- Journal List 期刊列表
- Scientific Reports 科学报告 ESI学科分类:多学科简介JCI 1.05IF(5) 4.3SCU 综合性期刊DSCI升级版 综合性期刊2区SCI基础版 综合性期刊3区SCI Q1IF 3.8CUG 综合性期刊T2XJU 二区NJU ASWJTU A++SWUFE B
-
PMC7522718IF: 3.8 Q1 B2
PMC7522718如果:3.8 Q1 B2
作为一个图书馆,NLM 提供科学文献的访问。纳入 NLM 数据库并不意味着认可或同意, NLM 或国立卫生研究院的内容。
Learn more: PMC Disclaimer | PMC Copyright Notice
了解更多: 免责声明 | PMC版权声明
2020 年 9 月 28 日在线发布。doi : 10.1038/s41598-020-72802-0如果:3.8 Q1 B2
PMCID: PMC7522718如果:3.8 Q1 B2
Gender differences in adolescent sleep neurophysiology: a high-density sleep EEG study
青少年睡眠神经生理学的性别差异:高密度睡眠脑电图研究
安杰拉·马尔科维奇 (Andjela Markovic) 、 1、2迈克尔·凯斯 (Michael Kaess) 、 1、3和莱拉·塔罗克 (Leila Tarokh ) 1
Andjela Markovic
1University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000 Bern, Switzerland
2Graduate School for Health Sciences, University of Bern, Bern, Switzerland
Michael Kaess
1University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000 Bern, Switzerland
3Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
Leila Tarokh
1University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000 Bern, Switzerland
作者信息文章注释版权和许可信息PMC 免责声明
Associated Data 相关数据
- Supplementary Materials 补充材料
- GUID: A35BD5C1-A9A5-418E-BCB3-56FA8463430FGUID: 6A3612FA-3146-4CD6-A0FF-29D386C9D1A4GUID: 7F1CBF21-933F-48F8-A892-5C554C24DAC5GUID: 187BA7C3-EFE3-4B4E-B02C-DAD792F6822AGUID: 60DA81AD-4790-4621-867F-F67C14F6F021GUID: 965F296E-2927-475D-9A12-64A56ABE6527
- Data Availability Statement
数据可用性声明 The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request and pending ethics approval.
Abstract 抽象的
During adolescence, differences between males and females in physiology, behavior and risk for psychopathology are accentuated. The goal of the current study was to examine gender differences in sleep neurophysiology using high-density sleep EEG in early adolescence. We examined gender differences in sleep EEG power and coherence across frequency bands for both NREM and REM sleep in a sample of 61 adolescents (31 girls and 30 boys; mean age = 12.48; SD = 1.34). In addition, sleep spindles were individually detected and characterized. Compared to boys, girls had significantly greater spindle activity, as reflected in higher NREM sigma power, spindle amplitude, spindle frequency and spindle density over widespread regions. Furthermore, power in higher frequency bands (16.2–44 Hz) was larger in girls than boys in a state independent manner. Oscillatory activity across frequency bands and sleep states was generally more coherent in females as compared to males, suggesting greater connectivity in females. An exception to this finding was the alpha band during NREM and REM sleep, where coherence was higher (NREM) or not different (REM) in boys compared to girls. Sleep spindles are generated through thalamocortical circuits, and thus, the greater spindle activity across regions in females may represent a stronger thalamocortical circuit in adolescent females as compared to males. Moreover, greater global connectivity in females may reflect functional brain differences with implications for cognition and mental health. Given the pronounced gender differences, our study highlights the importance of taking gender into account when designing and interpreting studies of sleep neurophysiology.
在青春期,男性和女性在生理、行为和精神病理学风险方面的差异会加剧。当前研究的目标是利用青春期早期的高密度睡眠脑电图检查睡眠神经生理学的性别差异。我们检查了 61 名青少年(31 名女孩和 30 名男孩;平均年龄 = 12.48;SD = 1.34)样本中 NREM 和 REM 睡眠的睡眠 EEG 功率和跨频段一致性的性别差异。此外,对睡眠纺锤波进行了单独检测和表征。与男孩相比,女孩的纺锤体活动明显更高,这反映在广泛区域的 NREM 西格玛功率、纺锤体振幅、纺锤体频率和纺锤体密度较高。此外,以与州无关的方式,女孩在较高频段(16.2-44 Hz)的功率比男孩更大。与男性相比,女性跨频段和睡眠状态的振荡活动通常更加连贯,这表明女性的连通性更强。这一发现的一个例外是 NREM 和 REM 睡眠期间的 α 波段,与女孩相比,男孩的一致性更高 (NREM) 或没有差异 (REM)。睡眠纺锤体是通过丘脑皮质回路产生的,因此,与男性相比,女性跨区域的纺锤体活动更大可能代表青春期女性的丘脑皮质回路更强。此外,女性更大的全球连通性可能反映了大脑功能差异,对认知和心理健康产生影响。鉴于明显的性别差异,我们的研究强调了在设计和解释睡眠神经生理学研究时考虑性别的重要性。
主题术语:神经科学、昼夜节律和睡眠、非快速眼动睡眠、快速眼动睡眠
Introduction 介绍
A cascade of biological, behavioral and social changes characterizes adolescent development. These include the maturation of sleep physiology and behavior, which support healthy cognitive and emotional functioning. One of the most striking changes in sleep physiology across adolescence is an approximately 40% decline in low-frequency sleep electroencephalography (EEG) power (i.e. slow wave activity; SWA)1–5. The maturational decline in SWA takes place in a gender specific manner, occurring about one year earlier in girls than in boys (mean age of maximal decline: 12.53 years in girls and 13.74 years in boys) as demonstrated by Campbell et al.6 in a longitudinal study (n = 67). In this study, SWA at one EEG derivation (C3/A2 or C4/A1) was analyzed across ages spanning 9–18 years and factors influencing the timing of the decline were examined. Together sex and pubertal stage accounted for 67% of the between-subject variance in the timing of SWA decline. In a later longitudinal study spanning ages 12–21 years in a separate sample of adolescents7, not only did the decline in SWA commence earlier in girls than boys, but was steeper in boys as compared to girls.
一系列生物、行为和社会变化是青少年发展的特征。其中包括睡眠生理和行为的成熟,支持健康的认知和情绪功能。整个青春期睡眠生理学最显着的变化之一是低频睡眠脑电图 (EEG) 功率(即慢波活动;SWA)下降约 40% 1 – 5 。 Campbell 等人证明,SWA 的成熟衰退以性别特有的方式发生,女孩比男孩早一年左右(最大衰退的平均年龄:女孩 12.53 岁,男孩 13.74 岁)。 6在一项纵向研究中 (n = 67)。在这项研究中,对 9-18 岁年龄段的一个 EEG 衍生(C3/A2 或 C4/A1)的 SWA 进行了分析,并检查了影响下降时间的因素。性别和青春期阶段合计占 SWA 下降时间的受试者间差异的 67%。在后来一项跨越 12 至 21 岁青少年单独样本的纵向研究中7发现,女孩的 SWA 下降不仅比男孩更早开始,而且男孩的下降幅度比女孩更严重。
The above-described changes to the sleep EEG during adolescent development parallel and likely reflect changes in cortical gray matter volume. Magnetic resonance imaging (MRI) studies of adolescent brain development report substantial anatomical maturation including a loss of gray matter volume8, increase of white matter volume8–10 and a reduction of cortical thickness10 during adolescence with gray matter and total brain volume reaching their peak size earlier in girls as compared to boys11. Indeed, two studies examining both sleep EEG power and MRI gray matter volume in the same sample found a correlation between slow wave activity and cortical gray matter volumes in adolescents12,13.
上述青少年发育期间睡眠脑电图的变化与皮质灰质体积的变化相似,并且可能反映了皮质灰质体积的变化。青少年大脑发育的磁共振成像 (MRI) 研究报告显示,青春期时,大脑解剖结构已显着成熟,包括灰质体积减少8 、白质体积增加8 – 10以及皮质厚度减少10 ,其中灰质和总脑体积达到其正常水平与男孩相比,女孩的体型达到峰值更早11 .事实上,两项检查同一样本中的睡眠脑电图功率和 MRI 灰质体积的研究发现,青少年的慢波活动与皮质灰质体积之间存在相关性12 、 13 。
In addition to SWA, gender differences have also been reported for sleep spindles, transient oscillations between 11 and 16 Hz. Spindles are generated through thalamocortical loops14 and allow an opportunity to monitor the activity of the thalamocortical circuit. In adults, greater sleep spindle density has been reported for women as compared to men15,16 and linked to higher sleep stability in women15 and functional differences in the thalamocortical network between genders16. However, studies investigating developmental periods (e.g., adolescence) with a main focus on gender differences in sleep spindle activity are lacking. An exception to this is a large-scale study comprised of a few EEG derivations spanning the ages 4–97 years, which reported greater spindle density in females, but no differences for amplitude, duration or frequency of spindles17. Another recent study examining changes to sleep spindle activity in 134 individuals across the ages 12–21 years found greater frequency of fast spindles in girls as compared to boys, but no differences in amplitude, duration or density18. The discrepancy in findings from these studies may be related to the different distribution of age in their samples, since developmental factors may impact gender differences as previously discussed. Therefore, further investigations of gender differences in sleep spindle activity during developmental periods are necessary.
除了 SWA 之外,睡眠纺锤波(11 至 16 Hz 之间的瞬态振荡)也存在性别差异。纺锤体通过丘脑皮质环路14产生并且允许有机会监测丘脑皮质环路的活动。据报道,在成年人中,与男性相比,女性睡眠纺锤体密度更大15 、 16 ,这与女性更高的睡眠稳定性15以及性别之间丘脑皮质网络的功能差异16有关。然而,缺乏主要关注睡眠纺锤波活动的性别差异的发育时期(例如青春期)的研究。一个例外是一项由一些跨越 4 至 97 岁的脑电图推导组成的大规模研究,报告称女性的纺锤体密度更高,但纺锤体的振幅、持续时间或频率没有差异17 。最近的另一项研究检查了 134 名年龄在 12-21 岁之间的个体的睡眠纺锤波活动的变化,发现与男孩相比,女孩快速纺锤波的频率更高,但幅度、持续时间或密度没有差异18 。这些研究结果的差异可能与样本中年龄的不同分布有关,因为如前所述,发育因素可能会影响性别差异。因此,有必要进一步研究发育时期睡眠纺锤体活动的性别差异。
Though a number of studies have examined the influence of gender on the sleep EEG during adolescence, as described above, these studies only examined a few bands (e.g., SWA) or electrodes6,7,19–21. Given the strong topographic variation in power as a function of age22 and findings from a previous study showing region-dependent genetic influence on sleep EEG power in adolescence23,24, results from a single EEG derivation cannot be generalized to other derivations. To our knowledge, only one study has examined gender differences using high-density sleep EEG25. In this study of 11 boys and 11 girls ranging in age between 8.7 and 19.4 years, the authors observed higher SWA in girls over bilateral temporal regions, whereas boys had higher SWA over central and frontal regions. The generalizability of these findings is limited given the broad age range (> 10 years) and the large changes to the sleep EEG that occur during this period coupled with the modest sample size (i.e., 11 in each group) and the focus on SWA.
尽管如上所述,许多研究已经检查了性别对青春期期间睡眠脑电图的影响,但这些研究仅检查了少数条带(例如,SWA)或电极6 , 7 , 19 – 21 。鉴于功率随年龄变化的强烈地形变化22以及先前研究的结果表明区域依赖性遗传对青春期睡眠脑电图功率的影响23 , 24 ,单一脑电图推导的结果不能推广到其他推导。据我们所知,只有一项研究使用高密度睡眠脑电图检查了性别差异25 。在这项对年龄在 8.7 岁至 19.4 岁之间的 11 名男孩和 11 名女孩进行的研究中,作者观察到女孩双侧颞部区域的 SWA 较高,而男孩中央和额叶区域的 SWA 较高。鉴于年龄范围较广(> 10 岁)、这一时期睡眠脑电图发生较大变化、样本量较小(即每组 11 人)以及对 SWA 的关注,这些发现的普遍性是有限的。
Therefore, the current study focused on gender differences in sleep neurophysiology using high-density sleep EEG power in the frequency range from 1 to 44 Hz in a sample of 61 adolescents (mean age = 12.5; SD = 1.3; 31 females) at two time points 6 months apart. Based on previous findings, we hypothesized that boys will show more sleep EEG power in lower frequencies due to the later developmental decline of SWA in males6,7. In line with previous findings in adults15,16 and adolescents17,18, we expected girls to demonstrate greater spindle activity. In addition to sleep EEG power, a measure largely influenced by the number of synchronously firing neurons, we examined sleep EEG coherence, an index of brain connectivity during sleep reflecting interactions between spatially segregated populations of neurons26. While a study in adults aged 17–69 years has shown differences between males and females in a measure of sleep EEG connectivity27, to the best of our knowledge no previous studies have examined gender differences in sleep EEG coherence in adolescence. Therefore, we based our hypothesis on EEG coherence studies in waking, expecting that girls will demonstrate increased coherence as compared to boys28,29.
因此,本研究重点关注睡眠神经生理学中的性别差异,使用频率范围为 1 至 44 Hz 的高密度睡眠脑电图功率,对 61 名青少年(平均年龄 = 12.5;SD = 1.3;31 名女性)进行两次采样。点相隔6个月。根据之前的研究结果,我们假设,由于男性 SWA 的后期发育下降,男孩会在较低频率下表现出更多的睡眠脑电图功率6 , 7 。与之前在成人15 、 16和青少年17 、 18中的研究结果一致,我们预计女孩会表现出更强的纺锤体活动。除了睡眠脑电图功率(一种主要受同步放电神经元数量影响的指标)之外,我们还检查了睡眠脑电图一致性,这是睡眠期间大脑连接性的指数,反映了空间隔离的神经元群之间的相互作用26 。虽然一项针对 17-69 岁成年人的研究表明,男性和女性在睡眠脑电图连接性测量方面存在差异27 ,但据我们所知,之前没有研究探讨青春期睡眠脑电图一致性的性别差异。因此,我们的假设基于清醒状态下的脑电图一致性研究,预计女孩与男孩相比会表现出更高的一致性28 , 29 。
Methods 方法
Participants 参加者
Thirty-one girls (mean age = 12.13; SD = 1.67) and thirty boys (mean age = 12.83; SD = 0.75) between 9 and 14 years old (84% between 12 and 14 years) were recruited as part of a twin study examining the heritability of the sleep EEG23,24,30,31. There was no significant age difference between boys and girls. Participants were healthy and born after the 30th week of pregnancy. Pubertal status was assessed by means of a validated self-rating scale adapted from Petersen et al.32 which determines pubertal development via the appearance of secondary sexual characteristics. According to the taxonomy of Tanner33, pubertal development is divided into five stages ranging from stage 1 (preadolescent) to stage 5 (full sexual maturity). Due to the earlier timing of puberty in girls, and our recruitment based on age, pubertal status in our sample was significantly different (p < 0.001) between genders with girls (mean = 3; SD = 1) being on average one pubertal category ahead of boys (mean = 2; SD = 1). The study was performed according to the Declaration of Helsinki and approved by the responsible ethics committee of the Canton of Zurich. Written informed consent from parents and assent from participants were obtained.
作为双胞胎研究的一部分,招募了 31 名女孩(平均年龄 = 12.13;SD = 1.67)和 30 名男孩(平均年龄 = 12.83;SD = 0.75),年龄在 9 至 14 岁之间(84% 在 12 至 14 岁之间)检查睡眠脑电图的遗传性23,24,30,31 。男孩和女孩之间没有显着的年龄差异。参与者身体健康,并在怀孕第 30 周后出生。青春期状态通过改编自 Petersen 等人的经过验证的自评量表进行评估。 32通过第二性征的出现决定青春期发育。根据Tanner的分类法33 ,青春期发育分为五个阶段,从第1阶段(青春期前)到第5阶段(完全性成熟)。由于女孩的青春期时间较早,并且我们的招募是根据年龄进行的,因此样本中的青春期状态在性别之间存在显着差异( p < 0.001),其中女孩(平均值 = 3;SD = 1)平均领先一个青春期类别男孩人数(平均值 = 2;SD = 1)。该研究是根据赫尔辛基宣言进行的,并得到了苏黎世州负责的伦理委员会的批准。获得了父母的书面知情同意和参与者的同意。
Procedures and EEG data analysis
程序和脑电图数据分析
Sleep EEG was recorded on two consecutive nights (adaptation and baseline) at two time points 6 months apart (Time 1 and Time 2). Forty-nine participants (22 females) completed both sleep EEG assessments (Time 1 and Time 2). The recordings were performed at families’ homes after at least five days of a fixed sleep schedule with 9.5–10 h of time in bed per night ensuring adequate sleep. Compliance to the sleep schedule was measured by means of actigraphy and sleep diaries. Data from the baseline night were used for analyses with the exception of three subjects at Time 1 and three subjects at Time 2 whose baseline night recordings were of insufficient quality and, therefore, data from the adaptation night were used. For two subjects, data from both nights at the first assessment had to be excluded from the analyses due to technical difficulties with the EEG equipment. Therefore, only data from the second assessment time point were available for these subjects.
连续两个晚上(适应和基线)在相隔 6 个月的两个时间点(时间 1 和时间 2)记录睡眠脑电图。 49 名参与者(22 名女性)完成了两项睡眠脑电图评估(时间 1 和时间 2)。这些记录是在至少五天的固定睡眠时间表后在家庭中进行的,每晚在床上的时间为 9.5-10 小时,以确保充足的睡眠。通过体动记录仪和睡眠日记来测量对睡眠时间表的遵守情况。基线夜间的数据用于分析,但时间 1 的三名受试者和时间 2 的三名受试者除外,其基线夜间记录质量不足,因此使用适应夜间的数据。对于两名受试者,由于脑电图设备的技术困难,必须将第一次评估时两个晚上的数据排除在分析之外。因此,这些受试者只能获得第二个评估时间点的数据。
All recordings were performed on a 64-channel Geodesics system (Electrical Geodesic Inc., Eugene, OR, USA). Two channels were used for electrooculogram, two for electromyogram and two for electrocardiogram, resulting in 58 EEG derivations. Data were acquired at 1000 Hz and downsampled to 250 Hz for analysis. Channels with poor quality of signal were excluded based on visual inspection of spectrograms. The signals at all derivations were recalculated to average reference after excluding bad channels. The recordings were scored in 30-s epochs according to standard criteria34. Power density spectra were calculated per epoch (5-s windows; Hanning window; no overlap) using MATLAB (Mathworks, Natick MA, USA). Epochs with artifacts were excluded via a semi-automatic procedure based on the moving average over 21 epochs when power exceeded a threshold in 0.8–4.6 Hz and 20–40 Hz ranges of frequencies as previously described in35. We examined EEG power at each derivation for all frequency bands and the two states—rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. The average number of NREM sleep epochs (30 s per epoch) included in the analyses was 770 (SD = 88) for Time 1 and 743 (SD = 124) for Time 2, while the average number of REM sleep epochs was 277 (SD = 75) for Time 1 and 256 (SD = 62) for Time 2. The following frequency bands were analyzed: delta (1–4.6 Hz), theta (4.8–7.8 Hz), alpha (8–10.8 Hz), sigma (11–16 Hz), beta 1 (16.2–20 Hz), beta 2 (20.2–24 Hz), gamma 1 (24.2–34 Hz) and gamma 2 (34.2–44 Hz). In order to assess gender differences in the topographic distribution of power independent of absolute power differences, we also examined power at each derivation normalized by the total power across derivations.
所有记录均在 64 通道测地线系统(Electrical Geodesic Inc.,尤金,俄勒冈州,美国)上进行。两个通道用于眼电图,两个通道用于肌电图,两个通道用于心电图,产生 58 个 EEG 推导。数据以 1000 Hz 采集,并降采样至 250 Hz 进行分析。根据频谱图的目视检查,排除信号质量差的通道。排除不良通道后,所有衍生信号均重新计算为平均参考值。根据标准34对录音进行 30 秒的评分。使用 MATLAB(Mathworks,Natick MA,美国)计算每个历元的功率密度谱(5 秒窗口;汉宁窗口;无重叠)。当功率超过 0.8–4.6 Hz 和 20–40 Hz 频率范围的阈值时,通过基于 21 个时期的移动平均值的半自动程序排除具有伪影的时期,如先前在35中所述。我们检查了所有频段和两种状态(快速眼动 (REM) 和非快速眼动 (NREM) 睡眠)每次推导时的脑电图功率。分析中包含的 NREM 睡眠时期(每个时期 30 秒)的平均数量在时间 1 中为 770 (SD = 88),在时间 2 中为 743 (SD = 124),而 REM 睡眠时期的平均数量为 277 (SD = 124)。 = 75)(时间 1)和 256(SD = 62)(时间 2)。分析了以下频段:delta (1–4.6 Hz)、theta (4.8–7.8 Hz)、alpha (8–10.8 Hz)、sigma ( 11–16 Hz)、beta 1 (16.2–20 Hz)、beta 2 (20.2–24 Hz)、gamma 1 (24.2–34 Hz) 和 gamma 2 (34.2–44 Hz)。 为了评估与绝对功率差异无关的功率地形分布中的性别差异,我们还检查了每个导数的功率,并通过导数的总功率标准化。
In addition to band power, an algorithm based on the envelope of the bandpass filtered signal from the Hilbert transform as described by Rusterholz et al.24 was applied to detect individual spindles in the frequency range between 10 and 16 Hz and extract their main features including amplitude, frequency, duration and density. In addition to the entire spindle range (between 10 and 16 Hz), slow (between 10 and 12 Hz) and fast (between 12 and 16 Hz) spindles were analyzed separately, as differences in the topographic distribution of these two classes of spindles have been shown in adults36 suggesting different mechanisms of generation. In contrast to sigma power which we define as 11–16 Hz, we set the lower limit for the detection of individual spindle events at 10 Hz, because this allows us to detect spindles that are at the lower boundary.
除了频带功率之外,还有一种基于 Hilbert 变换带通滤波信号包络的算法,如 Rusterholz 等人所述。 24用于检测 10 至 16 Hz 频率范围内的各个纺锤体,并提取其主要特征,包括振幅、频率、持续时间和密度。除了整个主轴范围(10 至 16 Hz 之间)之外,还分别分析了慢速(10 至 12 Hz 之间)和快速(12 至 16 Hz 之间)主轴,因为这两类主轴的地形分布差异在成人中的研究表明36表明了不同的生成机制。与我们定义为 11-16 Hz 的西格玛功率相反,我们将单个纺锤体事件的检测下限设置为 10 Hz,因为这使我们能够检测位于下边界的纺锤体。
Coherence was calculated between all possible channel pairs (i.e., 1653 connections) as
所有可能的通道对(即 1653 个连接)之间的一致性计算如下:
Statistical analysis 统计分析
For each band and state, significance was determined using an ANOVA with factors Gender (Female, Male), Age (decimal number representing the exact age at Time 1 and Time 2), Pubertal Status (stages 1–5; representing pubertal development at Time 1 and Time 2), and Relatedness (29 twin pairs and one triplet coded as 30 categories) for both power and coherence. In other words, data from both time points (Time 1 and Time 2) were analyzed in a repeated measures design with Age and Pubertal Status as both between-subject and within-subject (Time 1 and Time 2) factors. The same model was used to determine statistical significance of the four spindle features (amplitude, frequency, duration and density). Since the phase of the menstrual cycle has been shown to affect sleep spindle activity40,41, we conducted the same statistical analysis in a subsample including only girls who have not started to menstruate with age matched boys (18 girls and 18 boys).
对于每个带和状态,使用方差分析确定性别(女性、男性)、年龄(代表时间 1 和时间 2 时的确切年龄的小数)、青春期状态(阶段 1-5;代表时间时的青春期发育)的方差分析。 1 和时间 2),以及相关性(29 对双胞胎和 1 个三胞胎,编码为 30 个类别),以提高力量和连贯性。换句话说,以年龄和青春期状态作为受试者间和受试者内(时间1和时间2)因素的重复测量设计来分析两个时间点(时间1和时间2)的数据。使用相同的模型来确定四个纺锤体特征(振幅、频率、持续时间和密度)的统计显着性。由于月经周期的阶段已被证明会影响睡眠纺锤体活动40 , 41 ,因此我们在一个子样本中进行了相同的统计分析,该子样本仅包括尚未开始月经的女孩与年龄匹配的男孩(18 名女孩和 18 名男孩)。
The same analysis (ANOVA with factors Gender, Age, Pubertal Status and Relatedness) was applied to sleep stage variables. ANOVAs were performed in R with the package afex. Because gender differences are the focus of this paper and previous research findings suggest an interaction between age and gender effects on sleep EEG power6,7, we limit our analysis to main effects and the analysis of the interactions in our model to gender by age interactions. For all sleep EEG parameters, effect sizes of gender differences were calculated by means of Cohen’s d42. All p values were corrected for multiple comparisons using the false discovery rate according to the Benjamini–Hochberg procedure43. In power and sleep spindle analysis, we corrected for the number of derivations (i.e., 58), while in the coherence analysis we corrected for the overall number of connections (i.e., 1653; all possible channel pairs).
同样的分析(包含性别、年龄、青春期状态和相关性因素的方差分析)也适用于睡眠阶段变量。方差分析是在 R 中使用afex包进行的。因为性别差异是本文的重点,而且之前的研究结果表明年龄和性别之间存在交互作用对睡眠脑电图功率的影响6 , 7 ,因此我们将我们的分析限制在主效应上,并通过年龄交互作用来分析模型中性别的交互作用。 。对于所有睡眠脑电图参数,性别差异的影响大小通过 Cohen's d 42计算。根据 Benjamini-Hochberg 程序43 ,使用错误发现率对所有p值进行了多重比较校正。在功率和睡眠主轴分析中,我们校正了导数数量(即 58),而在一致性分析中,我们校正了连接总数(即 1653;所有可能的通道对)。
Results 结果
Gender effects 性别影响
Participants showed sleep architecture typical for healthy adolescents of this age group sleeping an average of 9 h and exhibiting a sleep efficiency greater than 90% (Table (Table1).1). As revealed by the ANOVA (Table (Table1),1), boys had slightly more wake after sleep onset as compared to girls (p = 0.04).
参与者表现出该年龄段健康青少年的典型睡眠结构,平均睡眠 9 小时,睡眠效率大于 90%(表(表1 ).1 )。方差分析显示(表(表 1), 1 ),与女孩相比,男孩在入睡后醒来的次数略多( p = 0.04)。
Table 1 表格1
Sleep parameter 睡眠参数 | Time 1 时间1 | ANOVA | |||
---|---|---|---|---|---|
Female 女性 | Male 男性 | Gender 性别 | Age 年龄 | Gender × age 性别×年龄 | |
Total sleep time (min) 总睡眠时间(分钟) | 537.00 (± 55.50) | 528.00 (± 38.00) | 1.13 (p = 0.29) 1.13( p = 0.29) | 6.15 (p = 0.01) 6.15( p = 0.01 ) | 1.88 (p = 0.17) 1.88( p = 0.17) |
Wake after sleep onset (min) 入睡后醒来(分钟) | 18.98 (± 18.91) 18.98(±18.91) | 33.78 (± 32.85) 33.78(±32.85) | 6.74 (p = 0.01) 6.74( p = 0.01 ) | 0.00 (p = 0.99) 0.00( p = 0.99) | 0.00 (p = 0.97) 0.00( p = 0.97) |
Sleep latency (min) 睡眠潜伏期(分钟) | 23.57 (± 18.60) 23.57(±18.60) | 17.65 (± 10.13) 17.65(±10.13) | 2.61 (p = 0.11) 2.61( p = 0.11) | 3.96 (p = 0.05) 3.96( p = 0.05) | 2.92 (p = 0.09) 2.92( p = 0.09) |
Sleep efficiency (%) 睡眠效率(%) | 92.52 (± 4.38) 92.52(±4.38) | 90.91 (± 5.59) 90.91(±5.59) | 2.31 (p = 0.13) 2.31( p = 0.13) | 1.26 (p = 0.26) 1.26( p = 0.26) | 0.88 (p = 0.35) 0.88( p = 0.35) |
REM Latency (MIN) REM 延迟(最短) | 98.98 (± 34.77) 98.98(±34.77) | 109.88 (± 51.00) 109.88(±51.00) | 2.65 (p = 0.11) 2.65( p = 0.11) | 4.17 (p = 0.04) 4.17( p = 0.04 ) | 1.36 (p = 0.25) 1.36( p = 0.25) |
Stage 2 (%) | 47.40 (± 9.21) | 41.89 (± 9.00) | 3.06 (p = 0.08) | 3.85 (p = 0.05) | 0.00 (p = 0.94) |
Slow wave sleep (%) | 27.20 (± 8.46) | 29.60 (± 9.30) | 0.00 (p = 0.96) | 6.87 (p = 0.01) | 0.37 (p = 0.54) |
Stage REM (%) | 24.71 (± 4.65) | 27.99 (± 6.12) | 1.44 (p = 0.23) | 7.96 (p = 0.01) | 0.10 (p = 0.75) |
Mean and standard deviation (in parentheses) of sleep parameters for females (n = 31) and males (n = 30) in our sample at first time point of assessment (Time 1; Time 2 not shown as there were no significant differences between the two time points). The percentages were calculated with respect to total sleep time. Sleep latency is defined as the first occurrence of stage 2 sleep following lights out. Results from our ANOVA with factors Gender (Female, Male), Age (continuous variable), Pubertal Status (stages 1–5), and Relatedness (29 twin pairs and one triplet coded as 30 categories) are reported for the factors Gender and Age as well as their interaction (F-values; p values in parentheses). The factor Relatedness only reached significance for sleep latency (F = 8.48; p = 0.005), while the factor Pubertal Status remained non-significant for all sleep parameters. p values were corrected for multiple comparisons by means of the false discovery rate and p values lower than 0.05 are shown in bold.
我们的样本中女性 (n = 31) 和男性 (n = 30) 在第一个评估时间点(时间 1;时间 2 未显示,因为两者之间没有显着差异,因此未显示睡眠参数的平均值和标准差(括号中))两个时间点)。百分比是根据总睡眠时间计算的。睡眠潜伏期定义为熄灯后第一次出现第二阶段睡眠。针对性别和年龄因素,报告了我们的方差分析结果,其中包括性别(女性、男性)、年龄(连续变量)、青春期状态(1-5 阶段)和相关性(29 对双胞胎和 1 个三胞胎,编码为 30 个类别)以及它们的相互作用(F 值;括号中的p值)。因子相关性仅对睡眠潜伏期达到显着性(F = 8.48; p = 0.005),而因子青春期状态对于所有睡眠参数仍然不显着。通过错误发现率对多重比较的p值进行校正,低于 0.05 的p值以粗体显示。
Absolute sleep EEG power did not differ between boys and girls in the delta to alpha bands during NREM and REM sleep (Fig. 1; first and second column). In NREM, but not REM sleep, our ANOVA revealed a highly significant effect of gender in the sigma band, with girls showing greater power over all regions [Fig. 1; fourth row, third column; effect size = 0.51–0.92 with 86% of the significant derivations having an effect size between 0.5 and 0.8 (moderate) and another 14% having an effect size of at least 0.8 (large)]. Females also exhibited greater power in the beta and gamma bands in a state independent manner (Fig. 2; third column; effect size = 0.32–0.94; 71% moderate and 6% large effect size).
在 NREM 和 REM 睡眠期间,男孩和女孩的 delta 至 alpha 波段的绝对睡眠 EEG 功率没有差异(图1 ;第一列和第二列)。在非快速眼动睡眠中,但在快速眼动睡眠中,我们的方差分析显示性别对西格玛带的影响非常显着,女孩在所有区域都表现出更大的力量[图 1]。 1 ;第四行,第三列;效应大小 = 0.51–0.92,其中 86% 的显着导数的效应大小在 0.5 到 0.8 之间(中等),另外 14% 的效应大小至少为 0.8(大)]。女性还以与状态无关的方式在 β 和 γ 波段表现出更大的功率(图2 ;第三列;效应大小 = 0.32-0.94;71% 中等效应大小和 6% 大效应大小)。
When sleep EEG power was normalized, gender differences were most pronounced in NREM delta (effect size = 0.27–0.94; 54% moderate and 11% large effect size) and sigma (effect size = 0.17–0.88; 61% moderate and 14% large effect size) bands with girls showing a more frontal focus and boys exhibiting a shift of maxima towards central/occipital regions in both of these frequency bands (Supplementary Figure 1). A similar pattern was also found in other frequency bands and both sleep states (Supplementary Figures 1 and 2).
当睡眠 EEG 功率正常化时,性别差异在 NREM delta(效应大小 = 0.27–0.94;54% 中等效应大小和 11% 大效应大小)和 sigma(效应大小 = 0.17–0.88;61% 中等效应大小和 14% 大效应大小)方面最为明显。在这两个频段中,女孩表现出更多的额叶焦点,而男孩则表现出最大值向中央/枕骨区域转移(补充图1 )。在其他频段和两种睡眠状态中也发现了类似的模式(补充图1和图 2 )。
With regards to sleep spindle features, we observed a highly significant effect of gender across derivations for spindle amplitude (effect size = 0.32–0.99; 57% moderate and 20% large effect size), frequency (effect size = 0.18–0.85; 72% moderate and 2% large effect size) and density (effect size = 0.29–1.04; 53% moderate and 33% large effect size) with girls showing higher amplitude, as well as denser and faster spindles (Fig. 3; third column). No such effect was found for spindle duration. These observations did not differ between slow and fast spindles. Performing the analysis in girls with no menarche and age matched boys yielded the same effects for slow spindles, but several differences in fast spindle features emerged: significantly longer spindle duration in girls, faster spindle frequency in boys and no significant gender differences in spindle density.
关于睡眠纺锤波特征,我们观察到性别对纺锤波幅度(效应大小 = 0.32-0.99;57% 中等效应大小和 20% 大效应大小)、频率(效应大小 = 0.18-0.85;72%)的推导具有高度显着影响。中等效应量和 2% 大效应量)和密度(效应量 = 0.29–1.04;53% 中等效应量和 33% 大效应量),女孩表现出更高的振幅,以及更密集和更快的纺锤体(图3 ;第三列)。对于纺锤体持续时间没有发现这样的影响。这些观察结果在慢速和快速主轴之间没有差异。对没有初潮的女孩和年龄匹配的男孩进行分析,对慢纺锤体产生了相同的效果,但在快纺锤体特征上出现了一些差异:女孩的纺锤体持续时间明显更长,男孩的纺锤体频率更快,并且纺锤体密度没有显着的性别差异。
For sleep EEG coherence, we found the largest gender differences in the delta band for both NREM and REM sleep (effect size = 0.08–1.28; 51% moderate and 19% large effect size), and in the sigma band during NREM sleep (effect size = 0.12–1.26; 52% moderate and 22% large effect size) with girls showing greater coherence across the brain (Fig. 4; first column, left panel). Larger coherence values were found for girls in other bands and both sleep states as well, although the differences were less pronounced (Fig. 4; first column, right panel). The only exception was NREM alpha coherence (effect size = 0.32–0.99; 63% moderate and 7% large effect size), where boys had greater values focused over occipital and temporal regions (Fig. 4; first column, left panel). Furthermore, we found no significant gender differences for REM alpha coherence (Fig. 4; first column, left panel).
对于睡眠 EEG 一致性,我们发现 NREM 和 REM 睡眠的 delta 频带(效应大小 = 0.08–1.28;51% 中等效应大小和 19% 大效应大小)以及 NREM 睡眠期间的 sigma 频带(效应大小)中性别差异最大。大小 = 0.12–1.26;52% 中等效应大小和 22% 大效应大小),女孩的大脑表现出更高的一致性(图4 ;第一列,左图)。尽管差异不太明显,但其他频段和两种睡眠状态的女孩也发现了较大的一致性值(图4 ;第一列,右图)。唯一的例外是 NREM α 一致性(效应大小 = 0.32-0.99;63% 中等效应大小,7% 大效应大小),其中男孩的值更大,集中在枕叶和颞叶区域(图4 ;第一列,左图)。此外,我们发现 REM α 一致性没有显着的性别差异(图4 ;第一列,左图)。
All significant gender effects including F- and p-values are listed in Supplementary Tables 1–4.
所有显着的性别影响(包括 F 值和p值)均列于补充表1 – 4中。
Age effects 年龄影响
As expected, we found an age-related decline in total sleep time, slow wave sleep as well as a slight, but significant, increase in REM sleep and REM latency (Table (Table1).1). Furthermore, similar to previous studies1–5, we found an age-dependent decline in absolute EEG power across frequencies and sleep states (Figs. 1, ,2;2; fourth column). Significant age effects on normalized NREM and REM sleep EEG power were found in the delta band, which demonstrated a topographic shift towards frontal regions with increasing age, while alpha, sigma, gamma 1 and gamma 2 (only in NREM sleep) bands showed an age-dependent shift towards posterior regions (Supplementary Figures 1 and 2). Shorter slow sleep spindle duration, lower spindle amplitude and higher spindle frequency were associated with older age (Fig. 3; fourth column). Coherence was significantly affected by age across bands and the two states with some connections showing a decrease but an overall increase in coherence with age (Fig. 4; second column).
正如预期的那样,我们发现总睡眠时间、慢波睡眠与年龄相关的下降,以及快速眼动睡眠和快速眼动潜伏期略有但显着的增加(表(表1 )。1 )。此外,与之前的研究1 – 5类似,我们发现不同频率和睡眠状态下的绝对脑电图功率随年龄而下降(图1 , ,2; 2 ; 第四列)。在 delta 带中发现了年龄对标准化 NREM 和 REM 睡眠脑电图功率的显着影响,这表明随着年龄的增长,地形向额叶区域移动,而 alpha、sigma、gamma 1 和 gamma 2(仅在 NREM 睡眠中)带显示了年龄依赖于后部区域的转变(补充图1和2 )。较短的慢睡眠纺锤波持续时间、较低的纺锤波振幅和较高的纺锤波频率与年龄较大有关(图3 ;第四列)。跨频带的连贯性受到年龄的显着影响,并且具有一些连接的两个状态显示连贯性随着年龄的增长而减少,但总体上增加(图4 ;第二列)。
Pubertal effects 青春期影响
We found no significant effects of pubertal status on absolute (Figs. 1, ,2;2; fifth column) and minimal effect on normalized (Supplementary Figures 1 and 2) sleep EEG power for any band or state. However, sleep spindle duration was affected by pubertal status with more advanced pubertal status being associated with shorter spindle duration (Fig. 3; fifth column). Pubertal status had a significant effect on NREM delta, alpha and sigma coherence with a number of connections over central and temporal regions demonstrating a decrease, but the majority of connections showing an increase with advancing pubertal status. We found no effect of pubertal status for the other frequency bands, REM sleep, or any other spindle features.
我们发现青春期状态对任何频段或状态的绝对睡眠脑电图功率没有显着影响(图1、2 ; 2 ;第五列),对标准化(补充图1和2 )睡眠脑电图功率影响最小。然而,睡眠纺锤波持续时间受到青春期状态的影响,青春期状态越高,纺锤波持续时间越短(图3 ;第五列)。青春期状态对 NREM delta、alpha 和 sigma 一致性有显着影响,中央和颞区的许多连接显示出减少,但大多数连接显示出随着青春期状态的推进而增加。我们发现青春期状态对其他频段、快速眼动睡眠或任何其他纺锤波特征没有影响。
Relatedness effects 相关性效应
Relatedness was significant for sleep latency (F = 8.48; p = 0.005), but no significant effects on any other parameter were observed.
睡眠潜伏期的相关性显着(F = 8.48; p = 0.005),但未观察到对任何其他参数的显着影响。
Gender by age interaction
性别与年龄的相互作用
Generally speaking, we found that boys start the decline in absolute sleep EEG power and sleep spindle features at a later age than girls. This was true of delta, theta, and alpha power during NREM sleep, beta 2, gamma 1 and gamma 2 power during REM sleep, and slow and fast spindle duration. There were no further significant gender by age interactions for power. In contrast, boys showed a decrease and girls showed an increase of spindle frequency with age; however, when all participants were pooled together a net increase was found. When examining coherence, we observed a significant interaction between age and gender for all frequencies, with the exception of theta and alpha, and both sleep states with boys experiencing the increase in coherence at older age as compared to girls. This interaction was regionally widespread but demonstrated a strong focus over central and temporal regions.
一般来说,我们发现男孩的绝对睡眠脑电功率和睡眠纺锤波特征开始下降的年龄比女孩晚。 NREM 睡眠期间的 delta、theta 和 alpha 功率、REM 睡眠期间的 beta 2、gamma 1 和 gamma 2 功率以及慢速和快速纺锤波持续时间都是如此。不同年龄的性别对权力的影响不存在进一步显着的相互作用。相比之下,随着年龄的增长,男孩纺锤波频率呈下降趋势,而女孩则呈现增加趋势;然而,当所有参与者集中在一起时,发现出现了净增长。在检查连贯性时,我们观察到除 θ 和 α 频率外,所有频率的年龄和性别之间都存在显着的交互作用,并且两种睡眠状态中,与女孩相比,男孩在老年时的连贯性有所增加。这种相互作用在区域范围内广泛存在,但表现出对中部和颞部区域的强烈关注。
Discussion 讨论
This study uses high-density sleep EEG to examine gender differences in sleep neurophysiology during early adolescence. Robust gender differences exist in the prevalence of psychiatric disorders44–47, many of which have their onset during adolescence, however, the neuroanatomical basis of these differences is not well understood48. Although the current literature supports gender differences in brain anatomy, differences are small and controversial48. Examining gender differences in the sleeping brain has several advantages. For one, sleep neurophysiology is a reflection of both structure and function making it more relevant to behavior. Furthermore, sleep, a time when the brain is “offline” and unaffected by implicit gendered expectations, may be the ideal time to examine gender differences in neurocircuitry. Our study also highlights the importance of taking gender differences into account in sleep studies.
这项研究使用高密度睡眠脑电图来检查青春期早期睡眠神经生理学的性别差异。精神疾病的患病率存在显着的性别差异44 – 47 ,其中许多疾病在青春期发病,然而,这些差异的神经解剖学基础尚不清楚48 。尽管目前的文献支持大脑解剖学中的性别差异,但差异很小且存在争议48 。检查睡眠大脑中的性别差异有几个优点。一方面,睡眠神经生理学是结构和功能的反映,使其与行为更加相关。此外,睡眠时大脑处于“离线”状态且不受隐性性别期望影响的时间,可能是检查神经回路性别差异的理想时间。我们的研究还强调了在睡眠研究中考虑性别差异的重要性。
Sleep EEG power 睡眠脑电图功率
We found a strong effect of gender for absolute sigma power and sleep spindles during NREM sleep, with girls exhibiting greater spindle amplitude, frequency and density across brain regions. Sleep spindles are oscillations in the sigma frequency range during NREM sleep, generated and synchronized by thalamocortical loops. Therefore, they reflect the function of this brain network. The greater NREM sigma activity observed in girls as compared to boys suggests gender differences in thalamocortical circuits. This observation is in line with sleep EEG studies in healthy adults which have shown greater spindle numbers and more sigma power in women as compared to men15,16,49,50. While we observe greater spindle amplitude, frequency and density in girls, one study of adolescents18 spanning the ages 12–21 years only found greater fast spindle density in girls and no difference in other spindle features. The discrepancy in findings may be due to the narrow age range in the current study which may provide more sensitivity to detect gender differences in sleep spindle activity, otherwise masked by the overall developmental pattern across a broader age range. Furthermore, the previous study assessed spindle activity at one frontal (F3; slow spindles) and one central (C3; fast spindles) derivation which limits their ability to detect local gender differences. Although previous studies have shown topographic differences between slow and fast spindles36 suggesting different generators, the gender differences we observed were consistent between the two spindle classes and widespread in topography.
我们发现性别对 NREM 睡眠期间的绝对西格玛功率和睡眠纺锤波有很强的影响,女孩在整个大脑区域表现出更大的纺锤波振幅、频率和密度。睡眠纺锤波是 NREM 睡眠期间西格玛频率范围内的振荡,由丘脑皮质环产生和同步。因此,它们反映了这个大脑网络的功能。与男孩相比,女孩的 NREM 西格玛活动更大,这表明丘脑皮质回路存在性别差异。这一观察结果与健康成年人的睡眠脑电图研究一致,该研究表明,与15、16、49、50岁的男性相比,女性的纺锤体数量和西格玛功率更高。虽然我们观察到女孩的纺锤波振幅、频率和密度较高,但一项针对12至 21 岁青少年的研究仅发现女孩的快速纺锤波密度较高,而其他纺锤波特征没有差异。研究结果的差异可能是由于当前研究的年龄范围较窄,这可能为检测睡眠纺锤波活动的性别差异提供了更高的敏感性,否则会被更广泛年龄范围的整体发育模式所掩盖。此外,之前的研究评估了一个额叶(F3;慢纺锤体)和一个中枢(C3;快纺锤体)衍生的纺锤体活动,这限制了他们检测局部性别差异的能力。 尽管之前的研究显示慢速和快速纺锤体之间的地形差异36表明不同的发生器,但我们观察到的性别差异在两个纺锤体类别之间是一致的,并且在地形上广泛存在。
The observed differences in sleep spindle activity between boys and girls may be of functional significance. For example, the well-established association between sleep spindle activity and memory consolidation/intelligence has been shown to differ between genders50–52. In an adolescent sample, Bódizs et al.51 found positive associations between spindle density as well as amplitude and fluid IQ in adult females, while in adult males greater fluid IQ was associated with higher spindle frequency. The authors suggest different cognitive strategies between males and females as a possible explanation.
观察到的男孩和女孩之间睡眠纺锤波活动的差异可能具有功能意义。例如,睡眠纺锤波活动与记忆巩固/智力之间已确立的关联已被证明在性别之间存在差异50 – 52 。在青少年样本中,Bódizs 等人。 51发现成年女性的纺锤体密度和振幅与液体智商之间呈正相关,而在成年男性中,较高的液体智商与较高的纺锤体频率相关。作者提出男性和女性之间不同的认知策略作为可能的解释。
Another possible functional implication of our findings relates to the role of sleep spindles in sleep protection53,54. Several empirical studies have shown that these oscillations can predict the ability to maintain sleep55–57. Dang-Vu et al.56 found that subjects demonstrating greater sleep spindle activity were more tolerant towards external sounds during sleep, i.e. they were able to stay asleep at higher levels of noise. Extrapolating from this, more spindle activity would suggest more protected sleep in females as compared to males. In support of this, we observed more wake after sleep onset in boys suggesting gender differences in sleep protection mechanisms. We note that this finding somewhat contradicts the current literature which reports higher rates of insomnia and more sleep difficulties in adult women. In fact, we find that subjective sleep quality as measured by the Sleep Habits Survey58 did not differ between boys and girls in our sample, and previous studies have suggested that gender differences in subjective sleep quality do not emerge till the end of puberty59. Finally, indirect evidence for gender differences in the thalamocortical system comes from waking studies which report gender differences in thalamocortical processing of auditory gating60 and pain perception61.
我们的研究结果的另一个可能的功能意义与睡眠纺锤体在睡眠保护中的作用有关53、54 。多项实证研究表明,这些振荡可以预测维持睡眠的能力55 – 57 。 Dang-Vu 等人。 56发现,睡眠纺锤波活动较大的受试者在睡眠期间对外部声音的耐受性更强,即他们能够在较高水平的噪音下保持睡眠状态。由此推断,与男性相比,更多的纺锤体活动表明女性的睡眠受到更多保护。为了支持这一点,我们观察到男孩入睡后醒来的次数更多,这表明睡眠保护机制存在性别差异。我们注意到,这一发现在某种程度上与当前文献报道的成年女性失眠率较高和睡眠困难较多有关相矛盾。事实上,我们发现,通过睡眠习惯调查测量的主观睡眠质量58在我们样本中的男孩和女孩之间没有差异,并且之前的研究表明,主观睡眠质量的性别差异直到青春期结束时才会出现59 。最后,丘脑皮质系统性别差异的间接证据来自清醒时的研究,这些研究报告了丘脑皮质听觉门控60和疼痛感知61处理过程中的性别差异。
In addition to NREM sleep sigma power, girls in our sample exhibited greater absolute sleep EEG power in higher frequencies (beta 1 to gamma 2) for both NREM and REM sleep in line with several resting-state EEG studies in adults62–64. Because we find gender differences in high frequencies for both NREM and REM sleep, two states which are functionally and biologically unique65, we hypothesize that anatomical differences underlie the greater high-frequency power in females. As it is still unclear what brain structures are associated with beta and gamma power, future work should address this issue.
除了 NREM 睡眠西格玛功率外,我们样本中的女孩在 NREM 和 REM 睡眠的较高频率(β 1 至 γ 2)中表现出更大的绝对睡眠脑电图功率,这与几项成人静息态脑电图研究一致62 – 64 。因为我们发现 NREM 和 REM 睡眠的高频存在性别差异,这两种状态在功能和生物学上都是独特的65 ,所以我们假设解剖学差异是女性更高频率功率的基础。由于目前尚不清楚哪些大脑结构与贝塔和伽马能量相关,未来的工作应该解决这个问题。
In contrast, the lower frequency bands (< 11 Hz) did not show differences in absolute sleep EEG power between boys and girls. The delta band has previously been shown to correlate with gray matter volume in the anterior cingulate and orbital frontal cortex66 and mirror the reduction of cortical gray matter volume in this age range12,13. As the age range in our sample is rather narrow and selected to reflect the period of most rapid changes in sleep EEG power6, gender differences in this frequency range may have been masked as boys start the pubertal decline of power later than girls. Therefore, our data set may constitute the last ascending part of the developmental trajectory in boys, while delta/theta power in girls is on the descending part of the maturational curve. This idea is supported by the interaction between the effects of gender and age we observed in the lower frequencies with power declining at older ages in boys as compared to girls. Furthermore, the large degree of inter-individual variability in the trajectories of both brain development67 and sleep EEG power68 further complicates this issue as some individuals may reach peak neuronal density/EEG power earlier than others. Examining developmental trajectories might, therefore, provide new insights into the nature of gender differences and should be taken into account in future studies.
相比之下,较低频段(< 11 Hz)男孩和女孩之间的绝对睡眠脑电图功率没有差异。先前已证明 Delta 带与前扣带皮层和眶额皮质66中的灰质体积相关,并反映了该年龄范围12、13中皮质灰质体积的减少。由于我们样本中的年龄范围相当窄,并选择反映睡眠脑电图功率变化最快的时期6 ,因此该频率范围内的性别差异可能被掩盖,因为男孩比女孩更晚开始青春期功率下降。因此,我们的数据集可能构成男孩发育轨迹的最后上升部分,而女孩的 delta/theta 功率位于成熟曲线的下降部分。这一观点得到了我们在较低频率中观察到的性别和年龄影响之间相互作用的支持,与女孩相比,男孩年龄较大时功率下降。此外,大脑发育67和睡眠脑电图功率68的轨迹存在很大程度的个体间差异,这使得这个问题进一步复杂化,因为有些人可能比其他人更早达到峰值神经元密度/脑电图功率。因此,检查发展轨迹可能会为性别差异的本质提供新的见解,并应在未来的研究中予以考虑。
For normalized sleep EEG power, we observed a topographic shift towards frontal regions in girls across frequencies and sleep states. Sleep studies in adults have shown attenuated differences between females and males when power is normalized suggesting that such differences are due to structural effects such as skull thickness69. However, our findings in adolescence do not provide support for this hypothesis. In our study, normalized power reveals additional differences related to topographic shifts previously masked by pronounced differences in absolute power. The topographic shift towards frontal regions in girls may be a reflection of advanced brain maturation according to maturational trajectories observed for topographic distribution of sleep EEG activity across childhood and adolescence22.
对于标准化睡眠脑电图功率,我们观察到女孩在不同频率和睡眠状态下,地形向额叶区域发生转变。成人睡眠研究表明,当能量正常化时,女性和男性之间的差异减弱,这表明这种差异是由于头骨厚度等结构效应造成的69 。然而,我们在青春期的发现并没有为这一假设提供支持。在我们的研究中,归一化功率揭示了与先前被绝对功率的明显差异所掩盖的地形变化相关的额外差异。根据对儿童期和青春期睡眠脑电图活动的地形分布观察到的成熟轨迹,女孩向额叶区域的地形转变可能反映了大脑提前成熟22 。
Sleep EEG coherence 睡眠脑电图一致性
With regards to sleep EEG coherence, a measure of functional connectivity, we observed greater coherence in girls than boys across bands and states with the exception of NREM alpha coherence, where boys demonstrated higher values. These results are in agreement with previous waking EEG coherence studies in children and adolescents28,29,70. A recent sleep EEG study in adults found similar gender differences in the alpha and sigma bands during NREM sleep27 suggesting that these gender differences prevail over the life course. However, in the beta band the authors found the opposite gender effect with men exhibiting stronger connectivity than women during both NREM and REM sleep. We conjecture that it might be developmental changes that underlie the differences between this study and our results. Larger coherence values in girls have previously been hypothesized to reflect a maturational lead in females70. Interestingly, we find the largest differences between males and females in NREM delta and sigma power, two oscillations which rely on corticocortical and thalamocortical connectivity14,71–74. Both greater anatomical connectivity75 as well as greater functional connectivity76,77 have been observed for women in MRI studies. In line with our findings, a large MRI study of adult subjects found not only higher functional connectivity in women than in men, but also that gender differences were maximal in the anterior thalamus77. The authors suggest that greater connectivity in women may facilitate functions relying on synchronization between wide brain areas and emphasize the implication of such findings for psychiatric disorders associated with altered brain connectivity77. Taken together, gender differences in sleep EEG parameters vary between frequency bands78,79 and are therefore more likely to reflect functional differences in brain networks16 than merely differences in brain structure.
关于睡眠脑电图一致性(功能连通性的衡量标准),我们观察到,在各频段和状态中,女孩的一致性高于男孩,但 NREM α 一致性除外,其中男孩表现出更高的值。这些结果与之前针对儿童和青少年进行的清醒脑电图一致性研究一致28 , 29 , 70 。最近的一项针对成人的睡眠脑电图研究发现,NREM 睡眠期间 α 和 Sigma 频带存在类似的性别差异27 ,这表明这些性别差异在整个生命过程中普遍存在。然而,在 beta 频段,作者发现了相反的性别效应,男性在 NREM 和 REM 睡眠期间表现出比女性更强的连接性。我们推测,这项研究与我们的结果之间的差异可能是发育变化造成的。此前曾假设女孩具有较大的一致性值,以反映女性的成熟领先性70 。有趣的是,我们发现男性和女性之间最大的差异在于 NREM delta 和 sigma 功率,这两种振荡依赖于皮质和丘脑皮质连接14 , 71 – 74 。在 MRI 研究中观察到女性具有更大的解剖连接性75和更大的功能连接性76、77 。 根据我们的研究结果,一项针对成人受试者的大型 MRI 研究发现,女性不仅比男性具有更高的功能连接,而且前丘脑的性别差异最大77 。作者认为,女性更强的连通性可能会促进依赖于广泛大脑区域之间同步的功能,并强调这些发现对与大脑连通性改变相关的精神疾病的影响77 。总而言之,睡眠EEG参数中的性别差异在频带78、79之间变化,并且因此更有可能反映大脑网络16中的功能差异而不仅仅是大脑结构中的差异。
Impact of age and puberty
年龄和青春期的影响
Age had a significant influence on power and coherence across frequency bands and sleep states, which is likely due to anatomical changes to the brain8,80. On the other hand, we did not find an effect of pubertal status (with the exception of low-frequency coherence during NREM sleep). This finding is in agreement with results from a longitudinal study by Feinberg et al.20 showing that the association between the rate of the NREM delta power decline and the rate of pubertal development disappears when controlling for age. The authors hypothesize that the power decline is associated with developmental processes other than physical or sexual maturation. Further evidence for this notion comes from a study investigating delta power in girls with central precocious puberty81 concluding that increased estrogen does not cause the adolescent decline in delta power.
年龄对频段和睡眠状态的功率和一致性有显着影响,这可能是由于大脑的解剖变化8 , 80 。另一方面,我们没有发现青春期状态的影响(NREM 睡眠期间的低频一致性除外)。这一发现与 Feinberg 等人的纵向研究结果一致。图 20表明,当控制年龄时,NREM δ功率下降速率与青春期发育速率之间的关联消失。作者假设,功率下降与身体或性成熟以外的发育过程有关。这一观点的进一步证据来自一项调查中枢性性早熟女孩 Delta 功率的研究81,该研究得出的结论是雌激素增加不会导致青少年 Delta 功率下降。
Limitations 局限性
Several limitations are associated with the current study. The analyzed data originates from a twin study examining heritability of the sleep EEG during adolescence24. Therefore, our sample does not fully meet the criterion for data independence. However, in order to account for this limitation, we included relatedness as a factor in our analyses and found that this factor is not a significant contributor. In addition, we performed all our analyses with half of the sample including only those participants who were not related to each other (15 girls and 15 boys). Performing analyses in this way, we obtained the same results as observed when including the entire sample only less pronounced, most likely due to lower statistical power associated with the smaller sample size.
当前的研究存在一些局限性。分析的数据源自一项检查青春期睡眠脑电图遗传性的双胞胎研究24 。因此,我们的样本不完全满足数据独立性的标准。然而,为了解释这一限制,我们将相关性作为分析中的一个因素,并发现该因素并不是一个重要的因素。此外,我们对一半样本进行了所有分析,其中仅包括那些彼此不相关的参与者(15 名女孩和 15 名男孩)。通过这种方式进行分析,我们获得了与包含整个样本时观察到的相同结果,只是不太明显,这很可能是由于与较小的样本量相关的统计功效较低。
A further limitation is that we were not able to control for the menstrual cycle, the phase of which can have an influence on sleep spindle activity due to hormonal variability40,41. However, as thirteen girls (42%) in our sample reported already having started to menstruate, we were able to compare spindle features in girls with no menarche and age matched boys. Performing the analysis in this way does not impact our findings suggesting that the observed gender differences are stable despite variability introduced by the presence of menstruation in approximately half the sample. The only exception to note was a difference in the direction of effect for fast spindle frequency with boys demonstrating faster spindles as compared to girls with no menarche, whereas their spindle frequency was decreased as compared to girls when we included the whole sample. Also, we found significantly longer fast spindle duration in girls with no menarche and no significant gender differences in fast spindle density. Therefore, we believe that our findings are representative and generalizable and as such add to the current body of research on gender differences in sleep EEG during adolescence.
另一个限制是我们无法控制月经周期,由于荷尔蒙的变化,月经周期的阶段可能会影响睡眠纺锤体活动40 , 41 。然而,由于我们样本中的 13 名女孩 (42%) 报告已经开始月经,因此我们能够比较没有初潮的女孩和年龄匹配的男孩的纺锤体特征。以这种方式进行分析不会影响我们的研究结果,表明观察到的性别差异是稳定的,尽管大约一半的样本中存在月经带来了变异。唯一需要注意的例外是快速纺锤波频率的影响方向存在差异,与没有初潮的女孩相比,男孩表现出更快的纺锤波频率,而当我们纳入整个样本时,与女孩相比,他们的纺锤波频率降低。此外,我们发现没有初潮的女孩的快纺锤体持续时间明显更长,并且快纺锤体密度没有显着的性别差异。因此,我们相信我们的研究结果具有代表性和普遍性,因此补充了当前关于青春期睡眠脑电图性别差异的研究。
We cannot rule out the possibility that our results for EEG coherence have been affected by volume conduction. In order to reduce such effects, we only included pairs of electrodes with separations between 10 and 20 cm as previously recommended39. Furthermore, we used average reference suggested to provide the best approximation of absolute potentials for high-density EEG data82. The decision to use coherence as our measure of connectivity was based on the fact that the majority of EEG studies use this metric. As our findings are in agreement with previous work from both MRI76,77 and EEG27–29,70 studies, we believe that volume conduction and the choice of method do not significantly impact our results.
我们不能排除我们的脑电图一致性结果受到体积传导影响的可能性。为了减少这种影响,我们只使用了间距在 10 到 20 cm 之间的电极对,如之前建议的39 。此外,我们使用建议的平均参考来提供高密度脑电图数据的绝对电位的最佳近似值82 。使用一致性作为连接性衡量标准的决定是基于大多数脑电图研究都使用该指标这一事实。由于我们的研究结果与 MRI 76 、 77和 EEG 27 – 29 、 70研究的先前工作一致,因此我们认为容量传导和方法的选择不会显着影响我们的结果。
Finally, we note that we refer to gender instead of sex, as we did not assess biological sex nor the secondary sexual characteristics of our participants. The distinction between the groups was based on their own perception, which is by convention termed gender.
最后,我们注意到我们指的是性别而不是性别,因为我们没有评估参与者的生物性别或第二性征。这些群体之间的区别是基于他们自己的看法,按照惯例,这被称为性别。
Conclusion 结论
To summarize, our study demonstrates gender differences with moderate to large effect sizes in sleep EEG power and coherence most pronounced in the sigma band during NREM sleep. While some of the gender differences we report could be influenced by anatomical measures, it is highly unlikely that brain structure is the only driving force of such differences, as we show strong effects for specific oscillations. This paper adds to current efforts to unravel the nature of differences between the genders with broad implications for psychiatry, neuroscience and neurology, as the presentation and the course of disorders vary between genders83. As previous studies have shown that gender differences in the sleep EEG vary under different experimental conditions and states such as health and illness78,79, such differences are, therefore, more likely to reflect functional differences in the generating brain networks16. Although we observe robust differences between males and females in our sample, we cannot infer differences in behaviour and functioning between the genders. Despite being subtler than previously thought, gender differences are important to understand for prevention and therapy in most branches of medicine including psychiatry.
总而言之,我们的研究表明,性别差异对睡眠脑电图功率和一致性有中到大的影响,在 NREM 睡眠期间的西格玛带中最为明显。虽然我们报告的一些性别差异可能受到解剖学测量的影响,但大脑结构不太可能是这种差异的唯一驱动力,因为我们显示出对特定振荡的强烈影响。本文补充了目前阐明性别差异本质的努力,这对精神病学、神经科学和神经病学具有广泛的影响,因为疾病的表现和病程因性别而异83 。正如先前的研究表明,睡眠脑电图的性别差异在不同的实验条件和状态(例如健康和疾病78、79 )下有所不同,因此,这种差异更有可能反映生成大脑网络的功能差异16 。尽管我们观察到样本中男性和女性之间存在显着差异,但我们无法推断性别之间行为和功能的差异。尽管比之前想象的更加微妙,但理解性别差异对于包括精神病学在内的大多数医学分支的预防和治疗非常重要。
Acknowledgements 致谢
We thank Dr. Christoph Hamann, Nathaline Margot, Daniela Rupp, Tammy Timmers and Julia Hegy for data collection, and Dr. Thomas Rusterholz for help with data processing. We would also like to thank Professor Peter Achermann for valuable scientific input, and Professors Alexander Borbély and Irene Tobler for inspiring discussions. We are grateful to the participants and their families for taking part in the study.
我们感谢 Christoph Hamann 博士、Nathaline Margot、Daniela Rupp、Tammy Timmers 和 Julia Hegy 收集数据,感谢 Thomas Rusterholz 博士在数据处理方面提供的帮助。我们还要感谢 Peter Achermann 教授提供的宝贵科学投入,以及 Alexander Borbély 和 Irene Tobler 教授启发性的讨论。我们感谢参与者及其家人参与这项研究。
Author contributions 作者贡献
A.M., M.K. and L.T. wrote the manuscript, A.M. and L.T. analyzed the data and L.T. designed the experiment.
AM、MK 和 LT 撰写手稿,AM 和 LT 分析数据,LT 设计实验。
Data availability 数据可用性
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request and pending ethics approval.
当前研究期间生成和分析的数据集可根据合理要求并等待伦理批准从通讯作者处获得。
Footnotes 脚注
Publisher's note 出版商备注
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。
Supplementary information
补充资料
is available for this paper at 10.1038/s41598-020-72802-0IF: 3.8 Q1 B2.
本文可在 10.1038/s41598-020-72802-0 获取如果:3.8 Q1 B2 。
References 参考
1.范伯格一世等人。人类睡眠 0 至 3 Hz (Delta) 脑电图的振幅、发生率和循环模式的成熟变化。脑功能障碍。 1990; 3 :183-192。 [谷歌学术]
2.Jenni OG,马萨诸塞州卡斯卡登。青春期睡眠脑电图的频谱分析。睡觉。 2004年; 27 :774–783。 [考研] [谷歌学术]
3.Tarokh L,马萨诸塞州卡斯卡登。青春期早期人类睡眠脑电图的发育变化。睡觉。 2010; 33 :801-809。 doi:10.1093/睡眠/33.6.801如果:5.3 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Tarokh L、Carskadon MA、Achermann P。青少年发育过程中睡眠脑电图的特质样特征。 J.神经科学。 2011; 31 :6371–6378。 doi:10.1523/JNEUROSCI.5533-10.2011如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5.Tarokh L 等人。青春期和父母酗酒史:睡眠脑电图的见解。酒精。临床。过期。资源。 2012年; 36 :1530–1541。 doi:10.1111/j.1530-0277.2012.01756.x如果:不不不不。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Campbell IG、Grimm KJ、de Bie E、Feinberg I。性别、青春期和睡眠时间 EEG 测量青少年大脑成熟度。过程。国家。阿卡德。科学。 2012年; 109 :5740–5743。 DOI:10.1073/pnas.1120860109如果:9.4 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7.贝克FC等。国家青少年酒精和神经发育联盟样本中青少年睡眠结构和脑电图与年龄相关的差异。睡觉。 2016年; 39 :1429–1439。 doi: 10.5665/sleep.5978如果:5.3 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Giedd JN 等人。儿童期和青春期的大脑发育:纵向 MRI 研究。纳特。神经科学。 1999; 2 :861–863。号码:10.1038/13158如果:21.2 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
9. Lebel C、Walker L、Leemans A、Phillips L、Beaulieu C。人类大脑从童年到成年的微观结构成熟。神经影像。 2008年; 40 :1044–1055。 doi:10.1016/j.neuroimage.2007.12.053如果:4.7 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
10. Tamnes CK 等人。青春期和成年早期的大脑成熟:皮质厚度、白质体积和微观结构的区域年龄相关变化。塞雷布。纽约皮质 N 1991.2010 ; 20 :534–548。 [考研] [谷歌学术]
11.Lenroot RK 等人。儿童期和青春期大脑发育轨迹的性别二态性。神经影像。 2007年; 36 :1065–1073。 doi:10.1016/j.neuroimage.2007.03.053如果:4.7 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12.布赫曼 A 等人。脑电图睡眠慢波活动是皮质成熟的一面镜子。塞雷布。皮质。 2011; 21 :607–615。 doi:10.1093/cercor/bhq129如果:2.9 Q2 B2 。 [公共医学] [交叉引用] [谷歌学术]
13. Goldstone A 等人。青春期皮质厚度和灰质体积对睡眠慢波活动的中介作用。大脑结构。功能。 2018; 223 :669–685。 DOI:10.1007/s00429-017-1509-9如果:2.7 Q1 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Steriade M.皮质丘脑系统中大脑节律的分组。神经科学。 2006年; 137 :1087–1106。 doi:10.1016/j.neuroscience.2005.10.029如果:2.9 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
15. Gaillard JM,Blois R。正常受试者睡眠中的纺锤体密度。睡觉。 1981; 4 :385–391。 doi:10.1093/睡眠/4.4.385如果:5.3 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
16.Huupponen E 等人。睡眠纺锤波性别和年龄差异的研究。神经心理生物学。 2002年; 45 :99–105。号码:10.1159/000048684如果:2.3 Q2 B4 。 [公共医学] [交叉引用] [谷歌学术]
17. Purcell SM 等人。描述国家睡眠研究资源中 11,630 名个体的睡眠纺锤波特征。纳特。交流。 2017年; 8 :15930。 DOI:10.1038/ncomms15930如果:14.7 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Goldstone A 等人。青少年睡眠纺锤体特征。临床。神经生理学。离开。 J.国际。美联储。临床。神经生理学。 2019; 130 :893–902。 doi:10.1016/j.clinph.2019.02.019如果:3.7 Q1 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Campbell IG、Darchia N、Khaw WY、Higgins LM、Feinberg I。青少年大脑成熟中性别差异的睡眠脑电图证据。睡觉。 2005年; 28 :637–643。 doi:10.1093/睡眠/28.5.637如果:5.3 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Feinberg I、Higgins LM、Khaw WY、Campbell IG。 NREM δ(大脑成熟的指标)在青少年时期的下降与年龄和性别有关,但与青春期无关。是。 J.生理学。规则。积分。比较。生理学。 2006年; 291 :R1724–1729。 DOI:10.1152/ajpregu.00293.2006如果:2.2 Q3 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21.贝克足球俱乐部,特灵顿 SR,科兰 IM。青春期男孩和女孩睡眠脑电图的发育变化。 J.睡眠研究。 2012年; 21 :59–67。 doi:10.1111/j.1365-2869.2011.00930.x如果:3.4 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Kurth S 等人。绘制生命前二十年的皮质活动图:高密度睡眠脑电图研究。 J.神经科学。 2010; 30 :13211–13219。 doi:10.1523/JNEUROSCI.2532-10.2010如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Markovic A、Achermann P、Rusterholz T、Tarokh L。青春期睡眠脑电图地形图的遗传性:纵向双胞胎研究的结果。科学。 2018 年代表; 8 :7334。号码:10.1038/s41598-018-25590-7如果:3.8 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24.Rusterholz T 等人。先天与后天:青春期睡眠神经生理学的大脑区域特定遗传。 J.神经科学。离开。 J.苏克。神经科学。 2018; 38 :9275–9285。 doi:10.1523/JNEUROSCI.0945-18.2018如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25.Ringli M、Kurth S、Huber R、Jenni OG。儿童和青少年的睡眠脑电图显示语言区存在性别差异。国际。 J.心理生理学。 2013年; 89 :241–245。 doi:10.1016/j.ijpsycho.2013.04.008如果:2.5 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
26. Nunez PL、Srinivasan R。大脑电场:脑电图的神经物理学。牛津:牛津大学出版社; 2006. [谷歌学术]
27.Ujma PP 等人。睡眠脑电图功能连接随年龄和性别而变化,但一般智力则不然。神经生物学。老化。 2019; 78 :87–97。 doi:10.1016/j.neurobiolaging.2019.02.007如果:3.7 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
28.Marosi E 等人。正常儿童脑电图一致性的性别差异。国际。 J.神经科学。 1993; 72 :115–121。号码:10.3109/00207459308991628如果:1.7 Q4 B4 。 [公共医学] [交叉引用] [谷歌学术]
29. van Beijsterveldt CEM、Molenaar PCM、de Geus EJC、Boomsma DI。遗传和环境对脑电图一致性的影响。行为。热内特. 1998; 28 :443–453。号码:10.1023/A:1021637328512如果:2.6 Q2 B4 。 [公共医学] [交叉引用] [谷歌学术]
30. Inderkum AP,Tarokh L。青少年睡眠-觉醒行为在自由日而非上学日的高遗传性:一项长期双胞胎研究。睡觉。 2018; 41 :zsy004。 doi:10.1093/睡眠/zsy004如果:5.3 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
31. Markovic A,Kaess M,Tarokh L。环境因素影响青春期早期的睡眠脑电图连接。塞雷布。皮质。 2020 doi:10.1093/cercor/bhaa151如果:2.9 Q2 B2 。 [公共医学] [交叉引用] [谷歌学术]
32. Petersen AC、Crockett L、Richards M、Boxer A。青春期状态的自我报告测量:可靠性、有效性和初始规范。 J.青少年青少年。 1988; 17 :117-133。号码:10.1007/BF01537962如果:3.7 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
33.坦纳·JM。青春期的成长。伦敦:布莱克韦尔科学有限公司; 1978. [谷歌学术]
34. Rechtschaffen, A. 和 Kales, A.人类受试者睡眠阶段标准化术语、技术和评分系统手册。 (加州大学洛杉矶分校大脑信息服务/大脑研究所,美国洛杉矶,1968)。
35. Buckelmüller J、Landolt HP、Stassen HH、Achermann P。人类睡眠脑电图中的特质个体差异。神经科学。 2006年; 138 :351–356。 doi:10.1016/j.neuroscience.2005.11.005如果:2.9 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
36. Werth E、Achermann P、Dijk DJ、Borbély AA。睡眠脑电图中的纺锤频率活动:个体差异和地形分布。脑电图学家。临床。神经生理学。 1997; 103 :535–542。编号:10.1016/S0013-4694(97)00070-9如果:不不不不。 [公共医学] [交叉引用] [谷歌学术]
37.Bendat JS,Piersol AG。随机数据:分析和测量程序。纽约:威利; 2010. [谷歌学术]
38. Sakkalis V. 回顾用 EEG/MEG 测量的大脑连接性估计的先进技术。计算。生物。医学。 2011; 41 :1110–1117。 doi:10.1016/j.compbiomed.2011.06.020如果:7.0 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
39.Srinivasan R、Winter WR、Ding J、Nunez PL。脑电图和脑磁图一致性:新皮质动力学不同空间尺度的功能连接性测量。 J.神经科学。方法。 2007年; 166 :41-52。 doi:10.1016/j.jneumeth.2007.06.026如果:2.7 Q2 B4 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. Ishizuka Y 等人。睡眠纺锤波频率在月经周期期间发生变化。 J.睡眠研究。 1994; 3 :26-29。 doi:10.1111/j.1365-2869.1994.tb00100.x如果:3.4 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
41.车手 HS、Dijk DJ、Werth E、Biedermann K、Borbély AA。年轻健康女性整个月经周期的睡眠和睡眠脑电图。 J.克林。内分泌。代谢物。 1996; 81 :728–735。 [考研] [谷歌学术]
42. Cohen J. 强力入门读物。心理。公牛。 1992; 112 :155–159。号码:10.1037/0033-2909.112.1.155如果:17.3 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
43. Benjamini Y,Hochberg Y。控制错误发现率:一种实用而强大的多重测试方法。 JR 统计。苏克。序列。 B 方法。 1995; 57 :289–300。 [谷歌学术]
44. Polanczyk G、de Lima MS、Horta BL、Biederman J、Rohde LA。 ADHD 的全球患病率:系统回顾和元回归分析。是。 J.精神病学。 2007年; 164 :942–948。 doi:10.1176/ajp.2007.164.6.942如果:15.1 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
45. Halladay AK 等人。自闭症谱系障碍中的性别和性别差异:总结证据差距并确定新兴的优先领域。摩尔。自闭症。 2015年; 6:36 。 DOI:10.1186/s13229-015-0019-y如果:6.3 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46.Kessler RC 等人。国家合并症调查中的性别和抑郁症。 II:群组效应。 J.影响。混乱。 1994; 30 :15–26。号码:10.1016/0165-0327(94)90147-3如果:4.9 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
47. Altemus M、Sarvaiya N、Neill Epperson C。焦虑和抑郁临床观点的性别差异。正面。神经内分泌。 2014年; 35 :320–330。 doi:10.1016/j.yfrne.2014.05.004如果:6.5 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. Jäncke L. 认知、神经生理学和神经解剖学中的性别差异。 F1000研究。 2018; 7 :805。 doi: 10.12688/f1000research.13917.1如果:不不不不。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. Carrier J、Land S、Buysse DJ、Kupfer DJ、Monk TH。年龄和性别对中年(20-60 岁)睡眠脑电图功率谱密度的影响心理生理学。 2001年; 38 :232-242。号码:10.1111/1469-8986.3820232如果:2.9 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
50. Genzel L 等人。性和调节性月经周期对睡眠相关记忆巩固的影响。精神神经内分泌学。 2012年; 37 :987–998。 doi:10.1016/j.psyneuen.2011.11.006如果:3.4 Q2 B2 。 [公共医学] [交叉引用] [谷歌学术]
51. Bódizs R、Gombos F、Ujma PP、Kovács I。青少年发展过程中的睡眠纺锤和液体智力:性很重要。正面。哼。神经科学。 2014年; 8 :952。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
52.Ujma PP 等人。睡眠纺锤波和智力:性别二态性的证据。 J.神经科学。离开。 J.苏克。神经科学。 2014年; 34 :16358–16368。 doi:10.1523/JNEUROSCI.1857-14.2014如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53.Steriade M、McCormick DA、Sejnowski TJ。睡眠和唤醒大脑中的丘脑皮质振荡。科学。 1993; 262 :679–685。 doi:10.1126/science.8235588如果:44.7 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
54. Steriade M. 睡眠振荡及其通过激活系统的阻塞。 J.精神病学神经科学。日本。 1994; 19 :354-358。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
55. Ehrhart J、Ehrhart M、Muzet A、Schieber JP、Naitoh P。睡眠期间短暂激活之前的 K 复合体和睡眠纺锤波。睡觉。 1981; 4 :400–407。 [考研] [谷歌学术]
56.Dang -Vu TT、麦金尼 SM、巴克斯顿 OM、索莱特 JM、埃伦伯根 JM。自发的大脑节律可以预测面对噪音时的睡眠稳定性。电流。生物。 CB。 2010; 20 :R626–627。 doi:10.1016/j.cub.2010.06.032如果:8.1 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
57.Schabus MD 等人。 NREM 睡眠期间传入刺激的命运由纺锤体和缓慢振荡的阶段决定。正面。内罗尔。 2012年; 3:40 。 doi: 10.3389/fneur.2012.00040如果:2.7 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. Wolfson AR,Carskadon MA。青少年的睡眠时间表和白天功能。儿童开发。 1998; 69 :875–887。 doi:10.1111/j.1467-8624.1998.tb06149.x如果:3.9 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
59. Johnson EO、Roth T、Schultz L、Breslau N。青春期 DSM-IV 失眠的流行病学:终生患病率、慢性性和新兴的性别差异。儿科。 2006年; 117 :e247–256。 doi:10.1542/peds.2004-2629如果:6.2 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
60. Tomasi D、Chang L、Caparelli EC、Ernst T。视觉注意任务的听觉干扰期间丘脑感觉门控的性别差异。神经科学。 2008年; 151 :1006–1015。 doi:10.1016/j.neuroscience.2007.08.040如果:2.9 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61.Goffaux P 等人。感知疼痛的性别差异受到大脑焦虑的影响。疼痛。 2011; 152 :2065。 doi:10.1016/j.pain.2011.05.002如果:5.9 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
62. Nikulin VV,Brismar T。脑电图振荡的长程时间相关性:与地形、频段、年龄和性别的关系。神经科学。 2005年; 130 :549–558。 doi:10.1016/j.neuroscience.2004.10.007如果:2.9 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
63.Zappasodi F 等人。休息和激活时的手皮质表征:性别和年龄对两个半球的影响。临床。神经生理学。 2006年; 117 :1518–1528。 doi:10.1016/j.clinph.2006.03.016如果:3.7 Q1 B3 。 [公共医学] [交叉引用] [谷歌学术]
64. Jausovec N,Jausovec K。静息大脑活动:性别之间的差异。神经心理学。 2010; 48 :3918–3925。 doi:10.1016/j.neuropsychologia.2010.09.020如果:2.0 Q3 B3 。 [公共医学] [交叉引用] [谷歌学术]
65. Tarokh L、Carskadon MA、Achermann P。使用睡眠脑电图评估大脑连接的发育变化。神经科学。 2010; 171 :622–634。 doi:10.1016/j.neuroscience.2010.08.071如果:2.9 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66. Saletin JM、van der Helm E、Walker MP。大脑结构与人类睡眠波动相关。神经影像。 2013年; 83 :658–668。 doi:10.1016/j.neuroimage.2013.06.021如果:4.7 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
67. Giedd JN、Raznahan A、Mills KL、Lenroot RK。评论:人类青少年大脑解剖结构中男性/女性差异的磁共振成像。生物。性别不同。 2012年; 3:19 。号码:10.1186/2042-6410-3-19如果:4.9 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. Campbell IG,Feinberg I。非快速眼动 δ 和 θ 脑电图的纵向轨迹作为青少年大脑成熟的指标。过程。国家。阿卡德。科学。美国2009 年; 106 :5177–5180。号码:10.1073/pnas.0812947106如果:9.4 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
69.Carrier J 等人。睡眠-觉醒周期随年龄变化的性别差异。正面。神经内分泌。 2017年; 47 :66–85。 doi:10.1016/j.yfrne.2017.07.004如果:6.5 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
70.范巴尔GC,德赫斯EJ,Boomsma DI。遗传对 5 岁双胞胎脑电图一致性的影响。行为。热内特. 1998; 28 :9-19。号码:10.1023/A:1021400613723如果:2.6 Q2 B4 。 [公共医学] [交叉引用] [谷歌学术]
71. Steriade M、Nuñez A、Amzica F。慢速 (< 1 Hz) 新皮质振荡与脑电图其他睡眠节律之间关系的细胞内分析。 J.神经科学。离开。 J.苏克。神经科学。 1993; 13 :3266–3283。 doi: 10.1523/JNEUROSCI.13-08-03266.1993如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
72. Contreras D、Destexhe A、Sejnowski TJ、Steriade M。通过皮质丘脑反馈控制丘脑振荡的时空相干性。科学。 1996; 274 :771–774。 doi:10.1126/science.274.5288.771如果:44.7 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
73. Timofeev I, Steriade M.完整皮层和去皮猫丘脑的低频节律。 J.神经生理学。 1996; 76 :4152–4168。 DOI:10.1152/jn.1996.76.6.4152如果:2.1 Q3 B3 。 [公共医学] [交叉引用] [谷歌学术]
74.桑切斯-维韦斯 MV,麦考密克 DA。新皮质节律性循环活动的细胞和网络机制。纳特。神经科学。 2000; 3 :1027–1034。号码:10.1038/79848如果:21.2 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
75.龚 G 等人。皮质解剖网络中与年龄和性别相关的差异。 J.神经科学。离开。 J.苏克。神经科学。 2009年; 29 :15684–15693。 doi:10.1523/JNEUROSCI.2308-09.2009如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
76. Biswal BB 等人。走向人类大脑功能的发现科学。过程。国家。阿卡德。科学。美国2010; 107 :4734–4739。 DOI:10.1073/pnas.0911855107如果:9.4 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
77.Tomasi D,Volkow ND。大脑功能连接密度的性别差异。哼。大脑地图。 2012年; 33 :849–860。 doi:10.1002/hbm.21252如果:3.5 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
78.阿米蒂奇·R、霍夫曼·R、费奇·T、特里维迪·M、拉什·AJ。抑郁症门诊患者和健康成年人 NREM 睡眠期间 delta 活动的时间特征:群体和性别影响。睡觉。 2000; 23 :607-617。 doi:10.1093/睡眠/23.5.1c如果:5.3 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
79.阿米蒂奇·R,霍夫曼·RF。睡眠脑电图、抑郁和性别。睡眠医学。 2001 年修订; 5 :237–246。 DOI:10.1053/smrv.2000.0144如果:11.2 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
80.Shaw P 等人。人类大脑皮层的神经发育轨迹。 J.神经科学。离开。 J.苏克。神经科学。 2008年; 28 :3586–3594。 doi:10.1523/JNEUROSCI.5309-07.2008如果:4.4 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
81. McHill AW 等人。青春期雌激素与δ功率下降之间的关系。睡觉。 2017年; 40 :zsx008。 doi:10.1093/睡眠/zsx008如果:5.3 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
82.斯里尼瓦桑 R、努涅斯 PL、西尔伯斯坦 RB。空间过滤和新皮质动力学:脑电图一致性的估计。 IEEE 传输。生物医学。工程师。 1998; 45 :814–826。号码:10.1109/10.686789如果:4.4 Q2 B2 。 [公共医学] [交叉引用] [谷歌学术]
83. Pinares-Garcia P、Stratikopoulos M、Zagato A、Loke H、Lee J。性别:神经发育和神经退行性疾病的重要危险因素。脑科学。 2018; 8 :154。 DOI:10.3390/brainsci8080154如果:2.7 Q3 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
科学报告中的文章由自然出版集团提供