这是用户在 2024-8-30 10:50 为 https://app.immersivetranslate.com/pdf-pro/08c8ce66-ee81-460e-8181-6e9fa74d5f27 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_08_30_8c4ec2c53e707034bcd0g

High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions
大规模火成岩省的高温甲烷排放是晚二叠纪大灭绝的贡献者

Received: 2 May 2022 收到:2022 年 5 月 2 日
Accepted: 1 November 2022
接受: 2022 年 11 月 1 日

Published online: 12 November 2022
发布于网上:2022 年 11 月 12 日

Check for updates 检查更新

Chengsheng Chen , Shengfei Qin , Yunpeng Wang , Greg Holland ,
陈成生 ,秦胜飞 ,王云鹏 ,格雷格·霍兰
Peter Wynn (1) , Wanxu Zhong & Zheng Zhou (1)
彼得·温 (1) , 王旭忠 和 郑州 (1)

Abstract 摘要

Methane emissions induced by Large Igneous Provinces have the potential to contribute to global environmental changes that triggered mass extinctions in Earth's history. Here, we explore the source of methane in gas samples from central Sichuan Basin, which is within the Emeishan Large Igneous Province (ELIP). We report evidence of high methane formation temperatures (between and ) from clumped methane measurements and mantle-derived signatures of noble gases, which verify that oil-cracked and pyrobitumen are by-products within the reservoirs, associated with hydrothermal activity and enhanced heating by the ELIP. We estimate the volume of oil-cracked induced by the ELIP and argue that emissions would have been sufficient to initiate global warming prior to the end of the Permian. We also suggest that similar emissions from oil-cracked associated with the Siberian Traps Large Igneous Province may also have contributed to the end-Permian mass extinction significantly.
大火成岩省引起的甲烷 排放有可能对触发地球历史上的大规模灭绝事件的全球环境变化做出贡献。在这里,我们探索了位于峨眉山大火成岩省(ELIP)内中部四川盆地天然气样品中甲烷的来源。我们报告了高温甲烷形成(介于 之间)的证据,来自同位素甲烷测量和地幔来源的贵有气体,这证实了油裂解 和热解沥青是这些储层中与热液活动和 ELIP 增强加热相关的副产品。我们估算了 ELIP 诱发的油裂解 的体积,并认为 排放足以在全新世末期前引发全球变暖。我们还认为,与西伯利亚陷落大火成岩省相关的类似排放也可能在很大程度上导致了全新世末期的大灭绝。

Major mass extinction events during the last 500 Ma of Earth's history coincide with the eruptions of Large Igneous Provinces (LIPs) . They have been attributed to a combination of magmatic activities and greenhouse gas release . During the eruptions, massive quantities of greenhouse gases (e.g., and ) were emitted into the atmosphere, leading to rapid global warming, which then contributed to the widespread demise of both aquatic and terrestrial ecosystems . The Late Permian mass extinctions (LPME), the most severe biosphere crisis in Earth's history, eliminated more than of the Earth's species. Two independent extinction events during the LPME, the Guadalupian-Lopingian extinction (GLE) and the Permian-Triassic extinction (PTE), occurred within a fairly short period ( 10 Ma ), which, in timing, could be attributed to the eruption of the Emeishan Large Igneous Province (ELIP; -260 Ma) and Siberian Traps Large Igneous Province (STLIP; -252 Ma) respectively . High-resolution stratigraphy and paleo-biodiversity studies also support the strong correlation between the LPME and the LIPs . The links among the global carbon cycle, climate change, and mass extinctions have been recorded in the 5 to 8 per mil ( ) negative shift in stable carbon isotopes of both carbonate and organic carbon ( and ) through the .
地球历史上最后 500 百万年内发生的主要大规模灭绝事件与大型火成岩省(LIPs)的喷发 不谋而合。它们被归咎于火山活动和温室气体释放的结合 。在喷发期间,大量的温室气体(如 )被排放到大气中,导致全球急剧变暖,这又促进了水生和陆地生态系统的广泛衰落 。晚二叠世灭绝(LPME)是地球历史上最严重的生物圈危机,消灭了超过 的地球物种。LPME 期间的两次独立灭绝事件,即瓜达鲁佩-罗平城灭绝(GLE)和二叠纪-三叠纪灭绝(PTE),发生在一个相当短的时期(约 10 百万年),其时间上可归因于恩梅山大型火成岩省(ELIP;约 260 百万年前)和西伯利亚大陆板块大型火成岩省(STLIP;约 252 百万年前)的喷发 。高分辨率地层学和古生物多样性研究也支持 LPME 与 LIPs 之间的强相关性 。全球碳循环、气候变化和大规模灭绝之间的联系,在 5 到 8‰(< code8 >)的碳酸盐和有机碳( )稳定碳同位素负偏移中有所记录
Although an association between global warming and the LPME has been widely accepted, temporal emission mechanisms of greenhouse gases are not entirely clear and remain a topic of discussion. The volcanism associated with the LPME triggered greenhouse gas outbursts and extreme climate changes , primarily due to from magma degassing, thermal metamorphism, and combustion of coal, carbonates, and shales . In contrast, released by volcanic intrusion into coal, destabilization of submarine and permafrost clathrates, and enhanced microbial methanogenesis is thought to have had a secondary effect . However, large quantities of solid bitumen (or termed as pyrobitumen), the by-product of the pyrolysis of oils into , can be found in areas within the ELIP and STLIP regions . This additional source of methane, generated underground by oil
尽管人们普遍接受全球变暖与晚泥盆纪大灭绝事件之间存在关联,但温室气体的时间排放机制并不完全清楚,仍然是一个讨论话题。与晚泥盆纪大灭绝事件相关的火山活动引发了温室气体喷发和极端气候变化,主要是由于来自岩浆脱气、热变质以及煤炭、碳酸盐和页岩燃烧的排放。相比之下,由于火山岩侵入煤层、海底和永冻层气凝物的破坏以及微生物甲烷生成的增强,这些因素被认为具有次要作用。然而,在伊利亚斯边缘岩浆省(ELIP)和西西伯利亚地幔柱(STLIP)地区,可以发现大量的固态沥青(或称为热沥青),这是油类热解产生的副产品。这种地下产生的额外甲烷来源,可能对晚泥盆纪大灭绝事件的气候变化产生了重要影响。
cracking and subsequently released into the atmosphere, may play a much more important role during the LPME interval than previously thought. is a potent greenhouse gas, and its global warming potential is approximately 28 times relative to for a 100-year time horizon without considering climate feedback (e.g., stratospheric ozone depletion .
在 LPME 时期内,裂缝及其后释放到大气中的 可能比之前认为的更加重要。 是一种强大的温室气体,其全球升温潜能在 100 年时间尺度上相当于 的约 28 倍,不考虑气候反馈(如平流层臭氧消耗 )。
Pyrolysis of paleo-oil and related emissions induced by the volcanic activity of both the ELIP and STLIP have been investigated previously based on petrological recordings and gas-venting pipes . It was suggested that carbon gases and and even halocarbons might have been released into the atmosphere through pipes in both Sichuan Basin, China and Tunguska Basin, Siberia during the Late Permian. Nevertheless, previous work was based on indirect evidence in the petrological recordings to infer the possibility of gas emissions. They did not quantify the extensiveness of the pyrolysis process and had insufficient evidence of its strong correlation with the LIPs. In this study, we focus on natural gases by combining clumped isotopes for methane and isotope tracers for noble gases together with basin modeling techniques, to investigate the link between volcanism and generated by large-scale oil cracking, and evaluate its impact on the LPME.
古油热解及与温拉斯-西伯利亚大火成岩省(ELIP)和锡尔特温拉斯大火成岩省(STLIP)火山活动相关的气体排放已基于岩石学记录和气体排放管进行过前期研究。已有研究建议,在中国四川盆地和俄罗斯西伯利亚通古斯盆地的晚二叠世期间,可能通过这些管道向大气中释放了二氧化碳、甲烷及卤代烃。然而,以前的工作仅依赖于岩石学记录中的间接证据来推测气体排放的可能性,未能量化热解过程的广泛性,也缺乏与大火成岩省密切相关的充分证据。在本研究中,我们通过结合甲烷团状同位素和贵金属气体同位素示踪剂以及盆地建模技术,重点研究天然气,探讨火山活动与由大规模油裂解产生的气体之间的联系,并评估其对晚二叠世大灭绝事件的影响。
The Sichuan Basin in the southwestern China is an ideal case study, because (a) it is located in the outer zone of the ELIP in the Upper Yangtze platform of South China continental block (Fig. 1a); (b) abnormal heating events induced by the ELIP have been identified in the basin and (c) widespread pyrobitumen and natural gas pools have been discovered within the Sinian-Cambrian dolostones in the basin, indicating that massive in-situ paleo-oils have been completely pyrolyzed into in its geological history . The ELIP is partly occupied by the Sichuan Basin and its magmas from the Emeishan mantle plume (EMP) have intruded through the Upper Yangtze sedimentary sequences (i.e., Precambrian to Silurian dolostones, marls, and shales) (Fig. 1a). Large basaltic eruptions, crustal melting, hydrothermal activity, and abnormal heating events occurred in the basin and may have initially covered from inner to outer zones . A thick succession of marine carbonates overlies the -800 Ma old basement, where a large-scale paleo-uplift (Leshan-Longnvsi) formed in the center of the basin and became a large petroleum system over the early Paleozoic (Fig. 1b). The sedimentary cover of the paleo-uplift includes Sinian-Ordovician marine carbonates, PermianTriassic carbonate-clastic rocks and Triassic-Quaternary clastic rocks (Fig. 1c). The Anyue gas field, with an area of , is located on the high point (Moxi-Gaoshiti Bulge) of the paleo-uplift with proven gas reserves of over one trillion cubic meters within the Sinian Dengying and Cambrian Longwangmiao Formations. The thick black shale of the Qiongzhusi Formation was deposited within the depression on the west of the high point. As the major source rocks (dominated by Type-I kerogen), the shale generated and expelled oils which migrated into the traps within the high points during the oil generation window from Ordovician to Devonia . Subsequently, the accumulated oils were pyrolyzed into pyrobitumen and methane gas, which were the most common fluids filling the pore space in the Sinian-Cambrian reservoirs . Geochemical evidence from pyrobitumen indicated that the gas pools were formed by in-situ thermal pyrolysis of paleo-oil pools .
四川盆地位于中国西南部,是一个理想的案例研究对象,原因如下:(a)它位于华南大陆块上扬子台地外缘的 ELIP 范围内(图 1a);(b)ELIP 导致的异常加热事件已在该盆地内被确认;(c)在该盆地的寒武系-震旦系白云岩内发现了广泛的热解沥青和天然气藏,表明大规模的古油藏在地质历史中已完全热解为干气。ELIP 部分占据了四川盆地,来自峨眉山地幔柱(EMP)的岩浆侵入了上扬子沉积序列(即震旦系-志留系的白云岩、泥灰岩和页岩)(图 1a)。该盆地发生了大规模玄武岩喷发、地壳熔融、热液活动和异常加热事件,可能从内至外范围内都有发生(图 1b、1c)。厚厚的海相碳酸盐覆盖在约 8 亿年的基底之上,在盆地中心形成了大规模的古隆起(乐山-龙门寺),成为古始生代大型含油气系统。这个古隆起的沉积覆盖包括震旦系-奥陶系的海相碳酸盐、二叠系-三叠系的碳酸盐-碎屑岩和三叠系-第四系的碎屛岩(图 1c)。安岳气田位于这一古隆起的高点(莫希-高石梯凸起)上,在震旦系灯影组和寒武系龙王庙组中证实有超过一万亿立方米的天然气储量。位于高点西部的凹陷中沉积了厚厚的黑色页岩,即穷珠寺组。 作为主要的源岩(主要由 I 型类酮组成),页岩在渥德维期至泥盆纪的油气生成窗口期内生成并排放了油品,这些油品迁移进入了高地陷穴。随后,积累的油品被热解转化为焦油质沥青和甲烷气,这些是塞宁-寒武系储层中最常见的充填孔隙空间的流体。来自焦油质沥青的地球化学证据表明,天然气藏是由古油藏原位热解成的。
Although previous studies have proposed that the formation of pyrobitumen within the strata may have been affected by occasional hydrothermal activity associated with the ELIP , their evidence is not sufficient to directly link the massive generation of oil-cracked within the ELIP to the EMP . It remains uncertain whether the ELIP could have acted as a widespread-impact "coking furnace" for promoting the massive generation of oil-cracked and pyrobitumen underground. Here, we examine 20 natural gas samples (dominantly ) collected from the Sinian-Cambrian dolostones in the Anyue gas field in the central Sichuan Basin within the outer zone of
尽管之前的研究提出了沉积层内焦油沥青的形成可能受到与埃尔利普有关的偶发性热液活动的影响,但其证据不足以直接将埃尔利普内大规模油裂解与 EMR 建立联系。目前仍不确定埃尔利普是否可能作为一个广泛影响的"焦炉",促进了地下大规模油裂解和焦油沥青的生成。这里,我们对四川盆地中部安岳气田晚前寒武纪-寒武纪白云岩中采集的 20 个天然气样品(主要为甲烷)进行了研究。

ELIP (Fig. 1b, c). We measure methane-clumped isotopes ( 9 samples) to obtain methane formation temperatures for investigation of the abnormal geothermal activity and determine noble gas isotopic compositions ( 11 samples) to understand the mantle influence on ELIP region. Furthermore, we conduct numerical simulation of basin evolution and hydrocarbon generation for the gas field to assist in constraining methane formation temperature and genesis (see Methods). This work quantifies the ELIP-induced generation within the reservoirs. The total volume of methane released into the atmosphere from the whole basin during the gas formation period is estimated as 1440 Gt .
埃利普(图 1b、c)。我们测量甲烷簇聚同位素(9 个样品),以获得甲烷形成温度,以调查异常地热活动,并确定贵重气体同位素组成(11 个样品),以了解地幔对埃利普地区的影响。此外,我们对流盆演化和油气生成进行数值模拟,以帮助约束甲烷形成温度和起源(见方法)。这项工作量化了埃利普引发的甲烷生成。在气体形成期间,整个盆地向大气释放的甲烷总体积估计为 1440 Gt。

Results and discussion 结果和讨论

Gas composition and geochemical characteristics
气体组成和地球化学特征

The natural gas appears as a typical dry gas with a dryness index ) ranging from 583 to 3019. It contains ranging from to ranging from to ranging from undetectable to ranging from undetectable to ranging from undetectable to , and trace amounts of other gases (Supplementary Table 1). Methane shares similar values ranging from to and similar values ranging from to , while ethane shares similar values ranging from to (Supplementary Table 1). Low and content is likely related to minor thermochemical sulfate reduction (TSR) that took place in the reservoirs . Almost all gases from the Sinian and Cambrian reservoirs were generated from oil precursors accompanied with abundant pyrobitumen from 0.1 to over (average approximately . In addition to extremely high dryness index ( ), and values (much higher than and , respectively) also show that gases from the Sinian and Cambrian reservoirs have reached thermal equilibrium. They fall within the equilibrium thermogenic field defined by using and values (Supplementary Fig. 6a), indicating that there are no influences from biogenic or abiotic gases . Extremely high dryness index, a single in-situ gas source, and equilibrium conditions permit the use of the thermometer (defined by equation 4 in the Supplementary Information) for deriving formation temperatures of methane.
这种天然气是典型的干气,干燥指数(C1/(C2+C3))在 583 到 3019 之间。它含有从未检出到从未检出到从未检出到从未检出到从未检出的极微量其他气体(补充表 1)。甲烷的δ13C 值在-44.46‰到-41.73‰之间,δD 值在-207.8‰到-195.4‰之间,而乙烷的δ13C 值在-36.51‰到-33.99‰之间(补充表 1)。较低的硫酸盐还原(TSR)可能与储层中微量的热化学硫酸盐还原有关。来自寒武系和震旦系的几乎所有天然气都是由油前体物生成的,伴有从 0.1 到超过 2.5(平均约 1.8)的丰富热解沥青。除了极高的干燥指数之外,δ13C(CH4)和δ13C(C2H6)值(远高于δ13C(CO2)和δ13C(H2S)值)也表明寒武系和震旦系的天然气已达到热平衡。它们落在以δ13C(CH4)和δ13C(C2H6)定义的平衡热成因气体区域内(补充图 6a),表明没有生源气或无机气体的影响。极高的干燥指数、单一的就地气源以及平衡条件,使我们能够利用甲烷热力学温度计(补充信息中的公式 4)来推导形成温度。

Constraining methane formation temperatures in the Anyue field using D values
使用 D 值约束安岳气田的甲烷形成温度

values indicate methane formation temperatures in the samples vary from to (average of ), while the D-based temperature values of methane in samples vary from to (average of ) (Fig. 2b; Supplementary Table 2). These temperatures are significantly higher than the present reservoir temperatures and the peak temperatures of either TSR or oil-cracking (Fig. 2b; Supplementary Fig. 3). Also, they are significantly higher than the modeled reservoir temperatures (200- ) of the maximum burial during Late Cretaceous (Fig. 2a, b). In contrast, clumped methane isotope temperatures are closer to the highest trapping temperatures of the quartz inclusions that have been reported in the same gas reservoirs in the Anyue gas field , representing the invasion of deep-to-epizonogenic hydrothermal fluids corresponding to the ELIP, EMP (Fig. 2b). These generally higher temperatures derived from values indicate significant hydrothermal control in addition to the thermal effect associated with burial process.
中变化范围为 ),而 中变化范围为 )(图 2b;补充表 2)。这些温度明显高于当前的 以及 TSR 的峰值温度(图 2b;补充图 3)。此外,它们也显著高于在白垩纪晚期达到的 所模拟的储藏温度(图 2a,b)。相比之下,甲烷同位素温度与在安岳气田同样气藏中报告的石英包裹体的最高捕获温度 更为接近,代表了与 ELIP、EMP 相关的深部至准地壳热液流体侵入(图 2b)。这些从 导出的普遍较高温度表明,除了与埋藏过程相关的热效应之外,还存在显著的热液控制作用。
The interpretation of high-temperature methane formation in the Anyue gas field is supported by the gas compositions. Studies have shown that temperature differences can generate completely different end products especially in organic reactions . The kinetics of the oilcracking process has two distinct stages with significant difference in gas composition of methane and heavy hydrocarbon gases . The first stage is characterized by dominant production of
安岳气田高温甲烷形成的解释得到了气体组成的支持。研究表明,温度差异可以产生完全不同的最终产品,特别是在有机反应中。油裂解过程的动力学有两个明显的阶段,甲烷和重烃类气体的气体组成有很大差异。第一阶段以甲烷为主。
Fig. 1 | Tectonic and stratigraphic background of the study area and adjacent regions. a Map showing the geographic distribution of the Emeishan Large Igneous Province (ELIP) and Sichuan Basin in the Upper Yangtze platform, southwestern China . The administration boundaries in the map are originated from map products of National Geomatics Center of China (http://www.webmap.cn).
图 1 | 研究区域及相邻地区的构造和地层背景。a 显示四川盆地和峨眉山大火成岩省(ELIP)在扬子上扬子平台西南部地理分布的地图 。地图中的行政边界来自中国国家测绘地理信息局的地图产品(http://www.webmap.cn)。

b Tectonic setting of the study area and adjacent regions. The map of burial depth depicts the Cambrian bottom and constraints the boundary of Leshan-Longnvsi paleo-uplift . Nine gas samples for methane clumped isotope and noble gas analysis are indicated, samples not shown in the map are also collected from the same area in Sinian-Cambrian reservoirs. They are located on the Moxi-Gaoshiti Bulge as part of the Leshan-Longnvsi paleo-uplift, which is the center of the basin as well as the outer zone of ELIP. c Generalized stratigraphic column of the Sichuan Basin .
研究区域及邻近区域的构造背景。埋藏深度图描绘了寒武系底部,并限定了乐山-龙女寺古隆起 的边界。有九个天然气样品用于甲烷簇合同位素和贵重气体分析,未在地图上显示的样品也是从该区域的震旦系-寒武系储层收集的。它们位于莫希-高石梯脊为乐山-龙女寺古隆起的一部分,这既是盆地的中心,也是东川-理塘地幔柱的外围区域。c 四川盆地的概括性地层柱

Marine environments persisted in the basement from the Sinian to the Middle Triassic controlled by the Yangtze, Caledonian, and Hercynian movements, occurring unconformities of the Sinian-Cambrian by the deformation, the Devonian-Carboniferous by the late Paleozoic lifting, and the Permian-Triassic by the ELIP-induced dome and lifting . After the tectonic evolution during the middle Triassic, the terrestrial succession had become the main sedimentary facies until Late Cretaceous controlled by the Indosinian and Yanshannian movements . The Yanshannian-Himalayan lifting led to extensive absence of the Cenozoic in the basin . Symbols used in the figure include - Cambrian; O - Ordovician; C - Carboniferous; K - Cretaceous; E - Paleogene; N - Neogene; Q - Quaternary. wet gases and pyrobitumen, whereas the second stage is characterized by re-cracking of the wet gases to methane. This process leads to a progressive increasing dryness index of the gas . Kinetic modeling of the gases showed that the maximum yield of the gases was from to at geological heating rates from Ma to Ma and they were completely pyrolyzed into methane at a temperature of . Our methane generation model (Fig. 2 and also see Methods and Supplementary Fig. 3) which is based on the
从西尼亚纪到中三叠纪,受到扬子、加里东和赫西尼亚运动的控制,海洋环境一直存在于基底之中。其中出现了西尼亚-寒武的不整合面、泥盆纪-石炭纪的晚古生代抬升以及二叠纪-三叠纪的 ELIP 诱发的隆起和抬升。在中三叠纪的构造演化之后,陆地沉积相一直占主导地位,直到晚白垩纪,受印支运动和燕山运动的控制。燕山-喜马拉雅运动导致了该盆地在新生代缺失了大量地层。图中使用的符号包括:Ɔ-寒武纪;O-奥陶纪;C-石炭纪;K-白垩纪;E-古新世;N-新生代;Q-第四纪。第一阶段特征为湿性气体和热沥青,而第二阶段则以重新裂解湿性气体产生甲烷为特征,导致气体干燥指数逐步增加。气体动力学模拟显示,在地质加热速率为 x-y Ma、温度达到 z℃时,湿性气体产出达到最大,之后全部裂解成甲烷。图 2 及补充材料图 3 所示的甲烷生成模型基于上述结果。
Fig. 2 | History of geological evolution matches modeled geological temperatures. a The burial history and modeled reservoir temperatures and in the Anyue gas field, central Sichuan Basin recovered by model simulations on wellMX and well-GS (see Supplementary Fig. 1 and Supplementary Fig. 2). The reservoirs with dolomite diagenesis have allowed storage of the pre-existing oils and subsequent oil-cracked gases . The modeled temperatures correspond to the geological evolution history in the successive order of early cementation, surface dolomitization, syngenetic dissolution, meteoric karstification, burial dissolution, burial dolomite precipitation, hydrothermal invasion, and deepest burial dissolution .b Diagram of D-based temperatures ( -based T) vs. ratios. Dashed lines specify possible formation temperatures at which methane can be generated under different conditions . The error bars for D-based temperatures are dominantly derived from standard deviation for a constant offset against the stochastic distribution (see Supplementary Information). kinetic model and a geological heating rate of for the Sichuan basin indicates that such extremely dry gases in the Sinian-Cambrian reservoirs would require a formation temperature beyond . In contrast, the formation temperature at the maximum burial depth during Late Cretaceous had not exceeded (Fig. 2a, b). At this temperature, it was unlikely for the oils in the reservoirs to form such extremely dry gases. The gas products would have been characterized by high content of wet gases, which contradicts the gas compositions observed. Therefore, evidence from gas composition, kinetic modeling and the -based temperatures support the impact of the ELIP on the formation of methane in the Anyue gas field, by triggering abnormal heating and rapid oil cracking.
图 2 | 地质演化历史与模拟的地质温度相匹配。a 中央四川盆地安岳气田井 MX 和井 GS(参见补充图 1 和补充图 2)的埋藏史和模拟的储层温度。具有白云岩成岩作用的储层允许了先前存在的原油和随后的油裂解气的储存。模拟温度与地质演化历史的连续顺序相对应,包括早期胶结、表面白云岩化、共生溶解、大气溶蚀、埋藏溶解、埋藏白云岩沉淀、热液侵入和最深埋藏溶解。b δD 温度与δ13C 比率的关系图。虚线标示出不同条件下甲烷可生成的可能形成温度。δD 温度的误差主要源于针对随机分布的常数偏移的标准差(见补充信息)。四川盆地的动力学模型和地质加热速率表明,四川盆地寒武-震旦系储层中如此极干的气体需要形成温度超过 250°C。相比之下,在白垩纪晚期最大埋藏深度期间的形成温度未超过 180°C(图 2a,b)。在这种温度下,储层中的原油不太可能形成如此极干的气体。气体产品应该表现出高含量的湿气,这与观察到的气体组成不符。 因此,气体组成、动力学建模和基于 的温度证据支持 ELIP 对安岳气田甲烷形成的影响,通过引发异常加热和快速油裂化。
High-temperature methane formation in the Anyue gas field can also be supported by petrological evidence. Optical characteristics of pyrobitumen in the and reservoirs were observed to be similar to mesophase pitch, a liquid crystal material produced at high temperatures in a coking furnace, indicating that organic matter had been transferred to a graphite crystal. Honeycomb micropores, generally observed in carbon foams, appeared in the pyrobitumen , suggesting that the reservoirs had undergone a coking process by hydrothermal fluid invasion with rapid heating rather than gradual burial in the geothermal history. These anomalous temperatures suggest that methane generated in the Anyue gas field was mainly controlled by the invasion of hydrothermal fluids during the ELIP interval rather than the maximum burial at the Late Cretaceous, as such high temperatures in the region are only available during the ELIP period (Fig. 2). Further investigation on the mantle involvement is carried out by using noble gas tracers.
安岳气田的高温甲烷形成也可以通过岩石学证据得到支持。在 储层中,焦油沥青的光学特征被观察到与高温焦炉中产生的液晶材料馏青相似,表明有机质已转化为石墨晶体。通常在碳泡沫中观察到的蜂窝状微孔也出现在焦油沥青中,表明储层经历了快速加热的热液侵入焦化过程,而不是地层渐进埋藏的地热历史。这些异常温度表明,安岳气田中产生的甲烷主要受到了 ELIP 期间热液侵入的控制,而不是晚白垩纪的最大埋深,因为该地区只有在 ELIP 期间才有如此高的温度(图 2)。进一步调查了地幔参与的问题,使用贵气体示踪剂进行了研究。
Mantle-derived hydrothermal fluids would be expected to retain a mantle signature in He isotopes (Supplementary Table 3 and
地幔衍生的热液流体应该在 He 同位素上保留地幔特征(补充表 3 和
Fig. 3 | Noble gas signatures support the link of methane with the mantle influence during the Emeishan igneous period. a Diagram of vs. ratios. The ratio is normalized to the atmospheric ratio . Measured ratios in all samples ranged from 16.5 to . They are much higher than the ratio in air-saturated water (ASW or air . Therefore, the atmospheric or ASW-derived gas has negligible contribution to the He concentrations. To estimate mantle He contributions, a simple two-component mixing model was used between an upper crustal endmember and a mantle endmember relative to the subcontinental lithospheric mantle (SCLM) . b Diagram of vs.
图 3 | 贵重气体指纹支持在峨眉山火成期期间甲烷与地幔影响的联系。a 比值图。 比值 是标准化到大气 比值 。所有样品测量的 比值在 16.5 至 之间。它们远高于空气饱和水(ASW )或空气 中的比值。因此,大气或 ASW 衍生的气体对 He 浓度的贡献可忽略不计。为了估算地幔 He 的贡献,使用一个简单的双组分混合模型 在上地壳端元 和相对于亚大陆地幔(SCLM) 的地幔端元之间。b

ratios. represents the resolved non-atmosphere derived excess . The extrapolated mixing line between the crust and mantle endmembers was defined by Stuart et al. using unfractionated cases measured in Dae Hwa (South Korea) W-Mo deposit fluid inclusions . The mantle is typical of unfractionated samples from the mantle . In contrast, the crustal is far lower than the crustal production ratio of , typically representing a fluid derived from shallow cool regions of the crust , in which crustal fluids often mix with a He-rich endmember due to preferential addition of to the gas phase .
比率。 表示源于非大气的超量 。Stuart 等人使用 Dae Hwa(韩国南部)W-Mo 沉积物包裹体中测量的未分馏的样本定义了地壳和地幔端元之间的外推混合线 。地幔 与未分馏的地幔样品 典型。相比之下,地壳 远低于地壳生产率 ,通常代表源自地壳浅冷区的流体 ,其中地壳流体常因优先向气相添加 而与富 He 的端元混合

Supplementary Table 4). Measured ratios , where is the atmospheric value of ) range from 0.0115 to 0.0256 in samples showing crustal dominance of helium isotopes , while the values in samples from and range from 1.37 to 2.36 and 0.300 to 0.418 , respectively, suggesting a strong mantle signature . Here G1 and G2 are two subgroups of samples from the reservoir, taking as the separation standard. Because the ELIP induced by the EMP was a mafic continental large igneous province developed in a typical non-rifted continental margin , we can use He ratios in the subcontinental lithospheric mantle (SCLM) as the mantle endmember of He for further study. Therefore, the mantle contribution of helium can be resolved. The results show that He in samples is almost entirely crustal derived ( ), with the mantle contribution . However, He in -G1 and samples are a mixture of mantle and crustal He in various proportions: The mantle contributions in -G2 samples vary from to . For G1 samples, the mantle contributions are ranging from to (Fig. 3a). He signatures in all samples suggest that, although long-term cratonic stability of the Sichuan basin basement prevented significant volatile contributions from the mantle , isolated "hotspots" do exist and are likely associated with the ELIP .
补充表 4)。测量 比率 (其中 的大气值)在 样品中从 0.0115 到 0.0256 不等,显示了地壳主导的氦同位素 ,而来自 的样品 值分别为 1.37 到 2.36 和 0.300 到 0.418,表明有强烈的地幔信号 。这里 G1 和 G2 是 储库中两个子组,以 作为分离标准。由于 ELIP 由 EMP 诱发,是典型非裂变大陆边缘地区发生的玄武质大陆大火成岩省 ,我们可以使用亚大陆岩石圈地幔(SCLM)中的 He 比值作为 He 的地幔端元进行进一步研究。因此,可以确定地幔贡献的氦。结果显示, 样品中的 He 几乎完全来自地壳 ( ),地幔贡献 。然而, -G1 和 样品中的 He 是地幔和地壳 He 的混合物,比例不同: -G2 样品中地幔 贡献在 之间。对于 G1 样品,地幔 贡献在 之间(图 3a)。所有样品的 He 特征表明,尽管四川盆地基底的长期克拉通稳定性阻止了地幔的大量挥发性物质贡献 ,但也存在孤立的"热点" ,可能与 ELIP 相关
Measured concentrations among all samples are diverse and ratios show clear deviation from the atmospheric ratio of . Measured ratios vary from 2168 to 5973 in samples, from 288 to 348 in -G1 samples, and from 323 to 13558 in -G2 samples. Resolved non-atmosphere derived excess contributes from to of the measured concentrations in samples, from to in -G1 samples, and from to in -G2 samples. All values in samples range from 0.148 to 0.181 , which is much higher than those found in a fluid derived from shallow cool regions of the crust, where 0.007 , but close to the crustal production ratio of (Fig. 3b), implying the contribution from hotter (or deeper) regions of the crust where the diffusivities of noble gases are sufficiently high to permit the release of both He and Ar . From an extrapolated mixing line of vs between the crust and mantle endmembers , the values of -G1 (from 0.020 to 4.140 ) and -G2 (from 0.002 to 0.044 ) samples indicate the mixing of the crustal and mantle components, implying diverse contributions from the mantle or possible fractionation between He and Ar by gas, water, and rock interactions (Fig. 3b). A natural logarithmic fitting curve for and ratios in the samples ( ) shows that higher ratios correlate with higher values. However, this curve is different from the extrapolated mixing line. Sample values are either lower than the value for the shallow cool regions of the crust or beyond the mantle production ratio (Fig. 3b).
在所有样品中测量的 浓度各不相同, 比值明显偏离大气 比值 。测得的 比值在 样品中从 2168 到 5973 不等,在 -G1 样品中从 288 到 348 不等,在 -G2 样品中从 323 到 13558 不等。解决非大气来源的多余 样品中测得 浓度的 ,占 -G1 样品的 ,占 -G2 样品的 样品中所有 值在 0.148 到 0.181 之间,远高于从地壳浅层冷区衍生的流体中发现的值 0.007,但接近地壳生产比 (图 3b),暗示来自地壳较热(或较深)区域,那里的贵重气体扩散性足以释放 He 和 Ar。从地壳和地幔端元之间的 外推混合线来看, -G1(从 0.020 到 4.140)和 -G2(从 0.002 到 0.044)样品的 值表明有地壳和地幔成分的混合,暗示有来自地幔的 贡献或可能由气体、水和岩石相互作用造成 He 和 Ar 的分馏(图 3b)。 样品 比值的自然对数拟合曲线( )显示, 比值更高与 值更高相关。但这条曲线不同于外推的混合线。 样本 值要么低于地壳浅冷区的值 ,要么超出地幔生产率 (图 3b)。
The Cambrian reservoirs contain significant crustal noble gas components. This may be related to its much thicker underlying depositional systems (carbonates and shales), resulting in higher lateral fluxes of crustal radiogenic He, but not permitting efficient vertical flux of mantle-derived gases (e.g., ) to the present gas reservoir (Fig. 4d, e). Compared to the Cambrian reservoir, the Sinian reservoirs ) which recorded significant mantle-derived He , directly overlie the basement and have thinner underlying depositional formations which facilitate easier transit of mantle-derived gas and lower contributions of He from crust. However, samples with intermediate ratios in the -G2 have highest concentrations. This demonstrates variable contributions of both mantle and crustal He in the Sinian formations close to the basement, likely indicating a heterogeneous upwelling of mantle fluids associated with a deeper thermal pulse. Specifically, the Sinian reservoirs exhibit high values in the -G1 samples and low values in the G2 samples (Fig. 3b). The closure temperature for in minerals is much higher than that of . Therefore, He may be preferentially released from minerals at low temperature in the reservoir and Ar may be preferentially released from minerals at high temperature in the -G1 reservoir. High ratios suggest that
寒武纪储层 含有显著的壳源贵气体成分。这可能与其基盘更厚的沉积系统(碳酸盐岩和页岩)有关,导致壳源放射性 He 的较高的侧向通量,但不允许地幔源气体(如 )有效地流向现有的气藏(图 4d,e)。与寒武纪储层相比,震旦纪储层 记录了显著的地幔源 He,直接覆盖在基底之上,其下部沉积层更薄,有利于地幔源气体的运移,壳源 He 的贡献较低。然而, -G2 中具有中等 比值的样品具有最高的 浓度。这表明在靠近基底的震旦纪地层中,地幔和壳源 He 的贡献是可变的,可能表明与较深层热脉冲相关的地幔流体的异质上涌。具体来说,震旦纪储层 -G1 样品中表现出较高的 值,而在 G2 样品中表现出较低的 值(图 3b)。矿物中 的封闭温度远高于 。因此,He 可能更容易在 储层的低温下从矿物中释放出来,而 Ar 可能更容易在 -G1 储层的高温下从矿物中释放出来。较高的 比值表明


(1) Volcanic intrusion into sedimentary rocks
火山侵入沉积岩

(3) Thawing submarine hydrate
(3)溶解的海底天然气水合物

Legend 传奇

Fig. The pattern of methane production and emission in the central Sichuan
中国四川中部甲烷产生和排放的模式

Basin, China. a Global paleogeographic map during the Late Permian-Early Triassic period and the locations of Sichuan Basin and mantle plume. b Surface uplift, generation of Emeishan basalts, crustal accretion in context of upwell of mantle plume , and greenhouse gas emission patterns. c The formation of paleo-oil pools prior to late Permian . The Qiongzhusi Formation mainly distributed at the intra-cratonic sag is the main source rock to provide hydrocarbon sources . d The hydrothermal fluids associated with the magma events invaded the oil reservoirs during the Late Permian-Early Triassic through hydrothermal channels caused by pull-apart function of strike-slip faults , which caused the oil-cracking, precipitation of hydrothermal minerals , methane emissions to ancient
四川盆地,中国。 晚二叠世至早三叠世期间的全球古地理环境图以及四川盆地和地幔柱的位置。 地表隆起、四川玄武岩的形成、地壳增生与地幔柱喷发有关。 晚二叠世之前古油藏的形成。 主要分布在内陆盆地凹陷中的邛崃组为主要的烃源岩 晚二叠世至早三叠世期间,与岩浆事件相关的热液穿越断层通道进入油藏,导致了油品裂解、热液矿物沉淀 以及向古大气的甲烷排放。

atmosphere, and mantle-degassing. e The basin experienced continuous deposition until late Cretaceous. Then the extensive tectonic uplift occurred due to the Himalayan orogeny. The differential extent of uplift created a geological pattern with west of the basin higher than the east of basin. This geological adjustment further isolated the reservoirs resulting in good traps. It provided unique conditions for long-term retention of natural gases and mantle-derived gases especially in the reservoirs. Symbols used in the figure include AnZ - Pre-Sinian; Doushantuo Formation; - Dengying Formation; - Qiongzhusi Formation; - Canglangpu Formation; - Longwangmiao Formation; - Middle-Upper Cambrian; O - Ordovician; - Lower Permian; - Middle-Upper Triassic; Lower-Middle Jurassic. the -G1 reservoir has received high and fluxes close to fractures or vents, and experienced more intense hydrothermal activity, leading to higher temperatures of surrounding rocks, which facilitated the release of from minerals. Variation of ratios also suggests the presence of abnormal thermal events and the heterogeneity of associated hydrothermal activity. Generally, fluid inclusions in minerals (e.g., carbonates) cannot trap gases at temperatures greater than . At high temperatures, noble gases would diffuse quantitatively into free gas phases producing high ratios . Based on the ratios in Cambrian reservoirs (Fig. 3b), the maximum temperature in this isolated formation would be higher than , which is consistent with the clumped isotope temperatures.
大气层和地幔脱气作用。该盆地一直持续沉积到白垩纪晚期。然后由于喜马拉雅造山运动发生了大规模的构造隆起。隆起程度的差异在这个盆地西部高于东部形成了一种地质格局。这种地质调整进一步隔离了油气藏,形成了良好的封闭条件。这为长期保存天然气和来自地幔的气体,特别是在 油气藏中提供了独特的条件。图中使用的符号包括:AnZ - 前寒武纪; -都山陀组; -邓营组; -邛崃组; -苍朗浦组; -龙王庙组; -中-上寒武纪;O-奥陶纪; -下二叠纪; -中-上三叠纪; -下-中侏罗纪。 -G1 储层接近断裂或裂隙处受到了高的 通量,经历了更强烈的热液活动,导致周围岩石温度较高,这有利于 从矿物中的释放。 比值的变化也表明存在异常热事件和相关热液活动的不均一性。通常,矿物(例如碳酸盐)中的流体包裹体无法在超过 的温度下捕获气体。在高温下,稀有气体会定量扩散到游离气相中,产生较高的 比值 。根据寒武纪储层的 比值(图 3b),该隔离层的最高温度应高于 ,这与压实同位素温度一致。

The extent of methane production and emission induced by ELIP
由 ELIP 诱发的甲烷产生和排放的程度

Figure 4 shows the pattern of methane production and emission in the central Sichuan Basin induced by ELIP during its geological evolution. It suggests close association with mass extinction caused by global warming. Prior to late Permian (Fig. 4c), the high-quality source rocks of Qiongzhusi Formation developed in the intra-cratonic sag entered the oil generation window of formation temperatures over
图 4 显示了中央四川盆地在地质演化过程中,由 ELIP(大火成岩省)引起的甲烷产生和排放模式。这一过程与全球变暖导致的大规模灭绝事件存在密切联系。在晚二叠纪之前(图 4c),昆仑中庸组内的优质源岩进入了原油生成窗口,形成温度超过

during the Ordovician-Devonian period . This supplied sufficient hydrocarbons which then formed large oil pools within highquality and reservoirs at the high points of the Moxi-Gaoshiti Bulge, central Sichuan Basin. Due to stable geological conditions and good seals, these oil pools were well-preserved until the late Permian ELIP. During late Permian (Fig. 4d), corresponding to the period of ELIP activity (Fig. ), high-temperature hydrothermal fluids invaded the basin through faults, unconformities, and high-porosity reservoirs, and then efficiently pyrolyzed the oils into methane and pyrobitumen within the reservoirs . This process has been recorded in in-situ pyrobitumen, hydrothermal veins, quartz inclusions and other hydrothermal-related minerals . Because the abnormal thermal event caused by the ELIP might have peaked within , the timing of oil pyrolysis coincided with the GLE ). The abnormally high clumped temperatures strongly support this scenario, and high isotopic ratios record the link between the basin and mantle during the period of ELIP.
期间形成 。这提供了足够的碳氢化合物,后来在四川盆地中心的摩西-高石梯隆起的高点形成了大型油藏,储存在优质的 储层中。由于地质条件稳定和良好的封闭,这些油藏一直保存至晚二叠世 ELIP 期。在晚二叠世(图 4d),对应于 ELIP 活动期(图 ),高温热液 通过断层、不整合面和高孔隙储层侵入盆地,然后有效地将油井热裂解为甲烷和焦油沥青 。这一过程记录在现场焦油沥青、热液脉石英包裹体和其他热液相关矿物 中。由于 ELIP 引起的异常热事件 可能在 内达到峰值,油热裂解的时间恰逢 GLE 。异常高的团簇温度强烈支持这一情景,高 同位素比值记录了盆地与地幔在 ELIP 期间的联系。
We propose total methane generation (TMG) by oil cracking based on the total content of pyrobitumen and its yield (see Methods and Supplementary Table 5) is up to in the Anyue region. Excluding preserved methane (total gas reserves, TGR), the total methane emission (TME) into the paleo-atmosphere could have been or of total gas generated) (see Methods and Supplementary Table 5). Such a large amount of methane could be emitted through hydrothermal channels and fracture systems triggered by late Permian volcanic and seismic activities, and its release could be driven by rapid gas expansion and escape (Fig. 4d). Such channels and faults have been revealed in previous research based on seismic data. For example, the Sinian Dengying Formation contains widely developed hydrothermal channels that formed on the basis of tiny-grabens caused by the pull-apart function of strike-slip faults , which likely provided potential faults and pipes contemporaneous with the ELIP for gas venting . Such rapid expansion and extreme high pressures have been preserved in -dominated gaseous inclusions within the quartz formed in the reservoirs . Paleo-pressure coefficients of larger than 3.0 were recorded under Late Permian trapping depths compared to the values of the gas pool pressure coefficients of less than 1.2 under current reservoir conditions . This indicates that the Anyue gas field has experienced rapid oil cracking, gas expansion, and escape processes induced by the ELIP. Gas generation by burial only played a minor role in the Anyue region.
我们提出在安岳地区,基于焦油沥青的总含量及其产量(参见方法和补充表 5),石油裂化所产生的总甲烷量(TMG)高达 。除了保留的甲烷(总气储量,TGR)之外,进入古大气层的总甲烷排放量(TME)可能为 的总气体产生量。大量甲烷可能通过晚二叠纪火山和地震活动引发的热液通道和断裂系统释放出来,其排放可能是由于快速气体膨胀和逃逸驱动的(图 4d)。此前的研究基于地震数据,已经揭示了这些通道和断层。例如,寒武系灯影组含有广泛发育的热液通道,其形成是由于走滑断层拉张作用引起的小型地陷 ,这可能为与 ELIP 同期的气体泄漏提供了潜在通道和管道 。这种快速膨胀和极高压力已经保存在 主导的气体包裹体中,形成于储层石英中 。与当前储层压力系数小于 1.2 相比,晚二叠纪卡箍压力系数大于 3.0 。这表明安岳气田经历了由 ELIP 诱发的快速油裂解、气体膨胀和逃逸过程。埋藏作用导致的气体生成在安岳地区只起次要作用。
The total volume of pyrobitumen in the Sichuan Basin and its surrounding area is over ten times that of the Anyue region . Therefore, the entire Sichuan Basin could have released , which is equivalent to at least , as the global warming potential of is at least 28 times that of in a 100 -year period . This is comparable to previous work which linked the GLE event with ( from magma release and 5600 Gt from magma intrusions) emitted by the ELIP volcanism . The mass of oilcracked equivalent to suggested in this work is more than twice as large as the released by the ELIP itself, or over one thousand times the annual global carbon emission by human beings (e.g., emission in 2019) . This indicates that induced by the ELIP could be a key driver of global warming and climate change during the GLE event, without taking climate feedbacks into account, such as stratospheric ozone depletion by methane chemical loss .
四川盆地及其周边地区的干酷沥青总体积是安岳地区的十多倍。因此,整个四川盆地可能释放出相当于至少二氧化碳当量的气体,因为在 100 年期间,其全球变暖潜能是甲烷的 28 倍以上。这与之前将大规模灭绝事件与来自 ELIP 火山活动排放的二氧化碳和甲烷量相关联的研究结果相当。本研究提出的油裂解产生量相当于二氧化碳当量,比 ELIP 本身排放的数量还要大两倍以上,或者是人类年度碳排放量的一千多倍。这表明,ELIP 引起的甲烷释放可能是大规模灭绝事件期间全球变暖和气候变化的关键驱动因素,没有考虑诸如甲烷化学损失导致的平流层臭氧损耗等气候反馈。

Significance of high-temperature methane emissions to the paleoclimate, LPME, and global carbon cycle
高温甲烷排放对古气候、LPME 和全球碳循环的重要性

The PTE event is the largest known extinction event, coincident with the greatest STLIP volcanism, which happened 8 million years after the ELIP . The STLIP volcanism may have had a magma volume 6-10 times of the ELIP in a region that had accumulated large-scale Precambrian-Paleozoic sediments containing abundant pyrobitumen , in a geological setting and sedimentary framework similar to the Upper Yangtze plate (e.g., Sichuan Basin). Therefore, significantly more (probably over ) could have been generated by the STLIP, implying emissions may directly have contributed to global warming and the greatest mass extinction event at the end of the Permian.
晚三叠世灭绝事件(PTE)是已知最大的一次灭绝事件,与最大的西伯利亚大陆内部大火成岩省(STLIP)火山活动同步发生,这发生在东亚大陆内火成岩省(ELIP)后 8 百万年。STLIP 火山活动可能产生了相当于 ELIP6 至 10 倍的岩浆量,在这一地区,积累了大规模的前寒武纪-古生代沉积岩,含有大量的热解沥青。这一地质背景和沉积环境与长江上游地区(如四川盆地)类似。因此,STLIP 可能产生了大量(可能超过 5 万吨)的温室气体,这直接导致了泥盆纪末期史上最大规模的生物大灭绝事件。
Furthermore, more than one-third of the erupted volcanic rocks and the entire STLIP intrusive magmatism postdated the end-Permian mass extinction (EPME) , reducing the likelihood that release is solely responsible for the mass extinction. Although elemental and isotopic signatures of Cu and Hg have verified that felsic volcanism ( S rich vapor release) in South China might have accelerated the process of extinction , the oil-cracked source of proposed in this study should also be recognized as an important driver. LIPs can cause abnormal heating events and hydrothermal fluids before, during, and after their massive eruptions . The relatively low temperature , see Supplementary Fig. 3) required for rapid oil cracking to form pyrobitumen and , can be achieved before emission from massive basalt eruptions and magma intrusions with temperatures of . This implies that generation and emission could occur before , and more likely be responsible for the EPME event, at least in the early stages. Similarly, the massive emission of (about 7200 Gt ) that has been estimated to occur during the endTriassic Central Atlantic Magmatic Province (CAMP) , likely also contributed to global climate change which caused the end-Triassic mass extinction , which is comparable to ELIP's 1440 Gt and SLITP's emissions. This further supports the concept that hightemperature emissions induced by LIPs are of major importance for understanding mass extinctions and the carbon cycle in Earth's history.
此外,超过三分之一的喷发火山岩和整个 STLIP 岩浆体系都形成于二叠纪末大灭绝事件之后,降低了二叠纪末释放的可能性是唯一导致大灭绝的原因。尽管 Cu 和 Hg 的元素和同位素特征证实了中国南方的酸性火山作用(S 富蒸汽释放)可能加速了灭绝过程,但本研究中提出的油热裂解源也应被视为重要驱动因素。大火成岩省在其大规模喷发前、期间和后均可引起异常加热事件和热液活动。所需的相对较低温度(见补充图 3)可在大规模玄武岩喷发和岩浆侵入(温度高达 1400℃)之前即可实现油热裂解形成焦油沥青和甲烷。这意味着甲烷的生成和释放可能发生在二叠纪末大灭绝事件之前,更可能在早期阶段对其负责。类似地,在三叠纪末中大西洋火山岩省(CAMP)期间估计释放的大量甲烷(约 7200Gt),也可能导致了导致三叠纪末大灭绝事件的全球气候变化,这与 ELIP 的 1440Gt 和 SLITP 的 509Gt 甲烷排放相当。这进一步支持了这样一个概念:大火成岩省诱发的高温甲烷排放对理解地球历史上的大灭绝事件和碳循环至关重要。
In this study, we propose that high-temperature methane generated by magmatic activities is an important driver for climate change and carbon cycle. It is different from thermogenic methane produced from organic matter by geological burial processes. It is also different from abiotic methane associated with Fischer-Tropsch reactions . This type of high-temperature methane is still thermogenic in origin, but it is produced by geothermal anomalies related to magmatic and hydrothermal activity rather than sedimentary processes. The unique feature of high-temperature methane is the extremely rapid cracking of organic matter caused by rapid and extreme heating events which contrasts with slow heating and therefore slow methane generation during sedimentary burial. Although the samples in this study are collected from the outer zone of the ELIP, they still show significant impact from the heat related to the ELIP. Samples closer to the intermediate and even inner zone (Fig. 1a; Fig. 4b), would exhibit even more rapid oil pyrolysis and high-temperature methane release would be greater still.
在本研究中,我们提出由岩浆活动产生的高温甲烷是导致气候变化和碳循环的重要驱动因素。它与由地质埋藏过程产生的热源性甲烷不同。它也不同于与费希尔-特罗普斯反应相关的无机甲烷 。这种高温甲烷仍然是热源性的,但它是由与岩浆和水热活动相关的地热异常而不是沉积过程产生的。高温甲烷的独特特征是有机物的极快裂解,这是由于快速和极端的加热事件导致的,这与缓慢加热和因此缓慢的沉积埋藏过程甲烷生成形成对比。尽管本研究中的样品是从东莱峰外围采集的,但它们仍然显示出来自东莱峰的热影响。更靠近中间甚至内部区域的样品(图 1a;图 4b)会表现出更快的油热裂解和更大的高温甲烷释放。
On a global scale, oil-cracked emissions likely have contributed significantly to elevated concentrations in the atmosphere in Earth's history as an important part of the global carbon cycle. In addition to the effect of global warming, methane, as a reactive gas, is a precursor to other pollutants in the atmosphere (e.g., ), which have significant impact on the biosphere (e.g., ozone depletion . Therefore, high-temperature methane emissions require much more attention. In Earth's history, large amounts of highquality source rocks and thick carbonate rocks formed large numbers of paleo-oil reservoirs before the Permian . The volcanic activity can then induce the rapid destruction and secondary cracking of the paleo-oil reservoirs, leading to methane releases that contributed to climate change and mass extinction events, particularly in the Late Permian. This potential source of methane is critical for our understanding of the evolution of the Earth's history. Further understanding can be gained by focusing on methane emissions associated with LIPinduced oil cracking and investigating the global distribution and abundance of reservoir pyrobitumen in the relevant areas of global LIPs.
在全球范围内,裂解油< code0 >排放很可能在地球历史上成为全球碳循环的一个重要组成部分,对大气中 浓度的升高做出了重大贡献。除了全球变暖的影响外,甲烷作为一种反应性气体,是大气中其他污染物(如 )的前体,对生物圈(如臭氧层耗竭 )产生重大影响。因此,高温甲烷排放需要更多关注。在地球历史上,大量优质的源岩和厚厚的碳酸盐岩形成了大量的古油藏,直到二叠纪 。随后的火山活动可能导致这些古油藏的快速破坏和二次裂解,释放甲烷,从而影响气候变化和大规模灭绝事件,尤其是在晚二叠纪。这种甲烷的潜在来源对于我们理解地球历史演化至关重要。进一步研究可通过关注与 LIP 诱导油裂解有关的甲烷排放,以及调查相关全球 LIP 地区油藏焦炭的全球分布和丰度来获得更多信息。

Methods 方法

Samples and laboratory analysis
样本和实验室分析

Natural gas samples were obtained from and reservoirs via wellheads distributed in the Anyue gas field (Fig.1b, c). Samples for noble gas and clumped isotope analysis were collected using 10 mm diameter internally polished refrigeration grade copper tubes sealed with stainless steel pinch-off clamps on both ends . Additional samples for the analysis of gas composition, carbon and hydrogen isotopes were collected using stainless steel cylinders . Details of all samples are available in the Supplementary Information.
天然气样品是从安岳气田(图 1b,c)分布的 油气藏的油井采集的。用于钕元素和 同位素分析的样品采用 10 毫米直径内部抛光的铜管采集,管端密封。分析气体成分、碳和氢同位素的样品采用不锈钢气瓶收集。所有样品的详细信息见补充材料。
Bulk gas and stable isotope analysis were undertaken at the State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS), using previously described techniques . Bulk gas content as a percentage was determined using an Agilent 6890 N gas chromatograph-mass spectrometer (GC-MS) . Carbon and hydrogen isotope values were measured following established procedures by using GC-IRMS of Agilent 6890 N -Isoprime 100 and Thermofisher 1310-Delta V, respectively . Precision and reproducibility are typically better than for (PDB) and for 8 D (SMOW). Data used in this study are reported in Supplementary Table 1 and Supplementary Table 6.
在中国科学院广州地球化学研究所(GIGCAS)有机地球化学国家重点实验室(SKLOG)使用先前描述的技术 进行了总气体和稳定同位素分析。使用 Agilent 6890 N 气相色谱-质谱联用仪(GC-MS)确定总气体含量的百分比 。碳和氢同位素值是通过使用 Agilent 6890 N-Isoprime 100 GC-IRMS 和 Thermofisher 1310-Delta V 测定的,采用了既定的程序 。精度和重复性通常优于 PDB 的 和 SMOW 的 。本研究使用的数据报告在补充表 1 和补充表 6 中。
Methane-clumped isotope and noble gas analysis were undertaken at the Subsurface Fluid Isotope Geochemistry Laboratory (SFIGL) at Lancaster University, UK. Methane clumped isotopologues ( , and ) were measured by a tunable infrared laser direct absorption spectroscopy (TILDAS, Aerodyne) that houses two continuous wave quantum cascade lasers and directly connects a methane purification system (Inlet system, Protium MS, UK) (Supplementary Fig. 4). The experimental procedure is described in Supplementary Fig. 4. Spectral acquisition and data processing were carried out by using TDL Wintel software . All measurements were made in reference to the lab's working reference gas (LEC-1) taken from a high purity (>99.99%) methane gas cylinder after conducting systematic calibration (see Supplementary Information). Preparation for standard calibration gas and its gas characteristics are described in Supplementary Information (Supplementary Fig. 5, Supplementary Fig. 6, and Supplementary Table 6). All measurements reported in this paper were obtained at a nominal cell pressure of ca. 1.0 Torr. Data of reservoir samples used in this study are reported in Supplementary Table 2.
甲烷偶联同位素和贵气体分析是在英国兰卡斯特大学的地下流体同位素地球化学实验室(SFIGL)进行的。甲烷偶联同位素(δ¹³C,Δ¹³CH₃D 和Δ¹²CH₂D₂)是通过可调红外激光直接吸收光谱法(TILDAS,Aerodyne)测量的,它具有两个连续波量子级联激光器,并直接连接到一个甲烷净化系统(进样系统,Protium MS,英国)(补充图 4)。实验步骤在补充图 4 中描述。光谱采集和数据处理是使用 TDL Wintel 软件进行的。所有测量均参考实验室的工作参考气体(LEC-1),该参考气体取自高纯度(>99.99%)甲烷气瓶,并经过系统校准(见补充信息)。标准校准气体的制备及其气体特性在补充信息中描述(补充图 5、补充图 6 和补充表 6)。本文报告的所有测量都是在约 1.0 Torr 的公称单元压力下进行的。本研究中使用的储层样品数据报告在补充表 2 中。
Noble gas abundance and isotopic ratios were determined by an Isotopx NGX noble gas mass spectrometer at the SFIGL using previously described techniques . The , and isotopes were measured using a Faraday detector while the remaining isotopes were counted on an electron multiplier. The noble gas elemental abundances for each sample were calculated by normalizing to those of air standards after blank correction. Due to low abundance of He in the atmosphere, the air standard for noble gas measurements at the lab was taken from a gas cylinder filled with a mixture of He spike and Air. The He spike is HESJ-standard with the estimated air normalizing ratio of . During Ne abundance and isotope analysis, appropriate mass peaks were monitored to correct for interferences caused by doubly charged ions of and on and , respectively , and abundances had typical uncertainties of , and , respectively. Data used in this study are reported in Supplementary Tables 3 and 4.
稀有气体丰度和同位素比率由 SFIGL 使用先前描述过的技术 通过 Isotopx NGX 稀有气体质谱仪进行测定。 同位素使用法拉第检测器测量,其余同位素使用电子乘增器计数。每个样品的稀有气体元素丰度通过在空白校正后与空气标准进行规范化计算。由于大气中 He 含量较低,该实验室稀有气体测量的空气标准取自一个混有 He 脉冲和空气的气瓶。He 脉冲为 HESJ 标准,估计的空气标准化 比率为 。在 Ne 丰度和同位素分析过程中,监测了适当的质量峰以校正 的二价离子对 的干扰 ,分别 的丰度具有典型的不确定性。本研究使用的数据报告在补充表 3 和 4 中。

Numerical simulation 数值仿真

Models for well-GS of Gaoshiti bulge and well-MX of Moxi bulge (Fig. 1b) were developed by using the software PetroMod version 2016.2, Schlumberger Company, which fundamentally recovered the burial-thermal history of Anyue gas field, central Sichuan Basin. In each well, the primary input parameters for building the model include the stratigraphy (lithology, thickness, and age), tectonic events (unconformities, erosion and age) and boundary conditions (paleo-water depth, history of heat flow and sediment-water interface temperature). Measured temperature and vitrinite reflectance values were used to validate the modeling results (Supplementary Fig. 1b; Supplementary Fig. 2b). The geological model of each well was completed once the modeled and measured results were consistent. Both burial-thermal diagrams are reported in the Supplementary Information (Supplementary Fig. 1a; Supplementary Fig. 2a) and target output is included in Fig. 2a, b and Supplementary Fig. 3a.
高石梯隆起的 well-GS 和莫西隆起的 well-MX 的模型(图 1b)是使用施普瑞公司的 PetroMod 2016.2 版软件开发的,该软件根本恢复了四川盆地中部安岳气田的埋藏-热历史。在每个油井中,建立模型的主要输入参数包括地层(岩性、厚度和年龄)、构造事件(不整合、侵蚀和年龄)和边界条件(古水深、热流演化和沉积物-水界面温度)。使用测量的温度和反射率值来验证建模结果(补充图 1b;补充图 2b)。一旦模拟结果和测量结果一致,每口井的地质模型就完成了。埋藏-热演化图表在补充信息中报告(补充图 1a;补充图 2a),目标输出包括在图 2a、b 和补充图 3a 中。
Generation models were calculated based on a kinetic model of Tang (2011) _ SARA_TI that comes with the software PetroMod version 2016.2 and can represent type-I kerogen (sapropel type organic matter) which dominated the Qiongzhusi source rocks . The geological heating rate of Ma was taken from the maximum of the central basin (Supplementary Fig. 3a). The model results are reported in Supplementary Fig. 3b.
生成模型是根据 Tang (2011) 的动力学模型 _ SARA_TI 计算的,该模型随软件 PetroMod 2016.2 版一起提供,可以表示优势的琼中素 源岩 中的 I 型类型有机质。中央盆地的最大地质加热速率 Ma 来自补充图 3a。模型结果报告在补充图 3b 中。

Methane emission model 甲烷排放模型

Total methane emissions (TME) during the interval of LIPs are equal to total methane generations (TMG) minus total gas reserves (TGR). The TMG value can be estimated on the basis of methane and pyrobitumen yields of oil-cracking, because pyrobitumen can represent a potential bridge between gases and hydrocarbon precursors (e.g., oils) . Previous work has investigated the relationship between pyrobitumen and methane yields by using artificial pyrolysis experiments of crude oils, showing a near-linear correlation with a slope of 1.09 between the yields from high to overhigh maturity (i.e., Easy . This slope is equal to the conversion ratio between the volume of oil-cracked methane (in L ) and the amount of oil-cracked pyrobitumen (in g ), which is . Then, the gas generation intensity ( GGI , i.e., amount of gas generation per unit area) can be calculated for assessing the scale of oil-cracked methane.
在大火成岩省事件期间,总甲烷排放量(TME)等于总甲烷产生量(TMG)减去总天然气储量(TGR)。可以根据油裂解的甲烷和沥青产率来估算 TMG 值,因为沥青可以代表气体和碳氢化合物前体(如油)之间的潜在桥梁。以前的研究已经通过使用原油人工热解实验,探讨了沥青和甲烷产率之间的关系,结果显示高至过高成熟度范围内存在近线性相关,斜率为 1.09。这个斜率等于油裂解甲烷(单位:L)与油裂解沥青(单位:g)之间的转化比率,为 1.09。然后可以计算气体生成强度(GGI,即单位面积内气体生成量)来评估油裂解甲烷的规模。
The GGI values can be determined as follows:
GGI 值可按如下方式确定:
Where is reservoir thickness ( m ), is pyrobitumen content (wt%), is rock density is conversion ratio (i.e., the yield ratio of methane and pyrobitumen, ), and the coefficient is for unit conversion.
其中 为油藏厚度(米), 为沥青含量(重%), 为岩石密度, 为转换率(即甲烷和沥青的产率比), ,而系数 用于单位换算。
The TMG value can be calculated by using the GGI value and the pyrobitumen distribution area as follows:
TMG 值可以通过使用 GGI 值和沥青分布区域 来计算如下:
Eventually, the TME values are estimated as follows:
最终,TME 值的估算如下:
Where the TGR value can be referred to in available results from geological survey. All data used in this study and results of calculations are listed and introduced in Supplementary Table 5.
地质调查的可用结果中可以参考 TGR 值。本研究中使用的所有数据和计算结果列在补充表 5 中。

Data availability 数据可用性

The data that support the findings of this study are available within the article and the Supplementary Information file. All data have also been deposited in the UK NERC National Geoscience Data Centre (https:// doi.org/10.5285/d7094583-4564-4651-85ea-d19e6261a31e).
支持本研究结果的数据包含在文章和补充信息文件中。所有数据也已存放在英国 NERC 国家地球科学数据中心(https://doi.org/10.5285/d7094583-4564-4651-85ea-d19e6261a31e)。

References 参考文献

  1. Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323-326 (2009).
    甘诺, C.和阿恩特, N. T.岩浆岩大省注入期间沉积物脱气引起的气候变化。地质学 37, 323-326(2009)。
  2. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv. 1, 1-16 (2015).
    伯吉斯, S.D. 和 波文, S.A. 高精度地质年代学确认在地球最严重的灭绝事件之前、期间和之后都发生了大量的火成岩活动。Sci. Adv. 1, 1-16 (2015).
  3. Penn, J. L. & Deutsch, C. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, 1130 (2018).
    潘, J. L.和德国, C.温度依赖的缺氧解释了晚二叠纪海洋大灭绝的生物地理学和严重程度。Science 362, 1130 (2018).
  4. Bryan, S. E. & Ferrari, L. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol. Soc. Am. Bull. 125, 1053-1078 (2013).
    布莱恩,S.E.和法拉利,L.大火成岩省和硅质大火成岩省:过去 25 年我们的理解进展.地质学会会刊 125,1053-1078(2013).
  5. Wignall, P. B. The link between Large Igneous Province eruptions and mass extinctions. Elements 1, 293-297 (2005).
    维格纳尔,P. B. 大火成岩省喷发与大规模灭绝之间的联系。元素 1, 293-297 (2005)。
  6. Jurikova, H. et al. Permian-Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, (2020).
    朱里科娃, H. 等。二叠纪-三叠纪大灭绝脉冲是由主要海洋碳循环扰动引起的。Nat. Geosci. 13, (2020)。
  7. Zhang, H. et al. Felsic volcanism as a factor driving the end-Permian mass extinction. Sci. Adv. 7, eabh1390 (2021).
    张, H. 等. 酸性火山作为导致末次全球性大灭绝的一个因素. Sci. Adv. 7, eabh1390 (2021).
  8. Kaiho, K., Aftabuzzaman, M., Jones, D. S. & Tian, L. Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology 49, 289-293 (2021).
    海浩,K.、阿夫塔布扎曼,M.、琼斯,D.S.和田,L.脉冲火山燃烧事件与晚二叠纪陆地干扰和随后的全球危机同时发生。地质学 49,289-293(2021)。
  9. Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late permian extinction events. J. Geol. 116, 1-20 (2008).
    瑞塔拉克, G. J. & 亚伦, A. H. 晚二叠纪大灭绝事件期间,煤层遭遇火成岩侵入导致甲烷释放. 地质学杂志, 116, 1-20 (2008).
  10. Wu, Y. et al. Six-fold increase of atmospheric during the Permian-Triassic mass extinction. Nat. Commun. 12, 2137 (2021).
    吴彦等人。二叠纪-三叠纪大灭绝期间大气二氧化碳含量增加了六倍。Nat. Commun. 12, 2137 (2021)。
  11. Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986-991 (2020).
    埃尔金斯-塔尔顿等著。《地质学》,48,986-991(2020 年)。
  12. Wignall, P. B. et al. Volcanism, mass extinction, and carbon isotope fluctuations in the middle Permian of China. Science 324, (2009).
    温纳尔特,P.B.等。中国中世界白垩纪的火山喷发、大灭绝和碳同位素波动。科学 324, (2009)。
  13. Shellnutt, J. G. The Emeishan large igneous province: a synthesis. Geosci. Front. 5, 369-394 (2014).
    谢尔纳特, J. G. 峨眉山大火成岩省: 综合研究. 地质科学前缘, 5, 369-394 (2014).
  14. Zhong, Y.-T., He, B., Mundil, R. & Xu, Y.-G. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos 204, 14-19 (2014).
    钟永铁, 何斌, Mundil, R. 和许永根. 滨川段流纹质火山灰岩 CA-TIMS 锆石 U-Pb 定年: 对峨眉山大火成岩省终止时代的启示. Lithos 204, 14-19 (2014).
  15. Zhou, M.-F. et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 196, 113-122 (2002).
    周, M.-F. 等。灾民艾梅山大火成岩省(中国西南部)和瓜达鲁佩期末大灭绝之间的时间联系。地球行星. 科学. 信. 196, 113-122 (2002).
  16. Saitoh, M. & Isozaki, Y. Carbon isotope chemostratigraphy across the Permian-Triassic boundary at Chaotian, China: implications for the global methane cycle in the aftermath of the extinction. Front. Earth Sci. 8 (2021).
    斋藤 M.和磯崎 Y.在中国朝田剖面识别了全球范围内永久-三叠系界线碳同位素化学地层学资料,并对灭绝事件后的全球甲烷循环进行了讨论。前沿地球科学. 8(2021)。
  17. Xiong, Y. et al. Formation and evolution of solid bitumen during oil cracking. Mar. Pet. Geol. 78, 70-75 (2016).
    熊,Y.等。石油裂解过程中固态沥青的形成与演化。海洋石油地质学 78 卷,70-75 页(2016 年)。
  18. Yang, C. et al. Pyrobitumen in South China: organic petrology, chemical composition and geological significance. Int. J. Coal Geol. 188, 51-63 (2018).
    杨等人。焦油柏油在中国南方:有机岩石学、化学成分和地质意义。国际煤层地质学杂志。188, 51-63 (2018)。
  19. Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 376, 20170080 (2018).
    斯文森,H.H. 等。 西伯利亚大陆的岩脉和气体生成。哲学交易。R.Soc.A:数学,物理,工程科学。376, 20170080 (2018)。
  20. Staroseltsev, V. S., Efimov, A. S. & Sobolev, P. N. Hydrocarbons of bituminous rocks of the Siberian platform. J. Oil Gas Geol. 73-80 (2013).
    斯塔罗塞尔采夫,В. S.、叶菲莫夫,A. S.和索博列夫,P. N.西伯利亚平台沥青岩的烃类.油气地质,73-80 (2013).
  21. Wei, G. et al. Characteristics and accumulation mode of large-scale Sinian-Cambrian gas reservoirs in the Gaoshiti-Moxi region, Sichuan Basin. Pet. Res. 1, 164-177 (2016).
    魏贵等. 四川盆地高石梯-墨溪区锡尼期-寒武纪大型气藏的特征及聚集模式. 石油学报, 1, 164-177 (2016).
  22. Saunois, M. et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 12, 1561-1623 (2020).
    索诺伊斯,M.等。2000-2017 年全球甲烷预算。地球系统科学数据 12,1561-1623 (2020)。
  23. Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67-70 (2014).
    黑色, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. 脉冲西伯利亚大陆裂变带火山活动导致酸雨和臭氧层耗竭. 地质学, 42, 67-70 (2014).
  24. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, Switzerland, 2014).
    政府间气候变化专门委员会。2014 年气候变化综合报告。第一工作组、第二工作组和第三工作组为政府间气候变化专门委员会第五次评估报告做出贡献。(政府间气候变化专门委员会,日内瓦,瑞士,2014 年)。
  25. Yang, C. et al. Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis. Geosci. Front. 13, 101324 (2022).
    杨, C. 等. 长江区岩石油储层热裂解和气体释放暗示了一种替代机制来解释晚二叠纪危机。《地学前沿》13, 101324 (2022)。
  26. Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490-500 (2009).
    斯文森,H.等人。西伯利亚天然气排放与 Permian 纪末环境危机。《地球行星科学快报》。277, 490-500 (2009)。
  27. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104-107 (2011).
    格拉斯比、赛尼和博蒙特在最新的二叠纪灭绝中,将大量煤炭灰烬散布到海洋中。自然地理学。4,104-107 (2011)。
  28. Xu, Y., He, B., Chung, S., Menzies, M. A. & Frey, F. A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32, 917 (2004).
    徐, 雨, 何, 丙, 鍾, 世, 梅因斯, M. A. & 弗雷, F. A. 熔巖活動참與在峨眉山大火山岩省的地質、地球化學和地球物理後果. 地質學 32, 917 (2004).
  29. Yang, Y., Wen, L., Luo, B., Wang, W. & Shan, S. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China. Pet. Exploration Dev. 43, 197-207 (2016).
    杨毅、文磊、罗斌、王伟、单顺. 四川盆地乐山—龙女寺古隆起地区寒武系天然气藏的烃类聚集. 石油勘探与开发, 43, 197-207 (2016).
  30. Yang, C. et al. A new genetic mechanism of natural gas accumulation. Sci. Rep. 8, 8336 (2018).
    杨 C. 等人。天然气积累的新遗传机制。Sci. Rep. 8, 8336 (2018)。
  31. Zou, C. et al. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Pet. Explor. Dev. 41, 306-325 (2014).
    邹, C. 等. 四川盆地四川-寒武纪巨型气田的形成、分布、资源潜力及其发现. 石油勘探与开发. 41, 306-325 (2014).
  32. Zhu, G., Wang, T., Xie, Z., Xie, B. & Liu, K. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: implications for gas exploration in oil cratonic basins. Precambrian Res. 262, 45-66 (2015).
    朱国良, 王涛, 谢智, 谢宝华, 刘可. 中国四川盆地前寒武纪深层气藏巨型气田发现:对克拉通盆地油气勘探的启示. 前寒武纪研究. 262, 45-66 (2015).
  33. Liu, S. et al. The early Cambrian Mianyang-Changning intracratonic sag and its control on petroleum accumulation in the Sichuan Basin, China. Geofluids 2017, 16 (2017).
    刘,S.等.早寒武纪绵阳-长宁陆内凹陷及其对四川盆地油气聚集的控制.Geofluids 2017, 16 (2017).
  34. Worden, R. H., Smalley, P. C. & Oxtoby, N. H. Gas souring by thermochemical sulfate reduction at . AAPG Bull. 79, 854-863 (1995).
    沃尔登,R. H., 斯莫利,P. C. & 奥克斯托比,N. H. 在 处通过热化学硫酸盐还原造成的气体变质. AAPG 公报. 79, 854-863 (1995).
  35. Dong, G. et al. Clumped isotope effects of thermogenic methane formation: Insights from pyrolysis of hydrocarbons. Geochim. Cosmochim. Acta 303, 159-183 (2021).
    董, G.等。热成因甲烷形成的聚集同位素效应:基于烃类热解的洞见。地球化学与宇宙化学学报 303, 159-183 (2021)。
  36. Stolper, D. A. et al. The utility of methane clumped isotopes to constrain the origins of methane in natural gas accumulations. Geol. Soc., Lond. Spec. Publ. 468, 23-52 (2018).
    斯托尔珀,D. A. 等. 甲烷团簇同位素的效用是限制天然气积聚中甲烷来源. 地质学会,伦敦.特别出版物 468, 23-52 (2018).
  37. Wang, D. T. et al. Nonequilibrium clumped isotope signals in microbial methane. Science 348, 428-431 (2015).
    王等人。非平衡团簇同位素信号在微生物甲烷中。Science 348, 428-431 (2015)。
  38. Wei, G. et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China. Pet. Explor. Dev. 42, 768-777 (2015).
    魏, G. 等. 四川盆地中部四川古隆起的寒武系-寒武系天然气特征与成因. 油气勘探开发, 42, 768-777 (2015).
  39. Sosnicka, M. & Luders, V. Fluid inclusion evidence for lowtemperature thermochemical sulfate reduction (TSR) of dry coal gas in Upper Permian carbonate reservoirs (Zechstein, Ca2) in the North German Basin. Chem. Geol. 534, 119453 (2020).
    索斯尼卡,M.和卢德斯,V.流体包裹体证据显示高州上更新世白垩纪碳酸盐储层(Zechstein,Ca2)中干煤气经过低温热化学硫酸还原(TSR)。化学地质学,534,119453(2020)。
  40. Tian, H., Xiao, X., Wilkins, R. W. T. & Tang, Y. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils. AAPG Bull. 92, 181-200 (2008).
    田,H.,肖,X.,威尔金斯,R. W. T.和唐,Y.油藏中油热裂解转化为气体过程中体积和压力变化的新洞见:对原油内生气体积累的启示。AAPG 公报。92, 181-200(2008)。
  41. Waples, D. W. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Org. Geochem. 31, 553-575 (2000).
    瓦普斯,D. W.储层内油开采破坏和气体生成的动力学:实验和实证数据,以及热力学的约束。有机地球化学 31, 553-575 (2000)。
  42. Shuai, Y., Peng, P. A., Zou, Y.-R. & Zhang, S. Kinetic modeling of individual gaseous component formed from coal in a confined system. Org. Geochem. 37, 932-943 (2006).
    帅, Y., 彭, P. A., 邹, Y.-R. 和 张, S. 在封闭系统中煤气体组分的动力学建模. 有机地球化学 37, 932-943 (2006).
  43. Li, Y., Qin, S., Wang, Y., Holland, G. & Zhou, Z. Tracing interaction between hydrocarbon and groundwater systems with isotope signatures preserved in the Anyue gas field, central Sichuan Basin, China. Geochim. Cosmochim. Acta 274, 261-285 (2020).
    李, 秦, 王, 荷兰和周. 利用保存在四川盆地安岳气田的同位素特征, 跟踪碳氢化合物和地下水系统的相互作用. 地球化学与宇宙化学汇刊, 274, 261-285 (2020).
  44. Ballentine, C. J., Burgess, R. & Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539 -614 (2002).
    巴伦丁,C. J.,博格斯,R.和马蒂,B.跟踪流体的来源、运输和相互作用在地壳中.矿物学评论. 地球化学. 47, 539 -614 (2002).
  45. Ni, Y. et al. Helium signatures of gases from the Sichuan Basin, China. Org. Geochem. 74, 33-43 (2014).
    倪, Y.等. 四川盆地气体的氦特征. 有机地球化学. 74, 33-43 (2014).
  46. Wei, G. et al. Characteristics of noble gases in the large GaoshitiMoxi gas field in Sichuan Basin, SW China. Pet. Explor. Dev. 41, .
    魏攻等.四川盆地大高石寺莫溪气田中贵重气体的特征.石油勘探与开发 41, .
  47. Mark, D. F., Stuart, F. M. & de Podesta, M. New high-precision measurements of the isotopic composition of atmospheric argon. Geochim. Cosmochim. Acta 75, 7494-7501 (2011).
    马克,D.F.,斯图尔特,F.M.和德波德斯塔,M.大气氩的同位素组成的新高精度测量。地球化学与宇宙化学文集 75,7494-7501(2011)。
  48. Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481-538 (2002).
    巴伦丁, C. J.和伯纳德, P. G.在大陆地壳中的贵气体的生产、释放和运输.矿物学评论.地球化学.47, 481-538 (2002).
  49. Stuart, F. M., Burnard, P. G., Taylor, R. P. & Turner, G. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim. Cosmochim. Acta 59, 4663-4673 (1995).
    斯图尔特, F. M., 伯纳德, P. G., 泰勒, R. P. & 特纳, G. 解决地幔和地壳对古老热液的贡献:来自韩国大化 W-Mo 矿化的流体包裹体中的 He-Ar 同位素. 地球化学与宇宙化学汇刊 59, 4663-4673 (1995).
  50. Graham, D. W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev. Mineral. Geochem. 47, 247-317 (2002).
    格拉罕,D.W.中洋脊和海洋岛火山岩的贵气体同位素地球化学:地幔源区的特征.矿物学评论.地球化学. 47, 247-317 (2002).
  51. Ballentine, C. J., Mazurek, M. & Gautschi, A. Thermal constraints on crustal rare gas release and migration: evidence from Alpine fluid inclusions. Geochim. et. Cosmochimica Acta 58, 4333-4348 (1994).
    鲍伦汀, C. J., 马祖瑞克, M. 和 高奇, A. 地壳稀有气体释放和迁移的热量约束:来自阿尔卑斯流体包裹体的证据。地球化学与宇宙化学学报 58, 4333-4348 (1994)。
  52. Wang, . et al. Methane-dominated gaseous inclusions in the Sinian carbonate reservoirs in central Sichuan Basin and their implications for natural gas accumulation. Mar. Pet. Geol. 125, 104871 (2021).
    王,等。四川中部四川盆地寒武系碳酸盐储层中甲烷主导的气体包裹体及其对天然气富集的意义。海洋石油地质。125, 104871 (2021)。
  53. Yang, P. et al. Distribution pattern and origin of the columnar pulldown anomalies in Gaoshiti Block of Central Sichuan Basin, SW China. Pet. Explor. Dev. 44, 399-408 (2017).
    杨平等. 中国西南四川盆地高石梯区柱状下拉异常的分布格局及其成因. 石油勘探与开发. 44, 399-408 (2017).
  54. IEA. World Energy Outlook 2021. (IEA, Paris, 2021).
    国际能源署。2021 年世界能源展望。(国际能源署,巴黎,2021 年)。
  55. Ivanov, A. V. et al. Siberian Traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Sci. Rev. 122, 58-76 (2013).
    伊凡诺夫, A. V. 等人。西伯利亚陷落大火成岩省:显示在二叠纪-三叠纪之交和中三叠世有两次洪水玄武岩脉冲,以及同时代的花岗岩质岩浆活动。《地球科学评论》第 122 期, 58-76 页 (2013)。
  56. Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the endPermian environmental crisis. Earth Planet. Sci. Lett. 277, 9-20 (2009).
    赖肖, M. K.等. 西伯利亚大火山岩省的喷发时间和程度:对二叠纪末期环境危机的影响. 地球行星科学快报. 277, 9-20 (2009).
  57. Davydov, V. I. & Karasev, E. V. The influence of the Permian-Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian-Triassic transition in the region. Front. Earth Sci. 9 (2021).
    戴维多夫,V.I. 和卡拉塞夫,E.V. 彼尔姆-三叠纪期间图恩古斯克盆地(西伯利亚)的岩浆活动对该地区泊姆-三叠纪过渡期域地植物群落的影响。地球科学前沿 9 (2021)。
  58. Capriolo, M. et al. Massive methane fluxing from magma-sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nat. Commun. 12 (2021).
    卡普里奥洛,M.等人。末三叠纪中大西洋岩浆-沉积相互作用中大规模的甲烷通量。Nat.Commun.12(2021)。
  59. Heimdal, T. H., Jones, M. T. & Svensen, H. H. Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proc. Natl Acad. Sci. 117, 11968-11974 (2020).
    海姆达尔,T. H.、琼斯,M. T.和斯文森,H. H.中大西洋岩浆省引起的热发震碳释放导致了三叠纪末期碳循环的重大扰动.国家科学院学报,117,11968-11974(2020).
  60. Etiope, G. & Lollar, B. S. Abiotic methane on Earth. Rev. Geophys. 51, 276-299 (2013).
    埃塞俄比亚,G.和洛勒,B.S.地球上的无生物甲烷。地球物理学评论。51,276-299 (2013)。
  61. Zhou, Z., Ballentine, C. J., Kipfer, R., Schoell, M. & Thibodeaux, S. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta 69, 5413-5428 (2005).
    周, Z., Ballentine, C. J., Kipfer, R., Schoell, M. & Thibodeaux, S.美国圣胡安盆地地下水/煤层甲烷相互作用的贵金属气体示踪. Geochim. Cosmochim. Acta 69, 5413-5428 (2005).
  62. Tao, W., Zou, Y.-R., Carr, A., Liu, J. & Peng, P. A. Study of the influence of pressure on enhanced gaseous hydrocarbon yield under high pressure-high temperature coal pyrolysis. Fuel 89,
    陶, W.、邹, Y.-R.、卡尔, A.、刘, J. 和彭, P. A.高压高温煤热解下增强气态烃产率的压力影响研究。燃料 89,

    (2010).  (2010 年)。
  63. Pan, C., Yu, L., Liu, J. & Fu, J. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation. Earth Planet. Sci. Lett. 246, 70-89 (2006).
    潘卡琳,于良泰,刘金明,傅俊杰.气态碳氢化合物在生物非氧化过程中的化学和碳同位素分馏.地球行星科学快报.246, 70-89 (2006).
  64. Ono, S. et al. Measurement of a doubly substituted methane isotopologue, , by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 86, 6487-6494 (2014).
    大野, S. 等. 利用可调红外激光直接吸收光谱技术测量双取代甲烷同位素, . 分析化学. 86, 6487-6494 (2014).
  65. Liu, R. et al. Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China. AAPG Bull. 104, 939-959 (2020).
    刘, R. 等. 构造隆升对中国东四川盆地涪陵气田五峰-龙马溪页岩孔隙度的影响. 美国石油地质学会通报. 104, 939-959 (2020).
  66. Liu, Q. et al. Coupled alteration of hydrothermal fluids and thermal sulfate reduction in ancient dolomite reservoirs-an example from Sinian Dengying Formation in Sichuan Basin, southern China. Precambrian Res. 285, 39-57 (2016).
    刘,Q.等.水热流体和热硫酸还原在古老白云岩储层中的耦合变化-以四川盆地西南部寒武系滴水溪组为例.元古代研究.285,39-57(2016).
  67. Sano, Y., Marty, B. & Burnard, P. Noble gases in the atmosphere. 17-31 (2013).
    佐野、Y.,马蒂、B.和伯纳德、P.大气中的贵重气体。17-31 (2013)。
  68. Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. Noble gases in lakes and ground waters. Rev. Mineral. Geochem. 47, 615-700 (2002).
    基普费尔、阿施巴赫-赫尔蒂、皮特斯和斯图特。湖泊和地下水中的稀有气体。矿物学和地球化学评论。47, 615-700 (2002)。
  69. Gautheron, C. & Moreira, M. Heliem signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39-47 (2002).
    高特龙,C.和莫雷拉,M.大陆下地幔的地质化学记录.地球行星科学快报.199,39-47(2002).
  70. Muttoni, G. et al. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, (2009).
    穆托尼,G.等人。新特提斯洋的开启和二叠纪期间泛盖亚 B 到泛盖亚 A 的转换。GeoArabia 14, (2009)。

Acknowledgements 致谢

This research has been funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010103 to Y.W.), the Natural Environment Research Council of UK (Grant Ref: NE/TOO4452/1 to Z.Z.), the National Natural Science Foundation of China (Grant No. 41872162,42141022 to S.Q., and 42203054 to C.C.), and the Guangdong Basic and Applied Basic Research Foundation (Grant No.
这项研究得到了中国科学院战略性先导科技专项(XDA14010103,由 Y.W.资助)、英国自然环境研究委员会(资助号:NE/TOO4452/1,由 Z.Z.资助)、国家自然科学基金委员会(资助号:41872162,42141022,由 S.Q.资助;42203054,由 C.C.资助)以及广东省基础与应用基础研究基金(资助号:)的资助。

2022A1515011823 to C.C.). C.C. acknowledges China Scholarship Council (CSC) for financial support (File No. 201904910306). We thank D. Nelson, S. Davis, S. Huang, and Q. Wang for their technical support in laboratory analysis. This is contribution No.IS-3269 from GIGCAS.
2022A1515011823 至 C.C.)。C.C. 感谢中国国家留学基金委员会 (CSC) 的财务支持 (文件编号: 201904910306)。我们感谢 D. Nelson、S. Davis、S. Huang 和 Q. Wang 在实验室分析方面的技术支持。这是 GIGCAS 贡献号 IS-3269。

Author contributions 作者贡献

Z.Z., Y.W., S.Q., and C.C. designed the study and collected the samples. C.C. W.Z. Y.W., and Z.Z. analyzed the samples. The manuscript and figures were drafted by C.C., Z.Z., and G.H. with contributions from all authors, specifically including advice on petroleum geology from S.Q. and methane geochemistry from P.W.
Z.Z.、Y.W.、S.Q.和 C.C.设计了这项研究并收集了样本。C.C.、W.Z.、Y.W.和 Z.Z.分析了这些样本。文稿和图表由 C.C.、Z.Z.和 G.H.起草,所有作者均有贡献,特别是 S.Q.在石油地质学方面提供建议,P.W.在甲烷地球化学方面提供建议。

Competing interests 利益冲突

The authors declare no competing interests.
作者声明没有利益冲突。

Additional information 补充信息

Supplementary information The online version contains
补充信息 网上版本包含

supplementary material available at
补充材料可在

https://doi.org/10.1038/s41467-022-34645-3.
Correspondence and requests for materials should be addressed to Yunpeng Wang or Zheng Zhou.
相关事宜和材料请求应寄送给王云鹏或周征。
Peer review information Nature Communications thanks Peter Barry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
同行评审信息 Nature Communications 感谢 Peter Barry 和其他匿名审稿人对这项工作同行评审的贡献。同行评审报告可查阅。
Reprints and permissions information is available at
二次印刷和许可信息可在

http://www.nature.com/reprints
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商声明 施普林格自然对于出版地图中的管辖权主张和机构隶属关系保持中立。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.
开放获取 本文章已获得知识共享署名 4.0 国际许可授权,允许您使用、共享、改编、分发和复制,只要您给予原作者适当的署名,并提供知识共享许可证链接,并标明是否有任何修改。本文章中的图像或其他第三方材料也包含在知识共享许可范围内,除非另有注明。如果材料未包含在知识共享许可证中,且您的预期用途未经法定规定许可或超出了许可范围,您将需要直接从版权持有人那里获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

(c) The Author(s) 2022
(c) 作者(们) 2022

  1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Lancaster Environmental Centre, Lancaster University, Lancaster LA1 4YQ, UK. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China. Department of Earth and Environmental Sciences, the University of Manchester, Manchester M13 9PL, UK. e-mail: wangyp@gig.ac.cn; z.zhou4@lancaster.ac.uk
    中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640,中国。 兰卡斯特环境中心,兰卡斯特大学,兰卡斯特 LA1 4YQ,英国。 中国科学院深地科学卓越中心,广州 510640,中国。 中国石油勘探与开发研究院,北京 100083,中国。 曼彻斯特大学地球与环境科学系,曼彻斯特 M13 9PL,英国。电子邮件: wangyp@gig.ac.cn; z.zhou4@lancaster.ac.uk