Data availability 数据可用性
文章中描述的研究未使用任何数据。
Fig. 1. Water binding properties of PEG in comparison to a zwitterionic sulfobetaine substructure; one zwitterionic unit can bind 7-8 water molecules, whereas one ethylene glycol unit can bind just one water molecule; adapted with permission from Wu et al. [11].
图 1. PEG 与两性离子磺基甜菜碱亚结构的水结合性质比较;一个两性离子单元可以结合 7-8 个水分子,而一个乙二醇单元只能结合一个水分子;经 Wu 等人许可改编[11]。
Table 1. Comparison of the bio-/mucoinert properties of NCs with zwitterionic and PEG/poloxamer surface.
表 1. 比较 NCs 与两性离子和 PEG/泊洛沙姆表面的生物/疏水性。
Type of NC 类型 NC | Surface decorations 表面装饰 | Bio-/mucoinert properties 生物/μ-共轭特性 | Reference 参考文献 |
---|---|---|---|
Zwitterionic surfaces providing higher bio-/mucoinert properties than PEG surfaces 两性离子表面提供比聚乙二醇表面更高的生物/疏水性 | |||
Polymeric nanoparticles 聚合物纳米颗粒 | Zwitterionic surface: Polystyrene latex (PS) particles with poly(sulfobetaine)methacrylate (polySBMA) 两性离子表面:聚苯乙烯乳胶(PS)颗粒与聚(磺基甜菜碱)甲基丙烯酸甲酯(polySBMA) PEG surface: PS particles with 5 kDa PEG 聚乙二醇表面:5 kDa 聚乙二醇 PS 粒子 | Faster mucus penetration with polySBMA-PS, similar stability within protein solution 聚 SBMA-PS 使粘液渗透更快,在蛋白溶液中稳定性相似 | [28] |
Zwitterionic surface: Gold nanoparticles with poly(carboxybetaine acrylamide) (polyCBAA) 两性离子表面:聚(羧基甜菜碱丙烯酰胺)(聚 CBAA)金纳米粒子 PEG surface: Gold nanoparticles coated with 5 kDa PEG 聚乙二醇表面:5 kDa 聚乙二醇包覆的金纳米粒子 | PolyCBAA NCs showed lower interaction with proteins PolyCBAA NCs 与蛋白质的相互作用较低 | [29] | |
Polymeric micelles/nanogels 聚合物胶束/纳米凝胶 | Zwitterionic surface: 1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) with polycarboxybetaine (PCB) of 5 kDa 两性离子表面:1,2-二硬脂酰基-sn-甘露醇-3-磷酸乙醇胺(DSPE)与 5 kDa 的多羧基甜菜碱(PCB) PEG surface: Polysorbate 80 containing PEG with unspecified chain length 聚乙二醇表面:含有未指定链长的聚乙二醇 80 | Zwitterionic PCB particles diffuse 5-fold faster than PEG particles 两性离子 PCB 颗粒比 PEG 颗粒扩散速度快 5 倍 | [19] |
Polymeric micelles 聚合物胶束 | Zwitterionic surface: Poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA) 两性离子表面:聚[2-(N-氧化物-N,N-二乙基氨基)乙基甲基丙烯酸酯](OPDEA) PEG surface: 5 kDa PEG 聚乙二醇表面:5 kDa 聚乙二醇 | 3-fold higher permeability for OPDEA- poly(ε-caprolactone) micelles 3 倍更高的 OPDEA-聚(ε-己内酯)胶束渗透率 | [30] |
Model test with grafted poly(ether sulfone) (PES) membrane 模型测试与嫁接的聚醚砜(PES)膜 | Zwitterionic surface: [2-(Acryloyloxy)ethyl]trimethylammonium chloride 两性离子表面:[2-(丙烯氧基)乙基]三甲基氯化铵 PEG surface: PEG-22 聚乙二醇表面:PEG-22 | Zwitterionic surface displayed the lowest binding affinity to mucus 两性离子表面显示出对粘液的最低结合亲和力 | [31] |
Zwitterionic and PEG/poloxamer surfaces providing similar bio-/mucoinert properties 两性离子和 PEG/泊洛沙姆表面提供相似的生物/粘蛋白惰性特性 | |||
Liposomes 脂质体 | Zwitterionic surface: Poly(carboxybetaine) (PCB) 两性离子表面:聚(羧基甜菜碱)(PCB) PEG surface: 5 kDa PEG 聚乙二醇表面:5 kDa 聚乙二醇 | Similar in vivo characteristics, higher stability provided by zwitterionic surface 与体内特性相似,两性离子表面提供了更高的稳定性 | [32] |
Liposomes and polymeric nanoparticles 脂质体和聚合物纳米颗粒 | Zwitterionic surface: Liposomes containing 1,2-dioleoyl-sn-glycero-3-phosphocholine 两亲表面:含有 1,2-二油酰基-sn-甘油-3-磷酸胆碱的脂质体 PEG surface: Latex particles coated with PEG (no specified chain length) 聚乙二醇表面:涂覆有聚乙二醇(未指定链长)的乳胶颗粒 | Similar diffusion behaviour of both particles in matrigel; however, PEG coated particles were 7-fold larger in size 两种粒子在 Matrigel 中的相似扩散行为;然而,PEG 包覆的粒子大小是未包覆粒子的 7 倍 | [33] |
Polymeric nanoparticles 聚合物纳米颗粒 | Zwitterionic surface: dilauroyl phosphatidylcholine (DLPC) 两性离子表面:二硬脂酰磷脂酰胆碱(DLPC) PEG surface: Pluronic F127 聚乙二醇表面:泊洛沙姆 F127 | Zwitterionic surface showed similar mucus permeation but a 3.17-fold higher uptake for DLPC nanoparticles 两性离子表面显示出相似的粘液渗透性,但对 DLPC 纳米粒子的吸收量高出 3.17 倍。 | [34] |
Zwitterionic surface: Polydopamine 两性离子表面:聚多巴胺 PEG surface: Pluronic F127 聚乙二醇表面:泊洛沙姆 F127 | Similar mucus penetrability, cellular uptake enhanced for zwitterionic surface 相似粘液渗透性,两性离子表面增强细胞摄取 | [35] | |
Zwitterionic surface with PEG: Cationic octa-arginine (R8) peptide and anionic phosphoserine moiety combined with 2 kDa PEG 两性离子表面与 PEG:阳离子八精氨酸(R8)肽和阴离子磷酸丝氨酸基团与 2 kDa PEG 结合 PEG surface: 2 kDa PEG 聚乙二醇表面:2 kDa PEG | Addition of zwitterionic structures to PEG coated PLGA NCs did not improve overall mucus permeability, however, the zwitterionic surface exhibited 3.4-fold higher uptake by mucus-secreting E12 cells 聚乙二醇包覆的 PLGA 纳米晶体中添加两性离子结构并未提高整体粘液通透性,然而,两性离子表面表现出比粘液分泌 E12 细胞 3.4 倍更高的摄取率 | [36] | |
Polyplexes 多聚物 | Zwitterionic surface: Phosphorylcholine-based polymers (PMPC) 两性离子表面:磷酸胆碱基聚合物(PMPC) PEG surface: 5 and 20 kDa linear PEG polyplexes 聚乙二醇表面:5 和 20 kDa 线性聚乙二醇聚复合物 | 20 kDa PEG and PMPC corona exhibited similar protein adsorption blocking, whereas PMPC showed higher cellular uptake in vivo 20 kDa PEG 和 PMPC 冠层表现出相似的蛋白质吸附阻断,而 PMPC 在体内表现出更高的细胞摄取 | [20] |
Silica nanoparticles 二氧化硅纳米颗粒 | Zwitterionic surface: Sulfobetaine 12 (N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate) 两性离子表面:磺基甜菜碱 12(N-十二烷基-N,N-二甲基-3-氨基-1-丙烷磺酸盐) PEG surface: Pluronic P123 聚乙二醇表面:泊洛沙姆 P123 | Similar permeability in porcine intestinal mucus 猪肠道粘液的相似渗透性 | [37] |
PEG surfaces providing higher bio-/mucoinert properties than zwitterionic surfaces 聚乙二醇表面提供比两性离子表面更高的生物/疏水性特性 | |||
Polymeric nanoparticles 聚合物纳米颗粒 | Zwitterionic surface: polyacrylic acid/chitosan 两性离子表面:聚丙烯酸/壳聚糖 PEG surface: 5 kDa mPEG PEG 表面:5 kDa mPEG | NCs with PEG coating showed higher mucus diffusion than zwitterionic NCs 聚乙二醇涂层的 NCs 比两性离子 NCs 表现出更高的粘液扩散性 | [23] |
Liposomes 脂质体 | Zwitterionic surface: 1,2-disteoroyl-sn-glycero-3-phosphatidylcholine (DSPC) 两亲性表面:1,2-二硬脂酰基-sn-甘油-3-磷脂酰胆碱(DSPC) PEG surface with DSPC: 2 kDa PEG 聚乙二醇(PEG)表面与 DSPC:2 kDa PEG | PEGylated liposomes diffused faster in mucus PEG 修饰的脂质体在粘液中扩散更快 | [38] |
Fig. 2. Impact of different surface coatings on bio-/mucoinert and cellular interaction/uptake properties of NCs according to studies discussed within this review. As orally administered NCs exhibiting high bioinert properties do not interact with components of the GI-fluid, they are comparatively more stable, less altered in the GI tract and can reach the absorption membrane to a higher extent. High mucoinert properties guarantee high mucus permeating properties. High cellular interacting and uptake properties are essential to overcome the absorption barrier. In analogy to the biopharmaceutical classification system (BCS) NCs can be divided in four classes (class I = high bio/mucoinert and high cellular interacting/uptake properties; class II = low bio/mucoinert and high cellular interacting/uptake properties; class III = high bio/mucoinert and low cellular interacting/uptake properties; class IV = low bio/mucoinert and low cellular interacting/uptake properties).
图 2. 根据本综述中讨论的研究,不同表面涂层对纳米晶体(NCs)生物/生物惰性和细胞相互作用/摄取特性的影响。口服给药的 NCs 表现出高生物惰性特性,不与胃肠道(GI)流体成分相互作用,因此相对更稳定,在胃肠道中变化较小,并且可以更大幅度地达到吸收膜。高生物惰性特性保证高粘液渗透性。高细胞相互作用和摄取特性对于克服吸收屏障至关重要。与生物药剂学分类系统(BCS)类似,NCs 可以分为四类(I 类=高生物/生物惰性和高细胞相互作用/摄取特性;II 类=低生物/生物惰性和高细胞相互作用/摄取特性;III 类=高生物/生物惰性和低细胞相互作用/摄取特性;IV 类=低生物/生物惰性和低细胞相互作用/摄取特性)。
Fig. 3. Schematic overview over different binding modes resulting in mucoadhesion of NCs. (i) Polymeric chains forming physical entanglements with mucin, (ii) surface groups forming H-bonds with sialic and sulfonic acid residues or with hydroxyl groups of mucus glycoproteins, (iii) ionic interactions of charged NCs with overall negatively charged mucus and (iv) disulfide bond formation of thiolated NCs with cysteine-rich mucus glycoproteins.
图 3. 不同粘附模式导致纳米晶体粘附的示意图。(i)聚合物链与粘蛋白形成物理缠结,(ii)表面基团与唾液酸或磺酸基团形成氢键,或与粘蛋白糖蛋白的羟基形成氢键,(iii)带电纳米晶体与总体带负电的粘液的离子相互作用,以及(iv)巯基化纳米晶体与富含半胱氨酸的粘蛋白糖蛋白形成二硫键。
Table 2. Mucoadhesive polymers used for the design of NCs; representative in vivo studies highlighting the potential of such delivery systems.
表 2. 用于设计纳米载体的粘附性聚合物;突出此类递送系统潜力的代表性体内研究。
Mode of adhesion 粘附方式 | Material 材料 | Mechanism of mucoadhesion 粘附机理 | Representative in vivo studies 代表性体内研究 | References 参考文献 |
---|---|---|---|---|
Entanglements/ H-bonding 纠缠/氢键 | Alginate 褐藻酸盐 | Physical entanglements of the polymer with mucin result in mucoadhesive properties; H-bond formation with mucus glycoproteins 聚合物与粘蛋白的物理交联导致其具有粘附性;与粘液糖蛋白形成氢键 | Intestinal mucoadhesion of alginate coated core-shell chitosan nanoparticles was shown for oral delivery of naringenin 肠粘附的藻酸盐包覆核壳型壳聚糖纳米粒子被用于橙皮苷的口服递送 | [78] |
Carbomer 卡波姆 | Acyclovir-loaded spheres with carbomer as mucoadhesive polymer exhibited prolonged residence time and significantly increased bioavailability compared to acyclovir suspension 阿昔洛韦载药微球以羧甲基纤维素钠为粘附性聚合物,与阿昔洛韦悬浮液相比,表现出更长的滞留时间和显著提高的生物利用度 | [79] | ||
Carboxymethyl cellulose sodium salt 羧甲基纤维素钠盐 | Carboxymethyl cellulose coated gliadin nanoparticles showed increased bioaccessibility of encapsulated phloretin with controlled release behaviour 羧甲基纤维素包覆的大麦醇提取物纳米颗粒提高了包封的儿茶素的可生物利用度,并表现出可控的释放行为 | [80] | ||
Hyaluronic acid 透明质酸 | In vivo studies showed 2 to 10-fold higher mucoadhesion and bioavailability for cross-linked hyaluronic acid nanoparticles compared to free hyaluronic acid 体内研究显示,与游离透明质酸相比,交联透明质酸纳米粒子的粘附性和生物利用度高出 2 至 10 倍 | [81] | ||
Hydroxy ethyl cellulose 羟乙基纤维素 | Clarithomycin loaded hydroxyl ethyl cellulose nanoparticles proved rapid H. pylori clearance attributed to strong mucoadhesion of nanoparticles to Hep-2 cell surface 克拉霉素载药羟乙基纤维素纳米颗粒表现出快速清除幽门螺杆菌,归因于纳米颗粒与 Hep-2 细胞表面的强粘附性。 | [82] | ||
Pectin 果胶 | Pectin-liposome nanoplexes demonstrated strong mucoadhesion remaining in the intestinal tract even 6 h after administration 果胶-脂质体纳米复合物在给药后 6 小时仍表现出强烈的肠道粘附性 | [83] | ||
Polycarbophil 聚卡波非钙 | Amoxicillin loaded polycarbophil nanoparticles interacted with mucus but less pronounced than thiolated polycarbophil nanoparticles 阿莫西林载药聚卡波非钙纳米粒子与粘液相互作用,但程度不如巯基化聚卡波非钙纳米粒子明显 | [84] | ||
Polyethylene glycol (PEG) 聚乙二醇(PEG) | 7.3-fold improvement of oral bioavailability of cabazitaxel was achieved for surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles 7.3 倍提高卡巴他赛口服生物利用度,实现了表面聚乙二醇(PEO)修饰的带正电荷聚合物-脂质杂化纳米粒子的效果 | [85] | ||
Poly(vinyl pyrrolidone) 聚乙烯吡咯烷酮 | 3-fold enhancement in oral bioavailability of alendronate was achieved for complex hydrogels formed with chitosan and ring-opened polyvinyl pyrrolidone 阿仑膦酸钠在口服生物利用度方面实现了 3 倍提升,这是通过壳聚糖和开环聚乙烯吡咯烷酮形成的复合水凝胶实现的 | [86] | ||
Ionic interactions / entanglements / H-bonding 离子相互作用/纠缠/氢键 | Chitosan 壳聚糖 | Cationic charges of mucoadhesive polymers interact strongly with negative charges of mucus glycoproteins; H-bond formation with mucus glycoproteins; physical entanglements of the polymer with mucus glycoproteins further improve mucoadhesive properties 阳离子粘附性聚合物的电荷与粘液糖蛋白的负电荷强烈相互作用;与粘液糖蛋白形成氢键;聚合物与粘液糖蛋白的物理缠结进一步改善粘附性 | Nanoparticles of amphiphilic chitosan derivatives exhibited improved oral bioavailability of scutellarin 纳米级两亲性壳聚糖衍生物的纳米颗粒提高了穿心莲内酯的口服生物利用度 | [87] |
Poly(aspartic acid)-chitosan 聚天冬氨酸-壳聚糖 | Poly(aspatic acid)-chitosan nanoparticles showed enhanced bioavailability of 5-fluoruracil 聚(天冬氨酸)-壳聚糖纳米粒子提高了 5-氟尿嘧啶的生物利用度 | [88] | ||
N-Trimethyl chitosan N-三甲基壳聚糖 | Prolonged gastrointestinal residence time and enhanced oral bioavailability of harmine was shown for N-trimethyl chitosan coated liposomes 延长胃肠道停留时间和提高 harmine 的口服生物利用度在 N-三甲基壳聚糖包覆脂质体中得到证实 | [89] | ||
Disulfide bridges 二硫键 | Thiolated chitosan 硫醇化壳聚糖 | Formation of disulfide bridges with cysteine-rich subdomains of mucus glycoproteins 二硫键与粘蛋白糖蛋白富含半胱氨酸亚基的形成 | Combination of a self-emulsifying drug delivery system containing insulin with thiolated chitosan provided a significant increase in oral bioavailability 胰岛素与巯基化壳聚糖自乳化药物递送系统的组合显著提高了口服生物利用度 | [90] |
Poly(lysine) modified thiolated chitosan 聚赖氨酸修饰的硫醇化壳聚糖 | Polylysine modified thiolated chitosan nanoparticles resulted in strong mucoadhesion in vitro and showed improved oral bioavailability and accumulation of paclitaxel in tumors 聚赖氨酸修饰的硫醇化壳聚糖纳米颗粒在体外表现出强烈的粘附性,并显示出提高的口服生物利用度和肿瘤中紫杉醇的积累 | [91] | ||
Per-6-thiolated cyclodextrin 6-硫醇化环糊精 | Per-6-thiolated cyclodextrin resulted in a 4.9-fold improvement in oral bioavailability of furosemide 6-硫醇化环糊精使呋塞米的口服生物利用度提高了 4.9 倍 | [92] | ||
S-protected chitosan-thioglycolic acid S-保护壳聚糖-巯基乙酸 | S-protected chitosan-thioglycolic acid coated liposomes containing calcitonin showed decrease in blood calcium level down to 65% S-保护壳聚糖-巯基乙酸包覆的含降钙素的脂质体显示出降低血液钙水平至 65%的效果 | [93] | ||
Mucin 粘蛋白 | Insulin-loaded mucin-chitosan nanoparticles containing insulin provided prolonged hypoglycaemic effect 胰岛素负载的粘蛋白-壳聚糖纳米颗粒含有胰岛素,提供了长效降血糖作用 | [94] |
Fig. 4. Cationic NCs interact with the negatively charged cell membrane and proteoglycan structures (i) resulting in electrostatic binding (ii). The NCs are then taken up via endocytosis and internalized within the cell (iii). The nanocarrier is released into the cytoplasm and releases the loaded drug at the target site (iv).
图 4. 阳离子 NCs 与带负电荷的细胞膜和蛋白聚糖结构相互作用(i),导致静电结合(ii)。随后,NCs 通过内吞作用被摄取并内化到细胞内(iii)。纳米载体被释放到细胞质中,并在靶点释放所载药物(iv)。
Fig. 5. Schematic of “smart” nanocarrier with hidden CPP; adapted with permission from Koren and Torchilin [138].
图 5. 隐藏 CPP 的“智能”纳米载体示意图;经 Koren 和 Torchilin[138]许可改编。
Fig. 6. Fusion vs. endocytosis; adapted with permission from Kube et al. and Lee et al. [156 157]. Fusogenic NCs deliver drugs into the cell by membrane fusion; structural changes are illustrated in A) to F). In addition, free drugs can be taken up directly via pores in the cell membrane. Another uptake mechanism includes endocytosis, followed by endosomal degradation of the NC.
图 6. 融合与内吞作用;经 Kube 等人[156157]和 Lee 等人许可改编。融合性纳米颗粒通过膜融合将药物递送至细胞内;结构变化在 A)至 F)中展示。此外,自由药物可以直接通过细胞膜的孔隙被摄取。另一种摄取机制包括内吞作用,随后是纳米颗粒的内体降解。
Fig. 7. Illustration of charge converting NCs bearing phosphate substructures on their surface that are cleaved off by intestinal alkaline phosphatase on the brush border membrane.
图 7. 表面带有磷酸亚结构的纳米晶体(NCs)在刷状缘膜上被肠道碱性磷酸酶切割的示意图。
Fig. 8. Schematic illustration of polyacrylic acid (PAA) capped MSNs for pH-triggered release of doxorubicin; reprinted with permission from Tian et al. [212].
图 8. 聚丙烯酸(PAA)包覆的 MSNs 的示意图,用于 pH 触发的多柔比星释放;经 Tian 等人[212]许可重印。
Fig. 9. pH-dependent release of sulfasalazine (anionic) incorporated in microporous silica nanoparticles (MSNs) via pH-sensitive trimethylammonium groups. (a) Aldehyde-modified MSN surfaces, (b) MSN modified with pH-sensitive trimethylammonium groups via hydrazone bonds and further adsorption of sulfasalazine by electrostatic attractions, (c) drug adsorption and protection in the nanochannels of MSN by hydrogen bonds in the stomach’s acidic environment, (d) burst drug release by electrostatic repulsion at neutral pH in intestinal fluids; reprinted with permission from Cheng et al. [214].
图 9. 微孔二氧化硅纳米粒子(MSNs)中磺胺吡啶(阴离子)的 pH 依赖性释放,通过 pH 敏感的三甲基铵基团。(a)醛基修饰的 MSN 表面,(b)通过席夫碱键修饰 pH 敏感的三甲基铵基团的 MSN,并通过静电吸引进一步吸附磺胺吡啶,(c)在胃酸性环境中,通过氢键在 MSN 纳米通道中的药物吸附和保护,(d)在肠道液体中中性 pH 下的静电排斥导致药物释放;经 Cheng 等人[214]许可重印。
Fig. 10. Redox-triggered drug release after disulfide bond cleavage by GSH; adapted from Hock et al. [161].
图 10. GSH 裂解二硫键后触发的氧化还原药物释放;改编自 Hock 等人[161]。
Zwitterionic surfaces use Coulomb forces like ion-dipole interactions to bind water, while most other surfaces rely on H-bonds to interact with water molecules in their environment. As a result, bioinert, zwitterionic NCs can immobilize water on their surface, forming a stable solvation shell that acts as an interface shield against interactions with gastrointestinal (GI) compounds [14]. Moreover, zwitterionic surfactants do not cause an immune response like PEG.
The addition of Zn into MnO2 NCs improved their multifunctional properties such as optic, magnetic, hydrophilic and hydrophobic interactions. Furthermore, because of their small size and good dispersion in aqueous solution, the NCs are a promising candidate for biomedical applications such as cancer diagnosis and treatment [51]. The FTIR spectra of all the NCs were given in Fig. 3.