Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA
加州帕克菲尔德附近圣安德烈亚断层上地震活动的年度调制
首次发表:2007 年 2 月 23 日 https://doi.org/10.1029/2006GL028634 引用:65
Abstract 摘要
[1] We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ∼2 kPa may be sufficient to trigger earthquakes.
[1] 我们分析了加利福尼亚州帕克菲尔德附近圣安德烈亚断层(SAF)的地震数据,以测试地震率是否存在年度变化。我们通过统计分析表明,在断层的蠕滑段,地震活动具有年度周期;而在断层的锁定段,地震活动具有半年度周期。尽管季节性触发的确切机制尚不清楚,但似乎与水文循环相关的应力足以通过孔隙压力扩散或地壳加载/卸载来使临界应力的岩石发生破裂。这些结果为圣安德烈亚断层的应力状态提供了额外的见解,表明由水文因素引起的应力扰动约为 2 千帕可能足以引发地震。
1. Introduction 1. 引言
[2] Microearthquakes may be triggered or modulated by climatic forces that have an annual period, implying a causal link between the hydrologic cycle and the mechanical behavior of the upper crust [Gao et al., 2000; Saar and Manga, 2003; Christiansen et al., 2005; Kraft et al., 2006]. This relation implies that stresses induced by the annual hydrologic cycle are sufficient to fracture near-critically stressed rock either through pore-pressure diffusion [Talwani and Acree, 1984; Shapiro et al., 2003; Hainzl et al., 2006] or loading/unloading of the elastic crust [Heki, 2003]. In this study, we use a suite of statistical tests [Christiansen et al., 2005] to explore whether seismicity on the San Andreas Fault (SAF) in the vicinity of Parkfield, California, is annually modulated.
[2] 微型地震可能由具有年周期的气候因素触发或调节,这意味着水文循环与地壳上部的机械行为之间存在因果关系[Gao 等, 2000; Saar 和 Manga, 2003; Christiansen 等, 2005; Kraft 等, 2006]。这种关系意味着,由年水文循环引起的应力足以通过孔隙压力扩散[ Talwani 和 Acree, 1984; Shapiro 等, 2003; Hainzl 等, 2006]或弹性地壳的加载/卸载[Heki, 2003]来破裂接近临界应力的岩石。在本研究中,我们使用一组统计检验[Christiansen 等, 2005],探讨在加利福尼亚州帕克菲尔德附近圣安德烈亚斯断层(SAF)上的地震活动是否具有年周期性。
[3] The Parkfield region is an ideal location to search for a connection between seismicity and precipitation because the SAF in this region is seismically active [Bakun et al., 2005]; an extensive seismic network provides detailed earthquake data [Bakun and Lindh, 1985; Bakun et al., 2005; Roeloffs and Langbein, 1994]; precipitation rates are relatively low (>0.5 m/y on average); the fault is believed to be extremely weak [Zoback et al., 1987; Rice, 1992; Hickman and Zoback, 2004; Townend and Zoback, 2004]; and the characteristics of microearthquakes in the region have been studied extensively [Poley et al., 1987; Rubin et al., 1999; Nadeau and McEvilly, 2004]. Any relation between rainfall and earthquake occurrence in this environment would imply a stress threshold for triggered seismicity that is lower than commonly accepted [Harris, 1998].
[3] Parkfield 地区是寻找地震与降水之间联系的理想地点,因为该地区圣安德烈亚斯断层(SAF)具有地震活动性 [Bakun 等,2005];一个广泛的地震网络提供了详细的地震数据 [Bakun 和 Lindh,1985;Bakun 等,2005;Roeloffs 和 Langbein,1994];降水量相对较低(平均>0.5 米/年);该断层被认为非常弱 [Zoback 等,1987;Rice,1992;Hickman 和 Zoback,2004;Townend 和 Zoback,2004];该地区微震的特征已进行了广泛研究 [Poley 等,1987;Rubin 等,1999;Nadeau 和 McEvilly,2004]。在这种环境中,降雨与地震发生之间的任何关系都意味着触发地震的应力阈值低于通常接受的水平 [Harris,1998]。
2. Methods 2. 方法
[4] We analyze a 21-year seismic catalog (January 1984 to January 2005) from the SAF near Parkfield (http://quake.geo.berkeley.edu/) (Figure 1a) using a suite of statistical analyses [Christiansen et al., 2005]. During the past 20 years seismicity has generally increased (Figure 1b). No significant changes have been made to the seismic network to change the detection of earthquakes of M > 1.25. The seasonal modulation we explore for is a small perturbation overlain on this long-term trend and other periodic signals [Nadeau et al., 1995; Nadeau and McEvilly, 2004]. We separately examine 2284 events in the locked/transition section of the fault (south of 36.0°N; hereafter referred to as locked) and 3093 events in the creeping section (north of 36.0°N) because of postulated mechanical differences between these sections [Schorlemmer and Wiemer, 2005].
[4] 我们分析了从 1984 年 1 月到 2005 年 1 月的 21 年地震目录(在 Parkfield 附近的 San Andreas 断层上)[http://quake.geo.berkeley.edu/](图 1a),使用了一系列统计分析[Christiansen 等,2005]。在过去 20 年中,地震活动性总体上有所增加(图 1b)。对 M > 1.25 的地震检测没有对地震网络进行重大更改。我们探讨的季节性变化是对这一长期趋势和其他周期性信号上的一个小扰动[Nadeau 等,1995;Nadeau 和 McEvilly,2004]。我们分别检查了断层锁定/过渡部分的 2284 个事件(南纬 36.0°以南;以下简称锁定部分)和蠕动部分的 3093 个事件(北纬 36.0°以北),因为这两个部分之间可能存在机械差异[Schorlemmer 和 Wiemer,2005]。

(a)位置图显示地震(空圆圈)、2004 年 M=6 地震位置(星号)以及研究中使用的仪器(菱形):WBV1 = Bourdieu Valley 井;DL01 = Donna Lee 膨胀仪;FR01 = Frohlich 膨胀仪;BRA = Bradley 降水仪;PKF = Parkfield 降水仪。研究中还使用了其他位于地图区域外的雨量仪:Paso Robles(36.6°,−120.7°),Black Mountain(35.4°,−120.4°)和 Santa Margarita(35.4°,−120.6°)。(b)每年地震数量对于缓慢滑动(正方形,虚线)和锁定(三角形,实线)部分,以及最佳拟合线的 r 2 值。 (c)全数据集和 3 个月间隔的频率-震级关系。虚线表示 b = 1。震级截止值 M c = 1.25。
[5] To ensure that instrument variability or inconsistent catalog completeness do not affect our results, we use a frequency-magnitude distribution to compute the minimum magnitude for catalog completeness. Using a b-value of 1 in a Gutenberg-Richter analysis, the minimum magnitude for reliable completeness is Mc = 1.25 (Figure 1c). The magnitude distribution for each season is calculated to test for seasonal measurement biases. Frequency-magnitude trends for each season match those of the full dataset, and Mc values are identical (Figure 1c). Based on these results, we remove all earthquakes from the catalog below M = 1.25.
[5] 为确保仪器的变异性或不一致的目录完整性不会影响我们的结果,我们使用频率-震级分布来计算目录完整性的最小震级。使用里克特分析中的 b 值为 1,可靠完整性的最小震级为 M c = 1.25(图 1c)。每个季节的震级分布被计算出来以测试季节性测量偏差。每个季节的频率-震级趋势与完整数据集的相符,且 M c 值相同(图 1c)。基于这些结果,我们从目录中移除所有震级低于 M = 1.25 的地震。
[6] We also remove spatially and temporally clustered sequences of aftershock earthquakes from the time series using established methods [Reasenberg, 1985]. Because we examine the locked and creeping sections separately, we decluster the entire data set, as well as the locked and the creeping sections independently. The number of earthquakes removed by declustering from the entire data set is slightly greater than the number of earthquakes removed by declustering from the locked and creeping sections separately (Table 1). The magnitude of each main shock is adjusted to represent the removed aftershock events in each sequence. Declustering reduces the number of events by ∼30% (Table 1), largely by filtering out the seismic activity following the September 2004 M = 6.0 earthquake in the locked section of the fault.
[6] 我们还使用已建立的方法从时间序列中移除空间和时间上聚集的余震序列。因为我们要分别研究锁定和蠕动部分,所以我们对整个数据集,以及锁定和蠕动部分分别进行去簇处理。从整个数据集中去簇去除的地震数量略多于从锁定和蠕动部分分别去簇去除的地震数量(表 1)。每个主震的震级被调整以代表每个序列中被移除的余震事件。去簇处理使事件数量减少约 30%(表 1),主要是在锁定部分的 2004 年 9 月 M=6.0 地震之后的地震活动被过滤掉了。
表 1. 所有五种在文中讨论的统计检验中地震分布的 p 值范围 a
Number of EQs 地震次数 | 1-Month 1 个月 | 2-Months 2 个月 | 3-Months 3 个月 | 6-Months 6 个月 | |
---|---|---|---|---|---|
Declustered 去集群的 | 3734 | 0.10 – 0.23 | 0.03 – 0.07 | 0.02 – 0.03 0.02 – 0.03 | 0.002 – 0.005 0.002 – 0.005 |
Creeping 蠕动 | 2817 | 0.14 – 0.23 | 0.03 – 0.05 | 0.01 – 0.02 | 0.001 – 0.003 |
Creeping (w/o '04) 蠕动(不含'04) |
2614 | 0.19 – 0.37 | 0.04 – 0.10 | 0.02 – 0.05 0.02 – 0.05 | 0.01 – 0.02 |
Locked 锁定 | 996 | 0.04 – 0.20 0.04 – 0.20 | 0.01 – 0.02 | 0.01 – 0.02 0.01 – 0.02 | 0.04 – 0.15 0.04 – 0.15 |
Locked (w/o '04) 锁定(无'04) |
921 | 0.09 – 0.26 0.09 – 0.26 | 0.02 – 0.10 0.02 – 0.10 | 0.01 – 0.03 0.01 – 0.03 | 0.05 – 0.22 0.05 – 0.22 |
Not declustered 未去震群化 | 5377 | 0.05 – 0.42 | 0.01 – 0.05 | 0.002 – 0.02 0.002 – 0.02 | 0.0002 – 0.02 0.0002 – 0.02 |
- a
Bold values indicate a significance of >95% for all 5 tests.
粗体值表示所有 5 项测试中显著性>95%。
[7] To determine the statistical significance of the observed earthquake distribution pattern, we apply a series of five statistical tests following the methodology in Christiansen et al. [2005], using a combination of ANOVA tests and a Kruskal-Wallis test [Dixon and Massey, 1983] on both unprocessed and normalized data. Often Fourier series and power spectra are used for these types of analyses; however, the time-series is too short to provide a robust result for annual cycles. We use three normalization schemes to ensure that the normalization process does not bias our results. Data are normalized using logarithmic and square-root transformations. In addition, in a third normalization scheme, the number of earthquakes each month is divided by the maximum number of earthquakes recorded in any month of that year, so that in each year the number of earthquakes per month varies between 0 and 1. ANOVA tests are performed on the non-normalized data as well as the three normalized data sets, and the Kruskal-Wallis test is preformed on non-normalized data. By using multiple statistical methods on a declustered dataset, we reduce the likelihood that the normalization process will bias the results. We consider the number of earthquakes per month and the number of earthquakes binned over 2-, 3-, and 6-month intervals. The intervals are rotated through the year using a moving window to determine when the greatest difference between earthquake numbers is achieved. For example, with 6-month intervals, we compare January-June with July-August, then February-July with August-January, and so forth. The statistical tests determine the probability that the timing of seismicity differs significantly from a random distribution. We require that all five tests have a significance of >95% (p-value < 0.05) for data to be considered non-random.
[7] 为了确定观察到的地震分布模式的统计显著性,我们按照 Christiansen 等 [2005] 的方法,应用一系列五种统计检验,结合 ANOVA 检验和 Kruskal-Wallis 检验 [Dixon 和 Massey, 1983] 对原始数据和标准化数据进行分析。通常 Fourier 系列和功率谱用于此类分析;然而,时间序列太短,无法为年度周期提供稳健的结果。我们使用三种标准化方案,以确保标准化过程不会偏倚我们的结果。数据使用对数和平方根变换进行标准化。此外,在第三种标准化方案中,每个月的地震数量除以该年内记录的最大地震数量,使得每年每个月的地震数量在 0 到 1 之间变化。对非标准化数据以及三个标准化数据集进行 ANOVA 检验,并在非标准化数据上进行 Kruskal-Wallis 检验。
通过在去震群的数据集上使用多种统计方法,我们减少了归一化过程可能偏倚结果的可能性。我们考虑每月地震数量以及分组为 2、3 和 6 个月区间内的地震数量。这些区间通过移动窗口全年旋转,以确定地震数量差异最大的时间。例如,对于 6 个月区间,我们比较 1 月-6 月与 7 月-8 月,然后 2 月-7 月与 8 月-1 月,依此类推。统计检验确定地震时间与随机分布有显著差异的概率。我们要求所有五个测试的显著性均大于 95%(p 值<0.05),数据才被视为非随机。
3. Results 3. 结果
[8] Before invoking formal statistics, it is useful to explore the processed and unprocessed data for a visible structure. Figure 2 shows various subsets of the data binned by month. In the locked section, earthquake occurrence peaks semi-annually in March-May and September-November (Figure 2a). Relatively few earthquakes occur in January and during June-July. In the creeping section, peak earthquake numbers are more broadly distributed over a 6-month interval from August - January (Figure 2b). Earthquakes with M > 2 have a bimodal distribution in both sections of the fault.
[8] 在正式应用统计方法之前,探索处理和未处理的数据以寻找可见的结构是有用的。图 2 显示了按月份分组的数据的各种子集。在锁定部分,地震发生率在 3 月至 5 月和 9 月至 11 月半 annually 峰值(图 2a)。1 月和 6 月至 7 月相对很少发生地震。在蠕动部分,地震数量的峰值更广泛地分布在 8 月至 1 月的 6 个月期间(图 2b)。震级 M > 2 的地震在断层的两个部分都有双峰分布。

每月地震数量(完整数据集、去簇数据集以及震级 M > 2 的地震):(a)锁定段和(b)蠕动段。实线水平线显示去簇数据集的平均月地震率;虚线水平线显示震级 M > 2 的平均月地震率。
[9] It is possible that a few years with anomalously high seismicity rates could create the structure that is visible in Figure 2, yet not reflect the overall trends of the data set. To explore this possibility we calculate the average number of earthquakes in two ways. In the first approach, we divide the total number of earthquakes by the total number of months in the 21-year data set. For example, for the locked section, 996 earthquakes are divided by 252 months, giving an average of ∼4 earthquakes per month. In the second approach, the average number of earthquakes per month is calculated separately for each year. For example, if 24 earthquakes occur in a particular year, the average number of earthquakes/month for that year is two. For each averaging method, we count the number of months that exceeds the average (Figure 3). In the locked section, the majority of months with above-average seismicity occurs in spring and fall (Figure 3a), consistent with the pattern in Figure 2a. In the creeping section, the trend is less clearly defined (Figure 3b); however, there is a greater number of years with above-average seismicity during August - January, consistent with the pattern seen in Figure 2b.
[9] 可能有几年地震率异常高,从而形成图 2 中可见的结构,但并不反映数据集的整体趋势。为了探讨这一可能性,我们以两种方式计算平均地震数。在第一种方法中,我们将总地震数除以 21 年数据集中的总月数。例如,对于锁定部分,996 次地震除以 252 个月,得到每月平均约 4 次地震。在第二种方法中,分别计算每年的平均地震数/月。例如,如果某年发生 24 次地震,该年的平均地震数/月就是 2 次。对于每种平均方法,我们统计超过平均值的月份数(图 3)。在锁定部分,大多数月份数超过平均地震数发生在春季和秋季(图 3a),与图 2a 中的模式一致。
在蠕动段,趋势不太明显(图 3b);然而,8 月至 1 月期间有更多年份的地震活动高于平均水平,这与图 2b 中观察到的模式一致。

年度地震活动高于平均水平的年份,按月分组显示(a)锁定段和(b)蠕动段。虚线=基于时间序列总地震数的月平均值。实线=基于每年地震事件数的月平均值。
[10] The p-values for the five formal statistical tests show strong evidence for seasonal variations in seismicity in both the locked and creeping sections (Table 1). In the locked section, earthquake distributions are significantly non-random for 2- and 3-month intervals, and in 4 of 5 tests for 1-month intervals. Data from the creeping section show significant seasonality in 2-, 3-, and 6-month intervals, with the greatest significance in 6-month binning (p-values ≤ 0.003), consistent with the broad peak in seismicity seen in Figures 2b and 3b. Removing year 2004 (when the largest recent earthquake occurred) from the dataset reduces the significance for 2-month intervals to 90% in both sections.
[10] 五个正式统计检验的 p 值显示,锁死段和蠕动段的地震活动都显示出显著的季节性变化(表 1)。在锁死段,地震分布对于 2 个月和 3 个月的间隔显著非随机,对于 1 个月的间隔在 5 次测试中有 4 次显著。蠕动段的数据显示,在 2 个月、3 个月和 6 个月的间隔中存在显著的季节性,其中在 6 个月的分组中显著性最高(p 值≤0.003),这与图 2b 和 3b 中看到的地震活动广泛峰值一致。从数据集中移除 2004 年(当时发生了最大的近期地震)后,两个区域的 2 个月间隔的显著性降低到 90%。
[11] We have also compared the binned earthquake data with 10,000 randomly distributed earthquake datasets, each with 3734 events (Table 2). Values in bold indicate when the actual number of earthquakes for a given interval in the actual dataset exceeds the 95th percentile of the 10,000 random data sets. In the locked section, the number of earthquakes is above the 95th percentile in 1-, 2-, and 3-month intervals. In the creeping section, seismicity is elevated for 2-, 3-, and 6-month intervals.
[11] 我们还比较了分组地震数据与 10,000 个随机分布的地震数据集,每个数据集有 3734 个事件(表 2)。粗体值表示实际数据集中某一时间段的实际地震数量超过 10,000 个随机数据集的 95 百分位数。在锁定部分,1 个月、2 个月和 3 个月时间段内的地震数量超过 95 百分位数。在蠕动部分,2 个月、3 个月和 6 个月时间段内的地震活动性升高。
表 2. 给定时间段内的地震数量 for Parkfield 数据集 a
Expected EQs/Month 预期地震数/月 | 1-Month 1 个月 | 2-Months 2 个月 | 3-Months 3 个月 | 6-Months 6 个月 | |
---|---|---|---|---|---|
Declustered 去集群的 | 311 | 355 (1.14) | 683 (1.10) | 996 (1.07) | 1988 (1.07) |
Creeping 蠕动 | 235 | 266 (1.13) | 526 (1.12) | 781 (1.11) | 1532 (1.09) |
Locked 锁定 | 83 | 113 (1.36) | 206 (1.24) | 295 (1.18) | 529 (1.06) |
Not declustered 未去震群化 | 448 | 893 (1.99) | 1650 (1.84) | 2244 (1.67) | 3443 (1.28) |
- a
Bold values exceed the 95th percentile when expected earthquakes are compared with 10,000 randomized data sets. Numbers in parentheses represent anomalous earthquakes (AE) as defined in text.
粗体值在将预期地震与 10,000 个随机数据集进行比较时超过 95 百分位数。括号中的数字表示文中定义的异常地震(AE)。
[12] Similarly, we compare the actual number of earthquakes during a given interval with the expected number of earthquakes, assuming a uniform distribution over time (Table 2). The ratio between the actual number of earthquakes and the expected number for a uniform distribution is termed anomalous earthquakes (AE); AE = 1 when the actual number of earthquakes is the same as the expected number of earthquakes in a given interval. In the locked section, the actual number of earthquakes is higher than average for 1-, 2-, 3-, and 6-month intervals (Table 2), although only slightly higher in 6-month intervals (AE = 1.06). The deviation from the average is largest for 1-month intervals, with 30 earthquakes above the 80 expected earthquakes (AE = 1.36) for the month of November. In the creeping section, the increase in seismicity is broadly distributed over the same 6-month interval defined by the other tests. There are approximately 20 additional earthquakes per month during the 6-month interval of increased seismic activity.
[12] 同样,我们将给定时间段内实际发生的地震数量与假设时间分布均匀的情况下预期的地震数量进行比较(表 2)。实际地震数量与均匀分布情况下预期地震数量的比值称为异常地震(AE);当实际地震数量与预期地震数量相同时,AE = 1。在锁定段,1 个月、2 个月、3 个月和 6 个月的间隔内,实际地震数量高于平均值(表 2),尽管在 6 个月间隔内仅略高(AE = 1.06)。与平均值的偏差在 1 个月间隔中最大,11 月有 30 次地震高于预期的 80 次地震(AE = 1.36)。在蠕动段,地震活动的增加大致分布在由其他测试定义的相同 6 个月间隔内。在地震活动增加的 6 个月间隔内,每个月大约多发生 20 次地震。
4. Discussion 4. 讨论
[13] Each statistical approach to assess the timing of seismicity gives similar results, and all are consistent with the initial, visual inspections of the data (Figure 2). The locked section exhibits narrowly-defined, semiannual peaks in seismicity in spring and fall. The creeping section exhibits a broad increase in seismicity from August - January.
[13] 每种评估地震活动时间的统计方法都得出相似的结果,且所有结果都与数据的初始、视觉检查结果一致(图 2)。锁定段显示出在春秋季有狭窄定义的半年度地震活动峰值。蠕动段则显示出从 8 月到 1 月地震活动的广泛增加。
[14] We see some evidence of correlation between periods of heavy rainfall and increased seismicity in the creeping section, but not in the locked section. Rainfall in Parkfield follows an annual cycle, with the onset of rainfall typically occurring in November and largest storms typically occurring from February through April [Roeloffs, 2001] (Figure 4). We compiled rainfall data from the Parkfield station [Roeloffs, 2001] and four stations near Parkfield: Paso Robles, Black Mountain, Bradley, and Santa Margarita (http://cdec.water.ca.gov/); where data were missing or erroneous, averages of the remaining stations were used. Between 1984 and 2004, 13 months had >15 cm of rainfall. In the creeping section, each of the high rainfall months is followed by a peak in seismicity. The lag time varies from 2 to 9 months and averages ∼5 months.
[14] 我们在缓慢滑动段看到一些证据表明,暴雨期与地震活动增加之间存在相关性,但在锁定段则没有。Parkfield 的降雨量遵循年度周期,降雨通常在 11 月开始,最大的风暴通常发生在 2 月至 4 月[Roeloffs, 2001](图 4)。我们收集了 Parkfield 站[Roeloffs, 2001]和四个靠近 Parkfield 的站点:Paso Robles、Black Mountain、Bradley 和 Santa Margarita 的降雨数据(http://cdec.water.ca.gov/);在数据缺失或错误的情况下,使用剩余站点的平均值。1984 年至 2004 年间,有 13 个月降雨量超过 15 厘米。在缓慢滑动段,每个高降雨量月份后都随之出现地震活动的峰值。滞后时间从 2 到 9 个月不等,平均约为 5 个月。

每月平均值归一化到一月的应变值(在 D101 和 FR01;见图 1a 的位置),浅层地下水位(在 WBV),以及帕克菲尔德地区的平均降雨量(见文本描述)。归一化之前,应变数据显示出每年的信号为 0.2–1 微应变(15–70 千帕,假设杨氏模量约为 70 吉帕);平均年水位变化约为 2 米;降雨量最高可达约 18 毫米/月。(b)1984–2005 年期间蠕动段每月平均地震数量及 2σ误差条。(c)1984–2005 年期间锁定段每月平均地震数量及 2σ误差条。
[15] In the locked section, we see a correlation between shallow groundwater levels and periods of increased seismicity (Figure 4). The highest water level occurs in April and the lowest water level occurs in October; strain data follow a similar trend. Seismicity peaks approximately one month after the seasonal low in water level.
[15] 在锁定段中,我们看到浅层地下水位与地震活动增加的时期之间存在相关性(图 4)。最高水位出现在四月,最低水位出现在十月;应变数据呈现出相似的趋势。地震活动在季节性水位最低后约一个月达到峰值。
[16] The differences in timing of seismicity between the locked and creeping sections of the fault may relate to mechanical differences [Schorlemmer and Wiemer, 2005]. However, there may also be significant hydrologic differences between these sections. Inspection of USGS EROS Data Center imagery (http://edc.usgs.gov/) shows that there is typically more irrigated agriculture south of Parkfield (∼locked section) than north of Parkfield (∼creeping section). Thus the locked section may experience two recharge pulses annually, one natural and one artificial, whereas the creeping section experiences only the single, natural recharge season (Figure 4). Further, it has long been suggested [Irwin and Barnes, 1975; Kharaka et al., 1999] that there are “deep” (metamorphic) fluid sources in the creeping section that are absent in the locked section; these may increase pore pressure at depth.
[16] 锁定段和蠕动段断层地震活动时间差异可能与机械差异有关[Schorlemmer and Wiemer, 2005]。然而,这两个段落之间也可能存在显著的水文差异。查看 USGS EROS 数据中心图像(http://edc.usgs.gov/)显示,Parkfield 以南(约锁定段)通常有更多灌溉农业,而以北(约蠕动段)则较少。因此,锁定段可能每年经历两次补给脉冲,一次自然,一次人工,而蠕动段则只经历一次自然补给季节(图 4)。此外,长期以来人们建议[Irwin and Barnes, 1975; Kharaka et al., 1999],蠕动段存在“深层”(变质)流体来源,而这些在锁定段则不存在;这些可能增加深度处的孔隙压力。
[17] Though some aspects of the hydrologic cycle would seem to be the most obvious driver for (semi-) annual variations in seismicity, the relations between precipitation, recharge, stress/strain, and seismicity (Figure 4) are not well-constrained. Pore-pressure diffusion is one possible causal mechanism that has received considerable recent attention [cf. Saar and Manga, 2003; Christiansen et al., 2005; Hainzl et al., 2006]. Hydrologic recharge increases pore pressure and thereby decreases effective stress at depth. For Parkfield, the hydraulic diffusivity calculated based on the average depth of earthquakes (5 km) and an apparent lag time of ∼5 months is 2 m2/s. This value is similar to the value invoked to explain precipitation-induced earthquakes in Bavaria (3.3 ± 0.8 m2/s) [Hainzl et al., 2006]. However, it is much higher than that inferred from the water-level response of Parkfield wells to barometric pressure (∼10−4 m2/s) [Roeloffs, 1998] or from a pumping test in another active fault (7 ± 1 · 10−5 m2/s) [Doan et al., 2006]. Further, such a large value of diffusivity would correspond to a permeability of roughly 10−15 m2, much larger than the value of ∼10−18 m2 measured in the Cajon Pass well further south on the SAF [Townend and Zoback, 2000], or the values used in numerical models to match the observed thermal structure [Saffer et al., 2003].
[17] 尽管水循环的一些方面似乎是最明显的地震活动(半)年度变化的驱动因素,但降水、补给、应力/应变和地震之间的关系(图 4)尚不明确。孔隙压力扩散是一种可能的因果机制,近年来受到广泛关注[参见 Saar 和 Manga,2003;Christiansen 等,2005;Hainzl 等,2006]。水文补给会增加孔隙压力,从而在深度处降低有效应力。对于 Parkfield,基于地震平均深度(5 公里)和约 5 个月的明显滞后时间计算出的水力扩散率是 2 m²/s。这个值与用于解释巴伐利亚降水诱发地震的值(3.3 ± 0.8 m²/s)[Hainzl 等,2006]相似。然而,它比 Parkfield 井对气压的水位响应值(约 10 m²/s)[Roeloffs,1998]或另一条活跃断层的抽水试验值(7 ± 1 × 10 m²/s)[Doan 等,2006]要高得多。
此外,这样的高扩散率对应于约 10⁶ m⁷的渗透率,远大于在 San Andreas Fault(SAF)南部 Cajon Pass 井测得的约 10⁸ m⁹的值 [Townend and Zoback, 2000],或用于匹配观测到的热结构的数值模型中使用的值 [Saffer et al., 2003]。
[18] The extremely high apparent diffusivity may imply that the lag is greater than 1 year or that the annual modulation is induced by inelastic relaxation of the crust associated with decreasing groundwater levels. It should be noted that our analysis cannot distinguish between a lag time of ∼5 months and multiple years + 5 months (i.e. 17, 29, 41 months). If the actual lag time is ∼3.5 years instead of ∼5 months, then the inferred permeability (diffusivity) is reduced to 10−18 m2, the value inferred from the Cajon Pass well [Townend and Zoback, 2000].
[18] 极高的表观扩散系数可能意味着滞后时间大于 1 年,或者年度调制是由与地下水位下降相关的地壳非弹性松弛引起的。应注意的是,我们的分析无法区分约 5 个月的滞后时间与多个年份加 5 个月(即 17、29、41 个月)。如果实际的滞后时间是约 3.5 年而不是约 5 个月,那么推断的渗透率(扩散系数)将减少到 10 −18 m 2 ,这是从 Cajon Pass 井推断出的值[Townend and Zoback, 2000]。
[19] Any hydrologic triggering of earthquakes in the Parkfield region would imply that the associated stress triggers are small, supporting previous indications that SAF is very near failure stress. Assuming 100% recharge and a minimum porosity of 0.1, the effective stress change exerted by 15 cm of rain – an unusually large monthly total – is ∼2 kPa. This is below typically accepted levels for external triggering [Harris, 1998]. However, Ziv and Rubin [2000] found that static stress changes of less than 10 kPa in central California have noticeable triggering effects, and Hainzl et al. [2006] invoked much lower values (≪2 kPa) to explain precipitation-induced earthquakes in Bavaria.
[19] 任何在 Parkfield 地区由水文因素触发地震都意味着相关的应力触发量较小,支持之前表明 SAF 几乎接近临界应力的指示。假设 100%的补给率和最小孔隙度为 0.1,15 厘米降雨量(一个异常大的月降水量)所产生的有效应力变化约为 2 千帕。这低于通常接受的外部触发水平[Harris, 1998]。然而,Ziv 和 Rubin[2000]发现,在加利福尼亚州中部,静态应力变化小于 10 千帕会产生明显的触发效应,而 Hainzl 等人[2006]则引用了远低于 2 千帕的值来解释巴伐利亚的降水诱发地震。
[20] It is possible that alluvial valleys along the strike of the fault concentrate runoff and create small zones where crustal loading is enhanced. In the shallow WBV1 well (Figure 4), average annual water-level changes are ∼2 m, with highest water levels in April [Roeloffs, 1998]. Strain data from the nearby DL01 and FR01 dilatometers (Figure 4) show an annual signal of 0.2–1 microstrain (15–70 kPa, assuming Young's modulus = 70 GPa) from March - May. If runoff and groundwater recharge are focused such that change in the water table is locally enhanced, stress change at seismogenic depths may exceed 2 kPa. In addition, some creepmeters show increased creep rates during the rainy season, while others show accelerated creep following individual storms [Roeloffs, 2001], similar to the relationship we infer between precipitation and earthquakes in the locked and creeping sections of the fault, respectively.
[20] 可能所有 uvial 谷地沿着断层走向集中径流并形成局部区域,使得地壳负荷增强。在浅层 WBV1 井(图 4),平均年水位变化约为 2 米,最高水位出现在四月[Roeloffs, 1998]。附近 DL01 和 FR01 膨胀计(图 4)的应变数据显示出从三月至五月的年度信号,为 0.2-1 微应变(15-70 千帕,假设杨氏模量=70 千帕)。如果径流和地下水补给集中在局部区域,使得水位变化增强,那么在地震发生深度处的应力变化可能超过 2 千帕。此外,一些蠕变仪在雨季期间显示出蠕变速率增加,而其他蠕变仪则在个别风暴之后显示出蠕变加速[Roeloffs, 2001],这与我们推断的降水与断层锁固段和蠕滑段地震之间的关系相似。
[21] The evidence for seasonal variations in seismicity at Parkfield is strongly supported in all statistical tests, as well as being visually evident in data sets, and the timing of seismicity seems to linked to the hydrologic cycle. The associated stress triggers are small, supporting previous indications that SAF is very near failure stress. However, further work is required to examine the mechanism by which meteoric fluids trigger seismicity.
[21] Parkfield 地区地震活动的季节性变化的证据在所有统计检验中都得到强有力的支持,同时在数据集中的视觉表现也明显可见,地震活动的时间似乎与水文循环有关。相关的应力触发因素较小,支持了之前表明 SAF 非常接近临界应力的结论。然而,还需要进一步的工作来研究气象流体如何触发地震活动的机制。
Acknowledgments 致谢
[22] L. B. Christiansen was funded by the U.S. Geological Survey through an associateship from the National Research Council. We thank Jeanne Hardebeck, Ruth Harris, Evelyn Roeloffs, Mark Zoback, and an anonymous reviewer for constructive comments.
[22] L. B. Christiansen 是通过美国地质调查局的一项 associate 职位从国家研究理事会获得资助的。我们感谢 Jeanne Hardebeck、Ruth Harris、Evelyn Roeloffs、Mark Zoback 以及一位匿名审稿人提出的有益意见。
Supporting Information
辅助信息
Filename 文件名 | Description 描述 |
---|---|
grl22653-sup-0001-t01.txtplain text document, 645 B grl22653-sup-0001-t01.txt 纯文本文档,645 B |
Tab-delimited Table 1. 制表符分隔表 1。 |
grl22653-sup-0002-t02.txtplain text document, 576 B grl22653-sup-0002-t02.txt 纯文本文档,576 B |
Tab-delimited Table 2. 制表符分隔表 2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
请注意:出版商不对作者提供的任何支持信息的内容或功能负责。除缺少内容外,其他问题应直接向文章的通讯作者查询。
References
参考文献
- 1985), The Parkfield, California, earthquake prediction experiment, Science, 229, 619–624. , and (
- 2005), Implications for prediction the hazard assessment from the 2004 Parkfield earthquake, Nature, 437, 969–974.
Bakun, W. H., 等 (2005), 从 2004 年 Parkfield 地震对危险性评估的启示, Nature, 437, 969–974.
, et al. ( - 2005), Seasonal seismicity at western United States volcanic centers, Earth Planet. Sci. Lett., 240, 307–321.
Christiansen, L. B., S. Hurwitz, M. O. Saar, S. E. Ingebritsen, and P. Hsieh (2005), 季节性地震活动在北美西部火山中心, 地球与行星科学学报, 240, 307–321.
, , , , and ( - 1983), Introduction to Statistical Analysis, 4th ed., 678 pp., McGraw-Hill, New York.
Dixon, W. J., and F. J. Massey (1983),统计分析导论,第 4 版,678 页,麦格 raw-Hill,纽约。
, and ( - 2006), In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan, Geophys. Res. Lett., 33, L16317, doi:10.1029/2006GL026889.
多安,M. L., 布罗德斯基,E. E., 卡诺,Y., 和马,K. F. (2006),台湾活的 Chelungpu 断层的原位测量的水力扩散率,Geophys. Res. Lett., 33, L16317,doi: 10.1029/2006GL026889。
, , , and ( - 2000), Annual modulation of triggered seismicity following the 1992 Landers earthquake in California, Nature, 406, 500–504.
高, S. S., P. G. Silver, A. T. Linde, 和 I. S. Sacks (2000), 1992 年兰德斯地震后诱发地震的年度调制, 自然, 406, 500–504.
, , , and ( - 2006), Evidence for rainfall-triggered earthquake activity, Geophys. Res. Lett., 33, L19303, doi:10.1029/2006GL027642.
哈因茨尔,S.,T. 哈弗特,J. 沃斯曼,H. 艾格尔,和 E. 施梅德斯(2006),降水触发地震活动的证据,地质学研究信使,33,L19303,doi: 10.1029/2006GL027642。
, , , , and ( - 1998), Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res., 103, 24,347–24,358.
Harris, R. A. (1998), 引言特辑部分:应力触发、应力阴影及其对地震危险性的意义,J. Geophys. Res., 103, 24,347–24,358.
( - 2003), Snow load and seasonal variation of earthquake occurrence in Japan, Earth Planet. Sci. Lett., 207, 159–164.
Heki, K. (2003), 雪载及日本地震发生季节变化, 地球行星科学学报, 207, 159–164.
( - 2004), Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31, L15S12, doi:10.1029/2004GL020043.
Hickman, S., 和 M. Zoback (2004),SAFOD 试验孔中的应力方向和大小,Geophys. Res. Lett., 31,L15S12,doi: 10.1029/2004GL020043。
, and ( - 1975), Effects of geologic structure and metamorphic fluids on seismic behavior of the San Andreas Fault system in central and northern California, Geology, 3, 713–716.
Irwin, W. P., and I. Barnes (1975), 地质构造和变质流体对加利福尼亚州中部和北部圣安德烈亚斯断层系统地震行为的影响, 地层学, 3, 713–716.
, and ( - 1999), Geochemistry and hydromechanical interactions of fluids associated with the San Andreas fault system, California, in Faults and Subsurface Fluid Flow in the Shallow Crust, Geophys. Monogr. Ser., vol. 113, edited by W. C. Haneberg, et al., pp. 129–148, AGU, Washington, D. C.
Kharaka, Y. K., J. J. Thordsen, W. C. Evans, and B. M. Kennedy (1999),与圣安德烈亚斯断层系统相关的流体的地球化学和水力学相互作用,加利福尼亚州,见《浅部地壳中的断层与地下流体流动》,地质学专刊系列,第 113 卷,由 W. C. Haneberg 等编辑,第 129–148 页,AGU,华盛顿特区。
, , , and ( - 2006), Meteorological triggering of earthquake swarms at Mt. Hochstaufen, SE-Germany, Tectonophysics, 424, 245–258.
Kraft, T., J. Wassermanm, E. Schmedes, and H. Igel (2006), 气象触发阿尔卑斯山霍赫斯塔 ufen 火山地震群, 地质学物理学, 424, 245–258.
, , , and ( - 2004), Periodic pulsing of characteristic microearthquakes on the San Andreas Fault, Science, 303, 220–222.
Nadeau, R. M., 和 T. V. McEvilly (2004),圣安德烈亚斯断层上特征性微震的周期性脉动,科学,303,220–222。
, and ( - 1995), Clustering and periodic recurrence of microearthquakes on the San Andreas Fault at Parkfield, California, Science, 267, 503–507.
Nadeau, R. M., W. Foxall, 和 T. V. McEvilly (1995),在加利福尼亚州帕克菲尔德圣安德烈亚斯断层上的微震群和周期性复发,科学,267,503–507。
, , and ( - 1987), Temporal changes in microseismicity and creep near Parkfield, California, Nature, 327, 134–137.
Poley, C. M., A. G. Lindh, W. H. Bakun, 和 S. S. Schulz (1987),加利福尼亚州帕克菲尔德附近微观地震和蠕动的时间变化,自然,327,134–137。
, , , and ( - 1985), Second-order moment of central California seismicity, 1969–1982, J. Geophys. Res., 90, 5479–5495.
雷斯纳贝格,P. A.(1985),加利福尼亚中央地区地震活动的二阶矩,1969–1982,地质学研究学报,90,5479–5495。
( - 1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans, and T. Wong, pp. 475–503, Elsevier, New York.
Rice, J. R. (1992), 断层应力状态, 孔隙压力分布, 以及圣安德烈亚斯断层的弱性, 见《岩石的断裂力学和传输性质》, 编辑由 B. Evans, 和 T. Wong, 第 475–503 页, Elsevier, 新 York.
( - 1998), Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes, J. Geophys. Res., 103, 869–889.
Roeloffs, E. A. (1998), 由于局部和远处地震,Parkfield, 加利福尼亚州附近的一口井中的水位持续变化,J. Geophys. Res., 103, 869–889.
( - 2001), Creep rate changes at Parkfield, California 1966–1999: Seasonal, precipitation induced, and tectonic, J. Geophys. Res., 106, 16,525–16,548.
罗尔弗斯,E. A.(2001),加利福尼亚州帕克菲尔德 1966–1999 年蠕变速率变化:季节性、降水诱发和构造性,《地质学研究》,106,16525–16548。
( - 1994), The earthquake prediction experiment at Parkfield, California, Rev. Geophys., 32, 315–336.
罗尔弗斯,E. A.,和 J. 兰贝因(1994),加利福尼亚州帕克菲尔德的地震预测实验,Rev. Geophys., 32, 315–336。
, and ( - 1999), Streaks of microearthquakes along creeping faults, Nature, 400, 635–641.
Rubin, A. M., D. Gillard, and J. L. Got (1999), 缺陷的微震沿蠕动断层, 自然, 400, 635–641.
, , and ( - 2003), Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon, Earth Planet. Sci. Lett., 214, 605–618.
Saar, M. O., and M. Manga (2003), 由季节性地下水补给引起的 Mount Hood 地震活动, 地球与行星科学学报, 214, 605–618.
, and ( - 2003), Topographically driven groundwater flow and the San Andreas heat flow paradox revisited, J. Geophys. Res., 108(B5), 2274, doi:10.1029/2002JB001849.
Saffer, D. M., B. A. Bekins, 和 S. Hickman (2003),地形驱动的地下水流动与圣安德烈亚斯热流悖论再审视,J. Geophys. Res., 108(B5), 2274, doi: 10.1029/2002JB001849。
, , and ( - 2005), Earth science: Microseismicity data forecast rupture area, Nature, 434, 1086.
Schorlemmer, D., and S. Wiemer (2005), 地球科学:微震数据预测破裂区域,Nature, 434, 1086.
, and ( - 2003), Triggering of seismicity by pore-pressure perturbations: Permeability-related signatures of the phenomenon, Pure Appl. Geophys., 160, 1051–1066.
Shapiro, S. A., R. Patzig, E. Rothert, and J. Rindschwentner (2003), 由孔隙压力扰动触发地震活动:该现象的渗透性相关特征,Pure Appl. Geophys., 160, 1051–1066.
, , , and ( - 1984), Pore pressure diffusion and the mechanism of reservoir-induced seismicity, Pure Appl. Geophys., 122, 947–965.
Talwani, P., 和 S. Acree (1984),孔隙压力扩散与水库诱发地震的机制,Pure Appl. Geophys., 122, 947–965.
, and ( - 2000), How faulting keeps the crust strong, Geology, 28, 399–402.
Townend, J., 和 M. D. Zoback (2000),断层活动如何使地壳保持强韧,地质学,28,399–402。
, and ( - 2004), Regional tectonic stress near the San Andreas fault in central and southern California, Geophys. Res. Lett., 31, L15S11, doi:10.1029/2003GL018918.
Townend, J., and M. D. Zoback (2004), 区域构造应力 near the San Andreas fault in central and southern California, Geophys. Res. Lett., 31, L15S11, doi: 10.1029/2003GL018918.
, and ( - 2000), Static stress transfer and earthquake triggering: No lower threshold in sight? J. Geophys. Res., 105, 13,631–13,642.
Ziv, A., 和 A. M. Rubin (2000), 静应力传递与地震触发: 看不到更低的阈值吗? 地球物理研究学报, 105, 13,631–13,642.
, and ( - 1987), New evidence on the state of stress of the San Andreas fault system, Science, 238, 1105–1111.
Zoback, M. D., 等 (1987), 关于圣安德烈亚斯断层系统的应力状态的新证据, 科学, 238, 1105–1111.
, et al. (
Citing Literature
引用文献
Number of times cited according to CrossRef:
65
根据 CrossRef 引用次数:65
-
Pin-Hao Chen, Yen-Hua Chen, Ming-Chih Hsieh, Yan-Wei Huang, Chien-Che Huang, Wei-Teh Jiang, Jey-Jau Lee, Yao-Chang Lee, Hwo-Shuenn Sheu, Fault materials and creep characteristics in mudstone areas: A case study of Chegualin Fault in southwestern Taiwan, Engineering Geology, 10.1016/j.enggeo.2025.108020, 350, (108020), (2025)
Pin-Hao Chen, Yen-Hua Chen, Ming-Chih Hsieh, Yan-Wei Huang, Chien-Che Huang, Wei-Teh Jiang, Jey-Jau Lee, Yao-Chang Lee, Hwo-Shuenn Sheu, 泥石流区域的断层材料和蠕变特性:台湾西南部 Chegualin 断层案例研究,工程地质学,10.1016/j.enggeo.2025.108020,350,(108020),(2025).10.1016/j.enggeo.2025.108020 -
Laeticia Jacquemond, Maxime Godano, Frédéric Cappa, Christophe Larroque, Interplay Between Fluid Intrusion and Aseismic Stress Perturbations in the Onset of Earthquake Swarms Following the 2020 Alex Extreme Rainstorm, Earth and Space Science, 10.1029/2024EA003528, 11, 6, (2024)
拉蒂西亚·雅克莫恩,马克斯·戈达诺,弗雷德里克·卡帕,克里斯托夫·拉罗克,2020 年亚历克斯极端暴雨后地震群的起始:流体侵入与无震应力扰动的相互作用,地球与空间科学,10.1029/2024EA003528,11,6,(2024).10.1029/2024EA003528 -
Yiting Cai, Maxime Mouyen, Loading-induced stress variation on active faults and seismicity modulation in the Kuril Islands-Japan region, Earth and Planetary Science Letters, 10.1016/j.epsl.2024.118904, 643, (118904), (2024)
杨怡倩,马克·莫耶恩,主动断层上的加载引起的应力变化及千岛群岛-日本地区的地震活动变化,地球与行星科学学报,10.1016/j.epsl.2024.118904,643,(118904),(2024).10.1016/j.epsl.2024.118904 -
Rakesh K Dumka, Donupudi Suribabu, Sumer Chopra, Santosh Kumar, Sandip Prajapati, PSI derived measurements of monsoon induced anomalous deformation before the earthquake swarm activity: a case study in the Saurashtra, Western India, Environmental Earth Sciences, 10.1007/s12665-024-11793-x, 83, 17, (2024)
拉基什·K·杜姆卡,杜努普迪·苏里巴布,苏默·乔普拉,桑托什·库马尔,桑迪普·普拉贾帕蒂,季风引发的异常变形的 PSI 衍生测量值:印度西部萨乌尔沙拉地区地震群活动前的案例研究,环境地球科学,10.1007/s12665-024-11793-x,83,17,(2024).10.1007/s12665-024-11793-x -
Hasbi Ash Shiddiqi, Lars Ottemöller, Stéphane Rondenay, Susana Custódio, Felix Halpaap, Vineet K. Gahalaut, Comparison of Earthquake Clusters in a Stable Continental Region: A Case Study from Nordland, Northern Norway, Seismological Research Letters, 10.1785/0220220325, (2023)
哈比·阿什·希德基,拉尔斯·奥特莫勒,斯蒂芬·罗登奈,苏萨娜·库斯托迪奥,菲利克斯·哈尔帕普,维内特·K·加哈拉乌,稳定大陆区地震群的比较:挪威北部诺尔兰地区的案例研究,地震学研究信件,10.1785/0220220325,(2023).10.1785/0220220325 -
Hasbi Ash Shiddiqi, Lars Ottemöller, Stéphane Rondenay, Susana Custódio, Vineet K Gahalaut, Rajeev K Yadav, Felix Halpaap, Kalpna Gahalaut, Seismicity modulation due to hydrological loading in a stable continental region: a case study from the Jektvik swarm sequence in Northern Norway, Geophysical Journal International, 10.1093/gji/ggad210, 235, 1, (231-246), (2023)
哈斯比·阿什·希德基,拉尔斯·奥特莫勒,斯蒂芬·罗登奈,苏萨娜·库斯托迪奥,维内特·K·加哈拉乌,拉吉夫·K·亚达夫,菲利克斯·哈帕普,卡尔普娜·加哈拉乌,由于水文加载导致地震活动性变化在稳定大陆区域:挪威北部杰克维克群序列的案例研究,国际地球物理杂志,10.1093/gji/ggad210,235,1,(231-246),(2023).10.1093/gji/ggad210 -
Benoit Derode, Alisson Gounon, Jean Letort, Matthieu Sylvander, Alexis Rigo, Sébastien Benahmed, Frank Grimaud, Soumaya Latour, Hélène Pauchet, Alvaro Santamaria, Fluid-driven seismic swarms in the Gripp valley (Haute-Pyrénées, France), Geophysical Journal International, 10.1093/gji/ggad175, 234, 3, (1903-1915), (2023)
Benoit Derode, Alisson Gounon, Jean Letort, Matthieu Sylvander, Alexis Rigo, Sébastien Benahmed, Frank Grimaud, Soumaya Latour, Hélène Pauchet, Alvaro Santamaria, 流体驱动地震群在 Gripp 谷(法国上皮卡第),地质学国际期刊,10.1093/gji/ggad175,234,3,(1903-1915),(2023).10.1093/gji/ggad175 -
T.J. Craig, E. Calais, L. Fleitout, L. Bollinger, O. Scotti, Time-variable strain and stress rates induced by Holocene glacial isostatic adjustment in continental interiors, Tectonophysics, 10.1016/j.tecto.2023.229815, 854, (229815), (2023)
T.J. Craig, E. Calais, L. Fleitout, L. Bollinger, O. Scotti, 由全新世冰川等效调整引起的大陆内部时间可变应变和应力速率,构造物理学,10.1016/j.tecto.2023.229815,854,(229815),(2023).10.1016/j.tecto.2023.229815 -
V. B. Smirnov, M. G. Potanina, T. I. Kartseva, A. V. Ponomarev, A. V. Patonin, V. O. Mikhailov, D. S. Sergeev, Seasonal Variations in the b-Value of the Reservoir-Triggered Seismicity in the Koyna–Warna Region, Western India, Izvestiya, Physics of the Solid Earth, 10.1134/S1069351322030077, 58, 3, (364-378), (2022)
V. B. Smirnov, M. G. Potanina, T. I. Kartseva, A. V. Ponomarev, A. V. Patonin, V. O. Mikhailov, D. S. Sergeev, 季节性变化在科尧纳-瓦纳地区水库诱发地震的 b 值, Izvestiya, Physics of the Solid Earth, 10.1134/S1069351322030077, 58, 3, (364-378), (2022).10.1134/S1069351322030077 -
Miles P. Wilson, Gillian R. Foulger, Christopher Saville, Samuel P. Graham, Bruce R. Julian, Earthquake weather and climate change: Should we stress about the forecast?, In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, 10.1130/2021.2553(15), (177-192), (2022)
Miles P. Wilson, Gillian R. Foulger, Christopher Saville, Samuel P. Graham, Bruce R. Julian,地震天气和气候变化:我们该担心预测吗?,在 Warren B. Hamilton 足迹上:地球科学的新思想,10.1130/2021.2553(15),(177-192),(2022).10.1130/2021.2553(15) -
Paul Lundgren, Zhen Liu, S. Tabrez Ali, San Andreas Fault Stress Change Due To Groundwater Withdrawal in California's Central Valley, 1860‐2010, Geophysical Research Letters, 10.1029/2021GL095975, 49, 3, (2022)
保罗·伦德格伦,刘振,S.塔布雷兹·阿里,加利福尼亚州中央谷地地下水开采对圣安德烈亚斯断层应力变化的影响,1860–2010,地质研究信,10.1029/2021GL095975,49,3,(2022).10.1029/2021GL095975 -
Bill McGuire, Earthquakes and Volcanism in a Changing Climate, Treatise on Geomorphology, 10.1016/B978-0-12-818234-5.00124-3, (645-670), (2022)
威廉·麦库里,气候变化中的地震与火山活动,地貌学文库,10.1016/B978-0-12-818234-5.00124-3,(645-670),(2022).10.1016/B978-0-12-818234-5.00124-3 -
Abdullah Othman, Karem Abdelmohsen, A Geophysical and Remote Sensing-Based Approach for Monitoring Land Subsidence in Saudi Arabia, Applications of Space Techniques on the Natural Hazards in the MENA Region, 10.1007/978-3-030-88874-9_20, (477-494), (2022)
阿卜杜拉·奥特曼,卡雷姆·阿德贝尔·穆赫森,沙特阿拉伯地面沉降监测的地球物理和遥感方法,中东和北非地区自然灾害中空间技术的应用,10.1007/978-3-030-88874-9_20,(477-494),(2022).10.1007/978-3-030-88874-9_20 -
T. Olugboji, Manoochehr Shirzaei, Yingping Lu, A. A. Adepelumi, F. Kolawole, On the Origin of Orphan Tremors and Intraplate Seismicity in Western Africa, Frontiers in Earth Science, 10.3389/feart.2021.716630, 9, (2021)
T. Olugboji, Manoochehr Shirzaei, Yingping Lu, A. A. Adepelumi, F. Kolawole, 关于西非孤儿震颤和内陆地震成因的探讨, Frontiers in Earth Science, 10.3389/feart.2021.716630, 9, (2021).10.3389/feart.2021.716630 -
Andrea Berbellini, Lucia Zaccarelli, Licia Faenza, Alexander Garcia, Luigi Improta, Pasquale De Gori, Andrea Morelli, Effect of Groundwater on Noise-Based Monitoring of Crustal Velocity Changes Near a Produced Water Injection Well in Val d'Agri (Italy), Frontiers in Earth Science, 10.3389/feart.2021.626720, 9, (2021)
Andrea Berbellini, Lucia Zaccarelli, Licia Faenza, Alexander Garcia, Luigi Improta, Pasquale De Gori, Andrea Morelli,地下水对意大利瓦尔达格里附近注水井附近地壳速度变化的噪声监测的影响,Frontiers in Earth Science,10.3389/feart.2021.626720,9,(2021).10.3389/feart.2021.626720 -
Ya-Ju Hsu, Honn Kao, Roland Bürgmann, Ya-Ting Lee, Hsin-Hua Huang, Yu-Fang Hsu, Yih-Min Wu, Jiancang Zhuang, Synchronized and asynchronous modulation of seismicity by hydrological loading: A case study in Taiwan, Science Advances, 10.1126/sciadv.abf7282, 7, 16, (2021)
Ya-Ju Hsu, Honn Kao, Roland Bürgmann, Ya-Ting Lee, Hsin-Hua Huang, Yu-Fang Hsu, Yih-Min Wu, Jiancang Zhuang, 水文负荷对地震活动的同步与异步调制:台湾的一个案例研究,Science Advances,10.1126/sciadv.abf7282,7,16,(2021).10.1126/sciadv.abf7282 -
François Pétrélis, Kristel Chanard, Alexandre Schubnel, Takahiro Hatano, Earthquake sensitivity to tides and seasons: theoretical studies, Journal of Statistical Mechanics: Theory and Experiment, 10.1088/1742-5468/abda29, 2021, 2, (023404), (2021)
François Pétrélis, Kristel Chanard, Alexandre Schubnel, Takahiro Hatano,地震对潮汐和季节的敏感性:理论研究,《统计力学杂志:理论与实验》,10.1088/1742-5468/abda29,2021,2,(023404),(2021).10.1088/1742-5468/abda29 -
Jeonghyeop Kim, Alireza Bahadori, William E. Holt, Crustal Strain Patterns Associated With Normal, Drought, and Heavy Precipitation Years in California, Journal of Geophysical Research: Solid Earth, 10.1029/2020JB019560, 126, 1, (2021)
金亨浩,阿尔里扎·巴哈多里,威廉·E·霍尔特,加利福尼亚州正常、干旱和强降水年份的地壳应变模式,地质学研究:固体地球,10.1029/2020JB019560,126,1,(2021).10.1029/2020JB019560 -
Sui Tung, Guang Zhai, Manoochehr Shirzaei, Potential Link Between 2020 Mentone, West Texas M5 Earthquake and Nearby Wastewater Injection: Implications for Aquifer Mechanical Properties, Geophysical Research Letters, 10.1029/2020GL090551, 48, 3, (2021)
苏东,郭广,Manoochehr Shirzaei,2020 年 Mentone,西得克萨斯 M5 地震与附近注水的潜在联系:对含水层机械性质的启示,Geophysical Research Letters,10.1029/2020GL090551,48,3,(2021).10.1029/2020GL090551 -
Pierre Dutilleul, Christopher W. Johnson, Roland Bürgmann, Periodicity Analysis of Earthquake Occurrence and Hypocenter Depth Near Parkfield, California, 1994–2002 Versus 2006–2014, Geophysical Research Letters, 10.1029/2020GL089673, 48, 3, (2021)
皮埃尔·杜蒂勒, 基思·W·约翰逊, 罗兰·伯格曼, 1994–2002 年与 2006–2014 年帕克菲尔德, 加州地震发生周期及震源深度的周期性分析, 地球物理研究快报, 10.1029/2020GL089673, 48, 3, (2021).10.1029/2020GL089673 -
S. Shaheena Parvin, B. Naresh, R. Vijaya Raghavan, P. Solomon Raju, G. Suresh, D. Srinagesh, L. Surinaidu, Source Parameters of Shallow Microtremors Induced by Seasonal Groundwater Recharge in Hyderabad, Southern Peninsular India, Journal of the Geological Society of India, 10.1007/s12594-021-1822-z, 97, 9, (1073-1079), (2021)
S. Shaheena Parvin, B. Naresh, R. Vijaya Raghavan, P. Solomon Raju, G. Suresh, D. Srinagesh, L. Surinaidu, 海得拉巴州南部半岛印度浅层微震由季节性地下水补给引起的原因参数,印度地质学会杂志,10.1007/s12594-021-1822-z,97,9,(1073-1079),(2021).10.1007/s12594-021-1822-z -
Yebang Xu, Paul W. Burton, Himalayan Tectonic Belt: Morlet Wavelet Variation and Seismic Harmony, Pure and Applied Geophysics, 10.1007/s00024-021-02835-7, 178, 9, (3471-3488), (2021)
耶 bang 徐,保罗·W·伯顿,喜马拉雅构造带:莫雷特小波变化与地震和谐,纯粹与应用地球物理,10.1007/s00024-021-02835-7,178,9,(3471-3488),(2021).10.1007/s00024-021-02835-7 -
Chi-Yuen Wang, Michael Manga, Chi-Yuen Wang, Michael Manga, Earthquakes Influenced by Water, Water and Earthquakes, 10.1007/978-3-030-64308-9_4, (61-82), (2021)
奇纳-ユーン・ワン,迈克尔・マングァ,奇纳-ユーン・ワン,迈克尔・マングァ,地震受水影响,水与地震,10.1007/978-3-030-64308-9_4,(61-82),(2021).10.1007/978-3-030-64308-9_4 -
Yuriy Petrovich Maystrenko, Marco Brönner, Odleiv Olesen, Tuomo Mikael Saloranta, Trond Slagstad, Atmospheric Precipitation and Anomalous Upper Mantle in Relation to Intraplate Seismicity in Norway, Tectonics, 10.1029/2020TC006070, 39, 9, (2020)
尤里伊·彼得罗维奇·马斯特伦科,马尔科·布罗内,奥德利夫·奥利森,图莫·迈凯尔·萨洛拉ント,特伦德·斯拉格斯塔德,挪威内陆地震与大气降水及异常上地幔的关系,构造地质学,10.1029/2020TC006070,39,9,(2020).10.1029/2020TC006070 -
L. Jeandet Ribes, N. Cubas, H. S. Bhat, P. Steer, The Impact of Large Erosional Events and Transient Normal Stress Changes on the Seismicity of Faults, Geophysical Research Letters, 10.1029/2020GL087631, 47, 22, (2020)
L. Jeandet Ribes, N. Cubas, H. S. Bhat, P. Steer,大型侵蚀事件和瞬时正应力变化对断层地震活动性的影响,地质研究信,10.1029/2020GL087631,47,22,(2020).10.1029/2020GL087631 -
G. Carlson, M. Shirzaei, S. Werth, G. Zhai, C. Ojha, Seasonal and Long‐Term Groundwater Unloading in the Central Valley Modifies Crustal Stress, Journal of Geophysical Research: Solid Earth, 10.1029/2019JB018490, 125, 1, (2020)
G. Carlson, M. Shirzaei, S. Werth, G. Zhai, C. Ojha,中央谷地季节性和长期地下水卸载改变地壳应力,地质物理研究期刊:固体地球,10.1029/2019JB018490,125,1,(2020).10.1029/2019JB018490 -
Liang Xue, Christopher W. Johnson, Yuning Fu, Roland Bürgmann, Seasonal Seismicity in the Western Branch of the East African Rift System, Geophysical Research Letters, 10.1029/2019GL085882, 47, 6, (2020)
李翔,克里斯托弗·W·约翰逊,于宁·福,罗兰·伯格曼,东非大裂谷西部分支的季节性地震活动,地质研究信使,10.1029/2019GL085882,47,6,(2020).10.1029/2019GL085882 -
Christopher W. Johnson, Yuning Fu, Roland Bürgmann, Hydrospheric modulation of stress and seismicity on shallow faults in southern Alaska, Earth and Planetary Science Letters, 10.1016/j.epsl.2019.115904, 530, (115904), (2020)
克里斯托弗·W·约翰逊,傅云宁,罗兰·伯格曼,阿拉斯加南部浅部断层的水文地球化学应力和地震活动性调节,地球与行星科学学报,10.1016/j.epsl.2019.115904,530,(115904),(2020).10.1016/j.epsl.2019.115904 -
Shuai Wang, Wenbin Xu, Caijun Xu, Zhi Yin, Roland Bürgmann, Lin Liu, Guoyan Jiang, Changes in Groundwater Level Possibly Encourage Shallow Earthquakes in Central Australia: The 2016 Petermann Ranges Earthquake, Geophysical Research Letters, 10.1029/2018GL080510, 46, 6, (3189-3198), (2019)
肖威,徐文斌,徐才军,尹智,罗兰·伯格曼,刘林,江国彦,地下水位变化可能促进澳大利亚中部浅源地震:2016 年彼得曼山脉地震,地质研究信,10.1029/2018GL080510,46,6,(3189-3198),(2019).10.1029/2018GL080510 -
A. Sateesh, P. Mahesh, A. P. Singh, Santosh Kumar, Sumer Chopra, M. Ravi Kumar, Are earthquake swarms in South Gujarat, northwestern Deccan Volcanic Province of India monsoon induced?, Environmental Earth Sciences, 10.1007/s12665-019-8382-1, 78, 13, (2019)
A. Sateesh, P. Mahesh, A. P. Singh, Santosh Kumar, Sumer Chopra, M. Ravi Kumar, 南古吉拉特州、印度西北德干火山省的地震群是否由季风引起?, Environmental Earth Sciences, 10.1007/s12665-019-8382-1, 78, 13, (2019).10.1007/s12665-019-8382-1 -
S. Sri Lakshmi, Puja Banerjee, Dynamic Multifractality of Seismic Activity in Northeast India, Pure and Applied Geophysics, 10.1007/s00024-018-02087-y, 176, 4, (1561-1577), (2019)
S. Sri Lakshmi, Puja Banerjee, 东北印度地震活动的动态多分形性,纯与应用地球物理,10.1007/s00024-018-02087-y,176,4,(1561-1577),(2019).10.1007/s00024-018-02087-y -
Chaoliang Wang, Chuntao Liang, Kai Deng, Yanling Huang, Lu Zhou, Spatiotemporal Distribution of Microearthquakes and Implications Around the Seismic Gap Between the Wenchuan and Lushan Earthquakes, Tectonics, 10.1029/2018TC005000, 37, 8, (2695-2709), (2018)
王朝阳,梁冠军,邓凯,黄燕玲,周露,汶川地震与芦山地震之间地震空隙区微震分布及其意义,构造地质学,10.1029/2018TC005000,37,8,(2695-2709),(2018).10.1029/2018TC005000 -
Kate Huihsuan Chen, Hsin‐Ju Tai, Satoshi Ide, Timothy B. Byrne, Christopher W. Johnson, Tidal Modulation and Tectonic Implications of Tremors in Taiwan, Journal of Geophysical Research: Solid Earth, 10.1029/2018JB015663, 123, 7, (5945-5964), (2018)
凯特·惠 sue 陈,林欣居 Tai,松本 Ide,蒂莫西·B·布林,克里斯托弗·W·约翰逊,台湾地震的潮汐调制与构造意义,地质学研究:固体地球,10.1029/2018JB015663,123,7,(5945-5964),(2018).10.1029/2018JB015663 -
N. D'Agostino, F. Silverii, O. Amoroso, V. Convertito, F. Fiorillo, G. Ventafridda, A. Zollo, Crustal Deformation and Seismicity Modulated by Groundwater Recharge of Karst Aquifers, Geophysical Research Letters, 10.1029/2018GL079794, 45, 22, (12,253-12,262), (2018)
N. D'Agostino, F. Silverii, O. Amoroso, V. Convertito, F. Fiorillo, G. Ventafridda, A. Zollo,喀斯特含水层地下水补给对地壳变形和地震活动的调节,地质研究信,10.1029/2018GL079794,45,22,(12,253-12,262),(2018).10.1029/2018GL079794 -
Corné Kreemer, Ilya Zaliapin, Spatiotemporal Correlation Between Seasonal Variations in Seismicity and Horizontal Dilatational Strain in California, Geophysical Research Letters, 10.1029/2018GL079536, 45, 18, (9559-9568), (2018)
Corné Kreemer, Ilya Zaliapin, 加州地震活动与水平膨胀应变的时空相关性,Geophysical Research Letters, 10.1029/2018GL079536, 45, 18, (9559-9568), (2018).10.1029/2018GL079536 -
Meredith L. Kraner, William E. Holt, Adrian A. Borsa, Seasonal Nontectonic Loading Inferred From cGPS as a Potential Trigger for the M6.0 South Napa Earthquake, Journal of Geophysical Research: Solid Earth, 10.1029/2017JB015420, 123, 6, (5300-5322), (2018)
梅丽尔·L·克兰纳,威廉·E·霍尔特,阿德里安·A·博尔萨,从 cGPS 推断出的季节性非构造加载可能作为 M6.0 南纳帕地震的触发因素,地质学研究:固体地球,10.1029/2017JB015420,123,6,(5300-5322),(2018).10.1029/2017JB015420 -
Yelebe Birhanu, Matthew Wilks, Juliet Biggs, J-Michael Kendall, Atalay Ayele, Elias Lewi, Seasonal patterns of seismicity and deformation at the Alutu geothermal reservoir, Ethiopia, induced by hydrological loading, Journal of Volcanology and Geothermal Research, 10.1016/j.jvolgeores.2018.03.008, 356, (175-182), (2018)
耶莱贝·比兰努,马修·威尔克斯,朱丽叶·比格斯,J-迈克尔·肯德尔,阿塔莱·阿耶勒,埃利亚斯·勒维,埃塞俄比亚阿卢图地热田的地震活动性和变形的季节性模式,由水文负荷诱发,火山地质与地热研究杂志,10.1016/j.jvolgeores.2018.03.008,356,(175-182),(2018).10.1016/j.jvolgeores.2018.03.008 -
Abdullah Othman, Mohamed Sultan, Richard Becker, Saleh Alsefry, Talal Alharbi, Esayas Gebremichael, Hassan Alharbi, Karem Abdelmohsen, Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation, Surveys in Geophysics, 10.1007/s10712-017-9458-7, 39, 3, (543-566), (2018)
Abdullah Othman, Mohamed Sultan, Richard Becker, Saleh Alsefry, Talal Alharbi, Esayas Gebremichael, Hassan Alharbi, Karem Abdelmohsen, 利用地球物理和遥感数据评估含水层枯竭及相关土地变形,地质调查学汇刊,10.1007/s10712-017-9458-7,39,3,(543-566),(2018).10.1007/s10712-017-9458-7 -
Pietro Artale Harris, Warner Marzocchi, Daniele Melini, What Can We Learn from a Simple Physics-Based Earthquake Simulator?, Pure and Applied Geophysics, 10.1007/s00024-018-1815-z, 175, 8, (2739-2752), (2018)
皮特罗·阿尔塔莱·哈里斯,沃纳·马尔佐奇,丹 iele 梅利尼,从一个简单的基于物理的地震模拟器中我们可以学到什么?纯应用地球物理,10.1007/s00024-018-1815-z,175,8,(2739-2752),(2018).10.1007/s00024-018-1815-z -
Christopher W. Johnson, Yuning Fu, Roland Bürgmann, Seasonal water storage, stress modulation, and California seismicity, Science, 10.1126/science.aak9547, 356, 6343, (1161-1164), (2017)
克里斯托弗·W·约翰逊,于宁,罗兰·伯格曼,季节性水储量、应力调制和加利福尼亚地震活动,科学,10.1126/science.aak9547,356,6343,(1161-1164),(2017).10.1126/science.aak9547 -
Timothy J. Craig, Kristel Chanard, Eric Calais, Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone, Nature Communications, 10.1038/s41467-017-01696-w, 8, 1, (2017)
蒂莫西·J·克雷克,克里斯特尔·钱德,埃里克·卡莱斯,由水文驱动的岩石应力和地震活动性在新马德里地震带,自然通讯,10.1038/s41467-017-01696-w,8,1,(2017).10.1038/s41467-017-01696-w -
Christopher W. Johnson, Yuning Fu, Roland Bürgmann, Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity, Journal of Geophysical Research: Solid Earth, 10.1002/2017JB014778, 122, 12, (10,605-10,625), (2017)
克里斯托弗·W·约翰逊,于宁,罗兰·伯格曼,加州断层的年度水文、大气、热和潮汐负荷循环的应力模型:背景应力的扰动和地震活动性的变化,地质物理研究:固体地球,10.1002/2017JB014778,122,12,(10,605-10,625),(2017).10.1002/2017JB014778 -
David R. Shelly, A 15 year catalog of more than 1 million low‐frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault, Journal of Geophysical Research: Solid Earth, 10.1002/2017JB014047, 122, 5, (3739-3753), (2017)
David R. Shelly,超过 100 万次低频地震的 15 年目录:跟踪深圣安德烈亚斯断层的震颤和滑动,地质学研究杂志:固体地球,10.1002/2017JB014047,122,5,(3739-3753),(2017).10.1002/2017JB014047 -
John K. Costain, Groundwater recharge as the trigger of naturally occurring intraplate earthquakes, Geological Society, London, Special Publications, 10.1144/SP432.9, 432, 1, (91-118), (2016)
约翰·K·科斯坦,地下水补给作为天然构造地震的触发因素,英国地质学会,特别出版物,10.1144/SP432.9,432,1,(91-118),(2016).10.1144/SP432.9 -
Bill McGuire, Implications for hazard and risk of seismic and volcanic responses to climate change in the high-mountain cryosphere, The High-Mountain Cryosphere, 10.1017/CBO9781107588653.007, (109-126), (2015)
威廉·麦库里,气候变化对高山冰冻圈地震和火山活动的影响及灾害和风险,高山冰冻圈,10.1017/CBO9781107588653.007,(109-126),(2015).10.1017/CBO9781107588653.007 -
A.P. Singh, O.P. Mishra, Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India, Tectonophysics, 10.1016/j.tecto.2015.07.032, 661, (38-48), (2015)
A.P. Singh, O.P. Mishra, 地震证据表明 2011 年塔拉拉,萨乌尔 ashtra 地震下方存在季风诱发的微至中等地震序列,印度古吉拉特邦,构造物理学,10.1016/j.tecto.2015.07.032,661,(38-48),(2015).10.1016/j.tecto.2015.07.032 -
M. Manga, C.-Y. Wang, Earthquake Hydrology, Treatise on Geophysics, 10.1016/B978-0-444-53802-4.00082-8, (305-328), (2015)
M. Manga, C.-Y. Wang, 地震水文学, 地球物理文库, 10.1016/B978-0-444-53802-4.00082-8, (305-328), (2015).10.1016/B978-0-444-53802-4.00082-8 -
Olga Sarychikhina, Ewa Glowacka, Braulio Robles, F. Alejandro Nava, Miguel Guzmán, Estimation of Seismic and Aseismic Deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, Using Precise Leveling, DInSAR, Geotechnical Instruments Data, and Modeling, Pure and Applied Geophysics, 10.1007/s00024-015-1067-0, 172, 11, (3139-3162), (2015)
奥尔加·萨里奇希娜,埃瓦·戈洛瓦卡,布拉乌利奥·罗布雷斯,弗朗西斯科·阿莱杭多·纳瓦,米格尔·古兹曼,利用精密水准测量、DInSAR、地质仪器数据和建模,对墨西哥下加利福尼亚州梅希卡利谷地在 2006-2009 期间的地震和非地震形变进行估算,Pure and Applied Geophysics,10.1007/s00024-015-1067-.,172,11,(3139-3162),(2015).10.1007/s00024-015-1067-0 -
Pierre Dutilleul, Christopher W. Johnson, Roland Bürgmann, Yongge Wan, Zheng‐Kang Shen, Multifrequential periodogram analysis of earthquake occurrence: An alternative approach to the Schuster spectrum, with two examples in central California, Journal of Geophysical Research: Solid Earth, 10.1002/2015JB012467, 120, 12, (8494-8515), (2015)
皮埃尔·杜蒂勒, 基思·W·约翰逊, 罗兰·伯格曼, 汪永格, 沈正康, 地震发生频率的多频段图谱分析: 一种替代 Schuster 谱的方法, 以加利福尼亚州中部的两个例子为例, 地球物理研究期刊: 固体地球, 10.1002/2015JB012467, 120, 12, (8494-8515), (2015).10.1002/2015JB012467 -
Takaki Iwata, Decomposition of Seasonality and Long‐term Trend in Seismological Data: A Bayesian Modelling of Earthquake Detection Capability, Australian & New Zealand Journal of Statistics, 10.1111/anzs.12079, 56, 3, (201-215), (2014)
塔克西·伊瓦塔,季节性与长期趋势的分解在地震数据中的应用:地震检测能力的贝叶斯建模,澳大利亚与新西兰统计学杂志,10.1111/anzs.12079,56,3,(201-215),(2014).10.1111/anzs.12079 -
Thomas J. Ader, Nadia Lapusta, Jean-Philippe Avouac, Jean-Paul Ampuero, Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations, Geophysical Journal International, 10.1093/gji/ggu144, 198, 1, (385-413), (2014)
托马斯·J·阿德尔,纳迪娅·拉普斯塔,让-菲利普·阿沃阿克,让-保罗·阿姆佩罗,谐波剪切应力扰动对速率-状态地震生成断层的响应,国际地球物理学杂志,10.1093/gji/ggu144,198,1,(385-413),(2014).10.1093/gji/ggu144 -
Jochen Braunmiller, John L. Nábělek, Anne M. Tréhu, A seasonally modulated earthquake swarm near Maupin, Oregon, Geophysical Journal International, 10.1093/gji/ggu081, 197, 3, (1736-1743), (2014)
约赫恩·布劳恩米勒,约翰·L·纳贝克,安妮·M·特鲁,奥赖恩州马普林附近季节性变化的地震群,国际地球物理杂志,10.1093/gji/ggu081,197,3,(1736-1743),(2014).10.1093/gji/ggu081 -
Colin B. Amos, Pascal Audet, William C. Hammond, Roland Bürgmann, Ingrid A. Johanson, Geoffrey Blewitt, Uplift and seismicity driven by groundwater depletion in central California, Nature, 10.1038/nature13275, 509, 7501, (483-486), (2014)
科林·B·阿莫斯,帕斯卡·奥代特,威廉·C·哈蒙德,罗兰·伯格曼,伊琳达·A·约翰森,乔治·布莱维特,加利福尼亚州中部地下水开采驱动的抬升和地震活动,自然,10.1038/nature13275,509,7501,(483-486),(2014).10.1038/nature13275 -
A. S. Cherepantsev, Parameters of the response of the volumetric strain field to the external acting processes, Izvestiya, Physics of the Solid Earth, 10.1134/S1069351313060013, 49, 6, (796-812), (2013)
A. S. Cherepantsev,体积应变场对外部作用过程的响应参数, Izvestiya, Physics of the Solid Earth, 10.1134/S1069351313060013, 49, 6, (796-812), (2013).10.1134/S1069351313060013 -
Betim Muço, The atmospheric water as a triggering factor for earthquakes in the central Virginia seismic zone, Natural Hazards, 10.1007/s11069-013-0902-9, 71, 1, (135-150), (2013)
贝蒂姆·穆科,大气水作为弗吉尼亚中央地震区地震的触发因素,自然灾害,10.1007/s11069-013-0902-9,71,1,(135-150),(2013).10.1007/s11069-013-0902-9 -
Fred F. Pollitz, Aaron Wech, Honn Kao, Roland Bürgmann, Annual modulation of non‐volcanic tremor in northern Cascadia, Journal of Geophysical Research: Solid Earth, 10.1002/jgrb.50181, 118, 5, (2445-2459), (2013)
弗雷德·F·波利茨,阿伦·韦奇,洪·高,罗兰·伯格曼,北美喀斯喀特地区非火山震颤的年度调制,地质物理研究杂志:固体地球,10.1002/jgrb.50181,118,5,(2445-2459),(2013).10.1002/jgrb.50181 -
Bill McGuire, Hazardous Responses of the Solid Earth to a Changing Climate, Climate Forcing of Geological Hazards, 10.1002/9781118482698.ch1, (1-33), (2012)
威廉·麦基尔,固体地球对变化气候的危险响应,气候对地质灾害的驱动作用,10.1002/9781118482698.ch1,(1-33),(2012).10.1002/9781118482698.ch1 -
Giuliano F. Panza, Antonella Peresan, Elisa Zuccolo, Climatic modulation of seismicity in the Alpine–Himalayan mountain ranges, Terra Nova, 10.1111/j.1365-3121.2010.00976.x, 23, 1, (19-25), (2010)
吉廖尼·F·帕纳扎,安托纳内拉·佩雷斯安,埃莉萨·祖科洛,阿尔卑斯-喜马拉雅山脉地区的地震活动性气候调制,Terra Nova,10.1111/j.1365-3121.2010.00976.x,23,1,(19-25),(2010).10.1111/j.1365-3121.2010.00976.x -
B. McGuire, Potential for a hazardous geospheric response to projected future climate changes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 10.1098/rsta.2010.0080, 368, 1919, (2317-2345), (2010)
B. McGuire,未来气候变化预测可能引发的危险地质响应潜力,《哲学交易会皇家学会 A:数学、物理和工程科学》,10.1098/rsta.2010.0080,368,1919,(2317-2345),(2010).10.1098/rsta.2010.0080 -
Marcelo Assumpção, Tereza H. Yamabe, José Roberto Barbosa, Valiya Hamza, Afonso E. V. Lopes, Lucas Balancin, Marcelo B. Bianchi, Seismic activity triggered by water wells in the Paraná Basin, Brazil, Water Resources Research, 10.1029/2009WR008048, 46, 7, (2010)
马塞洛·阿斯姆皮奥,特雷莎·H·亚马贝,若泽·罗伯托·巴尔博萨,瓦利娅·哈姆扎,阿丰索·E·V·洛佩斯,卢卡斯·巴兰辛,马塞洛·B·比安奇,巴西帕拉纳盆地水井诱发的地震活动,水文地质资源,10.1029/2009WR008048,46,7,(2010).10.1029/2009WR008048 -
G. Sanchez, Y. Rolland, M. Corsini, R. Braucher, D. Bourlès, M. Arnold, G. Aumaître, Relationships between tectonics, slope instability and climate change: Cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps, Geomorphology, 10.1016/j.geomorph.2009.10.019, 117, 1-2, (1-13), (2010)
G. Sanchez, Y. Rolland, M. Corsini, R. Braucher, D. Bourlès, M. Arnold, G. Aumaître,构造运动、坡面不稳定与气候变化之间的关系:西南阿尔卑斯山区活动断层、滑坡和冰川表面的宇宙射线暴露测年,地貌学,10.1016/j.geomorph.2009.10.019,117,1-2,(1-13),(2010).10.1016/j.geomorph.2009.10.019 -
Laurent Bollinger, Marc Nicolas, Sylvie Marin, Hydrological triggering of the seismicity around a salt diapir in Castellane, France, Earth and Planetary Science Letters, 10.1016/j.epsl.2009.11.051, 290, 1-2, (20-29), (2010)
路易·邦吉埃,马克·尼古拉斯,西尔维·马林,法国卡斯泰兰附近盐柱的水文触发地震性,地球与行星科学学报,10.1016/j.epsl.2009.11.051,290,1-2,(20-29),(2010).10.1016/j.epsl.2009.11.051 -
Shu‐Hao Chang, Wei‐Hau Wang, Jian‐Cheng Lee, Modelling temporal variation of surface creep on the Chihshang fault in eastern Taiwan with velocity‐strengthening friction, Geophysical Journal International, 10.1111/j.1365-246X.2008.03995.x, 176, 2, (601-613), (2009)
张树豪,王伟华,李建成,利用速度增强摩擦模型模拟台湾东部奇山断层表面蠕变的时间变化,国际地球物理杂志,10.1111/j.1365-246X.2008.03995.x,176,2,(601-613),(2009).10.1111/j.1365-246X.2008.03995.x -
Chi-Yuen Wang, Michael Manga, Chi-yuen Wang, Michael Manga, Earthquakes Influenced by Water, Earthquakes and Water, 10.1007/978-3-642-00810-8_8, (125-139), (2009)
奇纳-ユーン・ワン,マイクロ・マンガ,奇纳-ユーン・ワン,マイクロ・マンガ,地震受水影响,地震与水,10.1007/978-3-642-00810-8_8,(125-139),(2009).10.1007/978-3-642-00810-8_8 -
S. A. ROJSTACZER, S. E. INGEBRITSEN, D. O. HAYBA, Permeability of continental crust influenced by internal and external forcing, Geofluids, 10.1111/j.1468-8123.2008.00211.x, 8, 2, (128-139), (2008)
S. A. ROJSTACZER, S. E. INGEBRITSEN, D. O. HAYBA,大陆地壳渗透性受内部和外部作用影响,Geofluids,10.1111/j.1468-8123.2008.00211.x,8,2,(128-139),(2008).10.1111/j.1468-8123.2008.00211.x