Figure 1: Graphical models showing (a) the reqired form for a probabilistic model for SVI (reproduced from [Hoffman et al.,2012]),with global variables and latent variables . (b) The graphical model corresponding to Gaussian process regression,where connectivity between the values of the function is denoted by a loop around the plate. (c) The graphical model corresponding to the sparse GP model,with inducing variables working as global variables,and the term acting as . Marginalisation of leads to the variational DTC formulation, introducing dependencies between the observations.
图 1:图形模型展示(a) SVI 概率模型所需的形式(摘自[Hoffman et al.,2012]),包含全局变量 和潜在变量 。(b) 对应高斯过程回归的图形模型,其中函数值 之间的连通性通过围绕平板的循环表示。(c) 对应稀疏 GP 模型的图形模型,其中诱导变量 作为全局变量,项 充当 的角色。对 进行边缘化处理得到变分 DTC 公式,引入了观测值之间的依赖关系。