这是用户在 2025-3-8 22:03 为 https://app.immersivetranslate.com/pdf-pro/uploading/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
to their customers, thereby creating a redistribution channel within the economy (e.g., Molina & Preve, 2009). Jackson and Liu (2010) suggest that the size of the allowance for doubtful receivables is likely to be affected by the company’s liquidity and solvency. Following Esilä (2015), we expect these leverage and liquidity variables to be positively related to both the trade receivables and the doubtful trade credit. Leverage is measured as the ratio between total debts and total assets (Cheung & Pok, 2019; Chen et al., 2020; Esilä, 2015; Molina & Preve, 2009). Liquidity is proxied by the current assets and current liabilities ratio (Esilä, 2015).
从而在经济体内形成一个再分配渠道(如 Molina 和 Preve,2009 年)。Jackson 和 Liu(2010 年)认为,可疑应收账款备抵的规模可能会受到公司流动性和偿付能力的影响。根据 Esilä(2015 年),我们预计这些杠杆和流动性变量与应收账款和可疑贸易信贷均呈正相关。杠杆率用总债务与总资产的比率来衡量(Cheung & Pok,2019;Chen et al.,2020;Esilä,2015;Molina & Preve,2009)。流动性用流动资产和流动负债比率表示(Esilä,2015)。
Profitability. Petersen and Rajan (1997) state that firms in trouble may use the extension of credit to attempt to maintain their sales. In a similar vein, [temporarily] unprofitable firms may resort to an extension of trade credit to risky clients in an attempt to restore their sales and profits. Thus, we expect a negative relationship between profitability and trade credit granted, as well as with doubtful trade credit. We use profit margin (Ebit/sales) and return on assets (ROA) (Ebit/total assets) for trade receivables and doubtful trade credit, respectively. Several authors have used this variable to explain trade receivables (e.g., García-Teruel & Martínez-Solano, 2010a, 2010b; Molina & Preve, 2009; Petersen & Rajan, 1997). Likewise, the few studies that have analysed doubtful receivables have also considered these variables (Cheung & Pok, 2019; Chen et al., 2020; Esilä, 2015; Nguyen & Nguyen, 2022).
盈利能力。Petersen 和 Rajan(1997 年)指出,陷入困境的公司可能会通过扩大信贷来维持销售。同样,[暂时]无利可图的公司可能会向风险客户发放贸易信贷,以试图恢复销售和利润。因此,我们预计盈利能力与发放的贸易信贷以及可疑贸易信贷之间存在负相关关系。对于应收账款和可疑贸易信贷,我们分别使用利润率(Ebit/销售额)和资产回报率(ROA)(Ebit/总资产)。有几位作者曾使用这一变量来解释应收账款(例如,García-Teruel & Martínez-Solano, 2010a, 2010b;Molina & Preve, 2009;Petersen & Rajan, 1997)。同样,少数分析可疑应收账款的研究也考虑了这些变量(Cheung & Pok, 2019; Chen et al., 2020; Esilä, 2015; Nguyen & Nguyen, 2022)。
Sales growth. Firms may use their trade credit policy in order to stimulate their sales. On the other hand, when sales grow, it is likely that companies will try to reduce their accounts receivable. Following García-Teruel and Martínez-Solano (2010b), we would expect a negative relationship between sales growth, trade credit granted and doubtful trade credit. The variable Sales growth is computed as the variation rate in sales between two consecutive years (Abdulla et al., 2020; García-Teruel & Martínez-Solano, 2010a).
销售增长。企业可能会利用贸易信贷政策来刺激销售。另一方面,当销售额增长时,企业很可能会试图减少应收账款。根据 García-Teruel 和 Martínez-Solano(2010b)的研究,我们认为销售增长、贸易信贷发放和可疑贸易信贷之间存在负相关关系。销售增长变量的计算方法是连续两年的销售变化率(Abdulla 等人,2020 年;García-Teruel 和 Martínez-Solano, 2010a)。
Industry. The type of activity carried out by companies significantly affects trade credit policies due to differences in production cycles (García-Teruel & MartínezSolano, 2010a). Previous studies show that trade credit transactions are usual in industrial firms (e.g., Bastos & Pindado, 2007). Therefore, in this paper, we have considered a dummy variable equal to 1 if the company is industrial and 0 otherwise. However, this variable is time invariant, so it is not possible to include it directly in the panel models estimated with fixed effects. An alternative way of solving this problem is to create the interaction between this dummy and the dummies for the years (e.g., Álvarez-Botas & González, 2021). Thus, the industry-year interaction is equal to 1 in each year when the firm belongs to an industrial sector and zero otherwise. In addition, the dummies for the years have also been considered ( Li ( Li (Li(\mathrm{Li} et al., 2018; Nguyen & Nguyen, 2022).
行业。由于生产周期的不同,企业开展的活动类型对贸易信贷政策有很大影响(García-Teruel & Martínez-Solano,2010a)。以往的研究表明,贸易信贷交易在工业企业中很常见(如 Bastos & Pindado, 2007)。因此,在本文中,我们考虑了一个虚拟变量,如果公司是工业企业,该变量等于 1,否则等于 0。然而,该变量具有时间不变性,因此无法将其直接纳入使用固定效应估算的面板模型中。解决这一问题的另一种方法是在该虚拟变量与年份虚拟变量之间建立交互作用(例如,Álvarez-Botas & González,2021 年)。因此,当企业属于某一行业部门时,每年的行业-年份交互值等于 1,否则为 0。此外,还考虑了年份的虚拟变量 ( Li ( Li (Li(\mathrm{Li} 等人,2018;Nguyen & Nguyen,2022)。
In addition to firm-level control variables, the macroeconomic conditions may affect the use of accounts receivable, although it is not clear what the expected relationship is between the business cycle and the trade credit granted by firms (García-Teruel & Martínez-Solano, 2010a, 2010b). These authors assert that, on the one hand, a deterioration in macroeconomic conditions may reduce the ability of companies to generate cash flow and limit bank financing. On the other hand, the existence of credit restrictions can restrict the possibility of providers financing their clients. In the first case, there would be an increase in accounts receivable while, in
除了公司层面的控制变量外,宏观经济条件也可能影响应收账款的使用,尽管尚不清楚商业周期与公司发放的贸易信贷之间的预期关系(García-Teruel & Martínez-Solano, 2010a,2010b)。这些作者认为,一方面,宏观经济条件的恶化可能会降低企业产生现金流的能力,限制银行融资。另一方面,信贷限制的存在也会限制供应商为客户融资的可能性。在前一种情况下,应收账款会增加,而在后一种情况下,应收账款会减少。

the second, they would decrease. Following the cited authors, the GDP is supposed to control for the macroeconomic conditions. Specifically, we include the GDP per capita (Chen et al., 2020). Table 7 of the Appendix contains a list with the description of the variables.
第二,它们会减少。根据所引用的作者的观点,GDP 是用来控制宏观经济条件的。具体来说,我们将人均国内生产总值(Chen 等人,2020 年)包括在内。附录表 7 列出了变量说明。

3.3 Empirical model  3.3 经验模式

We estimate the relationship between trade credit granted and judicial efficiency using a panel data model. This method allows us to control for unobservable heterogeneity as it provides more than one cross-section, data reducing bias from the presence of individual effects (Hsiao, 1985). The baseline model is as follows:
我们采用面板数据模型来估计贸易信贷发放与司法效率之间的关系。这种方法允许我们控制不可观测的异质性,因为它提供了多个横截面数据,减少了个体效应带来的偏差(Hsiao,1985 年)。基线模型如下
Trade credit i , t = β 0 + β 1 Judicial Efficiencyi,t-1 + β 2 Size i , t + β 3 Age i , t + β 4 Profitability i , t 1 + β 5 Leverage i , t 1 + β 6 Liquidity i , t 1 + β 7 Salesgrowth i , t + β 8 GDPpercapita i , t + β 9 20 Year t + β 21 31 ndustry_ year t + μ i + ε i , t  Trade credit  i , t = β 0 + β 1  Judicial  Efficiencyi,t-1  + β 2  Size  i , t + β 3  Age  i , t + β 4  Profitability  i , t 1 + β 5  Leverage  i , t 1 + β 6  Liquidity  i , t 1 + β 7  Salesgrowth  i , t + β 8  GDPpercapita  i , t + β 9 20  Year  t + β 21 31  ndustry_ year  t + μ i + ε i , t {:[" Trade credit "_(i,t)=beta_(0)+beta_(1)" Judicial "_("Efficiencyi,t-1 ")+beta_(2)" Size "_(i,t)+beta_(3)" Age "_(i,t)],[+beta_(4)" Profitability "_(i,t-1)+beta_(5)" Leverage "_(i,t-1)+beta_(6)" Liquidity "_(i,t-1)+beta_(7)" Salesgrowth "_(i,t)],[+beta_(8)" GDPpercapita "_(i,t)+beta_(9-20)" Year "_(t)+beta_(21-31)" ndustry_ year "_(t)+mu_(i)+epsi_(i,t)]:}\begin{aligned} \text { Trade credit }_{i, t} & =\beta_{0}+\beta_{1} \text { Judicial }_{\text {Efficiencyi,t-1 }}+\beta_{2} \text { Size }_{i, t}+\beta_{3} \text { Age }_{i, t} \\ & +\beta_{4} \text { Profitability }_{i, t-1}+\beta_{5} \text { Leverage }_{i, t-1}+\beta_{6} \text { Liquidity }_{i, t-1}+\beta_{7} \text { Salesgrowth }_{i, t} \\ & +\beta_{8} \text { GDPpercapita }_{i, t}+\beta_{9-20} \text { Year }_{t}+\beta_{21-31} \text { ndustry_ year }_{t}+\mu_{i}+\varepsilon_{i, t} \end{aligned}
According to the two hypotheses, the dependent variable (trade credit) is the trade credit granted or doubtful trade credit. Likewise, judicial efficiency is a proxy for duration or rule of law. To alleviate the effect of outliers, we ‘winsorised’ some explanatory variables, profitability, liquidity and Sales growth, at 1 % 1 % 1%1 \% and 99 % 99 % 99%99 \%. Moreover, to avoid the potential endogeneity between the dependent and firm-level independent variables, they are lagged by one year. Likewise, the proxies of judicial efficiency are also lagged one year to avoid endogeneity with the GDP. In the model, μ i μ i mu_(i)\mu_{i} controls for the firm’s unobservable characteristics and ε i , t ε i , t epsi_(i,t)\varepsilon_{i, t} is the error term.
根据这两个假设,因变量(贸易信贷)是已发放的贸易信贷或可疑贸易信贷。同样,司法效率是期限或法治的替代变量。为了减轻异常值的影响,我们将一些解释变量(盈利能力、流动性和销售增长)"胜选 "为 1 % 1 % 1%1 \% 99 % 99 % 99%99 \% 。此外,为了避免因变量和公司层面的自变量之间可能存在的内生性,我们将它们滞后一年。同样,司法效率的代理变量也滞后一年,以避免与国内生产总值之间的内生性。在模型中, μ i μ i mu_(i)\mu_{i} 控制公司的不可观测特征, ε i , t ε i , t epsi_(i,t)\varepsilon_{i, t} 是误差项。
In order to use the most suitable model, we employed the Hausman (1978) test, which differentiates between fixed effects models and random effects models in a panel data analysis. The results suggest that it is appropriate to use a fixed effects model. To control for the possible problems of endogeneity, we estimated parameters through the Generalized Method of Moments (GMM). We use an extension of the Arellano and Bond (1991), proposed by Arellano and Bover (1995) and Blundell and Bond (1998), in the robustness analysis. All estimation is computed with the Stata14 econometric package.
为了使用最合适的模型,我们采用了 Hausman(1978 年)检验法,该检验法对面板数据分析中的固定效应模型和随机效应模型进行了区分。结果表明,使用固定效应模型是合适的。为了控制可能存在的内生性问题,我们采用广义矩法(GMM)估计参数。在稳健性分析中,我们使用了由 Arellano 和 Bover(1995 年)以及 Blundell 和 Bond(1998 年)提出的对 Arellano 和 Bond(1991 年)的扩展。所有估计均使用 Stata14 计量经济学软件包进行计算。

4 Results  4 成果

4.1 Descriptive analysis
4.1 描述性分析

The sample distribution presented in Table 1 differs by country, with the predominance of French and German firms (nearly 51%), followed by those from Italy, Greece, Finland, Belgium, Spain and the Netherlands, which all account for about 36 % 36 % 36%36 \% of the sample. The eight remaining countries jointly represent less than 13 % 13 % 13%13 \%. Given that the sample is composed of listed firms, the distribution may be affected by size and development in the stock exchange. Regarding the sectorial distribution of the sample, in Table 1, we can see the importance of industrial firms, which account for 47 % 47 % 47%47 \% of all of the observations, followed by firms from the information
表 1 所示的样本分布因国家而异,法国和德国的公司占绝大多数(近 51%),其次是意大利、希腊、芬兰、比利时、西班牙和荷兰的公司,它们都占样本的 36 % 36 % 36%36 \% 左右。其余 8 个国家的企业加起来还不到 13 % 13 % 13%13 \% 。由于样本由上市公司组成,其分布可能受到证券交易所的规模和发展情况的影响。关于样本的行业分布,我们可以从表 1 中看出工业企业的重要性,它们占所有观测值的 47 % 47 % 47%47 \% ,其次是信息行业的企业。
Table 1 Sample distribution by country and sector. 2011-2021
表 1 按国家和部门分列的样本分布情况。2011-2021
Country  国家 N of observ. % over total  占总数的百分比 Industry  行业 N of observ. % over total  占总数的百分比
Austria  奥地利 461 3.03 Agriculture  农业 491 3.22
Belgium  比利时 782 5.13 Industry  行业 7126 46.79
Cyprus  塞浦路斯 343 2.25 Water, gas and electricity
水、气和电
607 3.99
Estonia  爱沙尼亚 140 0.92 Construction  建筑 507 3.33
Finland  芬兰 892 5.86 Trade  贸易 1084 7.12
France  法国 4159 27.31 Transport  运输 540 3.55
Germany  德国 3612 23.72 Hospitality  接待服务 266 1.74
Greece  希腊 1088 7.14 Information and communication
信息与传播
2301 15.11
Ireland  爱尔兰 302 1.98 Real estate activities  房地产活动 893 5.86
Italy  意大利 1235 8.11 Professional services  专业服务 815 5.35
Luxembourg  卢森堡 265 1.74 Other services  其他服务 601 3.95
Malta  马耳他 108 0.71
Netherlands  荷兰 687 4.51
Portugal  葡萄牙 309 2.03
Slovenia  斯洛文尼亚 82 0.54
Spain  西班牙 765 5.02 15,230 100
Total  总计 15,230 100 Total  总计
Country N of observ. % over total Industry N of observ. % over total Austria 461 3.03 Agriculture 491 3.22 Belgium 782 5.13 Industry 7126 46.79 Cyprus 343 2.25 Water, gas and electricity 607 3.99 Estonia 140 0.92 Construction 507 3.33 Finland 892 5.86 Trade 1084 7.12 France 4159 27.31 Transport 540 3.55 Germany 3612 23.72 Hospitality 266 1.74 Greece 1088 7.14 Information and communication 2301 15.11 Ireland 302 1.98 Real estate activities 893 5.86 Italy 1235 8.11 Professional services 815 5.35 Luxembourg 265 1.74 Other services 601 3.95 Malta 108 0.71 Netherlands 687 4.51 Portugal 309 2.03 Slovenia 82 0.54 Spain 765 5.02 15,230 100 Total 15,230 100 Total | Country | N of observ. | % over total | Industry | N of observ. | % over total | | :--- | :---: | :--- | :--- | ---: | :--- | | Austria | 461 | 3.03 | Agriculture | 491 | 3.22 | | Belgium | 782 | 5.13 | Industry | 7126 | 46.79 | | Cyprus | 343 | 2.25 | Water, gas and electricity | 607 | 3.99 | | Estonia | 140 | 0.92 | Construction | 507 | 3.33 | | Finland | 892 | 5.86 | Trade | 1084 | 7.12 | | France | 4159 | 27.31 | Transport | 540 | 3.55 | | Germany | 3612 | 23.72 | Hospitality | 266 | 1.74 | | Greece | 1088 | 7.14 | Information and communication | 2301 | 15.11 | | Ireland | 302 | 1.98 | Real estate activities | 893 | 5.86 | | Italy | 1235 | 8.11 | Professional services | 815 | 5.35 | | Luxembourg | 265 | 1.74 | Other services | 601 | 3.95 | | Malta | 108 | 0.71 | | | | | Netherlands | 687 | 4.51 | | | | | Portugal | 309 | 2.03 | | | | | Slovenia | 82 | 0.54 | | | | | Spain | 765 | 5.02 | | 15,230 | 100 | | Total | 15,230 | 100 | Total | | |
and communication sector ( 15 % 15 % 15%15 \% ). The lowest number of observations belong to the hospitality ( 1.74 % 1.74 % 1.74%1.74 \% ) and agriculture ( 3.22 % 3.22 % 3.22%3.22 \% ) sectors.
和通信部门( 15 % 15 % 15%15 \% )。最少的观测数据属于酒店业( 1.74 % 1.74 % 1.74%1.74 \% )和农业( 3.22 % 3.22 % 3.22%3.22 \% )。
Table 2 shows descriptive statistics of trade credit granted and doubtful trade credit, by country.
表 2 显示了按国家分列的已发放贸易信贷和可疑贸易信贷的描述性统计。
An average level of trade credit granted in the eurozone is about 18 % 18 % 18%18 \%, although it differs between countries. A certain geographical pattern can be observed. Credit granted to customers is highest in Southern European countries, including Greece (28%), Italy ( 26 % 26 % 26%26 \% ), Portugal ( 21 % 21 % 21%21 \% ) and Spain (22%), and lowest in Estonia (7%), Malta (9%), Luxembourg (11%), Austria and the Netherlands (13%). Regarding doubtful trade credit, the average for the whole sample is close to 5 % 5 % 5%5 \%, although it ranges from the 1 % 1 % 1%1 \% in Finland to 15 % 15 % 15%15 \% in Greece. The countries with the highest rate of doubtful receivables are Greece (15%), Portugal (12%) and Cyprus (10%).
欧元区发放的贸易信贷平均水平约为 18 % 18 % 18%18 \% ,但各国之间有所不同。可以观察到一定的地理格局。给予客户的信贷在南欧国家最高,包括希腊(28%)、意大利( 26 % 26 % 26%26 \% )、葡萄牙( 21 % 21 % 21%21 \% )和西班牙(22%),在爱沙尼亚(7%)、马耳他(9%)、卢森堡(11%)、奥地利和荷兰(13%)最低。在可疑贸易信贷方面,整个样本的平均值接近 5 % 5 % 5%5 \% ,但从芬兰的 1 % 1 % 1%1 \% 到希腊的 15 % 15 % 15%15 \% 不等。应收账款可疑率最高的国家是希腊(15%)、葡萄牙(12%)和塞浦路斯(10%)。
Table 3 shows descriptive statistics of the judicial efficiency variables by country. The overall average length (Duration) of judicial proceedings is 1.84 years and ranges from 0.88 years in Luxembourg to 3.84 years in Greece. This shows that the functioning of the courts in Europe varies significantly between countries.
表 3 显示了各国司法效率变量的描述性统计。司法程序的总体平均长度(持续时间)为 1.84 年,从卢森堡的 0.88 年到希腊的 3.84 年不等。这表明欧洲各国法院的运作情况差异很大。
Regarding the rule of law index, the national average for all periods and countries is 1.29 , and the values range from 0.32 for Greece to 2.03 for Finland (followed by Austria with 1.85). Moreover, the standard deviation and the minimum/maximum values in Table 3 reveal that there is limited inter-annual variation in both measures of judicial proceedings at the ‘country’ level. Concerning rule of law, more time variations are observed, while duration is time-invariant in some countries for the period analysed. This is most likely explained by the complexity and time needed for the implementation of judicial reforms.
关于法治指数,所有时期和国家的全国平均值为 1.29,数值范围从希腊的 0.32 到芬兰的 2.03(其次是奥地利的 1.85)。此外,表 3 中的标准偏差和最小/最大值显示,在 "国家 "层面,司法程序的两个衡量指标的年际变化有限。在法治方面,观察到更多的时间差异,而在分析期间,一些国家的持续时间是不 变的。这很可能是由于实施司法改革的复杂性和所需时间造成的。
Table 2 Descriptive statistics of trade credit granted and doubtful by country. 2011-2021
表 2 按国家分列的已发放和可疑贸易信贷的描述性统计。2011-2021
Country  国家 Trade credit granted (%) Account receivables/total sales
给予的贸易信贷 (%) 应收账款/销售总额

可疑贸易信贷 (%) 可疑应收款/应收账款
Doubtful trade credit (%)
Doubtful receivables/account receivables
Doubtful trade credit (%) Doubtful receivables/account receivables| Doubtful trade credit (%) | | :--- | | Doubtful receivables/account receivables |
Mean S.D  平均值 S.D Q1 Q2 Q3 Mean  平均值 S.D Q1 Q2 Q3
Austria  奥地利 13.10 7.71 13.10 7.71 13.10quad7.7113.10 \quad 7.71 8.56 12.77 16.88 4.26 9.30 0 0 3.89
Belgium  比利时 14.4012 .29 6.51 13.50 19.29 4.38 8.74 0 0.77 4.62
Cyprus  塞浦路斯 14.3417 .69 0 7.75 20.90 10.40 16.31 0 0.07 17.08
Estonia  爱沙尼亚 6.92 5.25 6.92 5.25 {:[6.92,5.25]:}\begin{array}{ll}6.92 & 5.25\end{array} 2.22 6.24 11.50 3.06 7.06 0 0.81 3.12
Finland  芬兰 13.74 6.94 13.74 6.94 13.74quad6.9413.74 \quad 6.94 8.46 13.39 17.87 1.21 3.90 0 0 0.43
France  法国 20.1115 .12 10.41 18.45 27.52 5.60 8.22 0.62 2.90 6.73
Germany  德国 13.28 9.55 13.28 9.55 13.28quad9.5513.28 \quad 9.55 6.98 12.72 17.86 2.49 5.84 0 0 2.50
Greece  希腊 27.8023 .03 5.97 26.00 42.31 14.64 17.10 0.33 9.61 20.75
Ireland  爱尔兰 14.04 7.20 14.04 7.20 14.04quad7.2014.04 \quad 7.20 9.99 14.68 18.11 1.63 2.46 0 0.48 2.57
Italy  意大利 25.8414 .99 15.71 22.96 32.60 6.29 9.74 0 3.35 8.34
Luxembourg  卢森堡 10.8510 .40 4.55 8.47 14.50 5.42 11.88 0 1.82 4.93
Malta  马耳他 8.619 .96 0 7.22 14.49 2.36 8.60 0 0 0
Netherlands  荷兰 12.649 .90 5.84 12.53 17.37 4.29 12.52 0 0.90 3.30
Portugal  葡萄牙 21.3417 .20 9.97 17.54 28.56 12.17 13.83 0.17 8.70 18.03
Slovenia  斯洛文尼亚 15.25 9.00 15.25 9.00 15.25quad9.0015.25 \quad 9.00 9.73 16.25 19.28 3.36 7.39 0 0 4.22
Spain  西班牙 22.1316 .19 11.76 18.94 27.53 7.64 12.21 0 2.88 9.78
Mean  平均值 17.7714 .62 8.40 15.34 23.47 5.35 10.11 0 1.42 5.97
Chi2 (KW) 1,794.29*** 2,275.63
Country Trade credit granted (%) Account receivables/total sales "Doubtful trade credit (%) Doubtful receivables/account receivables" Mean S.D Q1 Q2 Q3 Mean S.D Q1 Q2 Q3 Austria 13.10quad7.71 8.56 12.77 16.88 4.26 9.30 0 0 3.89 Belgium 14.4012 .29 6.51 13.50 19.29 4.38 8.74 0 0.77 4.62 Cyprus 14.3417 .69 0 7.75 20.90 10.40 16.31 0 0.07 17.08 Estonia "6.92 5.25" 2.22 6.24 11.50 3.06 7.06 0 0.81 3.12 Finland 13.74quad6.94 8.46 13.39 17.87 1.21 3.90 0 0 0.43 France 20.1115 .12 10.41 18.45 27.52 5.60 8.22 0.62 2.90 6.73 Germany 13.28quad9.55 6.98 12.72 17.86 2.49 5.84 0 0 2.50 Greece 27.8023 .03 5.97 26.00 42.31 14.64 17.10 0.33 9.61 20.75 Ireland 14.04quad7.20 9.99 14.68 18.11 1.63 2.46 0 0.48 2.57 Italy 25.8414 .99 15.71 22.96 32.60 6.29 9.74 0 3.35 8.34 Luxembourg 10.8510 .40 4.55 8.47 14.50 5.42 11.88 0 1.82 4.93 Malta 8.619 .96 0 7.22 14.49 2.36 8.60 0 0 0 Netherlands 12.649 .90 5.84 12.53 17.37 4.29 12.52 0 0.90 3.30 Portugal 21.3417 .20 9.97 17.54 28.56 12.17 13.83 0.17 8.70 18.03 Slovenia 15.25quad9.00 9.73 16.25 19.28 3.36 7.39 0 0 4.22 Spain 22.1316 .19 11.76 18.94 27.53 7.64 12.21 0 2.88 9.78 Mean 17.7714 .62 8.40 15.34 23.47 5.35 10.11 0 1.42 5.97 Chi2 (KW) 1,794.29*** 2,275.63 | Country | Trade credit granted (%) Account receivables/total sales | | | | Doubtful trade credit (%) <br> Doubtful receivables/account receivables | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | Mean S.D | Q1 | Q2 | Q3 | Mean | S.D | Q1 | Q2 | Q3 | | Austria | $13.10 \quad 7.71$ | 8.56 | 12.77 | 16.88 | 4.26 | 9.30 | 0 | 0 | 3.89 | | Belgium | 14.4012 .29 | 6.51 | 13.50 | 19.29 | 4.38 | 8.74 | 0 | 0.77 | 4.62 | | Cyprus | 14.3417 .69 | 0 | 7.75 | 20.90 | 10.40 | 16.31 | 0 | 0.07 | 17.08 | | Estonia | $\begin{array}{ll}6.92 & 5.25\end{array}$ | 2.22 | 6.24 | 11.50 | 3.06 | 7.06 | 0 | 0.81 | 3.12 | | Finland | $13.74 \quad 6.94$ | 8.46 | 13.39 | 17.87 | 1.21 | 3.90 | 0 | 0 | 0.43 | | France | 20.1115 .12 | 10.41 | 18.45 | 27.52 | 5.60 | 8.22 | 0.62 | 2.90 | 6.73 | | Germany | $13.28 \quad 9.55$ | 6.98 | 12.72 | 17.86 | 2.49 | 5.84 | 0 | 0 | 2.50 | | Greece | 27.8023 .03 | 5.97 | 26.00 | 42.31 | 14.64 | 17.10 | 0.33 | 9.61 | 20.75 | | Ireland | $14.04 \quad 7.20$ | 9.99 | 14.68 | 18.11 | 1.63 | 2.46 | 0 | 0.48 | 2.57 | | Italy | 25.8414 .99 | 15.71 | 22.96 | 32.60 | 6.29 | 9.74 | 0 | 3.35 | 8.34 | | Luxembourg | 10.8510 .40 | 4.55 | 8.47 | 14.50 | 5.42 | 11.88 | 0 | 1.82 | 4.93 | | Malta | 8.619 .96 | 0 | 7.22 | 14.49 | 2.36 | 8.60 | 0 | 0 | 0 | | Netherlands | 12.649 .90 | 5.84 | 12.53 | 17.37 | 4.29 | 12.52 | 0 | 0.90 | 3.30 | | Portugal | 21.3417 .20 | 9.97 | 17.54 | 28.56 | 12.17 | 13.83 | 0.17 | 8.70 | 18.03 | | Slovenia | $15.25 \quad 9.00$ | 9.73 | 16.25 | 19.28 | 3.36 | 7.39 | 0 | 0 | 4.22 | | Spain | 22.1316 .19 | 11.76 | 18.94 | 27.53 | 7.64 | 12.21 | 0 | 2.88 | 9.78 | | Mean | 17.7714 .62 | 8.40 | 15.34 | 23.47 | 5.35 | 10.11 | 0 | 1.42 | 5.97 | | Chi2 (KW) | 1,794.29*** | | | | 2,275.63 | | | | |
Table 2 presents descriptive statistics for dependent variables used in the analyses.
表 2 列出了分析中使用的因变量的描述性统计数字。

Variable description in Table 7 of the Appendix. Q1, Q2, Q3: quartiles 1, 2 and 3, respectively.
变量说明见附录表 7。Q1、Q2、Q3:分别为四分位数 1、2 和 3。

K W K W KWK W Kruskal Wallis. , , , , ^(**),^(****),^(******){ }^{*},{ }^{* *},{ }^{* * *} : significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% y 1 % 1 % 1%1 \%, respectively.
K W K W KWK W Kruskal Wallis。 , , , , ^(**),^(****),^(******){ }^{*},{ }^{* *},{ }^{* * *} :分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% y 1 % 1 % 1%1 \% 显著。
A comparison between Tables 2 and 3 allows us to observe that countries with the lowest judicial efficiency, like Greece (the lowest), show the highest rates of doubtful receivables, but also the highest ratios of trade credit granted. In comparison, Finland, with the most judicial efficiency, shows the lowest doubtful receivables rate, although the trade credit granted ratio is below the average.
通过比较表 2 和表 3,我们可以发现,司法效率最低的国家,如希腊(最低),其可疑应收账款率最高,但发放的贸易信贷比率也最高。相比之下,司法效率最高的芬兰的可疑应收账款率最低,尽管其发放的贸易信贷比率低于平均水平。
Descriptive statistics of control variables are shown in Table 4. The sample is composed of firms with average (median) annual assets of about 6 million (363 thousand) euros and an average age of 56 years. In average terms, the sample is characterised by firms that are efficient in their business management with an average profit margin of 19.51 % 19.51 % 19.51%19.51 \% and ROA of 10.89 % 10.89 % 10.89%10.89 \%. The average liquidity is of 1.81. Firms in the sample are moderately indebted with average leverage of 55 % 55 % 55%55 \%. The percentage of firm-year observations with positive growth of sales is high ( 61 % 61 % 61%61 \% ). Average GDP per capita is about 35,200 euros.
表 4 列出了控制变量的描述性统计。样本公司的年平均资产(中位数)约为 600 万(36.3 万)欧元,平均年龄为 56 岁。从平均值来看,样本企业的经营管理效率较高,平均利润率为 19.51 % 19.51 % 19.51%19.51 \% ,投资回报率为 10.89 % 10.89 % 10.89%10.89 \% 。平均流动性为 1.81。样本企业的平均杠杆率为 55 % 55 % 55%55 \% ,属于中度负债。销售额正增长的公司年观测值所占比例较高( 61 % 61 % 61%61 \% )。人均国内生产总值约为 35 200 欧元。
The analysis of the correlation matrix reveals a significant and negative (positive) relationship between duration (rule of law) and both dependent variables, trade credit granted and doubtful trade credit. Moreover, the correlation between the two judicial efficiency indicators is 0.87 . The only coefficient higher than
对相关矩阵的分析表明,持续时间(法治)与两个因变量(发放的贸易信贷和可疑贸易信贷)之间存在显著的负(正)相关关系。此外,两个司法效率指标之间的相关系数为 0.87。唯一高于
Table 3 Descriptive statistics of judicial efficiency by country. 2010-2020
表 3 各国司法效率的描述性统计。2010-2020
Country  国家 Duration (years)  持续时间(年) Rule of law index
法治指数
Mean Median  平均数 中位数 S.D Min  最小 Max  最大 Mean Median  平均数 中位数 S.D Min  最小 Max  最大
Austria  奥地利 1.091 .09 0.00 1.09 1.09 1.851 .84 0.04 1.80 1.94
Belgium  比利时 1.381 .38 0.00 1.38 1.38 1.431 .43 0.06 1.36 1.55
Cyprus  塞浦路斯 2.563 .01 0.52 2.01 3.01 0.931 .04 0.20 0.57 1.22
Estonia  爱沙尼亚 1.221 .25 0.05 1.16 1.25 1.251 .24 0.08 1.16 1.37
Finland  芬兰 1.221 .33 0.15 1.03 1.33 2.032 .05 0.06 1.95 2.13
France  法国 1.171 .22 0.07 1.08 1.22 1.421 .43 0.05 1.39 1.51
Germany  德国 1.221 .26 0.14 1.08 1.37 1.661 .63 0.08 1.55 1.85
Greece  希腊 3.844 .33 0.82 2.63 4.69 0.320 .32 0.17 0.07 0.59
Ireland  爱尔兰 1.711 .78 0.15 1.41 1.78 1.611 .72 0.16 1.39 1.77
Italy  意大利 3.193 .25 0.12 3.07 3.32 0.370 .39 0.08 0.24 0.49
Luxembourg  卢森堡 0.880 .88 0.00 0.88 0.88 1.811 .81 0.05 1.78 1.91
Malta  马耳他 1.381 .38 0.00 1.38 1.38 1.161 .15 0.17 0.91 1.42
Netherlands  荷兰 1.411 .41 0.00 1.41 1.41 1.841 .82 0.07 1.75 1.98
Portugal  葡萄牙 2.242 .38 0.16 2.07 2.38 1.091 .12 0.06 1.00 1.18
Slovenia  斯洛文尼亚 3.363 .48 0.18 3.18 3.53 1.041 .03 0.04 0.97 1.12
Spain  西班牙 1.401 .4 0.01 1.40 1.41 1.031 .03 0.09 0.90 1.18
Mean  平均值 1.841 .87 1.291 .27
Chi2 (KW) 11,287.10 ^(******){ }^{* * *} 14 , 158.03 14 , 158.03 14,158.03^(******)14,158.03^{* * *}
Country Duration (years) Rule of law index Mean Median S.D Min Max Mean Median S.D Min Max Austria 1.091 .09 0.00 1.09 1.09 1.851 .84 0.04 1.80 1.94 Belgium 1.381 .38 0.00 1.38 1.38 1.431 .43 0.06 1.36 1.55 Cyprus 2.563 .01 0.52 2.01 3.01 0.931 .04 0.20 0.57 1.22 Estonia 1.221 .25 0.05 1.16 1.25 1.251 .24 0.08 1.16 1.37 Finland 1.221 .33 0.15 1.03 1.33 2.032 .05 0.06 1.95 2.13 France 1.171 .22 0.07 1.08 1.22 1.421 .43 0.05 1.39 1.51 Germany 1.221 .26 0.14 1.08 1.37 1.661 .63 0.08 1.55 1.85 Greece 3.844 .33 0.82 2.63 4.69 0.320 .32 0.17 0.07 0.59 Ireland 1.711 .78 0.15 1.41 1.78 1.611 .72 0.16 1.39 1.77 Italy 3.193 .25 0.12 3.07 3.32 0.370 .39 0.08 0.24 0.49 Luxembourg 0.880 .88 0.00 0.88 0.88 1.811 .81 0.05 1.78 1.91 Malta 1.381 .38 0.00 1.38 1.38 1.161 .15 0.17 0.91 1.42 Netherlands 1.411 .41 0.00 1.41 1.41 1.841 .82 0.07 1.75 1.98 Portugal 2.242 .38 0.16 2.07 2.38 1.091 .12 0.06 1.00 1.18 Slovenia 3.363 .48 0.18 3.18 3.53 1.041 .03 0.04 0.97 1.12 Spain 1.401 .4 0.01 1.40 1.41 1.031 .03 0.09 0.90 1.18 Mean 1.841 .87 1.291 .27 Chi2 (KW) 11,287.10 ^(******) 14,158.03^(******) | Country | Duration (years) | | | | Rule of law index | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | Mean Median | S.D | Min | Max | Mean Median | S.D | Min | Max | | Austria | 1.091 .09 | 0.00 | 1.09 | 1.09 | 1.851 .84 | 0.04 | 1.80 | 1.94 | | Belgium | 1.381 .38 | 0.00 | 1.38 | 1.38 | 1.431 .43 | 0.06 | 1.36 | 1.55 | | Cyprus | 2.563 .01 | 0.52 | 2.01 | 3.01 | 0.931 .04 | 0.20 | 0.57 | 1.22 | | Estonia | 1.221 .25 | 0.05 | 1.16 | 1.25 | 1.251 .24 | 0.08 | 1.16 | 1.37 | | Finland | 1.221 .33 | 0.15 | 1.03 | 1.33 | 2.032 .05 | 0.06 | 1.95 | 2.13 | | France | 1.171 .22 | 0.07 | 1.08 | 1.22 | 1.421 .43 | 0.05 | 1.39 | 1.51 | | Germany | 1.221 .26 | 0.14 | 1.08 | 1.37 | 1.661 .63 | 0.08 | 1.55 | 1.85 | | Greece | 3.844 .33 | 0.82 | 2.63 | 4.69 | 0.320 .32 | 0.17 | 0.07 | 0.59 | | Ireland | 1.711 .78 | 0.15 | 1.41 | 1.78 | 1.611 .72 | 0.16 | 1.39 | 1.77 | | Italy | 3.193 .25 | 0.12 | 3.07 | 3.32 | 0.370 .39 | 0.08 | 0.24 | 0.49 | | Luxembourg | 0.880 .88 | 0.00 | 0.88 | 0.88 | 1.811 .81 | 0.05 | 1.78 | 1.91 | | Malta | 1.381 .38 | 0.00 | 1.38 | 1.38 | 1.161 .15 | 0.17 | 0.91 | 1.42 | | Netherlands | 1.411 .41 | 0.00 | 1.41 | 1.41 | 1.841 .82 | 0.07 | 1.75 | 1.98 | | Portugal | 2.242 .38 | 0.16 | 2.07 | 2.38 | 1.091 .12 | 0.06 | 1.00 | 1.18 | | Slovenia | 3.363 .48 | 0.18 | 3.18 | 3.53 | 1.041 .03 | 0.04 | 0.97 | 1.12 | | Spain | 1.401 .4 | 0.01 | 1.40 | 1.41 | 1.031 .03 | 0.09 | 0.90 | 1.18 | | Mean | 1.841 .87 | | | | 1.291 .27 | | | | | Chi2 (KW) | 11,287.10 ${ }^{* * *}$ | | | | $14,158.03^{* * *}$ | | | |
This table presents descriptive statistics for the explanatory variables. Variable description in Table 7 of the appendix. K W K W KWK W : Kruskal Wallis., , , ^(****),^(******){ }^{* *},{ }^{* * *} : significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% y 1 % 1 % 1%1 \%, respectively.
本表介绍了解释性变量的描述性统计。变量说明见附录表 7。 K W K W KWK W :Kruskal Wallis., , , ^(****),^(******){ }^{* *},{ }^{* * *} :分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% y 1 % 1 % 1%1 \% 时显著。

Source Own elaboration from World Bank’s WGI and Doing Business databases.
资料来源 根据世界银行 WGI 和 Doing Business 数据库自行编制。
Table 4 Descriptive statistics of control variables
表 4 控制变量的描述性统计
Variable  可变 Mean  平均值 Q1 Q2 Q3 S.D
Size (millions of euro)
规模(百万欧元)
5871 0.838 363.47 2,200 0.0002
Age (years)  年龄(岁) 55.95 23 37 73 49.48
Profit margin  利润率 t-1 0.1951 0.0760 14.3994 0.2566
ROA t 1 t 1 _(t-1)_{\mathrm{t}-1} 0.1089 0.0537 0.1101 0.1674 0.2510
Leverage t 1 t 1 _(t-1)_{\mathrm{t}-1}  杠杆作用 t 1 t 1 _(t-1)_{\mathrm{t}-1} 0.5567 0.4404 0.5682 0.6883 0.1082
Liquidity t 1 t 1 _(t-1)_{\mathrm{t}-1}  流动性 t 1 t 1 _(t-1)_{\mathrm{t}-1} 1.8157 1.0578 1.4508 2.0727 1.3923
Sales growth GDP per capita (euro) GDP per capita (euro)  _("GDP per capita (euro) ")_{\text {GDP per capita (euro) }}  销售增长 GDP per capita (euro) GDP per capita (euro)  _("GDP per capita (euro) ")_{\text {GDP per capita (euro) }} 3.0643 -0.0399 0.0376 0.1202 0.2568
Variable Mean Q1 Q2 Q3 S.D Size (millions of euro) 5871 0.838 363.47 2,200 0.0002 Age (years) 55.95 23 37 73 49.48 Profit margin t-1 0.1951 0.0760 14.3994 0.2566 ROA _(t-1) 0.1089 0.0537 0.1101 0.1674 0.2510 Leverage _(t-1) 0.5567 0.4404 0.5682 0.6883 0.1082 Liquidity _(t-1) 1.8157 1.0578 1.4508 2.0727 1.3923 Sales growth _("GDP per capita (euro) ") 3.0643 -0.0399 0.0376 0.1202 0.2568| Variable | Mean | Q1 | Q2 | Q3 | S.D | | :--- | :--- | :--- | :--- | :--- | :--- | | Size (millions of euro) | 5871 | 0.838 | 363.47 | 2,200 | 0.0002 | | Age (years) | 55.95 | 23 | 37 | 73 | 49.48 | | Profit margin | t-1 | 0.1951 | 0.0760 | 14.3994 | 0.2566 | | ROA $_{\mathrm{t}-1}$ | 0.1089 | 0.0537 | 0.1101 | 0.1674 | 0.2510 | | Leverage $_{\mathrm{t}-1}$ | 0.5567 | 0.4404 | 0.5682 | 0.6883 | 0.1082 | | Liquidity $_{\mathrm{t}-1}$ | 1.8157 | 1.0578 | 1.4508 | 2.0727 | 1.3923 | | Sales growth $_{\text {GDP per capita (euro) }}$ | 3.0643 | -0.0399 | 0.0376 | 0.1202 | 0.2568 |
This table presents descriptive statistics for key variables used in the analyses.
本表介绍了分析中使用的主要变量的描述性统计。

Variable description in Table 7 of the appendix. Q1, Q2, Q3: quartiles 1, 2 and 3, respectively.
变量说明见附录表 7。Q1、Q2、Q3:分别为四分位数 1、2 和 3。

0.5 are between these indicators and GDP per capita ( 0.51 and 0.54 ), which is due in part to the fact that they are all obtained at the country level. All correlation coefficients between the remaining variables are lower than 0.25 . Moreover, the variance-inflation factors (VIF) for all models range between 1.08 and
这些指标与人均国内生产总值之间的相关系数为 0.5(0.51 和 0.54),部分原因是这些指标都是在国家层面获得的。其余变量之间的相关系数均低于 0.25。此外,所有模型的方差膨胀因子(VIF)都在 1.08 和 1.50 之间。
Table 5 Judicial efficiency and trade credit
表 5 司法效率与贸易信贷
  型号 D. V
Model
D. V
Model D. V| Model | | :--- | | D. V |
Model 1  模型 1 Model 2  模型 2 Model 3  模型 3 Model 4  型号 4
Trade credit granted  发放的贸易信贷 Trade credit granted  发放的贸易信贷 Doubtful trade credit  可疑贸易信贷 Doubtful trade credit  可疑贸易信贷
β β beta\beta t-statistic  t 统计量 β β beta\beta t-statistic  t 统计量 β β beta\beta t-statistic  t 统计量 β β beta\beta t-statistic  t 统计量
Duration t-1 t-1  _("t-1 ")_{\text {t-1 }}  持续时间 t-1 t-1  _("t-1 ")_{\text {t-1 }} 3.0660 3.0660 -3.0660^(******)-3.0660^{* * *} -9.90 - - 2.5236 2.5236 2.5236^(******)2.5236^{* * *} 10.73 - -
Rule of Law t 1 Law t 1 Law_(t-1)\mathrm{Law}_{\mathrm{t}-1}   Law t 1 Law t 1 Law_(t-1)\mathrm{Law}_{\mathrm{t}-1} 规则 - - 8.4973 8.4973 8.4973^(******)8.4973{ }^{* * *} 8.73 - - 4.6632 4.6632 -4.6632^(******)-4.6632^{* * *} 6.30 6.30 -6.30-6.30
Size (log)  大小(对数) 1.2059 *** 5.09 1.2976 1.2976 1.2976^(******)1.2976{ }^{* * *} 5.48 0.8518 0.8518 -0.8518^(******)-0.8518^{* * *} -4.77 0.9543 0.9543 -0.9543^(******)-0.9543^{* * *} 5.34 5.34 -5.34-5.34
Age (years)  年龄(岁) -0.1750 *** -3.59 13.94 13.94 -13.94****-13.94 * * -2.79 0.1669 0.1669 0.1669^(******)0.1669^{* * *} 4.57 0.1777 0.1777 0.1777^(****)0.1777^{* *} 4.57
Profitabili- ty t 1 ty t 1 ty_(t-1)\mathrm{ty}_{\mathrm{t}-1}  盈利能力- ty t 1 ty t 1 ty_(t-1)\mathrm{ty}_{\mathrm{t}-1} 1.0515 1.0515 1.0515^(****)1.0515^{* *} 2.02 0.9365 0.9365 0.9365**0.9365 * 1.80 1.977 1.977 -1.977^(******)-1.977^{* * *} -2.93 1.6953 1.6953 -1.6953^(******)-1.6953^{* * *} -2.51
Leverage t-1 t-1  _("t-1 "){ }_{\text {t-1 }}   t-1 t-1  _("t-1 "){ }_{\text {t-1 }} 杠杆作用 2.1873 2.1873 -2.1873^(****)-2.1873^{* *} -2.38 2.6879 2.6879 -2.6879^(******)-2.6879^{* * *} -2.93 1.4920 1.4920 1.4920^(****)1.4920{ }^{* *} 2.14 1.9136 1.9136 1.9136^(******)1.9136{ }^{* * *} 2.74
Liquidity t-1 t-1  _("t-1 ")_{\text {t-1 }}  流动性 t-1 t-1  _("t-1 ")_{\text {t-1 }} 0.727* 1.75 0.1369* 1.38 0.0877 1.17 0.1193 1.59
Sales growth  销售增长 2.8714 2.8714 -2.8714^(******)-2.8714^{* * *} -9.28 2.9539 2.9539 -2.9539^(******)-2.9539^{* * *} -9.54 0.8387 0.8387 -0.8387^(******)-0.8387^{* * *} -3.57 0.7502 0.7502 -0.7502^(******)-0.7502^{* * *} -3.19
GDP per capita(log)  人均国内生产总值(对数) -0.7488* -1.83 0.0505 0.13 0.3928 1.27 -0.2378 -0.78
Year  年份 Yes   Yes   Yes   Yes  
Industry-year  行业年 Yes   Yes   Yes   Yes  
Constant  恒定 25.7245 25.7245 25.7245^(******)25.7245^{* * *} 4.84 -1.788 -0.32 -1.8222 -0.45 15.85 15.85 15.85^(******)15.85{ }^{* * *} 3.71
No. Observations  观察次数 15,230 15,230 15,230 15,230
No. firms  公司 1526 1526 1526 1526
Adjusted R-squared  调整后的 R 平方 0.6897 0.6892 0.6270 0.6250
"Model D. V" Model 1 Model 2 Model 3 Model 4 Trade credit granted Trade credit granted Doubtful trade credit Doubtful trade credit beta t-statistic beta t-statistic beta t-statistic beta t-statistic Duration _("t-1 ") -3.0660^(******) -9.90 - - 2.5236^(******) 10.73 - - Rule of Law_(t-1) - - 8.4973^(******) 8.73 - - -4.6632^(******) -6.30 Size (log) 1.2059 *** 5.09 1.2976^(******) 5.48 -0.8518^(******) -4.77 -0.9543^(******) -5.34 Age (years) -0.1750 *** -3.59 -13.94**** -2.79 0.1669^(******) 4.57 0.1777^(****) 4.57 Profitabili-ty_(t-1) 1.0515^(****) 2.02 0.9365** 1.80 -1.977^(******) -2.93 -1.6953^(******) -2.51 Leverage _("t-1 ") -2.1873^(****) -2.38 -2.6879^(******) -2.93 1.4920^(****) 2.14 1.9136^(******) 2.74 Liquidity _("t-1 ") 0.727* 1.75 0.1369* 1.38 0.0877 1.17 0.1193 1.59 Sales growth -2.8714^(******) -9.28 -2.9539^(******) -9.54 -0.8387^(******) -3.57 -0.7502^(******) -3.19 GDP per capita(log) -0.7488* -1.83 0.0505 0.13 0.3928 1.27 -0.2378 -0.78 Year Yes Yes Yes Yes Industry-year Yes Yes Yes Yes Constant 25.7245^(******) 4.84 -1.788 -0.32 -1.8222 -0.45 15.85^(******) 3.71 No. Observations 15,230 15,230 15,230 15,230 No. firms 1526 1526 1526 1526 Adjusted R-squared 0.6897 0.6892 0.6270 0.6250 | Model <br> D. V | Model 1 | | Model 2 | | Model 3 | | Model 4 | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | Trade credit granted | | Trade credit granted | | Doubtful trade credit | | Doubtful trade credit | | | | $\beta$ | t-statistic | $\beta$ | t-statistic | $\beta$ | t-statistic | $\beta$ | t-statistic | | Duration $_{\text {t-1 }}$ | $-3.0660^{* * *}$ | -9.90 | - | - | $2.5236^{* * *}$ | 10.73 | - | - | | Rule of $\mathrm{Law}_{\mathrm{t}-1}$ | - | - | $8.4973{ }^{* * *}$ | 8.73 | - | - | $-4.6632^{* * *}$ | $-6.30$ | | Size (log) | 1.2059 *** | 5.09 | $1.2976{ }^{* * *}$ | 5.48 | $-0.8518^{* * *}$ | -4.77 | $-0.9543^{* * *}$ | $-5.34$ | | Age (years) | -0.1750 *** | -3.59 | $-13.94 * *$ | -2.79 | $0.1669^{* * *}$ | 4.57 | $0.1777^{* *}$ | 4.57 | | Profitabili-$\mathrm{ty}_{\mathrm{t}-1}$ | $1.0515^{* *}$ | 2.02 | $0.9365 *$ | 1.80 | $-1.977^{* * *}$ | -2.93 | $-1.6953^{* * *}$ | -2.51 | | Leverage ${ }_{\text {t-1 }}$ | $-2.1873^{* *}$ | -2.38 | $-2.6879^{* * *}$ | -2.93 | $1.4920{ }^{* *}$ | 2.14 | $1.9136{ }^{* * *}$ | 2.74 | | Liquidity $_{\text {t-1 }}$ | 0.727* | 1.75 | 0.1369* | 1.38 | 0.0877 | 1.17 | 0.1193 | 1.59 | | Sales growth | $-2.8714^{* * *}$ | -9.28 | $-2.9539^{* * *}$ | -9.54 | $-0.8387^{* * *}$ | -3.57 | $-0.7502^{* * *}$ | -3.19 | | GDP per capita(log) | -0.7488* | -1.83 | 0.0505 | 0.13 | 0.3928 | 1.27 | -0.2378 | -0.78 | | Year | Yes | | Yes | | Yes | | Yes | | | Industry-year | Yes | | Yes | | Yes | | Yes | | | Constant | $25.7245^{* * *}$ | 4.84 | -1.788 | -0.32 | -1.8222 | -0.45 | $15.85{ }^{* * *}$ | 3.71 | | No. Observations | 15,230 | | 15,230 | | 15,230 | | 15,230 | | | No. firms | 1526 | | 1526 | | 1526 | | 1526 | | | Adjusted R-squared | 0.6897 | | 0.6892 | | 0.6270 | | 0.6250 | |
This table presents the estimation results of fixed effects panel regressions.
本表显示了固定效应面板回归的估计结果。

Variable description in Table 7 of the appendix. Profitability is measured by Profit margin in models 1 and 2 and ROA in models 3 and 4 . , , 4 . , , 4.^(**),^(****),^(******)4 .{ }^{*},{ }^{* *},{ }^{* * *} : significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% and 1 % 1 % 1%1 \%, respectively.
变量说明见附录表 7。盈利能力在模型 1 和 2 中用利润率衡量,在模型 3 中用投资回报率衡量, 4 . , , 4 . , , 4.^(**),^(****),^(******)4 .{ }^{*},{ }^{* *},{ }^{* * *} :分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% 1 % 1 % 1%1 \% 时显著。

1.67, indicating that there are no problems of multi-collinearity (see Table 8 of the appendix).
1.67,表明不存在多重共线性问题(见附录表 8)。

4.2 Multivariate analysis
4.2 多元分析

In order to empirically assess the impact of judicial efficiency on trade credit granted to customers and the doubtful trade credit, we applied a panel regression with fixed effects model. We report the results in Table 5. The results of Model 1 indicate that the impact of the length of judicial proceedings (Duration) is negative and economically significant at 1 % 1 % 1%1 \%. In Model 2, Duration is replaced by rule of law index, which is positive and significant at 1 % 1 % 1%1 \%. It is important to recall that this variable has an inverse interpretation of judicial efficiency, while rule of law is a direct proxy of judicial efficiency. Therefore, a longer duration for dispute resolution represents lower efficiency, thus reducing trade credit granted. On the contrary, a higher value for rule of law represents a greater degree of efficiency, and this increases trade credit. Therefore, the results obtained are in line with the hypothesis H 1 , according to which, greater judicial efficiency will increase
为了实证评估司法效率对客户贸易信贷和可疑贸易信贷的影响,我们采用了固定效应模型的面板回归。结果见表 5。模型 1 的结果表明,司法程序时间(Duration)的影响是负的,且在 1 % 1 % 1%1 \% 时具有经济显著性。在模型 2 中,"持续时间 "被 "法治指数 "所取代,"法治指数 "为正且在 1 % 1 % 1%1 \% 处显著。需要指出的是,该变量对司法效率有反向解释,而法治指数则直接代表司法效率。因此,解决争端的时间越长,代表效率越低,从而减少贸易信贷的发放。相反,法治的数值越高,代表效率越高,从而增加贸易信贷。因此,得出的结果符合假设 H1,即司法效率越高,贸易信贷越多。

the amount of trade credit granted by providers to their customers. Specifically, a one-year increase in duration results in a 3.06 % 3.06 % 3.06%3.06 \% reduction in the volume of granted trade credit, while an increase of one unit of rule of law increases granted trade credit by 8.49 % 8.49 % 8.49%8.49 \%.
供应商给予客户的贸易信贷额度。具体而言,期限每增加一年,发放的贸易信贷量就会减少 3.06 % 3.06 % 3.06%3.06 \% ,而法治每增加一个单位,发放的贸易信贷量就会增加 8.49 % 8.49 % 8.49%8.49 \%
With the aim of contrasting the H2 hypothesis, in Models 3 and 4, we replaced the dependent variable for doubtful trade credit. As we can see, the results indicate that Duration in Model 3 and rule of law in Model 4 have a positive and negative sign, respectively, being significant at 1 % 1 % 1%1 \% in both models. Specifically, a oneyear increase in duration represents a 2.52 % 2.52 % 2.52%2.52 \% increase in the volume of trade credit granted, while an increase of one rule-of-law unit reduces the doubtful trade credit by 4.66 % 4.66 % 4.66%4.66 \%. These results may be interpreted in the sense that more judicial efficiency reduces the trade credit default rate and offers support to the H 2 hypothesis.
为了对比 H2 假设,我们在模型 3 和模型 4 中将因变量替换为可疑贸易信贷。我们可以看到,结果表明,模型 3 中的期限和模型 4 中的法治分别具有正负符号,且在两个模型中均在 1 % 1 % 1%1 \% 处显著。具体而言,期限每增加一年,贸易信贷发放量就会增加 2.52 % 2.52 % 2.52%2.52 \% ,而法治每增加一个单位,可疑贸易信贷就会减少 4.66 % 4.66 % 4.66%4.66 \% 。这些结果可以解释为,更高的司法效率降低了贸易信贷违约率,并为 H 2 假设提供了支持。
Regarding the control variables, in models 1 and 2, we observed that size, profitability and liquidity show significant and positive signs, while age, leverage and Sales_growth are significant and negative. Thus, the larger, but less old firms extended more credit to customers. The result regarding size supports the argument that larger firms have better access to financial markets to fund receivables (Cheung & Pok, 2019; Petersen & Rajan, 1997). Profitability, liquidity and sales growth show the expected sign. The negative sign of leverage is contrary to the expected relationship with the receivables, since greater access to external financing also means that firms can and will extend more trade credit to their customers (Molina & Preve, 2009). This result indicates that firms also use other alternatives to external financing in order to grant more credit.
关于控制变量,在模型 1 和模型 2 中,我们发现规模、盈利能力和流动性显示出显著的正符号,而年龄、杠杆率和销售增长则显示出显著的负符号。因此,规模较大但年龄较小的公司向客户提供了更多信贷。有关规模的结果支持了这样一种论点,即规模较大的企业更容易进入金融市场为应收账款提供资金(Cheung & Pok,2019;Petersen & Rajan,1997)。盈利能力、流动性和销售增长显示出预期的符号。杠杆率的负号与预期的应收账款关系相反,因为更容易获得外部融资也意味着企业可以并将向客户提供更多的贸易信贷(Molina & Preve,2009)。这一结果表明,企业也会利用外部融资以外的其他方式来提供更多信贷。
In models 3 and 4, we observed that all significant control variables, show an inverse sign compared to models 1 and 2. Age and leverage are positive, while size, profitability and sales growth are negative. Contrary to our predictions, older companies have a higher rate of ‘doubtful customers’ in relation to their accounts receivable. One possible explanation for this result is that these companies place more value on long-term relationships with their customers, which leads them to keep a higher proportion of doubtful customers on their books (who are not necessarily insolvent). Leverage and sales_growth show the predicted signs. Liquidity and GDP per capita are not significant.
在模型 3 和模型 4 中,我们发现所有重要的控制变量都与模型 1 和模型 2 呈反比。年龄和杠杆率为正,而规模、盈利能力和销售增长为负。与我们的预测相反,与应收账款相比,年龄较大的公司 "可疑客户 "比例较高。对这一结果的一种可能解释是,这些公司更重视与客户的长期关系,这导致它们在账簿上保留了更高比例的可疑客户(这些客户不一定资不抵债)。杠杆率和销售增长显示出预测的迹象。流动性和人均国内生产总值不显著。
Finally, in models 1 and 2, the results regarding the year (untabulated by brevity) indicate that compared to 2011, years 2013 and 2014 are positive and significant, while in 2015 and years from 2018 to 2020 are negative and significant. The interaction industry-year is not significant for any year. In models 3 and 4, from 2016 to 2020, there is a significant and negative sign. The interaction ‘industry-year’ is positive and significant for the period 2013-2019, which indicates that industrial firms had a more doubtful trade credit rate than non-industrial firms during these years.
最后,在模型 1 和 2 中,有关年份的结果(为简洁起见未列表)表明,与 2011 年相比,2013 年和 2014 年为正且显著,而 2015 年和 2018 年至 2020 年为负且显著。行业-年份交互作用在任何年份都不显著。在模型 3 和 4 中,2016 年至 2020 年为显著负号。在 2013-2019 年期间,交互作用 "行业年份 "为正且显著,这表明在这些年份中,工业企业的贸易信贷可疑率高于非工业企业。

Robustness analysis  稳健性分析

In this section, we provide additional estimations to demonstrate the robustness of the obtained results. The results of the main variables are reported in Table 6. In this table, in panels A and B , the dependent variable is trade credit granted and in panels C and D, doubtful trade credit. Likewise, in panels A and C, the explanatory variables are duration and in panels B and D , rule of law.
在本节中,我们将提供更多的估计结果,以证明所得结果的稳健性。主要变量的结果见表 6。在该表中,A 组和 B 组的因变量是已发放的贸易信贷,C 组和 D 组的因变量是可疑贸易信贷。同样,在面板 A 和 C 中,解释变量是期限,在面板 B 和 D 中,解释变量是法治。

Table 6 Judicial efficiency and trade credit in the eurozone. Robustness analysis. Panels A and B. Dependent variable: trade credit granted. Panels C and D. Dependent variable: doubtful trade credit
表 6 欧元区的司法效率和贸易信贷。稳健性分析。面板 A 和 B:因变量:发放的贸易信贷。面板 C 和 D:因变量:可疑贸易信贷
( 1 ) ( 1 ) (1)(1) ( 2 ) ( 2 ) (2)(2) ( 3 ) ( 3 ) (3)(3) ( 4 ) ( 4 ) (4)(4) (5)
Alternative D.V  替代 D.V Control variable  控制变量 Without  没有 GMM Tobit  托比特
(1) (2) (3) (4) (5) Alternative D.V Control variable Without GMM Tobit| $(1)$ | $(2)$ | $(3)$ | $(4)$ | (5) | | :--- | :--- | :--- | :--- | :--- | | Alternative D.V | Control variable | Without | GMM | Tobit |
Model  模型 Model 5A  5A 型 Model 6A  6A 型 Model 7A  7A 型 Model 8A  8A 型 Model 9A  9A 型 Model 10A  10A 型
β β beta\beta t t tt B t t tt β β beta\beta t t tt β β beta\beta z z zz β β beta\beta t t tt β β beta\beta t t tt
Dur t-1 Dur t-1  Dur_("t-1 ")\operatorname{Dur}_{\text {t-1 }} 0.567 0.567 -0.567^(****)-0.567^{* *} -2.72 0.4648 0.4648 -0.4648^(******)-0.4648^{* * *} -2.29 2.723 2.723 -2.723^(******)-2.723^{* * *} 7.65 7.65 -7.65-7.65 3.370 3.370 -3.370^(******)-3.370^{* * *} -9.31 0.567 0.567 -0.567^(****)-0.567^{* *} -2.03 2.803 2.803 -2.803^(******)-2.803^{* * *} --5.71
AP_assets  资产 - - 34.770 34.770 34.770^(******)34.770^{* * *} 26.94 - - - - - - - -
Control  控制 Yes   Yes   Yes   Yes   Yes   Yes  
Constant  恒定 11.087 0.60 4.312 0.24 -20.971 0.50 0.50 -0.50-0.50 -63.362*** -5.72 29.140*** 5.77 34.135 34.135 34.135^(******)34.135^{* * *} 4.53
Observ  观察 15,230 15,230 7459 9150 15,230 15,230
Firms  企业 1526 1,526 747 1152 1,526 1526
Adj.R-sq 0.7890 0.7997 0.6853 - - -
Wald Chi2 - - - 319.52 319.52 319.52^(******)319.52^{* * *} 428.26 428.26 428.26^(****)428.26^{* *} 339.50 339.50 339.50^(******)339.50^{* * *}
AR1 - - - -8.246*** - -
AR2 - - - -1.378 - -
Sargan test  Sargan 测试 - - - 72.095 - -
Model Model 5A Model 6A Model 7A Model 8A Model 9A Model 10A beta t B t beta t beta z beta t beta t Dur_("t-1 ") -0.567^(****) -2.72 -0.4648^(******) -2.29 -2.723^(******) -7.65 -3.370^(******) -9.31 -0.567^(****) -2.03 -2.803^(******) --5.71 AP_assets - - 34.770^(******) 26.94 - - - - - - - - Control Yes Yes Yes Yes Yes Yes Constant 11.087 0.60 4.312 0.24 -20.971 -0.50 -63.362*** -5.72 29.140*** 5.77 34.135^(******) 4.53 Observ 15,230 15,230 7459 9150 15,230 15,230 Firms 1526 1,526 747 1152 1,526 1526 Adj.R-sq 0.7890 0.7997 0.6853 - - - Wald Chi2 - - - 319.52^(******) 428.26^(****) 339.50^(******) AR1 - - - -8.246*** - - AR2 - - - -1.378 - - Sargan test - - - 72.095 - - | Model | Model 5A | | Model 6A | | Model 7A | | Model 8A | | Model 9A | | Model 10A | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | $\beta$ | $t$ | B | $t$ | $\beta$ | $t$ | $\beta$ | $z$ | $\beta$ | $t$ | $\beta$ | $t$ | | $\operatorname{Dur}_{\text {t-1 }}$ | $-0.567^{* *}$ | -2.72 | $-0.4648^{* * *}$ | -2.29 | $-2.723^{* * *}$ | $-7.65$ | $-3.370^{* * *}$ | -9.31 | $-0.567^{* *}$ | -2.03 | $-2.803^{* * *}$ | --5.71 | | AP_assets | - | - | $34.770^{* * *}$ | 26.94 | - | - | - | - | - | - | - | - | | Control | Yes | | Yes | | Yes | | Yes | | Yes | | Yes | | | Constant | 11.087 | 0.60 | 4.312 | 0.24 | -20.971 | $-0.50$ | -63.362*** | -5.72 | 29.140*** | 5.77 | $34.135^{* * *}$ | 4.53 | | Observ | 15,230 | | 15,230 | | 7459 | | 9150 | | 15,230 | | 15,230 | | | Firms | 1526 | | 1,526 | | 747 | | 1152 | | 1,526 | | 1526 | | | Adj.R-sq | 0.7890 | | 0.7997 | | 0.6853 | | - | | - | | - | | | Wald Chi2 | - | | - | | - | | $319.52^{* * *}$ | | $428.26^{* *}$ | | $339.50^{* * *}$ | | | AR1 | - | | - | | - | | -8.246*** | | - | | - | | | AR2 | - | | - | | - | | -1.378 | | - | | - | | | Sargan test | - | | - | | - | | 72.095 | | - | | - | |
Panel B. Explanatory variable: Rule of Law. Re-estimation model 2
面板 B. 解释性变量:法治。重新估计模型 2
Model  模型 Model 5B  5B 型 Model 6B  6B 型 Model 7B  7B 型 Model 8B  8B 型 Model 9B  9B 型 Model 10B  10B 型
ROL t-1 t-1  _("t-1 ")_{\text {t-1 }} 4.278 4.278 4.278^(******)4.278^{* * *} 6.54 3.4832 3.4832 3.4832^(******)3.4832^{* * *} 5.45 9.510 9.510 9.510^(******)9.510^{* * *} 7.73 3.499 3.499 3.499^(****)3.499^{* *} 2.20 3.353 3.353 3.353^(******)3.353^{* * *} 5.49
AP_assets  资产 - - 34.497 34.497 34.497^(******)34.497^{* * *} 26.73 - - - - - -
Control  控制 Yes   Yes   Yes   Yes   - Yes   -
Model Model 5B Model 6B Model 7B Model 8B Model 9B Model 10B ROL _("t-1 ") 4.278^(******) 6.54 3.4832^(******) 5.45 9.510^(******) 7.73 3.499^(****) 2.20 3.353^(******) 5.49 AP_assets - - 34.497^(******) 26.73 - - - - - - Control Yes Yes Yes Yes - Yes -| Model | Model 5B | | Model 6B | | Model 7B | | Model 8B | Model 9B | Model 10B | | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | ROL $_{\text {t-1 }}$ | $4.278^{* * *}$ | 6.54 | $3.4832^{* * *}$ | 5.45 | $9.510^{* * *}$ | 7.73 | $3.499^{* *}$ | 2.20 | $3.353^{* * *}$ | 5.49 | | AP_assets | - | - | $34.497^{* * *}$ | 26.73 | - | - | - | - | - | - | | Control | Yes | | Yes | | Yes | | Yes | - | Yes | - |
Table 6 (continued)  表 6(续)
Panel B. Explanatory variable: Rule of Law. Re-estimation model 2
面板 B:解释性变量:法治。重新估计模型 2
Model  模型 Model 5B  5B 型 Model 6B  6B 型 Model 7B  7B 型 Model 8B  8B 型 Model 9B  9B 型 Model 10B  10B 型
Constant  恒定 -7.601 -0.41 -10.871 -0.60 -52.452 1.25 1.25 -1.25-1.25 -49.604 -4.34 25.824 25.824 25.824^(******)25.824^{* * *} 5.46 12.259 1.63
Observ  观察 15,230 15,230 7459 9150 15,230 15,230
Firms  企业 1526 1526 747 1152 1526 1526
Adj.R-sq 0.7896 0.8000 0.6853 - - -
Wald Chi2 - - - 314.26 314.26 314.26^(******)314.26^{* * *} 462.41 462.41 462.41^(******)462.41^{* * *} 330.63 330.63 330.63^(****)330.63^{* *}
AR1 - - - 8.157 8.157 -8.157^(****)-8.157^{* *} - -
AR2 - - - -1.311 - -
Sargan test  Sargan 测试 - - - 74.912 - -
Panel C. Explanatory variable: Duration. Re-estimation model 3
面板 C.解释变量:持续时间。重新估计模型 3
Model  模型 Model 5C  型号 5C Model 6C  6C 型 Model 7C  7C 型 Model 8C  8C 型 Model 9C  9C 型 Model 10C  10C 型
β β beta\beta t t tt B B BB t t tt β β beta\beta t t tt β β beta\beta z z zz β β beta\beta t t tt β β beta\beta t t tt
Dur t-1 Dur t-1  Dur_("t-1 ")\mathrm{Dur}_{\text {t-1 }} 0.905 0.905 0.905^(******)0.905^{* * *} 11.30 2.876 2.876 2.876^(****)2.876^{* *} 12.34 2.506 2.506 2.506^(******)2.506^{* * *} 8.48 0.513 0.513 0.513^(******)0.513^{* * *} 2.94 3.237 3.237 3.237^(******)3.237^{* * *} 11.87 2.890 2.890 2.890^(******)2.890^{* * *} 8.85
Adj._ACP - - 0.032 0.032 0.032******0.032 * * * 18.20 - - - - - - - -
Control  控制 Yes   Yes   Yes   Yes   Yes   Yes  
Constant  恒定 -0.0770 -0.13 -2.538 -0.64 -8.333 -1.44 6.742 6.742 6.742^(**)6.742^{*} 1.83 2.333 0.43 - 1.682 -0.33
Observ  观察 15,230 15,230 7,459 9,150 15,230 15,230
Firms  企业 1,526 1,526 747 1,152 1,526 1,526
Adj.R-sq 0.6428 0.6358 0.6362 - - -
Wald Chi2 - - - 1,081.57 519.32 519.32 519.32^(******)519.32^{* * *} 388.98 388.98 388.98^(****)388.98^{* *}
AR1 - - - 5.323 5.323 -5.323^(******)-5.323^{* * *} - -
AR2 - - - 0.240 - -
Sargan test  Sargan 测试 - - - 61.42 - -
Panel B. Explanatory variable: Rule of Law. Re-estimation model 2 Model Model 5B Model 6B Model 7B Model 8B Model 9B Model 10B Constant -7.601 -0.41 -10.871 -0.60 -52.452 -1.25 -49.604 -4.34 25.824^(******) 5.46 12.259 1.63 Observ 15,230 15,230 7459 9150 15,230 15,230 Firms 1526 1526 747 1152 1526 1526 Adj.R-sq 0.7896 0.8000 0.6853 - - - Wald Chi2 - - - 314.26^(******) 462.41^(******) 330.63^(****) AR1 - - - -8.157^(****) - - AR2 - - - -1.311 - - Sargan test - - - 74.912 - - Panel C. Explanatory variable: Duration. Re-estimation model 3 Model Model 5C Model 6C Model 7C Model 8C Model 9C Model 10C beta t B t beta t beta z beta t beta t Dur_("t-1 ") 0.905^(******) 11.30 2.876^(****) 12.34 2.506^(******) 8.48 0.513^(******) 2.94 3.237^(******) 11.87 2.890^(******) 8.85 Adj._ACP - - 0.032****** 18.20 - - - - - - - - Control Yes Yes Yes Yes Yes Yes Constant -0.0770 -0.13 -2.538 -0.64 -8.333 -1.44 6.742^(**) 1.83 2.333 0.43 - 1.682 -0.33 Observ 15,230 15,230 7,459 9,150 15,230 15,230 Firms 1,526 1,526 747 1,152 1,526 1,526 Adj.R-sq 0.6428 0.6358 0.6362 - - - Wald Chi2 - - - 1,081.57 519.32^(******) 388.98^(****) AR1 - - - -5.323^(******) - - AR2 - - - 0.240 - - Sargan test - - - 61.42 - - | Panel B. Explanatory variable: Rule of Law. Re-estimation model 2 | | | | | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Model | Model 5B | | Model 6B | | Model 7B | | Model 8B | | Model 9B | | Model 10B | | | Constant | -7.601 | -0.41 | -10.871 | -0.60 | -52.452 | $-1.25$ | -49.604 | -4.34 | $25.824^{* * *}$ | 5.46 | 12.259 | 1.63 | | Observ | 15,230 | | 15,230 | | 7459 | | 9150 | | 15,230 | | 15,230 | | | Firms | 1526 | | 1526 | | 747 | | 1152 | | 1526 | | 1526 | | | Adj.R-sq | 0.7896 | | 0.8000 | | 0.6853 | | - | | - | | - | | | Wald Chi2 | - | | - | | - | | $314.26^{* * *}$ | | $462.41^{* * *}$ | | $330.63^{* *}$ | | | AR1 | - | | - | | - | | $-8.157^{* *}$ | | - | | - | | | AR2 | - | | - | | - | | -1.311 | | - | | - | | | Sargan test | - | | - | | - | | 74.912 | | - | | - | | | Panel C. Explanatory variable: Duration. Re-estimation model 3 | | | | | | | | | | | | | | Model | Model 5C | | Model 6C | | Model 7C | | Model 8C | | Model 9C | | Model 10C | | | | $\beta$ | $t$ | $B$ | $t$ | $\beta$ | $t$ | $\beta$ | $z$ | $\beta$ | $t$ | $\beta$ | $t$ | | $\mathrm{Dur}_{\text {t-1 }}$ | $0.905^{* * *}$ | 11.30 | $2.876^{* *}$ | 12.34 | $2.506^{* * *}$ | 8.48 | $0.513^{* * *}$ | 2.94 | $3.237^{* * *}$ | 11.87 | $2.890^{* * *}$ | 8.85 | | Adj._ACP | - | - | $0.032 * * *$ | 18.20 | - | - | - | - | - | - | - | - | | Control | Yes | | Yes | | Yes | | Yes | | Yes | | Yes | | | Constant | -0.0770 | -0.13 | -2.538 | -0.64 | -8.333 | -1.44 | $6.742^{*}$ | 1.83 | 2.333 | 0.43 | - 1.682 | -0.33 | | Observ | 15,230 | | 15,230 | | 7,459 | | 9,150 | | 15,230 | | 15,230 | | | Firms | 1,526 | | 1,526 | | 747 | | 1,152 | | 1,526 | | 1,526 | | | Adj.R-sq | 0.6428 | | 0.6358 | | 0.6362 | | - | | - | | - | | | Wald Chi2 | - | | - | | - | | 1,081.57 | | $519.32^{* * *}$ | | $388.98^{* *}$ | | | AR1 | - | | - | | - | | $-5.323^{* * *}$ | | - | | - | | | AR2 | - | | - | | - | | 0.240 | | - | | - | | | Sargan test | - | | - | | - | | 61.42 | | - | | - | |
Table 6 (continued)  表 6(续)
Panel D. Explanatory variable: Rule of Law. Re-estimation model 4
D 组:解释性变量:法治。重新估计模型 4
Model  模型 Model 5D  5D 型 Model 6D  6D 型 Model 7D  7D 型 Model 8D  8D 型 Model 9D  9D 型 Model 10D  10D 型
ROL t 1 ROL t 1 ROL_(t-1)\mathrm{ROL}_{\mathrm{t}-1} 1.644 1.644 -1.644^(****)-1.644^{* *} 6.52 6.52 -6.52-6.52 5.621 5.621 -5.621^(******)-5.621^{* * *} 7.66 7.66 -7.66-7.66 5.621 5.621 -5.621^(******)-5.621^{* * *} 5.49 5.49 -5.49-5.49 0.286 0.286 -0.286^(**)-0.286^{*} 1.62 1.62 -1.62-1.62 6.849 6.849 -6.849^(******)-6.849^{* * *} 10.85 10.85 -10.85-10.85 4.979 4.979 -4.979^(****)-4.979^{* *} 5.62 5.62 -5.62-5.62
Adj._ACP - - 0.031 0.031 0.031^(******)0.031^{* * *} 17.69 - - - - - - - -
Control  控制 Yes   Yes   Yes   Yes   Yes   Yes  
Constant  恒定 6.103 6.103 6.103^(******)6.103^{* * *} 4.19 18.250*** 4.32 10.534* 1.69 8.03 *** 2.59 22.639 22.639 22.639^(******)22.639^{* * *} 4.50 17.052 17.052 17.052^(******)17.052^{* * *} 3.53
Observ  观察 15,230 15,230 7,459 9,150 15,230 15,230
Firms  企业 1526 1526 747 1152 1526 1526
Adj.R-sq 0.6406 0.6333 0.6340 - - -
Wald Chi2 - - - 1,505.37 495.50*** 341.48 341.48 341.48^(******)341.48^{* * *}
AR1 - - - 5.951 5.951 -5.951^(****)-5.951^{* *} - -
AR2 - - - 0.350 - -
Sargan test  Sargan 测试 - - - 0.717 - -
Panel D. Explanatory variable: Rule of Law. Re-estimation model 4 Model Model 5D Model 6D Model 7D Model 8D Model 9D Model 10D ROL_(t-1) -1.644^(****) -6.52 -5.621^(******) -7.66 -5.621^(******) -5.49 -0.286^(**) -1.62 -6.849^(******) -10.85 -4.979^(****) -5.62 Adj._ACP - - 0.031^(******) 17.69 - - - - - - - - Control Yes Yes Yes Yes Yes Yes Constant 6.103^(******) 4.19 18.250*** 4.32 10.534* 1.69 8.03 *** 2.59 22.639^(******) 4.50 17.052^(******) 3.53 Observ 15,230 15,230 7,459 9,150 15,230 15,230 Firms 1526 1526 747 1152 1526 1526 Adj.R-sq 0.6406 0.6333 0.6340 - - - Wald Chi2 - - - 1,505.37 495.50*** 341.48^(******) AR1 - - - -5.951^(****) - - AR2 - - - 0.350 - - Sargan test - - - 0.717 - - | Panel D. Explanatory variable: Rule of Law. Re-estimation model 4 | | | | | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Model | Model 5D | | Model 6D | | Model 7D | | Model 8D | | Model 9D | | Model 10D | | | $\mathrm{ROL}_{\mathrm{t}-1}$ | $-1.644^{* *}$ | $-6.52$ | $-5.621^{* * *}$ | $-7.66$ | $-5.621^{* * *}$ | $-5.49$ | $-0.286^{*}$ | $-1.62$ | $-6.849^{* * *}$ | $-10.85$ | $-4.979^{* *}$ | $-5.62$ | | Adj._ACP | - | - | $0.031^{* * *}$ | 17.69 | - | - | - | - | - | - | - | - | | Control | Yes | | Yes | | Yes | | Yes | | Yes | | Yes | | | Constant | $6.103^{* * *}$ | 4.19 | 18.250*** | 4.32 | 10.534* | 1.69 | 8.03 *** | 2.59 | $22.639^{* * *}$ | 4.50 | $17.052^{* * *}$ | 3.53 | | Observ | 15,230 | | 15,230 | | 7,459 | | 9,150 | | 15,230 | | 15,230 | | | Firms | 1526 | | 1526 | | 747 | | 1152 | | 1526 | | 1526 | | | Adj.R-sq | 0.6406 | | 0.6333 | | 0.6340 | | - | | - | | - | | | Wald Chi2 | - | | - | | - | | 1,505.37 | | 495.50*** | | $341.48^{* * *}$ | | | AR1 | - | | - | | - | | $-5.951^{* *}$ | | - | | - | | | AR2 | - | | - | | - | | 0.350 | | - | | - | | | Sargan test | - | | - | | - | | 0.717 | | - | | - | |
Firstly, we replaced the dependent variables for the alternative measures. The results of the re-estimation of the models are shown in column (1), Model 5. Specifically, in Models 5A and 5B, the receivables are relativized by ‘assets’ instead of ‘sales’, while in Models 5C and 5D, the doubtful account is divided by ‘sales’ instead of ‘receivables’. 9 9 ^(9){ }^{9} The results regarding the explanatory variables are similar in sign and significance to those initially obtained.
首先,我们将因变量替换为替代指标。模型重新估计的结果显示在模型 5 的第(1)栏中。具体地说,在模型 5A 和 5B 中,应收账款被 "资产 "而不是 "销售额 "相对化,而在模型 5C 和 5D 中,呆账被 "销售额 "而不是 "应收账款 "除以。 9 9 ^(9){ }^{9} 解释变量的结果在符号和显著性方面与最初得到的结果相似。
Secondly, according to Box et al. (2018), trade payables could be a channel through which firms can provide trade credit. Thus, in Models 6A and 6B, we added accounts payable over total assets (AP_assets) (Nguyen and Nguyen, 2022) as a control variable. The average ‘accounts payable’ are 0.10 over total assets (standard deviation = 0.08 = 0.08 =0.08=0.08 ) and range from 0 to 0.83 throughout the sample. In Models 6 C and 6D, we added the adjusted average collection period ( Adj ACP Adj ACP Adj_(-)ACP\mathrm{Adj}_{-} \mathrm{ACP} ) for each sector. In order to obtain this variable, first, we computed the average collection period (ACP) for firms as ‘accounts receivable’ over ‘sales’, and then we multiplied this by 360 days (e.g., Molina & Preve, 2009). Considering the ACP for all firms, the average ACP by sector was obtained. Afterwards, the Adj_ ACP of firms was obtained by subtracting the industry ACP. For the whole sample, the average ACP is 9 days, and more than one third of observations have a positive value for Adj_ACP. A higher value for Adj_ACP indicates that the company is offering its customers a sales deferral that is higher than the industry average, so this may attract potentially insolvent customers. Thus, we expected, and got, a positive sign for both variablesAP_assets and Adj_ACP-in the estimation of the respective models. See models 6 (A, B, C, D) in column (2) of Table 6.
其次,根据 Box 等人(2018)的研究,应付账款可能是企业提供贸易信贷的一个渠道。因此,在模型 6A 和 6B 中,我们加入了应付账款占总资产的比例(AP_assets)(Nguyen 和 Nguyen,2022 年)作为控制变量。应付账款 "在总资产中的平均值为 0.10(标准差 = 0.08 = 0.08 =0.08=0.08 ),在整个样本中介于 0 到 0.83 之间。在模型 6 C 和 6 D 中,我们为每个部门添加了调整后的平均收款期( Adj ACP Adj ACP Adj_(-)ACP\mathrm{Adj}_{-} \mathrm{ACP} )。为了得到这个变量,我们首先计算了企业的平均收账期(ACP),即 "应收账款 "除以 "销售额",然后乘以 360 天(例如,Molina & Preve,2009 年)。考虑到所有企业的 ACP,我们得到了各行业的平均 ACP。然后,减去行业 ACP,得出企业的 Adj_ ACP。在整个样本中,平均 ACP 为 9 天,超过三分之一的观测值 Adj_ACP 为正值。Adj_ACP 值越高,表明公司为客户提供的销售延迟时间高于行业平均水平,因此可能会吸引潜在的破产客户。因此,我们预期并在相应模型的估计中得到了 AP_assets 和 Adj_ACP 这两个变量的正向符号。参见表 6 第(2)列中的模型 6(A、B、C、D)。
Thirdly, following Bussoli and Marino (2018), we estimated Model 7 by removing firms from the two countries with the highest number of observations (Germany and France). The outcome shown in column (3) of Table 6 confirms previous estimations about the variables of interest. Thus, regarding trade credit granted, the sign remains negative for duration and positive for rule of law. Likewise, with respect to doubtful trade credit, the sign remains positive for duration and negative for rule of law. In all cases, the coefficients are significant at 1 % 1 % 1%1 \%. This indicates that the initial results are not biased by sample composition.
第三,按照 Bussoli 和 Marino(2018)的方法,我们剔除了观察次数最多的两个国家(德国和法国)的企业,对模型 7 进行了估计。表 6 第(3)列显示的结果证实了之前对相关变量的估计。因此,在贸易信贷发放方面,期限的符号仍为负数,法治的符号仍为正数。同样,在可疑贸易信贷方面,期限的符号仍然为正,而法治的符号为负。在所有情况下,系数在 1 % 1 % 1%1 \% 时都是显著的。这表明初步结果没有受到样本组成的影响。
Fourthly, to deal with possible problems of endogeneity, we estimated the generalised method of moments (GMM), specifically an extension of Arellano and Bond (1991) developed by Arellano and Bover (1995) and Blundell and Bond (1998). These authors proposed a system estimator that uses moment conditions in which lagged differences are used as instruments for the level equation in addition to the moment conditions of lagged levels as instruments for the difference equation. The results shown in column (4) of Table 6 indicate that the impact of duration and rule-of-law maintain their respective signs and remain significant in all models. In addition, in all models, the Arellano-Bond (AR1 and AR2) tests are significant and nonsignificant, respectively, which indicate that the errors have auto-correlated at the first differences and not correlated at the level equation. Likewise, the Sargan test is non-significant, which suggest that the instruments are appropriate.
第四,为解决可能存在的内生性问题,我们采用广义矩方法(GMM)进行估计,具体来说,这是 Arellano 和 Bond(1991 年)的延伸,由 Arellano 和 Bover(1995 年)以及 Blundell 和 Bond(1998 年)发展而来。这些作者提出了一种系统估计法,除了使用滞后水平的矩条件作为差分方程的工具外,还使用滞后差分的矩条件作为水平方程的工具。表 6 第(4)列显示的结果表明,在所有模型中,持续时间和法治的影响都保持各自的符号,并且仍然显著。此外,在所有模型中,Arellano-Bond(AR1 和 AR2)检验分别显著和不显著,这表明误差在初差时自相关,而在水平方程中不相关。同样,Sargan 检验也不显著,这表明工具是适当的。
Fifthly, we have proceeded to re-estimate the models with the Tobit method, in order to control the zeros. This problem is especially relevant in the doubtful trade credit variable, with 40 % 40 % 40%40 \% of zeros, while in the trade credit granted variable, it is only 10 % 10 % 10%10 \%. The results shown in column (5) of Table 6 indicate that the duration and rule of law maintain their sign and significance in all models.
第五,为了控制零,我们用 Tobit 方法对模型进行了重新估计。这个问题在可疑贸易信贷变量中尤为突出,因为它有 40 % 40 % 40%40 \% 个零,而在已发放贸易信贷变量中只有 10 % 10 % 10%10 \% 个零。表 6 第(5)列显示的结果表明,期限和法治在所有模型中都保持其符号和显著性。
Sixthly, the set of explanatory variables includes variables at firm level and variables at country level (as the proxies of judicial efficiency). Because firms located in the same country share the same environment, they are likely to be more similar to each other than firms operating in other countries. Whit the aim of controlling this issue, we have re-estimated the models using a panel multilevel regression model. 10 10 ^(10){ }^{10} The results regarding the interest variables maintain their signs and significance in all models (see column (6) on Table 6).
第六,解释变量集包括公司层面的变量和国家层面的变量(作为司法效率的替代变量)。由于位于同一国家的企业所处的环境相同,因此它们之间的相似性可能高于在其他国家经营的企业。为了控制这一问题,我们使用面板多层次回归模型对模型进行了重新估计。 10 10 ^(10){ }^{10} 有关变量的结果在所有模型中都保持了其符号和显著性(见表 6 第(6)列)。
Seventh, as an alternative to winsorization, we have re-estimated the models by eliminating observations with values lower than the 1st percentile or higher than the 99 th percentile of the winsorized variables. The sample is reduced to 14,774 observations, although the results related to the variables of interest (un-reported for brevity) are similar in sign and significance. Therefore, we have verified that winsorization does not affect the results obtained.
第七,作为胜数化的替代方法,我们剔除了胜数化变量值低于第 1 个百分位数或高于第 99 个百分位数的观测值,对模型进行了重新估计。样本减少到 14774 个观测值,尽管与相关变量有关的结果(为简洁起见未予报告)在符号和显著性方面都相似。因此,我们已经验证了胜数化不会影响所获得的结果。
Finally, following previous studies showing that trade credit transactions are usual in industrial firms (e.g., Bastos & Pindado, 2007), we estimated the models distinguishing between industrial and non-industrial firms. The estimation results regarding the explanatory variables (unreported for brevity) remain similar to the initial models in terms of sign and significance.
最后,以往的研究表明,贸易信贷交易通常发生在工业企业(如 Bastos 和 Pindado,2007 年),因此我们对工业企业和非工业企业的模型进行了估计。有关解释变量的估计结果(为简洁起见未报告)在符号和显著性方面与初始模型相似。

5 Discussion and conclusion
5 讨论和结论

This study analysed the relationship between judicial efficiency and trade credit granted by listed, ‘non-financial’ firms located in the eurozone. The positive impact of efficient judicial institutions that promote confidence and security through efficient contract enforcement has been confirmed by previous academic evidence. On this basis, we formulated a hypothesis that predicts a positive relationship between judicial efficiency and trade credit granted by firms to their customers. To test this assumption, we analysed a sample of 1526 non-financial listed firms ( 15,230 observations) located in the eurozone during the period 2011-2021. As indicators of judicial efficiency, we used the length of judicial proceedings (Duration) and rule of law, obtained from the World Bank’s ‘Doing Business’ and the World Bank Governance Indicators (WGI) databases, respectively.
本研究分析了欧元区上市 "非金融 "公司的司法效率与贸易信贷之间的关系。高效的司法机构通过高效的合同执行来促进信心和安全,其积极影响已被以往的学术证据所证实。在此基础上,我们提出了一个假设,预测司法效率与企业向其客户发放的贸易信贷之间存在正相关关系。为了验证这一假设,我们分析了 2011-2021 年间欧元区 1526 家非金融上市企业的样本(15230 个观测值)。作为司法效率的指标,我们使用了司法程序时间(Duration)和法治,这两个指标分别来自世界银行的 "营商环境 "数据库和世界银行治理指标(WGI)数据库。
Our research paper contributes to the literature by focusing on external factors that may affect trade credit, which highlights the need for a deeper analysis of the factors related to the legal institutional environment (Fabbri & Menichini, 2010). The results offer support for the argument that when the judicial system is more efficient, suppliers (creditors) are more confident (Dary & James, 2020) and more likely
我们的研究论文通过关注可能影响贸易信贷的外部因素,强调了对法律制度环境相关因素进行深入分析的必要性(Fabbri & Menichini, 2010),从而为相关文献做出了贡献。研究结果为以下论点提供了支持:当司法系统更有效时,供应商(债权人)会更有信心(Dary & James, 2020),也更有可能获得贸易信贷。
to grant trade credit to their customers (debtors) (Hypothesis 1). At the same time, with a better functioning judicial system, debtors will tend to reduce their opportunistic behaviour and this will lead to a reduction in doubtful trade credit (Hypothesis 2 ) 2 ) 2)2).
向其客户(债务人)发放贸易信贷(假设 1)。同时,随着司法系统的更好运作,债务人将倾向于减少其机会主义行为,这将导致可疑贸易信贷的减少(假设 2 ) 2 ) 2)2)
Regarding the previous empirical evidence, studies on the impact of judicial efficiency on trade credit granted are scarce. During our research, we encountered the paper of Johnson et al. (2002), who focused on post-communist countries, and Li et al. (2018), who provided evidence for emerging economies. Both authors concluded that firms located in countries with greater judicial efficiency grant more trade credit to their customers. Our results are in line with those of these previous studies and are consistent with previous evidence on the importance of the efficient functioning of justice. However, our study focuses on the eurozone, providing evidence on the impact of judicial efficiency on trade credit in developed countries with similar levels of health and economic well-being and a similar legal context. Moreover, to our knowledge, no study about the incidence of judicial efficiency on doubtful trade credit has been published. The only papers that have analysed doubtful trade credit are Adilkhanova et al. (2022), Esilä (2015), Jackson and Liu (2010) and Nguyen and Nguyen (2022). With the notable exception of the first, all these studies refer to single country, and none considers the institutional context.
关于以往的经验证据,有关司法效率对贸易信贷发放影响的研究很少。在研究过程中,我们遇到了 Johnson 等人(2002 年)和 Li 等人(2018 年)的论文,前者侧重于后共产主义国家,后者则为新兴经济体提供了证据。两位作者都得出结论,司法效率较高国家的企业会向其客户提供更多的贸易信贷。我们的研究结果与之前的研究结果一致,并与之前关于司法高效运作重要性的证据相吻合。不过,我们的研究侧重于欧元区,为健康和经济福利水平相似、法律环境相似的发达国家提供了司法效率对贸易信贷影响的证据。此外,据我们所知,还没有关于司法效率对可疑贸易信贷影响的研究发表过。对可疑贸易信贷进行分析的论文只有 Adilkhanova 等人(2022 年)、Esilä(2015 年)、Jackson 和 Liu(2010 年)以及 Nguyen 和 Nguyen(2022 年)。除第一项研究外,所有这些研究均针对单一国家,且均未考虑制度背景。
Our research contains some limitations related to the available information. First, it would have been interesting to have had quarterly information on the trade credit granted by the firms in our sample. This would have allowed us to mitigate the problem of ‘seasonality’ in sales, which is specific to certain sectors. Second, to analyse whether the volume of trade credit granted could be affected by the bargaining power of clients, it would have been helpful to have had information regarding important clients and the concentration of sales. The above information was only available for a very limited number of firms. Although it would have allowed for a deeper analysis of the relationship between judicial efficiency and the trade credit granted by the firms in the study, we are confident that these aspects did not bias our results.
我们的研究存在一些与现有信息有关的局限性。首先,如果我们能获得样本中企业的季度贸易信贷信息,那将会很有意义。这将使我们能够缓解某些行业特有的销售 "季节性 "问题。其次,为了分析贸易信贷的发放量是否会受到客户议价能力的影响,我们最好能获得有关重要客户和销售集中度的信息。上述信息只适用于极少数公司。尽管这些信息有助于更深入地分析司法效率与研究中的公司所发放的贸易信贷之间的关系,但我们相信,这些方面不会对我们的研究结果产生偏差。
Notwithstanding the limitations, the outcome of the study supports the theoretical arguments that the efficient functioning of judicial institutions is a key factor in business decisions, including those relating to the extension of trade credit to customers. In other words, our results corroborate the assumption that a healthy environment for investments and business relations relies on the efficient functioning of justice. Additionally, the fact that our results are similar to those found in other studies on countries with very different characteristics leads to the conclusion that regardless of the level of development, efficient judiciary matters. Therefore, if economic development and growth are to be sustainable, then efficient functioning of judicial institutions is necessary. Finally, our evidence also contributes to the research on trade credit granted by firms located in the eurozone. As such, the majority of studies have focused on SMEs, whereas our investigation is aimed at listed firms.
尽管存在局限性,但研究结果支持以下理论论点,即司法机构的有效运作是商业决策的关键因素,包括与向客户提供贸易信贷有关的决策。换句话说,我们的研究结果证实了这样一个假设,即一个健康的投资和商业关系环境有赖于司法的高效运作。此外,我们的研究结果与其他针对具有截然不同特征的国家的研究结果相似,这一事实也得出了这样的结论:无论发展水平如何,高效的司法都很重要。因此,如果经济发展和增长要可持续,那么司法机构的高效运作就是必要的。最后,我们的证据还有助于对欧元区企业发放贸易信贷的研究。因此,大多数研究都侧重于中小型企业,而我们的调查则针对上市企业。
The outcome of the study also reveals an important link between the functioning of firms and public policies. Trade credit can be an important tool for firms to use in their operational strategy, and it is an interim insurance mechanism (Cuñat, 2007; Wilner, 2000). By granting credit to their customers, firms can manage their current assets and increase sales. At same time, payment default on the part of customers can generate additional costs for credit providers. Consequently, policymakers should invest in the improvement of justice systems, which will ultimately support businesses and help to discourage non-payment. This is particularly important since confidence regarding timely payments can alleviate liquidity problems and, consequently, potential insolvencies.
研究结果还揭示了企业运作与公共政策之间的重要联系。贸易信贷是企业运营战略中的重要工具,也是一种临时保险机制(Cuñat,2007 年;Wilner,2000 年)。通过向客户发放贷款,企业可以管理其流动资产并增加销售额。与此同时,客户拖欠付款会给信贷提供者带来额外成本。因此,政策制定者应投资改善司法系统,这将最终支持企业并有助于阻止不付款行为。这一点尤为重要,因为对及时付款的信心可以缓解流动性问题,从而减少潜在的破产。

6 Competing Interests  6 相互竞争的利益

The authors have no competing interests to declare that are relevant to the content of this article.
作者无需声明与本文内容相关的利益冲突。

Appendix  附录

See Tables 7 and 8
见表 7 和表 8
Table 7 Description of variables
表 7 变量说明

Variable Calculation  变量计算
Dependent variables  自变量
Trade credit granted (%)  发放的贸易信贷(%)
Doubtful trade credit (%)
可疑贸易信贷 (%)

Explanatory variables  解释性变量
Duration  持续时间
Rule of law  法治

Control variables  控制变量

Size (log) Natural logarithm of the net sales
规模(对数) 净销售额的自然对数

Age (years)  年龄(岁)
Profit margin  利润率
ROA
Liquidity  流动性
Leverage  杠杆作用
Sales growth  销售增长
GPD per capita (log)
人均 GPD(对数)

Year  年份
Industry-year 11 dummies corresponding to the interaction between dummy industrial firm and year dummies
与虚拟工业企业和年份虚拟变量之间的交互作用相对应的 11 个工业年份虚拟变量
Other variables included in robustness analysis
稳健性分析中的其他变量
AR_assets  AR 资产 Accounts receivables/total assets
应收账款/总资产
Doubtful_sales  可疑销售 Doubtful receivables/net sales
可疑应收款/销售净额
Doubtful_assets  可疑资产

可疑应收款/资产总额 应付账款/资产总额
Doubtful receivables/total assets
Accounting payables/total assets
Doubtful receivables/total assets Accounting payables/total assets| Doubtful receivables/total assets | | :--- | | Accounting payables/total assets |
AP_assets  资产

调整后的部门平均收款期(ACP)。ACP 的计算方法是应收账款除以销售额,再乘以 360 天。调整后的部门平均收账期是企业平均收账期与部门平均收账期之间的差额。行业分类从
Adjusted sector average collection period (ACP). ACP is computed as
accounts receivable over sales, and multiplying this by 360 days. The
adjusted average sector is the difference between the ACP of the firm
and the average ACP of the sector. The sector is classified from the
Adjusted sector average collection period (ACP). ACP is computed as accounts receivable over sales, and multiplying this by 360 days. The adjusted average sector is the difference between the ACP of the firm and the average ACP of the sector. The sector is classified from the| Adjusted sector average collection period (ACP). ACP is computed as | | :--- | | accounts receivable over sales, and multiplying this by 360 days. The | | adjusted average sector is the difference between the ACP of the firm | | and the average ACP of the sector. The sector is classified from the |
NACE (see distribution in Table 1)
NACE (见表 1 的分布情况)
AR_assets Accounts receivables/total assets Doubtful_sales Doubtful receivables/net sales Doubtful_assets "Doubtful receivables/total assets Accounting payables/total assets" AP_assets "Adjusted sector average collection period (ACP). ACP is computed as accounts receivable over sales, and multiplying this by 360 days. The adjusted average sector is the difference between the ACP of the firm and the average ACP of the sector. The sector is classified from the" NACE (see distribution in Table 1)| AR_assets | Accounts receivables/total assets | | :--- | :--- | | Doubtful_sales | Doubtful receivables/net sales | | Doubtful_assets | Doubtful receivables/total assets <br> Accounting payables/total assets | | AP_assets | Adjusted sector average collection period (ACP). ACP is computed as <br> accounts receivable over sales, and multiplying this by 360 days. The <br> adjusted average sector is the difference between the ACP of the firm <br> and the average ACP of the sector. The sector is classified from the | | | NACE (see distribution in Table 1) |
Table 8 Variance Inflation Factor and correlation matrix
表 8 方差膨胀因子和相关矩阵
1 2 3 4 5 6 7 8 9 10 11 12
VIF Model 1  VIF 模型 1 - - 1.49 - 1.22 1.09 1.17 - 1.49 1.46 1.06 1.59
VIF Model 2  VIF 模型 2 - - - 1.57 1.21 1.10 1.17 - 1.50 1.46 1.06 1.67
VIF Model 3  VIF 模型 3 - - 1.49 - 1.17 1.09 - 1.14 1.48 1.45 1.06 1.59
VIF Model 4  VIF 模型 4 - - - 1.57 1.17 1.10 - 1.14 1.48 1.45 1.06 1.67
1. Trade credit granted
1.发放的贸易信贷
1,0000
2. Doubtful trade credit
2.可疑贸易信贷
0.2054 0.2054 0.2054^(******)0.2054^{* * *} 1.0000
3. Duration  3.持续时间 0.2219 0.2219 -0.2219^(******)-0.2219^{* * *} 0.2597 0.2597 0.2597******0.2597 * * * 1.0000
4. Rule of law
4.法治
0.2811 0.2811 0.2811^(******)0.2811^{* * *} 0.2697 0.2697 -0.2697^(******)-0.2697^{* * *} 0.8733 0.8733 -0.8733^(******)-0.8733^{* * *} 1.0000
5. Size (log)  5.大小(对数) 0.1006 0.1006 -0.1006^(****)-0.1006^{* *} 0.0190 0.0190 -0.0190^(******)-0.0190^{* * *} 0.0810 0.0810 -0.0810^(******)-0.0810^{* * *} 0.0738 0.0738 0.0738^(******)0.0738^{* * *} 1.0000
6. Age (years)  6.年龄(岁) 0.0922 0.0922 -0.0922^(******)-0.0922^{* * *} 0.0654 0.0654 -0.0654^(******)-0.0654^{* * *} 0.0795 0.0795 -0.0795^(******)-0.0795^{* * *} 0.1141 0.1141 0.1141^(******)0.1141^{* * *} 0.1936 0.1936 0.1936^(******)0.1936{ }^{* * *} 1.0000
7. Profit margin  7.利润率 -0.0093 0.0740 0.0740 0.0740^(******)0.0740^{* * *} -0.0103 0.0058 0.0058 -0.0058^(******)-0.0058^{* * *} 0.1939 0.1939 0.1939^(******)0.1939^{* * *} 0.0397 0.0397 -0.0397^(******)-0.0397^{* * *} 1.0000
8. ROA  8.ROA 0.0794 0.0794 -0.0794^(******)-0.0794^{* * *} 0.1064 0.1064 -0.1064^(******)-0.1064^{* * *} -0.0655*** 0.1006 0.1006 0.1006^(******)0.1006^{* * *} 0.1082 0.1082 0.1082^(******)0.1082^{* * *} 0.0522 0.0522 0.0522^(******)0.0522^{* * *} 0.2653 0.2653 0.2653^(******)0.2653^{* * *} 1.0000
9. Leverage  9.杠杆作用 0.0520 0.0520 0.0520^(****)0.0520^{* *} 0.0272 0.0272 0.0272^(****)0.0272^{* *} 0.0529 0.0529 0.0529^(****)0.0529^{* *} 0.0690 0.0690 -0.0690^(******)-0.0690^{* * *} 0.2513 0.2513 0.2513^(******)0.2513^{* * *} 0.0572 0.0572 0.0572^(******)0.0572^{* * *} 0.0413 0.0413 -0.0413^(******)-0.0413^{* * *} 0.0477 0.0477 -0.0477^(******)-0.0477^{* * *} 1.0000
10. Liquidity  10.流动性 - 0.0090 0.0589 0.0589 -0.0589^(******)-0.0589^{* * *} 0 . .0255 0 . .0255 -0..0255^(******)-0 . .0255^{* * *} 0.0364 0.2185 0.2185 -0.2185^(******)-0.2185^{* * *} 0.0383 0.0383 -0.0383^(******)-0.0383^{* * *} 0.0769 0.0769 -0.0769^(******)-0.0769^{* * *} 0.0355 0.0355 -0.0355^(******)-0.0355^{* * *} 0.5409 0.5409 -0.5409^(******)-0.5409^{* * *} 1.0000
11. Sales growth  11.销售增长 0.0506 0.0506 -0.0506^(****)-0.0506^{* *} 0.0522 0.0522 -0.0522^(******)-0.0522^{* * *} 0.0195 0.0195 -0.0195^(****)-0.0195^{* *} 0.0177 0.0177 0.0177^(****)0.0177^{* *} 0.0167 0.0167 0.0167^(****)0.0167^{* *} 0.0422 0.0422 -0.0422^(******)-0.0422^{* * *} 0.0140 0.0140 -0.0140^(**)-0.0140^{*} 0.0519 0.0519 0.0519^(******)0.0519^{* * *} 0.0213 0.0213 -0.0213^(******)-0.0213^{* * *} 0.0371 0.0371 0.0371^(******)0.0371{ }^{* * *} 1.0000
12. GPD per cap (log)
12.每个瓶盖的 GPD(对数)
0.1975 0.1975 -0.1975^(******)-0.1975^{* * *} 0.2147 0.2147 -0.2147^(******)-0.2147^{* * *} 0.5165 0.5165 -0.5165^(******)-0.5165^{* * *} 0.5492 0.1537 0.1537 0.1537^(******)0.1537^{* * *} 0.0938 0.0938 0.0938^(******)0.0938^{* * *} 0.0159 0.0159 -0.0159^(****)-0.0159^{* *} 0.0382 0.0382 0.0382^(******)0.0382^{* * *} 0.0273 0.0273 -0.0273^(******)-0.0273^{* * *} 0.0244 0.0244 0.0244^(******)0.0244^{* * *} 0.0161 0.0161 0.0161^(**)0.0161^{*} 1.0000
1 2 3 4 5 6 7 8 9 10 11 12 VIF Model 1 - - 1.49 - 1.22 1.09 1.17 - 1.49 1.46 1.06 1.59 VIF Model 2 - - - 1.57 1.21 1.10 1.17 - 1.50 1.46 1.06 1.67 VIF Model 3 - - 1.49 - 1.17 1.09 - 1.14 1.48 1.45 1.06 1.59 VIF Model 4 - - - 1.57 1.17 1.10 - 1.14 1.48 1.45 1.06 1.67 1. Trade credit granted 1,0000 2. Doubtful trade credit 0.2054^(******) 1.0000 3. Duration -0.2219^(******) 0.2597****** 1.0000 4. Rule of law 0.2811^(******) -0.2697^(******) -0.8733^(******) 1.0000 5. Size (log) -0.1006^(****) -0.0190^(******) -0.0810^(******) 0.0738^(******) 1.0000 6. Age (years) -0.0922^(******) -0.0654^(******) -0.0795^(******) 0.1141^(******) 0.1936^(******) 1.0000 7. Profit margin -0.0093 0.0740^(******) -0.0103 -0.0058^(******) 0.1939^(******) -0.0397^(******) 1.0000 8. ROA -0.0794^(******) -0.1064^(******) -0.0655*** 0.1006^(******) 0.1082^(******) 0.0522^(******) 0.2653^(******) 1.0000 9. Leverage 0.0520^(****) 0.0272^(****) 0.0529^(****) -0.0690^(******) 0.2513^(******) 0.0572^(******) -0.0413^(******) -0.0477^(******) 1.0000 10. Liquidity - 0.0090 -0.0589^(******) -0..0255^(******) 0.0364 -0.2185^(******) -0.0383^(******) -0.0769^(******) -0.0355^(******) -0.5409^(******) 1.0000 11. Sales growth -0.0506^(****) -0.0522^(******) -0.0195^(****) 0.0177^(****) 0.0167^(****) -0.0422^(******) -0.0140^(**) 0.0519^(******) -0.0213^(******) 0.0371^(******) 1.0000 12. GPD per cap (log) -0.1975^(******) -0.2147^(******) -0.5165^(******) 0.5492 0.1537^(******) 0.0938^(******) -0.0159^(****) 0.0382^(******) -0.0273^(******) 0.0244^(******) 0.0161^(**) 1.0000| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | VIF Model 1 | - | - | 1.49 | - | 1.22 | 1.09 | 1.17 | - | 1.49 | 1.46 | 1.06 | 1.59 | | VIF Model 2 | - | - | - | 1.57 | 1.21 | 1.10 | 1.17 | - | 1.50 | 1.46 | 1.06 | 1.67 | | VIF Model 3 | - | - | 1.49 | - | 1.17 | 1.09 | - | 1.14 | 1.48 | 1.45 | 1.06 | 1.59 | | VIF Model 4 | - | - | - | 1.57 | 1.17 | 1.10 | - | 1.14 | 1.48 | 1.45 | 1.06 | 1.67 | | 1. Trade credit granted | 1,0000 | | | | | | | | | | | | | 2. Doubtful trade credit | $0.2054^{* * *}$ | 1.0000 | | | | | | | | | | | | 3. Duration | $-0.2219^{* * *}$ | $0.2597 * * *$ | 1.0000 | | | | | | | | | | | 4. Rule of law | $0.2811^{* * *}$ | $-0.2697^{* * *}$ | $-0.8733^{* * *}$ | 1.0000 | | | | | | | | | | 5. Size (log) | $-0.1006^{* *}$ | $-0.0190^{* * *}$ | $-0.0810^{* * *}$ | $0.0738^{* * *}$ | 1.0000 | | | | | | | | | 6. Age (years) | $-0.0922^{* * *}$ | $-0.0654^{* * *}$ | $-0.0795^{* * *}$ | $0.1141^{* * *}$ | $0.1936{ }^{* * *}$ | 1.0000 | | | | | | | | 7. Profit margin | -0.0093 | $0.0740^{* * *}$ | -0.0103 | $-0.0058^{* * *}$ | $0.1939^{* * *}$ | $-0.0397^{* * *}$ | 1.0000 | | | | | | | 8. ROA | $-0.0794^{* * *}$ | $-0.1064^{* * *}$ | -0.0655*** | $0.1006^{* * *}$ | $0.1082^{* * *}$ | $0.0522^{* * *}$ | $0.2653^{* * *}$ | 1.0000 | | | | | | 9. Leverage | $0.0520^{* *}$ | $0.0272^{* *}$ | $0.0529^{* *}$ | $-0.0690^{* * *}$ | $0.2513^{* * *}$ | $0.0572^{* * *}$ | $-0.0413^{* * *}$ | $-0.0477^{* * *}$ | 1.0000 | | | | | 10. Liquidity | - 0.0090 | $-0.0589^{* * *}$ | $-0 . .0255^{* * *}$ | 0.0364 | $-0.2185^{* * *}$ | $-0.0383^{* * *}$ | $-0.0769^{* * *}$ | $-0.0355^{* * *}$ | $-0.5409^{* * *}$ | 1.0000 | | | | 11. Sales growth | $-0.0506^{* *}$ | $-0.0522^{* * *}$ | $-0.0195^{* *}$ | $0.0177^{* *}$ | $0.0167^{* *}$ | $-0.0422^{* * *}$ | $-0.0140^{*}$ | $0.0519^{* * *}$ | $-0.0213^{* * *}$ | $0.0371{ }^{* * *}$ | 1.0000 | | | 12. GPD per cap (log) | $-0.1975^{* * *}$ | $-0.2147^{* * *}$ | $-0.5165^{* * *}$ | 0.5492 | $0.1537^{* * *}$ | $0.0938^{* * *}$ | $-0.0159^{* *}$ | $0.0382^{* * *}$ | $-0.0273^{* * *}$ | $0.0244^{* * *}$ | $0.0161^{*}$ | 1.0000 |
Authors’ Contribution Conceptualization: I Aguiar-Diaz, E Mruk and M V Ruiz-Mallorquí. Background: E Mruk and M Victoria Ruiz-Mallorquí. Data Selection: I Aguiar-Diaz, E Mruk and M V Ruiz-Mallorquí. Methodology: I Aguiar-Diaz. Formal analysis and investigation: I Aguiar-Diaz Writing-original draft preparation: I Aguiar-Diaz and E Mruk. Writing—review and editing: E Mruk and MV Ruiz-Mallorquí Supervision: I Aguiar-Diaz and M Victoria Ruiz-Mallorquí.
作者贡献 构想:I Aguiar-Diaz、E Mruk 和 M V Ruiz-Mallorquí。背景:E Mruk 和 M Victoria Ruiz-Mallorquí:E Mruk 和 M Victoria Ruiz-Mallorquí。数据选择:I Aguiar-Diaz、E Mruk 和 M V Ruiz-Mallorquí。方法论:I Aguiar-Diaz。正式分析和调查:I Aguiar-Diaz 撰写-原稿准备:I Aguiar-Diaz 和 E Mruk。写作-审阅和编辑:E Mruk 和 MV Ruiz-Mallorquí 监督:I Aguiar-Diaz 和 M Victoria Ruiz-Mallorquí。
Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. No funding was received to assist with the preparation of this manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
经费来源:CRUE-CSIC与施普林格-自然(Springer Nature)签订的开放存取协议提供的经费。本稿件的撰写未获得任何资助。本研究未从公共、商业或非营利部门的资助机构获得任何特定资助。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.
开放存取 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,但需适当注明原作者和出处,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/ licenses/by/4.0/。

References  参考资料

Abdulla, Y., Dang, V. A., & Khurshed, A. (2020). Suppliers’ listing status and trade credit provision. Journal of Corporate Finance, 60, 101535. https://doi.org/10.1016/j.jcorpfin.2019.101535
Abdulla, Y., Dang, V. A., & Khurshed, A. (2020)。供应商的上市地位与贸易信贷提供。Journal of Corporate Finance, 60, 101535. https://doi.org/10.1016/j.jcorpfin.2019.101535

Adams, P. D., Wyatt, S. B. & Kim, Y. H., (1992). A contingent claims analysis of trade credit. Financial Management, 95-103. https://doi.org/10.2307/3666022
Adams, P. D., Wyatt, S. B. & Kim, Y. H., (1992).A contingent claims analysis of trade credit.Financial Management, 95-103. https://doi.org/10.2307/3666022

Adilkhanova, Z., Nurlankul, A., Token, A., & Yavuzoglu, B. (2022). Trade credit and financial crises in Kazakhstan. Journal of Asian Economics, 80, 101472. https://doi.org/10.1016/j.asieco.2022.101472
Adilkhanova, Z., Nurlankul, A., Token, A., & Yavuzoglu, B. (2022)。哈萨克斯坦的贸易信贷和金融危机》。Journal of Asian Economics, 80, 101472. https://doi.org/10.1016/j.asieco.2022.101472

Álvarez-Botas, C., & González, V. M. (2021). Institutions, banking structure and the cost of debt: New international evidence. Accounting and Finance, 61(1), 265-303. https://doi.org/10.1111/acfi. 12567
Álvarez-Botas, C., & González, V. M. (2021)。Institutions, banking structure and the cost of debt:New international evidence.Accounting and Finance, 61(1), 265-303. https://doi.org/10.1111/acfi.12567

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277-297. https://doi. org/10.2307/2297968
Arellano, M., & Bond, S. (1991).Some tests of specification for panel data:Monte Carlo evidence and an application to employment equations.The Review of Economic Studies, 58(2), 277-297. https://doi. org/10.2307/2297968

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29-51. https://doi.org/10.1016/0304-4076(94) 01642-D
Arellano, M., & Bover, O. (1995).Another look at the instrumental variable estimation of error-components models.Journal of Econometrics, 68(1), 29-51. https://doi.org/10.1016/0304-4076(94) 01642-D

Arena, M. P. (2018). Corporate litigation and debt. Journal of Banking and Finance, 87, 202-215. https:// doi.org/10.1016/j.jbankfin.2017.10.005
Arena, M. P. (2018).Corporate litigation and debt.银行与金融期刊》,87,202-215。https:// doi.org/10.1016/j.jbankfin.2017.10.005

Bae, K. H., & Goyal, V. K. (2009). Creditor rights, enforcement, and bank loans. Journal of Finance, 64(2), 823-860. https://doi.org/10.1111/j.1540-6261.2009.01450.x
Bae, K. H., & Goyal, V. K. (2009).Creditor rights, enforcement, and bank loans.Journal of Finance, 64(2), 823-860. https://doi.org/10.1111/j.1540-6261.2009.01450.x

Bastos, R., & Pindado, J. (2007). An agency model to explain trade credit policy and empirical evidence. Applied Economics, 39(20), 2631-2642. https://doi.org/10.1080/00036840600722232
Bastos, R., & Pindado, J. (2007).解释贸易信贷政策的代理模式和经验证据。应用经济学》,39(20),2631-2642。https://doi.org/10.1080/00036840600722232。

Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2007). Credit chains and bankruptcy propagation in production networks. Journal of Economic Dynamics and Control, 31(6), 2061-2084. https://doi.org/10.1016/j.jedc.2007.01.004
Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2007).生产网络中的信用链和破产传播。Journal of Economic Dynamics and Control, 31(6), 2061-2084. https://doi.org/10.1016/j.jedc.2007.01.004

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. http://refhub.elsevier.com/S2214-8450(23)00086-8/ sref25
Blundell, R., & Bond, S. (1998).Initial conditions and moment restrictions in dynamic panel data models.Journal of Econometrics, 87(1), 115-143. http://refhub.elsevier.com/S2214-8450(23)00086-8/ sref25

Boissay, F. (2006). Credit chains and the propagation of financial distress. ECB Working paper No. 573. https://doi.org/10.2139/ssrn. 872543
Boissay, F. (2006).Credit chains and the propagation of financial distress.ECB Working paper No. 573. https://doi.org/10.2139/ssrn.872543

Boissay, F. & Gropp, R.(2013). Payment defaults and interfirm liquidity provision. Review of Finance, 17(6), 1853-1894. https://doi.org/10.1093/rof/rfs045
Boissay, F. & Gropp, R.(2013 年)。支付违约与公司间流动性供应。金融评论》,17(6),1853-1894。https://doi.org/10.1093/rof/rfs045。

Box, T., Davis, R., Hill, M., & Lawrey, C. (2018). Operating performance and aggressive trade credit policies. Journal of Banking and Finance, 89, 192-208. https://doi.org/10.1016/j.jbankfin.2018.02.011
Box, T., Davis, R., Hill, M., & Lawrey, C. (2018)。经营业绩与积极的贸易信贷政策》。银行与金融期刊》,89, 192-208. https://doi.org/10.1016/j.jbankfin.2018.02.011
Božović, M. (2021). Judicial efficiency and loan performance: micro evidence from Serbia. European Journal of Law and Economics, 1-24. https://doi.org/10.1007/s10657-021-09696-4
Božović, M. (2021).Judicial efficiency and loan performance: micro evidence from Serbia.European Journal of Law and Economics, 1-24. https://doi.org/10.1007/s10657-021-09696-4

Bradley, S. W., & Klein, P. (2016). Institutions, economic freedom, and entrepreneurship: The contribution of management scholarship. Academy of Management Perspectives, 30(3), 211-221. https://doi. org/10.5465/amp.2013.0137
Bradley, S. W., & Klein, P. (2016).Institutions, economic freedom, and entrepreneurship:管理学术的贡献》。Academy of Management Perspectives, 30(3), 211-221. https://doi. org/10.5465/amp.2013.0137

Bussoli, C., & Marino, F. (2018). Trade credit in times of crisis: Evidence from European SMEs. Journal of Small Business and Enterprise Development., 25(2), 277-293. https://doi.org/10.1108/ JSBED-08-2017-0249
Bussoli, C., & Marino, F. (2018)。危机时期的贸易信贷:欧洲中小型企业的证据。小型企业与企业发展期刊》,25(2),277-293。https://doi.org/10.1108/ JSBED-08-2017-0249

Canto-Cuevas, F. J., Palacín-Sánchez, M. J., & Di Pietro, F. (2019). Trade credit as a sustainable resource during an SME’s life cycle. Sustainability, 11 (3), 670. https://doi.org/10.3390/su11030670
Canto-Cuevas, F. J., Palacín-Sánchez, M. J., & Di Pietro, F. (2019)。贸易信贷作为中小企业生命周期中的可持续资源。https://doi.org/10.3390/su11030670

Chen, F., Chen, X., Tan, W., & Zheng, L. (2020). Religiosity and cross-country differences in trade credit use. Accounting and Finance, 60, 909-941. https://doi.org/10.1111/acfi. 12389
Chen, F., Chen, X., Tan, W., & Zheng, L. (2020)。宗教信仰与贸易信贷使用的跨国差异。https://doi.org/10.1111/acfi.12389

Chen, H., Huang, H. H., Lobo, G. J., & Wang, C. (2016). Religiosity and the cost of debt. Journal of Banking & Finance, 70, 70-85. https://doi.org/10.1016/j.jbankfin.2016.06.005
Chen, H., Huang, H. H., Lobo, G. J., & Wang, C. (2016)。宗教信仰与债务成本》。Journal of Banking & Finance, 70, 70-85. https://doi.org/10.1016/j.jbankfin.2016.06.005

Cheung, A. W. & Pok, W. C., (2019). Corporate social responsibility and provision of trade credit. Journal of Contemporary Accounting and Economics, 100159. https://doi.org/10.1016/j.jcae.2019. 100159
Cheung, A. W. & Pok, W. C., (2019).企业社会责任与贸易信贷的提供。当代会计与经济学杂志》,100159。https://doi.org/10.1016/j.jcae.2019。100159

Chui, A. C., Kwok, C. C., & Zhou, G. S. (2016). National culture and the cost of debt. Journal of Banking and Finance, 69, 1-19. https://doi.org/10.1016/j.jbankfin.2016.04.001
Chui, A. C., Kwok, C. C., & Zhou, G. S. (2016).民族文化与债务成本》。Journal of Banking and Finance, 69, 1-19. https://doi.org/10.1016/j.jbankfin.2016.04.001

Costello, A. M. (2020). Credit market disruptions and liquidity spillover effects in the supply chain. Journal of Political Economy, 128(9), 3434-3468. https://doi.org/10.1086/708736
Costello, A. M. (2020).供应链中的信贷市场混乱和流动性溢出效应》。Journal of Political Economy, 128(9), 3434-3468. https://doi.org/10.1086/708736

Cuñat, V. (2007). Trade credit: Suppliers as debt collectors and insurance providers. Review of Financial Studies, 20(2), 491-527. https://doi.org/10.1093/rfs/hhl015
Cuñat, V. (2007).Trade credit: Suppliers as debt collectors and insurance providers.金融研究评论》,20(2),491-527。https://doi.org/10.1093/rfs/hhl015。

Dary, S. K., & James, H. S, Jr. (2020). Trade credit contracts, theories and their applications: A synthesis of the literature. Ghana Journal of Development Studies, 17(1), 86-91. https://doi.org/10.4314/gjds. v17i1.4
Dary, S. K., & James, H. S, Jr. (2020).贸易信贷合同、理论及其应用:Ghana Journal of Development Studies, 17(1), 86-91.加纳发展研究期刊》,17(1),86-91。https://doi.org/10.4314/gjds. v17i1.4

Demirgüç-Kunt, A. & Maksimovic V., (2001). Firms as financial intermediaries: Evidence from trade credit data, Policy Research Working Paper; No. 2696. World Bank. https://doi.org/10.1596/ 1813-9450-2696
Demirgüç-Kunt, A. & Maksimovic V., (2001).Firms as financial intermediaries:Evidence from trade credit data, Policy Research Working Paper; No.世界银行。https://doi.org/10.1596/ 1813-9450-2696

Directive 2000/25/CE-Directive 2000/35/EC of the European Parliament and of the Council of 29 June 2000 on combating late payment in commercial transactions.
第 2000/25/CE 号指令--2000 年 6 月 29 日欧洲议会和欧洲理事会关于打击商业交易中逾期付款的第 2000/35/EC 号指令。

Directive 2011/7/UE-Directive 2011/7/EU of the European Parliament and of the Council of 16 February 2011 on combating late payment in commercial transactions Text with EEA relevance.
第 2011/7/UE 号指令--2011 年 2 月 16 日欧洲议会和欧洲理事会关于打击商业交易中延迟付款的第 2011/7/EU 号指令,文本与欧洲经济区相关。

Djankov, S., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2001). Legal structure and judicial efficiency: The lex mundi project. World Bank.
Djankov, S., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2001).法律结构与司法效率:The lex mundi project.世界银行。

Djankov, S., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2003). Courts. The Quarterly Journal of Economics, 118(2), 453-517. https://doi.org/10.1162/003355303321675437
Djankov, S., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2003).法院。经济学季刊》,118(2),453-517。https://doi.org/10.1162/003355303321675437。

Elsilä, A. (2015). Trade credit risk management: The role of executive risk-taking incentives. Journal of Business Finance & Accounting, 42(9-10), 1188-1215. https://doi.org/10.1111/jbfa. 12130
Elsilä, A. (2015).贸易信贷风险管理:高管风险承担激励的作用。Journal of Business Finance & Accounting, 42(9-10), 1188-1215. https://doi.org/10.1111/jbfa.12130

Emery, G. W. (1984). A pure financial explanation for trade credit. Journal of financial and quantitative analysis. Anal, 19(3), 271-285. https://doi.org/10.2307/2331090
Emery, G. W. (1984).A pure financial explanation for trade credit.Journal of financial and quantitative analysis.Anal, 19(3), 271-285. https://doi.org/10.2307/2331090

El Ghoul, S., & Zheng, X. (2016). Trade credit provision and national culture. Journal of Corporate Finance, 41, 475-501. https://doi.org/10.1016/j.jcorpfin.2016.07.002
El Ghoul, S., & Zheng, X. (2016)。贸易信贷提供与民族文化。Journal of Corporate Finance, 41, 475-501. https://doi.org/10.1016/j.jcorpfin.2016.07.002

Fabbri, D., & Menichini, A. M. C. (2010). Trade credit, collateral liquidation, and borrowing constraints. Journal of Financial Economics, 96(3), 413-432. https://doi.org/10.1016/j.jfineco.2010.02.010
Fabbri, D., & Menichini, A. M. C. (2010).Trade credit, collateral liquidation, and borrowing constraints.Journal of Financial Economics, 96(3), 413-432. https://doi.org/10.1016/j.jfineco.2010.02.010

Fabbri, D. (2010). Law enforcement and firm financing: Theory and evidence. Journal of the European Economic Association, 8(4), 776-816. https://doi.org/10.1111/j.1542-4774.2010.tb00540.x
Fabbri, D. (2010).执法与公司融资:理论与证据》。Journal of the European Economic Association, 8(4), 776-816. https://doi.org/10.1111/j.1542-4774.2010.tb00540.x

Galli, E., Mascia, D. V. & Rossi, S. P. (2017). Legal-Institutional Environment, Social Capital and the Cost of Bank Financing for SMEs: Evidence from the Euro Area. In Access to Bank Credit and SME Financing (pp. 59-81). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-41363-1_3
Galli, E., Mascia, D. V. & Rossi, S. P. (2017).Legal-Institutional Environment, Social Capital and the Cost of Bank Financing for SMEs: Evidence from the Euro Area.In Access to Bank Credit and SME Financing (pp. 59-81).Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-41363-1_3

García-Teruel, P. J., & Martínez-Solano, P. (2010a). Determinants of trade credit: A comparative study of European SMEs. International Small Business Journal., 28(3), 215-233. https://doi.org/10.1177/ 0266242609360603
García-Teruel, P. J., & Martínez-Solano, P. (2010a)。贸易信贷的决定因素:欧洲中小企业比较研究》。国际小型企业杂志》,28(3),215-233。https://doi.org/10.1177/ 0266242609360603

García-Teruel, P. J., & Martínez-Solano, P. (2010b). A dynamic approach to accounts receivable: A study of Spanish SMEs. European Financial Management., 16(3), 400-421. https://doi.org/10.1111/j. 1468-036X.2008.00461.x
García-Teruel, P. J., & Martínez-Solano, P. (2010b)。应收账款动态处理法:西班牙中小企业研究。欧洲财务管理》,16(3),400-421。https://doi.org/10.1111/j.1468-036X.2008.00461.x
Grau, A., & Reig, A. (2014). Efectos de la crisis en el crédito comercial concedido y relevancia de la diversificación de la actividad. Revista Europea De Dirección y Economía De La Empresa, 23(4), 194-204. https://doi.org/10.1016/j.redee.2014.09.001
Grau, A., & Reig, A. (2014)。Efectos de la crisis en el crédito comercial concedido y relevancia de la diversificación de la actividad.Revista Europea De Dirección y Economía De La Empresa, 23(4), 194-204. https://doi.org/10.1016/j.redee.2014.09.001

Grau, A. J. & Reig, A., (2018). Trade credit and determinants of profitability in Europe. The case of the agri-food industry. International Business Review, 27(5), 947-957. https://doi.org/10.1016/j.ibusrev. 2018.02.005
Grau, A. J. & Reig, A., (2018).欧洲贸易信贷与盈利能力的决定因素。农业食品行业案例。国际商业评论》,27(5),947-957。https://doi.org/10.1016/j.ibusrev. 2018.02.005
Greif, A., Milgrom, P., & Weingast, B. R. (1994). Coordination, commitment, and enforcement: The case of the merchant guild. Journal of Political Economy, 102(4), 745-776. https://doi.org/10.1086/ 261953
Greif, A., Milgrom, P., & Weingast, B. R. (1994).协调、承诺和执行:The case of the merchant guild.政治经济学杂志》,102(4),745-776。https://doi.org/10.1086/ 261953

Grossman, S. J., & Hart, O. D. (1986). The costs and benefits of ownership: A theory of vertical and lateral integration. Journal of Political Economy, 94(4), 691-697. https://doi.org/10.1086/261404
Grossman, S. J., & Hart, O. D. (1986).所有权的成本与收益:A theory of vertical and lateral integration.政治经济学杂志》,94(4),691-697。https://doi.org/10.1086/261404。

Hart, O. (1995). Firms, contracts, and financial structure. Clarendon press.
Hart, O. (1995).Firms, contracts, and financial structure.Clarendon press.

Hart, O., & Moore, J. (1999). Foundations of incomplete contracts. The Review of Economic Studies, 66(1), 115-138. https://doi.org/10.1111/1467-937X. 00080
Hart, O., & Moore, J. (1999).Foundations of incomplete contracts.经济研究评论》,66(1),115-138。https://doi.org/10.1111/1467-937X。00080

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 1251-1271. https://doi.org/10. 2307/1913827
Hausman, J. A. (1978).Specification tests in economicometrics.Econometrica, 1251-1271. https://doi.org/10.2307/1913827

Hsiao, C. (1985). Benefits and limitations of panel data. Econometric Reviews, 4(1), 121-174. https://doi. org/10.1080/07474938508800078
Hsiao, C. (1985).Econometric Reviews, 4(1), 121-174.Econometric Reviews, 4(1), 121-174. https://doi. org/10.1080/07474938508800078

International Monetary Fund. (2019). Towards a Framework for Reporting Trade Finance: Pilot Survey Resultsand How to Move Forward. The thirty-second meeting of the IMF Committee on Balance of Payments Statistics (BOPCOM 19/06).
国际货币基金组织。(2019).Towards a Framework for Reporting Trade Finance:Towards a Framework for Reporting Trade Finance: Pilot Survey Resultsand How to Move Forward.国际货币基金组织国际收支统计委员会第三十二次会议(BOPCOM 19/06)。

Jackson, S. B., & Liu, X. (2010). The allowance for uncollectible accounts, conservatism, and earnings management. Journal of Accounting Research., 48(3), 565-601. https://doi.org/10.1111/j.1475679X.2009.00364.x
Jackson, S. B., & Liu, X. (2010).未收账款备抵、保守主义与收益管理》。Journal of Accounting Research., 48(3), 565-601. https://doi.org/10.1111/j.1475679X.2009.00364.x

Jacobson, T., & Von Schedvin, E. (2015). Trade credit and the propagation of corporate failure: An empirical analysis. Econometrica, 83(4), 1315-1371. https://doi.org/10.3982/ECTA12148
Jacobson, T., & Von Schedvin, E. (2015).Trade credit and the propagation of corporate failure:An empirical analysis.Econometrica, 83(4), 1315-1371. https://doi.org/10.3982/ECTA12148

Jappelli, T., Pagano, M. & Bianco, M., (2005). Courts and banks: Effects of judicial enforcement on credit markets. Journal of Money, Credit and Banking, 223-244. https://www.jstor.org/stable/38389 25
Jappelli, T., Pagano, M. & Bianco, M., (2005).Courts and banks:法院与银行:司法执行对信贷市场的影响》。Journal of Money, Credit and Banking, 223-244. https://www.jstor.org/stable/38389 25

Johnson, S., McMillan, J., & Woodruff, C. (2002). Courts and relational contracts. Journal of Law, Economics, and Organization, 18(1), 221-277. https://doi.org/10.1093/jleo/18.1.221
Johnson, S., McMillan, J., & Woodruff, C. (2002).Courts and relational contracts.Journal of Law, Economics, and Organization, 18(1), 221-277. https://doi.org/10.1093/jleo/18.1.221

Kaufmann, D., Kraay, A., & Mastruzzi, M. (2010). The Worldwide Governance Indicators: Methodology and Analytical Issues. World Bank Policy Research Working Paper No. 5430. Available at: http:// papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130
Kaufmann, D., Kraay, A., & Mastruzzi, M. (2010).The Worldwide Governance Indicators:The Worldwide Governance Indicators: Methodology and Analytical Issues.世界银行政策研究工作文件第 5430 号。见:http:// papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130

Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105(2), 211-248.
Kiyotaki, N., & Moore, J. (1997).Credit cycles.Journal of Political Economy, 105(2), 211-248.

La Porta, R., Lopez-de-Silanes, F., Shleifer, A., & Vishny, R. W. (1997). Legal determinants of external finance. Journal of Finance, 52(3), 1131-1150. https://doi.org/10.1111/j.1540-6261.1997.tb02727.x
La Porta, R., Lopez-de-Silanes, F., Shleifer, A., & Vishny, R. W. (1997).外部融资的法律决定因素。Journal of Finance, 52(3), 1131-1150. https://doi.org/10.1111/j.1540-6261.1997.tb02727.x

Long, M. S., Malitz, I. B., & Ravid, S. A. (1993). Trade credit, quality guarantees, and product marketability. Financial Management, 22(4), 117-127. https://doi.org/10.2307/3665582
Long, M. S., Malitz, I. B., & Ravid, S. A. (1993).贸易信贷、质量保证和产品适销性。Financial Management, 22(4), 117-127. https://doi.org/10.2307/3665582

La Porta, R., Lopez-de-Silanes, F., Shleifer, A., & Vishny, R. W. (1998). Law and finance. Journal of Political Economy, 106(6), 1113-1155. https://doi.org/10.1086/250042
La Porta, R., Lopez-de-Silanes, F., Shleifer, A., & Vishny, R. W. (1998).Law and finance.Journal of Political Economy, 106(6), 1113-1155. https://doi.org/10.1086/250042

Li, Y., Zhou, M., Du, Y., & Zhao, W. (2018). Legal system and trade credit: Evidence from emerging economies. Emerging Markets Finance and Trade, 54(10), 2207-2224. https://doi.org/10.1080/ 1540496X.2018.1460271
Li, Y., Zhou, M., Du, Y., & Zhao, W. (2018).法律体系与贸易信贷:来自新兴经济体的证据》。新兴市场金融与贸易》,54(10),2207-2224。https://doi.org/10.1080/ 1540496X.2018.1460271

Lin, T. T., & Chou, J. H. (2015). Trade credit and bank loan: Evidence from Chinese firms. International Review of Economics and Finance, 36, 17-29. https://doi.org/10.1016/j.iref.2014.11.004
Lin, T. T., & Chou, J. H. (2015).贸易信贷与银行贷款:来自中国企业的证据。International Review of Economics and Finance, 36, 17-29. https://doi.org/10.1016/j.iref.2014.11.004

Machokoto, M., Gyimah, D., & Ibrahim, B. M. (2022). The evolution of trade credit: New evidence from developed versus developing countries. Review of Quantitative Finance and Accounting., 59(3), 857-912.
Machokoto, M., Gyimah, D., & Ibrahim, B. M. (2022)。The evolution of trade credit: New evidence from developed versus developing countries.Review of Quantitative Finance and Accounting.,59(3),857-912。

Mateos-Planas, X. & Seccia, G. (2021). Trade credit default. Working Paper CFM, Centre for Macroeconomics.
Mateos-Planas, X. & Seccia, G. (2021)。Trade credit default.Working Paper CFM, Centre for Macroeconomics.

Mättö, M., & Niskanen, M. (2019). Religion, national culture and cross-country differences in the use of trade credit. International Journal of Managerial Finance, 15(3), 350-370. https://doi.org/10.1108/ IJMF-06-2018-0172
Mättö, M., & Niskanen, M. (2019)。宗教、民族文化与贸易信贷使用的跨国差异。国际管理金融期刊》,15(3),350-370。https://doi.org/10.1108/ IJMF-06-2018-0172

Meng, Y., & Yin, C. (2019). Trust and the cost of debt financing. Journal of International Financial Markets, Institutions and Money, 59, 58-73. https://doi.org/10.1016/j.intfin.2018.11.009
Meng, Y., & Yin, C. (2019)。信任与债务融资成本》。国际金融市场、机构和货币期刊》,59,58-73。https://doi.org/10.1016/j.intfin.2018.11.009。
Molina, C. A., & Preve, L. A. (2009). Trade receivables policy of distressed firms and its effect on the costs of financial distress. Financial Management, 38(3), 663-686. https://doi.org/10.1111/j.1755053X.2009.01051.x
Molina, C. A., & Preve, L. A. (2009).困境企业的贸易应收账款政策及其对财务困境成本的影响》。Financial Management, 38(3), 663-686. https://doi.org/10.1111/j.1755053X.2009.01051.x

Mora-Sanguinetti, J. S. (2013). El funcionamiento del sistema judicial: nueva evidencia comparada. Boletín Económico, Banco de España, Noviembre.
Mora-Sanguinetti, J. S. (2013).El funcionamiento del sistema judicial: nueva evidencia comparada.Boletín Económico, Banco de España, Noviembre.

Moro, A., Maresch, D., & Ferrando, A. (2018). Creditor protection, judicial enforcement and credit access. The European Journal of Finance, 24(3), 250-281. https://doi.org/10.1080/1351847X. 2016. 1216871
Moro, A., Maresch, D., & Ferrando, A. (2018)。债权人保护、司法执行和信贷准入。The European Journal of Finance, 24(3), 250-281. https://doi.org/10.1080/1351847X.2016.1216871

Nguyen, L., & Nguyen, K. (2022). Corporate social responsibility, trade credit provision and doubtful accounts receivable: The case in China. Social Responsibility Journal, 18(7), 1378-1390. https:// doi.org/10.1108/SRJ-05-2021-0207
Nguyen, L., & Nguyen, K. (2022)。企业社会责任、贸易信贷拨备和可疑应收账款:中国案例。社会责任期刊》,18(7),1378-1390。https:// doi.org/10.1108/SRJ-05-2021-0207

Oh, S., & Kim, W. S. (2016). Growth opportunities and trade credit: Evidence from Chinese listed firms. Applied Economics, 48(56), 5437-5447. https://doi.org/10.1080/00036846.2016.1178846
Oh, S., & Kim, W. S. (2016).Growth opportunities and trade credit: Evidence from Chinese listed firms.Applied Economics, 48(56), 5437-5447. https://doi.org/10.1080/00036846.2016.1178846

Pagano, M., & Jappelli, T. (1993). Information sharing in credit markets. Journal of Finance, 48(5), 1693-1718. https://doi.org/10.2307/2329064
Pagano, M., & Jappelli, T. (1993).信贷市场的信息共享。Journal of Finance, 48(5), 1693-1718. https://doi.org/10.2307/2329064

Petersen, M., & Rajan, R. (1997). Trade credit: Theories and evidence. The Review of Financial Studies, 10(3), 661-691. https://doi.org/10.1093/rfs/10.3.661
Petersen, M., & Rajan, R. (1997).Trade credit: Theories and evidence.The Review of Financial Studies, 10(3), 661-691. https://doi.org/10.1093/rfs/10.3.661

Rajan, R. G., & Zingales, L. (1995). What do we know about capital structure? Some evidence from international data. Journal of Finance, 50(5), 1421-1460. https://doi.org/10.1111/j.1540-6261.1995. tb05184.x
Rajan, R. G., & Zingales, L. (1995).What do we know about capital structure?来自国际数据的一些证据。金融杂志》,50(5),1421-1460。https://doi.org/10.1111/j.1540-6261.1995. tb05184.x

Sartoris, W., & Hill, N. (1981). Evaluating credit policy alternatives: A present value framework. Journal of Financial Research., 4(1), 81-89. https://doi.org/10.1111/j.1475-6803.1981.tb00292.x
Sartoris, W., & Hill, N. (1981).Evaluating credit policy alternatives:A present value framework.Journal of Financial Research., 4(1), 81-89. https://doi.org/10.1111/j.1475-6803.1981.tb00292.x

Shah, A., Shah, H. A., Smith, J. M., & Labianca, G. J. (2017). Judicial efficiency and capital structure: An international study. Journal of Corporate Finance, 44, 255-274. https://doi.org/10.1016/j.jcorp fin.2017.03.012
Shah, A., Shah, H. A., Smith, J. M., & Labianca, G. J. (2017).司法效率与资本结构:一项国际研究。Journal of Corporate Finance, 44, 255-274. https://doi.org/10.1016/j.jcorp fin.2017.03.012

Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. American Economic Review, 71(3), 393-410.
Stiglitz, J. E., & Weiss, A. (1981).Credit rationing in markets with imperfect information.American Economic Review, 71(3), 393-410.

Thornton, P. H., Ribeiro-Soriano, D., & Urbano, D. (2011). Socio-cultural factors and entrepreneurial activity: An overview. International Small Business Journal, 29(2), 105-118. https://doi.org/10. 1177/0266242610391930
Thornton, P. H., Ribeiro-Soriano, D., & Urbano, D. (2011).社会文化因素与创业活动:综述。International Small Business Journal, 29(2), 105-118. https://doi.org/10.1177/0266242610391930

Troya-Martinez, M. (2017). Self-enforcing trade credit. International Journal of Industrial Organization, 52, 333-357. https://doi.org/10.1016/j.ijindorg.2017.03.001
Troya-Martinez, M. (2017).自我强化的贸易信贷。International Journal of Industrial Organization, 52, 333-357. https://doi.org/10.1016/j.ijindorg.2017.03.001

Wang, K., Zhao, R., & Peng, J. (2018). Trade credit contracting under asymmetric credit default risk: Screening, checking or insurance. European Journal of Operational Research., 266(2), 554-568. https://doi.org/10.1016/j.ejor.2017.10.004
Wang, K., Zhao, R., & Peng, J. (2018)。不对称信用违约风险下的贸易信用契约:筛选、检查或保险。欧洲运筹学报》,266(2),554-568。https://doi.org/10.1016/j.ejor.2017.10.004。

World Bank. (2013). Smarter Regulations for Small and Medium-Size Enterprises. Co-publication of The World Bank and The International Finance Corporation and available on https://www.doingbusin ess.org/reports/, http://www.doingbusiness.org/data
《世界银行。(2013).更明智的中小型企业监管》。世界银行和国际金融公司联合出版,可查阅 https://www.doingbusin ess.org/reports/,http://www.doingbusiness.org/data。

Wilner, B. S. (2000). The exploitation of relationships in financial distress: The case of trade credit. Journal of Finance, 55(1), 153-178. https://doi.org/10.1111/0022-1082.00203
Wilner, B. S. (2000).The exploitation of relationships in financial distress:The exploitation of relationships in financial distress: The case of trade credit.Journal of Finance, 55(1), 153-178. https://doi.org/10.1111/0022-1082.00203

Wu, W., Firth, M., & Rui, O. M. (2014). Trust and the provision of trade credit. Journal of Banking and Finance, 39, 146-159. https://doi.org/10.1016/j.jbankfin.2013.11.019
Wu, W., Firth, M., & Rui, O. M. (2014)。信任与贸易信贷的提供。Journal of Banking and Finance, 39, 146-159. https://doi.org/10.1016/j.jbankfin.2013.11.019
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商注释 施普林格-自然对出版地图中的管辖权主张和机构隶属关系保持中立。

  1. Judicial efficiency and trade credit in the eurozone. Robustness analysis.
    欧元区的司法效率和贸易信贷。稳健性分析。

    Panel A and B: This table presents the estimation results of fixed effects panel regressions for models 5, 6 and 7, GMM in model 8, Tobit in model 9 and multilevel regression in Model 10. Dependent variable in Models 5A and 5B is receivables/assets. Dur: Duration; ROL: Rule of Law. Variable description in Table 7 of the appendix. *, **, ***: significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% and 1 % 1 % 1%1 \%, respectively.
    面板 A 和面板 B:本表显示模型 5、6 和 7 的固定效应面板回归、模型 8 的 GMM、模型 9 的 Tobit 和模型 10 的多层次回归的估计结果。模型 5A 和 5B 的因变量为应收账款/资产。Dur:Duration:持续时间;ROL:法治。附录表 7 中的变量说明。*、**、***:分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% 1 % 1 % 1%1 \% 时显著。
    Panel C and D: This table presents the estimation results of fixed effects panel regressions for models 5, 6 and 7, GMM in model 8, Tobit in model 9 and multilevel regression in Model 10. Dependent variable in Models 5C and 5D is doubtful account/sales. Dur: Duration; ROL: Rule of Law. Variable description in Table 7 of the appendix. In model 8D the efficiency variable is included as logarithm. , , ^(**)^(****),^(******){ }^{*}{ }^{* *},{ }^{* * *} : significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% and 1 % 1 % 1%1 \%, respectively.
    面板 C 和 D:本表显示了模型 5、6 和 7 的固定效应面板回归、模型 8 的 GMM、模型 9 的 Tobit 和模型 10 的多层次回归的估计结果。模型 5C 和 5D 的因变量为呆账/销售额。Dur:Duration:持续时间;ROL:法治。变量说明见附录表 7。在模型 8D 中,效率变量包含对数。 , , ^(**)^(****),^(******){ }^{*}{ }^{* *},{ }^{* * *} :分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% 1 % 1 % 1%1 \% 时显著。
  2. 9 9 ^(9){ }^{9} In addition, we have re-estimated the models with doubtful receivables to total assets (Nguyen and Nguyen, 2022). The results (unreported) are similar.
    9 9 ^(9){ }^{9} 此外,我们还重新估计了可疑应收账款与总资产的模型(Nguyen 和 Nguyen,2022 年)。结果(未报告)类似。
  3. 10 10 ^(10){ }^{10} The authors thank to anonymous reviewers their suggestion about the robustness Tobit and Multilevel.
    10 10 ^(10){ }^{10} 作者感谢匿名审稿人关于 Tobit 和多层次稳健性的建议。
  4. Sources All accounting data of the firms, as well as the age, year, sector and GDP are extracted from OSIRIS database
    资料来源 企业的所有会计数据以及企业的年龄、年份、行业和国内生产总值均来自 OSIRIS 数据库。

    Duration are obtained from Doing Business database available at: https://archive.doingbusiness.org/en/ data/exploretopics/enforcing-contracts
    时间取自营商环境数据库,网址为:https://archive.doingbusiness.org/en/ data/exploretopics/enforcing-contracts

    Rule of law is extracted from World Bank’s WGI database available at: https://databank.worldbank.org/ databases/rule-of-law
    法治摘自世界银行的 WGI 数据库,网址为:https://databank.worldbank.org/ databases/rule-of-law
  5. Variable description in Table 7 of the appendix. , , , , ^(**),^(****),^(******){ }^{*},{ }^{* *},{ }^{* * *} : significant at 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% and 1 % 1 % 1%1 \%, respectively.
    变量说明见附录表 7。 , , , , ^(**),^(****),^(******){ }^{*},{ }^{* *},{ }^{* * *} :分别在 10 % , 5 % 10 % , 5 % 10%,5%10 \%, 5 \% 1 % 1 % 1%1 \% 时显著。