiang et al., 2019The impact of paddy rice multiple cropping index changes in Southern China on national grain production capacity and its policy implicationsActa Geograph. Sin., 74 (1) (2019), pp. 32-43
- Kinnunen et al., 2020Local food crop production can fulfil demand for less than one-third of the populationNature Food, 1 (4) (2020), pp. 229-237
- Kong, 2014China must protect high-quality arable landNature, 506 (7486) (2014), p. 7
- Laborde et al., 2020COVID-19 risks to global food securityScience, 369 (6503) (2020), pp. 500-502
- Lesk et al., 2016Influence of extreme weather disasters on global crop productionNature, 529 (7584) (2016), pp. 84-+
- Li et al., 2017Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation systemLand Use Pol., 60 (2017), pp. 26-36
- Liang et al., 2022Formation mechanism and sustainable productivity impacts of non‐grain croplands: evidence from Sichuan ProvinceChina, 34 (2022), pp. 1120-1132
- Liu et al., 2019Chinese cropland losses due to urban expansion in the past four decadesSci. Total Environ., 650 (2019), pp. 847-857
- Liu et al., 2016The impact of rural out-migration on arable land use intensity: evidence from mountain areas in Guangdong, ChinaLand Use Pol., 59 (2016), pp. 569-579
- Liu et al., 2021Impacts of climatic warming on cropping system borders of China and potential adaptation strategies for regional agriculture developmentSci. Total Environ., 755 (2021)
- Liu, 2018Introduction to land use and rural sustainability in ChinaLand Use Pol., 74 (2018), pp. 1-4
- Liu and Zhou, 2021Reflections on China's food security and land use policy under rapid urbanizationLand Use Pol., 109 (2021), Article 105699
- Lu et al., 2024Evaluation of the efficiency and drivers of complemented cropland in Southwest China over the past 30 years from the perspective of cropland abandonmentJ. Environ. Manag., 351 (2024), Article 119909
- Lu et al., 2019Exploring a moderate fallow scale of cultivated land in China from the perspective of food securityInt. J. Environ. Res. Publ. Health, 16 (22) (2019)
- Peng et al., 2021Will land circulation sway “grain orientation”? The impact of rural land circulation on farmers' agricultural planting structuresPLoS One, 16 (6 June) (2021)
- Pereira and Oliveira, 2020Poverty and food insecurity may increase as the threat of COVID-19 spreadsPubl. Health Nutr., 23 (17) (2020), pp. 3236-3240
- Qiu et al., 2022Maps of cropping patterns in China during 2015-2021Sci. Data, 9 (1) (2022)
- Qiu et al., 2020How cropland losses shaped by unbalanced urbanization process?Land Use Pol., 96 (2020)
- Qiu et al., 2015Rice cropping density and intensity lessened in southeast China during the twenty-first centuryEnviron. Monit. Assess., 188 (1) (2015), p. 5
- Qiu et al., 2020Does Land Renting-In Reduce Grain Production? Evidence from Rural China, vol. 90, Land Use Policy (2020)
- Ren et al., 2023Ageing threatens sustainability of smallholder farming in ChinaNature (2023)
- Romero-Díaz et al., 2017Ecosystem responses to land abandonment in western Mediterranean mountainsCatena, 149 (2017), pp. 824-835
- Su et al., 2019Quantifying the spatiotemporal dynamics and multi-aspect performance of non-grain production during 2000–2015 at a fine scaleEcol. Indicat., 101 (2019), pp. 410-419
- Su et al., 2020Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protectionLand Use Pol., 92 (2020)
- Tan et al., 2005Urban land expansion and arable land loss in China - a case study of Beijing-Tianjin-Hebei regionLand Use Pol., 22 (3) (2005), pp. 187-196
- van Vliet et al., 2017A global analysis of land take in cropland areas and production displacement from urbanizationGlobal Environ. Change, 43 (2017), pp. 107-115
- Wang et al., 2020Impact of spatiotemporal change of cultivated land on food-water relations in China during 1990-2015Science of the Total Environment 716 (2020)
- Wang et al., 2020Farmland marginalization and its drivers in mountainous areas of ChinaSci. Total Environ., 719 (2020)
- Wu et al., 2023Decoupling relationship between the non-grain production and intensification of cultivated land in China based on Tapio decoupling modelJ. Clean. Prod., 424 (2023), Article 138800
- Xia et al., 2022Influencing factors of the supply-demand relationships of carbon sequestration and grain provision in China: does land use matter the most?Sci. Total Environ., 832 (2022), Article 154979
- Xiao et al., 2015Quantifying determinants of cash crop expansion and their relative effects using logistic regression modeling and variance partitioningInt. J. Appl. Earth Obs. Geoinf., 34 (2015), pp. 258-263
- Xu et al., 2019Labor migration and farmland abandonment in rural China: empirical results and policy implicationsJ. Environ. Manag., 232 (2019), pp. 738-750
- Xu et al., 2020Assessing progress towards sustainable development over space and timeNature, 577 (7788) (2020), pp. 74-+
- Yan et al., 2019Tracking the spatio-temporal change of cropping intensity in China during 2000-2015Environ. Res. Lett., 14 (3) (2019)
- Yan et al., 2016Drivers of cropland abandonment in mountainous areas: a household decision model on farming scale in Southwest ChinaLand Use Pol., 57 (2016), pp. 459-469
- Yang and Li, 2000Cultivated land and food supply in ChinaLand Use Pol., 17 (2) (2000), pp. 73-88
- Yang et al., 2015Potential benefits of climate change for crop productivity in ChinaAgric. For. Meteorol., 208 (2015), pp. 76-84
- Yin et al., 2020Monitoring cropland abandonment with Landsat time seriesRem. Sens. Environ., 246 (2020), Article 111873
- Yin et al., 2018Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time seriesRem. Sens. Environ., 210 (2018), pp. 12-24
- Yin et al., 2022What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesisLand Use Pol., 120 (2022), Article 106261
- Zhang et al., 2023Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong RegionLand Use Pol., 125 (2023), Article 106466
- Zhang et al., 2023Reveal the severe spatial and temporal patterns of abandoned cropland in China over the past 30 yearsSci. Total Environ., 857 (2023), Article 159591
- Zhong et al., 2022Understanding impacts of cropland pattern dynamics on grain production in China: a integrated analysis by fusing statistical data and satellite-observed dataJ. Environ. Manag., 313 (2022)
- Zhou and Cao, 2020What is the policy improvement of China's land consolidation? Evidence from completed land consolidation projects in Shaanxi ProvinceLand Use Pol., 99 (2020), Article 104847
- Zhou et al., 2020Land Use Change and Driving Factors in Rural China during the Period 1995-2015, vol. 99 (2020)Land Use Policy
- Zhu and Begho, 2022Towards responsible production, consumption and food security in China: a review of the role of novel alternatives to meat proteinFuture Foods, 6 (2022), Article 100186
Cited by (13)
How does coal mining affect land use in townships? A perspective of land use transition
2024, Journal of Cleaner Production