JournalofPhysics 会议系列
PAPER • OPEN ACCESS
论文 • 开放获取
Fault Diagnosis of Transmission Lines Based on High Frequency Electromagnetic Spectrum Distribution Characteristics
基于高频电磁频谱分布特性的输电线路故障诊断
To cite this article: Zhongling Miu et al 2022 J. Phys.: Conf. Ser. 2166 012017
引用本文 :ZhonglingMiuet al2022J.Phys.:Conf.Ser.2166 012017
View the article online for updates and enhancements.
联机查看文章,了解更新和增强功能。
You may also like
您还可能喜欢
The BT-SAM-Net: a new framework of end-to-end periodic time-series fault diagnosis for aero-pipelines systems Tongguang Yang, Zhonghua Dang, Yicheng Duan et al.
Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network
基于子域自适应网络的滚动轴承多源跨域故障诊断
Zhichao Wang, Wentao Huang, Yi Chen et al.
王志超 , 黄文涛 , 陈毅
Diagnosis and Treatment of Burst Vibration Fault of Large Steam Turbine Generator Shaft System
大型汽轮发电机轴系统毛刺振动故障的诊断与处理
Yalei Xia, Hui Xu, Yong Li et al.
Yalei Xia, Hui Xu, Yong Li et al.
This content was downloaded from IP address 120.194.222.19 on 03/06/2025 at 05:18
此内容于 2025 年 3 月 6 日 05:18 从 IP 地址 120.194.222.19 下载
Fault Diagnosis of Transmission Lines Based on High Frequency Electromagnetic Spectrum Distribution Characteristics
基于高频电磁频谱特性分布的输电线路故障诊断
Zhongling Miu1*, Nian Wu2, Junwen Yao1, Xianbin Ke2, Pingyuan Liu1 and Shiguang Bie2
缪中玲 1* 吴念 2, 姚俊文 1, 柯贤斌 2, 刘平远 1, 比世光 2
1 Guangdong Power Grid Co., Ltd, No. 757 East Dongfeng Road, Yuexiu District, Guangzhou 510000, China
1 广东电网有限公司中国广州市越秀区东风东路 757 号 510000
2 Electric Power Research Institute Wuhan Nanrui Co. , Ltd, No. 143 Luoyu Road, Hongshan district, Wuhan 430074, China
2 武汉南瑞电力科学研究院有限公司 143LuoyuRoad, Hongshan District, Wuhan 430074, China (中国武汉市洪山区罗育罗裕区)
Email: 1169271991@qq.com
邮箱:1169271991@qq.com
Abstract. According to the recognition of the fault of the transmission line,the traditional methods of manual detection, image recognition and infrared observation can not distinguish the defects, but the line produces the electromagnetic interference level change is its produces the flaw the important characteristic. Therefore, the electromagnetic interference (EMI) can be used as a parameter in the inspection of high-voltage transmission line. this paper studies the correlation between the fault of the transmission line and the distribution of the high frequency electromagnetic spectrum, by analyzing the level change of the electromagnetic interference between the normal wire and the broken wire, the defects such as the old wire, the broken wire and the serious corrosion, which can not be distinguished by image, are detected, it provides a strong technical support for the condition assessment of transmission line conductors.
抽象。 根据对输电线路故障的识别,传统的人工检测、图像识别和红外观察方法无法区分缺陷,但线路产生的电磁干扰水平变化是其产生缺陷的重要特征。因此,电磁干扰 (EMI) 可以用作高压输电线路检查的一个参数。本文通过分析电磁干扰物的电平变化,研究输电线路故障与高频电磁频谱分布之间的相关性在正常线和断线之间,对图像无法区分的旧线、断线 、严重腐蚀等缺陷进行检测, 为输电线路导体的状态评估提供了强有力的技术支撑。
Introduction
介绍
With the development of national economy, the demand for electric power is higher and higher in the course of modernization construction, and the requirement for safe operation of electric power system is higher and higher. High-voltage transmission lines may be broken, damage, if not handled in a timely manner, will be broken in the vicinity of the broken wire in the case of rapid strain, broken or even short-circuit, resulting in the interruption of business data, large-scale blackout and loss of equipment and personnel and other serious consequences [1-2]. Therefore, it is necessary to test the broken and damaged high-voltage transmission lines to ensure the safety and reliability of transmission lines and the normal operation of power equipment.
随着国民经济的发展,在现代化建设的进程中,对电力的需求越来越高 ,对电力系统安全运行的要求也越来越高。高压输电线路可能会断线、损坏,如果不及时处理 ,会在断线附近断线的情况下快速应变、断线甚至短路,造成业务数据中断、大面积停电和设备人员损失等严重后果 [1-2]。因此,有必要对断裂和损坏的高压输电线路进行检测,以确保输电线路的安全可靠和电力设备的正常运行。
When the transmission lines are damaged or seriously corroded, the traditional methods of manual detection, image recognition and infrared observation can not distinguish the defects [3-5], but at this time the line produces the electromagnetic interference level change is its produces the flaw the important characteristic. Therefore, the electromagnetic interference (EMI) can be used as a parameter in the inspection of high-voltage transmission line.
当输电线路损坏或严重腐蚀时,传统的年探测、图像识别和红外观测方法无法区分缺陷 [3-5],但此时线路产生的电磁干扰水平变化是其产生缺陷的重要特征。因此,电磁干扰 (EMI) 可以用作高压输电线路检查中的参数。
Based on the large-scale application of unmanned aerial vehicles (uavs) and the research on corona characteristics of transmission line conductors, this paper studies the correlation between the fault of transmission line strands and the distribution of high frequency electromagnetic spectrum, by analyzing the level change of the electromagnetic interference between the normal wire and the broken
该文基于无人机(UAV)的大规模应用和输电线路导体的电晕特性研究, 通过分析电磁干扰的电平变化 ,研究了输电线路链故障与高频电磁频谱分布的相关性在正常线和断线之间
Content
Published under licence by IOP Publishing Ltd 1
经 IOPPublishing Ltd 许可出版 1
wire, the defects such as the old wire, the broken wire and the serious corrosion, which can not be distinguished by image, are detected, it provides a strong technical support for the condition assessment of transmission line conductors.
对导线、旧导线、断丝、严重腐蚀等图像无法区分的缺陷进行检测,为输电线路导体的状况评估提供了强有力的技术支撑 。
Theoretical Computation of Electromagnetic Interference
电磁干扰的理论计算
For actual transmission lines, the Trichel pulse and the initial flow pattern appear in the negative half cycle and the positive half cycle under the operating field intensity. Both of these corona modes generate short-duration pulses of current with a steep rise time. The negative corona current pulse has faster rise time and shorter duration than the positive pulse, and the amplitude of the positive pulse is usually much higher than that of the negative pulse. Finally, the positive pulse becomes the main source of transmission line Ri.
对于实际的传输线,在工作场强度下,Trichel 脉冲和初始流型出现在负 half 周期和正半周期中。这两种电晕模式都会产生具有陡峭上升时间的短时电流脉冲。负电晕电流脉冲比正脉冲上升时间更快,持续时间更短,正脉冲的幅度 通常远高于负脉冲的幅度。最后,正脉冲成为传输线 Ri 的 mai n 源。
Each corona discharge can be regarded as a current source, injecting a series of random current pulses into the wire. The injected current pulse can be divided into two pulses, each pulse has half the amplitude of the original pulse and propagates in the opposite direction along the wire. In the process of propagation, the pulses in both directions will be distorted and attenuated until they become negligible at a certain distance from the origin. Therefore, each corona source has only a limited observation distance depending on the attenuation characteristics of the line. Therefore, at any given point of a wire, the synthetic current is composed of pulses propagating in two directions from different sources distributed along the wire, the amplitude of the pulses changing randomly and the time interval distributing randomly. In the time domain, the positive polarity corona pulse can be expressed as a double exponential:
每次电晕放电都可以看作是一个电流源,向导线中注入一系列随机的电流脉冲。注入的电流脉冲可分为两个脉冲,每个脉冲的振幅为原始脉冲的一半,并沿导线沿相反方向传播。在传播过程中 ,两个方向的脉冲都会失真和衰减,直到它们在距原点一定距离处变得可以忽略不计。因此,每个日冕源的观测距离有限,具体取决于线路的衰减特性。因此,在导线的任意给定点,合成电流由沿导线分布的不同来源向两个方向传播的脉冲组成 ,脉冲的幅度随机变化, 时间间隔随机分布。在时域中,正极性电晕脉冲可以表示为双指数:
i(t) K i (et et )
(1)
Formula, ip
公式,ip
is the current amplitude (in Ma), K , and are the waveform determined by
是电流幅度 (以 马 为单位 ),K, 和 是由
the empirical constant, t units for ns
ns 的经验常数 ,t 单位 .
Through the Fourier Transform, arbitrary time domain pulses can be correlated as follows:
通过傅里叶变换, 任意时域脉冲 s 可以关联如下:
f (t)
f( 吨 )
and frequency domain
和频域
F()
F()
F() f (t)e jtdt
(2)
f (t) 1
2
F()ejtd
F()etd
(3)
In the formula, is the angular frequency and f is the frequency, 2f
在公式中 , 是角频率 ,f 是频率,2f
. In general,
一般来说 ,
F()
F()
is a complex function. For Real Function
是一个复杂的函数。 对于真实功能
f (t) , F() F() , Where stands for
f(t)F()F() 其中 代表
complex conjugation. In this case,
复共轭。 在这种情况下 ,
f (t)
f( 吨 )
can be reduced to:
可以简化为:
f (t) 1 F() cost ()d
0 (4)
0(4)
Where
哪里
F()
F()
is the amplitude and
是振幅 ,
()
is the phase angle of Frequency .
是 Frequency 的相位角 。
For Corona pulses defined by formula (1) , the use of the Fourier transform can be described in the frequency domain as follows:
F()
F()
f (t)e jtdt
f(t)etdt
K ip
et et e jtdt
eedt
K ip
( j) ( j)
(j)
(5)
Spectrum amplitude
F()
F()
is:
是:
F() K ip
(6)
The maximum value of
F()
F()
appears at
出现在
0
as a function of the pulse amplitude and
作为脉冲幅度的函数 ,并且
duration.
期间。
F()
F()
as a function of varies in different regions as follows:
作为函数 of 在不同地区变化 ,如下所示 :
F() K ip
, ,
(7)
F() K i
, ,
(8)
F() K i
, ,
(9)
F() K ip
, ,
2
(10)
The value of
的值
F()
F()
given by formula (7) at low frequencies (including Zeros) is actually equal to
由公式 (7) 给出的在低频 (包括 Zero) 下实际上等于
that given by formula (1) , which gives the interval integral of the pulse waveform from 0 to ∞ . As
increases, the spectrum amplitude remains at this value until → ,Then it starts to fall, almost inversely proportional to the frequency, as shown in (8) .The second critical point occurs at →
as shown in (9) ,The amplitude
如图 9 所示 , 振幅
F()
F()
begins to decrease inversely with
开始与
2 . At high frequencies,
2. 在高频下 ,
the amplitude is inversely proportional to
振幅与
2 , as shown in (10) .Therefore, the constants and
2, 如 (10) 所示 。因此, 常数 和
that define the pulse shape also define the transition point of the spectrum.
定义脉冲形状的 API 也定义了频谱的过渡点 。
Taking the single corona source of corona discharge as a unit current section, the High Frequency Electric Field at the receiving point is calculated by using the antenna model of figure 1. The scale of
以电晕放电的单个电晕源为单位电流段, 利用图 1 的天线模型计算接收点的高频电场 。 规模
the positive initial beam is about l , and the distance between the discharge point and the measuring
正初始光束约为 l, 放电点与被测点之间的距离
point is r , the magnetic and electric fields at the measuring point can be calculated using equations
点为 r, 测量点的磁场和电场可以用方程式计算
(11) and (12)
(11) 和 (12) :
Figure 1. Antenna model.
图 1. 天线模型。
↼˙ I˙l
↼ ̇I ̇l
jkr
H 4r2 e
(1 jkr)sine
(1jkr)sine
(11)
˙ I˙l
̇ 我 ̇l
e jkr
I˙l
I ̇l
e jkr 2 2
E j
20 r
(1 jkr) coser j 4 r3
(1jkr)cosej4r3
(1 jkr k r
(1jkrkr
) sin e
)sine
(12)
Test Analysis
测试分析
In this test, the loop antenna is used to measure the EMI value. The test scheme is as follows: the length of the wire is 28m, the wire is pressurized to 63.5 kV, the EMI value of the intact wire and the broken wire is tested under the condition of 0.5 KHz. The simulation of a broken strand of wire is shown in figure 2.
在本测试中,使用环形天线测量 EMI 值。测试方案如下: 导线长度为 28m,导线加压至 63.5 kV, 在 0.5 KHz 的条件下测试完好导线和断线的 EMI 值。 图 2 中所示的断线模拟。
Figure 2. Simulation of wire strand breakage.
图 2. 模拟线束断裂。
Figure 3. Top view of point distribution.
图 3. 点分布的顶视图 。
Measurement point selection. H = 2.95 m; the simulated fault point is set as the midpoint of the wire; the origin is chosen to be 3.3 m away from the fault point on the ground projection, and the connection between the fault point and the midpoint is perpendicular to the wire.
测量点选择。高 = 2.95 米;模拟的故障点设置为导线的中点 ;原点选择在地面投影上距故障点 3.3 m,并且故障点和中点之间的连接垂直于导线。
The measurements were carried out with a spectrum analyzer, the first being a single broken strand of the analog wire under normal conditions and the second being a single broken strand of the wire. Each time 7 points were selected, respectively 2.5 m, 4.5 m to the right of the origin, 2 m, 3.8 m to the left, 1.7 m, 3.5 m, 5 m away from the traverse direction. A top view of the distribution of measurement points is shown in figure 3.
测量是使用频谱分析仪进行的,第一次是正常条件下模拟线的单个断线,第二次是线的单股断线每次选择 7 个点,分别是原点右侧 2.5 m、4.5 m、2 m、3.8 m , 距导线方向 1.7m、3.5m、5 m。 测量点分布的俯视图如图 3 所示。
In the first measurement, the instantaneous value of radio interference at 0.5 Mhz under normal conductor conditions is obtained as shown in table 1. In the second measurement, the instantaneous value of the 0.5 MHz radio interference in the case of a broken conductor is obtained as shown in table
在第一次测量中,在标准导体条件下 0.5 Mhz 无线电干扰的瞬时值如图 1 所示。在第二次测量中, 获得导体断裂情况下 0.5MHz 无线电干扰的瞬时 s 值 , 如表所示
2. Two groups of data of normal and broken wires are compared, as shown in table 3.
2. 比较正常线和断线两组数据 , 如表 3 所示。
Table 1. Instantaneous value of radio interference under normal conditions.
表 1. 正常情况下无线电干扰的瞬时值 。
Point position | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Instantaneous value (dB·μV/m) | 47.8 | 50.6 | 49.4 | 48.6 | 50.0 | 45.2 | 43.6 | 44.5 |
Table 2. Instantaneous value of radio interference when the conductor is broken.
表 2. 导体断开时无线电干扰的瞬时值 。
Point position | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Instantaneous value (dB·μV/m) | 58.0 | 51.4 | 53.1 | 51.7 | 49.1 | 46.7 | 45.5 | 45.3 |
Table 3. Comparison of instantaneous value of radio interference between normal and broken conductors.
表 3. 正常导体和破导体之间无线电干扰的瞬时值比较 。
Point position | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Normal conductor (dB·μV/m) | 47.8 | 50.6 | 49.4 | 48.6 | 50.0 | 45.2 | 43.6 | 44.5 |
Broken Strand (dB·μV/m) | 58.0 | 51.4 | 53.1 | 51.7 | 49.1 | 46.7 | 45.5 | 45.3 |
The results of table 3 show that there is little difference in EMI between broken wires and intact wires at 4,5,6 and 7 points, and the longitudinal distance has little influence on EMI at 0,1,2 and 3 points, the difference of the electromagnetic interference between the broken wire and the intact wire is in the range of 3.1 ~ 10.2 dB(μV/m). With the change of the transverse distance, the electromagnetic interference will have some regular changes, therefore, the difference of EMI can be used to judge the broken strands of conductors.
表 3 结果表明,断丝和内部线在 4、5、6 和 7 点的 EMI 差异很小,纵向距离对 0、1、2 和 3 点的 EMI 影响很小 ,断线与完整线之间的电磁干扰差异在 3.1~10.2dB(μV/m) 范围内 。 随着横向距离的变化 , 电磁干扰会有一些规律的变化,因此,EMI 的差异可以用来判断导体的断线。
Compute Validation
计算验证
The main project to break the strands of wire as an example, see figure 4. It is assumed that the positive initial flux is the main contribution component of the electromagnetic interference in the AC corona discharge, and the amplitude of the pulse current is 20 mA in equation (1) , the single corona source of corona discharge is used as a unit current section to calculate the High Frequency Electric Field (0.5 MHz) at the receiving point by using the antenna model. The size of the positive initial beam is about 2 cm, and the distance between the discharge point and the measuring point is 8 m, using Equations (11) and (12) , the magnetic and electric fields at the measuring point are calculated.
以主项目以断线为例,见图 4。假设正初始磁通量是 A C 电晕放电中电磁干扰的主要贡献分量 ,在方程(1)中脉冲电流的幅度为 20 mA, 以电晕放电的单个 cor ona 源作为单位电流段, 利用天线模型计算接收点的高频电场 (0.5 MHz)。正起始光束的大小约为 2 cm,放电点与测量点之间的距离为 8 m,使用方程 (11) 和 (12) 计算测量点的磁场和电场。
Figure 4. Broken strand single point corona discharge and discharge scale.
图 4. 断链单点电晕放电和放电刻度。
In the calculation, the propagation attenuation of corona current on the wire is not considered, and it is an ideal free space, and the influence of the earth is ignored. Based on 1 μV/m, the electromagnetic interference electric field is converted to E(dB)≈58.31 at 0.5 Mhz frequency.The calculated results are close to the electromagnetic interference value of 58.0 dB (μV/m) at 0.5 MHz.
在计算中,没有考虑电晕电流在导线上的传播衰减, 它是一个理想的自由空间,忽略了地球的影响。以 1 μV/m 为基础, 电磁干扰电场在 0.5 Mhz 频率下转换为 E(dB)≈58.31。 计算结果接近 0.5 MHz 时 58.0 dB (μV/m) 的电磁干扰值。
Conclusion
结论
Based on the analysis of the generation and propagation of electromagnetic interference (EMI) on transmission lines, combined with the characteristics of EMI on transmission lines, the EMI tests on normal and broken conductors of transmission lines are carried out, the experimental results are verified by theoretical calculation. The specific conclusions are as follows:
在分析电磁干扰(EMI)在输电线路上产生和传播的基础上 ,结合输电线路上 EMI 的特点, 对输电线路的正常导体和断线进行了 EMI 测试,实验结果经过理论计算验证。具体结论如下:
at 4,5,6,7 points, the difference of EMI between broken wire and intact wire is small, and the longitudinal distance has little influence on EMI;
在 4、5、6、7 点处,断丝和完好丝的 EMI 差异很小, 纵向距离对 EMI 影响不大;
At points 0,1,2 and 3, the difference of EMI Between Broken and intact conductors is in the range of 3.1-10.2 dB (μV/m) . With the change of transverse distance, there are some regular changes in EMI.
在点 0、1、2 和 3 处,断裂导体和完整导体之间的 EMI 差异在 3.1-10.2 dB (μV/m) 的范围内。随着横向距离的变化,EMI 会有一些规律的变化 。
According to the theoretical calculation, the value of electromagnetic interference at 0.5 MHz is about 58.31 dB (μV/m) , which is close to the value of electromagnetic interference at 0.5 MHz (μV/m) .
根据理论计算,0.5MHz 时的电磁干扰值约为 58.31 dB (μV/m),接近 0.5 MHz 时的电磁干扰值 (μV/m)。
Acknowledgments
确认
This work was financially supported by China Southern Power Grid Corporation (Item Number: GDKJXM20190010 (031000KK52190001).
这项工作得到了中国南方电网公司 (项目编号 :GDKJXM20190010 (031000KK52190001) 的财政支持 。
References
引用
Liu Y, Chang H, Jin Zh Sh, et al. 2011 On-line monitoring and analysis of long span gentle wind vibration in Songhua River on 220kv hemu line Heilongjiang Power 33(2): 121-124.
Liu Y, Chang H, Jin Zh Sh, et al. 2011220kv 鹤木线松花江大跨度温和风振动在线监测分析黑龙江电力 33(2): 121-124.
Liu Y, Li T, Zhu X Ch, et al. 2013 Application and research of on-line monitoring system for wind vibration in long span of Songhua River on 500Kv Yongxing Line Heilongjiang Power 35(6): 512-514.
Liu Y, Li T, Zhu X Ch, et al. 2013 500Kv 永兴线松花江大跨度风振在线监测系统的应用与研究 黑龙江电力 r35(6): 512-514.
Sun F, Chen Min U, Luo T, et al. 2010 Comparative study on fault detection methods for transmission line breakage and damage Microcomputer Information 26(1-3): 132-134.
孙峰, 陈敏宇宇, 罗 T, 等 .2010 输电线路破损故障检测方法比较研究 微机信息 26(1-3): 132-134.
Qi G Sh, Shang F, Han B, et al. 2017 Detection method of broken strand defect of aircraft patrol conductor based on image processing technology Heilongjiang Electric Power 39(6): 5.
Qi GSh,Shang F,Han B,et al. 2017 基于图像处理技术的飞机巡逻导体断股缺陷检测方法黑龙江电力 39(6):5.
Yang F F, Xiao P 2016 Study and application of infrared thermal image characteristics of metal conductor defects in substations Science and Technology Innovation (34): 17-18.
杨福峰,肖平 2016 变电站中导体缺陷红外热像特性的研究与应用 科技创新 (34): 17-18.