这是用户在 2025-2-2 9:52 为 https://app.immersivetranslate.com/pdf-pro/c2d70f60-ee88-4fcc-a3f5-37965abde548 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

3D printing of soft magnetic materials: From printing to applications
软磁材料的 3D 打印:从打印到应用

Feng-Hui Wang, Cai-Yin You *, Na Tian, He-Guang Liu, Jing Zhang, Xiao-Pei Zhu
王凤辉, 尤才燕 *, 田娜, 刘和光, 张静, 朱小培
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
习安理工大学 材料科学与工程学院, 中国 习安710048

A R T I C L E I N F O

Keywords:  关键字:

3D printing  3D 打印
Soft magnetic materials  软磁材料
Magnetic properties  磁性
Applications  应用
Advances  进展

Abstract  抽象

Soft magnetic functional materials exhibit low coercivity, low power loss, and high permeability, making them highly utilized in power electronic devices. In some cases, soft magnetic components with intricate architectures are required to accomplish various tasks. The multi-material and multi-scale fabrication ability of threedimensional printing (3DP) provides a new way for manufacturing soft magnetic devices with complex structures. The aim of the present work is to consolidate the latest advancements in the 3DP of soft magnetic materials (SMMs). The goal is to inspire future research directions by highlighting existing gaps in knowledge and potential areas for innovation. This paper summarizes recent research on 3DP of SMMs. Studies on 3DP of SMMs, such as Fe Si Fe Si Fe-Si\mathrm{Fe}-\mathrm{Si} and Fe Ni Fe Ni Fe-Ni\mathrm{Fe}-\mathrm{Ni} alloys and soft magnetic ferrites and composites, are reviewed. Moreover, several mainstream 3DP procedures have been introduced. Furthermore, application scenarios of 3DP SMMs, including electronic components and magnetic-drive robots, are covered. Finally, the current challenges and future development trends of 3DP SMMs are discussed.
软磁功能材料具有低矫顽力、低功率损耗和高磁导率等特点,因此在电力电子器件中得到广泛应用。在某些情况下,需要具有复杂架构的软磁元件来完成各种任务。三维打印 (3DP) 的多材料和多尺度制造能力为制造具有复杂结构的软磁器件提供了一种新方法。本研究的目的是整合软磁材料 (SMM) 的 3DP 的最新进展。目标是通过强调知识方面的现有差距和潜在的创新领域来激发未来的研究方向。本文总结了近年来 SMM 的 3DP 研究,综述了 SMM 的 3DP 研究,例如 Fe Si Fe Si Fe-Si\mathrm{Fe}-\mathrm{Si} Fe Ni Fe Ni Fe-Ni\mathrm{Fe}-\mathrm{Ni} 合金和软磁铁氧体和复合材料。此外,还引入了几种主流的 3DP 程序。此外,还介绍了 3DP SMM 的应用场景,包括电子元件和磁驱动机器人。最后,讨论了 3DP SMM 的当前挑战和未来发展趋势。

1. Introduction  1. 引言

Magnetic functional materials are used in various industries, including power electronics, communications, medicine, and aerospace, owing to their fast, long-distance, and accurate response in different environments [1]. Different magnetic materials and architectures can be used to create magnetic devices with various applications, including bionic soft robotics, sensors, shock absorbers, and magnetorheological dampers [2-4]. Magnetic materials are divided into hard [5], functional [6], and soft magnetic materials (SMMs) [7]. Because SMMs such as silicon steel [8], ferrites [9], permalloys [10], etc. exhibit low coercivity, low power loss, and high magnetic permeability [11-13], they are widely used in power equipment and electronic equipment. SMMs are utilized in the power sector at every step, from the production (generators) and transmission (transformers) of electric energy to its utilization through motors and reactors [14]. In the electronics industry, soft magnetic devices are utilized in the information exchange, transmission, and storage stages, including communication (inductors), automatic control, radio, television, power supply, electronic computing technology, and microwave technology that uses various ferromagnetic microwave devices [15].
磁性功能材料因其在不同环境中的快速、长距离和准确的响应而被用于各种行业,包括电力电子、通信、医学和航空航天 [1]。不同的磁性材料和结构可用于制造具有各种应用的磁性器件,包括仿生软机器人、传感器、减震器和磁流变阻尼器 [2-4]。磁性材料分为硬质 [5]、功能 [6] 和软磁材料 (SMM) [7]。由于硅钢[8]、铁氧体[9]、坡莫合金[10]等SMM具有矫顽力低、功率损耗低、磁导率高[11-13]等特点,因此被广泛应用于电力设备和电子设备中。SMM 在电力部门的每一步都有应用,从电能的生产(发电机)和传输(变压器)到通过电机和电抗器进行利用 [14]。在电子工业中,软磁器件用于信息交换、传输和存储阶段,包括通信(电感器)、自动控制、无线电、电视、电源、电子计算技术以及使用各种铁磁微波器件的微波技术[15]。
The extensive use of SMMs in various fields has motivated the global materials community to focus on developing high-performance SMMs. The intricacy of soft magnetic devices required for various tasks makes
SMM 在各个领域的广泛使用促使全球材料界专注于开发高性能 SMM。各种任务所需的软磁设备的复杂性使

their production challenging. Traditional manufacturing can no longer meet demands arising due to rapid industrial development. Traditional manufacturing can no longer meet the rapid development of industry and the rapid preparation of products with complex shapes and structures.
他们的生产具有挑战性。传统制造业已无法满足因工业快速发展而产生的需求。传统制造业已不能满足工业的快速发展和形状和结构复杂的产品的快速制备。
3D printing (3DP) [16,17], also referred to as additive manufacturing (AM), is a sophisticated manufacturing technology that directly forms parts from three-dimensional models [18,19]. AM is defined by the American Society of Testing and Materials (ASTM) as a process of joining materials to make objects from 3D model data, usually by layered stacking of the material, as opposed to subtractive manufacturing methodologies [20]. 3DP has the advantages of a high degree of freedom in design and manufacturing, short object forming cycles, gradient manufacturing of components and structures, personalization, and mass customization [21-23]. It combines advanced materials and digital manufacturing technologies and is an important part of the advanced manufacturing industry [24-26]. However, more in-depth research has been conducted on the 3DP structural materials than the 3DP soft magnetic functional materials. In recent years, several review articles on 3DP structural materials have been published [20, 27-31]. Although some review articles on the 3DP of magnetic materials are available [32-36], there is no comprehensive and systematic review of research on the 3DP of soft magnetic functional materials.
3D打印(3DP)[16,17],也称为增材制造(AM),是一种直接从三维模型形成部件的复杂制造技术[18,19]。美国材料与试验协会 (ASTM) 将增材制造定义为将材料连接起来以从 3D 模型数据制造物体的过程,通常是通过材料的分层堆叠,而不是减材制造方法 [20]。3DP具有设计和制造自由度高、物体形成周期短、组件和结构梯度制造、个性化和大规模定制等优点[21-23]。它结合了先进材料和数字化制造技术,是先进制造业的重要组成部分 [24-26]。然而,对 3DP 结构材料的研究比 3DP 软磁功能材料更深入。近年来,已经发表了几篇关于 3DP 结构材料的综述文章 [20, 27-31]。虽然有一些关于磁性材料3DP的综述文章[32-36],但目前还没有关于软磁功能材料3DP研究的全面和系统综述。
This review discusses advances in the 3DP of SMMs. In Section 2, the
本文讨论了 SMMs 3DP 的进展。在第 2 节中,
Fig. 1. Schematic diagram of material extrusion process [54] performed using (a) FDM and (b) DIW methods.
图 1.使用 (a) FDM 和 (b) DIW 方法进行的材料挤出过程 [54] 示意图。

research progress in this field is reviewed. It covers 3DP techniques such as material extrusion (ME), powder bed fusion (PBF), binder jetting (BJ), and inkjet printing (IJP), which are commonly used for manufacturing SMMs. Furthermore, studies on 3DP of FeSi alloys, FeNi alloys, soft magnetic ferrites, and soft magnetic composites are discussed regarding raw material preparation, process optimization, post-treatment, and soft magnetic properties. Section 3 details the application of 3DP of SMMs. Finally, Section 4 discusses the challenges and future development of 3DP of SMMs.
本文综述了该领域的研究进展。它涵盖了 3DP 技术,例如材料挤出 (ME)、粉末床熔融 (PBF)、粘结剂喷射 (BJ) 和喷墨打印 (IJP),这些技术通常用于制造 SMM。此外,还讨论了 FeSi 合金、FeNi 合金、软磁铁氧体和软磁复合材料的 3DP 研究,涉及原材料制备、工艺优化、后处理和软磁性能。第 3 节详细介绍了 SMM 的 3DP 的应用。最后,第 4 节讨论了 SMM 的 3DP 的挑战和未来发展。

2. Research on 3DP of SMMs
2. SMMs 的 3DP 研究

The earliest research on 3DP of SMMs was conducted on pure iron by adopting the PBF technology. Further developments in 3DP technologies enabled the preparation of other SMMs. First, this section summarizes the 3DP technologies commonly used for manufacturing SMMs. Next, the studies on 3DP of FeSi and FeNi alloys, soft magnetic ferrites, and soft magnetic composites are reviewed.
最早对 SMM 的 3DP 的研究是通过采用 PBF 技术在纯铁上进行的。3DP 技术的进一步发展使其他 SMM 的制备成为可能。首先,本节总结了通常用于制造 SMM 的 3DP 技术。接下来,综述了 FeSi 和 FeNi 合金、软磁铁氧体和软磁复合材料的 3DP 研究。

2.1. 3DP technologies for manufacturing SMMs
2.1. 用于制造 SMM 的 3DP 技术

Different types of 3DP can be categorized based on the kind of material. The International Organization for Standardization (ISO) divides it into seven general types: photopolymerization (VP) [37], ME [38], PBF [24], material jetting (MJ), BJ [39], direct energy deposition (DED) [40,41], and sheet lamination (SL) [42]. The 3DP technologies for manufacturing SMMs mainly include ME, PBF, BJ, and IJP [43].
可以根据材料的种类对不同类型的 3DP 进行分类。国际标准化组织(ISO)将其分为七大类:光聚合(VP)[37]、ME[38]、PBF[24]、材料喷射(MJ)、BJ[39]、直接能量沉积(DED)[40,41]和片状层压(SL)[42]。用于制造SMM的3DP技术主要包括ME、PBF、BJ和IJP [43]。

2.1.1. Material extrusion
2.1.1. 材料挤出

Material extrusion is a commonly used technology for fabricating compatible materials. In this process, materials are extruded through nozzles. In particular, a material filament is melted using a heated
材料挤出是制造兼容材料的常用技术。在这个过程中,材料通过喷嘴挤出。特别是,材料细丝使用加热的

nozzle, and the molten material is deposited on the platform by a printer along the path determined by the slicing software. Then, the molten material cools down and solidifies to form a sample [44-47]. Fused deposition modeling (FDM), one of the earliest commercial 3DP technologies, is the most mature and popular ME technology. It is shown in Fig. 1a. Similar to all 3DP technologies, FDM starts by preparing a digital model, which is then converted into instructions to be followed by a 3D printer. The filament on the FDM spool is loaded into the 3D printer, which feeds it to the printer nozzle in the extrusion port. The nozzle is heated to the desired temperature, causing the filament to melt, and the continuously stacked layers combine as they solidify to form a component [48]. The magnetic properties of soft magnetic parts formed by FDM are affected by the orientation and concentration of magnetic particles [49]. The proportion of magnetic particles must be higher than 65 % 65 % 65%65 \% to ensure satisfactory magnetic properties [50].
喷嘴,熔融材料由打印机沿着切片软件确定的路径沉积在平台上。然后,熔融材料冷却并凝固形成样品 [44-47]。熔融沉积成型 (FDM) 是最早商业化的 3DP 技术之一,也是最成熟和最受欢迎的 ME 技术。如图 1a 所示。与所有 3DP 技术类似,FDM 首先准备一个数字模型,然后将其转换为指令,然后进行 3D 打印机打印。FDM 线轴上的细丝被加载到 3D 打印机中,3D 打印机将其送入挤出端口中的打印机喷嘴。喷嘴被加热到所需的温度,使细丝熔化,连续堆叠的层在凝固时结合形成一个组件 [48]。FDM 形成的软磁部件的磁性受磁性颗粒的取向和浓度的影响 [49]。磁性颗粒的比例必须高于 65 % 65 % 65%65 \% 以确保令人满意的磁性 [50]。
Another ME approach is direct ink writing (DIW, Fig. 1b) [51]. DIW is commonly employed in producing 3DP magnetic devices because of its superior polymer selection tolerability [52]. Due to their strong multi-material printing capabilities, DIW SMMs can be used in bone regeneration and magnetic robots. It should be noted that low-viscosity liquid polymers and nano-magnetic particles must be chosen as the raw materials to prevent the print port from being blocked [53].
另一种 ME 方法是直接墨水书写(DIW,图 1b)[51]。DIW 因其优异的聚合物选择耐受性而被普遍用于生产 3DP 磁性器件 [52]。由于其强大的多材料打印能力,DIW SMM 可用于骨再生和磁性机器人。需要注意的是,必须选择低粘度的液体聚合物和纳米磁性颗粒作为原材料,以防止打印端口堵塞[53]。

2.1.2. Powder bed fusion  2.1.2. 粉末床熔融

PBF is a 3DP technology that uses energy sources such as laser or electron beam to fuse granular materials such as metal, ceramic, or polymer to form 3D objects. Selective laser melting [55,56] (SLM) and selective electron beam melting [57] (SEBM) are common PBF technologies.
PBF 是一种 3DP 技术,它使用激光或电子束等能源将金属、陶瓷或聚合物等颗粒材料熔合以形成 3D 对象。选择性激光熔化 [55\u201256] (SLM) 和选择性电子束熔化 [57] (SEBM) 是常见的 PBF 技术。
SLM is a sophisticated manufacturing technique used to produce alloy parts with intricate structures and forms. It employs a laser as its energy source that melts powder layer by layer, selectively, along a
SLM 是一种复杂的制造技术,用于生产具有复杂结构和形式的合金零件。它采用激光作为能量源,选择性地沿着

Fig. 2. Schematic diagram of the SLM principle [58].
图 2.SLM 原理示意图 [58]。

Fig. 3. SEBM technology (a) printing room of the equipment [71], schematic diagram [64] of (b) printing process, and © physical phenomena.
图 3.SEBM 技术 (a) 打印室的设备 [71],(b) 打印过程的示意图 [64],以及©物理现象。

Fig. 4. Schematic diagram of (a)BJ [54] and (b)IJP [76].
图 4.(a)BJ [54] 和 (b)IJP [76] 的示意图。

predetermined path and achieves nearly net-shaped components. The high solidification rate of SLM ( 10 5 10 6 K / s ) 10 5 10 6 K / s (10^(5)-10^(6)(K)//s)\left(10^{5}-10^{6} \mathrm{~K} / \mathrm{s}\right) results from its rapid melting and solidification process, which also helps produce materials with refined grain size due to supercooling, thus enhancing the mechanical properties of components. Fig. 2 shows a schematic diagram of the SLM principle.
预定路径并实现近乎净形的组件。SLM ( 10 5 10 6 K / s ) 10 5 10 6 K / s (10^(5)-10^(6)(K)//s)\left(10^{5}-10^{6} \mathrm{~K} / \mathrm{s}\right) 的高凝固率源于其快速熔化和凝固过程,这也有助于生产由于过冷而具有细粒度的材料,从而提高部件的机械性能。图 2 显示了 SLM 原理的示意图。
On the other hand, in SEBM, a metallurgical process that rapidly melts and solidifies micro-molten pools, high-energy electron beams are utilized to target metal powders with a particle size distribution of 45 106 μ m 45 106 μ m 45-106 mum45-106 \mu \mathrm{~m} [59-62]. The high vacuum and spontaneous heat treatment cycle [63] in the SEBM process set it apart from SLM and cause the specimen’s residual stress to be lower than that of the SLM specimen.
另一方面,在SEBM(一种快速熔化和凝固微熔池的冶金工艺)中,高能电子束被用来靶向粒度分布为 45 106 μ m 45 106 μ m 45-106 mum45-106 \mu \mathrm{~m} [59-62]的金属粉末。SEBM 工艺中的高真空和自发热处理循环 [63] 使其与 SLM 不同,并导致试样的残余应力低于 SLM 试样的残余应力。
Fig. 3 shows the printing room of SEBM equipment, the SEBM printing process, and its underlying physical phenomena. The printing process is divided into four steps: powder laying, preheating, melting and solidification, and platform falling. The above four steps are repeated until the last layer of printing, thus completing the whole process [64]. In the PBF process, melting and solidification of powder, Marangoni convection in the molten pool, and phase change occur on macroscopic, mesoscopic, and microscopic scales, respectively. Furthermore, because thermal convection, thermal radiation, and heat conduction also occur, PBF is a complex thermodynamic and kinetic process.
图 3 显示了 SEBM 设备的打印室、SEBM 打印过程及其潜在的物理现象。打印过程分为铺粉、预热、熔融凝固、平台下降四个步骤。重复上述四个步骤,直到最后一层打印,从而完成整个过程 [64]。在 PBF 过程中,粉末的熔化和凝固、熔池中的马兰戈尼对流和相变分别发生在宏观、中观和微观尺度上。此外,由于热对流、热辐射和热传导也会发生,因此 PBF 是一个复杂的热力学和动力学过程。
Numerous studies have been published on SLM-printed soft magnetic
关于 SLM 打印软磁体的研究已经发表

alloys [65-70]. These studies examined the impact of post-processing on microstructures and soft magnetic properties in addition to the effects of laser process parameters, including laser power and scanning speed, on magnetic properties. To our knowledge, no reports on SEBM printing of SMMs exist.
合金 [65-70]。这些研究除了检查激光工艺参数(包括激光功率和扫描速度)对磁性能的影响外,还检查了后处理对微观结构和软磁性能的影响。据我们所知,没有关于 SMM 的 SEBM 打印的报告。

2.1.3. Binder jetting  2.1.3. 粘结剂喷射

BJ (Fig. 4a) is a 3DP technology that forms parts by spraying binders. BJ is mainly used to print polymer materials, metals, and ceramic materials. Some scholars have tried this method to print SMMs [72,73]. Diversification of soft magnetic equipment would enable BJ methods to prepare magnetic components with complex structures by using powder as a support structure. Thus, BJ shows more application prospects in manufacturing new soft magnetic components.
BJ(图 4a)是一种 3DP 技术,通过喷涂粘合剂来形成部件。BJ 主要用于打印高分子材料、金属和陶瓷材料。一些学者尝试了这种方法来打印 SMM [72,73]。软磁设备的多样化将使 BJ 方法能够通过使用粉末作为支撑结构来制备具有复杂结构的磁性元件。因此,BJ 在制造新型软磁元件方面显示出更多的应用前景。

2.1.4. Inkjet printing  2.1.4. 喷墨打印

IJP(Fig. 4b) is a non-contact micron-scale printing process that can be achieved by directly spraying a nano-sized solution on a flexible or hard substrate. IJP is a promising printing process since it can directly form patterned films without masks. IJP is widely used for manufacturing thin-walled soft magnetic substrates owing to its high resolution and multi-material printing capabilities [74]. IJP requires an appropriate selection of low-viscosity liquid polymer and nanoscale magnetic particles as the matrix binder and functional fillers,
IJP(图 4b)是一种非接触式微米级打印工艺,可以通过直接在柔性或硬质基材上喷涂纳米级溶液来实现。IJP 是一种很有前途的印刷工艺,因为它可以直接形成没有遮罩的图案薄膜。IJP因其高分辨率和多材料打印能力而被广泛用于制造薄壁软磁基板[74]。IJP 需要适当选择低粘度液体聚合物和纳米级磁性颗粒作为基质粘合剂和功能填料,

    • Corresponding author.  通讯作者。
    E-mail address: caiyinyou@xaut.edu.cn (C.-Y. You).
    电子邮件地址:caiyinyou@xaut.edu.cn (C.-Y.)你)。