这是用户在 2025-7-3 9:04 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Bioaugmentation and syntrophic mechanism for efficient medium-chain alkanes removal using novel isolated strains
使用新型分离的 S 序列高效去除 中链烷烃的增强和 S 营养机制

Yaxue He a, Xiaoyan Li a, Rui Han a, Piet N.L. Lens b, Christian Kennes c, Qian Li a, Lichao Lu a, Lei Wang d, Jianmeng Chen e, Rongsheng Lin f ,*, Dongzhi Chen a, *
何亚学 a, 李晓燕 a, 韩瑞 a, Piet N.L. Lens b, Christian Kennesc, 李倩 a, 卢立超 a, 王磊 d, 陈建梦 e, 林荣生 f *, 陈东志 a*

a Zhejiang Key Laboratory of Pollution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
a 浙江海洋大学 浙江省港口石化污染控制重点实验室, 中国 舟山 316022

b National University of Ireland, Galway H91TK33, Ireland
b 爱尔兰国立大学,爱尔兰戈尔韦 H91TK33

c Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology–Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008-La Coruña, Spain
c 拉科鲁尼亚大学 (UDC) 化学工程实验室,理学院和化学与生物学跨学科中心--CICA,BIOENGIN 小组,E-15008-拉科鲁尼亚,西班牙

d China National Offshore Oil Company, Shanghai 200335, China
d 中国海洋石油总公司,中国上海 200335

e School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
e 浙江科技大学环境与资源学院,中国 杭州 310018

f JURONG ENERGY Co., Ltd., Xinjiang 830099, China
f 裕廊能源有限公司,中国新疆 830099

Abstract
抽象

The enormous emission of medium-chain alkanes from petrochemical industry off-gases posed severe risks to human health. Microbial degradation is an environmental friendly way to convert the alkanes without generating secondary pollutants. However, the efficient degrading strains and removal of mixture alkane gases are seldom reported. Hence, this study isolated two novel strains Pseudomonas toyotomiensis 414 and Tsukamurella paurometabola LXY, respectively, using n-heptane and n-nonane as the sole carbon source. Strain LXY can degrade as high as 360 mg/L n-nonane within 18 h, which is, to the best our knowledge, the first report for such high n-nonane removal efficiency. Strain 414 can degrade 360 mg/L n-heptane within 45 h, which is competitive in literature. The functional genes such as alkB, ADH, FrmA, adhP, ALDH, actA, fadA and echA were identified, demonstrating both of them followed the typical alkane degradation pathway. A co-culture was successfully established for n-heptane and n-nanone mixture gases removal. In co-cultures, n-nonane removal rate was enhanced to 1.89, 1.44, 1.87 and 1.44 fold, respectively, higher than that of the strain 414 pure culture along with its initial concentration of 40, 70, 100 and 140 mg/L. The n-heptane removal rate was enhanced to 1.13 fold at both 40 and 70 mg/L n-nonane. It is interesting that strain 414 dominated in the co-culture, which is possibly due to its high alcohols and carboxylic acids metabolism, electron transfer and cell growth during co-metabolism with strain LXY. This study provides a strategy for efficient mixed gaseous alkanes degradation via interspecies syntrophy.
石化工业废气中链烷烃的大量排放对人类健康构成严重风险。微生物降解是一种环保的方式,可以在不产生二次污染物的情况下转化烷烃。然而,有效的降解菌株和去除混合烷烃气体的报道很少。因此,本研究以正庚烷和正壬烷作为唯一的碳源,分别分离出两种新型菌株丰氏假单胞菌 414 和 Tsukamurella paurometabola LXY。菌株 LXY 可在 18 小时内降解高达 360 mg/L 正壬烷,据我们所知,这是首次报告如此高的正壬烷去除效率。菌株 414 可在 45 小时内降解 360 mg/L 正庚烷,这在文献中具有竞争力。鉴定出 alkB 、 ADH 、 FrmA 、 adhP 、 ALDH 、 actA 、 fadA 和 echA 等功能基因,表明它们都遵循典型的烷烃降解途径。成功建立了用于去除正庚烷和正纳米酮混合物气体的共培养物。在共培养物中,正壬烷去除率分别提高到 1.89、1.44、1.87 和 1.44 倍,比菌株 414 纯培养物高,初始浓度为 40、70、100 和 140 mg/L。在 40 mg/L 正壬烷和 70 mg/L 正壬烷时,正庚烷去除率均提高至 1.13 倍。有趣的是,菌株 414 在共培养中占主导地位,这可能是由于其在与菌株 LXY 共代谢过程中的高醇和羧酸代谢、电子转移和细胞生长。本研究提供了一种通过种间同养高效降解混合气态烷烃的策略。

Key words: Medium-chain n-alkanes, Bio-degradation, Co-culture, Syntrophy, Pseudomonas toyotomiensis, Tsukamurella paurometabola
关键词 : 中链正烷烃, 生物降解, 共培养, Syntrophy 丰氏假单胞Tsukamurella paurometabola

Graphical abstract
图形摘要

Highlight
高亮

A novel gram-negative T. paurometabola LXY can degrade as high as 360 mg/L n-nonane within 18 h.
一种新的革兰氏阴性 T.paurometabolaLXY 可在 18 小时内降解高达 360 mg/L 正壬烷。

A novel gram-positive strain P. toyotomiensis 414 can degrade 360 mg/L n-heptane within 45 h.
一种新的革兰氏阳性菌株 P toyotomiensis 414 可在 45 小时内降解 360 mg/L 正庚烷。

Degradation efficiency of both n-heptane and n-nonane have been enhanced by microbial syntrophy.
微生物共养提高了正庚烷和正壬烷的降解效率。

P. toyotomiensis 414 dominated in the co-culture possibly due to its high metabolism on alcohols and carboxylic acids.
P. Toyotomiensis 414 在共培养中占主导地位,可能是由于其对醇和羧酸的高代谢。

The functional genes related with alkanes degradation and metabolic pathway have been elucidated.
与烷烃降解和代谢途径相关的功能基因已被阐明。

Introduction
介绍

Alkanes are low-cost and widely used hydrocarbon feedstocks originated from petroleum and natural gas for creation of a wide range of value-added products (Conceição et al., 2025). Due to their abundant use, alkanes are one of the major air pollution problems caused by crude oil refining activities and related anthropogenic sources in the petrochemical industry (Pulster et al., 2020). Among them, n-heptane (C7H16) and n-nanone (C9H20) are typical medium-chain alkanes in petrochemical off gases, as well as a potential producer of secondary organic aerosols, causing severe air pollution and human health problems (Li et al., 2022; Yang et al., 2018). Volatile medium-chain alkanes pollution has aroused widespread concern and stringent VOCs emission threshold (<120.0 mg·m-3 non-methane hydrocarbon (NMHC)) according to the Integrated Emission Standard of Air Pollutants (GB 16297-1996) in China. Even stricter local standards have been implemented in industries and provinces. Therefore, it urgently requires effective VOCs control technologies (Alvarado-Alvarado et al., 2024).
烷烃是源自石油和天然气的低成本且广泛使用的碳氢化合物原料,用于制造各种增值产品(Conceição 等人,2025)。由于其广泛使用,烷烃是 p 化学工业中原油精炼活动和相关人为来源引起的主要空气污染问题之一 (Pulster 等人,2020 年)。其中,正庚烷 (C7H16) 和正纳米 (C9H20) 是石化废气中典型的中链烷烃 ,也是二次有机气溶胶的潜在产生物,造成严重的空气污染和人类健康问题 (Li et al.,2022;Yang et al., 2018 的挥发性中链烷烃污染引起广泛关注,VOCs 排放阈值严格(<120.0 mg·m-3 非甲烷烃 (NMHC)) 根据中国空气污染物综合排放标准 (GB 16297-1996)。甚至更严格的当地标准已在各行业和省份实施。因此,迫切需要有效的 VOCs 控制技术(Alvarado-Alvarado et al., 2024)。

Numerous chemical and physical techniques including incineration, adsorption, photocatalysis and electrochemical treatment have been conducted for alkanes elimination (Northcutt et al., 2020, Lee et al., 2008, Calvert et al., 2023). Biological treatment has been widely used for alkane degradation due to its merits of none secondary pollution, low cost and temperate degradation conditions (Abubakar et al., 2024; Rojo et al., 2009; Wu et al., 2022). Microorganisms, either aerobic or anaerobic, play an important role in alkane bio-degradation (Ehiosun et al.2022; Mbadinga et al., 2011). To date, a few microorganisms have been acclimated and isolated for the degradation of complex alkanes present in petroleum oil, few studies concentrated on the multiple gaseous medium-chain alkane degradation, which usually coexist in practical situations (Abbasnezhad et al., 2011). Rhodococcus strain CH91, isolated from the production liquid (oil–water mixture) of Huabei oilfield, was reported for long-chain n-alkanes (C20-C36, 0.4%, w/v) degradation, and the degradation rate was decreased along with increased chain length from 98.9% to 27.4% (Xiang et al., 2022). Pseudomonas aeruginosa SJTD-1, isolated from oil-contaminated soil, can degrade more than 95% of 500 mg/L medium and long-chain n-alkane (C14, C16 and C18), i.e. n-tetrodecane, n-hexadecane, and n-octadecane within 36 h (Liu et al., 2014).
已经进行了许多化学和物理技术,包括焚烧、吸附、光催化和电化学处理来消除烷烃(Northcutt 等人,2020 年,Lee 等人,2008 年,Calvert 等人,2023 年)。由于其无二次污染、低成本和温带降解条件的优点,生物处理已广泛用于烷烃降解(Abubakar 等人,2024 年;Rojo 等人,2009 年;Wu et al., 2022)。微生物,无论是好氧的还是厌氧的,都在烷烃生物降解中起着重要作用(Ehiosun 等人,2022 年;Mbadinga et al., 2011)。迄今为止,已经驯化和分离了一些微生物用于降解石油中存在的复杂烷烃,很少有研究集中在多气态中链烷烃降解上,这通常在实际情况下共存(Abbasnezhad et al., 2011)。从华北油田生产液(油水混合物)中分离出的红球藻菌株 CH91 报道了长链正烷烃 (C20-C36, 0.4%, w/v) 降解,降解速率随着链长从 98.9% 增加到 27.4% 而降低(Xiang et al., 2022)。从受石油污染的土壤中分离出的铜绿假单胞菌 SJTD-1 可在 36 小时内降解超过 95% 的 500 mg/L 中链和长链正烷烃(C14、C16 和 C18),即正十四烷、正十六烷和正十八烷(Liu et al., 2014)。

The removal performance is poor for hydrophobic medium-chain alkanes due to their low solubility and diffusion rate from the gas phase to liquid phase, which limits their accessibility and availability to bacteria as substrates. Pineda et al. (2023) found that in Biofilters (BFs) the VOCs were eliminated in the following order: toluene > cyclohexane > hexane, correspondingly to their hydrophobic properties. Hence, this necessitates specific assimilation mechanisms.
疏水性中链烷烃的去除性能较差,因为它们的溶解度低,并且从气相到液相的扩散速率低,这限制了它们作为底物被细菌的可及性和可用性。 Pineda 等人。(2023) 发现,在生物过滤器 (BF) 中,VOC 按以下顺序消除:甲苯 > 环己烷 > 己烷 对应于它们的疏水特性 因此,这需要特定的同化机制。

An effective strategy for enhanced VOCs removal is biosurfactant production and biofilm formation of strains co-cultured with other degrading strains, have been reported (Flemming et al.,2016; Omarova et al.,2019; Sivadon et al.,2019). For instance, co-culture of Pseudomonas toyotomiensis ND1 and Microbacterium resistens strain ND2 can increase the degrade rate of polycyclic aromatic hydrocarbons (PAHs) to 89% compared to the pure strain of 80% (Sbani et al. 2021). However, co-culturing faces challenges of different optimal environmental parameters as temperature and pH as well as for substrate competition. The selection of bacteria with similar growth conditions could facilitate the removal of contaminants due to their synergistic effect. Therefore, considering the limited strains and non-specified co-removal parameters reported for alkane degradation from off-gases of the petrochemical industry, this study selected n-heptane and n-nonane as the typical medium-chain alkanes and intends to 1) isolate high efficient n-heptane and n-nonane degrading strains and optimize the degradation conditions; 2) investigate the degradation efficiency of n-heptane and n-nonane mixtures by co-cultures; and 3) elucidate the stimulation mechanism via conversion pathway and microbial community analysis.
据报道, 加强 VOC 去除的一种有效策略是生物表面活性剂的产生与其他降解菌株共培养菌株生物膜形成 (Flemming 等人,2016 年;Omarova et al.,2019 年;Sivadon et al.,2019 年)。 例如, 丰氏假单胞菌 ND1 微生物抵抗菌株 ND2 的共培养可以将多环芳烃 (PAH) 的降解率提高到 89%, 而纯菌株为 80%(Sbani 等人,2021 年)。 然而,共聚面对温度和 pH 值等不同最佳环境参数以及基材竞争的挑战 由于它们的协同作用,选择具有相似生长条件的细菌可以促进去除污染物。 因此, 除了石油化工废气中烷烃降解的有限菌株和非指定的共去除参数外,本研究选择正庚烷和正壬烷作为典型的中链烷烃 旨在 1) 分离高效的正庚烷和正壬烷降解菌株并优化降解条件 ; 2 通过共培养研究正庚烷和正壬烷混合物降解效率 ; 3 通过转化途径和微生物群落分析阐明刺激机制

Materials and methods
材料和方法

Chemicals and culture medium
化学品和培养基

Yeast powder, peptone, sodium dihydrogen phosphate dodecahydrate, n-nonane and sodium pyruvate were purchased from Shanghai Aladdin Co., Ltd., Shanghai, China. All other analytical-grade chemical agents were acquired from Sinopharm Chemical Reagent Co., Shanghai, China.
酵母粉、蛋白胨 磷酸二氢钠十二水合 正壬烷和丙酮酸钠购自中国上海上海阿拉丁有限公司。所有其他分析级化学试剂均购自中国上海国药集团化学试剂有限公司。

Three types of culture media, mineral medium (MM), R2A medium, and Luria–Bertani medium (LB), were used and prepared as described by Deng et al. (2023). MM was composed by the following components (per liter): 4.5 g Na2HPO4·12H2O, 1.0 g KH2PO4, 2.5 g (NH4)2SO4, 0.2 g MgSO4·7H2O, 0.023 g CaCl2, 1.0 mL trace element stock, pH 7.0, and then sterilized by 110℃ for 40 min. The trace element stock solution consisted of the following (per liter): 1.0 g FeSO4·7H2O, 0.02 g CuSO4·5H2O, 0.014 g H3BO3, 0.10 g MnSO4·4H2O, 0.10 g ZnSO4·7H2O, 0.02 g Na2MoO4·2H2O, 0.02 g CoCl2·6H2O. R2A medium was used for strain isolation and contained (per liter): 0.5 g yeast powder, 0.5 g starch, 0.5 g glucose, 0.5 g peptone, 0.3 g pyruvate sodium, 0.3 g K2HPO4, 0.05 g MgSO47H2O, and 20 g agar. All media were sterilized by 121℃ for 20 min before use.
邓等人(2023 年)所述 ,使用和制备三种类型的培养基 a、m 初始培养基 (MM)、R2A 培养基和 Luria-Bertani 培养基 (LB)。MM 由以下成分组成(每升):4.5 g Na2HPO4·12H2O1.0 g KH2PO42.5 g (NH42SO40.2 g MgSO4·7H2O0.023 g CaCl21.0 mL 微量元素储备液 pH 值为 7.0 然后在 110°C 下灭菌 40 分钟 微量元素储备溶液包括以下内容(每升):1.0gFeSO4·7H2O0.02g CuSO4·5H2O0.014g H3BO30.10 克 MnSO4·4H2 O,0.10ZnSO4·7H2 O,0.02 克钠 2MoO4·2H 2 O,0.02 g 氯化钴 2·6H2O. 使用 R2A 培养基进行菌株分离,包含(每升):0.5 g 酵母粉、0.5 g 淀粉、0.5 g 葡萄糖、0.5 g 蛋白胨、0.3 g 丙酮酸钠、0.3 g K2HPO4、0.05 g MgSO47H2O 和 20 g 琼脂 。所有 media 在使用前用 121°C 灭菌 20 分钟

Enrichment and isolation
富集和分离

Activated sludge was obtained from a petrochemical plant (Zhejiang Province, China) and used as the inoculum. A 100 mL MM liquid medium was dispensed into a 250 mL flask with 50 mL sludge as the inoculum, and 70 mg/L n-heptane and n-nonane, respectively, was used as the sole carbon source. The bottles were then sealed with rubber stoppers, wrapped with film, and incubated with steady agitation (160 rpm) at 30℃. 10% enriched culture was transferred into fresh 50 mL MM liquid medium every 2 days when the added n-heptane or n-nonane was degraded. After six times transfer, the enriched culture was diluted properly and spread on R2A agar plates and incubated at 30℃ for 5 days, then different colonies on the plates were isolated and purified.
活性污泥来自一家石化厂 中国浙江省 并用作接种物。将 100 mL MM 液体培养基分配到 250 mL 烧瓶中,以 50 mL 污泥作为接种物, 分别使用 70 mg/L 正庚烷正壬烷作为唯一的碳源。然后用橡胶塞密封瓶子,用薄膜包裹,并在 30°C 下稳定搅拌 (160 rpm) 孵育。 每 2 天10% 富集培养物转移到新鲜的 50mL MM 液体培养基中,降解添加的正庚烷正壬烷 转移 6 次后 富集的培养适当稀释铺在 R2A 琼脂平板上, 并在 30°C 下孵育 5 天,然后分离和纯化平板上的不同菌落

Identification of the isolated strains
分离菌株的鉴定

16S rDNA sequencing was used to identify the isolated strain. Specifically, 16S rDNA was amplified by PCR with the primers 27F and 1492R (Weisburg et al., 1991). The PCR product was sequenced (Sangong Bioengineering, Shanghai, China), and identification was carried out by comparison with the 16S rDNA sequences of type strains of bacterial strains in EZ-Biocloud (www.ezbiocloud.net). 16S rDNA sequences close to the isolated strain were chosen for constructing a phylogenetic tree. A phylogenetic tree was constructed with MEGA 11.0.
采用 16S rDNA 测序鉴定分离的菌株。具体来说,用引物 27F 和 1492R 通过 PCR 扩增 16S rDNA (Weisburg et al., 1991)。对 PCR 产物进行测序 (Sangong Bioengineering, Shanghai, China),并与 EZ-Biocloud (www.ezbiocloud.net) 中细菌菌株类型菌株的 16S rDNA 序列进行比较进行鉴定。选择接近分离菌株的 16S rDNA 序列构建系统发育树。使用 MEGA 11.0 构建系统发育树。

Alkane degradation ability at varied initial concentrations and environmental parameters of the isolated strains
分离菌株在不同初始浓度和环境参数下的烷烃降解能力

Isolated strains at the exponential stage were used to test the n-heptane or n-nonane degrading ability separately by incubation in MM liquid medium containing 70, 140, 210, 280 and 350 mg/L, respectively, n-heptane or n-nonane. The incubation temperature was set at the range from 20 to 40℃ and pH was adjusted to different values (5.0, 6.0, 7.0, 8.0 and 9.0) using either 1 moL/L NaOH or HCl. 0.8 mL gas samples to measure the n-heptane and n-nonane concentration and 1 mL liquid sample to determine the cell concentration (OD600) were taken every 5 h.
指数分离菌株 分别含有 70、140、210、280 和 350 mg/L 的 MM 液体培养基中孵育,分别测试正庚烷正壬烷的降解能力 将孵育温度设置为 20 至 40°C 并使用 1 moL/LNaOH 或 HCl 将 pH 值调节到不同的值 (5.0、6.0、7.0、8.0 9.0)。0.8 mL 气体样品测量庚烷和正壬烷浓度,1 mL 液体样品测定 每 5 小时 测量一次细胞浓度 (OD 600)。

Metabolic activity of the isolated strains
分离菌株的代谢活性

Biolog-ECO (96 wells) was used to determine the metabolic activity of the isolated strains. Grown cells were collected and centrifuged at 8000 rpm for 5 min and diluted with sterilized MM liquid medium to make a final OD600 of 0.02. The capability of bacterial isolates to utilize thirty one different carbon sources was tested in triplicate on Biolog™ Eco plates (Thomas et al., 2016). Plates were placed in a tray containing wet paper towels to avoid desiccation of wells and incubated at 30in the dark with the lids closed. The intensity of colour change of the tetrazolium dye was measured with an optical density multiscan microplate reader (Molecular, Shanghai, SpectraMax M2) at 590 nm over 7 days every 2 h (Merkl and Schultze-Kraft, 2006). OD values obtained for each substrate well were corrected by subtracting the blank well values. OD values higher than 0.2 after 96 h of incubation were defined as positive utilization of a carbon source. The ability to degrade each of the 31 carbon sources was indicated by average well color developments (AWCD) calculated using Eq. (1):
使用 Biolog-ECO (96 孔) 测定分离菌株的代谢活性 收集生长的细胞并以 8000 rpm 离心 5 分钟,并用灭菌的 MM 液体培养基稀释 ,使 最终 OD600 为 0.02。 在 Biolog™ Eco 板上一式三份测试了细菌分离物利用 31 种不同碳源的能力(Thomas 等人,2016 年)。将板放在装有湿纸巾的托盘中,以避免孔干燥,并在黑暗中孵育 t 30°C,并关闭盖子。用光密度多扫描酶标仪(Molecular,Shanghai,SpectraMax M2)在每 2 小时在 590 nm 处每 2 小时测量 7 天内四唑染料的颜色变化强度 (Merkl 和 Schultze-Kraft,2006)。通过减去空白孔值来校正每个底物孔获得的 OD 值。孵育 96 小时后 OD 值高于 0.2 被定义为碳源的正利用。 使用方程 (1) 计算的平均井色发展 (AWCD) 表示降解 31 个碳源中的每一个的能力:

AWCD=(AA+A+A3)93 (1)
AWCD=(AA+A+A3)93 (1)

where Ai refers to OD590 value in well number ‘i’ and A11, A31, and A65 are OD590 values for the blank controls number 11, 33 and 65, in row 1 in the Biolog-ECO microplate.
其中 A 是指井号 “i” 中的 OD590A11A31 A65空白编号 11 的 OD 590 3365,在 Biolog-ECO 微孔板的第 1 行。

Experimental set-up
实验装置

As shown in Table 1, three groups were set-up, i.e. Group I (70 mg/L n-heptane+30, 40, 70, 100, 140 mg/L n-nonane) inoculated with the isolated n-heptane degrading strain using n-heptane as the sole carbon source (Section 2.2); Group II (360 mg/L n-nonane + 70, 140, 210, 280 mg/L n-heptane) inoculated with the isolated n-nonane degrading strain using n-nonane as the sole carbon source (Section 2.2); Group III was the gases mixture inoculated with the co-culture of the two isolated strains. n-heptane and n-nonane concentration and OD600 were analyzed at interval time. In the co-culture system, the relative abundance of the two strains was analyzed by 16S rDNA for the n-heptane and n-nonane gas mixtures (70+360, 140+360, 210+360 and 280+360 mg/L, SI Table 1).
如表 1 所示,设置三组,即第 I 组(70 mg/L 正庚烷+30、40、70、100、140 mg/L 正壬烷)接种以正庚烷为唯一碳源的分离的正庚烷降解菌株 (第 2.2 节);第 II 组(360 mg/L 正壬烷 + 70、140、210、280 mg/L 正庚烷) 接种以正壬烷作为唯一碳源的分离的正壬烷降解菌株 (第 2.2 节);第 III 组 w 作为气体混合物接种了两种分离菌株的共培养物。 在间隔时间分析 N-庚烷和 N-壬烷浓度以及 OD600。在共培养系统中, 通过 16S rD NA 分析两种菌株的相对丰度 ,用于 正庚烷和正壬烷气体混合物 (70+360、140+360、210+360 和 280+360 mg/L,SI 表 1)。

Analysis
分析

The n-hexane concentration was determined using an Agilent 7890 Gas Chromatograph (Agilent, USA) equipped with a flame ion detector as described by Lu et al. (2025). The inlet temperature, column box temperature, and detector temperature of the instrument were 250, 80, and 300℃, respectively. The carrier gas was nitrogen, the inlet flow rate was 10 mL/min, and the split ratio was 3:1. The column was a capillary column with HP-Innowax (30 m × 0.32 mm × 0.5 µm) and a column flow rate of 1.0 mL/min. The hydrogen and air flow rates of the detector were 40 and 400 mL/min, respectively.
使用 Agilent 7890 气相色谱仪(安捷伦,美国)测定正己烷浓度,该气相色谱仪配备火焰离子检测器,如 Lu 等人(2025 年)所述。仪器的进样口温度、柱箱温度和检测器温度分别为 250°C、80°C 和 300°C。载气为氮气,入口流速为 10 mL/min,分流比为 3:1。该色谱柱为毛细管柱,采用 HP-Innowax (30 m × 0.32 mm × 0.5 μm),柱流速为 1.0 mL/min。检测器的氢气和空气流速分别为 40 mL/min 和 400 mL/min。

The carbon dioxide concentration was determined by an Agilent 7890 Gas Chromatograph (Agilent, USA) equipped with a thermal conductivity detector as described by He et al. (2022). The inlet temperature, column box temperature, and detector temperature of the instrument were 100, 40 and 180 ℃, respectively. The carrier gas was high purity helium with an inlet flow rate of 100 mL/min in split-flow mode. The column was a capillary column with HP-PlotQ (30 m × 0.32 mm × 20 µm) with a column flow of 2.0 mL/min.
二氧化碳浓度由配备热导检测器的 Agilent 7890 气相色谱仪(安捷伦,美国)测定,如 He 等人(2022 年)所述。仪器的进样口温度、柱箱温度和检测器温度分别为 100 °C 、 40 °C 和 180 °C。载气为高纯度氦气,分流模式下入口流速为 100 mL/min。该色谱柱为采用 HP-PlotQ 的毛细管柱(30 m × 0.32 mm × 20 μm),柱流速为 2.0 mL/min。

Results and discussion
结果与讨论

Isolation, environmental optimization and degradation ability of n-heptane degrading bacteria
正庚烷降解细菌的分离、环境优化和降解能力

The n-heptane-degrading bacterium was aerobic and gram-negative, and its colonies were spot-shaped, smooth and moist. After 16S rRNA analysis, it was identified as Pseudomonas toyotomiensis species and named as Pseudomonas toyotomiensis 414 (CCTCC NO: M 20241106), a phylogenetic tree was constructed (Fig. 1a). The gene sequence of Pseudomonas toyotomiensis 414 was submitted to the NCBI GenBank database and accession number was obtained (SI). The TEM image showed that the strain produced a typical flagellum (Fig. 1b) and formed semi-transparent colonies on blood plates with hemolytic properties (SI Fig. 1a, c).
庚烷降解细菌氧且为革兰氏阴性 e,菌落呈斑点状 光滑湿润。经 16S rRNA 分析 ,鉴定为丰氏假单胞,命名为丰氏假单胞414CCTCC NO: M 20241106), 构建系统发育树 (图 1a)。丰东假单胞菌 414 的基因序列提交到 NCBI GenBank 数据库并获得登录号 (SI)。TEM 图像显示,该菌株产生典型的鞭毛(图 1b)并在具有溶血特性的血板上 形成半透明菌落 SI 图 1a、c)。

P. toyotomiensis 414 could use n-heptane as the sole carbon source and an initial 70, 140, 210, 280, and 350 mg/L n-heptane could be degraded, respectively, at 4.29, 7.90, 9.01, 10.14 and 12.23 mg·L-1·h-1 at 10 h (Fig. 1c), while the average degradation rate was, respectively, 3.26, 5.16, 7.73, 8.46 and 7.93 mg·L-1·h-1 at the end of the incubation (SI Table 1). The adapted time is rather short and we observed almost no-lag phase since after 5 h, the removal efficiency (RE) reached 36.57, 31.71, 25.90, 21.68 and 21.63% for the initial 70, 140, 210, 280, and 350 mg/L n-heptane addition. After 21 h, the removal efficiency was, respectively, 97.84, 98.37, 88.07, 78.47 and 69.85%. The degradation rate of n-heptane kept increasing at the beginning and gradually decreased. The cell concentration increased rapidly along with the consumption of n-heptane and remained relative after 45 h, when n-heptane was completely degraded (Fig. 1d). The highest OD600 values reached correspondingly 0.096, 0.185, 0.248, 0.283 and 0.359 at 45 h. It should be noted that the initial 140, 210 and 280 mg/L n-heptane was completed removed, respectively, at 27, 33 and 44 h, however, the cell concentration kept increasing and reach the maximum at 45 h. This might be attributed to the metabolic products which could be further used as carbon source for supporting cell growth (Yu et al., 2022). The isolated P. toyotomiensis 414 showed a high n-heptane removal efficiency and could degrade 140 mg/L n-heptane within 20 h.
丰臣松 414 以正庚烷为唯一碳源, 初始 70、140、210、280 和 350 mg/L庚烷可分别降解 4.297.909.0110.1412.23mg·L-1·h-110h 时 ( 图 1c),平均降解速率分别为 3.26、5.16、7.73、8。46 和 7.93 mg·L-1·h-1 在孵育结束时(SI 表 1)。适应时间相当短,我们观察到几乎没有滞后阶段,因为 5 小时后, 初始添加 70、140、210、280 和 350 mg/L 庚烷去除效率 (RE 达到 36.5731.7125.9021.68 21.63%。21 h 后,去除效率分别为 97.8498.3788.0778.4769.85%。 正庚烷的降解速率开始时不断增加 ,然后逐渐降低 。 cell 浓度随着正庚烷的消耗 而迅速增加 并在 45 小时后保持相对水平 此时正庚烷完全降解 (图 1d)。 最高 OD600 值在 45 h 时分别达到 0.096 0.185 0.248 0.2830.359。需要注意的是,最初的 140、210 280mg/L 正庚烷 分别在 2733 44 小时完成去除 ,然而,细胞浓度不断增加并在 45 小时达到最大值。这可能归因于代谢 c 产物 ,它可以进一步用作支持细胞生长的碳源(Yu 等人,2022 年)。分离的 P. toyotomiensis 414 表现出 较高的正庚烷去除效率,可在 20 h 内降解 140 mg/L 正庚烷。

As shown in Fig. 1, to explore the optimal environmental conditions of P. toyotomiensis 414, an initial 70 mg/L n-heptane was tested at, respectively, varying temperatures of 20 to 40℃ and pH values of 5 to 9. The degradation performance of n-heptane was significantly affected by the change of pH. The n-heptane degradation reached the highest efficiency of 97.19% at pH 7 (Fig. 1e), which was 2.4, 1.6 and 1.9 fold higher than at pH 6, 8 and 9, respectively. An acid environment (such as pH 5) could pose severe damage to cells growth (Matsuyama et al., 2000). The increased OD600 value at pH 8 and 9 might be influenced by mineral precipitation (SI Fig. 2a). CO2 production was, correspondingly, 1.20, 7.60, 13.81, 4.91, and 0.37 g/m3 (SI Fig. 2b) at, respectively, pH of 5, 6, 7, 8 and 9. The lower amount of CO2 production at higher pH can be partly due to its dissolution at alkaline conditions. After 20 h, the removal rate of n-heptane remained above 80% at the temperature ranging from 20 to 35°C (Fig. 1f), while decreased to less than 40% at 40°C. Correspondingly, the OD600 values of P. toyotomiensis 414 were 0.087, 0.096, 0.103 and 0.107 at, respectively, temperature of 20, 25, 30, 35 and 40°C, while decreased to 0.05 at 40°C (SI Fig. 2c). The CO2 production reached the highest (13.83 g/m3) at 30°C (SI Fig. 2d), representing the highest n-heptane mineralization degree.
如图 1 所示。 1、为探究丰通414 的最佳环境条件 分别在 20 至 40°C低温和 5 至 9 的 pH 值下测试初始 70 mg/L 的正庚烷 庚烷的降解性能受 pH 值变化的显著影响 正庚烷降解 pH 值为 7 时达到最高效率,为 97.19%( 图 1e), 分别比 pH 值 6、8 和 9 时高 2.4、1.6 和 1.9 倍。 cid 环境 如 pH 值 5)可能会对细胞生长造成严重损害 Matsuyama et al., 2000)。 在 pH 值为 8 和 9 时 OD600增加可能受矿物沉淀离子的影响 SI 图 2a)。 相应地 ,在 pH 值为 567、89 时,CO2 产量分别为 1.20、7.60、13.81、4.91 和 0.37g/m3SI 图 2b)。 在较高 pH 值下产生的 CO2较低 部分原因是它在碱性条件下的溶解 20 h20°C 至 35°C 的温度范围内 ,正庚烷的去除率保持在 80%以上 (图 1f),而在 40°C 时降至 40%以下。 相应地, 在温度为 202530、35 40°C 丰臣松 414OD600 分别为 0.087、0.096、0.1030.107,而在 40°C 时降至 0.05SI 图 2c)。 30°C ,CO 2 产量达到最高 (13.83 g/m3)(SI 图 2d), 代表最高的正庚烷矿化度

Isolation, environmental optimization and degradation ability of n-nonane degrading bacteria
正壬烷降解菌分离、环境优化及降解能力

The isolated n-nonane-degrading strain is aerobic and gram-positive. It forms irregular shaped, cream-colored with rough surface and large colonies when grown on LB-Agar. It was identified as Tsukamurella paurometabola, named as Tsukamurella paurometabola LXY (CCTCC NO: M 20241105), and a phylogenetic tree was constructed (Fig. 2a). The gene sequence of Tsukamurella paurometabola LXY was submitted to the NCBI GenBank database and an accession number was obtained (SI). No flagellum was observed on the TEM image (Fig. 2b). Unlike the gram-negative P. toyotomiensis 414, T. paurometabola LXY could not form semi-transparent colonies on blood plates and did not have hemolytic properties (SI Fig. 1b). Instead, the strain could form a biofilm and adhered to the inner surface of serum bottles (SI Fig. 1d).
分离 n-壬烷降解菌株是需氧的和革兰氏阳性的。 在 LB 琼脂上生长时 会形成不规则形状 、奶油色 、表面粗糙、菌落大 经鉴定Tsukamurella paurometabola, 命名为 Tsukamurella paurometabolaLXY (CCTCC NO: M 20241105), 并构建了系统发育树 (图 . 2a)。Tsukamurella paurometabola LXY 的基因序列 提交给 NCBI GenBank 数据库并获得登录号 (SI)。 TEM 图像上未观察到鞭毛 图 2b)。 革兰氏阴性 P. toyotomiensis 414 不同,T. paurometabola LXY 不能在血板上形成半透明的菌落 ,也不具有溶血特性(SI 图 1b)。相反,菌株可以形成 生物膜并粘附在血清瓶的内表面(SI 图 1d)。

The strain showed a high n-nonane degradation potential and the RE reached 96.94%, 99.96%,99.53%,95.25%,75.38%, respectively, at 12 h with initial 72, 144, 216, 288 and 360 mg/L n-nonane, while totally removed n-nonane after 18 h (Fig. 2c). The cell growth increased along with the increased n-nonane addition (Fig. 2d). Notably, T. paurometabola LXY could completely degrade the initial 920 mg/L n-nonane within 33 hours (SI Fig. 3a), and the OD600 value was 0.45 at 33 h, indicating that strain LXY can tolerate high concentrations of n-nonane (SI Fig. 3b). Correspondingly, the average degradation rate of n-nonane was 5.82, 11.65, 17.44, 19.30, and 19.97 mg·L-1·h-1, respectively (Fig. 2c). Biofilm formation was also observed along with its growth using n-nonane as the sole carbon source (SI Fig. 1d). Considering its gram-positive structure, this may be a strategy for utilizing the hydrophobic n-nonane. Gram-positive bacteria have a thick peptidoglycan, which is considered invariable, and surface glycol-polymers that facilitate biofilm formation (Ruhal et al., 2021).
该菌株显示出 较高的正壬烷降解电位,RE 在 12 h 时分别达到 96.94%、99.96%、99.53%、95.25%、75.38%,初始 72、144、216、288 和 360 mg/L 正壬烷,而 18 小时后完全去除正壬烷 (图 D)。 2c)。细胞生长随着 n-壬烷添加量的增加而增加(图 D)。 2d)。 值得注意的是,T. paurometabola LXY 可以在 33 小时内完全降解初始 920 mg/L 正壬烷(SI 图 3a),33 h 时的 OD 600 值为 0.45,表明菌株 LXY can 耐受高浓度的正壬烷 (SI 图 3b)。 相应地,壬烷的平均降解速率分别为 5.82、11.65、17.44、19.30 和 19.97mg·L-1·h-1 图 2c)。 使用正壬烷作为唯一的碳源 ,还观察到 Biofilm 的形成及其生长(SI 图 1)。 1d)。考虑到其革兰氏阳性结构,这可能是 利用疏水性正壬烷的一种策略。革兰氏阳性菌具有厚的肽聚糖,这被认为是不变的,以及促进生物膜形成的表面乙二醇聚合物 (Ruhal 等人,2021 年)。

The cells grew rapidly with the increase of n-nonane concentration and reached a maximum OD600 value of 0.18 at 24 h when degrading 360 mg/L n-nonane. It is notable that this strain can metabolize n-nonane efficiently as the sole energy and carbon source. An initial n-nonane concentration of 290 mg/L was selected to optimize pH and temperature for T. paurometabola LXY.
随着 n- 壬烷浓度的增加 细胞迅速生长 当降解 360 mg/L n-壬烷时 ,细胞在 24 h 时达到最大 OD600 值 0.18。值得注意的是,这种菌株可以有效地代谢正壬烷作为唯一的能量和碳源。 选择 290 mg/Ln-壬烷浓度以优化 T. paurometabola LXY 的 pH 值和 d 温度

n-nonane with the initial concentration of 290 mg/L could be degraded quickly, with a removal efficiency of 95.25% at 12 h and 100% within 15 h (Fig. 2c). The cells grew rapidly and reached the highest OD600 of 0.15 at 20 h. It should be noted that the medium did not contain additional carbon sources except for the n-nonane, which indicates that the strain can grow and metabolize n-nonane effectively using n-nonane as the sole energy source.
初始浓度为 290 mg/L 的正壬烷可快速降解, 12 h 去除率为 95.25%,15 h 内去除率为 100%(图 D)。 2c)。细胞 s g 迅速繁殖 ,在 20 h 时达到最高 OD600 0.15。应该注意的是,除正壬烷外,该培养基不含其他碳源,这表明该菌株可以使用正壬烷作为唯一的能源有效地生长和代谢正壬烷。

At pH ranges from 6 to 9, the RE of initial 280 mg/L n-nonane exceeded 95% at 23 h, even with a pH as low as 5, the RE kept above 67% (Fig. 2e). This indicated that T. paurometabola LXY could adapt to both acidic and alkaline conditions while keeping a high degradation performance for n-nonane degradation. The OD600 value of T. paurometabola LXY was correspondingly 0.068, 0.170, 0.225, 0.246, and 0.131 at, respectively, pH of 5, 6, 7, 8 and 9 (SI Fig. 4a), among which the relative high cell concentrations obtained at pH 7 and 8. The alkaline condition of pH 8 may facilitate the minerals in the medium to precipitate, affecting the determination of the final OD600 value. CO2 production was, correspondingly, 14.01, 33.48, 22.60, 13.98, and 4.02 g/m3 at, respectively, pH of 5, 6, 7, 8 and 9 (SI Fig. 4b).
pH 值 s 为 6 至 9 时, 初始 28 0 mg/L 壬烷 RE23 小时时超过 95%, 即使 pH 值低至 5,RE 也保持在 67% 以上 (图 D)。 2e)。 这表明 T.paurometabola LXY 可以同时适应 酸性和碱性条件 同时对正壬烷降解具有很高降解性能 pH 值为 567、89 T.paurometabola LXY wOD600分别为 0.068、0.170、0.225、0.246 和 0.131SI 图 4a),其中在 pH 值为 7 时获得的相对较高的细胞浓度 s 和 8. pH 8 碱性条件 可能促进介质 中的矿物质沉淀,影响最终 OD600 值的测定。 相应地 ,当 pH 值为 567、89,CO 2 产量分别为 14.01、33.48、22.60、13.98 和 4.02g/m3SI 图 4b)。

At temperatures ranging from 20 to 40°C, the removal efficiency of 288 mg/L n-nonane remained above 90% at 12 h (Fig. 2f), indicating that T. paurometabola LXY could degrade n-nonane with high RE at both sub-mesophilic and mesophilic conditions. The OD600 values of T. paurometabola LXY were 0.046, 0.130, 0.137, 0.208, and 0.097 at, respectively, temperature of 20, 25, 30, 35 and 40°C (SI Fig. 4c), demonstrating mesophilic conditions enhanced the cell concentration, but the 40°C condition inhibited its growth. CO2 production amounted to 10.27, 16.37, 18.85, 25.77, and 24.35 g/m3 (SI Fig. 4d), respectively, among which the mineralization degree was the highest at 35℃ for the initial 288 mg/L n-nonane. To the best of our knowledge, this is the first report on Tsukamurella paurometabola for removal of alkane with such high removal performance. The degradation efficiency of n-nonanes amounted to only 21.4% and 22.9%, respectively, by Candida ernobii UFPEDA 862 and Rhodotorula aurantiaca UFPEDA 845 (Miranda et al., 2007).
在 20 至 40°C 的温度范围内,288 mg/L 壬烷的去除效率 12 小时时保持在 90% 以上 (图 D)。 2f),表明 T. paurometabolaLXY 亚嗜温和嗜温条件下都可以以高 RE 降解 n-壬烷 20°C 25° C、30°C 40°C 的温度下 ,T. paurometabola LXY 的 OD600分别为 0.046、0.130、0.137、0.208 和 0.097SI 图 4c), 表明嗜温条件增强细胞浓度 ,但 40°C 条件抑制了其生长。CO2 产量分别为 10.27、16.37、18.85、25.77 和 24.35g/m3SI 图 4d), 其中初始 288 mg/L 壬烷的矿化度在 35°C 时最高 据我们所知,这是关于 Tsukamurella paurometabola 以如此高的去除性能去除烷烃的首次报告。 念珠菌 ernobii UFPEDA 862 和金黄色念珠菌 UFPEDA 845 对正壬烷的降解效率分别仅为 21.4% 和 22.9%( Miranda et al., 2007)。

Enhanced n-nonane and n-heptane gas mixture degradation by co-culture
通过共培养增强正壬烷正庚烷气体混合物降解

3.3.1 Effect of n-nonane addition on n-heptane degradation by P. toyotomiensis 414 and co-culture
3.3.1 正壬烷添加对丰臣 P. 414 和共培养庚烷降解的影响

The RE of n-heptane with an initial concentration of 70 mg/L was, respectively, 98.02%, 99.66%, 85.62%, 85.49%, 68.48% and 70.95%, respectively, in the presence of 0, 30, 40,70, 100 and 140 mg/L n-nonane at 12 h (Fig. 3). While the RE of n-nanone was, correspondingly and respectively, 98.75%, 92.42%, 95.67%,78.14% and 78.76% at 12 h. n-heptane could be totally removed at 17 h, excepted that the RE reached 96.19% at 140 mg/L n-nonane addition. The addition of 30 mg/L n-nonane increased the average degradation rate of n-heptane to 5.81 mg·L-1·h-1 (Fig. 3b) compared to the control of 5.72 mg·L-1·h-1 (Fig. 3a), while the addition of 40, 70 and 100 mg/L n-nonane, did not inhibit n-heptane degradation by P. toyotomiensis 414, as its average degradation rate kept at 4.1 mg·L-1·h-1 (Fig. 3c, 3d, 3e). With the increase of n-nonane concentration to 140 mg/L, the average degradation rate of n-heptane by P. toyotomiensis 414 slightly decreased to 3.96 mg·L-1·h-1 (Fig. 3f, SI Table 1). The Pseudomonas genus have been considered to possess a broad range of catabolic potentials toward diverse alkane compounds, including monofluorinated C7-C10 alkanes, fluorodecane, difluorodecane, benzene, toluene, dimethyl sulfide and 1-propanethiol (Hong et al., 2025; Li et al., 2022; Zhang et al.2021; Xie et al. 2020). Pseudomonas sp. DKR-23 had the best performance in degrading multiple VOCs including benzene, toluene, xylene and trichloroethane, compared to Rhodococcus sp. Korf-18 in a diffusion bioreactor (Chaudhary et al., 2023).
0、30、40、70、100 和 140 mg/L 正壬烷存在下,初始浓度为 70 mg/L 的正庚烷在 12 h 时的 RE 分别为 98.02%、99.66%、85.62%、85.49%、68.48% 和 70.95%( 图 3)。 而正庚烷在 12 h 时的 RE 分别为 98.75%、92.42%、95.67%、78.14% 和 78.76%,而正庚烷在 17 h 时可以完全去除, RE 在 140 mg/L 正壬烷添加时达到 96.19%。30 mg/L 正壬烷的添加使正庚烷的平均降解速率提高到 5.81 mg·L-1·h-1(图 3b) 与 5.72 mg· L-1·h-1(图 3a), 虽然添加 40、70100mg/L 正壬烷 其平均降解速率保持在 4.1 mg·L-1·h-1 (图 1)3c、3d、3e)。壬烷浓度提高 到 140 mg/L 丰臣松 414庚烷的平均降解速率略微下降到 3.96 mg·L-1·h-1 图 1) 3f,SI 1)。 假单胞菌属被认为对多种烷烃化合物具有广泛的分解代谢潜力,包括单氟 C 7-C10 烷烃、氟癸烷、二氟癸烷、苯、甲苯、二甲基硫醚和 1-丙硫醇 (Hong 等人,2025 年;Li et al., 2022;Zhang et al.2021; Xie 等人,2020 年) 假单胞菌属 红球菌 Korf-18 相比 DKR-23 在降解多种 VOC 方面具有最佳性能,包括苯、甲苯、二甲苯和三氯乙烷 (Chaudhary 等人。 2023)。

The average degradation rate of n-heptane was enhanced 1.13 fold by co-culture compared to P. toyotomiensis 414 solely with both 40 and 70 mg/L n-nonane addition (Fig. 4a, b). However, when the n-nonane concentration increased to 100 and 140 mg/L (Fig. 4c, d), the average degradation rate of n-heptane decreased to 89.3% and 93.0% compared to the P. toyotomiensis 414 pure culture. However, the average degradation of n-nonane was obviously enhanced by the co-culture and was 1.89, 1.44, 1.87 and 1.44 fold (Fig. 5) respectively, higher than that of the P. toyotomiensis 414 pure culture along with its increased initial concentration of 40, 70, 100 and 140 mg/L. P. toyotomiensis 414 can degrade both n-heptane and n-nonane with high RE, which is competitive compared to reported strains (Table 2). Paraburkholderia aromaticivorans BN5, isolated from petroleum-contaminated soil, had a RE of around 40% of n-hepane and 98% of n-nonane at 100 mg/L after 5 days (120 h) of culture (Lee et al. 2019).
与仅添加 40 和 70 mg/L 正壬烷的 P. toyotomiensis 414 相比,共培养使正庚烷的平均降解速率提高了 1.13 倍(图 4a、b)。然而,当正壬烷浓度增加到 100 和 140 mg/L 时(图 4c、d),与丰臣 414 纯培养物相比,正庚烷的平均降解率分别降至 89.3% 和 93.0%。然而,共培养明显增强了正壬烷的平均降解,分别是 1.89、1.44、1.87 和 1.44 倍(图 5),高于 P. toyotomiensis 414 纯培养物,同时其初始浓度增加至 40、70、100 和 140 mg/L。P. toyotomiensis 414 可以降解正庚烷和正壬烷,且 RE 较高。 与报道的菌株相比,它具有竞争力(表 2)。从石油污染土壤中分离出的 Paraburkholderia aromaticivorans BN5 在培养 5 天(120 小时)后,在 100 mg/L 时的 RE 约为 40% 的 n-hepane 和 98% 的 n-壬烷(Lee et al. 2019)。

3.3.2 Effect of n-heptane addition on n-nonane degradation by T. paurometabola LXY and co-culture
3.3.2 正庚烷添加对 T.paurometabola LXY 和共培养降解正壬烷的影响

The n-nonane degradation rate with the initial concentration of 360 mg/L reached, respectively, 22.49, 22.42 and 22.50 mg·L-1·h-1 along with the increased n-heptane concentration of 0, 70 and 140 mg/L at 16 h (Fig. 6a, b, c, SI Table 1). The presence of 70 and 140 mg/L n-heptane did not inhibit n-nonane degradation compared to the control with a degradation rate of 22.5 mg·L-1·h-1 by solely T. paurometabola LXY. With 210 and 280 mg/L n-heptane (Fig. 6d), the n-nonane degradation rate decreased to around 10.2 mg·L-1·h-1 (decreased by 54.7% compared to the control). The average degradation rate of n-heptane did not float very much (SI Table 1) while the average degradation rate of n-nonane reached, respectively, 7.38, 4.66, 2.32 and 2.65 fold higher than n-heptane (Fig. 5). This indicated that T. paurometabola LXY showed a selectivity for n-nonane degradation instead of n-heptane.
初始浓度为 360 mg/L 时,正壬烷降解速率分别达到 22.49、22.4222.50 mg·L-1·h-1 以及 16 小时时正庚烷浓度增加0、70 140 mg/L(图 6a、b、c、SI 表 1)。 降解 速率为 22.5 mg·L-1·h-1 仅由 T.paurometabola LXY 提供。 当正庚烷浓度分别为 210 mg/L 和 280 mg/L 时 (图 6d), 正壬烷降解速率降至 10.2 mg·L-1·h-1 (与对照相比降低 54.7%) 正庚烷的平均降解速率没有太大的浮动(SI 1),而正壬烷的平均降解速率分别达到正庚烷的 7.38、4.66、2.32 和 2.65 倍 (图 5)。 这表明 T. paurometabola LXY 显示出 对 n-壬烷降解而不是 n-庚烷降解的选择性。

Interestingly, at 70 and 140 mg/L n-heptane mixed with 360 mg/L n-nonane, n-heptane started to degrade at 12 h when the RE of n-nonane reached 81% by T. paurometabola LXY(Fig. 4e, f). However, such inhibition was not observed in the co-culture system, instead, the average degradation rate of n-heptane increased, respectively, 1.20 and 1.52 fold (3.04 to 3.64 mg·L-1·h-1, 4.83 to 7.33 mg·L-1·h-1). The average degradation of n-nonane had a slight decrease from 22.5 mg·L-1·h-1 by T. paurometabola LXY to 18.9 mg·L-1·h-1 by the co-culture. For the initial 210 or 280 mg/L n-heptane mixed with 360 mg/L n-nonane (Fig. 4g, h), the n-heptane degradation rate enhanced, respectively, 2.19 and 3.12 fold (4.14 to 9.08 mg·L-1·h-1, 3.84 to 12.09 mg·L-1·h-1), and the n-nonane degradation rate enhanced, correspondingly, to both 1.85 fold (SI Table 1). The enhancement of n-heptane degradation by the co-culture was even competitive compared to its degradation by solely P. toyotomiensis 414, of which the average degradation increased to 1.12, 1.42, 1.17 and 1.43 fold, respectively, for 70, 140, 210 and 280 mg/L n-heptane (Fig. 5).
有趣的是, 70 和 140 mg/L 正壬烷与 360 mg/L 正壬烷混合时,当 T. paurometabola LXY 的正壬烷RE 达到 81% 时,正壬烷在 12 小时开始降解 (图 4e,f)。 然而,在共培养系统中未观察到这种抑制作用,相反,正庚烷的平均降解速率分别增加了 1.20 倍和 1.52 倍(3.04 至 3.64 mg·L-1·h-1,4.83—7.33 mg·L-1·h-1)。正壬烷的平均降解率从 22.5 mg·T. paurometabola LXY 制备 L-1·h-1 至 18.9 mg·L-1·h-1 通过共培养。对于 初始 210 或 280 mg/L 正壬烷与 360 mg/L 正壬烷的混合 (图 4g,h), 正庚烷降解速率分别提高了 2.19 倍和 3.12 倍(4.14 至 9.08 mg·L-1·h-1, 3.84〜12.09 mg·L-1·h-1),正壬烷降解速率相应地提高到 1.85 倍(SI 1)。 仅由丰东平胞414 降解相比,共培养对正庚烷降解的增强甚至具有竞争力 ,其中 70、140、210 和 280 mg/L 正庚烷的平均降解分别增加到 1.12、1.42、1.17 和 1.43 倍 (图 5)。

For n-heptane and n-nonane (70+360, 70+360 mg/L) degradation by the co-culture, the relative abundance (OTU numbers) of P. toyotomiensis 414 reached, respectively, 99.54% and 99.47% at 15 h when n-nonane had been totally removed and kept such high value at the end of the incubation (Table 3). The high P. toyotomiensis 414 ratio in the co-culture may also relieve the inhibition of n-heptane (70 and 140 mg/L) degradation as observed by the T. paurometabola LXY pure strain (Fig. 3b, c). The relative abundance of P. toyotomiensis 414 reached 90.16% and 97.24% in the co-culture for n-heptane and n-nonane (210+360, 280+360 mg/L) degradation (Table 3). Interestingly, along with the increased n-heptane concentration, the proportion of P. toyotomiensis 414 was slightly decreased at the end of the incubation.
对于共培养的正庚烷和正壬烷 (70+360, 70+360 mg/L) 降解,当正壬烷被完全去除并在孵育结束时保持如此高的值时, 丰东松 414 的相对丰度 (OTU 数) 在 15 h 时分别达到 99.54% 和 99.47%(3)。 共培养物中的高 P. toyotomiensis 414 比率 也可以减轻 T. paurometabola LXY 纯菌株观察到的对 n-庚烷(70 和 140 mg/L)降解的抑制(图 D)。3bc) 的 正庚烷和正壬烷 (210+360, 280+360 mg/L) 降解的共培养中,丰臣 414 的相对丰度达到 90.16% 和 97.24%(表 3)。有趣的是,随着正庚烷浓度的增加, 丰丰平414 的比例在孵育结束时略有降低

3.4 Conversion pathway and co-metabolism of P. toyotomiensis 414 and T. paurometabola LXY
3.4 丰氏假单胞菌 414LXY 的转化途径和共代谢

According to the gene analysis of P. toyotomiensis 414, we compared the genes with KO (KEGG Ortholog) in the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and found that the n-heptane conversion pathway followed the typical alkane conversion pathway of the Pseudomonas genus (Fig. 7). P. toyotomiensis 414 contains a alkane hydroxylase gene (alkB1-2), three alcohol dehydrogenase genes (ADH1_7; adhP; FrmA), one aldehyde dehydrogenase gene (ALDH), one acetyl-CoA C-acetyltransferase gene (actA), one acetyl-CoA acyltransferase gene (fadA), and one enoyl-CoA hydratase gene (echA) (SI Table 2). Hence, we infer that n-heptane is initially converted to n-heptanol by the enzyme alkB, adding a hydroxyl group, then heptanol is subsequently oxidized to heptanal by ADH and heptanal is further oxidized to heptanoic acid by the enzyme ALDH. Finally, heptanoic acid is subjected to β-oxidation and converted into fatty acids, which enter the tricarboxylic acid (TCA) cycle and produce CO2 and H2O completing the degradation process.
根据丰氏假单胞菌 414 的基因分析 ,我们将基因与 KEGG(京都基因和基因组百科全书)数据库中 KO (KEGG 直系同源物) 进行比较 ,发现正庚烷转化途径遵循假单胞菌属的典型烷烃转化途径 (图 7)。丰氏假单胞菌 414 包含一个烷烃羟化酶基因 (alkB1-2)、三个醇脱氢酶基因 s (ADH1_7; adhP;FrmA 1 个醛脱氢酶基因 (ALDH)、1 个乙酰辅酶 A C-乙酰转移酶基因 (actA)、1 个乙酰辅酶 A 酰基转移酶基因 (fadA) 和 1 个烯酰辅酶 A 水合酶基因 (echA) (SI Table 2)。因此,我们推断庚烷最初被酶 a lkB 转化为正庚醇 ,添加一个羟基,然后庚醇随后被 ADH 氧化成庚醛 ,庚醛被 ALDH 酶进一步氧化成庚酸 。最后,庚酸经过 β氧化并转化为脂肪酸,脂肪酸进入三羧酸 (TCA) 循环并产生 CO2 和 H2O,完成降解过程。

The three main alkane-oxidizing enzymes reported in alkane degradation are methane monooxygenase (MMO), alkane hydroxylase (Alk), and cytochrome P450 monooxygenase (P450, CYP), which are expressed depending on the length of carbon chain and environmental conditions(Van Beilen et al.,2005). The hydroxylase system, commonly present in alkane-degrading bacteria, such as the genera Pseudomonas, Alcanivorax, Mycobacterium, and Rhodococcus, is encoded by the alk gene cluster, typically including alkane hydroxylase (AlkB), rubredoxin (AlkG) and rubredoxin reductase (AlkT). alkB encodes an alkane hydroxylase enzyme responsible for initiating the degradation of alkanes by adding oxygen to the alkane molecule, converting it to a more reactive alcohol (Guo et al., 2023). AlkG transferers electrons essential for the reaction, and AlkT oxidizes NADH and reduces rubredoxin, which has been described in Pseudomonas putida GPo1 oxidizing C5-C13 alkanes (Williams et al., 2022).
烷烃降解中报道三种主要烷烃氧化酶甲烷单加氧酶 (MMO)、烷烃羟化酶 (Alk) 和细胞色素 P450 单加氧酶 (P450, CYP),它们的 表达取决于碳链的长度和环境条件 (Van Beilen et al.,2005)。 羟化酶系统通常存在于烷烃降解细菌中, 例如假单胞菌Alcanivorax 属、 分枝杆菌属和红球菌,由 alk 基因簇编码,通常包括烃羟化酶(AlkB)、红氧还蛋白(AlkG)和红氧还蛋白还原酶(AlkT)。 alkB 编码一种烷烃羟化酶,该酶负责通过向烷烃分子中添加氧来启动烷烃的降解,将其转化为反应性更强的醇 (Guo 等人,2023)。 AlkG 转移电子对反应至关重要,AlkT 氧化 NADH 并还原 rubredoxin 这在恶臭假单胞 GPo1 氧化 C 5-C13 烷烃中已有描述 (Williams 等人,2022)。

The Tsukamurella genus belongs to the phylum Actinobacteria, order Corynebacterineae and other genera such as Corynebacterium, Dietzia, Gordonia, Segniliparus, Skermania, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella and Williamsia have been reported for waste gases degradation including n-hexane (Narayanan et al., 2020; Hodar et al.,2024). Gordonia has been reported to be capable of degrading terpenes (Zhukov et al., 2024), Rhodococcus has been reported to be capable of degrading toluene (Malhautier et al., 2014; Butler et al. 2005; Stackebrandt, et al.1997). However, to the best of our knowledge, strains belonging to the Tsukamurella genus have been seldomly reported for alkanes waste gases degradation. Romanova et al. (2022) isolated Tsukamurella tyrosinosolvens PS2 strain from hydrocarbons-contaminated petrochemical sludge as a long chain alkane-utilizing bacterium, which belongs to the same Tsukamurella genus as T. paurometabola LXY in our study. Tsukamurella tyrosinosolvens PS2 had two alkane oxidation systems: alkane 1-monooxygenase (alkB) and cytochrome P450 monooxygenase (P450) genes. In general, straight-chain alkane-preferring bacteria typically have alkB genes for medium-chain length alkane degradation, either on their own or in tandem with other functional genes. According to the gene analysis of T. paurometabola LXY, the alkB, ALDH, actA and fadA gene were present, while ADH gene were not found. The alkB gene regulates the n-nonane conversion to n-nonanol and n-nonanoic acid to β-oxidation and the TCA cycle. We speculated that a potential gene might exist with a similar function as ADH (Dased arrow in Fig. 7). However, T. paurometabola the seldomly been reported for alkane degradation and no such information could be found in the literature.
Tsukamurella 属属于 放线菌门, Corynebacterineae 和其他 genera,Corynebacterium、Dietzia、Gordonia、Segniliparus、Skermania、分枝杆菌、诺卡菌、红球菌、Tsukamurella Williamsia 已被报道用于废气降解,包括正己烷 (Narayanan 等人,2020 年;Hodar et al.,2024)。 据报道 ,Gordonia 能够降解萜烯 Zhukov et al.,2024), 据报道红球菌能够降解甲苯(Malhautier et al., 2014;Butler 等人,2005 年;Stackebrandt 等人,1997 年)。 然而,据我们所知,属于 Tsukamurella 属的菌株很少被报道用于烷烃废气降解。 Romanova 等人。 2022) 从碳氢化合物污染的石化污泥中分离出 Tsukamurella tyrosinosolvens PS2 菌株作为长链烷烃利用细菌 ,与 T 属于同一 Tsukamurella 我们研究中的 paurometabola LXYTsukamurella tyrosinosolvens PS2 具有两个烷烃氧化系统:烷烃 1-单加氧酶 (alkB) 和细胞色素 P450 单加氧酶 (P450) 基因。 一般来说,s traight 链烷烃偏好细菌通常具有用于中链烷烃降解的 alkB 基因,要么单独存在,要么与其他功能基因串联。 根据 T. paurometabola LXY 的基因分析 存在 alkB ALDH 、 actAfadA 基因,而未发现 ADH 基因。alkB 基因调节 n-壬烷转化为 n- 壬醇和 n-壬酸转化为 β-氧化 n 和 TCA 循环。我们推测可能存在一个潜在的基因 ,其功能ADH 相似(图 7 中的 Dased 箭头)。 然而 T. paurometabola 很少报道烷烃降解,在文献中找不到此类信息

3.5 Metabolic activity of P. toyotomiensis 414, T. paurometabola LXY and co-culture
3.5 P. toyotomiensis 414, T. 的代谢活性。paurometabolaLXY 和共培养

The microbial metabolic activity was evaluated by the AWCD of Biolog ECO microplates, where rapidly growing AWCD indicates a higher microbial metabolic activity (Wu et al., 2011). The 31 carbon sources in the BIOLOG ECO plate were classified as complex carbon sources, alcohols and sugars, amino acids, and carboxylic acids. P. toyotomiensis 414 showed the highest AWCD value of 1.0701, indicating its high metabolic capacity in alcohols and sugar, following with amino acids, carboxylic acids, complex carbon sources with the corresponding AWCD value of 0.7569, 0.7495 and 0.1921 (Fig. 8a), respectively, reaching a saturation time within 50 h (Fig. 8a). Similarly, T. paurometabola LXY showed the highest metabolic capacity on alcohols and sugar, while its AWCD value only reaches 0.4329, followed with carboxylic acids, complex carbon sources and amino acids with the corresponding AWCD value of 0.3308, 0.1918 and 0.1870 (Fig. 8b), respectively, with longer saturation time. The co-culture (inoculum ratio of 1:1) showed the highest metabolic capacity on complex carbon sources, amino acids and carboxylic acids with an AWCD value of 0.9112, 1.1047 and 0.9088 (Fig. 8c), respectively. The metabolic capacity of the co-culture on alcohols and sugar, with AWCD of 0.7739, is in the range of the P. toyotomiensis 414 and T. paurometabola LXY pure strain P. toyotomiensis 414 has a higher metabolic capacity on all the carbon sources tested than T. paurometabola LXY (Fig. 8d). The highest metabolic capacity by the co-culture indicated the synergistic utilization on complex carbon sources, amino acids and carboxylic acids between P. toyotomiensis 414 and T. paurometabola LXY.
通过 Biolog ECO 微孔板的 AWCD 评估微生物代谢活性,其中快速生长的 AWCD 表明更高的微生物代谢活性 (Wu et al., 2011)。BIOLOG ECO 板中的 31 个碳源 分为复合碳源、醇类和糖类、氨基酸和羧酸。 P. toyotomiensis 414 的 AWCD 值最高,为 1.0701,表明其在醇类和糖类中的代谢能力高,其次是氨基酸、羧酸、复合碳源,相应的 AWCD 值分别为 0.7569、0.7495 和 0.1921(图 8a), 在 50 小时内达到饱和时间 (图 8a)。 同样,T 也是如此。 paurometabolaLXY醇类和糖类的代谢能力最高,而其 AWCD 值仅达到 0.4329,其次是羧酸、络合碳源和氨基酸,相应的 AWCD 值分别为 0.3308、0.1918 和 0.1870 (图 8b),饱和时间更长。共培养(接种比为 1:1)对复合碳源 氨基酸羧酸的代谢能力最高 AWCD 值分别为 0.91121.10470.9088(图 8c)。 co-培养物对醇类和糖类的代谢能力,AWCD 为 0.7739,在 P. toyotomiensis 414 和 T 的范围内。 paurometabolaLXY 纯菌株 P. toyotomiensis 414 在所有测试的碳源上都比 T 具有更高的代谢 c 能力 paurometabolaLXY (图 8d)。 co-培养的最高代谢能力表明 P. toyotomiensis 414 和 T 之间对复合碳源、氨基酸和羧酸的 协同利用 paurometabolaLXY.

3.6 Possible syntrophic and competitive mechanism of P. toyotomiensis 414 and T. paurometabola LXY
3.6 P. toyotomiensis 414 和 T 的可能共养和竞争机制 paurometabolaLXY

The number of OTU showed that P. toyotomiensis 414 occupied the majority, reaching above 90% in the co-culture (Table 3). This may attributed to higher metabolic capacity of P. toyotomiensis 414 on carboxylic acids and alcohols, the intermediate metabolites of n-heptane and n-nonane degradation, with 1.26 and 1.47 fold up, respectively, that of T. paurometabola LXY. In view of electron transfer, gram-negative P. toyotomiensis 414 with flagellum may enhance the electron transfer rate to the gram-positive T. paurometabola LXY (Dumas et al., 2010). Besides, the disproportional phenomenon of the relative abundance of both strains between initial inoculum and the end of the incubation were also found in bio-reactors. The pure strain Rhodococcus erythropolis inoculated to an aerated stirred bioreactor for gaseous alkane removal for 90 days and the relative abundance decreased to 10% at the end of incubation (Pineda et al. 2025). In addition, co-metabolism may exist in the co-culture systems. The dominant strain may be benefiting from the waste products of the other strain, leading to a more sustainable growth cycle for the dominant strain (Guo et al., 2024). Bacillus amyloliquefaciens HM618 could utilize the lipase or amylase produced by Bacillus subtilis WB800N and increased the yield of iturin A with 32.9% in the co-culture (Miao et al., 2022).
OTU 数量显示 丰臣 P. toyotomiensis 414 占据了大多数,在共培养中达到 90% 以上(表 3)。 这可能归因于丰 氏假单胞菌 414carboxylic acid 和醇类(n- 庚烷和正壬烷降解的中间代谢产物)较高代谢能力 分别是 T.paurometabola LXY 的 1.26 倍和 1.47。鉴于电子转移,带有鞭毛的革兰氏阴性 P. toyotomiensis 414 可能会提高电子革兰氏阳性 T.paurometabola LXY 的电子转移速率 (Dumas 等人,2010 年)。此外, 在生物反应器中也发现了初始接种和孵育结束之间两种菌株相对丰度的不成比例现象 球藻菌株接种到 n 充气搅拌生物反应器中以去除气态烷烃 90 天,并且在孵育结束时相对丰度下降到 10%(Pineda 等人,2025 年)。 此外,共代谢可能存在于共培养系统中 优势菌株可能受益于另一种菌株的废物,导致优势菌株的生长周期更可持续 (Guo 等人,2024)。 解淀粉芽孢杆菌 HM618 可以利用枯草芽孢杆菌 WB800N 产生的脂肪酶或淀粉酶,并在共培养 伊图里蛋白 A 的产量 提高 32.9%(Miao et al., 2022)。

Conclusion
结论

In this study, we isolated two novel strains, a gram-positive Tsukamurella paurometabola LXY and a gram-negative Pseudomonas toyotomiensis 414, which can efficiently degrade the n-nonane and n-heptane gas mixture. Specially, strain LXY has a high capacity to completely degrade n-nonane (initially 360 mg/L) in mineral medium within 18 h, an efficiency higher than that of any other n-alkane-degrading microbe reported so far. We established a co-culture system utilizing their similar environmental parameters on growth and n-alkane degradation pH 7 and 30℃. The co-culture significantly enhanced both the n-heptane and n-nonane mixture gases conversion followed with typical alkane conversion pathway. The co-culture has the highest metabolic capacity on carboxylic acids, intermediate products of n-alkane degradation, suggesting a synergistic mechanism, among which strain 414 contributed much more than strain LXY as its microbial relative abundance with OTUs numbers occupied above 90% and metabolism capacity on acids and alcohols. In addition, the enhanced degradation ability of the co-culture indicated that it could be a promising candidate for bioremediation of medium-chain n-alkane mixture gases.
在这项研究中,我们分离了两种新菌株,兰氏阳性 Tsukamurella paurometabolaLXY 革兰氏阴性丰氏假单胞414,它们可以有效地降解 n-壬烷和 n-庚烷气体混合物。特别地,菌株 LXY 在 18 小时内完全降解矿物培养基中的正壬烷 最初为 360 mg/L 具有很高的能力 ,其效率高于迄今为止报道的任何其他正烷烃降解微生物的效率。我们利用它们在生长和正烷烃降解 pH 7 和 30°C 方面的相似环境参数建立了一个共培养系统 。co-培养显著提高 了正庚烷和正壬烷混合气体的转化,随后是典型的烷烃转化途径。 co-培养物对羧酸 正烷烃降解的中间产物)具有最高的代谢能力 表明存在协同机制,其中菌株 414 的贡献远大于菌株 LXY,因为它的微生物相对丰度与 OTU 数占据 90% 以上,对酸和醇的代谢能力。 此外, 共培养物降解能力的增强表明它可能成为中链正烷烃混合物气体生物修复的有前途的候选者。

Acknowledgement
确认

This work was supported by the National Natural Science Foundation of China (No. 52470129, No. 52300141) and National Key Research and Development Program of China (No. 2022YFC3702000). The BIOENGIN group at UDC thanks Xunta de Galicia for financial support to Competitive Reference Research Groups (GRC) (ED431C 2021/55).
这项工作得到了国家自然科学基金 (No. 52470129, No. 52300141) 和国家重点研发计划 (No. 2022YFC3702000) 的支持。UDC 的 BIOENGIN 小组感谢 Xunta de Galicia 对竞争性参考研究小组 (GRC) (ED431C 2021/55) 的财政支持。

References
引用

Abbasnezhad, H., Gray, M., Foght, J. M., 2011. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Applied Microbiology and Biotechnology. 92 (4), 653–675.
Abbasnezhad, H., Gray, M., Foght, J.M.,2011 年。粘附对液态烃的好氧生物降解和生物修复的影响。应用微生物学和生物技术。92 (4),653-675。

Abubakar, A., Abioye, O. P., Aransiola, S. A., Maddela, N. R., and Prasad, R. 2024. Crude oil biodegradation potential of lipase produced by Bacillus subtilis and Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil. Environmental Chemistry and Ecotoxicology, 6, 26-32.
Abubakar, A., Abioye, O. P., Aransiola, SA, Maddela, NR 和 Prasad, R. 2024。 从碳氢化合物污染土壤中分离的枯草芽孢杆菌铜绿假单胞菌产生的脂肪酶的原油生物降解潜力 。环境化学与生态毒理学, 6, 26-32.

Alvarado-Alvarado, A.A., Smets, W., Irga, P., and Denys, S., 2024. Engineering green wall botanical biofiltration to abate indoor volatile organic compounds: A review on mechanisms, phyllosphere bioaugmentation, and modeling. Journal of Hazardous Materials, 465, 133491.
阿尔瓦拉多-阿尔瓦拉多,AA,斯梅茨,W.,伊尔加,P. 和丹尼斯,S.,2024 年。设计绿墙植物生物过滤以减少室内挥发性有机化合物:机制、叶际生物增强和建模综述。危险材料杂志, 465, 133491.

Butler, W. R., Floyd, M. M., Brown, J. M., Toney, S. R., Daneshvar, M. I., Cooksey, R. C., Carr, J., Steigerwalt, A.G., and Charles, N. 2005. Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1615-1624.
巴特勒,WR,弗洛伊德,MM,布朗,JM,托尼,SR,Daneshvar,MI,库克西,RC,卡尔,J.,Steigerwalt,AG 和查尔斯,N. 2005。Segniliparaceae fam. nov. 科的新型含霉菌酸细菌,包括 Segniliparus gen. nov. 属,以及 Segniliparus rotundus sp. nov. 和 Segniliparus rugosus sp. nov. 的描述。 Systematic 和 Evolutionary Microbiology 的国际杂志,55(4),1615-1624。

Calvert, J. G., Derwent R. G., Orlando J. J., Tyndall G. S., Wallington T. J. 2008. Mechanisms of atmospheric oxidation of the alkanes. Publisher: Oxford University Press.
卡尔弗特,JG,德文特 RG,奥兰多 JJ,廷德尔 GS,沃灵顿 TJ 2008。烷烃常压氧化的机制。 出版商:牛津大学出版社

Chaudhary, D. K., Park, J. H., Kim, P. G., Ok, Y. S., and Hong, Y. 2023. Enrichment cultivation of VOC-degrading bacteria using diffusion bioreactor and development of bacterial-immobilized biochar for VOC bioremediation. Environmental Pollution, 320, 121089.
乔杜里,DK,帕克,JH,金,PG,Ok,YS 和 Hong,Y. 2023。使用扩散生物反应器富集培养 VOC 降解细菌和开发用于 VOC 生物修复的细菌固定化生物炭。环境污染, 320, 121089.

Chen, Y., Li, C., Zhou, Z., Wen, J., You, X., Mao, Y., Lu, C., Huo, G. and Jia, X., 2014. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Applied Biochemistry and Biotechnology, 172, 3433-3447.
陈彦彦, 李彦, 周孷, 温倩, 尤彦, 毛彦, 卢孰, 寰彦, 霍冀們, 贾孝, 2014.通过混合菌株和细菌群落分析增强烷烃和原油的生物降解。应用 Biochemistry 和 Biotechnology,172,3433-3447。

Conceição, N. R., Mahmudov, K. T., da Silva, M. F. C. G., and Pombeiro, A. J. 2025. Alkane functionalization: Recent advances. Coordination Chemistry Reviews, 522, 216175.
康塞桑,NR,马赫穆多夫,KT,达席尔瓦,MFG,和庞贝罗,AJ 2025。烷烃官能团化:最新进展。配位化学评论, 522, 216175.

Deng, Y., Yang, G., Lens, P.N., He, Y., Qie, L., Shen, X., Chen, J., Cheng, Z. and Chen, D., 2023. Enhanced removal of mixed VOCs with different hydrophobicities by Tween 20 in a biotrickling filter: Kinetic analysis and biofilm characteristics. Journal of Hazardous Materials, 450, p.131063.
邓,Y.,杨,G.,镜头,P.N.,何,Y.,齐,L.,沈,X.,陈,J.,程,Z.和陈,D.,2023 年。在生物滴滤池中通过 Tween 20 增强对具有不同疏水性的混合 VOC 的去除:动力学分析和生物膜特性。危险材料杂志,450,第 131063 页。

Domdi, L., Lakra, A.K., Mohan, S.K., Tilwani, Y.M., Jha, N., Arul, V., 2021. Microbial degradation of n-hexadecane using Pseudomonas aeruginosa PU1 isolated from transformer-oil contaminated soil. Biocatalysis and Agricultural Biotechnology. 38, 102213.
Domdi, L., Lakra, AK, Mohan, S.K., Tilwani, YM, Jha, N., Arul, V., 2021 年。使用从变压器油污染土壤中分离的铜绿假单胞菌 PU1 对正十六烷进行微生物降解 。生物催化和农业生物技术。38, 102213.

Dumas, E., Gao, C., Suffern, D., Bradforth, S.E., Dimitrijevic, N.M. and Nadeau, J.L., 2010. Interfacial charge transfer between CdTe quantum dots and gram negative vs gram positive bacteria. Environmental Science & Technology, 44(4), 1464-1470.
Dumas, E., Gao, C., Suffern, D., Bradforth, SE, Dimitrijevic, NM 和 Nadeau, J.L.,2010 年。CdTe 量子点与革兰氏阴性细菌与革兰氏阳性细菌之间的界面电荷转移。 环境科学技术学, 44(4),1464-1470。

Ehiosun, K. I., Godin, S., Urios, L., Lobinski, R., and Grimaud, R. 2022. Degradation of long-chain alkanes through biofilm formation by bacteria isolated from oil-polluted soil. International Biodeterioration & Biodegradation, 175, 105508.
Ehiosun, KI, Godin, S., Urios, L., Lobinski, R. 和 Grimaud, R. 2022。从石油污染土壤中分离的细菌通过生物膜形成长链烷烃降解。国际生物恶化与生物降解,175,105508。

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., and Kjelleberg, S. 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575.
Flemming, HC, Wingender, J., Szewzyk, U., Steinberg, P., Rice, SA 和 Kjelleberg, S. 2016。生物膜:细菌生命的一种新兴形式。自然评论微生物学,14(9),563-575。

Guo, L., Xi, B. and Lu, L., 2024. Strategies to enhance production of metabolites in microbial co-culture systems. Bioresource Technology, 131049.
郭丽玲、习 B. 和卢玲玲玲,2024 年。在微生物共培养系统中提高代谢物产生的策略。生物资源技术,131049。

Guo, X., Zhang, J., Han, L., Lee, J., Williams, S.C., Forsberg, A., Xu, Y., Austin, R.N. and Feng, L. 2023. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nature Communications, 14(1), p.2180.
Guo, X., Zhang, J., Han, L., Lee, J., Williams, SC, Forsberg, A., Xu, Y., Austin, RN 和 Feng, L. 2023。烷烃氧化酶 AlkB 的结构和机制。自然通讯,14(1),第 2180 页。

He, Y., Lens, P. N., Veiga, M. C., & Kennes, C. 2022. Selective butanol production from carbon monoxide by an enriched anaerobic culture. Science of the Total Environment, 806, 150579.
他,Y.,朗斯,PN,维加,MC,和肯内斯,C. 2022。通过富集厌氧培养物从一氧化碳中选择性生产丁醇。总体环境科学, 806, 150579.

Hodar, J.H. 2024. Anti-adhesive and anti-biofilm potential of extra-cellular biosurfactants produced by mycolate actinobacteria of the suborder Corynebacterineae against biofilm-forming human pathogens (Doctoral dissertation).
霍达尔,JH 2024。棒状杆菌科 (Corynebacterineae) 亚目霉菌属放线菌产生的细胞外生物表面活性剂对形成生物膜的人类病原体的抗粘附和抗生物膜潜力(博士论文)。

Hong, B., Zhu, W., Wu, T., Zhang, H., Ge, H., Hu, T., Zhao, J., Fang, Hua., and Song, C. 2025. Enhanced biodegradation of monoaromatic hydrocarbons by a novel bacterial strain Pseudomonas viridilivida FB1 and biochar. Journal of Cleaner Production, 498, 145194.
洪斌, 朱, W., 吴, T., 张 H., 葛, H., 胡, T., 赵 J., 方, 华, 和宋, C. 2025.通过新型细菌菌株 Pseudomonas viridilivida FB1 和生物炭增强单芳烃的生物降解。 清洁生产杂志, 498,145194。

Lee, J. H., Kim, T. K., Kim, J., Kong, Q., Cammarata, M., Lorenc, M., Wulff, M., and Ihee, H. 2008. Capturing transient structures in the elimination reaction of haloalkane in solution by transient X-ray diffraction. Journal of the American Chemical Society, 130(18), 5834-5835.
李,JH,金,TK,金,J.,孔,Q.,卡马拉塔,M.,劳伦斯,M.,伍尔夫,M.和伊希,H.,2008 年。通过瞬态 X 射线衍射捕获卤代烷在溶液中的消除反应中的瞬态结构。美国化学会杂志, 130(18), 5834-5835。

Li, J., Li, K., Li, H., Wang, X., Wang, W., Wang, K., and Ge, M. 2022. Long-chain alkanes in the atmosphere: A review. Journal of Environmental Sciences, 114, 37-52.
李,J.,李,K.,李,H.,王,X.,王,W.,王,K.和葛,M.,2022 年。大气中的长链烷烃:综述。 环境科学杂志 , 114, 37-52.

Li, Q., Tang, Z., Zhang, J., Hu, J., Chen, J., and Chen, D. 2022. Simultaneous biodegradation of dimethyl sulfide and 1-propanethiol by Pseudomonas putida S-1 and Alcaligenes sp. SY1: “Lag” cause, reduction, and kinetics exploration. Environmental Science and Pollution Research, 29(32), 48638-48647.
李倩, Q., 唐 , Z., 张 J., 胡, J., 陈, J. 和 陈, D. 2022. 恶臭假单胞 S-1 和产碱菌属 SY1 同时生物降解二甲基硫醚和 1-丙硫醇 :“滞后”原因、还原和动力学探索。环境科学与污染研究,29(32),48638-48647。

Liu, H., Xu, J., Liang, R., and Liu, J. 2014. Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. Public Library of Science ONE, 9(8), e105506.
刘 H.、徐 J.、梁 R. 和刘 J. 2014 年。降解绿假单胞菌菌株 SJTD-1 及其烷烃羟化酶基因的中链和长链 n-烷烃的表征。公共科学图书馆一号,9(8),e105506。

Liu, Y., Wan, Y. Y., Wang, C., Ma, Z., Liu, X., and Li, S. 2020. Biodegradation of n-alkanes in crude oil by three identified bacterial strains. Fuel, 275, 117897.
刘尹, 万尹, 王倭, C., 马, Z., 刘晓妍, 和李, S. 2020.三种已鉴定的细菌菌株对原油中正烷烃的生物降解。燃料,275,117897。

Lu, L., Ju, T., Fang, Y., Hu, J., Sun, Z., Cheng, Z., Li, Q., Chen, J., and Chen, D. Z. 2025. Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models. Journal of Environmental Sciences, 154, 729-740.
卢立军、鞠摔、方英、胡建军、孙振军、程振军、李建军、陈建军、陈建军、陈大军 2025。基于机理和动力学模型,高效预测硅油两相分配生物反应器中气态正己烷的去除。环境科学杂志,154,729-740。

Malhautier, L., Quijano, G., Avezac, M., Rocher, J., and Fanlo, J. L. 2014. Kinetic characterization of toluene biodegradation by Rhodococcus erythropolis: Towards a rationale for microflora enhancement in bioreactors devoted to air treatment. Chemical Engineering Journal, 247, 199-204. Matsuyama, S., and Reed, J. C. (2000). Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death & Differentiation, 7(12), 1155-1165.
Malhautier, L.、Quijano, G.、Avezac, M.、Rocher, J. 和 Fanlo, JL 2014。 红球菌对红球菌生物降解的动力学表征 :在专门用于空气处理的生物反应器中增强微生物群落的基本原理。化学工程杂志, 247, 199-204. Matsuyama, S. 和 Reed, JC (2000)。线粒体依赖性细胞凋亡和细胞 pH 调节。细胞死亡与分化,7(12),1155-1165。

Mbadinga, S. M., Wang, L. Y., Zhou, L., Liu, J. F., Gu, J. D., and Mu, B. Z. 2011. Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration & Biodegradation, 65(1), 1-13.
Mbadinga, S. M., Wang, L. Y., 周, L., Liu, J. F., Gu, J. D., 和 Mu, B. Z. 2011.参与烷烃厌氧降解的微生物群落。国际生物恶化与生物降解,65(1),1-13。

Miao, C. H., Wang, X. F., Qiao, B., Xu, Q. M., Cao, C. Y., and Cheng, J. S. 2022. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. Environmental Science and Pollution Research, 29(48), 72628-72638.
苗,CH,王,XF,乔,B.,徐,QUM,曹,CY 和程,JS 2022。解淀粉芽孢杆菌 HM618 和枯草芽孢杆菌的人工联盟,用于利用食物垃圾合成鱼尿素 A. 环境科学与污染研究,29(48),72628-72638。

Miranda, R. D. C., Souza, C. S. D., Gomes, E. D. B., Lovaglio, R. B., Lopes, C. E., and Sousa, M. D. F. V. D. Q. 2007. Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the state of Pernambuco-Brazil. Brazilian Archives of biology and technology, 50(1), 147-152.
米兰达,RDC,索萨,CSD,戈麦斯,EDB,洛瓦格里奥,RB,洛佩斯,CE 和索萨,MDF VQ 2007。从巴西伯南布哥州 Suape 港附近分离的酵母对柴油进行生物降解。巴西生物与技术档案馆,50(1),147-152。

Mullaeva, S.A., Delegan, Y.A., Streletskii, R.A., Sazonova, O.I., Petrikov, K.V., Ivanova, A.A., Dyatlov, I.A., Shemyakin, I.G., Bogun, A.G., and Vetrova, A.A., 2022. Pseudomonas veronii strain 7–41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Scientific Reports. 12 (1), 20527.
Mullaeva, SA, Delegan, YA, Streletskii, RA, Sazonova, OI, Petrikov, KV, Ivanova, AA, Dyatlov, IA, Shemyakin, IG, Bogun, AG, Vetrova, AA, 2022。 维罗尼假单胞菌菌株 7-41 降解中链正烷烃和多环芳烃。科学报告。12 (1),20527。

Narayanan, A. and Manikandan, S. 2020. Investigation of new actinobacteria for the biodesulphurisation of diesel fuel (Doctoral dissertation).
Narayanan, A. 和 Manikandan, S. 2020 年。用于柴油燃料生物脱硫的新型放线菌的研究(博士论文)。

Northcutt, T. O., Wick, D. D., Vetter, A. J., and Jones, W. D. 2001. Investigation of the mechanism of alkane reductive elimination and skeletal isomerization in Tp’Rh (CNneopentyl)(R)H complexes: the role of alkane complexes. Journal of the American Chemical Society, 123(30), 7257-7270.
Northcutt, TO, Wick, DD, Vetter, AJ 和 Jones, WD 2001。Tp'Rh (CNneopentyl)(R)H 配合物中烷烃还原消除和骨架异构化机制的研究:烷烃配合物的作用。美国化学会杂志, 123(30), 7257-7270。

Omarova, M., Swientoniewski, L. T., Mkam Tsengam, I. K., Blake, D. A., John, V., McCormick, A., Bothun, D. G., Raghavan, S. R., and Bose, A. 2019. Biofilm formation by hydrocarbon-degrading marine bacteria and its effects on oil dispersion. ACS Sustainable Chemistry & Engineering, 7(17), 14490-14499.
Omarova, M., Swientoniewski, LT, Mkam Tsengam, IK, Blake, DA, John, V., McCormick, A., Bothun, DG, Raghavan, SR 和 Bose, A. 2019。碳氢化合物降解海洋细菌形成的生物膜及其对油分散的影响。ACS 可持续化学与工程, 7(17), 14490-14499.

Pineda, P.A.L., Demeestere, K., Alvarado-Alvarado, A.A., Devlieghere, F., Boon, N., Van Langenhove, H. and Walgraeve, C., 2025. Degradation of gaseous hydrocarbons in aerated stirred bioreactors inoculated with Rhodococcus erythropolis: Effect of the carbon source and SIFT-MS method development. Journal of Environmental Sciences, 147, 268-281.
皮内达,P.A.L.,Demeestere,K.,阿尔瓦拉多-阿尔瓦拉多,AA,Devlieghere,F.,Boon,N.,Van Langenhove,H.和 Walgraeve,C.,2025 年。接种红球菌的曝气搅拌生物反应器中气态烃的降解 :碳源的影响和 SIFT-MS 方法开发。 环境科学杂志, 147, 268-281.

Pineda, P. A. L., Demeestere, K., González-Cortés, J. J., Alvarado-Alvarado, A. A., Boon, N., Devlieghere, F., Devlieghere, F., Langenhove, H. V., and Walgraeve, C. 2023. Effect of inoculum type, packing material and operational conditions on the biofiltration of a mixture of hydrophobic volatile organic compounds in air. Science of The Total Environment, 904, 167326.
皮内达,PAL,德梅斯特,K.,冈萨雷斯-科尔特斯,JJ,阿尔瓦拉多-阿尔瓦拉多,AA,布恩,N.,Devlieghere,F.,Devlieghere,F.,Langenhove,HV 和 Walgraeve,C. 2023。接种物类型、包装材料和作条件对空气中疏水性挥发性有机化合物混合物生物过滤的影响。《总体环境科学》,904,167326。

Pulster, E. L., Gracia, A., Armenteros, M., Toro-Farmer, G., Snyder, S. M., Carr, B. E., Schwaab, M. R., Nicholson, T. J., Mrowicki, J., and Murawski, S. A. 2020. A first comprehensive baseline of hydrocarbon pollution in Gulf of Mexico fishes. Scientific Reports, 10(1), 6437.
Pulster, EL, Gracia, A., Armenteros, M., Toro-Farmer, G., Snyder, SM, Carr, BE,Schwaab, MR, Nicholson, TJ, Mrowicki, J., 和 Murawski, SA 2020。墨西哥湾鱼类碳氢化合物污染的第一个综合基线。科学报告,10(1),6437。

Rahman, K.S.M., Rahman, T.J., Lakshmanaperumalsamy, P., Marchant, R., Banat, I.M., 2003. The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnol. 23, 335–345.
Rahman, KSM, Rahman, TJ, Lakshmanaperumalsamy, P., Marchant, R., Banat, IM, 2003 年。细菌分离物与一系列碳氢化合物乳化的潜力。生物技术学报。23, 335–345.

Rao, Q., Lu, J., Liu, S., Chen, M. and Ma, Y., 2025. Biodegradation of C18 n-alkane by biosurfactant-producing Pseudomonas aeruginosa TJM4 and its genomic analysis. Journal of Environmental Chemical Engineering, 115590.
饶 Q., 卢建军, 刘淑娴, 陈明和马, Y., 2025.生产生物表面活性剂铜绿假单胞菌 TJM4 对 C18 正构烷烃的生物降解及其基因组分析。环境化学工程学报, 115590.

Rojo, F. 2009. Degradation of alkanes by bacteria. Environmental microbiology, 11(10), 2477-2490.
罗霍,F. 2009 年。细菌降解烷烃。环境微生物学,11(10),2477-2490。

Ruhal, R., and Kataria, R. 2021. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological Research, 251, 126829.
Ruhal, R. 和 Kataria, R. 2021 年。革兰氏阳性菌和革兰氏阴性菌的生物膜模式。微生物学研究, 251, 126829.

Romanova, V., Markelova, M., Boulygina, E., Siniagina, M., Müller, R., Grigoryeva, T., and Laikov, A. 2022. Significance of both alkB and P450 alkane-degrading systems in Tsukamurella tyrosinosolvens: proteomic evidence. Applied Microbiology and Biotechnology, 106(8), 3153-3171.
Romanova, V., Markelova, M., Boulygina, E., Siniagina, M., Müller, R., Grigoryeva, T., 和 Laikov, A. 2022。alkB 和 P450 烷烃降解系统在 Tsukamurella tyrosinosolvens 中的意义 :蛋白质组学证据。应用生物学生物技术 ,106(8),3153-3171。

Sbani, N. H. A., Abdullah, S. R. S., Idris, M., Hasan, H. A., Halmi, M. I. E., Jehawi, O. H., and Ismail, N. I. 2021. PAH-degrading rhizobacteria of Lepironia articulata for phytoremediation enhancement. Journal of Water Process Engineering, 39, 101688.
新罕布什尔州斯巴尼、阿卜杜拉、SRS、伊德里斯,M.、哈桑,HA、哈尔米、MIE、杰哈维、OH 和伊斯梅尔,NI 2021。Lepironia articulata 的 PAH 降解根细菌用于增强植物修复。水处理工程杂志, 39, 101688.

Stackebrandt, E., Rainey, F. A., and Ward-Rainey, N. L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic and Evolutionary Microbiology, 47(2), 479-491.
Stackebrandt, E., Rainey, FA 和 Ward-Rainey, NL 1997。关于新的分层分类系统的提案, 放线菌门 classis nov.国际系统与进化微生物学杂志,47(2),479-491。

Sivadon, P., Barnier, C., Urios, L., and Grimaud, R. 2019. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environmental Microbiology Reports, 11(6), 749-764.
Sivadon, P., Barnier, C., Urios, L. 和 Grimaud, R. 2019。生物膜形成作为同化颗粒底物的微生物策略。环境微生物学报告,11(6),749-764。

Thomas, F., Lorgeoux, C., Faure, P., Billet, D., and Cébron, A. 2016. Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. International Biodeterioration & Biodegradation, 107, 1-9.
Thomas, F., Lorgeoux, C., Faure, P., Billet, D. 和 Cébron, A. 2016 年。从具有长期污染历史的土壤中分离和筛选多环芳烃降解细菌。国际生物恶化与生物降解,107,1-9。

Van Beilen, J.B. and Funhoff, E.G. 2005. Expanding the alkane oxygenase toolbox: new enzymes and applications. Current Opinion in Biotechnology, 16(3), 308-314.
Van Beilen, J.B. 和 Funhoff, E.G. 2005 年。扩展烷烃加氧酶工具箱:新酶和应用。B iotechnology 中的电流 O 小齿轮 ,16(3),308-314。

Varjani, S. J., and Upasani, V. N. 2016. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresource Technology, 222, 195-201.
Varjani, SJ 和 Upasani, VN 2016。 铜绿假单胞 NCIM 5514 的嗜油菌株对石油烃的生物降解。生物资源技术学, 222, 195-201。

Wang, T., Jing, J., Huang, P., Guo, X., Li, C. and Qu, Y., 2025. Bioremediation of alkane–containing saline soils using the long–chain alkane–degrading bacterium Pseudomonas aeruginosa DL: Effects, communities, and networks. Journal of Hazardous Materials, 488, 137401.
Wang, T., Jing, J., Huang, P., Guo, X., Li, C. 和 Qu, Y., 2025.使用长链烷烃降解细菌绿假单胞菌 DL 对含烷烃的盐碱土壤进行生物修复 :影响、群落和网络。危险材料杂志, 488, 137401.

Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703.
Weisburg, WG, Barns, SM, Pelletier, DA 和 Lane, DJ 1991。用于系统发育研究的 16S 核糖体 DNA 扩增。B 行为学杂志,173(2),697-703。

Williams, S.C. and Austin, R.N. 2022. An overview of the electron-transfer proteins that activate alkane monooxygenase (AlkB). Frontiers in Microbiology, 13, 845551.
南卡罗来纳州威廉姆斯和罗宾州奥斯汀,2022 年。激活烷烃单加氧酶 (AlkB) 的电子转移蛋白概述。微生物学前沿, 13, 845551.

Wu, M., Zhang, M., Ding, W., Lan, L., Liu, Z., Miao, L., and Hou, J. 2021. Microbial carbon metabolic functions in sediments influenced by resuspension event. Water, 13(1), 7.
Wu, M., Zhang, M., Ding, W., Lan, L., Liu, Z., Miao, L., and Hou, J. 2021.受再悬浮事件影响的沉积物中微生物碳代谢功能。水, 13(1), 7.

Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X., Yang, C. 2022. Enhanced removal of hydrophobic short-chain n-alkanes from gas streams in biotrickling filters in presence of surfactant. Environmental Science & Technology, 56(14), 10349-10360.
吴晓明, 林林英, 王英, 吴俊杰, 吴俊杰, 李晓明, 杨, C. 2022 年。在表面活性剂存在下,可增强从生物滴滤器中的气流中去除疏水性短链正构烷烃。环境科学与技术, 56(14)10349-10360.

Xiang, W., Liang, Y., Hong, S., Wang, G., You, J., Xue, Y., and Ma, Y. 2022. Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain. Archives of Microbiology, 204(5), 259.
项伟、梁彦彬、洪婉娟、王娟娟、尤倩、薛倩倩和马倩倫 2022.新型耐热红球菌菌株降解长链 n-烷烃 。微生物学档案,204(5),259。

Xie, Y., Chen, G., May, A. L., Yan, J., Brown, L. P., Powers, J. B., Campagna, S.R., and Löffler, F. E. 2020. Pseudomonas sp. strain 273 degrades fluorinated alkanes. Environmental Science & Technology, 54(23), 14994-15003.
谢,Y.,陈,G.,May,AL,Yan,J.,Brown,LP,Powers,JB,Campagna,SR 和 Löffler,FE,2020 年。 假单胞菌属菌株 273 降解氟化烷烃。 环境科学与技术, 54(23),14994-15003。

Yu, J. S. L., Correia-Melo, C., Zorrilla, F., Herrera-Dominguez, L., Wu, M. Y., Hartl, J., Campbell, K., Blasche, S., Kreidl, M., Egger A. S., Messner, C. B., Demichev, V., Freiwald, A., Mülleder, M., Howell, M., Berman, J., Patil, K. R., Alam M. T., and Ralser, M. 2022. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nature Microbiology, 7(4): 542–555.
Yu, JSL, Correia-Melo, C., Zorrilla, F., Herrera-Dominguez, L., Wu, MY, Hartl, J., Campbell, K., Blasche, S., Kreidl, M., Egger AS, Messner, CB, Demichev, V., Freiwald, A., Mülleder, M., Howell, M., Berman, J., Patil, KR, Alam MT, 和 Ralser, M. 2022。微生物群落形成丰富的细胞外代谢组,促进代谢相互作用并促进药物耐受性。自然微生物学,7(4):542-555。

Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G. and Xi, J., 2018. Simultaneous removal of multicomponent VOCs in biofilters. Trends in Biotechnology, 36(7), 673-685.
杨寅, 钱倩, 李晓, 程對, 何浩, 曾倩, G. 和习, J., 2018.同时去除生物过滤器中的多组分 VOC。 Biotechnology 趋势, 36(7),673-685。

Zhang, Y., Liu, J., Chen, Y., and Li, J. 2021. Screening and study of the degradation characteristics of efficient toluene degrading bacteria combinations. Environmental Technology, 42(21), 3403-3410.
张 Y.、刘 J.、陈 Y 和 Li, J. 2021 年。筛选和研究高效甲苯降解细菌组合的降解特性。环境技术,42(21),3403-3410。

Zhukov, V., Moldon, I., Zagustina, N., and Mironov, V. 2024. Removal of terpenes in the presence of easily degradable compounds during biofiltration of gas emissions from composting of municipal solid waste. Journal of Environmental Management, 372, 123162.
朱可夫,V.,莫尔顿,I.,扎古斯蒂娜,N.和米罗诺夫,V.,2024 年。在对城市固体废物堆肥排放的气体进行生物过滤时,在存在易降解化合物的情况下去除萜烯。环境管理杂志, 372, 123162.