Editor 编辑 器Esther G. C. Troost, MD, PhD Esther G. C. Troost,医学博士,博士Department of Radiotherapy and Radiation Oncology 放射治疗和放射肿瘤学系Faculty of Medicine and University Hospital Carl Gustav Carus 医学院和大学医院 Carl Gustav CarusDresden, Sachsen, Germany 德国萨克森州德累斯顿
This Springer imprint is published by the registered company Springer Nature Switzerland AG 本 Springer 印记由注册公司 Springer Nature Switzerland AG 出版
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 注册公司地址为:Gewerbestrasse 11, 6330 Cham, Switzerland
Preface 前言
Radiation therapy is one of the pillars of oncological treatment. As opposed to surgery, external beam radiation therapy requires the indirect depiction of the tumour and its surrounding structures both during the phase of treatment planning and during fractionated treatment. Historically, only pretreatment imaging was available and served as basis for the entire course of treatment, irrespective of anatomical changes caused, e.g. by tumour response or by patient’s weight loss. 放射治疗是肿瘤治疗的支柱之一。与手术相反,外照射放射治疗需要在治疗计划阶段和分次治疗期间间接描绘肿瘤及其周围结构。从历史上看,只有治疗前成像可用并作为整个治疗过程的基础,而不管引起的解剖变化如何,例如由肿瘤反应或患者的体重减轻。
During the last 15 years, advances in the field of image-guided radiotherapy have been dramatic. Anatomical and functional imaging is available prior to and during the course of treatment, occasionally even during the treatment fraction. Novel, tumour type-specific radionuclides have been developed for positron emission tomography (PET) and enable depiction of small tumour deposits, which would otherwise have been overlooked. Fast, highly precise radiation therapy techniques enable the treatment of small lesions. Linear accelerators integrated with magnetic resonance imaging (MRI) have revolutionized the field since they facilitate online real-time image-guided radiation dose delivery of moving soft-tissue targets. Herewith, safety margins compensating for repeat patient positioning and target motion can be reduced or even abolished, thus reducing dose to normal tissues and hopefully subsequent side effects. 在过去的 15 年中,图像引导放射治疗领域的进步是巨大的。解剖和功能成像可在治疗前和治疗过程中进行,有时甚至在治疗期间也可进行。已经为正电子发射断层扫描 (PET) 开发了新型的肿瘤类型特异性放射性核素,能够描述小的肿瘤沉积物,否则这些沉积物会被忽视。快速、高精度的放射治疗技术能够治疗小病变。与磁共振成像 (MRI) 集成的直线加速器已经彻底改变了该领域,因为它们促进了移动软组织靶区的在线实时图像引导辐射剂量输送。因此,可以减少甚至取消补偿重复患者定位和目标运动的安全边际,从而减少对正常组织的剂量,并有望产生后续副作用。
This book provides the reader with an overview of the value of PET with widely available as well as more exclusive, tumour-specific for radiation treatment planning. In-room equipment for online positioning on the linear accelerator is summarized and radiation treatment techniques relying on those imaging possibilities are explained to experts outside the field of radiotherapy. Moreover, the value of MRI for soft-tissue tumours both during the phase of target volume delineation for treatment planning as well as during MR-LINAC treatments is focused on. Brachytherapy of several tumours, such as prostate and gynaecological tumours, heavily depends on MRI, also this is exemplified in one of the chapters. The ample possibilities of ultrasonography for image-guidance are furthermore referred to. In those tumours not well visible on imaging, the use of fiducial markers may play a role-this is described for oesophageal and prostate cancer. Lastly, the use of artificial intelligence, multimodal imaging for prediction of tumour control as well as of normaltissue side effects are topics of the remaining three chapters. 本书为读者概述了 PET 的价值,广泛可用且更独家、针对放射治疗计划的肿瘤特异性。总结了用于直线加速器在线定位的室内设备,并向放射治疗领域以外的专家解释了依赖于这些成像可能性的放射治疗技术。此外,MRI 对软组织肿瘤的价值,无论是在治疗计划的目标体积描绘阶段还是在 MR-LINAC 治疗期间。几种肿瘤的近距离放射治疗,例如前列腺和妇科肿瘤,在很大程度上依赖于 MRI,这在其中一章中也得到了举例说明。此外,还提到了超声检查用于图像引导的充分可能性。在那些在影像学上看不清楚的肿瘤中,使用基准标记可能起作用——这在食管癌和前列腺癌中有所描述。最后,使用人工智能、多模态成像预测肿瘤控制以及正常组织副作用是其余三章的主题。
Together with the authors of the different chapters, I hope that this book will be of value to residents and senior physicians in the fields of radiotherapy, radiology, and nuclear, as well as to the physicists and radiation technologists of the respective disciplines. 与不同章节的作者一起,我希望这本书对放射治疗、放射学和核学领域的住院医师和高级医生以及各自学科的物理学家和放射技术人员都有价值。
Dresden, Sachsen, Germany 德国萨克森州德累斯顿
Esther G. C. Troost Esther G. C. 特罗斯特
April 2022 2022 年 4 月
Contents 内容
Part I Target Volume Definition 第一部分 目标体积定义
1 Use of [^(18)(F)]\left[{ }^{18} \mathrm{~F}\right] FDG PET/CT for Target Volume Definition in Radiotherapy … 3 1 使用 [^(18)(F)]\left[{ }^{18} \mathrm{~F}\right] FDG PET/CT 在放疗中定义目标体积......3
Hanneke E. E. Pouw, Dennis Vriens, Floris H. P. van Velden, and Lioe-Fee de Geus-Oei Hanneke E. E. Pouw、Dennis Vriens、Floris H. P. van Velden 和 Lioe-Fee de Geus-Oei
2 Specific PET Tracers for Solid Tumors and for Definition of the Biological Target Volume … 31 2 用于实体瘤和生物靶标体积定义的特异性 PET 示踪剂 ...31
Constantin Lapa, Ken Herrmann, and Esther G. C. Troost 康斯坦丁·拉帕 (Constantin Lapa)、肯·赫尔曼 (Ken Herrmann) 和埃斯特·特罗斯特 (Esther G. C. Troost)
3 Use of Anatomical and Functional MRI in Radiation Treatment Planning … 55 3 解剖学和功能 MRI 在放射治疗计划中的应用55
Angela Romano, Luca Boldrini, Antonio Piras, and Vincenzo Valentini 安吉拉·罗马诺、卢卡·博尔德里尼、安东尼奥·皮拉斯和文森佐·瓦伦蒂尼
Part II Image-Guided Radiation Therapy Techniques 第 II 部分 图像引导放射治疗技术
4 In-Room Systems for Patient Positioning and Motion Control … 91 4 个用于患者定位和运动控制的室内系统 ...91
Patrick Wohlfahrt and Sonja Schellhammer 帕特里克·沃尔法特 (Patrick Wohlfahrt) 和索尼娅·谢尔哈默 (Sonja Schellhammer)
5 IMRT/VMAT-SABR … 109 5 IMRT/VMAT-SABR ...109
Pablo Carrasco de Fez and Núria Jornet 巴勃罗·卡拉斯科·德·菲斯 (Pablo Carrasco de Fez) 和努里亚·乔内 (Núria Jornet)
6 Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts … 135 6 磁共振引导的适应性放疗:技术概念 ...135
Sara Hackett, Bram van Asselen, Marielle Philippens, Simon Woodings, and Jochem Wolthaus Sara Hackett、Bram van Asselen、Marielle Philippens、Simon Woodings 和 Jochem Wolthaus
7 MR-Integrated Linear Accelerators: First Clinical Results … 159 7 MR 集成直线加速器:初步临床结果......159
Olga Pen, Borna Maraghechi, Lauren Henke, and Olga Green 奥尔加·潘、博尔纳·马拉格奇、劳伦·亨克和奥尔加·格林
8 Image-Guided Adaptive Brachytherapy … 179 8 图像引导自适应近距离放射治疗 ...179
Bradley Pieters and Taran Paulsen-Hellebust 布拉德利·皮特斯 (Bradley Pieters) 和塔兰·保尔森-赫勒布斯特 (Taran Paulsen-Hellebust)
9 Ultrasonography in Image-Guided Radiotherapy: Current Status and Future Challenges … 201 9 影像引导放疗中的超声检查:现状和未来挑战......201
Davide Fontanarosa, Emma Harris, Alex Grimwood, Saskia Camps, Maria Antico, Erika Cavanagh, and Chris Edwards Davide Fontanarosa、Emma Harris、Alex Grimwood、Saskia Camps、Maria Antico、Erika Cavanagh 和 Chris Edwards
10 Means for Target Volume Delineation and Stabilisation: Fiducial Markers, Balloons and Others … 221 目标体积划定和稳定的 10 种方法:基准标记、气球和其他 ...221
Ben G. L. Vanneste, Oleksandr Boychak, Marianne Nordsmark, and Lone Hoffmann Ben G. L. Vanneste、Oleksandr Boychak、Marianne Nordsmark 和 Lone Hoffmann
11 Artificial Intelligence in Radiation Oncology: A Rapidly Evolving Picture … 249 11 放射肿瘤学中的人工智能:快速发展的图景......249
Harini Veeraraghavan and Joseph O. Deasy Harini Veeraraghavan 和 Joseph O. Deasy
Part III Outcome Evaluation 第 III 部分 结果评估
12 Multi-Modality Imaging for Prediction of Tumor Control Following Radiotherapy … 271 12 多模态成像预测放疗后肿瘤控制 ...271
Daniela Thorwarth 丹妮拉·索沃斯
13 Modelling for Radiation Treatment Outcome … 285 13 放射治疗结果建模 ...285
Almut Dutz, Alex Zwanenburg, Johannes A. Langendijk, and Steffen Löck Almut Dutz、Alex Zwanenburg、Johannes A. Langendijk 和 Steffen Löck