这是用户在 2024-9-25 22:47 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Genome-wide investigation of WRKY gene family in Phoebe zhennan: evolution and expression profiles during flavonoid biosynthesis in wood development and drought stress
WRKY 基因家族的全基因组研究木材发育和干旱胁迫中类黄酮生物合成过程中进化和表达谱

Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation adnd Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu, China
四川农业大学林学院, 长江上游地区生态工程四川省重点实验室, 国家林业和草原局森林资源保护与长江上游生态安全重点实验室, 西部多雨地区人工林生态系统常设科研基地, 中国 成都

Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
四川省林业科学院 四川省森林与湿地生态恢复与保护四川省重点实验室, 成都, 中国

Sichuan Academy of Grassland Sciences, Chengdu, China
四川省草原科学院, 中国 成都

Abstract: WRKY transcription factors have been demonstrated to influence the development, secondary metabolite synthesis, and abiotic stress in manly plants. However, there is limited knowledge about the structure and function of WRKY genes in the famous precious tree plant Phoebe zhennan (Nanmu). In this study, the WRKY gene family was identified and analyzed with the first Nanmu genome data. 53 PzWRKY genes were identified, 51 of which were located on 11 chromosomes of Nanmu. According to the phylogenetic analysis, the PzWRKY genes were clearly distributed among 3 groups (7 subgroups), excepted PzWRKY1.
摘要:WRKY 转录因子已被证明影响男性植物的发育、化合物代谢产物合成和 ABotic 胁迫。然而,关于著名的珍贵乔木植物楠楠 (Nanmu) 中 WRKY 基因的结构和功能的了解有限。在这项研究中,用第一个 Nanmu 基因组数据鉴定并分析了 WRKY 基因家族。共鉴定出 53 PzWRKY 基因,其中 51 个位于南木的 11 条染色体上。根据系统发育分析,PzWRKY 基因明显分布在 3 个类群 (7 个亚群) 中,除 PzWRKY1

The comprehensive analysis of PzWRKY genes’ expression will provide an important and valuable foundation for further investigation of the regulatory mechanisms of WRKY in wood color formation in Phoebe zhennan (Nanmu).
PzWRKY 基因表达的综合分析 将为进一步研究 WRKY 在南犀楠木色形成中的调控机制提供重要而有价值的基础

Keywords: Phoebe zhannan, WRKY, Genome-wide, wood development, drought stress
关键词:Phoebe zhannan, WRKY, 全基因组, 木材发育, 干旱胁迫

Background
背景

Transcription factors (TF) exhibit sequence-specific DNA-binding and are capable of activating or repressing transcription of downstream target genes [1]. WRKY is one of the largest transcription regulator families in plants and named after the WRKY domain [2]. The first WRKY gene was identified from Ipomoea batatas (sweet potato), which encoding a 549 amino acid (aa) protein (SPF1, sweet potato factor1) [3]. Subsequently, corresponding WRKY genes were cloned in Triticum Aestivum, Oryza sativa, Hordeum vulgare, and Fusarium oxysporum, etc[4-6]. The WRKY domain facilitates binding of the proteins to the W box or the SURE (sugar-responsive cis-element) in the promoter regions of target genes [2, 4]. The two most defining structural characteristics of WRKY domain are WRKYGQK heptapeptide sequence and a zinc finger motif C2H2 or C2HC [2, 7]. The WRKY family in higher plants is divided into groups I, IIa+IIb, IIc, IId+IIe, and III [5, 8-10]. Because of their extensive involvement in various physiological processes, it is likely that the WRKY family in angiosperms has expanded greatly during evolution [1]. With the development of gene sequencing technology, the WRKY gene family has been identified and characterized in the gemomes of an increasing number of plants[11]. The total number of WRKY genes in Arabidopsis might be as high as 100 [2] and at least 104 in Populus trichocarpa [12]
转录因子 (TF) 表现出序列特异性 DNA 结合,能够激活或抑制下游靶基因的转录 [1]。WRKY 是植物中最大的转录调节因子家族之一,以 WRKY 结构域命名 [2]。第一个 WRKY 基因是从甘薯 (Ipomoea batatas) 中鉴定出来的,它编码 549 个氨基酸 (aa) 的蛋白质 (SPF1,甘薯因子 1)[3]随后,相应的 WRKY 基因被克隆到 Triticum Aestivum、Oryza sativa、Hordeum vulgare 和 Fusarium oxysporum 等中[4-6]。WRKY 结构域促进蛋白质与靶基因启动子区的 W 盒或 SURE(糖反应顺式元件)结合 [2, 4]。WRKY 结构域的两个最明显的结构特征是 WRKYGQK 七肽序列和锌指基序 C2H2 或 C2HC [2, 7]。高等植物的WRKY家族分为I、IIa+IIb、IIc、IId+IIe和III组[5,8-10]。由于它们广泛参与各种生理过程,被子植物中的 WRKY 家族很可能在进化过程中已经大大扩展 [1]。随着基因测序技术的发展,WRKY 基因家族已在越来越多的植物的基因组中被鉴定和表征[11]。拟南芥中WRKY基因的总数可能高达100个[2],而毛果杨中至少104个[12]
.

The WRKY family genes are among the most important transcription factors in plants, and many studies have reported the WRKY domain structural characteristics in many plants [13]. It plays an important role in plant growth and development, synthesis of secondary metabolites, and defense response to biotic and abiotic stresses [14]. In the past 20-years, researchers have extensively explored on the biological functions of WRKY transcription factors in regulating plants response to various stress reaction, especially in biotic and abiotic stresses [15]. Among those processes, the resistance to diverse stresses is considered to be the core function of most WRKYs [15]. Recently, the effects of WRKY genes on plant growth, development, and diverse biological processes have been frequently reported, such as the regulation of secondary metabolism, morphogenesis, and seed germination, etc [16-18]. For instance, 81 WRKY genes were identified in Hevea brasiliensis, and the WRKY proteins maybe involved in the transcriptional regulation of natural rubber biosynthesis genes [19]. 57 RsWRKY genes were identified in the Rhoddendron simsii genome, and have been demonstrated to influence the anthocyanin biosynthesis at the bud and full bloom stages [20]. HmoWRKY42 possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1 in Hylocereus monacanthus [21]. MdWRKY1 can promote the expression of key genes (F3H, FLS, DFR, ANS, and UFGT) in the flavonoid biosynthesis pathway in apple callus and then increase the accumulation of flavonoids and anthocyanins [22]. In Torreya grandis, TgWRKY2 and TgWRKY11 could upregulate the TgLCYB, and TgWRKY11 could positive regulate the TgCYP97A3 expression to increase the biosynthesis of lutein and β-carotene [23]
WRKY 家族基因是植物中最重要的转录因子之一,许多研究报道了许多植物的 WRKY 结构域结构特征 [13]。它在植物生长发育、次生代谢产物的合成以及对生物和非生物胁迫的防御反应中起着重要作用[14]。在过去的20年里,研究人员广泛探索了WRKY转录因子在调节植物对各种胁迫反应的反应中的生物学功能,特别是在生物和非生物胁迫中[15]。在这些过程中,对不同应力的抵抗力被认为是大多数 WRKY 的核心功能 [15]。近年来,WRKY基因对植物生长发育和多种生物过程的影响,如次生代谢、形态发生和种子萌发的调节等,频频报道[16-18]。例如,在巴西橡胶树中鉴定出 81 个 WRKY 基因,WRKY 蛋白可能参与天然橡胶生物合成基因的转录调控 [19] 在红花藻基因组中鉴定出 57 个 RsWRKY 基因,并已被证明影响花青素在芽期和盛开期的生物合成 [20]HmoWRKY42 通过抑制 HmocDOPA5GT1 的转录,具有反式激活能力,负责火龙果甜菜碱生物合成Hylocereus monacanthus [21]MdWRKY1 可促进苹果愈伤组织类黄酮生物合成途径中关键基因(F3H、FLS、DFR、ANS 和 UFGT)的表达,进而增加类黄酮和花青素的积累 [22]在Torreya grandis中,TgWRKY2 和 TgWRKY11 可上调 TgLCYB,TgWRKY11 可正向调节 TgCYP97A3 表达,增加叶黄素和 β-胡萝卜素的生物合成 [23]
.

As a result of systematic studies, many WRKY TF family members have been identified in different tree plants, such 104 in Populus trichocarpa, 58 in Jatropha curcas, and 70 in Aquilaria sinensis, etc [12, 24, 25]. However, systematic and comprehensive information of WRKY TFs in nanmu were unclear, particularly on the WRKY genes in the synthesis of flavonoid in wood development. Flavnoiod was demenstrated as the key metabolites involved in P. zhennan related to yellow color of ”thread-golden” have been investigated through integrated transcriptome and metabolome analysis [26]. In this study, we identified 53 PzWRKY genes in nanmu genome, and also analysed the classification, structure, conserved motifs, and phylogenetic evolution of these genes. Then, we assessed the expression of PzWRKY genes in different tissues.
作为系统研究的结果,已经在不同的乔木植物中鉴定出许多WRKY TF家族成员,如果杨(Populus trichocarpa)的104个,麻风树( Jatropha curcas)的58个,沉香(Aquilaria sinensis)的70个[12,24,25]。然而,南木中 WRKY TFs 的系统、全面信息尚不清楚,尤其是木材发育中黄酮合成中的 WRKY 基因Flavnoiod 被发现是因为已经通过整合转录组和代谢组分析研究了与“线-金”黄色相关的 P. zhennan 所涉及的 k ey 代谢物 [26]。在本研究中,我们在 n anmu 基因组中鉴定了 53 PzWRKY 基因,并分析了这些基因的分类、结构、保守基序和系统发育进化。然后,我们评估PzWRKY基因在不同组织中的表达。

Results
结果

Identification and sequence analysis of WRKY genes
WRKY 基因的鉴定和序列分析

Based on the amino acid sequence of the Pfam WRKY domain (PF03106), a total of 53 non-redundant PzWRKY proteins were identified in the Phoebe zhennan genome, and then renamed according to their chromosome distribution. Compared with Arabidopsis thaliana (71), Populus trichocarpa (158), Eucalyptus grandis (80), and P. bournei (75), the WRKY family in P. zhennan (53) was obviously contracted (Table1, S2, S3). The sequence of WRKY proteins in six plants were similar (Table 1, Table S4). Acidic proteins (pI<7) accounted for 51.2%, alkaline proteins (pI>7) accounted for 48.2%, and the remaining 0.6% were neutral proteins (pI=7; PzWRKY1, OF19724, and Eucgr.D00336.1.p). Stable (II<40) and unstable (II>40) proteins accounted for 7.3% and 92.7%, respectively. Most were hydrophilic in nature (99.8%), and only one gene (Eucgr.C02487.1.p) corresponded to a hydrophobic protein (0.2%). The aliphatic index of the petides ranged from 31.85 (PNT51921.1) to 96.03 (Eucgr.C02487.1.p). Among the 53 PzWRKY proteins in P. zhennan, PzWRKY20 and PzWRKY21 were identified to be the smallest protein with 107 amino acid (aa), whereas the largest proteins (595 aa) were PzWRKY34 and PzWRKY52. The MW of the proteins ranged from 12.05 to 63.99 kDa, and the pI ranged from 4.92 (PzWRKY24) to 9.91 (PzWRKY19). The predicted subcellular location results showed that most WRKY proteins (41 in P. zhennan, 59 in P. bournei, 51 in C. camphora, 132 in P. trichoarpa, and 65 in E. grandis) were located in the nuclear region, whereas all WRKY proteins in A. thaliana were located in nuclear.
根据 Pfam WRKY 结构域 (PF03106) 的氨基酸序列,Phoebe 镇楠基因组中共鉴定出 53 个非冗余的 PzWRKY 蛋白,并根据其染色体分布进行重命名。与拟南芥 (71)、果杨 158)、大桉 (80) 和闽南杨 (75) 相比,镇楠 (53) 的 WRKY 家族明显收缩 (表 1, S2, S3)。六种植物中 WRKY 蛋白的序列相似 (表 1, 表 S4)。酸性蛋白 (pI<7) 占 51.2%,碱性蛋白 (pI>7) 占 48.2%,其余 0.6% 为中性蛋白 (pI=7;PzWRKY1、OF19724 和 Eucgr.D00336。1.p)。稳定 (II<40) 和不稳定 (II>40) 蛋白分别占 7.3% 和 92.7%。大多数本质上是亲水性的 (99.8%),只有一个基因 (Eucgr.C02487.1.p) 对应于疏水性蛋白 (0.2%)。叶柄的脂肪族指数范围为 31.85 (PNT51921.1) 至 96.03 (Eucgr.C02487.1.p)。在镇南楠的 53 个 PzWRKY 蛋白中,PzWRKY20PzWRKY21 是最小的蛋白,有 107 个氨基酸 (aa),而最大的蛋白 (595 aa) 是 PzWRKY34PzWRKY52。蛋白分子量范围为 12.05 至 63.99 kDa,pI 范围为 4.92 (PzWRKY24) 至 9.91 (PzWRKY19)。 预测的亚细胞定位结果显示,大多数 WRKY 蛋白 (41 个在镇南 P. zhennana 中,59 个在 P. bournei,51 个在 C. camphora,132 个在 P. trichoarpa,65 个在 E. grandis)位于核区,而 A. thaliana 中所有 WRKY 蛋白都位于核中。

Multiple sequence alignment, phylogenetic analysis, and classification of PzWRKY genes
PzWRKY 基因的多序列比对、系统发育分析和分类

As shown in Fig 1, 52 of 52 WRKY domains contain highly conserved WRKYGQK sequences, while the one WRKY domain (PzWRKY1) have one mismatched amino acids (WRKYGKK) in the conserved WRKY signature. Additional, two genes (PzWRKY18 and PzWRKY19) do not contain distinct zinc finger motif. According to the topology of the phylogenetic tree, 507 members of the WRKY family from six diverse species were divided into three main groups and seven subgroups (Fig 2). Among the 53 PzWRKY proteins, 5 belong to group I, 41 to group II, and 7 to group III, while PzWRKY1 belong to a single group. The WRKY members in group II can be further clustered into five subgroups (IIa-IIe), 5 belong to IIa, 9 to IIb, 18 to IIc (contained PzWRKY8 and PzWRKY19), 4 to IIe, and 5 to IIe, respectively. Six of the seven members in group III contain the C2HC-type zinc fingers (C-X7-C-X23-H-X-C), whereas the remaining PzWRKY17 possess a zinc fingers of C-X6-C-X23-H-X-C.
如图 1 所示,52 个 WRKY 结构域中有 52 个包含高度保守的 WRKYGQK 序列,而一个 WRKY 结构域 (PzWRKY1) 在保守的 WRKY 特征中具有一个错配氨基酸 (WRKYGKK)。 此外,两个基因 (PzWRKY18 PzWRKY19) 不包含不同的锌指基序。根据系统发育树的拓扑结构,来自 6 个不同物种的 WRKY 家族的 507 个成员被分为 3 个主要组和 7 个亚组(图 2)。 在 53 个 PzWRKY 蛋白中,5 个属于 I 组,41 个属于 II 组,7 个属于 III 组,而 PzWRKY1 属于单个组。 II 组中的 WRKY 成员可进一步分为 5 个亚群 (IIa-IIe),其中 5 个属于 IIa,9 个属于 IIb,18 个属于 IIc (包含 PzWRKY8PzWRKY19),4 个属于 IIe 亚群,5 个亚群属于 IIe。III 组的 7 个成员中有 6 个包含 C2HC 型锌指 (C-X 7-C-X 23-H-X-C),而其余的 PzWRKY17 具有 C-X 6-C-X 23-H-X-C 的锌指

Fig 1 Alignment of multiple PzWRKY domain amino acid sequences
Fig 1 多个 PzWRKY 结构域氨基酸序列的比对

Fig 2 Phylogenetic analysis of WRKY proteins in Phoebe zhennan, P. bournei, Arabidopsis thaliana, Cinnmamomum camphora, Populus trichoarpa, and Eucalyptus grandis
图 2 桢楠、鸠楠、拟南芥、樟树、毛杨和桉树 WRKY 蛋白的系统发育分析
.

The WRKY proteins from A. thaliana, E. grandis, C. camphora, P. trichoarpa, P. bournei, and P. zhennan are represented by the strip with lightblue, star with pink, star with lightgreen, star with purple, triangle with darked, and star with red color, respectively.
来自拟南芥大樟樟树毛樟闽南和楠的 WRKY 蛋白 分别用浅蓝色条带、粉红色星形、浅绿色星形、紫色星形、深色三角形和红色星形表示。

Gene structure and motif composition of P. zhennan WRKY gene family
珍楠 WRKY 基因家族的基因结构及基序组成

The phylogenetic tree clustering results of 53 PzWRKY gene family members of Phoebe zhennan showed that members of different subfamilies were clustered differently among branches, and members of the same subfamily were basically clustered together (Fig 3A). To further understand the pivotal role that exon-intron structural features play in the evolution of PzWRKY gene families, the gene structure information showed that all members of the PzWRKY family have exons and introns, including at least two and up to seven exons, and 13 PzWRKY members have no untranslated region (UTR) (Fig 3B). Intrestingly, genes within the same group usually have a similar structure, but there also were subtle differences of gene structure among genes in the same group. For example, PzWRKY6 have three coding sequences (CDS) and four introns, PzWRKY7 and PzWRKY31 have four CDS and three introns, the other two members of the IIa group have three CDS and three introns. Further analyses indicated that 62.3% PzWRKY genes (33 of 53 PzWRKY genes) contained an intron in their respective WRKY domains. 20 conserved motifs with the highest correlation and integrate the best matching logos (Fig 3C, D). The results showed that motifs 1 and 2 which are the WRKY domains widely distributed, PzWRKY members within the same groups were usually found to share a similar motif composition. For instance, both the IIa and IIb subfamilies contained motif4 and 18 domains, motif10 and 12 is specific to group IIe and IIc, repectively
楠楠 53 个 PzWRKY 基因家族成员的系统发育树聚类结果显示,不同亚科的成员在分支间的聚类不同,同一亚科的成员基本聚在一起(图 3A)。为了进一步了解外显子-内含子结构特征在 PzWRKY 基因家族进化中的关键作用,基因结构信息显示,PzWRKY 家族的所有成员都有外显子和内含子,包括至少 2 个和最多 7 个外显子,并且 13 个 PzWRKY 成员没有非翻译区 (UTR)(图 3B)。有趣的是,同一组内的基因通常具有相似的结构,但同一组内的基因之间也存在细微的基因结构差异。例如,PzWRKY6 有三个编码序列 (CDS) 和四个内含子,PzWRKY7 和 PzWRKY31 有四个 CDS 和三个内含子,IIa 组的另外两个成员有 3 个 CDS 和三个内含子。进一步分析表明,62.3% 的 PzWRKY 基因 (53 个 PzWRKY 基因中的 33 个) 在其各自的 WRKY 结构域中包含一个内含子。20 个相关性最高的保守基序,并整合了最匹配的标志(图 3C、D)。结果表明,基序 1 和 2 是广泛分布的 WRKY 结构域,通常发现同一组内的 PzWRKY 成员具有相似的基序组成。例如,IIa 和 IIb 亚家族都包含基序 4 和 18 个结构域,基序 10 和 12 对 IIe 和 IIc 组具有特异性
.

Figure 3 Phylogenetic relationships, gene structure and architecture of conserved protein motifs in PzWRKY genes.
3 PzWRKY 基因中保守蛋白质基序的系统发育关系、基因结构和结构

A, the phylogenetic tree was constructed based on the full-length sequences of PzWRKY proteins using IQ-TREE. Details of clusters are shown in different colors. B, gene structure of PzWRKY family members. C, The conserved domains of PzWRKY family members. D, Conserved motifs of the PzWRKY protein in Phoebe zhennan, the ordinate indicates amino acid conservation, and the height of amino acid letters indicates the frequency of occurrence, the abscissa represents the position of the amino acid in the sequence.
A,使用 IQ-TREE 基于 PzWRKY 蛋白的全长序列构建系统发育树集群的详细信息以不同的颜色显示。B, PzWRKY 家族成员的基因结构。C, PzWRKY 家族成员的保守结构域。D, 楠楠 PzWRKY 蛋白的保守基序,纵坐标表示氨基酸保守,氨基酸字母高度表示出现频率,横坐标代表氨基酸在序列中的位置

Chromosome locations and gene duplication of PzWRKY genes
PzWRKY 基因的染色体位置和基因复制

There are 51 of the 53 PzWRKY genes are unevenly distributed on the 12 P. zhennan chromosomes (Fig 4). Among these genes, 11 PzWRKY genes distributed on chromosome 3, followed by chromosome 5 and 8, which had six PzWRKY genes. Two WRKY genes (Pzhptg000537lG000030.1 and Pzhptg000776lG000100.1) that could not be conclusively mapped to any chromosome were renamed PzWRKY52 and PzWRKY53, respectively. There was no significant positive correlation between the chromosome length and the number of WRKY genes (r=0.44, P=0.153). Ten PzWRKY genes (PzWRKY6/7, PzWRKY10/11, PzWRKY16/17, PzWRKY30/31, and PzWRKY40/41) were clustered into five tandem duplication event regions on Chr02, Chr03, Chr06, and Chr08. Chr03 had two clusters, indicating a hot spot of WRKY gene distribution. Besides the tandem duplication events, 34 segmental duplication events with 37 WRKY genes were also identified in PzWRKY gene families (Table S 5). Then, non-synonymous (Ka) and synonymous (Ks) mutations were examined in these gene pairs (Table S6). In the current study, 36 PzWRKY duplication gene pairs showed Ka/Ks rates lower than 1, which suggests that purifying selection and less divergence occurred among them.
这里是 53 PzWRKY 基因中的 51 个不均匀分布在 12 P. zhennan 染色体上(图 4)。在这些基因中,11 PzWRKY 基因分布在 3 号染色体上,其次是 5 号和 8 号染色体,它们有 6 个 PzWRKY 基因。两个无法最终定位到任何染色体的 WRKY 基因 (Pzhptg000537lG000030.1 和 Pzhptg000776lG000100.1) 分别更名为 PzWRKY52PzWRKY53染色体长度与 WRKY 基因数呈显著正相关 (r=0.44,P=0.153)。 10 个 PzWRKY 基因 (PzWRKY6/7PzWRKY10/11PzWRKY16/17PzWRKY30/31 PzWRKY40/41) 在 Chr02 、 Chr03 、 Chr06 和 Chr08 上聚集成 5 个串联复制事件区域。Chr03 有两个簇,表明 WRKY 基因分布的热点。除了串联复制事件外,在 PzWRKY 基因家族中还鉴定了 34 个具有 37 个 WRKY 基因的节段重复事件 表 S 5)。然后,检查这些基因对中的非同义 (Ka) 和同义 (Ks) 突变 (表 S6)。在目前的研究中,36 PzWRKY 重复基因对显示 KaKs 率低于 1,这表明它们之间存在纯化选择和较少的差异。

To further infer the phylogenetic mechanisms of Nanmu WRKY family, we constructed five comparative syntenic maps of Nanmu associated with five representative species, including two important broad leaved timber tree plants (Populus trichocarpa and Eucalyptus grandis), two tree plants with the same family (P. bournei and Cinnmamomum camphora), and one model plant (Arabidopsis thaliana) (Fig 5). A total of 49 PzWRKY genes showed syntenic relationship with those in P. bournei and C. camphora, followed by P. trichocarpa (26), A. thaliana (19), and E. grandis (17), these WRKY genes shared a common ancestor (Table S7). Some PzWRKY genes were found to be associated with at least three syntenic gene pairs (particularly between Nanmu and P. trichocarpa WRKY genes), such as PzWRKY26 and PzWRKY45, guessed that these genes may have played an important role of WRKY gene family during evolution. Significantly, some WRKY collinear gene pairs identified between Nanmu and P. bournei or C. camphora were anchored to the highly conserved syntenic blocks, which spanning more than 80 genes. In contrast, those between Nanmu and E. grandis were all located in syntenic blocks that possessed less than 30 orthologous gene pairs. Which may be related to the phylogenetic relationship between Nanmu and other five plants.
为了进一步推断南木 WRKY 家族的系统发育机制,我们构建5 张与五个代表性物种相关的南木比较同线图,包括 2 种重要的阔叶用材植物 (Populus trichocarpaEucalyptus grandis)、2 种同科乔木植物 (P. bourneiCinnmamomum camphora) 和 1 种模式植物 拟南芥图 5共有 49 个 PzWRKY 基因与闽南树中的基因呈同线关系,其次是毛果芥 (26)、拟南芥 (19) 和大樟 (17),这些 WRKY 基因共享一个共同的祖先表 S7)。 发现一些 PzWRKY 基因与至少 3 对同线基因相关(特别是在南木和毛果 P. trichocarpa WRKY 基因之间),例如 PzWRKY26PzWRKY45,猜测这些基因可能在 WRKY 基因家族的进化过程中发挥了重要作用。 值得注意的是,一些 WRKY 共线基因对鉴定在 Nanmu 和 P. bournei 或 C 之间。 樟脑被锚定在高度保守的同线嵌段上,该嵌段跨越 80 多个基因。相比之下,Nanmu 和 E. grandis 之间的同线块均位于具有少于 30 个直系同源基因对的同线区段中。 这可能与楠木与其他 5 种植物的系统发育关系 ip 有关

Fig 4. Schematic representations for the chromosomal distribution and inter chromosomal relationships of PzWRKY genes.
Fig 4.PzWRKY 基因的染色体分布和染色体间关系的示意图。

Gray lines indicate all synteny blocks in the P. zhennan genome, the red lines indicate duplicated WRKY gene pairs. The empty boxes with a number inside it represents chromosome. Color boxes represents gene density of each chromosome.
灰线表示 P. zhennan 基因组中的所有同线块 ,红线表示重复的 WRKY 基因对。里面有数字的空框代表染色体。颜色框代表每条染色体的基因密度。

Fig 5. Synteny analysis of WRKY genes between Nanmu and five representative plants.
Fig 5.南木与 5 种代表性植物之间 WRKY 基因的同线分析。

Gray lines in the background indicate the collinear blocks within Nanmu and other plant genomes, while the red lines highlight the syntenic WRKY gene pairs.
背景中的灰线表示 Nanmu 和其他植物基因组内的共线块,而红线突出显示了同线 WRKY 基因对。

Analysis of cis-acting elements of the PzWRKY gene family promoter
PzWRKY 基因家族启动子顺式作用元件分析

From the predicted results of PlantCARE, a large number of basic TATA-box (core promoter element) and light-responsive elements, there are also various plant homone-responsive elements and growth and development elements (Fig 6, Table S8). Growth and development related elements include cell cycle regulation (MSA-like), circadian control (circadian), seed-specific regulation (RY-element), zein metabolism regulation (O2-site), meristem expression (CAT-box), root specific (motif I), endosperm expression (GCN4_motif), palisade mesophyll cells (HD-Zip 1), endosperm-specific negative expression (AACA_motif), and flavonoid biosynthetic genes regulation (MBSI). The elements related to hormone include the auxin-responsive element (TGA-element, AuxRR-core, and TGA-box), gibberellin-responsiveness (TATC-box, P-box, and GARE-motif), salicylic acid responsiveness (TCA-element and SARE), abscisic acid responsiveness (ABRE), and MeJA-responsiveness (CGTCA-motif and TGACG-motif). In addition, the promoter regions of almost all PzWRKY genes contained at least one light-response element, with the highest percentage in G-Box (24.3%), followed by Box 4 (16.0%), GT1-motif (10.0%), and TCT-motif (8.1%). This may mean that PzWRKY members play very important role in plant growth and development and hormone regulation.
PlantCARE 的预测结果来看,有大量基本的 TATA-box (核心启动子元件) 和光响应元件,还有各种植物人脉响应元件和生长发育元件(图 6,表 S8)。 生长和发育相关元件包括细胞周期调节MSA 样)、昼夜节律控制昼夜节律)、种子特异性调节RY 元件)、玉米醇溶蛋白代谢调节O 2 位点)、分生组织表达CAT 盒)、根特异性基序 I)、胚乳表达GCN4_motif)、栅栏叶肉细胞HD-Zip 1)、胚乳特异性阴性表达AACA_motif) 和类黄酮生物合成基因调控MBSI)。 与激素相关的元素包括生长素反应性元件TGA 元件AuxRR 核心TGA 盒)、赤霉素反应性TATC-boxP-box GARE 基序)、水杨酸反应性TCA 元件SARE)、脱落酸反应性ABRE) MeJA 反应性CGTCA 基序TGACG 基序)。此外,几乎所有 PzWRKY 基因的启动子区 都包含至少一个光响应元件,其中 G-Box 的百分比最高 (24.3%),其次是 Box 4 (16.0%) 、GT1 基序 (10.0%) TCT 基序 (8.1%)。这可能意味着 PzWRKY 成员在植物生长发育和激素调节中起着非常重要的作用。

Fig 6. Types and numbers of cis-acting elements in the promoter of PzWRKY genes
Fig 6.PzWRKY 基因启动子中顺式作用元件的类型和数量

ASR, Abiotic stress-responsive elements, CP, Core promoter element, GAD, Growth and development elements, LS, Light-responsive elements, PHR, Plant hormone-responsive elements, PBS, Protein-binding sites, RE, Regulatory element, DSR, Defense and stress responsiveness
ASR, 非生物胁迫响应元件, CP, 核心启动子元件, GAD, 生长发育元件, LS, 光响应元件, PHR, 植物激素响应元件, PBS, 蛋白质结合位点, RE, 调节元件, DSR, 防御和胁迫反应性
.

Expression profiling of PzWRKY genes in different wood tissues in P. zhennan
PzWRKY基因在镇楠不同木材组织中的表达谱

The expression profiles of PzWRKY genes in three wood tissues of P. zhennan were analyzed using RNA-seq data to identify WRKY genes involved in flavonoids biosynthesis in P. zhennan. As a result, there are 16 upregulated and two downregulated PzWRKY genes between transition zone (TZ) and inner sapwood (SW2)/ outer sapwood (SW1) with absolute |fold change|2 for differential expression expressed genes (Fig 7 A).
利用 RNA-seq 数据分析 PzWRKY 基因在镇楠 3 个木组织中的表达谱 ,以鉴定参与镇楠黄酮生物合成的 WRKY 基因。结果,在过渡区 (TZ) 和内边材 (SW2)/外边材 (SW1) 之间有 16 个上调和 2 个下调PzWRKY 基因,具有绝对的 |倍数变化|2 用于差异表达基因(图 7 A)。

Table 1 Statistics of the physicochemical properties of the WRKY gene family in six plant species
表1 6种植物WRKY基因家族理化性质统计

Species
物种

PL (aa)
PL (aa)

MW (kDa)
分子量 (kDa)

pI
圆周率

GRAVY

AI

II

Subcellular localization
亚细胞定位

 

 

 

 

 

 

 

Nuclear

Extracellular
细胞外的

Phoebe zhennan
楞楠

107-595

12.05-63.99

4.92-9.91

-1.115- -0.449

42.04-77.90

31.67-69.16

41

12

Arabidopsis thaliana
拟南芥

109-1895

12.95-145.88

4.01-10.41

-1.153- -0.320

41.16-97.26

28.84-77.47

72

0

P. bournei
闽 P. bournei

143-986

15.40-11.16

5.02-10.02

-1.069- -0.190

43.83-86.64

32.28-76.26

59

17

Cinnmamomum camphora
Cinnmamomum 樟脑

111-916

12.56-10.04

4.79-10.06

-1.058- -0.434

43.98-78.42

26.20-71.96

51

16

Populus trichoarpa
毛杨

127-739

14.45-79.60

5.08-9.79

-1.340- -0.468

31.85-73.51

37.84-72.02

132

26

Eucalyptus grandis
桉树

112-751

12.75-81.10

4.68-10.00

-1.268- 0.106
-1.268-0.106

35.40-96.03

30.70-76.59

65

16

Note: PL, Polypetide length, MW, Molecular weight, pI, Theoretical isoelectric point, GRAVY, Grand average of hydropathy, AI, Aliphatic index, II, Instability index
注:PL、Polypetide 长度、MW、分子量、pI、理论等电点、GRAVY、水肿总平均值、AI、脂肪族指数、II、不稳定指数

Materials and Methods
材料和方法

Sequence retrieval
序列检索

WRKYs sequences of important broad leaved timber tree species (Populus trichocarpa and Eucalyptus grandis), relative species (P. bournei and Cinnmamomum camphora), and model plant (Arabidopsis thaliana) were obtained from P. trichocarpa genome database (version 4.1)1, E. grandis genome database (version 2.0)2, P. bournei genome database (v1.0)3, C. camphora genome database4, and TAIR10.15
重要阔叶用材树种(毛果杨)、亲缘种(闽杨)和模式植物(拟南芥的WRKYs序列来自毛果松基因组数据库(4.1版)1大桉基因组数据库(2.0版)2闽南樟子基因组数据库 (v1.0)3樟树基因组数据库4 和 TAIR10.15
.

Identification of WRKY genes in P. zhennan
珍楠 P. rky 基因的鉴定

We used the Nanmu (Phoebe zhennan) genome (our laboratory, unpublished) to analyses PzWRKY family genes. Based on the conserved sequence of the WRKY domain (PF03106), we used HMMER 3.0 Software to identify the PzWRKY family genes in the Nanmu genome. For the HMMER 3.0 Software, the default parameters were adopted, and the cut-off value was set to 0.01. Ultimately, 53 PzWRKY genes were finally identified in Nanmu genome. Furthermore, NCBI-CDD (https://www.ncbi.nlm.nih.gov/guide/domains-structures/), SMART (http://smart.emblheidelberg.de/), and Pfam (http://pfam.xfam.org/) searches were subsequently performed to verify the presence of WRKY domains. According to their position in the chromosomes of P. zhennan, we named these PzWRKY genes. Finally, the physical and chemical properties including polypetide length (aa), molecular weight (MW), theoretical isoelectric point (pI), grand average of hydropathy (GRAVY), Aliphatic index (AI), and instability index (II) of the putative PzWRKY genes were calculated using the online ExPASy-ProtParam tool (http:web.expasy.org/protgaram/). Subcellular location was predicted using ProtComp 9.0 (http://www.softberry.com/berry.phtml?topic=protcomppl&group=programs&subgroup=proloc).
我们使用南木 (Phoebe zhennan) 基因组(我们的实验室,未发表)来分析 PzWRKY 家族基因。基于 WRKY 结构域 (PF03106) 的保守序列,我们使用 HMMER 3.0 软件鉴定了南睦基因组中的 PzWRKY 家族基因。对于 HMMER 3.0 软件,采用默认参数,截止值设置为 0.01。最终在楠木基因组中鉴定出 53 个 PzWRKY 基因。此外,随后执行 NCBI-CDD (https://www.ncbi.nlm.nih.gov/guide/domains-structures/)、SMART (http://smart.emblheidelberg.de/) 和 Pfam (http://pfam.xfam.org/) 搜索以验证 WRKY 域的存在。根据它们在 P. zhennan 染色体中的位置,我们将这些基因命名为 PzWRKY 基因。最后,使用在线 ExPASy-ProtParam 工具 (http:web.expasy.org/protgaram/) 计算了推定的 PzWRKY 基因的物理和化学性质,包括多肽长度 (aa)、分子量 (MW)、理论等电点 (pI)、水病总平均数 (GRAVY)、脂肪族指数 (AI) 和不稳定指数 (II)。 使用 ProtComp 9.0 (http://www.softberry.com/berry.phtml?topic=protcomppl&group=programs&subgroup=proloc) 预测亚细胞位置

Sequence and phylogenetic analysis
序列和系统发育分析

The WRKY domain sequences of the characterized WRKY proteins were used to create multiple protein sequence alignments using ClustalW with default parameters, with all non-WRKY domain sequences removed. The deduced amino acid sequences in WRKY domains were then adjusted manually using GeneDoc software. A phylogenetic tree was constructed using IQ-TREE with a maximum-likelihood approach and a bootstrap value of 1,000 after multiple sequence alignment with mafft [27, 28]. Finally, Evolview was used to visualize and embellish the phylogenetic tree [29]. The exon-intron organization of Nanmu WRKY genes was determined by comparing predicted coding sequences with their corresponding full-length sequences using GSDS 2.0 [30]. The MEME online program for protein sequence analysis was used to identify conserved motifs in the identified Nanmu WRKY proteins with optimized parameters as the following: the number of repetitions, any; the maximum number of motifs, 20; and the optimum width of each motif, between 6 and 100 residues [31]
使用具有默认参数的 ClustalW 使用表征的 WRKY 蛋白的 WRKY 结构域序列创建多个蛋白质序列比对,删除所有非 WRKY 结构域序列然后使用 GeneDoc 软件手动调整 WRKY 结构域中推断的氨基酸序列。使用 IQ-TREE 构建了一棵系统发育树,采用最大似然方法,在与 mafft 进行多次序列比对后,bootstrap 值为 1,000 [27, 28]。最后,使用 Evolview 可视化和修饰系统发育树 [29]通过使用 GSDS 2.0 将预测的编码序列与其相应的全长序列进行比较,确定 Nanmu WRKY 基因的外显子-内含子组织 [30]。用于蛋白质序列分析的 MEME 在线程序用于鉴定出的 Nanmu WRKY 蛋白中的保守基序,优化参数如下:重复次数,任意;最大模数为 20 ;以及每个基序的最佳宽度,在 6 到 100 个残基之间 [31]
.

Chromosomal distribution and gene duplication analysis
染色体分布和基因重复分析

The location of PzWRKY genes on the chromosome of Nanmu whole genome information was mapped and renamed according to their position on the chromosome using TBtools [32]. Multiple Collinearity Scan toolkit (MCScanX) was adopted to analyze the gene duplication events, with the default parameters [33]. TBtools also was used to exhibit the synteny relationship of the orthologous WRKY genes obtained from Nanmu and other five plants. Non-synonymous (Ka) and synonymous (Ks) substitution of each duplicated WRKY genes were calculated using KaKs_Calculator 2.0 [34]
使用 TBtools 根据 PzWRKY 基因在南睦全基因组信息染色体上的位置进行定位和重命名 [32]。采用多重共线性扫描工具包 (MCScanX) 来分析基因复制事件,默认参数为 [33]。TBtools 还用于展示从南穮和其他 5 种植物中获得的直系同源 WRKY 基因的同线关系。使用 KaKs_Calculator 2.0 计算每个重复的 WRKY 基因的非同义 (Ka) 和同义 (Ks) 替换 [34]
.

Promoter cis-acting element analysis
启动子顺式作用元件分析

The 2 kb promoter sequences upstream of the PzWRKY genes translation initiation site were obtained from the Nanmu genome. Then, online software PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to analyze these gene promoters and identify their cis-acting elements [35]
PzWRKY 基因翻译起始位点上游的 2 kb 启动子序列是从 Nanmu 基因组获得的。然后,使用在线软件 PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 分析这些基因启动子并鉴定其顺式作用元件 [35]
.

Plant materials, expression analysis of PzWRKY genes in different wood tissues of P. zhennan by RNA-seq and RT-qPCR
植物材料 PzWRKY基因在镇楠不同木材组织中的表达 分析(RNA-seq和RT-qPCR

The expression patterns of the PzWRKY genes were investigated using RNA-seq data obtained from wood samples of three different tissues (SW1: outer sapwood, SW2: inner sapwood, and TZ: transition zone) [26]. The RNA-seq data have been deposited in the SRA database (https://www.ncbi.nlm.nih.gov/bioproject/898439) under the identifier PRJNA898439. Fragments per kilobase of exon model per million mapped reads (FPKM) was used to measure the transcript abundance of PzWRKY genes by StrigTie (http://ccb.jhu.edu/software/stringtie/). The gene expression data for each PzWRKY were normalized by log2 (FPKM) and shown as heat maps using heatmap package in R.
使用从三种不同组织(SW1:外边材、SW2:内边材和 TZ:过渡区)的木材样本中获得的 RNA-seq 数据研究 PzWRKY 基因的表达模式 [26]。RNA-seq 数据已存放在 SRA 数据库 (https://www.ncbi.nlm.nih.gov/bioproject/898439) 的标识符 PRJNA898439 下。每百万个映射读数 (FPKM) 的外显子模型每千碱基片段用于通过 StrigTiehttp://ccb.jhu.edu/software/stringtie/) 测量 PzWRKY 基因的转录丰度每个 PzWRKY 的基因表达数据通过 log2 (FPKM) 进行归一化,并使用 R 中的热图包显示为热图。

Total RNA of SW1, SW2, and TZ were extracted using plant RNA extraction kit (TaKaRa, Dalian, China), and cDNA was obtained using a RT kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions. The RT-qPCR was performed on a CFX Real-Time PCR Detection System (Bio-Rad) using TB Green Premix Ex Taq II (TaKaRa, Dalian, China). Relative expression levels were evaluated using the 2-ΔΔCt method, and the 18S gene was used as a reference [26]
使用植物 RNA 提取试剂盒 (TaKaRa, Dalian, China) 提取 SW1、SW2 和 TZ 的总 RNA,并根据制造商的说明使用 RT 试剂盒 (TaKaRa, Dalian, China) 获得 cDNA。在 CFX 实时 PCR 检测系统 (Bio-Rad) 上使用 TB Green Premix Ex Taq II(TaKaRa,中国大连)进行 RT-qPCR。使用 2ΔΔCt 方法评估相对表达水平,并使用 18S 基因作为参考 [26]
.

1.Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B: Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC genomics 2011, 12:1-20.
1. 凌 J, 江 W, 张 Y, 于华, 毛 Z, 顾 X, 黄 S, 谢 B: 黄瓜 WRKY 基因家族的全基因组分析BMC 基因组学 2011, 12:1-20。

2.Eulgem T, Rushton PJ, Robatzek S, Somssich IE: The WRKY superfamily of plant transcription factors. Trends in plant science 2000, 5(5):199-206.
2. Eulgem T、Rushton PJ、Robatzek S、Somssich IE:植物转录因子的 WRKY 超家族植物科学趋势, 2000, 5(5):199-206.

3.Ishiguro S, Nakamura K: Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics MGG 1994, 244(6):563-571.
3. Ishiguro S,Nakamura K:编码新型 DNA 结合蛋白 SPF1 的 cDNA 的表征,该蛋白识别编码甘薯孢子素和 β-淀粉酶的基因 5' 上游区域的 SP8 序列分子和一般遗传学 MGG 1994, 244(6):563-571。

4.Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C: A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 2003, 15(9):2076-2092.
4. Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C: 一种新的 WRKY 转录因子 SUSIBA2 通过与 iso1 启动子的糖反应元件结合来参与大麦中的糖信号传导植物细胞 2003, 15(9):2076-2092。

5.Xie Z, Zhang Z-L, Zou X, Huang J, Ruas P, Thompson D, Shen QJ: Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant physiology 2005, 137(1):176-189.
5. Xie Z, Zhang Z-L, Zou X, Huang J, Ruas P, Thompson D, Shen QJ: 水稻 WRKY 基因超家族的注释和功能分析揭示了糊粉细胞中脱落酸信号的正负调节因子植物生理学 2005, 137(1):176-189.

6.Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X: Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. New Phytologist 2022, 236(1):249-265.
6. Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X: IIc 组 WRKY 转录因子通过促进 GhMKK2 介导的类黄酮生物合成来调节棉花对尖孢镰刀菌的抗性新植物学家 2022, 236(1):249-265.

7.Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R: Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes. Plant molecular biology 1995, 29(4):691-702.
7. Rushton PJ、Macdonald H、Huttly AK、Lazarus CM、Hooley R:一个新的 DNA 结合蛋白家族的成员与 a-Amy2 基因启动子中的保守顺式元件结合植物分子生物学 1995,29(4):691-702。

8.Zhang Y, Wang L: The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC evolutionary biology 2005, 5:1-12.
8. Zhang Y, Wang L: WRKY 转录因子超家族:它起源于真核生物并在植物中扩增BMC 进化生物学 2005,5:1-12。

9.Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP: Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant physiology 2008, 147(1):280-295.
9. Rushton PJ、Bokowiec MT、Han S、Zhang H、Brannock JF、Chen X、Laudeman TW、Timko MP:烟草转录因子:对茄科转录调控的新见解植物生理学 2008, 147(1):280-295.

10.Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L: The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences 2017, 36(5-6):311-335.
10. Chen F, 胡 Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L: 模式植物和作物中的 WRKY 转录因子家族植物科学批判评论 2017, 36(5-6):311-335.

11.Liu Y, Zhang Y, Liu Y, Lin L, Xiong X, Zhang D, Li S, Yu X, Li Y: Genome-Wide Identification and Characterization of WRKY Transcription Factors and Their Expression Profile in Loropetalum chinense var. rubrum. In: Plants. vol. 12; 2023.
11. Liu Y, Zhang Y, Liu Y, Lin L, Xiong X, Zhang D, Li S, Yu X, Li Y: WRKY 转录因子的全基因组鉴定和表征及其在 Loropetalum chinense var 中的表达谱。rubrum 的在:植物。 第 12 卷;2023 年。

12.He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y: Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Reports 2012, 31:1199-1217.
12. He H, Dong Q, Shao Y, 江 H, 朱 S, 程 B, 向 Y: 毛果杨 WRKY 基因家族的全基因组调查和表征. 植物细胞报告 2012,31:1199-1217。

13.ZOU X-h, Chao D, LIU H-t, GAO Q-h: Genome-wide characterization and expression analysis of WRKY family genes during development and resistance to Colletotrichum fructicola in cultivated strawberry (Fragaria× ananassa Duch.). Journal of Integrative Agriculture 2022, 21(6):1658-1672.
13. ZOU X-h, Chao D, LIU H-t, GAO Q-h: 栽培草莓 (Fragaria× ananassa Duch中 WRKY 家族基因发育过程中的全基因组表征和表达分析以及对炭疽菌的抗性。综合农业杂志 2022, 21(6):1658-1672.

14.Wu Y, Zhang S, Huang X, Lyu L, Li W, Wu W: Genome-wide identification of WRKY gene family members in black raspberry and their response to abiotic stresses. Scientia Horticulturae 2022, 304:111338.
14. Wu Y, Zhang S, Huang X, Lyu L, Li W, Wu W: 黑树莓中 WRKY 基因家族成员的全基因组鉴定及其对非生物胁迫的响应园艺科学 2022, 304:111338.

15.Wang H, Chen W, Xu Z, Chen M, Yu D: Functions of WRKYs in plant growth and development. Trends in Plant Science 2023.
15. Wang H, Chen W, Xu Z, Chen M, Yu D: WRKYs 在植物生长发育中的功能植物科学趋势 2023。

16.Tognacca RS, Botto JF: Post-transcriptional regulation of seed dormancy and germination: current understanding and future directions. Plant Communications 2021, 2(4):100169.
16. Tognacca RS,Botto JF:种子休眠和发芽的转录后调控:当前的理解和未来的方向植物通讯 2021, 2(4):100169.

17.Xu Y-H, Wang J-W, Wang S, Wang J-Y, Chen X-Y: Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant physiology 2004, 135(1):507-515.
17. Xu YH、Wang JW、Wang S、Wang JY、Chen XY:GaWRKY1 的表征,GaWRKY1 是一种调节倍半萜合酶基因 (+)-δ-cadinene 合酶-A 的棉花转录因子 植物生理学 2004, 135(1):507-515。

18.Johnson CS, Kolevski B, Smyth DR: TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell 2002, 14(6):1359-1375.
18. Johnson CS、Kolevski B、Smyth DR:透明的 TESTA GLABRA2是拟南芥的毛状体和种皮发育基因编码 WRKY 转录因子植物细胞 2002, 14(6):1359-1375。

19.Li H-L, Guo D, Yang Z-P, Tang X, Peng S-Q: Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis. Genomics 2014, 104(1):14-23.
19. Li H-L, Guo D, Yang Z-P, Tang X, Peng S-Q: 巴西橡胶树基因组学中 WRKY 基因家族的全基因组鉴定和表征 2014, 104(1):14-23.

20.Wang C, Ye D, Li Y, Hu P, Xu R, Wang X: Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea (Rhododendron simsii). Frontiers in Genetics 2023, 14
20. Wang C, Ye D, Li Y, 胡 P, 徐 R, 王 X: 杜鹃花 (Rhododendron simsii) 中 WRKY 转录因子的全基因组鉴定和生物信息学分析及花青素生物合成候选基因的筛选 遗传学前沿 2023, 14
.

21.Chen C, Xie F, Shah K, Hua Q, Chen J, Zhang Z, Zhao J, Hu G, Qin Y: Genome-Wide Identification of WRKY Gene Family in Pitaya Reveals the Involvement of HmoWRKY42 in Betalain Biosynthesis. In: International Journal of Molecular Sciences. vol. 23; 2022.
21. Chen C, Xie F, Shah K, 华 Q, 陈 J, 张 Z, 赵 J, 胡 G, 秦 Y:火龙果中 WRKY 基因家族的全基因组鉴定揭示了 HmoWRKY42 参与甜菜碱生物合成。在:国际分子科学杂志。 第 23 卷;2022 年。

22.Wang N, Liu W, Zhang T, Jiang S, Xu H, Wang Y, Zhang Z, Wang C, Chen X: Transcriptomic Analysis of Red-Fleshed Apples Reveals the Novel Role of MdWRKY11 in Flavonoid and Anthocyanin Biosynthesis. Journal of Agricultural and Food Chemistry 2018, 66(27):7076-7086.
22. Wang N, Liu W, Zhang T, 江 S, 徐 H, 王 Y, 张 Z, 王 C, 陈 X:红肉苹果的转录组学分析揭示了 MdWRKY11 在类黄酮和花青素生物合成中的新作用农业与食品化学 2018, 66(27):7076-7086.

23.Yan J, Zeng H, Chen W, Luo J, Kong C, Lou H, Wu J: New insights into the carotenoid biosynthesis in Torreya grandis kernels. Horticultural Plant Journal 2023.
23. Yan J, Zeng H, Chen W, Luo J, Kong C, Lou H, Wu J:对 Torreya grandis kernel 中类胡萝卜素生物合成的新见解园艺植物杂志 2023。

24.Xu Y-H, Sun P-W, Tang X-L, Gao Z-H, Zhang Z, Wei J-H: Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis (Lour.) Gilg. Scientific Reports 2020, 10(1):3018.
24. Xu Y-H, Sun P-W, Tang X-L, Gao Z-H, Zhang Z, Wei J-H: (Lour.) 中 WRKY 转录因子的全基因组分析 吉尔格科学报告 2020, 10(1):3018.

25.Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G: Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene 2013, 524(2):124-132.
25. 熊 W, 徐旭, 张 L, 吴 P, 陈 Y, 李 M, 江 H, 吴 G: 坚果 (Jatropha curcas L.) 中 WRKY 基因家族的全基因组分析 基因 2013, 524(2):124-132。

26.Yang H, An W, Gu Y, Peng J, Jiang Y, Li J, Chen L, Zhu P, He F, Zhang F et al: Integrative metabolomic and transcriptomic analysis reveals the mechanism of specific color formation in Phoebe zhennan heartwood. International Journal of Molecular Sciences 2022, 23(21):13569.
26. 杨 H, 安伟, 顾 Y, 彭 J, 江 Y, 李 J, 陈 L, 朱 P, 何 F, 张 F综合代谢组学和转录组学分析揭示了桢南心材中特定颜色形成的机制国际分子科学杂志 2022, 23(21):13569.

27.Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R: IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 2020, 37(5):1530-1534.
27. Minh BQ、Schmidt HA、Chernomor O、Schrempf D、Woodhams MD、von Haeseler A、Lanfear R:IQ-TREE 2:基因组时代系统发育推断的新模型和有效方法分子生物学与进化 2020,37(5):1530-1534。

28.Rozewicki J, Li S, Amada KM, Standley DM, Katoh K: MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Research 2019, 47(W1):W5-W10.
28. Rozewicki J、Li S、Amada KM、Standley DM、Katoh K:MAFFT-DASH:整合的蛋白质序列和结构比对核酸研究 2019, 47(W1):W5-W10.

29.Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H: Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research 2019, 47(W1):W270-W275.
29. Subramanian B, Gao S, Lercher MJ, 胡 S, Chen W-H: Evolview v3:用于系统发育树可视化、注释和管理的网络服务器核酸研究 2019, 47(W1):W270-W275.

30.Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G: GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 2015, 31(8):1296-1297.
30. 胡 B, 金 J, 郭 A-Y, 张 H, 罗 J, 高 G:GSDS 2.0:升级的基因特征可视化服务器。生物信息学 2015, 31(8):1296-1297.

31.Bailey TL, Bodén M, Buske FA, Frith MC, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME Suite: tools for motif discovery and searching. Nucleic Acids Research 2009, 37:W202 - W208.
31. Bailey TL, Bodén M, Buske FA, Frith MC, Grant CE, Clementi L, 任 J, Li WW, Noble WS: MEME Suite: 模序发现和搜索工具核酸研究 2009, 37:W202 - W208。

32.Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R: TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 2020, 13(8):1194-1202.
32. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R: TBtools:为生物大数据的交互式分析而开发的综合工具包分子植物 2020, 13(8):1194-1202.

33.Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H et al: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 2012, 40(7):e49-e49.
33. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H et alMCScanX:用于检测和进化分析基因同线和共线性的工具包核酸研究 2012, 40(7):e49-e49.

34.Wang D, Zhang Y, Zhang Z, Zhu J, Yu J: KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genomics, Proteomics & Bioinformatics 2010, 8(1):77-80.
34. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J: KaKs_Calculator 2.0:结合伽马级数方法和滑动窗口策略的工具包基因组学,蛋白质组学与生物信息学 2010, 8(1):77-80.

35.Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 2002, 30(1):325-327.
35. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S: PlantCARE,植物顺式作用调节元件数据库和启动子序列计算机分析工具门户核酸研究 2002, 30(1):325-327.

  1. https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/775/GCA_000002775.4_P.trichocarpa_v4.1/

  2. https://phytozome-next.jgi.doe.gov/info/Egrandis_v2_0

  3. https://db.cngb.org/search/assembly/CNA0029376/

  4. https://ngdc.cncb.ac.cn/search/?dbId=gwh&q=PRJCA005135&page=1

  5. https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/735/GCA_000001735.2_TAIR10.1/