Abstract 摘要
The thriving development of AIGC has catalyzed significant transformations in the design industry, garnering increased scholarly attention to the intersection of these two fields. However, a comprehensive study summarising and revealing the current research status of AIGC in design has yet to be conducted. To address this gap, this study initiated a systematic literature review. Based on the PRISMA framework, journals and conferences were searched for terms related to both AIGC and design, and 90 documents were ultimately included in the corpus for analysis based on strict inclusion and exclusion criteria. This literature review analyzes existing studies’ bibliometric data, theoretical foundations, and technological dependencies. Further, it explores the application mechanisms of AIGC in the four stages of the design process: creative divergence, design generation, assistance and advice, evaluation and feedback. By examining the temporal and spatial distribution of existing studies, insights were gained into the evolutionary trends of integrating AIGC with design. This study identifies gaps in the current literature and suggests directions for future research agenda.
人工智能生成设计(AIGC)的蓬勃发展催生了设计行业的重大转变,引起学术界对这两个领域交叉点的增加关注。然而,迄今为止尚未进行一项总结和揭示 AIGC 在设计领域当前研究状况的全面研究。为填补这一空白,本研究启动了一项系统文献综述。基于 PRISMA 框架,搜索了与 AIGC 和设计相关的术语的期刊和会议,最终根据严格的纳入和排除标准,将 90 份文献纳入分析语料库。这项文献综述分析了现有研究的文献计量数据、理论基础和技术依赖性。此外,它探讨了 AIGC 在设计过程的四个阶段中的应用机制:创意分歧、设计生成、辅助和建议、评估和反馈。通过检查现有研究的时间和空间分布,可以洞察将 AIGC 与设计整合的演变趋势。本研究确定了当前文献中的空白,并提出了未来研究议程的方向。
1. Introduction 1. 引言
In 2023, it was hailed as the inaugural year of artificial intelligence, where AI entered a new paradigm. The maturation of Generative Artificial Intelligence (GenAI) technology has obscured the boundaries between machine-generated content and human-created content, signifying a shift in the role of AI from perceiving and understanding to generating and creating (Shi, Shang, and Qi Citation2023). AIGC (Artificial Intelligence Generated Content) refers to content produced by GenAI that is tailored to meet the user's personalised needs and has advanced significantly in content generation, such as images, text, and audio. For example, in text generation, ChatGPT, a large language model (LLM) developed by OpenAI, demonstrates a high degree of semantic understanding, perform fast responses to human-like conversations, and generate various types of textual content for codes and scripts (Wu et al. Citation2023). In image generation, Stable Diffusion and DALL-E-2 are among the most advanced text-to-image models that create high-resolution images on cue, enabling content optimisation and local modification of the original image (Xu et al. Citation2023; Po et al. Citation2023).
2023 年被誉为人工智能的开创之年,人工智能进入了一个新的范式。生成式人工智能(GenAI)技术的成熟模糊了机器生成内容和人类创作内容之间的界限,标志着人工智能的角色从感知和理解转变为生成和创造(Shi, Shang, and Qi 2023)。人工智能生成内容(AIGC)指的是由 GenAI 生成的根据用户个性化需求定制的内容,在内容生成方面取得了显著进展,如图像、文本和音频。例如,在文本生成方面,由 OpenAI 开发的大型语言模型 ChatGPT(LLM)展示了高度的语义理解能力,能够快速回应类似人类对话,并为代码和脚本生成各种类型的文本内容(Wu 等,2023)。在图像生成方面,稳定扩散和 DALL-E-2 是最先进的文本到图像模型之一,能够按需创建高分辨率图像,实现内容优化和对原始图像的局部修改(Xu 等,2023;Po 等,2023)。
AIGC’s unique strengths in content generation align well with the creative nature of the design domain. Therefore, they are widely incorporated into the design process, such as utilising ChatGPT to assist with creative game conceptualisation during the creative divergence phase (Lanzi and Loiacono Citation2023) and using the Generative Adversarial Network (GAN) to generate GUI components featuring overall aesthetics, colour harmony, and structural standards during the design generation phase (Zhao et al. Citation2021). The integration of artificial intelligence with design significantly enhances the performance of designers, by improving both the efficiency of the iteration process and the quality of solutions generated in terms of depth and breadth (Zhou, Zhang, and Yu Citation2023). Generative models have been constructed for a variety of applications across design fields and tasks.
AIGC 在内容生成方面的独特优势与设计领域的创造性特质高度契合。因此,它们被广泛应用于设计过程中,例如在创意分歧阶段利用 ChatGPT 协助创意游戏概念化(Lanzi 和 Loiacono 2023),以及在设计生成阶段利用生成对抗网络(GAN)生成具有整体美学、色彩和结构标准的 GUI 组件(Zhao 等,2021)。人工智能与设计的整合显著提升了设计师的表现,通过提高迭代过程的效率以及在深度和广度方面生成解决方案的质量(Zhou,Zhang 和 Yu 2023)。生成模型已经为设计领域和任务的各种应用构建。
AIGC has caused a rapid and profound transformation in traditional design approaches. However, both the applied and academic communities demonstrate a dualistic perspective towards this emerging technology, characterised by a concurrent mixture of acclaim and skepticism, both embracing and refuting. The focus of intense debate revolves around three key aspects: firstly, whether AIGC meets the essential prerequisites to function as a professional design tool. AIGC's powerful generative capabilities already satisfy the basic needs of creation. However, in the realm of design, a professional and intricate field, considerations encompassing propositions, user dynamics, costs, and multifaceted demands require an exploration of how AIGC can effectively integrate with design processes to establish meaningful applications. Secondly, what is the relationship between AIGC and designers? Symbiosis or substitution? AIGC is perceived as ‘ horrible,’ due to extensive automation leading to collective unemployment among designers (Boyd and Holton Citation2018). Optimists argue that AIGC inherently relies on human intervention for creative generation. Model training necessitates humans to construct the dataset, and the output content contains uncertainties that require human control and maintenance. Furthermore, the intricate design process challenges artificial intelligence to replicate human cognition (Inie, Falk, and Tanimoto Citation2023). However, recent cognitive research on machine creativity has found that AIGC can establish machine cognition and achieve the replication of human cognition by setting up and training, such as using ‘S (Stimulus)-O (Object)-R (Response)’ to correspond to ‘Input-Blackbox-Output’ (Tao, Gao, and Yuan Citation2023), which further impacts on the relationship between AIGC and designers. Thirdly, what is the copyright ownership of AIGC, and are there moral and ethical issues? Bender et al. (Citation2021) calls it a ‘Stochastic Parrot,’ which reproduces data used in the training process. Consequently, when applied to design, an indirectly commerce-oriented activity, it unavoidably raises concerns of similarity and plagiarism warnings, potentially resulting in harm.
AIGC 已经在传统设计方法中引起了快速而深刻的转变。然而,无论是应用还是学术界都表现出一种对这种新兴技术的二元视角,即同时兼具赞誉和怀疑,既接受又拒绝。激烈辩论的焦点集中在三个关键方面:首先,AIGC 是否满足作为专业设计工具的基本先决条件。AIGC 强大的生成能力已经满足了创作的基本需求。然而,在设计领域,一个专业而复杂的领域,需要考虑命题、用户动态、成本和多方面需求,需要探讨 AIGC 如何有效地与设计过程整合,以建立有意义的应用。其次,AIGC 与设计师之间的关系是什么?共生还是替代?AIGC 被认为是“可怕的”,因为广泛的自动化导致设计师集体失业(Boyd 和 Holton,2018 年)。乐观主义者认为,AIGC 本质上依赖于人类干预进行创造性生成。 模型训练需要人类构建数据集,输出内容包含需要人类控制和维护的不确定性。此外,复杂的设计过程挑战着人工智能复制人类认知(Inie,Falk 和 Tanimoto 2023)。然而,最近关于机器创造力的认知研究发现,AIGC 可以建立机器认知,并通过建立和训练来实现复制人类认知,例如使用“S(刺激)-O(对象)-R(响应)”对应于“输入-黑盒-输出”(Tao,Gao 和 Yuan 2023),这进一步影响了 AIGC 与设计师之间的关系。第三,AIGC 的版权归属是什么,是否存在道德和伦理问题?Bender 等人(2021)称其为“随机鹦鹉”,复制了训练过程中使用的数据。因此,当应用于设计时,一种间接的商业活动,不可避免地引起相似性和抄袭警告的担忧,可能导致损害。
Given the above background, the application of AIGC in the design field has garnered more attention. Despite the intense debates surrounding the propositions, the application forms, technical dependencies, and research theories of AIGC in the design domain still lack a clear elucidation. Specifically, the intrinsic relationship between AIGC and design has yet to be systematically explored and theorised.
鉴于上述背景,AIGC 在设计领域的应用引起了更多关注。尽管围绕 AIGC 在设计领域的提议、应用形式、技术依赖和研究理论存在激烈的争论,但 AIGC 与设计之间的内在关系仍缺乏清晰的阐述。具体来说,AIGC 与设计之间的内在关系尚未得到系统地探讨和理论化。
Consequently, this study aims to systematically review the existing literature on the application of AIGC in design and analyze the research trends, themes, methodologies, and contexts associated with this field. Specifically, the following questions are addressed through the literature analysis:
因此,本研究旨在系统回顾现有文献,探讨 AIGC 在设计中的应用,并分析与该领域相关的研究趋势、主题、方法论和背景。具体而言,通过文献分析回答以下问题:
RQ1: What are the research trends and priorities of AIGC in the design domain?
RQ1:AIGC 在设计领域的研究趋势和优先事项是什么?
RQ2: What are the research components and contributions of AIGC to the design domain?
RQ2:AIGC 对设计领域的研究组成部分和贡献是什么?
RQ3: What are the technological dependencies for integrating AIGC with design?
RQ3:将 AIGC 与设计集成需要哪些技术依赖?
RQ4: What are the theoretical approaches for integrating AIGC and design?
RQ4:如何整合 AIGC 和设计的理论方法?
RQ5: How is AIGC embedded in the design process?
RQ5:AIGC 如何嵌入设计过程中?
RQ6: What are the trends and future orientations for AIGC in the design domain?
RQ6:AIGC 在设计领域的趋势和未来方向是什么?
本文的组织如下。首先,澄清 AIGC 和设计领域的概念定义。然后,描述文献综述的搜索程序,并分析 90 项研究、理论基础、技术依赖等的文献计量数据。随后,探讨基于设计过程不同阶段的 AIGC 嵌入式设计的方法机制,并总结 AIGC 应用于设计领域的演变趋势。最后,审视整合 AIGC 和设计的研究方向及其理论和实践贡献。
2. Background 2. 背景
2.1. AIGC and related concepts
2.1. AIGC 及相关概念
AIGC (Artificial Intelligence Generated Content) is defined differently across various perspectives. Based on the content producer perspective, it refers to both content automatically generated by AI relying on deep learning architectures and the production method in which AI searches for patterns through existing data and automatically generates content. In addition, it also refers to the collection of technologies for automated content generation. Therefore, AIGC has both content and technology features (Li, Xie, and Sha Citation2023).
AIGC(人工智能生成内容)在不同的视角下有不同的定义。从内容生产者的角度来看,它指的是依赖深度学习架构的人工智能自动生成的内容,以及人工智能通过现有数据搜索模式并自动生成内容的生产方法。此外,它还指的是用于自动化内容生成的技术集合。因此,AIGC 具有内容和技术特征(Li,Xie 和 Sha 2023)。
Regarding content features, the development of content generation can be segmented into four stages based on production subject differences: Professional-Generated Content (PGC), User-Generated Content (UGC), AI-assisted User-Generated Content (AIUGC), and AIGC (Shi et al. Citation2023). Compared to PGC and UGC, the most notable characteristic of AIGC is its reliance on new technologies that empower machine intelligence to create content, resulting in an explosive increase in content volume. This study concentrates on the integration trend between AIGC and the design domain. Therefore, it limits the research target to AI-generated content in terms of content characteristics.
关于内容特征,内容生成的发展可以根据制作主体的差异分为四个阶段:专业生成内容(PGC),用户生成内容(UGC),AI 辅助用户生成内容(AIUGC)和 AIGC(Shi 等,2023 年)。与 PGC 和 UGC 相比,AIGC 最显著的特征是其依赖于赋予机器智能创作内容的新技术,导致内容量激增。本研究关注 AIGC 与设计领域之间的整合趋势。因此,它将研究目标限定为 AI 生成内容在内容特征方面。
Regarding technical features, AIGC utilises generative models in deep learning, Generative AI (GenAI), which fundamentally differs from traditional discriminative AI. Discriminative AI constructs classification boundaries by directly learning the mapping relationships between input data and corresponding labels, commonly used to judge, analyze, and predict new scenarios (Li et al. Citation2023). In contrast, GenAI operates by learning the joint probability distribution in the data, i.e. the distribution of vector features in terms of multiple variables. Combined with generative algorithms, it can not only mimic existing data but also create entirely new content. The differences in the characteristics of the underlying technology are critical for distinguishing between research subjects, primarily determined by two main criteria: whether or not it relies on a typical generative model and whether or not there is content generation and output.
关于技术特点,AIGC 利用深度学习中的生成模型,生成式人工智能(GenAI),这与传统的判别式人工智能有根本区别。判别式人工智能通过直接学习输入数据与相应标签之间的映射关系来构建分类边界,通常用于判断、分析和预测新场景(Li 等,2023 年)。相比之下,GenAI 通过学习数据中的联合概率分布运行,即关于多个变量的向量特征分布。结合生成算法,它不仅可以模仿现有数据,还可以创造全新的内容。基础技术特征的差异对于区分研究主题至关重要,主要由两个主要标准确定:是否依赖于典型的生成模型以及是否存在内容生成和输出。
GenAI’s algorithms, models, and other core technologies are the foundation of AIGC. Regarding image generation, typical generative models include Generative Adversarial Networks (GAN), which use confrontation and games to promote generative optimisation (Gui et al. Citation2023; Goodfellow et al. Citation2020), Variational Auto-Encoder (VAE) that maps image feature latent space via the decoder and achieves feature reorganisation through the encoder (Kingma and Welling Citation2022), and Diffusion model that adds noise to the original image and then denoising to generate new content in the reverse direction (Dhariwal and Nichol Citation2021; Yang et al. Citation2023). These deep generative models facilitate novel content creation through recombination and transfer and can achieve controlled generation through task-specific training. Regarding text generation, the development of Natural Language Processing (NLP) has enabled computers to understand, interpret, and generate natural language. The Transformer model, based on the attention mechanism, has shown excellent performance in processing long text sequences and enabling parallel computation (Vaswani et al. Citation2017). Large Language Models (LLMs) such as ChatGPT, constructed from the model, can generate natural and fluent language to achieve seamless conversations.
GenAI 的算法、模型和其他核心技术是 AIGC 的基础。关于图像生成,典型的生成模型包括生成对抗网络(GAN),它使用对抗和博弈来促进生成优化(Gui 等,2023 年;Goodfellow 等,2020 年),变分自动编码器(VAE)通过解码器将图像特征映射到潜在空间,并通过编码器实现特征重组(Kingma 和 Welling,2022 年),以及扩散模型,它向原始图像添加噪声,然后去噪以生成新内容(Dhariwal 和 Nichol,2021 年;Yang 等,2023 年)。这些深度生成模型通过重组和转移促进了新颖内容的创作,并可以通过特定任务的训练实现受控生成。关于文本生成,自然语言处理(NLP)的发展使计算机能够理解、解释和生成自然语言。基于注意机制的 Transformer 模型在处理长文本序列和实现并行计算方面表现出色(Vaswani 等,2017 年)。 大型语言模型(LLMs)如 ChatGPT,由该模型构建,可以生成自然流畅的语言,实现无缝对话。
The formidable content generation capabilities of AIGC are derived from the expansion of datasets, optimisation of algorithmic models, and advancements in computational performance. AIGC is rapidly advancing towards application-level deployment, offering significant utility and value, especially in design domains that depend on content interaction and output.
AIGC 的强大内容生成能力源自数据集的扩展、算法模型的优化以及计算性能的进步。AIGC 正迅速向应用级部署迈进,尤其在依赖内容交互和输出的设计领域中,提供了重要的实用性和价值。
2.2. Conceptualising the design domain
2.2. 设计领域的概念化
The term ‘design’ encompasses both broad and nuanced dimensions in its definition. To ensure precision in research positioning, it is crucial to define the scope of the research object clearly. Broadly speaking, design is the intentional process of creating, planning, and organising elements to meet specific needs or achieve certain goals. Any purposeful creative endeavour can be classified as ‘design,’ making this definition extensive and inclusive of nearly all creative activities. More narrowly, ‘design’ is specifically defined, as outlined by the International Council of Design (ICoD), stating that ‘design is a discipline of study and practice that focuses on the interaction between humans and the artificial environment, simultaneously considering aesthetics, functionality, context, cultural, and social factors.’ Given the breadth of the ‘design’ category, which includes subdivided branches such as graphic design, industrial design, UI design, apparel design, etc. These branches have distinct focuses within their professional domains but share a common emphasis on user behaviour, aiming to address specific issues and meet user needs. The characteristic of ‘human-centricity’ acts as a clear boundary distinguishing design from other fields.
术语“设计”在其定义中包含广泛和微妙的维度。为了确保研究定位的准确性,关键是清晰地定义研究对象的范围。广义上讲,设计是有意识地创造、规划和组织元素以满足特定需求或实现特定目标的过程。任何有目的的创造性努力都可以被归类为“设计”,使得这一定义广泛而包容几乎所有创意活动。更狭义地说,“设计”被明确定义,正如国际设计理事会(ICoD)所概述的,指出“设计是一门研究和实践的学科,专注于人类与人造环境之间的互动,同时考虑美学、功能性、背景、文化和社会因素”。鉴于“设计”类别的广泛性,其中包括图形设计、工业设计、UI 设计、服装设计等细分分支。这些分支在其专业领域内有着明显的重点,但共同强调用户行为,旨在解决特定问题并满足用户需求。 “以人为中心”的特征作为一个明确的界限,将设计与其他领域区分开来。
Based on the above conceptualisation and delineation, this study narrowly defines the research object ‘design’ as focusing on design behaviours that target user behaviour to address specific problems. This includes specifically the fields of graphic design, industrial design, UI design, fashion design, etc. It explicitly excludes fields such as self-expressive artistic creation, technology-oriented engineering design, mechanical design, circuit design, environmentally-focused architectural design, planning design, and other fields.
根据上述的概念界定,本研究将研究对象“设计”狭义地定义为专注于针对用户行为以解决特定问题的设计行为。这具体包括平面设计、工业设计、UI 设计、时尚设计等领域。明确排除了自我表达艺术创作、以技术为导向的工程设计、机械设计、电路设计、环境为重点的建筑设计、规划设计等领域。
3. Research methodology 3. 研究方法论
To explore the relevant knowledge about the application of AIGC in the design domain, the study employs a systematic literature review approach to summarise the existing evidence. It includes detailed steps to select, scan, and analyze the literature, aimed at reducing bias and enhancing transparency (Tranfield, Denyer, and Smart Citation2003; Fink Citation2019). Data collection was conducted following the PRISMA framework, targeting research literature themed ‘AIGC in Design.’ After rigorous scrutiny, a total of 90 articles were ultimately included in the corpus. Further descriptive analysis of the results utilised qualitative techniques such as pattern matching and interpretive construction (Yin Citation2015). The corpus literature underwent thematic coding analysis, encompassing application domains, types of contributions, technological dependencies, theoretical models, and other relevant topics.
为了探索 AIGC 在设计领域应用的相关知识,本研究采用系统文献综述方法总结现有证据。这包括选择、扫描和分析文献的详细步骤,旨在减少偏见并增强透明度(Tranfield,Denyer 和 Smart 2003; Fink 2019)。数据收集遵循 PRISMA 框架,针对主题为“设计中的 AIGC”的研究文献进行。经过严格审查,共有 90 篇文章最终纳入语料库。进一步对结果进行描述性分析,采用诸如模式匹配和解释性构建等定性技术(Yin 2015)。语料库文献经历了主题编码分析,包括应用领域、贡献类型、技术依赖性、理论模型和其他相关主题。
3.1. Data collection 3.1. 数据收集
PRISMA is the standard framework used for systematic literature reviews and meta-analyses (Page et al. Citation2023). Data collection involved four steps: identification, screening, eligibility, and inclusion of literature, as shown in Figure
PRISMA 是用于系统文献综述和荟萃分析的标准框架(Page 等,2023 年)。数据收集包括四个步骤:文献识别、筛选、资格审查和纳入,如图所示。.
3.1.1. Search and identification
3.1.1. 搜索和识别
The study used the Scopus database as the primary source for the literature search, which is the largest peer-reviewed abstract and citation database covering the indexed content of numerous journals and conferences from literature databases such as Science Direct, the Sage, ACM Digital Library, IEEE Xplore Digital Library, Taylor & Francis Online, and others. The literature review will incorporate peer-reviewed journals and high-quality conference articles, considering that AIGC is at the forefront of content in the AI research area and that many high-quality studies are published at the conference.
该研究使用 Scopus 数据库作为文献检索的主要来源,Scopus 是最大的同行评议摘要和引文数据库,涵盖了来自诸如 Science Direct、Sage、ACM 数字图书馆、IEEE Xplore 数字图书馆、Taylor & Francis Online 等文献数据库的众多期刊和会议的索引内容。文献综述将包括同行评议的期刊和高质量的会议文章,考虑到 AIGC 在人工智能研究领域处于领先地位,并且许多高质量的研究都是在会议上发表的。
This study aims to capture research themes and paradigms from the literature on the application of AIGC in design. Consequently, term combinations related to both domains (AIGC and design) were employed to identify peer-reviewed articles. The literature retrieval process was conducted using two dimensions: thematic term searches and technical multidimensional term searches. In terms of thematic term searches, given that the investigation of this study revolves around the application of AIGC in the design domain, AIGC was employed as the primary term. This encompassed related terms such as ‘Artificial Intelligence Generated Content,’ ‘AIGC,’ ‘Generative Artificial Intelligence,’ ‘Generative AI,’ and ‘GenAI.’ In terms of technical multidimensional term searches, considering that the proprietary terms for AIGC gradually gained popularity after 2022, while generative technologies have been developed and widely utilised since 2014, the technical dimensions of generative artificial intelligence were also included in the search query. These encompassed terms such as ‘Generative Adversarial Network,’ ‘GAN,’ ‘Variational Auto-Encoder,’ ‘VAE,’ ‘Diffusion Model,’ ‘Neural Network,’ ‘Natural Language Processing,’ ‘NLP,’ ‘Deep Learning,’ and ‘DL.’ By using ‘Generat*,’ the search content was restricted specifically to the generative domain. More literature in Architecture, Chemistry, and Pharmaceuticals were found in the search results and excluded using ‘Not’; the detailed search formula is shown in Table
本研究旨在从应用 AIGC 于设计领域的文献中捕捉研究主题和范式。因此,采用与两个领域(AIGC 和设计)相关的术语组合来识别同行评议的文章。文献检索过程采用了两个维度:主题术语搜索和技术多维术语搜索。在主题术语搜索方面,考虑到本研究的调查围绕 AIGC 在设计领域的应用展开,AIGC 被用作主要术语。这包括相关术语,如“人工智能生成内容”,“AIGC”,“生成人工智能”,“生成 AI”和“GenAI”。在技术多维术语搜索方面,考虑到 AIGC 的专有术语在 2022 年后逐渐流行起来,而生成技术自 2014 年以来已经得到发展和广泛应用,生成人工智能的技术维度也被包括在搜索查询中。 这些术语包括“生成对抗网络”,“GAN”,“变分自动编码器”,“VAE”,“扩散模型”,“神经网络”,“自然语言处理”,“NLP”,“深度学习”和“DL”。通过使用“Generat*”,搜索内容被限制在生成领域。在搜索结果中发现了更多的建筑学、化学和制药学文献,并使用“不”进行排除;详细的搜索公式如表所示. The last search was conducted in December 2023, and the initial search yielded a total of 528 entries.
最后一次搜索是在 2023 年 12 月进行的,最初的搜索结果总共有 528 个条目。
3.1.2. Screening, eligibility, and inclusion
3.1.2. 筛选、资格和纳入
To ensure the rigour and credibility of the included literature, the study established stringent inclusion and exclusion criteria, subjected to three independent reviews at different levels by two expert assessors. The assessors demonstrated excellent consistency during the review process (Cohen’s Kappa > 0.8), resolving divergent cases through discussions to achieve consensus. The detailed review steps are as follows:
为确保所包含文献的严谨性和可信度,研究建立了严格的纳入和排除标准,由两名专家评估者在不同层次进行三次独立审查。评估者在审查过程中表现出优秀的一致性(Cohen's Kappa > 0.8),通过讨论解决分歧案例以达成共识。具体审查步骤如下:
First, 528 documents obtained from the search were initially reviewed, and duplicates with the same article title, content, and authors, non-peer-reviewed documents, non-English documents, and documents for which the full text was not available were excluded, totalling 19 documents.
首先,对从搜索中获得的 528 份文件进行了初步审阅,排除了与相同文章标题、内容和作者重复的文件、非同行评议文件、非英文文件以及全文不可用的文件,共计 19 份文件。
Further, a literature content review was conducted based on inclusion and exclusion criteria, and only research literature at the intersection of the two fields of AIGC and design was included. The specific criteria are outlined in Table
此外,根据纳入和排除标准进行了文献内容审查,仅包括在 AIGC 和设计两个领域交叉点上的研究文献。具体标准详见表中。. The second review was conducted by reading the titles and abstracts, and 318 non-compliant documents were excluded. The third review was conducted by traversing the complete text, and 83 documents that did not meet the criteria were excluded. Finally, a total of 90 qualified documents were included in the corpus, of which 48 were from journals, and 42 from conferences, and the details of the literature are shown in
第二次审查是通过阅读标题和摘要进行的,排除了 318 份不符合要求的文件。第三次审查是通过遍历完整文本进行的,排除了 83 份不符合标准的文件。最终,共有 90 份合格文件被纳入语料库,其中 48 份来自期刊,42 份来自会议,文献的详细信息如下。 and 和 in the Appendix.
在附录中。
3.2. Data analysis 3.2. 数据分析
Analysis and coding were conducted for the 90 articles in the corpus. On the one hand, bibliometric information was collected, providing descriptive statistical analysis of dimensions such as publication year, source publication, prominent articles, application domains, contribution types, and others, revealing an overview of the research landscape of AIGC in the design domain. On the other hand, based on literature coding, a further analysis was performed on research themes, focal points, theoretical frameworks, and other content. This included aspects such as the technical dependencies and theoretical models associated with integrating AIGC and design and the mechanisms involved in embedding AIGC in the design process. Reflective thematic analysis was employed to explore the developmental trajectory of AIGC in the design domain.
对语料库中的 90 篇文章进行了分析和编码。一方面,收集了文献计量信息,提供了关于出版年份、来源出版物、重要文章、应用领域、贡献类型等维度的描述性统计分析,揭示了 AIGC 在设计领域研究格局的概况。另一方面,基于文献编码,对研究主题、焦点、理论框架等内容进行了进一步分析。这包括与整合 AIGC 和设计相关的技术依赖性和理论模型以及嵌入设计过程中涉及的机制等方面。采用反思性主题分析来探索 AIGC 在设计领域的发展轨迹。
4. Results 4. 结果
4.1. Research trends 4.1. 研究趋势
The research literature on the integration of AIGC and design demonstrates a trend of rapid growth (Figure
关于 AIGC 与设计整合的研究文献显示出快速增长的趋势(图)). Although generative models in deep learning were developed as early as 2014, they only gained widespread application in the design domain and formed a research trend around 2018. Simultaneously, there was a steady increase in the literature, reaching a peak in 2021 with 20 articles (22.22%). While the number of articles briefly declined in 2022, there was a new surge in 2023 (n = 27, 30%). On the one hand, this can be attributed to the optimisation of GenAI in terms of datasets and computational power, leading to further performance improvements. On the other hand, it is also attributed to the general user's accessibility to AIGC applications such as ChatGPT and MidJourney, effectively lowering the entry barriers in design. This transformation has significantly impacted the design domain, sparking renewed academic interest and enthusiasm.
尽管深度学习中的生成模型早在 2014 年就已经开发出来,但直到 2018 年左右才在设计领域得到广泛应用并形成了一个研究趋势。与此同时,相关文献数量稳步增加,2021 年达到峰值,共有 20 篇文章(22.22%)。虽然 2022 年文章数量稍有下降,但在 2023 年又出现了新的激增(n = 27,30%)。一方面,这可以归因于 GenAI 在数据集和计算能力方面的优化,进一步提升了性能。另一方面,也归因于普通用户能够轻松接触到诸如 ChatGPT 和 MidJourney 等 AIGC 应用,有效降低了设计领域的准入门槛。这种转变对设计领域产生了显著影响,引发了学术界对此的新一轮兴趣和热情。
Furthermore, summarise the design domains covered in 90 published literatures. There are a total of 13 articles in the field of graphic design, accounting for 14.44% of all the literature, involving design tasks such as generating layouts for graphic posters (Hu, Zhang, and Liang Citation2021; Zhang, Li, and Wang Citation2020), designing and colouring cartoon characters (Jiang, Li, and Wang Citation2021), generating creative ideas for logo graphics (Yang et al. Citation2021; Sage et al. Citation2018), and generating and completing fonts (Yan et al. Citation2020; Zeng, Sun, and Liao Citation2019), etc. A total of 5 articles (5.56%) in game design dealt with the generation of game assets (Davoodi, Ashtiani, and Rajabi Citation2022; Gutierrez and Schrum Citation2020) and the creative conceptualisation of gameplay (Lanzi and Loiacono Citation2023; Torii, Murakami, and Ochiai Citation2023), etc. There are a total of 7 articles (7.78%) in the field of UI design, which involves the automatic generation of GUI components (Zhao et al. Citation2021) and layout optimisation (Rahman, Sermuga Pandian, and Jarke Citation2021), etc. The literature on apparel design is relatively abundant, totalling 17 articles (18.89%). These articles delve into various aspects, including creative divergence for fashion conceptualisation (Padiyath and Magerko Citation2021; Davis et al. Citation2023), auxiliary optimisation of clothing sketches (Wu et al. Citation2023), and the automatic generation of textile patterns and designs (M. Liu and Zhou Citation2022; Yu and Luo Citation2021), etc. Notably, in 2023, there was a substantial surge in literature within the field, accounting for 10 articles, constituting 58.82% of all literature in this domain. The maturity of AIGC in image generation has significantly empowered the fashion design domain, particularly in addressing the substantial demands for pattern and texture intricacies. The field of product design exhibits the highest number of literature, totalling 29 articles, representing 21.11% of the corpus. These articles cover various aspects, including the conceptualisation of design inspiration (Saidani, Kim, and Yannou Citation2021), the evolution and generation of product styles (Dai, Li, and Liu Citation2019; Wang et al. Citation2021), and the evaluation and feedback on the novelty of product design (Heyrani Nobari, Fathy Rashad, and Ahmed Citation2021), etc. Additionally, 19 articles (21.11%) pertain to the general domain of design, addressing aspects such as supplementary suggestions for colour schemes (Feng et al. Citation2021) and conceptual inspiration for design creativity (Karimi et al. Citation2019; Ibarrola, Lawton, and Grace Citation2023).
此外,总结了 90 篇已发表文献涵盖的设计领域。在平面设计领域共有 13 篇文章,占所有文献的 14.44%,涉及设计任务如制作平面海报布局(胡、张和梁,2021 年;张、李和王,2020 年)、设计和着色卡通人物(姜、李和王,2021 年)、为标志图形生成创意思路(杨等,2021 年;Sage 等,2018 年)以及生成和完成字体(严等,2020 年;曾、孙和廖,2019 年)等。游戏设计领域共有 5 篇文章(5.56%),涉及游戏素材的生成(Davoodi、Ashtiani 和 Rajabi,2022 年;Gutierrez 和 Schrum,2020 年)以及游戏玩法的创意构思(Lanzi 和 Loiacono,2023 年;鸟井、村上和落合,2023 年)等。在 UI 设计领域共有 7 篇文章(7.78%),涉及 GUI 组件的自动生成(赵等,2021 年)和布局优化(Rahman、Sermuga Pandian 和 Jarke,2021 年)等。服装设计文献相对丰富,共计 17 篇文章(18.89%)。 这些文章深入探讨了各个方面,包括时尚概念的创意分歧(Padiyath 和 Magerko 2021; Davis 等,2023 年),服装草图的辅助优化(吴等,2023 年),以及纺织图案和设计的自动生成(刘 M.和周,2022 年; 余和罗,2021 年)等。值得注意的是,2023 年,该领域的文献数量大幅增加,共有 10 篇文章,占该领域所有文献的 58.82%。图像生成中 AIGC 的成熟显著增强了时尚设计领域,特别是在应对图案和纹理复杂性的巨大需求方面。产品设计领域的文献数量最多,共计 29 篇文章,占整体文献的 21.11%。这些文章涵盖了各个方面,包括设计灵感的概念化(Saidani,Kim 和 Yannou,2021 年),产品风格的演变和生成(戴,李和刘,2019 年; 王等,2021 年),以及对产品设计新颖性的评估和反馈(Heyrani Nobari,Fathy Rashad 和 Ahmed,2021 年)等。此外,还有 19 篇文章(21.11%)涉及设计的一般领域,涉及诸如对色彩方案的补充建议(Feng 等,2021 年)和对设计创意的概念灵感(Karimi 等,2019 年;Ibarrola,Lawton 和 Grace,2023 年)等方面。
4.2. Prominent publications and authors
4.2. 杰出的出版物和作者
An overview of publications and authors combining AIGC with design reveals certain concentration phenomenon. As shown in Table
结合 AIGC 与设计的出版物和作者概述显示出一定的集中现象。如表所示, In terms of conferences, numerous research articles have been published in top conferences in human–computer interaction, such as CHI and HCII. These works consider the collaboration and deployment with designers when AIGC embedding designs. Some literature is concentrated in prominent engineering conferences, such as IDETC, with a specific emphasis on investigating the functionalities and application frameworks of AIGC in the design domain. Additionally, there are publications in distinguished conferences specific to design, such as IUI, primarily exploring the application of AIGC in interface design. In terms of journals, the literature is relatively diverse, spanning across fields such as computational intelligence, information science, engineering, and mechanical disciplines. Additionally, there is a concentration of literature in the fields of neuroscience and cognition, specifically integrating cross-disciplinary research that incorporates design cognition and physiological signals into AIGC. The corpus literature also exhibits a certain degree of authorship concentration, as detailed in Figure
就会议而言,在人机交互领域的顶级会议(如 CHI 和 HCII)上发表了大量研究文章。这些作品在 AIGC 嵌入设计时考虑了与设计师的协作和部署。一些文献集中在著名的工程会议上,如 IDETC,特别强调了在设计领域中调查 AIGC 的功能和应用框架。此外,还有在专门设计领域的知名会议上发表的作品,如 IUI,主要探索 AIGC 在界面设计中的应用。在期刊方面,文献相对多样,涵盖了计算智能、信息科学、工程和机械学等领域。此外,在神经科学和认知领域也有大量文献,特别是将设计认知和生理信号整合到 AIGC 中的跨学科研究。语料库文献还表现出一定程度的作者集中度,详见图。.
4.3. Research content and contributions
4.3. 研究内容和贡献
The research contributions of corpus literature can be mainly categorised into three types: algorithmic models, applications, and theoretical frameworks. It is important to note that a single literature piece may encompass multiple contribution types, as detailed in Figure
语料文献的研究贡献主要可分为三类:算法模型、应用和理论框架。需要注意的是,单篇文献可能涵盖多种贡献类型,详见图表。. There are, 77.78% of the literature (n = 70) involved in the optimisation of algorithms and construction of models due to the scope of the review of the research being limited to the application of AIGC in the design domain, in which AIGC generation algorithms and models have become a trend in the field of Artificial Intelligence, but in order to effectively embedded in the field of design, algorithm optimisation and model training will be carried out in the research for a specific design generation task. AIGC-based design applications were constructed in 45.56% of the literature (n = 41), e.g. Wu (Citation2023) constructed StyleMe; this artificial intelligence-assisted apparel design system automatically generates shapes and contours of apparel sketches and realises style conversion from sketches to authentic apparel images. This type of research considers the construction of multitasking systems, and involves user operations, evaluations, and feedback. Articles contributing to applications often come with contributions in algorithmic models as well (n = 26, 28.89%). Furthermore, 17.78% of the literature (n = 16) involves contributions in theoretical frameworks, such as integrating Kansei Engineering and Deep Learning in the Product Concept Generation Framework (PCGA-DLKE) (Li et al. Citation2021) and design space exploration methods based on creative divergent and convergent thinking (Davis et al. Citation2023). A notable number of articles with contributions in theoretical frameworks have been published after the year 2021, indicating an increasing emphasis in this research field on the integration of design theory with applied practices.
有 77.78%的文献(n = 70)涉及算法优化和模型构建,这是因为研究范围仅限于 AIGC 在设计领域的应用,其中 AIGC 生成算法和模型已成为人工智能领域的趋势,但为了有效地嵌入设计领域,将在研究中进行算法优化和模型训练以执行特定设计生成任务。基于 AIGC 的设计应用在 45.56%的文献(n = 41)中构建,例如,Wu(2023)构建了 StyleMe;这个人工智能辅助服装设计系统自动生成服装草图的形状和轮廓,并实现了从草图到真实服装图像的风格转换。这种类型的研究考虑了多任务系统的构建,并涉及用户操作、评估和反馈。贡献于应用的文章通常也具有算法模型方面的贡献(n = 26,28.89%)。此外,17.78%的文献(n = 16)涉及在理论框架方面的贡献,例如将感性工程与深度学习整合到产品概念生成框架(PCGA-DLKE)中(Li 等,2021 年),以及基于创造性分散和聚合思维的设计空间探索方法(Davis 等,2023 年)。在 2021 年之后发表了大量在理论框架方面有贡献的文章,表明这一研究领域越来越强调将设计理论与应用实践相结合。
5. Discoveries 5. 发现
5.1. Technology dependence: generative model
5.1. 技术依赖:生成模型
Deep generative models are the technical basis for developing design generation applications. Image and text generation are the most widely used generative techniques in research combining AIGC and design. Standard generative models are Generative Adversarial Network (GAN), Variational Auto-Encoder (VAE), Diffusion Model, and Transformer. A brief description of the generative models is given in Table
深度生成模型是开发设计生成应用的技术基础。图像和文本生成是研究中最广泛使用的生成技术,结合了人工智能与设计。标准生成模型包括生成对抗网络(GAN)、变分自动编码器(VAE)、扩散模型和 Transformer。生成模型的简要描述如表所示。. Generative algorithms are an outgrowth of the field of computational intelligence, and there are three main steps to follow when constructing a basic generative model for a specific design task: constructing a dataset based on the design needs, training the model through the generative algorithm, and evaluating the quality of the generation. To adapt the design task and improve the quality of generation, a control module will be added to the basic algorithm to optimise the generation model, e.g. Yan (Citation2023) introduced a semantic entanglement attention encoder into the generative model to capture the most discriminative regions in various input fashion items, which improved the authenticity and the success rate of the migration of fashion attributes.
生成算法是计算智能领域的产物,构建特定设计任务的基本生成模型时,需要遵循三个主要步骤:根据设计需求构建数据集、通过生成算法训练模型,以及评估生成质量。为了适应设计任务并提高生成质量,将向基本算法添加控制模块以优化生成模型,例如,Yan(2023)将语义纠缠注意力编码器引入生成模型,以捕获各种输入时尚物品中最具区分性的区域,从而提高了时尚属性迁移的真实性和成功率。
Image and text generation applications in the design domain have distinct focuses. Due to the creative nature of design, there is a significant demand for image outputs, such as sketching, rendering visualisations, etc. Additionally, visual communication through drawings is crucial in design communication and collaboration. Therefore, image generation extensively integrating into design processes involving image content production, such as creative divergence and design generation. For instance, in creative divergence, restructuring and transferring images relevant to design issues facilitate the construction of visual analogies, promoting conceptual design (Padiyath and Magerko Citation2021). In design generation, targeted tasks are addressed through the bulk generation of outputs, thereby liberating design labour (Liu, Gao, and Wang Citation2019; Yuan and Moghaddam Citation2020).
设计领域中的图像和文本生成应用有着明显的重点。由于设计的创造性质,对图像输出(如素描、渲染可视化等)有着显著需求。此外,通过绘图进行视觉沟通在设计沟通和协作中至关重要。因此,图像生成广泛融入设计过程,涉及图像内容生成,如创意分歧和设计生成。例如,在创意分歧中,重组和转移与设计问题相关的图像有助于构建视觉类比,促进概念设计(Padiyath 和 Magerko,2021)。在设计生成中,通过大量生成输出来解决有针对性的任务,从而解放设计劳动力(Liu、Gao 和 Wang,2019;Yuan 和 Moghaddam,2020)。
Text generation is mainly applied to the creative divergence and design evaluation. For instance, leveraging Natural Language Processing (NLP) to mine textual information from corpora such as online reviews, patents, and manuals involves semantic analysis and clustering to construct analogical retrieval. This approach aids designers in extracting user requirements, sparking creative inspiration from extensive datasets (He, Camburn, Luo, et al. Citation2019). Additionally, in light of the evolution of Large Language Models (LLM), some studies explore using existing models such as GPT to offer auxiliary suggestions in the design process or provide feedback on the feasibility and cost of materials for the design evaluation (Gallega and Sumi Citation2023).
文本生成主要应用于创意的发散和设计评估。例如,利用自然语言处理(NLP)从诸如在线评论、专利和手册等语料库中挖掘文本信息涉及语义分析和聚类,以构建类比检索。这种方法帮助设计师提取用户需求,从大量数据集中激发创意灵感(He,Camburn,Luo 等,2019)。此外,鉴于大型语言模型(LLM)的发展,一些研究探讨利用现有模型如 GPT 在设计过程中提供辅助建议或就设计评估中材料的可行性和成本提供反馈(Gallega 和 Sumi,2023)。
5.2. Overview of theoretical foundations
5.2. 理论基础概述
Among the 90 research articles incorporating AIGC for applications in the design domain, only 17 articles (18.89%) exhibit a clear theoretical foundation. The remaining 73 articles are non-theoretical, including those with similar concepts but have yet to mention a theoretical framework explicitly. This observation underscores the evident lack of research incorporating theories on design cognition aspects into AIGC applications. Table
在涉及设计领域应用 AIGC 的 90 篇研究文章中,只有 17 篇文章(18.89%)展示了明确的理论基础。其余 73 篇文章是非理论性的,包括那些具有类似概念但尚未明确提及理论框架的文章。这一观察突显了在 AIGC 应用中缺乏将设计认知方面的理论纳入研究的明显不足。 summarises the theoretical foundations, with Kansei Engineering (Yang, Liu, and Ye Citation2023; Quan, Li, and Hu Citation2018; Li et al. Citation2021; Gan et al. Citation2021) and analogical design (Li et al. Citation2024; Liu et al. Citation2020; Duan and Zhang Citation2022; Zhang and Jin Citation2020; Jin and Zhang Citation2022) being the most widely used theoretical frameworks in integrating AIGC with design.
总结了理论基础,感性工程(杨,刘和叶 2023 年;全,李和胡 2018 年;李等人 2021 年;甘等人 2021 年)和类比设计(李等人 2024 年;刘等人 2020 年;段和张 2022 年;张和金 2020 年;金和张 2022 年)是在将 AIGC 与设计整合中最广泛使用的理论框架。
In addition, the insight found that the summarised research theories can be mainly classified into three categories: Kansei Engineering and neurocognitive inspirations mainly incorporate user needs into the construction of generative models to shape user-centered design applications. Analogical design and design thinking theories aim at solving the problem of using AIGC to promote design inspirations, and Function-Behaviour-Structure (FBS) theory and spiderweb theory aim at combining design cognition with computational thinking to build an effective intelligent design assistance system based on AIGC through the understanding of the designers’ cognitive thinking models.
此外,研究发现,总结的研究理论主要可分为三类:感性工程和神经认知启发主要将用户需求纳入生成模型的构建中,以塑造以用户为中心的设计应用。类比设计和设计思维理论旨在解决利用 AIGC 促进设计灵感的问题,而功能-行为-结构(FBS)理论和蜘蛛网理论旨在将设计认知与计算思维相结合,通过理解设计师的认知思维模型,构建基于 AIGC 的有效智能设计辅助系统。
AIGC, as a content production method, favours the technical and tool level. To help the design field effectively, it is essential and urgent to construct a mechanism for integrating design thinking and computational thinking. It is found that using existing design theories to guide the construction of generative applications is effective, realising the design thinking of AIGC, which is an essential way of integrating generative models into the design field. Future research can refine the classification and explore adopting more diversified design methodologies to guide the integration of AIGC and design. In addition, developing new theoretical frameworks based on the new situation of the integration of AIGC and design to feed the design research field is worth further exploration and practice.
AIGC 作为一种内容生产方法,偏向技术和工具层面。为了有效地帮助设计领域,建立整合设计思维和计算思维的机制是至关重要且迫切的。研究发现,利用现有的设计理论来指导生成应用程序的构建是有效的,实现了 AIGC 的设计思维,这是将生成模型整合到设计领域的重要途径。未来的研究可以细化分类并探索采用更多样化的设计方法论来指导 AIGC 和设计的整合。此外,基于 AIGC 和设计整合的新形势发展新的理论框架,以促进设计研究领域的发展,值得进一步探索和实践。
5.3. AIGC embedding design process
5.3. AIGC 嵌入式设计过程
Design is a multi-step, cascading, and cyclical process. Design thinking theory refines it into Empathy, Define, Ideate, Prototype, and Test. This study explores the way AIGC is embedded in the design domain based on the division of the design process and task categories, summarises the four task categories of creative divergence, design generation, assistance and advice, evaluation and feedback (Figure
设计是一个多步骤、级联和循环的过程。设计思维理论将其细化为共情、定义、构思、原型和测试。本研究探讨了 AIGC 嵌入设计领域的方式,基于设计过程和任务类别的划分,总结了创意分歧、设计生成、协助和建议、评估和反馈四个任务类别(图)。). And a comprehensive correlation study of AIGC's specific role, operational methods and ideas, and partnership with designers in each process is carried out.
并对 AIGC 在每个过程中的具体角色、运营方法和理念以及与设计师合作的全面相关性进行了研究。
5.3.1. Creative divergence
5.3.1. 创意分歧
In the early stages of design conceptualisation, designers must integrate their internal knowledge and a broad range of external expertise to seek solutions to problems. However, due to individual cognitive biases, there is often a tendency for design fixation, indicating that designers are inclined to adhere to pre-existing ideas or concepts, ultimately restricting the design outcome. AIGC has been effective in bringing inspiration to designers by developing Creative Support Tools (CSTs) due to its extensive database base and diversity of generated content. It primarily involves three aspects (Table
在设计概念化的早期阶段,设计师必须整合他们的内部知识和广泛的外部专业知识,以寻求解决问题的方案。然而,由于个体认知偏见的存在,往往存在设计固化的倾向,表明设计师倾向于坚持现有的想法或概念,最终限制了设计结果。AIGC 通过开发创意支持工具(CSTs)为设计师带来灵感,因为它具有庞大的数据库和多样化的生成内容。它主要涉及三个方面(表格)。): providing visual and semantic stimuli through analogical design, extracting design insights by mining user needs, and exploring interactive design space.
通过模拟设计提供视觉和语义刺激,通过挖掘用户需求提取设计洞察,探索交互设计空间。
Providing visual and semantic stimuli through analogical design. Design-by-Analogy (DbA) is an ideation strategy that seeks inspiration from a source domain and generates design concepts in a target domain. The human mind is associative, and providing relevant analogical inspiration can activate the designer's long-term memory and facilitate design conceptualisation. AIGC assists designers in creative divergence through stimulus retrieval and stimulus generation.
通过类比设计提供视觉和语义刺激。类比设计(DbA)是一种构思策略,它从源领域寻找灵感,并在目标领域生成设计概念。人类的思维是联想的,提供相关的类比灵感可以激活设计师的长期记忆,并促进设计概念的形成。AIGC 通过刺激检索和刺激生成帮助设计师进行创意分歧。
Stimulus retrieval. By recognising and clustering the content in the corresponding text or image databases, the distance between the design goal and the database content is measured in multiple dimensions, which helps designers quickly retrieve and locate similar concepts, thus facilitating inspirational inspiration. Semantic stimulus retrieval mainly relies on natural language processing techniques (NLP) to understand the contextual information of the corpus through modelling algorithms such as word2vec, Long Short-Term Memory Network (LSTM), and Transformer, which represent the textual information in a vector space (Li et al. Citation2024). Database sources include design logs, patent repositories, product documentation, etc. e.g. Liu (Citation2020) used patent databases as a source of analogical knowledge, constructed content relevance measurement dimensions based on structure mapping theory (SMT), and realised the search for design analogies to provide designers with relevant knowledge and information insights. Visual stimulus retrieval relies on deep learning to recognise and cluster visual similarity and conceptual similarity of images. Karimi et al. (Citation2019) is based on Quickdraw's library of hand-drawn sketches and utilises Convolutional Neural Networks (CNNs) to learn potential shape features of multiple sketch categories and perform clustering. As designers sketch, the system can present patterns that are visually or conceptually relevant to the user's input sketch to stimulate design creativity.
刺激检索。通过识别和聚类相应文本或图像数据库中的内容,测量设计目标与数据库内容之间在多个维度上的距离,帮助设计师快速检索和定位类似概念,从而促进灵感的产生。语义刺激检索主要依赖自然语言处理技术(NLP)来通过建模算法如 word2vec、长短期记忆网络(LSTM)和 Transformer 理解语料库的上下文信息,这些算法将文本信息表示在一个向量空间中(Li 等,2024)。数据库来源包括设计日志、专利库、产品文档等。例如,Liu(2020)利用专利数据库作为类比知识的来源,基于结构映射理论(SMT)构建内容相关性测量维度,并实现了对设计类比的搜索,为设计师提供相关知识和信息见解。视觉刺激检索依赖深度学习来识别和聚类图像的视觉相似性和概念相似性。Karimi 等。 2019 年基于 Quickdraw 的手绘草图库,利用卷积神经网络(CNNs)学习多种草图类别的潜在形状特征并进行聚类。设计师在草绘时,系统可以呈现与用户输入草图在视觉或概念上相关的图案,以激发设计创意。Stimulate generation. Focuses primarily on the visual domain and relies on image style migration techniques. By capturing conceptual elements from different domains and reorganising them, AIGC can integrate imagery elements with original designs to generate unique and novel content that stimulates designers’ combinatorial creativity (Wang et al. Citation2021). This type of style and feature migration is more often used in clothing and textile pattern design. e.g. Padiyath and Magerko (Citation2021) proposed a ‘bad’ Generative Adversarial Network (GAN) that integrates surreal images and clothing patterns to generate unique and bizarre clothing images to inspire designers. Yan (Citation2023) constructs a generative model for ‘inspiration’ transfer, which realises the transfer of material properties from the source fashion item to the target design.
刺激生成。主要关注视觉领域,并依赖于图像风格迁移技术。通过捕捉不同领域的概念元素并重新组织它们,AIGC 可以将图像元素与原始设计整合在一起,生成刺激设计师组合创造力的独特和新颖内容(Wang 等,2021)。这种风格和特征迁移更常用于服装和纺织图案设计。例如,Padiyath 和 Magerko(2021)提出了一个“坏”的生成对抗网络(GAN),将超现实图像和服装图案整合在一起,生成独特和奇异的服装图像,以激发设计师的灵感。Yan(2023)构建了一个“灵感”转移的生成模型,实现了将源时尚物品的材料属性转移到目标设计中。
Extracting design insights by mining user needs. At the early stage of design, it is essential to consider users’ needs and preferences, which helps to clarify the design positioning and strategy. Traditional user research methods rely on questionnaires and interviews, which are time-consuming and cumbersome, with a low data reuse rate. AIGC relies on powerful data processing capabilities to provide new methods for user needs mining.
通过挖掘用户需求来提取设计洞见。在设计的早期阶段,考虑用户的需求和偏好至关重要,这有助于澄清设计定位和策略。传统的用户研究方法依赖于问卷调查和访谈,这些方法耗时且繁琐,数据重复利用率低。人工智能图形计算依赖于强大的数据处理能力,为用户需求挖掘提供了新方法。
Mining requirements from text. Users’ evaluation and feedback on products contain personal needs and preferences, and the user evaluation system of online shopping platforms provides an excellent channel for collecting user feedback. By identifying users’ opinion words and sentiment words in online reviews through natural language processing (NLP) and constructing a demand model of product attributes and consumer emotions based on sentiment analysis (SA), it can achieve the importance weighting metric of product attributes and the inference of users’ sentiments, and provide optimisation strategies for product improvement (Saidani, Kim, and Yannou Citation2021).
从文本中挖掘需求。用户对产品的评价和反馈包含个人需求和偏好,而在线购物平台的用户评价系统为收集用户反馈提供了一个极好的渠道。通过通过自然语言处理(NLP)在在线评论中识别用户的意见词和情感词,并基于情感分析(SA)构建产品属性和消费者情绪的需求模型,可以实现产品属性的重要性加权度量和用户情感的推断,并为产品改进提供优化策略(Saidani,Kim 和 Yannou 2021)。Mapping of emotional preferences. Kansei Engineering, as a design method to quantitatively analyze the emotion of products, is combined with AIGC to quickly generate design concepts that satisfy users’ aesthetic and emotional needs. Firstly, a rich dataset is constructed which includes a large number of images and multi-dimensional emotion labelling. Train deep learning models to realise the recognition and classification of image emotions, and establish the mapping relationship between design attributes, styles and user preferences. Further, construct a generative model to merge and reconstruct features such as colours and attributes that match specific emotions with the target product by means of neural style migration to achieve the generation of design concepts that match user preferences (Quan, Li, and Hu Citation2018; Li et al. Citation2021).
情感偏好的映射。将感性工程作为一种设计方法,与 AIGC 相结合,快速生成满足用户审美和情感需求的设计概念。首先,构建一个包括大量图像和多维情感标记的丰富数据集。训练深度学习模型实现图像情感的识别和分类,并建立设计属性、风格和用户偏好之间的映射关系。进一步,通过神经风格迁移的方式构建生成模型,合并和重构与目标产品匹配特定情感的特征,如颜色和属性,以实现生成符合用户偏好的设计概念(Quan, Li, and Hu 2018; Li 等,2021)。Incorporating physiological signals. Physiological signals are associated and mapped to user preference requirements. The researchers propose a neurocognitive-inspired machine learning and design generation approach. Human cognitive factors are measured by EEG to intervene in the image generation process, thus realising the design of image generation in accordance with user preferences (Wang et al. Citation2020).
将生理信号纳入考虑。生理信号与用户偏好需求相关联并映射。研究人员提出了一种神经认知启发的机器学习和设计生成方法。通过脑电图测量人类认知因素,干预图像生成过程,从而实现根据用户偏好生成图像的设计(Wang 等,2020 年)。
Exploring interactive design space. Creative ideation is an evolutionary and iterative process. Basic generative tools tend to provide only one-time outputs that lack controllability and are not iterative. AIGC will become a more effective creativity support tool based on design thinking to enable continuous design space exploration and improved interactive communication performance with designers.
探索互动设计空间。创意构思是一个进化和迭代的过程。基本生成工具往往只提供一次性输出,缺乏可控性且不具迭代性。基于设计思维的 AIGC 将成为一种更有效的创意支持工具,以实现持续的设计空间探索,并提高与设计师的互动沟通表现。
Spatial exploration based on design thinking. Creativity involves divergent and convergent thinking, encompassing the generation of a multitude of creative ideas and the refinement of valuable concepts. The continuous iteration of creativity within the realms of divergence and convergence can be perceived as an ongoing design space exploration. Davis et al. (Citation2023) constructed a potential design space exploration panel based on generative models by analyzing design divergent and convergent thinking, allowing users to move the image via the X and Y axes to generate continuous and controllable difference images to assist designers in creative conceptualisation.
基于设计思维的空间探索。创造力涉及发散和收敛思维,包括产生大量创意想法和精炼有价值概念。在发散和收敛的领域内持续迭代创造力可以被视为持续的设计空间探索。Davis 等人(2023 年)通过分析设计的发散和收敛思维,构建了一个潜在的基于生成模型的设计空间探索面板,允许用户通过 X 和 Y 轴移动图像,生成连续可控的差异图像,以帮助设计师进行创意概念化。Ideation collaboration based on interactive communication. To break through the limitation of the unidirectional output of traditional generative models, a system of bidirectional communication and multistep collaboration between AIGC and human designers needs to be constructed urgently. Ibarrola, Lawton, and Grace (Citation2023) develops a co-creation drawing system that senses the semantics of the designer's sketches. AIGC and the designer interact collaboratively, negotiating and iterating on design ideas.
基于互动沟通的构思协作。为了突破传统生成模型单向输出的局限,迫切需要建立 AIGC 与人类设计师之间的双向沟通和多步协作系统。Ibarrola、Lawton 和 Grace(2023)开发了一种共创绘图系统,能感知设计师草图的语义。AIGC 和设计师之间进行互动协作,就设计理念进行协商和迭代。
Creative divergence is a complex process to solve undefined or unknown problems, it is necessary to pay attention to user demand preferences as well as consider the novelty and creativity of ideas. However, the use of a single text-to-image tool in the ideation process leads instead to more severe initial fixation. The time and effort expended on the prompt project led to sunk costs, and overly detailed generation outcomes result in conscious fixation by designers (Wadinambiarachchi et al. Citation2024). Therefore, it is crucial to develop a reasonable AIGC creativity support system based on the characteristics of design conception: optimising the path of data mining and user demand analysis to enhance the breadth and efficiency of insights; relying on analogical design and design thinking theory to propose strategies for AIGC-assisted conception. This type of application is moving towards more diversified and controllable.
创意分歧是解决未定义或未知问题的复杂过程,需要关注用户需求偏好,并考虑想法的新颖性和创造性。然而,在构思过程中仅使用单一的文本到图像工具反而导致更严重的初始固定化。在快速项目上花费的时间和精力导致了沉没成本,过于详细的生成结果导致设计师的意识固定化(Wadinambiarachchi 等,2024 年)。因此,基于设计构思特点,开发一个合理的 AIGC 创意支持系统至关重要:优化数据挖掘和用户需求分析路径,以增强洞察力的广度和效率;依靠类比设计和设计思维理论,提出 AIGC 辅助构思的策略。这种应用正在朝着更多样化和可控性的方向发展。
5.3.2. Design generation 5.3.2. 设计生成
AIGC is widely used in the design generation phase. The design domain has been following specific steps to create new products, but in the face of the vast consumer market and constantly updated user needs, automating the design work using computer technology is beneficial to improve design efficiency, reduce cost, and increase efficiency. AIGC can be classified into a generation tool for labour-intensive tasks and a design assistant for human–computer collaboration according to its job definition in the design generation task (
AIGC 广泛应用于设计生成阶段。设计领域一直遵循特定步骤来创建新产品,但面对庞大的消费市场和不断更新的用户需求,利用计算机技术自动化设计工作有助于提高设计效率,降低成本,提高效率。根据其在设计生成任务中的工作定义,AIGC 可以被分类为劳动密集型任务的生成工具和人机协作的设计助手。).
The generation tool for labour-intensive tasks. Automated generation tools have the capability to produce a large number of design images with consistent forms and compliance with specified requirements in an unsupervised environment, enabling batch mass production. Therefore, it is valuable in the fast production and fast sales industry where there is a huge demand for design, such as textile pattern generation and graphic logo drawing (Yang et al. Citation2021; Mao, Wang, and Jiang Citation2020). It is also effective in repetitive design work, such as in the field of typeface design, where a small number of source glyphs are used as input to complement other fonts with consistent morphological characteristics (Yan et al. Citation2020), and in assisted sketching for colouring, where it generates uniform and coherent sketches from multiple perspectives (Jiang, Li, and Wang Citation2021). This kind of AIGC tool has a unified construction logic: first build a dataset oriented to a specific design task, and further train and generate models based on deep learning algorithms such as GAN and VAE. Different design tasks require the model to perceive and learn different features, so the algorithms need to be optimised and fine-tuned on the established framework (Figure
劳动密集型任务的生成工具。自动生成工具具有在无监督环境中生成大量设计图像的能力,形式一致且符合指定要求,从而实现批量大规模生产。因此,在快速生产和快速销售行业中具有价值,这些行业对设计有巨大需求,如纺织图案生成和图形标志绘制(杨等,2021 年;毛,王和江,2020 年)。它还在重复设计工作中发挥作用,比如在字体设计领域,使用少量源字形作为输入,以补充其他具有一致形态特征的字体(严等,2020 年),以及在辅助素描上色中,从多个角度生成统一和连贯的素描(江,李和王,2021 年)。这种 AIGC 工具具有统一的构建逻辑:首先构建面向特定设计任务的数据集,然后基于深度学习算法(如 GAN 和 VAE)进行进一步训练和生成模型。不同的设计任务需要模型感知和学习不同的特征,因此算法需要在已建立的框架上进行优化和微调(见图)). For example, in the design generation task of apparel patterns, local texture details are handled by incorporating a multi-scale discriminator in the model and a self-attention mechanism is introduced to improve global art perception (Yu and Luo Citation2021). In product generation, a Structured Deformable Meshes Net (SDM-NET) is used to construct a perception module for complex geometric shapes (Li, Xie, and Sha Citation2023).
例如,在服装图案设计生成任务中,通过在模型中加入多尺度鉴别器来处理局部纹理细节,并引入自注意机制来提高全局艺术感知(Yu 和 Luo 2021)。在产品生成中,使用结构可变网格网络(SDM-NET)构建感知模块,用于复杂几何形状(Li,Xie 和 Sha 2023)。
The design assistant for human–computer collaboration. Creative design tasks involve multiple steps and processes. It is important to build a human-machine collaboration system based on design cognition. On the one hand, dismantling the design process allows for collaboration on tasks in which the machine and the designer have their specialties. On the other hand, integrating computational thinking and design thinking enables intelligent generation that depends on design cognition.
人机协作的设计助手。创意设计任务涉及多个步骤和过程。基于设计认知构建人机协作系统至关重要。一方面,拆解设计过程允许机器和设计师在各自擅长的任务上进行协作。另一方面,整合计算思维和设计思维实现依赖设计认知的智能生成。
Deconstruction of the design process. AIGC and designers each have specialised capabilities. By disassembling the design process, a collaborative system can be constructed that is generated by AIGC and decided by designers. For example, Wu (Citation2023) disassembles the apparel design process and builds a human–computer collaboration system: StyleMe. In the sketch generation stage, the system assists in generating rough line drawings based on the styles selected by the designer, and the designer makes fine-tuning adjustments. Furthermore, the system performs style transfer based on the designer's selected thematic reference images to generate realistic apparel images.
设计过程的解构。AIGC 和设计师各自拥有专业能力。通过解构设计过程,可以建立一个由 AIGC 生成并由设计师决定的协作系统。例如,吴(2023)解构服装设计过程并构建了一个人机协作系统:StyleMe。在草图生成阶段,该系统协助根据设计师选择的风格生成粗略线描,并由设计师进行微调。此外,该系统根据设计师选择的主题参考图像执行风格转移,生成逼真的服装图像。Incorporation of design cognition. Relying on the guidance of design theory, incorporating design cognition into the construction of generative models is an essential trend in integrating AIGC and design. Wu (Citation2023) established a cognitive mental model of automobile frontal styling from the three dimensions of design intent, drawing behaviour, and functional structure, constructed a human-machine shared knowledge base through image acquisition, hand-drawn sketches, and morpho-semantic annotation, and constructed a conditional cross-domain generative adversarial network information model by establishing a morpho-semantic encoding network, a sketching feature extraction network, and an image-perception clustering network, which realised the mapping from human cognitive space to computational space to realise the creative generation of automobile frontal styling based on sketch-semantic mapping. This human–computer collaborative generative system gives the user a high degree of control over the design process. It accurately guides the AI to create the design according to the target direction.
设计认知的整合。依靠设计理论的指导,将设计认知纳入生成模型的构建是整合 AIGC 和设计的一个重要趋势。吴(2023)从设计意图、绘图行为和功能结构三个维度建立了汽车前部造型的认知心理模型,通过图像获取、手绘草图和形态语义标注构建了人机共享知识库,并通过建立形态语义编码网络、草图特征提取网络和图像感知聚类网络构建了条件跨领域生成对抗网络信息模型,实现了从人类认知空间到计算空间的映射,实现了基于草图语义映射的汽车前部造型的创造性生成。这种人机协作生成系统赋予用户对设计过程的高度控制。它准确引导 AI 根据目标方向创建设计。
Design generation is the most direct and widespread application of AIGC as a content output tool. AIGC builds applications based on the characteristics and output requirements of different design tasks, effectively speeding up the design process and increasing the output, easing the pressure of labour-intensive work in design. In addition, human-machine collaborative AIGC design systems are rapidly emerging, generating models to produce according to instructions, with designers responsible for decision-making and deployment. This type of application has gradually demonstrated the ability to rival or even surpass traditional professional designers. This is further evidence that the basic generative capabilities of AIGC can be optimised and constructed to handle the complex activity of design.
设计生成是 AIGC 作为内容输出工具的最直接和普遍的应用。AIGC 根据不同设计任务的特点和输出要求构建应用程序,有效地加快设计过程并增加输出,减轻设计中劳动密集型工作的压力。此外,人机协作的 AIGC 设计系统正在迅速出现,生成模型以根据指令进行生产,设计师负责决策和部署。这种应用逐渐展示出与传统专业设计师相媲美甚至超越的能力。这进一步证明了 AIGC 的基本生成能力可以被优化和构建以处理设计的复杂活动。
5.3.3. Assistance and advice
5.3.3. 协助和建议
AIGC can also act as a ‘consultant’ in the design process, providing designers with design assistance advice. Instead of generating target designs directly, these AIGC applications analyze design data and trends, focusing on the designer's preferences and project requirements. Further, provide designers with stylistic advice on layout, colour, materials, etc., and assist guidance on the design process (
AIGC 还可以在设计过程中充当“顾问”,为设计师提供设计辅助建议。这些 AIGC 应用程序不直接生成目标设计,而是分析设计数据和趋势,关注设计师的偏好和项目要求。此外,为设计师提供关于布局、颜色、材料等方面的风格建议,并在设计过程中提供指导。).
Stylised recommendations. The realisation of design concepts follows specific aesthetic logic and rules, and AIGC provides standardised style suggestions to assist designers in reaching their design goals by learning from existing design cases.
风格化建议。设计概念的实现遵循特定的美学逻辑和规则,AIGC 提供标准化的风格建议,以帮助设计师通过借鉴现有的设计案例来实现他们的设计目标。
Layout generation and optimization. Assistive suggestions for design layout are mainly focused on areas such as graphic design and UI design that involve typographic aesthetics. For example, in graphic typographic layout, saliency prediction models are trained to perceive blank areas of an image, find appropriate text placement, and evaluate the aesthetic quality of candidate results for output (Zhang, Li, and Wang Citation2020). A key goal of graphical user interface (GUI) design is to ensure that the same product remains consistent across screens. Brückner, Leiva, and Oulasvirta (Citation2022) constructed a design-assist plug-in built into Sketch based on the visual properties of interfaces, spatial patterns, and repetitive patterns of group elements to provide layout consistency recommendations when designers add elements.
布局生成与优化。设计布局的辅助建议主要集中在涉及排版美学的领域,如平面设计和 UI 设计。例如,在平面排版设计中,显著性预测模型被训练用于感知图像的空白区域,找到适当的文本放置位置,并评估候选结果的美学质量以输出(张、李和王,2020)。图形用户界面(GUI)设计的一个关键目标是确保同一产品在不同屏幕上保持一致。Brückner、Leiva 和 Oulasvirta(2022)基于界面的视觉属性、空间模式和组元素的重复模式构建了一个设计辅助插件,用于在设计师添加元素时提供布局一致性建议。Color and material suggestions. Colour coordination is a crucial aspect of design, but achieving optimal colour schemes demands extensive design experience and a wealth of colour-related knowledge. AIGC relies on a wide range of colour-matching datasets to train deep learning models, enabling the generation of appropriate colour-matching schemes based on different input themes (Feng et al. Citation2021). Under the guidance of Kansei Engineering, Ding and Dong (Citation2019) proposed a product colour emotional design method, which constructs a mapping model between user colour perception and product design elements through neural networks, and recommends colour layouts for designers to match the user's emotional preferences. AIGC-assisted colour matching generation has been widely used in product design ranks, such as automated stylised rendering of automobile side profiles (Ji and Chen Citation2022), etc.
颜色和材料建议。颜色协调是设计的关键方面,但要实现最佳的配色方案需要丰富的设计经验和丰富的与颜色相关的知识。AIGC 依赖于各种颜色匹配数据集来训练深度学习模型,从而能够根据不同的输入主题生成适当的配色方案(Feng 等,2021 年)。在感性工程的指导下,丁和董(2019 年)提出了一种产品颜色情感设计方法,通过神经网络构建用户颜色感知与产品设计元素之间的映射模型,并推荐设计师匹配用户情感偏好的颜色布局。AIGC 辅助的颜色匹配生成已广泛应用于产品设计领域,例如汽车侧面轮廓的自动化风格化渲染(季和陈,2022 年)等。
Steps and process guidance. Large Language Models (LLMs) are constructed based on billions of data and belong to the generalised domain, e.g. GPT-3, ChatGPT. Prefabricated design steps in LLM to build custom small models which make it steer towards design tasks. The designer interacts and communicates with AIGC with specific prompts to get design guidance. For example, Torii, Murakami, and Ochiai (Citation2023) investigates an approach to board game creation called ‘Lottery and Sprint’ that combines human design intuition with a structured design sprint framework executed by the AutoGPT system, aiming to facilitate a collaborative game design experience by aligning an AI-driven process with human creativity. This represents an indirect application approach. Consequently, the construction process entails inherent challenges and uncertainties. In the future, it is imperative to develop controlled, process-assistive applications tailored explicitly for professional design domains.
步骤和流程指导。大型语言模型(LLMs)是基于数十亿数据构建的,属于泛化领域,例如 GPT-3,ChatGPT。在LLM中预制设计步骤用于构建定制的小型模型,使其朝向设计任务。设计师通过特定提示与 AIGC 互动和沟通,以获得设计指导。例如,Torii,Murakami 和 Ochiai(2023)研究了一种名为“抽签和冲刺”的棋盘游戏创作方法,该方法将人类设计直觉与 AutoGPT 系统执行的结构化设计冲刺框架相结合,旨在通过将 AI 驱动的流程与人类创造力对齐,促进协作游戏设计体验。这代表了一种间接的应用方法。因此,构建过程涉及固有的挑战和不确定性。未来,开发专门针对专业设计领域的受控、过程辅助应用是至关重要的。
5.3.4. Evaluation and feedback
5.3.4. 评估与反馈
In the traditional design process, products must be manufactured and used by consumers before evaluations and feedback can be gathered, which introduces a delay. AIGC, relying on deep learning and neural networks, is capable of accurately uncovering patterns within large datasets and making precise predictions. It enables the acquisition of prior evaluations and feedback, and can even perform automatic optimizations. This significantly enhances the efficiency of design iterations and reduces trial-and-error costs. Existing concerns about the application of AIGC to design evaluation and feedback processes cover various aspects, such as similarity detection for anti-plagiarism, advanced verification of design novelty, and feasibility feedback for cost and quality (
在传统的设计过程中,产品必须在制造和消费者使用之后才能收集评估和反馈,这会引入延迟。依靠深度学习和神经网络,AIGC 能够准确地揭示大型数据集中的模式并进行精确预测。它使得先前的评估和反馈的获取成为可能,甚至可以执行自动优化。这显著提高了设计迭代的效率并降低了试错成本。关于将 AIGC 应用于设计评估和反馈过程的现有关注点涵盖了各个方面,如反抄袭的相似性检测、设计新颖性的高级验证以及成本和质量的可行性反馈。).
Similarity detection for anti-plagiarism. Copyright awareness of design is very important in the feasibility evaluation of design, especially in the fields of graphic design and graphic design. The plagiarism features are extracted and trained in a deep learning model to achieve the recognition of similar content such as pattern and layout. Liu (2023) proposed a visual saliency feature extraction network based on the GAN model, which captures global high-level semantic information of graphic design, refines elemental relational structure via image segmentation and performs multi-weight similarity measurement. Yang (2021) proposes a method for measuring the perceived similarity of graphics that is capable of detecting different types of logo plagiarism including duplicates, gradients, superimpositions, perspectives, and three-dimensional deformations.
反抄袭的相似性检测。版权意识在设计的可行性评估中非常重要,特别是在平面设计和图形设计领域。通过提取和训练深度学习模型中的抄袭特征,实现对图案和布局等相似内容的识别。刘(2023)提出了基于 GAN 模型的视觉显著性特征提取网络,捕捉图形设计的全局高级语义信息,通过图像分割细化元素关系结构,并进行多权重相似度测量。杨(2021)提出了一种测量图形感知相似性的方法,能够检测不同类型的标志抄袭,包括重复、渐变、叠加、透视和三维变形。Advance verification of design novelty. Novelty evaluation and aesthetic assessment are essential aspects of generative models for design evaluation which rely on neural networks to construct a mapping model of design features and aesthetic evaluation. Heyrani Nobari (2021) proposed an automatic method for generating novel designs, CreativeGAN, which can measure the overall product novelty by extracting features and using the K-nearest neighbour algorithm, locate critical components and their attributes affecting the novelty, and further automatically modify the GAN to achieve directed generation of novel components. In interface design, Schoop et al. (Citation2022) uses a visual modelling and saliency analysis approach to predict and interpret the clickability of mobile UI through deep learning, providing designers with insights to evaluate and improve their designs quickly.
设计新颖性的提前验证。新颖性评估和审美评估是设计评估生成模型的基本方面,依赖于神经网络构建设计特征和审美评估的映射模型。Heyrani Nobari(2021)提出了一种用于生成新颖设计的自动方法 CreativeGAN,可以通过提取特征并使用 K 最近邻算法来衡量整体产品的新颖性,定位影响新颖性的关键组件及其属性,并进一步自动修改 GAN 以实现新颖组件的有向生成。在界面设计方面,Schoop 等人(2022)采用视觉建模和显著性分析方法通过深度学习来预测和解释移动 UI 的可点击性,为设计师提供洞察力,以快速评估和改进他们的设计。Feasibility feedback on cost and quality. The insight and feedback of information are mainly achieved through LLM, which relies on an extensive database. Gallega and Sumi (Citation2023) proposed a co-creation system that utilises AIGC to assist designers in changing and rendering 3D materials and accessing the feasibility and cost analysis of the materials plugging into GPT-3.
成本和质量的可行性反馈。信息的洞察和反馈主要通过LLM实现,该系统依赖于庞大的数据库。加列加和苏米(2023)提出了一个共创系统,利用 AIGC 来帮助设计师改变和渲染 3D 材料,并访问材料插入 GPT-3 的可行性和成本分析。
与传统设计过程相比,AIGC 的介入呈现出特殊功能(见图)): assist, replace and propose new method. In creative divergence, the retrieval and generation of design stimuli can assist designers to broaden their thinking horizons and stimulate innovative ideas. And integrated with brainstorming and other seminars, it can assist in the rapid visualisation of ideas to alleviate the barriers to design expression and improve the communication efficiency of interdisciplinary teams. In design presentation, it shows a powerful design generation capability to replace the traditional design functions (sketching, modelling, rendering), which significantly improves the conversion efficiency of design concepts from idea to visualisation. In addition, in the requirements identification and design evaluation phases, AIGC has opened a new paradigm that relies on data mining and insights, facilitating the fusion of subjective design and objective data, and improving the efficiency and scientific validity of insights. AIGC has been seamlessly integrated into design workflows and has led to transformative developments in the design domain.
在创意分歧中,设计刺激的检索和生成可以帮助设计师拓宽思维视野,激发创新思路。结合头脑风暴和其他研讨会,可以协助快速可视化想法,减轻设计表达的障碍,提高跨学科团队的沟通效率。在设计展示中,它展示了强大的设计生成能力,取代了传统的设计功能(素描、建模、渲染),显著提高了从想法到可视化的设计概念转化效率。此外,在需求识别和设计评估阶段,AIGC 开辟了一种依赖数据挖掘和洞察力的新范式,促进了主观设计与客观数据的融合,提高了洞察力的效率和科学有效性。AIGC 已无缝集成到设计工作流程中,并在设计领域引领了变革性发展。
6. Discussion 6. 讨论
6.1. Research trends in AIGC application to design domain
6.1. AIGC 应用于设计领域的研究趋势
Recent years have seen significant progress in integrating AIGC with design. By analyzing insights from research in this field, considering both temporal aspects (publication timeline) and spatial dimensions (research content), three emerging trends can be identified: from point-to-point goal generation to controlled design space exploration, from parameterization-based generation to design cognition-based generation and from monolithic design generation to a full-process closed-loop design system.
近年来,在将人工智能与设计相结合方面取得了显著进展。通过分析该领域研究的见解,考虑到时间方面(出版时间表)和空间维度(研究内容),可以确定出三种新兴趋势:从点对点目标生成到受控设计空间探索,从基于参数化的生成到基于设计认知的生成,以及从单体设计生成到全过程闭环设计系统。
6.1.1. From point-to-point goal generation to controlled design space exploration
6.1.1. 从点对点目标生成到受控设计空间探索
Given the inherent uncertainty of design problems and the non-uniqueness of solutions, Simon (Citation1973) characterised design as ill-structured problems. Designers are required to identify and define problems through insights and utilise creativity to develop diverse solutions. This process is inherently exploratory, involving continuous experimentation and iterative refinement. Deep generative models map various raw data features onto latent spaces, making these continuous data features are especially suitable for supporting exploration in the design space (Burnap et al. Citation2016).
鉴于设计问题的固有不确定性和解决方案的非唯一性,西蒙(1973)将设计描述为结构不清晰的问题。设计师需要通过洞察力识别和定义问题,并利用创造力开发多样化的解决方案。这个过程本质上是探索性的,涉及持续的实验和迭代的完善。深度生成模型将各种原始数据特征映射到潜在空间,使得这些连续数据特征特别适合支持设计空间中的探索(Burnap 等人,2016)。
Since the inception of generating model construction, there has been continuous optimisation focused on enhancing the quality and efficiency of generation within computational intelligence. In its initial applications within the design domain, the approach involved directly achieving point-to-point target generation by utilising existing model frameworks and training methodologies. The commonality in these model training methodologies is highlighted by three fundamental steps: constructing datasets, training models based on generative algorithms such as GANs and VAEs, and evaluating the quality of generated outputs. However, point-to-point target generation is primarily outcome-oriented and is particularly suited to liberating designer labour in repetitive design tasks, such as the rapid generation of textile patterns. The outcomes of this approach are relatively uniform and uncontrollable, lacking designer interfaces for convenient adjustments of generated content. With the ongoing integration of AIGC and design, future generative design tools for exploring design space will be further developed and gradually emerge. As Davis et al. (Citation2023), based on creativity-driven divergent and convergent thinking, constructed a clothing design generation system called Fashion, where designers can place inspirational clothing patterns on a two-dimensional panel. The generation system explores the design space along the X and Y axes, producing controlled interpolated images to assist designers in creative ideation. These applications not only incorporate designer control and requirements but also establish continuous feature generation adjustment mechanisms, enabling controlled exploration of the potential design space, effectively facilitating the exploration of design solutions.
自生成模型构建以来,计算智能领域一直在持续优化,以提高生成质量和效率。在设计领域的最初应用中,该方法涉及通过利用现有模型框架和训练方法直接实现点对点目标生成。这些模型训练方法的共同之处在于三个基本步骤:构建数据集,基于生成算法(如 GANs 和 VAEs)训练模型,以及评估生成输出的质量。然而,点对点目标生成主要是以结果为导向的,特别适用于解放设计师在重复设计任务中的劳动,例如快速生成纺织图案。这种方法的结果相对统一且不可控,缺乏设计师界面以便对生成内容进行方便调整。随着人工智能与设计的不断整合,未来用于探索设计空间的生成设计工具将进一步发展并逐渐出现。如戴维斯等人所述。 (2023 年),基于以创造力驱动的分散和收敛思维,构建了一个名为时尚的服装设计生成系统,设计师可以将灵感服装图案放置在二维面板上。该生成系统沿着 X 和 Y 轴探索设计空间,生成受控的插值图像,以帮助设计师进行创意构思。这些应用不仅融入了设计师的控制和需求,还建立了连续的特征生成调整机制,使得能够对潜在的设计空间进行受控探索,有效促进设计解决方案的探索。
6.1.2. From parameterization-based generation to design cognition-based generation
6.1.2. 从基于参数化的生成到基于设计认知的生成
Thoring, Huettemann, and Mueller (Citation2023) explores and indicates that by establishing potential connections between generative artificial intelligence and design knowledge, designers will assume an ‘enhanced’ role with the support of AIGC. This partially answers the symbiotic or replacement question regarding the relationship between AIGC and designers. Leveraging the deep learning capabilities of AIGC, machine cognition can be established through setting and training, such as employing the ‘S (stimulus) - O (object) - R (response)’ framework to correspond to ‘input-black box-output,’ thereby achieving replication of human cognition (Tao, Gao, and Yuan Citation2023).
Thoring, Huettemann 和 Mueller(2023)探讨并指出,通过建立生成人工智能和设计知识之间的潜在联系,设计师将在 AIGC 的支持下承担“增强”角色。这在一定程度上回答了关于 AIGC 与设计师之间关系的共生或替代问题。利用 AIGC 的深度学习能力,可以通过设置和训练建立机器认知,例如采用“S(刺激)-O(对象)-R(响应)”框架对应于“输入-黑盒-输出”,从而实现对人类认知的复制(Tao,Gao 和 Yuan 2023)。
As mentioned earlier, early design generation tools were monolinear, outputting specific generated content based on inputs to the training dataset, which functioned excellently as a generative model. However, as design tools, they were deficient in incorporating theoretical foundations related to design cognition, thinking, processes, and other methodologies. This often resulted in generated outcomes lacking in design insights. Numerous theoretical frameworks have been established in the evolution of the design domain, including design thinking theory which guides the design process, analogical design theory aiding in inspirational ideation, and Kansei engineering contributing to understanding user needs and creating user-centric products. These theories and methodologies help designers in gaining better insights and implementing effective practices. Integrating design thinking with computational thinking represents a crucial aspect of embedding AIGC in the design domain. Some existing research has transitioned from production tools towards roles as design assistants. For instance, Wu (Citation2023), drawing on the Function-Behaviour-Structure (FBS) theory, structured human complex cognitive knowledge of frontal automotive morphology. He developed a cognitive mental model of frontal automotive styling along three dimensions: design intent, drawing behaviour, and functional structure. This approach facilitated the mapping of cognitive design space to machine computational space. With the development and widespread application of AIGC, future research is expected to increasingly integrate generative capabilities with design thinking. This evolution repositions generative models not merely as tools for repetitive tasks but as design applications aligned with cognitive thinking. This advancement further promotes effective collaboration between humans and machines.
正如前面提到的,早期的设计生成工具是单线性的,根据训练数据集的输入输出特定生成的内容,作为生成模型表现出色。然而,作为设计工具,它们在整合与设计认知、思维、流程和其他方法论相关的理论基础方面存在不足。这经常导致生成的结果缺乏设计洞察力。在设计领域的发展过程中建立了许多理论框架,包括指导设计过程的设计思维理论、辅助灵感构思的类比设计理论以及有助于理解用户需求和创建以用户为中心的产品的感性工程。这些理论和方法帮助设计师获得更好的洞察力并实施有效的实践。将设计思维与计算思维相结合代表了将人工智能与设计领域融合的关键方面。一些现有研究已经从生产工具转变为设计助手的角色。 例如,吴(2023)借鉴功能-行为-结构(FBS)理论,对前部汽车形态的人类复杂认知知识进行了结构化。他沿着设计意图、绘图行为和功能结构三个维度发展了前部汽车造型的认知心理模型。这种方法促进了认知设计空间与机器计算空间的映射。随着 AIGC 的发展和广泛应用,未来的研究预计将越来越多地将生成能力与设计思维整合在一起。这种演进将生成模型重新定位为与认知思维一致的设计应用,而不仅仅是重复性任务的工具。这一进步进一步促进了人类与机器之间的有效协作。
6.1.3. From monolithic design generation to a full-process closed-loop design system
6.1.3. 从单片设计生成到全流程闭环设计系统
Design is a multi-step, multi-task process, as outlined by design thinking theory, involving empathising, defining, ideating, prototyping, and testing, with continuous iterations and optimizations between these stages. Confronted with intricate design challenges, the development of comprehensive and integrated design systems is advantageous for organising global and local features and coordinating relationships among various design elements (Charnley, Lemon, and Evans Citation2011). This systematic approach promotes more effective collaboration among designers, ensuring consistency in design decisions and achieving a comprehensive and systematic resolution to complex problems.
设计是一个多步骤、多任务的过程,正如设计思维理论所概述的那样,涉及到共情、定义、构思、原型制作和测试,在这些阶段之间进行持续的迭代和优化。面对复杂的设计挑战,开发全面和整合的设计系统有利于组织全球和本地特征,并协调各种设计元素之间的关系(Charnley,Lemon 和 Evans 2011)。这种系统化的方法促进了设计师之间更有效的协作,确保设计决策的一致性,并实现对复杂问题的全面系统化解决方案。
Research indicates that most AIGC applications in the design domain focus on design generation, i.e. generating specific content according to the target task, such as stylised clothing generation (Kato et al. Citation2018), GUI design generation (Zhao et al. Citation2021), etc. The insights revealed that AIGC also plays a significant role and holds strong potential in design processes such as creative divergence, assistance and advice, evaluation and feedback, which support various design tasks. Therefore, integrating AIGC with the design domain and expanding from basic design generation to the construction of comprehensive design systems is a major emerging trend. As Huang et al. (Citation2023) introduced a design assistance system supporting automotive exterior modification that merges a design generator, design evaluator, and decision optimiser, establishing an all-in-one design system. Lin and Martelaro (Citation2024) developed the AIGC creative integration system ‘Jigsaw,’ enabling designers to intuitively combine various basic models for multi-dimensional design output. Future endeavours should further incorporate the multi-step design processes into design generation systems, constructing modular components for various tasks, thereby promoting design coherence and integrating design resources.
研究表明,在设计领域中,大多数 AIGC 应用集中在设计生成方面,即根据目标任务生成特定内容,例如风格化服装生成(Kato 等,2018 年),GUI 设计生成(Zhao 等,2021 年)等。洞察显示,AIGC 在创意分歧、辅助和建议、评估和反馈等设计过程中也发挥着重要作用,并在支持各种设计任务方面具有强大潜力。因此,将 AIGC 与设计领域整合,并从基本设计生成扩展到构建全面设计系统是一个重要的新兴趋势。正如黄等人(2023 年)介绍的支持汽车外观修改的设计辅助系统,融合了设计生成器、设计评估器和决策优化器,建立了一体化设计系统。Lin 和 Martelaro(2024 年)开发了 AIGC 创意整合系统“拼图”,使设计师能够直观地组合各种基本模型,实现多维设计输出。 未来的努力应进一步将多步设计过程纳入设计生成系统,为各种任务构建模块化组件,从而促进设计的连贯性并整合设计资源。
6.2. Future research agenda
6.2. 未来研究议程
6.2.1. Explore application mechanisms for integrating AIGC with the design
6.2.1. 探索将 AIGC 与设计集成的应用机制
Combining AIGC with the design domain is expected to reshape the new design process. Generative AI facilitates automating tedious, repetitive, and inefficient tasks in design, allowing designers to focus more on creativity and decision-making, accelerating the design process and enhancing efficiency (Liu, Fu, and Li Citation2023). However, the framework mechanisms for the fusion of these two domains remain in the exploratory stage. AIGC demonstrates excellent potential in all aspects of the design processes: creative divergence, design generation, assistance and advice, evaluation and feedback. It is mostly based on traditional design processes and has developed generative tools for specific aspects and tasks of design. In the future, AIGC is expected to transcend the traditional framework of design and pioneer a new method of design. Deep learning-based design evaluation prediction tools are typical. For instance, visual modelling and saliency analysis are employed to predict user click probabilities on UIs in interface design (Schoop et al. Citation2022). This approach breaks through the lag of traditional design evaluation and provides design insights based on existing data. Further combined with design generation, it facilitates automatic optimisation and fast iteration of content (Heyrani Nobari, Fathy Rashad, and Ahmed Citation2021). Conversely, unlike the construction of end-to-end design generation tools, general-domain oriented AIGC tools such as ChatGPT and MidJourney incorporate extensive database resources and exhibit strong generative capabilities. Developing application frameworks through open interfaces allows them to move to the design domain. For example, MidJourney is guided to design generation through four steps: initial prompt, prompt adjustment, style refinement, and variant selection (Cheng Citation2023). As well as constructing cue word frameworks such as ‘Few-Shot’ (Ma et al. Citation2023) and task decomposition (Wang et al. Citation2023) in the Large Language Model (LLM) to assist designers in creative diffusion. Therefore, numerous possibilities exist for future exploration of the mechanisms of combining AIGC and design. On one hand, we can consolidate the existing application mechanism of integrating AIGC with the traditional design process, and develop more effective tools for design field and task refinement. On the other hand, we can try to explore the new mechanism and conceptualise the update and development of the design process led by AIGC.
将 AIGC 与设计领域相结合预计将重塑新的设计流程。生成式人工智能有助于自动化设计中繁琐、重复和低效的任务,使设计师能够更多地专注于创造力和决策,加快设计过程并提高效率(刘、付和李,2023 年)。然而,这两个领域融合的框架机制仍处于探索阶段。AIGC 在设计过程的各个方面展现出极大的潜力:创意分歧、设计生成、辅助和建议、评估和反馈。它主要基于传统设计流程,并为设计的特定方面和任务开发了生成工具。未来,预计 AIGC 将超越传统设计框架,开创一种新的设计方法。基于深度学习的设计评估预测工具是典型的。例如,在界面设计中,利用视觉建模和显著性分析来预测用户对用户界面的点击概率(Schoop 等人,2022 年)。这种方法突破了传统设计评估的滞后,并基于现有数据提供设计见解。 进一步结合设计生成,它促进了内容的自动优化和快速迭代(Heyrani Nobari,Fathy Rashad 和 Ahmed 2021)。相反,与端到端设计生成工具的构建不同,诸如 ChatGPT 和 MidJourney 之类的通用领域导向的 AIGC 工具融入了广泛的数据库资源,并展现出强大的生成能力。通过开放接口开发应用框架使它们能够进入设计领域。例如,MidJourney 通过四个步骤引导设计生成:初始提示,提示调整,风格完善和变体选择(Cheng 2023)。以及在大型语言模型(LLM)中构建诸如“Few-Shot”(Ma 等人,2023)和任务分解(Wang 等人,2023)的提示词框架,以协助设计师进行创意扩散。因此,未来探索将 AIGC 与设计相结合的机制存在许多可能性。一方面,我们可以巩固将 AIGC 与传统设计流程整合的现有应用机制,并开发更有效的设计领域和任务细化工具。 另一方面,我们可以尝试探索由 AIGC 主导的设计过程的更新和发展的新机制并加以概念化。
6.2.2. Incorporating pluralistic methodologies
6.2.2. 融合多元方法论
Design is a multifaceted research domain, enriched by numerous mature theories and methodologies developed to scientifically guide the design process across various tasks and activities. The integration of design and AIGC signifies the convergence of design thinking and computational thinking, necessitating the incorporation of diverse design methodologies to guide the development of AIGC applications. However, based on the review's findings, most existing research on integrating AIGC with design primarily focuses on training generative models to fulfil design tasks. While such studies contribute to alleviating labour-intensive functions in design, they often fall short in addressing creative tasks, such as exploration in design space. A minority of research literature has successfully mapped from human cognitive to computational generative space by explicitly integrating established design theories as the foundation for application development. In future research, it is essential to categorise generative tasks, systematically summarise and map corresponding design theories, and employ a diverse theoretical foundation to guide the construction of generative applications.
设计是一个多方面的研究领域,通过许多成熟的理论和方法论的丰富,科学地引导设计过程跨越各种任务和活动。设计与 AIGC 的整合标志着设计思维和计算思维的融合,需要将多样化的设计方法论纳入,以指导 AIGC 应用的开发。然而,根据审查结果,大多数现有关于将 AIGC 与设计整合的研究主要集中在训练生成模型以完成设计任务上。虽然这些研究有助于减轻设计中的劳动密集型功能,但它们往往在解决创造性任务方面表现不佳,比如在设计空间中的探索。少数研究文献成功地将人类认知映射到计算生成空间,明确将建立的设计理论作为应用开发的基础。在未来的研究中,有必要对生成任务进行分类,系统总结和映射相应的设计理论,并采用多样化的理论基础来指导生成应用的构建。
6.2.3. Obstacles and negative impacts
6.2.3. 障碍和负面影响
Perceived anxiety and risk negatively impact the willingness to use AIGC design tools (Li Citation2024). Generative variability is an essential feature of AIGC, i.e. based on the same input, the output content has diversity and variability, which, although it violates the common principle of Human–Computer Interaction (HCI) that requires a system to respond consistently to the user's inputs (Weisz et al. Citation2024), it is also to a certain extent compatible with design as a structurally ill-posed problem, which realises the exploration of the potential space of design through generative diversity. However, the prerequisite is that systems and designers need to understand the probabilistic nature and generative capabilities of AIGC to realise effective interaction between the two. The HCI community proposes a principle for the construction of AI applications: human-centered AI (HAI) states that intelligent systems need to be constructed with humans as their stakeholders in mind and that it is, therefore, necessary to build models of machine behaviour that correspond to models of the human mind, avoiding the ‘black box’ state (Riedl Citation2019). In addition, Explainable Artificial Intelligence (XAI) states that building AI collaborative partners that human users can understand, trust, and manage effectively ensures fairness in decision-making and improves system robustness (Barredo Arrieta et al. Citation2020; Samek and Müller Citation2019). It is necessary to build design generation applications based on HAI and XAI considerations in the future to effectively overcome existing barriers and improve the transparency and interpretability of applications.
感知焦虑和风险会对使用 AIGC 设计工具的意愿产生负面影响(Li 2024)。生成变异性是 AIGC 的一个重要特征,即基于相同的输入,输出内容具有多样性和变异性,尽管这违反了要求系统对用户输入保持一致响应的人机交互(HCI)的共同原则(Weisz 等人,2024 年),但在一定程度上与设计作为一个结构上不明确的问题相容,通过生成多样性实现对设计潜在空间的探索。然而,前提是系统和设计师需要了解 AIGC 的概率性质和生成能力,以实现两者之间的有效交互。人机交互社区提出了构建人工智能应用的原则:以人为中心的人工智能(HAI)指出智能系统需要以人类为利益相关者构建,并且因此有必要建立与人类思维模型相对应的机器行为模型,避免“黑匣子”状态(Riedl 2019)。 此外,可解释人工智能(XAI)指出,构建人类用户能够理解、信任和有效管理的 AI 协作伙伴,可以确保决策的公平性并提高系统的稳健性(Barredo Arrieta 等,2020 年;Samek 和 Müller,2019 年)。未来有必要基于 HAI 和 XAI 的考虑构建设计生成应用程序,以有效克服现有障碍并提高应用程序的透明度和可解释性。
AIGC relies on generative models, which are processed based on training pre-existing datasets. There is a correlation between the content output and the training input, which leads to ethical and copyright issues for AIGC (Shi et al. Citation2023). First, generative AI may be misled by datasets containing erroneous and biased content and thus stereotypes in the output, such as sexism, racial discrimination, geographical discrimination, etc (Weidinger et al. Citation2021). This problem can be overcome through input screening, training optimisation, and output control. Develop screening criteria for datasets to create excellent and ethical datasets to reduce biased content. Optimise the algorithmic model to incorporate a control component to censor and block sensitive content. Build an evaluation mechanism for the output to detect and control the output content and to adjust the generative system promptly.
AIGC 依赖生成模型,这些模型是基于训练预先存在的数据集进行处理的。内容输出与训练输入之间存在相关性,这导致了 AIGC 的道德和版权问题(Shi 等,2023 年)。首先,生成式人工智能可能会被包含错误和偏见内容的数据集误导,从而在输出中出现刻板印象,如性别歧视、种族歧视、地理歧视等(Weidinger 等,2021 年)。这个问题可以通过输入筛选、训练优化和输出控制来解决。制定数据集的筛选标准,创建优秀和道德的数据集以减少偏见内容。优化算法模型,加入控制组件以审查和阻止敏感内容。建立一个评估机制,用于检测和控制输出内容,并及时调整生成系统。
In addition, the migration and reconstruction relied on by generative models may lead to the output of similar content not controlled by designers, which involves copyright and plagiarism issues, e.g. the migration of styles of branded clothing, the learning of hand-drawn sketches by designers, etc., which may lead to illegal plagiarism and impersonation through the misuse of generative models. To address this problem, the corresponding visual and semantic similarity evaluation system needs to be further improved and the detection method needs to be constructed in the future.
此外,生成模型依赖的迁移和重建可能导致设计师无法控制的类似内容的输出,涉及版权和抄袭问题,例如品牌服装风格的迁移,设计师手绘草图的学习等,这可能通过滥用生成模型导致非法抄袭和冒名顶替。为解决这一问题,未来需要进一步完善相应的视觉和语义相似性评估系统,并构建检测方法。
6.3. Theoretical implications
6.3. 理论意义
This study aims to examine the current state of literature combining AIGC and design, offering several critical contributions to the academic community. First, no systematic literature review has been conducted on the application of AIGC in the design domain. This study enables researchers to derive insights into this field from bibliometric information, research trends, theoretical foundations, and technological dependencies. It further outlines the characteristics and application framework of AIGC integrated with the design process according to the four phases of creative divergence, design generation, assistance and advice, and evaluation and feedback. Finally, we synthesise findings from the literature to explore three research trends and identify research gaps in the field of AIGC-embedded design. Our compilation of factors from the literature review, along with suggestions for future research questions, can assist researchers interested in this area to propose a more developed framework for theory-dependent and application-oriented integration of AIGC into the design domain.
本研究旨在审视结合 AIGC 和设计的文献当前状态,为学术界提供几项重要贡献。首先,在设计领域中尚未进行关于 AIGC 应用的系统文献综述。本研究使研究人员能够从文献计量信息、研究趋势、理论基础和技术依赖中获取对该领域的洞察。它进一步概述了 AIGC 与设计过程相结合的特征和应用框架,根据创意分歧、设计生成、辅助与建议以及评估与反馈四个阶段。最后,我们综合文献中的发现,探讨 AIGC 嵌入设计领域的三大研究趋势,并确定研究领域中的研究空白。我们从文献综述中整理出的因素,以及对未来研究问题的建议,可以帮助对这一领域感兴趣的研究人员提出更为完善的理论依赖和应用导向的 AIGC 整合设计领域的框架。
6.4. Practical implications
6.4. 实际意义
This study offers practical implications for developers and designers exploring new methods of embedding AIGC in the design field, developing new applications, and establishing new systems. This literature review identifies the technological dependencies and theoretical frameworks for integrating AIGC with design and assists applicators in determining the technological routes. AIGC shows excellent potential to be applied at various stages of the design process and is dependent on functionality building. This categorisation basis enables further development of more diversified and adapted AIGC applications for the design process. Notably, the three AIGC-design research trends identified in this study inform the development of future AIGC design applications, i.e. the construction of controlled, closed-loop generative design systems that incorporate design cognition. Furthermore, the ethical and copyright issues of AIGC applications in the design domain warrant further consideration and addressing.
本研究为探索在设计领域嵌入 AIGC 的新方法、开发新应用和建立新系统的开发人员和设计师提供了实际意义。本文文献综述确定了将 AIGC 与设计整合的技术依赖性和理论框架,并帮助应用者确定技术路线。AIGC 显示出在设计过程的各个阶段应用的巨大潜力,并且依赖于功能构建。这种分类基础促进了更多多样化和适应性更强的 AIGC 应用程序的进一步发展,用于设计过程。值得注意的是,本研究确定的三种 AIGC-设计研究趋势为未来 AIGC 设计应用的发展提供了信息,即构建控制的、闭环的生成设计系统,其中融入设计认知。此外,AIGC 应用在设计领域的伦理和版权问题需要进一步考虑和解决。
6.5. Limitations 6.5. 限制
Several limitations of this study remain. First, we limited our search to Scopus, which, despite being the largest database of abstracts and citations of peer-reviewed literature, still means that our final inclusion in the body of knowledge may have missed relevant research articles. Second, we based our literature review on predefined inclusion-exclusion criteria, excluding book chapters, industry reports, non-English literature, etc., that might provide additional insights. However, our methodological rigour helped to minimise the risk of pertinent missing literature. Additionally, research on the integration of AIGC and design is still nascent, and many studies are somewhat fragmented, making it challenging to explore the influences and relationship-building between the two through quantitative analysis. Thus, future research should aim to transcend these limitations and refine the design domain classification to broaden research findings.
本研究存在一些局限性。首先,我们将搜索范围限定在 Scopus 数据库,尽管它是最大的同行评议文献摘要和引用数据库,但这意味着我们最终纳入知识体系的文章可能错过了相关研究文章。其次,我们基于预定义的纳入-排除标准进行文献综述,排除了书籍章节、行业报告、非英文文献等,这可能提供额外的见解。然而,我们的方法严谨有助于最小化遗漏相关文献的风险。此外,关于人工智能生成内容(AIGC)与设计整合的研究仍处于起步阶段,许多研究有些零散,这使得通过定量分析探索两者之间的影响和关系建立具有挑战性。因此,未来的研究应致力于超越这些局限性,并完善设计领域分类,以拓宽研究发现。
7. Conclusion 7. 结论
The analytical findings of this systematic literature review reveal a rapid increase in the volume of research literature on the integration of AIGC with the design domain. Given the anticipated broader and deeper utilisation of generative artificial intelligence in the design field in the future, there is a growing need for additional research to theorise the mechanisms, frameworks, and methodologies of AIGC applied to the design domain. This effort is intended to contribute to developing more beneficial design generation applications. This literature review will enable researchers in comprehending the current state of the integration between AIGC and the design domain and help set the agenda for future research.
这项系统文献综述的分析结果显示,关于将 AIGC 与设计领域整合的研究文献数量迅速增加。鉴于未来在设计领域中对生成人工智能的广泛和深入利用,迫切需要进一步研究 AIGC 应用于设计领域的机制、框架和方法论。这一努力旨在为开发更有益的设计生成应用做出贡献。这项文献综述将帮助研究人员了解 AIGC 与设计领域之间整合的当前状态,并有助于为未来研究制定议程。
Disclosure statement 披露声明
No potential conflict of interest was reported by the author(s).
作者未报告任何潜在利益冲突。
References 参考文献
- Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, et al. 2020. “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.” Information Fusion 58 (June): 82–115. https://doi.org/10.1016/j.inffus.2019.12.012.
Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia 等人。2020 年。“可解释人工智能(XAI):概念、分类、机遇和面向负责任人工智能的挑战。”《信息融合》第 58 卷(6 月):82–115。https://doi.org/10.1016/j.inffus.2019.12.012。 - Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?” Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. Virtual Event Canada: ACM. https://doi.org/10.1145/3442188.3445922.
Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, 和 Shmargaret Shmitchell. 2021. “关于随机鹦鹉的危险:语言模型是否太大?” 2021 年 ACM 公平性、问责性和透明度会议论文集,610–623 页。加拿大虚拟活动:ACM。https://doi.org/10.1145/3442188.3445922. - Boyd, Ross, and Robert J. Holton. 2018. “Technology, Innovation, Employment and Power: Does Robotics and Artificial Intelligence Really Mean Social Transformation?” Journal of Sociology 54 (3): 331–345. https://doi.org/10.1177/1440783317726591.
Boyd, Ross, 和 Robert J. Holton. 2018. “Technology, Innovation, Employment and Power: Does Robotics and Artificial Intelligence Really Mean Social Transformation?” 《社会学杂志》 54 (3): 331–345. https://doi.org/10.1177/1440783317726591. - Brückner, Lukas, Luis A. Leiva, and Antti Oulasvirta. 2022. “Learning GUI Completions with User-Defined Constraints.” ACM Transactions on Interactive Intelligent Systems 12 (1): 1–40. https://doi.org/10.1145/3490034.
Brückner, Lukas, Luis A. Leiva, 和 Antti Oulasvirta. 2022. “使用用户定义的约束学习 GUI 完成。” ACM 交互智能系统期刊 12 (1): 1–40. https://doi.org/10.1145/3490034. - Burnap, Alexander, Ye Liu, Yanxin Pan, Honglak Lee, Richard Gonzalez, and Panos Y. Papalambros. 2016. “Estimating and Exploring the Product Form Design Space Using Deep Generative Models.” American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2016-60091.
Burnap, Alexander, Ye Liu, Yanxin Pan, Honglak Lee, Richard Gonzalez, and Panos Y. Papalambros. 2016. “利用深度生成模型估计和探索产品形式设计空间。”美国机械工程师协会数字收藏,https://doi.org/10.1115/DETC2016-60091. - Charnley, Fiona, Mark Lemon, and Steve Evans. 2011. “Exploring the Process of Whole System Design.” Design Studies 32 (2): 156–179. https://doi.org/10.1016/j.destud.2010.08.002.
Charnley, Fiona, Mark Lemon, 和 Steve Evans. 2011. “探索整体系统设计过程.” 设计研究 32 (2): 156–179. https://doi.org/10.1016/j.destud.2010.08.002. - Chen, Liuqing, Pan Wang, Hao Dong, Feng Shi, Ji Han, Yike Guo, Peter R. N. Childs, Jun Xiao, and Chao Wu. 2019. “An Artificial Intelligence Based Data-Driven Approach for Design Ideation.” Journal of Visual Communication and Image Representation 61 (May): 10–22. https://doi.org/10.1016/j.jvcir.2019.02.009.
陈,刘青,王攀,董浩,石峰,韩吉,郭一可,彼得 R.N.查尔兹,肖军,吴超。2019 年。“基于人工智能的数据驱动设计构思方法。”《视觉通信与图像表征杂志》61(5 月):10-22。https://doi.org/10.1016/j.jvcir.2019.02.009. - Cheng, Shih-Hung. 2023. “The Impact of Generative Artificial Intelligence on Design Concept Ideation: Case Study on Lightweight Two-Wheeled Vehicles.” In HCI International 2023 – Late Breaking Papers, edited by Helmut Degen, Stavroula Ntoa, and Abbas Moallem, 14059:39–57. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48057-7_3.
程世宏。2023 年。“生成人工智能对设计概念构思的影响:轻型双轮车辆案例研究。”载于 HCI 国际 2023 - 迟到的论文,编辑:Helmut Degen,Stavroula Ntoa 和 Abbas Moallem,第 14059 卷:39-57。计算机科学讲义。Cham:Springer Nature Switzerland。https://doi.org/10.1007/978-3-031-48057-7_3. - Choi, Woojin, Seyoon Jang, Ha Youn Kim, Yuri Lee, Sang-goo Lee, Hanbit Lee, and Sungchan Park. 2023. “Developing an AI-Based Automated Fashion Design System: Reflecting the Work Process of Fashion Designers.” Fashion and Textiles 10 (1): 39. https://doi.org/10.1186/s40691-023-00360-w.
Choi, Woojin, Seyoon Jang, Ha Youn Kim, Yuri Lee, Sang-goo Lee, Hanbit Lee, and Sungchan Park. 2023. “开发基于人工智能的自动化时尚设计系统:反映时尚设计师的工作流程。” 时尚与纺织品 10 (1): 39. https://doi.org/10.1186/s40691-023-00360-w. - Dai, Yong, Yi Li, and Li-Jun Liu. 2019. “New Product Design with Automatic Scheme Generation.” Sensing and Imaging 20 (1): 29. https://doi.org/10.1007/s11220-019-0248-9.
戴勇,李毅,刘立军。2019 年。“自动生成方案的新产品设计。”感知与成像 20(1):29。https://doi.org/10.1007/s11220-019-0248-9。 - Davis, Richard Lee, Thiemo Wambsganss, Wei Jiang, Kevin Gonyop Kim, Tanja Käser, and Pierre Dillenbourg. 2023. “Fashioning the Future: Unlocking the Creative Potential of Deep Generative Models for Design Space Exploration.” In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 1–9. CHI EA ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3544549.3585644.
戴维斯,理查德·李,蒂莫·万布斯根斯,魏江,凯文·戈尼普·金,坦雅·凯瑟,皮埃尔·迪伦堡。2023 年。“塑造未来:解锁深度生成模型在设计空间探索中的创造潜力。”在 2023 年人机交互计算系统 CHI 会议的扩展摘要中,1-9 页。CHI EA‘23。美国纽约:计算机协会。https://doi.org/10.1145/3544549.3585644. - Davoodi, Omid, Mehrdad Ashtiani, and Morteza Rajabi. 2022. “An Approach for the Evaluation and Correction of Manually Designed Video Game Levels Using Deep Neural Networks.” The Computer Journal 65 (3): 495–515. https://doi.org/10.1093/comjnl/bxaa071.
Davoodi, Omid, Mehrdad Ashtiani, 和 Morteza Rajabi. 2022. “使用深度神经网络评估和校正手动设计的视频游戏关卡的方法.” 《计算机杂志》65 (3): 495–515. https://doi.org/10.1093/comjnl/bxaa071. - Deng, Li, and Guohua Wang. 2019. “Application of EEG and Interactive Evolutionary Design Method in Cultural and Creative Product Design.” Computational Intelligence and Neuroscience 2019 (January): e1860921. https://doi.org/10.1155/2019/1860921.
邓丽,王国华。2019 年。“脑电图和交互式进化设计方法在文化创意产品设计中的应用。”《计算智能与神经科学》2019 年(1 月):e1860921。https://doi.org/10.1155/2019/1860921。 - Dhariwal, Prafulla, and Alexander Nichol. 2021. “Diffusion Models Beat GANs on Image Synthesis.” Advances in Neural Information Processing Systems 34: 8780–8794. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html.
Dhariwal, Prafulla 和 Alexander Nichol. 2021. “扩散模型在图像合成方面胜过 GANs.” Advances in Neural Information Processing Systems 34: 8780–8794. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html. - Ding, Man, and Wei Dong. 2019. “Product Color Emotional Design Considering Color Layout.” Color Research & Application 44 (2): 285–295. https://doi.org/10.1002/col.22338.
丁曼,董伟。2019 年。“考虑颜色布局的产品色彩情感设计。”《颜色研究与应用》44(2):285–295。https://doi.org/10.1002/col.22338。 - Duan, Yingjing, and Jie Zhang. 2022. “Design and Optimization of Human Cognitive Systems using Computational Intelligence Methods.” Computational Intelligence and Neuroscience 2022: 1–12. https://doi.org/10.1155/2022/8015492.
段颖静,张洁。2022 年。“使用计算智能方法设计和优化人类认知系统。”《计算智能与神经科学》2022 年:1–12。https://doi.org/10.1155/2022/8015492。 - Fadaeddini, Amin, Babak Majidi, and Mohammad Eshghi. 2018. “A Case Study of Generative Adversarial Networks for Procedural Synthesis of Original Textures in Video Games.” 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC), 118–122. https://doi.org/10.1109/DGRC.2018.8712070.
Fadaeddini, Amin, Babak Majidi, 和 Mohammad Eshghi. 2018. “一项关于生成对抗网络在视频游戏中程序合成原始纹理的案例研究.” 2018 年第 2 届全国和第 1 届国际数字游戏研究会议: 趋势, 技术和应用 (DGRC), 118–122. https://doi.org/10.1109/DGRC.2018.8712070. - Feng, Zhitao, Mingliang Hou, Huiyang Liu, Mujie Liu, Achhardeep Kaur, Falih Gozi Febrinanto, and Wenhong Zhao. 2021. “SmartColor: Automatic Web Color Scheme Generation Based on Deep Learning.” 2021 12th International Conference on Information and Communication Systems (ICICS), 285–290. https://doi.org/10.1109/ICICS52457.2021.9464536.
冯志涛,侯明亮,刘辉阳,刘木杰,阿查德普·考尔,法利赫·戈齐·费布里南托和赵文宏。2021 年。“SmartColor:基于深度学习的自动生成网页配色方案。”2021 年第 12 届信息与通信系统国际会议(ICICS),285-290。https://doi.org/10.1109/ICICS52457.2021.9464536. - Fink, Arlene. 2019. Conducting Research Literature Reviews: From the Internet to Paper. UCLA, Los Angeles, USA: SAGE Publications.
Fink, Arlene. 2019. 进行研究文献综述:从互联网到纸质版。美国洛杉矶加州大学洛杉矶分校:SAGE 出版社。 - Gajjar, Nishit, Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Matthias Jarke. 2021. “Akin: Generating UI Wireframes From UI Design Patterns Using Deep Learning.” In 26th International Conference on Intelligent User Interfaces - Companion, 40–42. IUI ‘21 Companion. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3397482.3450727.
Gajjar, Nishit, Vinoth Pandian Sermuga Pandian, Sarah Suleri, 和 Matthias Jarke. 2021. “Akin: 使用深度学习从 UI 设计模式生成 UI 线框图。” 在第 26 届智能用户界面国际会议 - 附属会议, 40–42 页。IUI‘21 Companion。美国纽约: 计算机协会。https://doi.org/10.1145/3397482.3450727. - Gallega, Rgee Wharlo, and Yasuyuki Sumi. 2023. “Towards a Co-Creative System for Creating, Suggesting, and Assessing Material Textures for 3D Renderings During Design Reviews in Industrial Design.” In Proceedings of the Asian HCI Symposium 2023, 58–62. Asian CHI ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3604571.3604580.
Gallega, Rgee Wharlo, 和 Yasuyuki Sumi. 2023. “面向工业设计中设计审查期间为 3D 渲染创建、建议和评估材质的共创系统.” 收录于 Proceedings of the Asian HCI Symposium 2023, 58–62. Asian CHI ‘23. 美国纽约: Association for Computing Machinery. https://doi.org/10.1145/3604571.3604580. - Gan, Yan, Yingrui Ji, Shuo Jiang, Xinxiong Liu, Zhipeng Feng, Yao Li, and Yuan Liu. 2021. “Integrating Aesthetic and Emotional Preferences in Social Robot Design: An Affective Design Approach with Kansei Engineering and Deep Convolutional Generative Adversarial Network.” International Journal of Industrial Ergonomics 83 (May): 103128. https://doi.org/10.1016/j.ergon.2021.103128.
甘燕,季颖瑞,姜硕,刘新雄,冯志鹏,李尧和刘远。2021 年。“在社交机器人设计中整合美学和情感偏好:一种具有感性设计方法的 Kansei 工程和深度卷积生成对抗网络。”《国际工业人体工程学杂志》83(5 月):103128。https://doi.org/10.1016/j.ergon.2021.103128. - Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. “Generative Adversarial Networks.” Communications of the ACM 63 (11): 139–144. https://doi.org/10.1145/3422622.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. “生成对抗网络.” 《ACM 通讯》63 (11): 139–144. https://doi.org/10.1145/3422622. - Gu, Xiaoling, Qiming Yao, Xiaojun Gong, and Zhenzhong Kuang. 2023. “iDesigner: Making Intelligent Fashion Designs.” Multimedia Tools and Applications September), https://doi.org/10.1007/s11042-023-16780-1.
顾晓玲,姚启明,龚晓军和匡振中。2023 年。“iDesigner:智能时尚设计。”多媒体工具与应用(9 月),https://doi.org/10.1007/s11042-023-16780-1. - Gui, Jie, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. 2023. “A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications.” IEEE Transactions on Knowledge and Data Engineering 35 (4): 3313–3332. https://doi.org/10.1109/TKDE.2021.3130191.
Gui, Jie, 孙振安, 温永刚, 陶大成, 叶杰平. 2023. “生成对抗网络综述:算法、理论和应用.” IEEE 知识与数据工程交易 35 (4): 3313–3332. https://doi.org/10.1109/TKDE.2021.3130191. - Gutierrez, Jake, and Jacob Schrum. 2020. “Generative Adversarial Network Rooms in Generative Graph Grammar Dungeons for The Legend of Zelda.” In 2020 IEEE Congress on Evolutionary Computation (CEC), 1–8. https://doi.org/10.1109/CEC48606.2020.9185631.
Gutierrez, Jake, 和 Jacob Schrum. 2020. “Generative Adversarial Network Rooms in Generative Graph Grammar Dungeons for The Legend of Zelda.” 在 2020 IEEE Congress on Evolutionary Computation (CEC) 中,1–8。https://doi.org/10.1109/CEC48606.2020.9185631. - Hao, Jia, Yongjia Zhou, Qiangfu Zhao, and Qing Xue. 2019. “An Evolutionary Computation Based Method for Creative Design Inspiration Generation.” Journal of Intelligent Manufacturing 30 (4): 1673–1691. https://doi.org/10.1007/s10845-017-1347-x.
郝佳,周永佳,赵强夫,薛青。2019 年。“基于进化计算的创意设计灵感生成方法。”《智能制造杂志》30(4):1673–1691。https://doi.org/10.1007/s10845-017-1347-x. - He, Yuejun, Bradley Camburn, Haowen Liu, Jianxi Luo, Maria Yang, and Kristin Wood. 2019. “Mining and Representing the Concept Space of Existing Ideas for Directed Ideation.” Journal of Mechanical Design 141 (12). https://doi.org/10.1115/1.4044399.
何跃军,布拉德利·坎伯恩,刘浩文,罗建喜,杨玛丽亚和克里斯汀·伍德。2019 年。“挖掘和表征现有想法的概念空间以进行定向构思。”《机械设计杂志》141(12)。https://doi.org/10.1115/1.4044399. - Heyrani Nobari, Amin, Muhammad Fathy Rashad, and Faez Ahmed. 2021. “CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis.” American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2021-68103.
Heyrani Nobari, Amin, Muhammad Fathy Rashad 和 Faez Ahmed. 2021. “CreativeGAN: Editing Generative Adversarial Networks for Creative Design Synthesis.” American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2021-68103. - Hoggenmueller, Marius, Maria Luce Lupetti, Willem van der Maden, and Kazjon Grace. 2023. “Creative AI for HRI Design Explorations.” In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 40–50. HRI ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3568294.3580035.
Hoggenmueller, Marius, Maria Luce Lupetti, Willem van der Maden 和 Kazjon Grace. 2023. “创意人工智能用于 HRI 设计探索.” 在 2023 年 ACM/IEEE 国际人机交互会议的伴随论文集中, 40–50 页. HRI ‘23. 美国纽约: 计算机协会. https://doi.org/10.1145/3568294.3580035. - Hu, Hao, Chao Zhang, and Yanxue Liang. 2021. “A Study on the Automatic Generation of Banner Layouts.” Computers & Electrical Engineering 93 (July): 107269. https://doi.org/10.1016/j.compeleceng.2021.107269.
胡浩,张超,梁彦学。2021 年。“横幅布局自动生成研究。”《计算机与电气工程》第 93 卷(7 月):107269。https://doi.org/10.1016/j.compeleceng.2021.107269。 - Huang, Wentong. 2021. “Shaping AI as the Tool for Subconscious Design.” In HCI International 2021 - Late Breaking Papers: Design and User Experience, edited by Constantine Stephanidis, Marcelo M. Soares, Elizabeth Rosenzweig, Aaron Marcus, Sakae Yamamoto, Hirohiko Mori, Pei-Luen Patrick Rau, Gabriele Meiselwitz, Xiaowen Fang, and Abbas Moallem, 40–53. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90238-4_4.
黄文通。2021 年。“将人工智能塑造为潜意识设计的工具。”载于 HCI 国际 2021 - 迟到的论文:设计与用户体验,Constantine Stephanidis、Marcelo M. Soares、Elizabeth Rosenzweig、Aaron Marcus、Sakae Yamamoto、Hirohiko Mori、Pei-Luen Patrick Rau、Gabriele Meiselwitz、方晓文和 Abbas Moallem 编辑,40-53 页。计算机科学讲义。Cham:施普林格国际出版。https://doi.org/10.1007/978-3-030-90238-4_4. - Huang, Jingmin, Bowei Chen, Zhi Yan, Iadh Ounis, and Jun Wang. 2023. “GEO: A Computational Design Framework for Automotive Exterior Facelift.” ACM Transactions on Knowledge Discovery from Data 17 (6): 82:1–82:20. https://doi.org/10.1145/3578521.
黄静敏,陈博伟,严志,Iadh Ounis 和王军。2023 年。“GEO:汽车外观翻新的计算设计框架。”ACM 数据发现知识交易 17(6):82:1–82:20。https://doi.org/10.1145/3578521。 - Ibarrola, Francisco, Tomas Lawton, and Kazjon Grace. 2023. “A Collaborative, Interactive and Context-Aware Drawing Agent for Co-Creative Design.” IEEE Transactions on Visualization and Computer Graphics, 1–13. https://doi.org/10.1109/TVCG.2023.3293853.
Ibarrola, Francisco, Tomas Lawton, 和 Kazjon Grace. 2023. “一个协作、互动和上下文感知的绘图代理用于共同创作设计.” IEEE Transactions on Visualization and Computer Graphics, 1–13. https://doi.org/10.1109/TVCG.2023.3293853. - Inie, Nanna, Jeanette Falk, and Steve Tanimoto. 2023. “Designing Participatory AI: Creative Professionals’ Worries and Expectations about Generative AI.” In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 1–8. CHI EA ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3544549.3585657.
Inie, Nanna, Jeanette Falk 和 Steve Tanimoto. 2023. “设计参与式人工智能:创意专业人士对生成式人工智能的担忧和期望。”载于 2023 年人机交互计算系统 CHI 会议扩展摘要集,1–8 页。CHI EA ‘23. 美国纽约:计算机协会。https://doi.org/10.1145/3544549.3585657. - Ji, Yuanwei, and Yumiao Chen. 2022. “Research on Generative Design of Car Side Colour Rendering Based on Generative Adversarial Networks.” In HCI International 2022 – Late Breaking Papers: Ergonomics and Product Design, edited by Vincent G. Duffy and Pei-Luen Patrick Rau, 420–434. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland.
季元伟,陈玉淼。2022 年。“基于生成对抗网络的汽车侧面颜色渲染生成设计研究。”收录于 HCI International 2022 – 迟到论文:人机工程学与产品设计,编辑:文森特·G·达菲和饶培伦,420–434 页。计算机科学讲义。Cham:Springer Nature Switzerland. - Jiang, Shiqi, Chenhui Li, and Changbo Wang. 2021. “CoPaint: Guiding Sketch Painting with Consistent Color and Coherent Generative Adversarial Networks.” In Advances in Computer Graphics, edited by Nadia Magnenat-Thalmann, Victoria Interrante, Daniel Thalmann, George Papagiannakis, Bin Sheng, Jinman Kim, and Marina Gavrilova, 229–241. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89029-2_18.
姜世奇,李晨辉,王昌波。2021 年。“CoPaint:引导草图绘画与一致颜色和连贯生成对抗网络。”在计算机图形学进展中,由 Nadia Magnenat-Thalmann,Victoria Interrante,Daniel Thalmann,George Papagiannakis,Bin Sheng,Jinman Kim 和 Marina Gavrilova 编辑,第 229-241 页。计算机科学讲义。Cham:Springer International Publishing。https://doi.org/10.1007/978-3-030-89029-2_18. - Jin, Yan, and Zijian Zhang. 2022. “Visual Reasoning for Design by Analogy: Fuse Visual and Semantic Knowledge.” American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2022-89723.
金燕,张子健。2022 年。“类比设计的视觉推理:融合视觉和语义知识。”美国机械工程师协会数字收藏,https://doi.org/10.1115/DETC2022-89723。 - Karimi, P., M. L. Maher, N. Davis, and K. Grace. 2019. “Deep Learning in a Computational Model for Conceptual Shifts in a Co-Creative Design System.” In, 17–24.
Karimi, P., M. L. Maher, N. Davis, and K. Grace. 2019. “深度学习在协同设计系统中概念转变计算模型中的应用。”第 17-24 页。PubMedGoogle Scholar PubMed 谷歌学术 - Kato, Natsumi, Hiroyuki Osone, Daitetsu Sato, Naoya Muramatsu, and Yoichi Ochiai. 2018. “DeepWear: A Case Study of Collaborative Design between Human and Artificial Intelligence.” In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction, 529–536. TEI ‘18. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3173225.3173302.
加藤夏美,大曾博之,佐藤大哲,村松直也,落合洋一。2018 年。“DeepWear:人类与人工智能协作设计的案例研究。”在第十二届切实可行、嵌入式和具体化交互国际会议论文集中,529–536 页。TEI‘18。美国纽约:计算机协会。https://doi.org/10.1145/3173225.3173302. - Kingma, Diederik P., and Max Welling. 2022. “Auto-Encoding Variational Bayes.” arXiv. https://doi.org/10.48550/arXiv.1312.6114.
Kingma, Diederik P.和 Max Welling. 2022. “Auto-Encoding Variational Bayes.” arXiv. https://doi.org/10.48550/arXiv.1312.6114. - Krahe, Carmen, Antonio Bräunche, Alexander Jacob, Nicole Stricker, and Gisela Lanza. 2020. “Deep Learning for Automated Product Design.” Procedia CIRP 91: 3–8. https://doi.org/10.1016/j.procir.2020.01.135.
Krahe, Carmen, Antonio Bräunche, Alexander Jacob, Nicole Stricker, 和 Gisela Lanza. 2020. “深度学习用于自动化产品设计.” Procedia CIRP 91: 3–8. https://doi.org/10.1016/j.procir.2020.01.135. - Lanzi, Pier Luca, and Daniele Loiacono. 2023. “ChatGPT and Other Large Language Models as Evolutionary Engines for Online Interactive Collaborative Game Design.” In Proceedings of the Genetic and Evolutionary Computation Conference, 1383–1390. GECCO ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3583131.3590351.
Lanzi, Pier Luca, 和 Daniele Loiacono. 2023. “ChatGPT 和其他大型语言模型作为在线交互式协作游戏设计的进化引擎。” 在遗传和进化计算会议论文集中,第 1383-1390 页。GECCO ‘23. 美国纽约:计算机协会。https://doi.org/10.1145/3583131.3590351. - Lee, Mingyu, Youngseo Park, Hwisang Jo, Kibum Kim, Seungkyu Lee, and Ikjin Lee. 2022. “Deep Generative Tread Pattern Design Framework for Efficient Conceptual Design.” Journal of Mechanical Design 144 (7): 132. https://doi.org/10.1115/1.4053469.
李明宇,朴永瑞,赵辉尚,金基范,李承奎和李益进。2022 年。“用于高效概念设计的深度生成式胎纹设计框架。”《机械设计杂志》144(7):132。https://doi.org/10.1115/1.4053469。 - Li, Weiyi. 2024. “A Study on Factors Influencing Designers’ Behavioral Intention in Using AI-Generated Content for Assisted Design: Perceived Anxiety, Perceived Risk, and UTAUT.” International Journal of Human–Computer Interaction 0 (0): 1–14. https://doi.org/10.1080/10447318.2024.2310354.
李伟毅。2024 年。“影响设计师使用 AI 生成内容进行辅助设计的行为意图因素研究:感知焦虑、感知风险和 UTAUT。”《人机交互国际期刊》0(0):1–14。https://doi.org/10.1080/10447318.2024.2310354。 - Li, B., Y. Bai, X. Zhan, and G. Li. 2023. “The Technical Features and Aromorphosis of Artificial Intelligence Generated Content (AIGC).” Documentation, Information and Knowledge 40 (1): 66–74. https://doi.org/10.13366/j.dik.2023.01.066.
李,白,詹,李。2023 年。“人工智能生成内容(AIGC)的技术特点和香气形态学。”文献,信息与知识 40(1):66-74。https://doi.org/10.13366/j.dik.2023.01.066。 - Li, Mingdong, Shanhe Lou, Hao Zheng, Yixiong Feng, Yicong Gao, Siyuan Zeng, and Jianrong Tan. 2024. “A Cognitive Analysis-Based Key Concepts Derivation Approach for Product Design.” Expert Systems with Applications 236 (February): 121289. https://doi.org/10.1016/j.eswa.2023.121289.
李明东,楼山河,郑浩,冯义雄,高一聪,曾思远,谭建荣。2024 年。“基于认知分析的产品设计关键概念提取方法。” 《专家系统与应用》236(2 月):121289。https://doi.org/10.1016/j.eswa.2023.121289。 - Li, Xiong, Jianning Su, Zhipeng Zhang, and Ruisheng Bai. 2021. “Product Innovation Concept Generation Based on Deep Learning and Kansei Engineering.” Journal of Engineering Design 32 (10): 559–589. https://doi.org/10.1080/09544828.2021.1928023.
李雄,苏建宁,张志鹏和白瑞生。2021 年。“基于深度学习和感性工程的产品创新概念生成。”《工程设计杂志》32(10):559–589。https://doi.org/10.1080/09544828.2021.1928023。 - Li, Xingang, Charles Xie, and Zhenghui Sha. 2023. “Design Representation for Performance Evaluation of 3D Shapes in Structure-Aware Generative Design.” Design Science 9: e27. https://doi.org/10.1017/dsj.2023.25.
- Li, Xin, and Yihang Zhang. 2022. “Footwear Sketches Colorization Method Based on Generative Adversarial Network.” International Journal of Advanced Computer Science and Applications (IJACSA) 13 (12), https://doi.org/10.14569/IJACSA.2022.0131219.
- Lin, Huan, Xiaolei Deng, and Dongsong Zhang. 2023. “Taillight Shape Creative Design Based on Generative Adversarial Networks.” Computer-Aided Design and Applications March: 1043–1060. https://doi.org/10.14733/cadaps.2023.1043-1060.
- Lin, David Chuan-En, and Nikolas Martelaro. 2024. “Jigsaw: Supporting Designers to Prototype Multimodal Applications by Chaining AI Foundation Models.” In Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–15. CHI ‘24. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3613904.3641920.
- Liu, Yuqi, Zhiyong Fu, and Tiantian Li. 2023. “How Can Artificial Intelligence Transform the Future Design Paradigm and Its Innovative Competency Requisition: Opportunities and Challenges.” In HCI International 2023 – Late Breaking Papers, edited by Helmut Degen, Stavroula Ntoa, and Abbas Moallem, 131–148. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48057-7_9.
- Liu, Zhibo, Feng Gao, and Yizhou Wang. 2019. “A Generative Adversarial Network for AI-Aided Chair Design.” 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 486–490. https://doi.org/10.1109/MIPR.2019.00098.
- Liu, Hongwei, Yan Li, Jian Chen, Ye Tao, and Wenhan Xia. 2020. “A Structure Mapping–Based Representation of Knowledge Transfer in Conceptual Design Process.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 234 (3): 400–420. https://doi.org/10.1177/0954405419883070.
- Liu, Qiyu, Kai Wang, Yan Li, and Ying Liu. 2020. “Data-Driven Concept Network for Inspiring Designers’ Idea Generation.” Journal of Computing and Information Science in Engineering 20 (3): 31004. https://doi.org/10.1115/1.4046207.
- Liu, Zhuohua, Bin Yang, Jingrui An, and Caijuan Huang. 2023. “Similarity Evaluation of Graphic Design Based on Deep Visual Saliency Features.” The Journal of Supercomputing 79 (18): 21346–21367. https://doi.org/10.1007/s11227-023-05468-w.
- Liu, Miao, and Binbin Zhou. 2022. “Innovative Design of Chinese Traditional Textile Patterns Based on Conditional Generative Adversarial Network.” In Culture and Computing, edited by Matthias Rauterberg, 234–245. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-05434-1_15.
- Ma, Kevin, Daniele Grandi, Christopher McComb, and Kosa Goucher-Lambert. 2023. “Conceptual Design Generation Using Large Language Models.” In Volume 6: 35th International Conference on Design Theory and Methodology (DTM), V006T06A021. Boston, Massachusetts, USA: American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2023-116838.
- Mao, Longchun, Jinghua Wang, and Jianmin Jiang. 2020. “Computerized Logo Synthesis with Wavelets-Enhanced Adversarial Learning.” In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5. Seville, Spain: IEEE.
- Mao, Kuang, Sai Wu, Jiajia He, Haichao Huang, Yanlong Yin, and Zujie Ren. 2023. “Textile Pattern Recommendations with Convolutional Neural Networks and Autoencoder.” Concurrency and Computation: Practice and Experience 35 (18): e6113. https://doi.org/10.1002/cpe.6113.
- Mozaffari, Mohammad, Xinyuan Amin, Jinghui Zhang, Jin L C Cheng. 2022. “GANSpiration: Balancing Targeted and Serendipitous Inspiration in User Interface Design with Style-Based Generative Adversarial Network.In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.New York. https://doi.org/10.1145/3491102.3517511.
- Oh, Sangeun, Yongsu Jung, Seongsin Kim, Ikjin Lee, and Namwoo Kang. 2019. “Deep Generative Design: Integration of Topology Optimization and Generative Models.” Journal of Mechanical Design 141 (111405), https://doi.org/10.1115/1.4044229.
- Padiyath, Aadarsh, and Brian Magerko. 2021. “desAIner: Exploring the Use of “Bad” Generative Adversarial Networks in the Ideation Process of Fashion Design.” In Proceedings of the 13th Conference on Creativity and Cognition, 1–3. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3450741.3466636.
- Page, Matthew James, Joanne McKenzie, Patrick Bossuyt, Isabelle Boutron, Tammy Hoffmann, Cindy Mulrow, Larissa Shamseer, Jennifer Tetzlaff, and David Moher. 2023. “Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement,” December. https://doi.org/10.31222/osf.io/jb4dx.
- Pandian, Vinoth Pandian Sermuga, Sarah Suleri, and Matthias Jarke. 2020. “Blu: What GUIs Are Made Of.” In Proceedings of the 25th International Conference on Intelligent User Interfaces Companion, 81–82. IUI ‘20. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3379336.3381497.
- Pang, Zhifei, Sai Wu, Dongxiang Zhang, Yunjun Gao, and Gang Chen. 2019. “NAD: Neural Network Aided Design for Textile Pattern Generation.” In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2081–2084. CIKM ‘19. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3357384.3358103.
- Po, Ryan, Wang Yifan, Vladislav Golyanik, Kfir Aberman, Jonathan T. Barron, Amit H. Bermano, Eric Ryan Chan, et al. 2023. “State of the Art on Diffusion Models for Visual Computing.” arXiv. https://doi.org/10.48550/arXiv.2310.07204.
- Quan, Huafeng, Shaobo Li, and Jianjun Hu. 2018. “Product Innovation Design Based on Deep Learning and Kansei Engineering.” Applied Sciences 8 (12): 2397. https://doi.org/10.3390/app8122397.
- Rahman, Soliha, Vinoth Pandian Sermuga Pandian, and Matthias Jarke. 2021. “RUITE: Refining UI Layout Aesthetics Using Transformer Encoder.” In 26th International Conference on Intelligent User Interfaces - Companion, 81–83. IUI ‘21 Companion. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3397482.3450716.
- Riedl, Mark O. 2019. “Human-Centered Artificial Intelligence and Machine Learning.” Human Behavior and Emerging Technologies 1 (1): 33–36. https://doi.org/10.1002/hbe2.117.
- Rios, Thiago, Bas van Stein, Patricia Wollstadt, Thomas Bäck, Bernhard Sendhoff, and Stefan Menzel. 2021. “Exploiting Local Geometric Features in Vehicle Design Optimization with 3D Point Cloud Autoencoders.” 2021 IEEE Congress on Evolutionary Computation (CEC), 514–521. https://doi.org/10.1109/CEC45853.2021.9504746.
- Rodrigues, Ricardo C, and Rovenir B Duarte. 2022. “Generating Floor Plans with Deep Learning: A Cross-Validation Assessment over Different Dataset Sizes.” International Journal of Architectural Computing 20 (3): 630–644. https://doi.org/10.1177/14780771221120842.
- Sage, Alexander, Radu Timofte, Eirikur Agustsson, and Luc Van Gool. 2018. “Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5879–5888. https://doi.org/10.1109/CVPR.2018.00616.
- Saidani, Michael, Harrison Kim, and Bernard Yannou. 2021. “Can Machine Learning Tools Support the Identification of Sustainable Design Leads From Product Reviews? Opportunities and Challenges.” American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2021-70613.
- Samek, Wojciech, and Klaus-Robert Müller. 2019. “Towards Explainable Artificial Intelligence.” In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, edited by Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, 11700:5–22. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-28954-6_1.
- Schoop, Eldon, Xin Zhou, Gang Li, Zhourong Chen, Bjoern Hartmann, and Yang Li. 2022. “Predicting and Explaining Mobile UI Tappability with Vision Modeling and Saliency Analysis.” In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–21. CHI ‘22. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3491102.3517497.
- Shi, Yang, Tian Gao, Xiaohan Jiao, and Nan Cao. 2023. “Understanding Design Collaboration Between Designers and Artificial Intelligence: A Systematic Literature Review.” Proceedings of the ACM on Human-Computer Interaction 7 (CSCW2): 368:1–368:35. https://doi.org/10.1145/3610217.
- Shi, Yong, Mengyu Shang, and Zhiquan Qi. 2023. “Intelligent Layout Generation Based on Deep Generative Models: A Comprehensive Survey.” Information Fusion 100 (December): 101940. https://doi.org/10.1016/j.inffus.2023.101940.
- Simon, Herbert A. 1973. “The Structure of Ill Structured Problems.” Artificial Intelligence 4 (3): 181–201. https://doi.org/10.1016/0004-3702(73)90011-8.
- Sun, Yuexin, and Yu Chen. 2023. “Fast Textile Pattern Generation Combining MRF-Based and Gram-Based Methods.” Industria Textila 74 (04): 439–445. https://doi.org/10.35530/IT.074.04.202254.
- Sun, Hui, Wei Guo, Hongyu Shao, and Bo Rong. 2020. “Dynamical Mining of Ever-Changing User Requirements: A Product Design and Improvement Perspective.” Advanced Engineering Informatics 46 (October): 101174. https://doi.org/10.1016/j.aei.2020.101174.
- Sun, Jiahui, Liping Zheng, Gaofeng Zhang, and Wenming Wu. n.d. “BubbleFormer: Bubble Diagram Generation via Dual Transformer Models.” Computer Graphics Forum n/a (n/a): e14984. https://doi.org/10.1111/cgf.14984.
- Tao, Wei, Shuang Gao, and Yilang Yuan. 2023. “Boundary Crossing: An Experimental Study of Individual Perceptions toward AIGC.” Frontiers in Psychology 14, https://www.frontiersin.org/articles/10.3389fpsyg.2023.1185880.
- Thoring, Katja, Sebastian Huettemann, and Roland M. Mueller. 2023. “The Augmented Designer: A Research Agenda for Generative Ai-Enabled Design.” Proceedings of the Design Society 3, (July):3345–54. https://doi.org/10.1017/pds.2023.335.
- Torii, Maya Grace, Takahito Murakami, and Yoichi Ochiai. 2023. “Lottery and Sprint: Generate a Board Game with Design Sprint Method on AutoGPT.” In Companion Proceedings of the Annual Symposium on Computer-Human Interaction in Play, 259–65. CHI PLAY Companion ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3573382.3623706.
- Tranfield, David, David Denyer, and Palminder Smart. 2003. “Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review.” British Journal of Management 14 (3): 207–222. https://doi.org/10.1111/1467-8551.00375.
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” In Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000–6010. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.
- Verheijden, Mathias Peter, and Mathias Funk. 2023. “Collaborative Diffusion: Boosting Designerly Co-Creation with Generative AI.” In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 1–8. Hamburg, Germany: ACM. https://doi.org/10.1145/3544549.3585680.
- Wadinambiarachchi, Samangi, Ryan M. Kelly, Saumya Pareek, Qiushi Zhou, and Eduardo Velloso. 2024. “The Effects of Generative AI on Design Fixation and Divergent Thinking.” In Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–18. CHI ‘24. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3613904.3642919.
- Wan, Qian, and Zhicong Lu. 2023. “Investigating Semantically-Enhanced Exploration of GAN Latent Space via a Digital Mood Board.” In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 1–5. CHI EA ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3544549.3585740.
- Wang, D., J. Li, Z. Ge, and J. Han. 2021. “A Computational Approach to Generate Design with Specific Style.” 21–30. https://doi.org/10.1017/pds.2021.3.
- Wang, Pan, Shuo Wang, Danlin Peng, Liuqing Chen, Chao Wu, Zhen Wei, Peter Childs, Yike Guo, and Ling Li. 2020. “Neurocognition-Inspired Design with Machine Learning.” Design Science 6 (January): e33. https://doi.org/10.1017/dsj.2020.23.
- Wang, Boheng, Haoyu Zuo, Zebin Cai, Yuan Yin, Peter Childs, Lingyun Sun, and Liuqing Chen. 2023. “A Task-Decomposed AI-Aided Approach for Generative Conceptual Design.” In Volume 6: 35th International Conference on Design Theory and Methodology (DTM), V006T06A009. Boston, Massachusetts, USA: American Society of Mechanical Engineers.
- Weidinger, Laura, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, et al. 2021. “Ethical and Social Risks of Harm from Language Models.” arXiv. https://doi.org/10.48550/arXiv.2112.04359.
- Weisz, Justin D., Jessica He, Michael Muller, Gabriela Hoefer, Rachel Miles, and Werner Geyer. 2024. “Design Principles for Generative AI Applications.” In Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–22. CHI ‘24. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3613904.3642466.
- Wu, Tianyu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. 2023. “A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development.” IEEE/CAA Journal of Automatica Sinica 10 (5): 1122–1136. https://doi.org/10.1109/JAS.2023.123618.
- Wu, Yu, Lisha Ma, Xiaofang Yuan, and Qingnan Li. 2023. “Human–Machine Hybrid Intelligence for the Generation of Car Frontal Forms.” Advanced Engineering Informatics 55 (January): 101906. https://doi.org/10.1016/j.aei.2023.101906.
- Wu, Di, Zhiwang Yu, Nan Ma, Jianan Jiang, Yuetian Wang, Guixiang Zhou, Hanhui Deng, and Yi Li. 2023. “StyleMe: Towards Intelligent Fashion Generation with Designer Style.” In In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. CHI ‘23. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3544548.3581377.
- Wu, Yixiang, and Hongyang Zhang. 2021. “Image Style Recognition and Intelligent Design of Oiled Paper Bamboo Umbrella Based on Deep Learning.” Computer-Aided Design and Applications 19 (1): 76–90. https://doi.org/10.14733/cadaps.2022.76-90.
- Xu, Xingqian, Zhangyang Wang, Eric Zhang, Kai Wang, and Humphrey Shi. 2023. “Versatile Diffusion: Text, Images and Variations All in One Diffusion Model.” arXiv. https://doi.org/10.48550/arXiv.2211.08332.
- Yan, Xu, Yuntao Wang, Ran Yi, Zhiyu Sun, and Yongjin Liu. 2020. “StarFont: Enabling Font Completion Based on Few Shots Examples.” In Proceedings of the 3rd International Conference on Advances in Artificial Intelligence, 1–8. ICAAI ‘19. New York, USA: Association for Computing Machinery. https://doi.org/10.1145/3369114.3369115.
- Yan, Han, Haijun Zhang, Linlin Liu, Dongliang Zhou, Xiaofei Xu, Zhao Zhang, and Shuicheng Yan. 2023. “Toward Intelligent Design: An AI-Based Fashion Designer Using Generative Adversarial Networks Aided by Sketch and Rendering Generators.” IEEE Transactions on Multimedia 25: 2323–2338. https://doi.org/10.1109/TMM.2022.3146010.
- Yan, Han, Haijun Zhang, Jianyang Shi, and Jianghong Ma. 2023. “Texture Brush for Fashion Inspiration Transfer: A Generative Adversarial Network With Heatmap-Guided Semantic Disentanglement.” IEEE Transactions on Circuits and Systems for Video Technology 33 (5): 2381–2395. https://doi.org/10.1109/TCSVT.2022.3224190.
- Yang, Bin. 2021. “Perceptual Similarity Measurement Based on Generative Adversarial Neural Networks in Graphics Design.” Applied Soft Computing 110 (October): 107548. https://doi.org/10.1016/j.asoc.2021.107548.
- Yang, Chaoxiang, Fei Liu, and Junnan Ye. 2023. “A Product Form Design Method Integrating Kansei Engineering and Diffusion Model.” Advanced Engineering Informatics 57 (August): 102058. https://doi.org/10.1016/j.aei.2023.102058.
- Yang, Wenjin, Jian-Ning Su, Shutao Zhang, Kai Qiu, and Xinxin Zhang. 2021. “Intelligent Design of Product Forms Based on Design Cognitive Dynamics and a Cobweb Structure.” Edited by Rodolfo E. Haber. Computational Intelligence and Neuroscience 2021 (February): 1–17. https://doi.org/10.1155/2021/6654717.
- Yang, Hongyi, Chengqi Xue, Xiaoying Yang, and Han Yang. 2021. “Icon Generation Based on Generative Adversarial Networks.” Applied Sciences 11 (17): 7890. https://doi.org/10.3390/app11177890.
- Yang, Ling, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2023. “Diffusion Models: A Comprehensive Survey of Methods and Applications.” ACM Computing Surveys 56 (4): 105:1–105:39. https://doi.org/10.1145/3626235.
- Yin, Robert K. 2015. Qualitative Research from Start to Finish. UK: Guilford Publications.
- Yoo, Soyoung, Sunghee Lee, Seongsin Kim, Kwang Hyeon Hwang, Jong Ho Park, and Namwoo Kang. 2021. “Integrating Deep Learning into CAD/CAE System: Generative Design and Evaluation of 3D Conceptual Wheel.” Structural and Multidisciplinary Optimization 64 (4): 2725–2747. https://doi.org/10.1007/s00158-021-02953-9.
- Yu, Zi-yan, and Tian-jian Luo. 2021. “Research on Clothing Patterns Generation Based on Multi-Scales Self-Attention Improved Generative Adversarial Network.” International Journal of Intelligent Computing and Cybernetics 14 (4): 647–663. https://doi.org/10.1108/IJICC-04-2021-0065.
- Yuan, Chenxi, and Mohsen Moghaddam. 2020. “Attribute-Aware Generative Design With Generative Adversarial Networks.” IEEE Access 8: 190710–190721. https://doi.org/10.1109/Access.6287639.
- Zeng, Zhen, Xiaohua Sun, and Xiang Liao. 2019. “Artificial Intelligence Augments Design Creativity: A Typeface Family Design Experiment.” In Design, User Experience, and Usability. User Experience in Advanced Technological Environments, edited by Aaron Marcus, and Wentao Wang, 400–411. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-23541-3_29.
- Zhang, Z., and Y. Jin. 2020. “An Unsupervised Deep Learning Model to Discover Visual Similarity between Sketches for Visual Analogy Support.Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/DETC2020-22394.
- Zhang, Peiying, Chenhui Li, and Changbo Wang. 2020. “Smarttext: Learning To Generate Harmonious Textual Layout Over Natural Image.” 2020 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME46284.2020.9102780.
- Zhao, Tianming, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. 2021. “GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks.” In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 748–760. Madrid, ES: IEEE. https://doi.org/10.1109/ICSE43902.2021.00074.
- Zhao, Tianjiao, Junyu Yang, Hechen Zhang, and Kin Wai Michael Siu. 2021. “Creative Idea Generation Method Based on Deep Learning Technology.” International Journal of Technology and Design Education 31 (2): 421–440. https://doi.org/10.1007/s10798-019-09556-y.
- Zhou, Huiying. 2023. “An Improved Image Processing Algorithm for Visual Characteristics in Graphic Design.” PeerJ Computer Science 9 (May): e1372. https://doi.org/10.7717/peerj-cs.1372.
- Zhou, Leijing, Xu Sun, Guannan Mu, Jiayi Wu, Jiangping Zhou, Qiuning Wu, Yaorun Zhang, Yufan Xi, N. D. Güneş, and Siyang Song. 2022. “A Tool to Facilitate the Cross-Cultural Design Process Using Deep Learning.” IEEE Transactions on Human-Machine Systems 52 (3): 445–457. https://doi.org/10.1109/THMS.2021.3126699.
- Zhou, Chuyi, Xiyuan Zhang, and Chunyang Yu. 2023. “How Does AI Promote Design Iteration? The Optimal Time to Integrate AI into the Design Process.” Journal of Engineering Design 0 (0): 1–28. https://doi.org/10.1080/09544828.2023.2290915.
- Zhu, Q, and J. Luo. 2022. “Generative Pre-Trained Transformer for Design Concept Generation: An Exploration.” Proceedings of the Design Society 2: 1825–1834. https://doi.org/10.1017/pds.2022.185.